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Abstract - Consider multiple narrowband agnak that are incident 
upon a planar sensor array. 20 Uniiury ESPRIT is a new closed-form 
high resolution algorithm to provide automatically paired source azi- 
muth and elevation angle estimates, along with an efficient way to 
reconstruct the impinging Signals. In the final stage of the algorithm, 
the real and imaginary parts of the ith eigenvalue of a matrix are 
one-to-one related to the respective direction cosines of the ith source 
relative to the two array axes. 20 Unitaq ESPRIT offers several 
advantages over other recently proposed ESPRlT based closed-form 
2D angle estimation techniques. Rrst, except for the final eigenvalue 
decomposition of dimension equal to the number of sources, it is ef- 
ficiently formulated in terms of real-valued computation throughout. 
Second, it is amenable to an efikient D R  beamspace implementation. 
Third, it is also applicable to array configurations that do not exhi- 
bit three identical subarrays, as long as the array is centro-symmetric 
and possesses invariances in two distinct directions, cf. Fig. 2. Finally, 
2 0  Unitary ESPRZT easily handles sources having one member of the 
spatial frequency coordinate pair in common. 

1. Introduction 

The extension of ESPRIT-like high resolution signal parameter esti- 
mation schemes to the 2D case, like the estimation of azimuth and 
elevation angles, has generally been considered a nontrivial task. 
This is due to the fact that, after decomposing the 2D problem into 
two independent ID problems, the resulting two decoupledpara- 
meter sets have to be combined to correct parameter pairs [14,6]. 
Recently proposed solutions MceMultipk Invariance ESPRIT [8,7] 
and Clark & Scharf‘s 2 0  IQML algorithm [I] involve nonlinear 
optimization. In the Algebraically CoupledMatrix Pencil (ACMP) 
method of van der Veen et al. [9].’ eigenvector information is em- 
ployed to pair the respective members of the two sets of 1D angle 
estimates. However, under the assumption that the array lies in 
the 2-31 plane, ACMP breaks down if two sources have the same 
arrival angle relative to either the z-axis or the y-axis. In contrast, 
for a uniform circular array (UCA) the recently presented UCA- 
ESPRIT [5] algorithm provides closed-form, automatically paired 
2D angle estimates as long as the azimuth and elevation angle of 
each signal arrival is unique. Here, we develop a closed-form 2D 
angle estimation algorithm for 2D centro-symmetric array confi- 
gurations, such as uniform rectangular m a y s  (URAs), that provide 
automatic pairing in a similar fashion. In the derivation of UCA- 
ESPRIT it was necessary to approximate the sampled aperture 
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pattern by the continuous aperture pattem. Such an approximation 
is not required in the developmentof 2 0  Unitary ESPRIT. Another 
advantage is that 2 0  Unitary ESPRIT can also be applied to array 
configurations that do not exhibit three identical subarrays, e.g., 
two noncolhear uniform linear arrays. ACMP, however, requires 
an array of sensor triplets so that one can extract three identical 
subarraysf” the overall array. 2 0  Unitary ESPRITonly requires 
that the array has invariances in two distinct directions. 

Unitary ESPRIT retains the simplicity and high-resolution ca- 
pability of theoriginal ESPRITalgorithm for one-dimensional( 1D) 
arrays, but attains a superior performance for correlated signals at 
a reduced computational cost. Being completely formulated in 
terms of real-valued computations, I D  Unitary ESPRlTrepresents 
a simple and efficient method to constrain the estimated phase fac- 
tors to the unit circle [3]. Since the dimension of the matrices 
is not increased, this completely real-valued algorithm achieves a 
substantial reduction of the computational complexity. Both, the 
element space version [3] and the DIT beamspace version [13] of 
I D  Unitary ESPRIT formulate each of the three primary stages of 
the algorithm in terms of real-valued computations: (1) the compu- 
tation of the signal eigenvectors, (2) the solution to the overdeter- 
mined system of equations derived from these signal eigenvectors, 
and (3) the computation of the eigenvalues of the solution to the 
system of equations formed in stage 2. The ability to formulate 
ESPRIT-like algorithms for 1D array structures that only require 
real-valued computations from start to finish, after an initial sparse 
unitary (or beamspace) transformation, is critically important in 
developing 2 0  Unitary ESPRIT. 

2. 2D Array Geometry 

Consider a two-dimensional (2D) centro-symmetric sensor array 
of M elements lying in the z-y plane (Fig. 1). A sensor array 
is cakd  centro-symmetric [Il l ,  if its element locations are sym- 
metric with respect to the centroid and the complex responses of 
paired elements are the same. Assume that the array also exhibits 
a dual invariance, ie., two identical subarrays of m, elements are 
displaced by A, along the z-axis, and another pair of identical 
subarrays, consisting of my elements each, is displaced by Ay 
along the y-axis. Notice that the four subarrays can overlap and 
m, is not required to equal m y .  Such m a y  configurations include 
uniform rectangular arrays (URAs), uniform rectangular frame ar- 
rays (URFAs), i.e., URAs without some of their center elements, 
and cross arrays consisting of two orthogonal linear arrays with a 
common phase center, cf. Fig. 2.2 

~ ~~ 

21n the examples of Fig. 2, a l l  values of m, and my correspond to 
selection mamas with maximum overlap in both directions. For a URA 
of M = M, x M y  elements, cf. Fig. 2 (a), this assumption implies 
mz (Mz  - 1)My andmy = Mz (My - 1). 
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Thus, we can define two pairs of selection matrices that are centro- 
symmetric with respect to one another, ie., 

J,Z = IIm, Jpl  IIM and Jv2 = L, Jv1 n ~ .  (1) 

Fig. 3 visualizes a possible choice of the selection matrices for a 
URA of M = 4 x 4 = 16 sensor elements. Then, the steering 
matrix A satisfies the following invariance properties 

J M I A  +,., = JP2A with (2) 

JvlA aV = Jv2A with = diag { ejv’ } r = l  , (3) 

where pi = FAru;  and ui = FA,vi are the spatial frequencies 
in 2- and ydirection, respectively. The data matrix X will be an 
M x N matrix composed of N snapshotsx(t,), 1 5 n 5 N ,  of 
data as columns. 

9, = diag {e’” } := 

Fig. 1: Definitions of azimuth (-180’ < q5i 5 180’) and elevation 
(00 5 ei 5 900) 

(4 (b) (cl (d) 

Fig. 2: Centra-symmetric array configurations with a dual invariance struc- 
ture: (a)URAwithM = 12,mr = 9,m, = 8. (b)URPAwithM = 12, 
m, = my = 6. ((c) Cross array with M = 10, m, = 3, my = 5. (d) 
M = 12, mr = my = 7. 

Incident on the array are d narrow-band planar wavefronts 
with wavelength A, azimuth di and elevation B ; ,  1 5 i 5 d. 
Let ai = cos 4; sin Bi and U ,  = sin q5i sin 6i denote the direction 
cosines of the ith source relative to the z- and y-axes, respectively 
(Fig. 1). The d impinging signals are combined to a column vector 
s ( t ) .  Furthermore, n(t)  denotes the additive noise vector, which 
is assumed to be spatially white and uncorrelated with the signals. 
Then, the array measurements are given by x(t )  = As( t )  + n(t )  E 
C M ,  where the sensor outputs at time t are stacked in a column 
vectorr(t). such that the array steering matrixA E C M  satisfies 
I I M ~  = AA for some unitary diagonal matrix A E Cdxd.  l l ~  
is the M x M exchange matrix with ones on its antidiagonal 
and zeros elsewhere. Throughout this paper, an overbar denotes 
complex conjugation without transposition. Evwy row of the array 
steering matrix Ai corresponds to an element of the sensor array. 

-. . , 
I I 

I 

-f 
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Fig. 3: Submay selection for a URA of M = 4 x 4 = 16 sensor elements 
(maximumoverlapinbothdirections: mr =my = 12) 
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3. 2D Unitary ESPRIT in Element Space 

In the 1D case, Unitary ESPRITretains an ESPRIT-like structure, 
except for the fact that it is formulated in terms of real-valued 
computations from start to finish [3]. The real-valued imple- 
mentation was derived by exploiting a bijective mapping between 
centro-Hermitian and real matrices [4]. A complex-valued matrix 
M E cPxq is called centro-Hermitian if IIp li? n, = M. h r -  
thermore, define left II-real matrices [4,3] as matrices Q E cpxq 
satisfying IIpG = Q. The unitary matrix 

Q2n+1 =z I [ $ $  n, 0 -jn, ”:I (4) 

for example, is left n-real of odd order. A unitary left n-real 
matrix of size 2n x 2n is obtained from (4) by dropping its center 
row and center column. More left II-real matrices can be con- 
structed by post-multiplying a left II-real matrix Q by an arbitrary 
real matrix R, i.e., every matrix Q R is left II-reaL “he real imple- 
mentation of Unitary ESPRIT is based on the following theorem. 

Theorem 1 ([4]) Let Q, and Qq denote unitary, left ll-real ma- 
trices of size p x p and q x q, respectively. Then, the bijective 
mapping 

: M * Q,”MQq 
maps the set of all p x q centro-Hermitian matrices onto wPxq, the 
set of all real matrices of the same size. 

As in the 1D case, an SVD of the complex-valued“extended” data 
matrix [ X IIM ZII, ] corresponds to a square-root version 
of the familiar forward-backward averaging scheme. Notice that 
this “extended” data matrix is centro-Hermitian. Thus, it can be 
transformed into a real-valued matrix of the same size by using 
theorem 1, 

If Q denotes the left ll-real matrix defined in (4). an efficient com- 
putation ofthe transformation I ( X )  E RMX2, from the complex- 
valued data matrix X only requires M x 2N real additions [3]. Its 

a real-valued SVD of 7(X) (direct data or square-root approach). 
Altematively, they can be com uted through a real-valued eigen- 
decomposition of T ( X ) 7 ( X )  E W M X M  (covariance approach). 

d dominantleft singular vectors E. E R M x d  are obtained through 
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To invert the transformation in (3, defineC,k = J,kQMES E 
Cmx for k = I, 2.  hen, it is well known that an estimate of the 
phase factors ejpi ,  1 5 z 5 d,  is given by the eigenvalues of P,, 
where *,, is a solution of the overdetermined complex-valued set 
of equations 

However, it was shown in [31 that 811 estimate of the spatial fre- 
quencies in z-direction, p i ,  1 5 i 5 d, cm more efficiently be 
obtained from the solution of the overdetermined real-valued set 
of equations 

where the selection matrices K,1 and K,z are obtained from J,1 

and JW2 in the following fashion: 

e,, *, 25 c g 2 .  (6) 

K p ~ E s Y f i  x K&s, (7) 

Since the matrices in braces are centro-Hermitian, K,l and K,z 
are real-valued according to theorem 1. They are even sparse, 
if the selection matrix J P 1  is sparse. Notice that the real-valued 
system of equations (7) has the same dimension, ie., ml x d, as its 
complex-valued counterpart (6). Moreover, the total least squares 
(TLS) solution of the complex-valued system (6) *y) and the 
TLS solution of the real-valued system (7) Y y  are related via 
the linear fractional transformation 

x - j  
z + j ’  

f (x)  = -- 

which is analytic for z # - j ,  namely *y’ = f (YL-)) . To 
achieve additional computational savings, the TLS solution of (7) Tr) can be replaced by its least squares fLs) solution, which is a 
simplification of the algorithm that does not &ect the accuracy of 
the resulting estimates [3]. 

Let Y , = T S2, T-’ be an eigendecomposition of the real 
matrix Y ,, i.e., the LS or TLS solution of (7). men, the eigen- 
values of 9, can be obtained through the same linear fractional 
transformation, that is 

(9) 

and wP1 # - j .  Furthermore, the associated eigenvectors of Y , 
and P, are the same. Notice also that solving (9) for wpi yields 

This reveals a spatial frequency warping identical to the temporal 
frequency warping incurred in designing a digital filter from an 
analog filter via the bilinear transformation. 

The spatial frequencies in y-direction, vi, 1 5 i 5 d, are 
estimated in a similar fashion. First, define thereal-valued selection 
matrices 

Kui = QZu ( J Y i  + J u z )  Q M  

Ku2 = QEw j (J,I - J,z )  QM. 

Then, 9, = f (0,) is determined from the eigendecomposition 
of the (T)LS solution of the overdetermined real-valued system of 
equations 

Ku1EsTu z KuzEs. (1 1) 

Assuming a large number of snapshots N, the following asymp- 
totic observations are made. They are critical to achieve auto- 
matic pairing of the diagonal elements of +, and 9,. First, the 
d x d matrix of eigenvectors T in the spectral decomposition of 
Y, = TO, T-l is the same as that appearing in the spectral 
decomposition of Y, = TO, T-I.  Second, we can choose a 
real-valued eigenvector matrix T. The subspace spanned by the 
columns of T is unique as long as no two sources have exactly 
the same azimuth and elevation angles. Finally, Y, and Y, are 
real-valued, as are the diagonal matrices S2, and Cl,. Automatic 
pairing of the spatial frequency estimates pc and vi is achieved by 
computing the eigendecomposition of the “complexified” matrix 

Y& +jY, = T(S2, + jQ , )T- ’ ,  (12) 

where the real and the imaginary part of the eigenvalues is asymp- 
t o t i d y  given by 

0, = diag{tan(pi/Z)):=, and Ow = diag{tan(vi/Z)};=, . 

Notice that 20  Unitary ESPRITis symmetric with respect to the z- 
and y-axes, whereas many other methods, like ACMP or 2 0  ImM, 
do not treat the estimation of ai and vr alike. The maximum num- 
ber of sources 2 0  Unitary ESPRIT can handle is min{m,, q,}, 
assumingthat at least d + 1 snapshots are available. If only a single 
snapshotis available (or more than two sources are correlated), one 
can extract d + 1 or more identical submaysout of the overall array 
to get the effect of multiple snapshots (spatial smoothing), thereby 
decreasing the maximum number of sources that can be handled. 

Reconstructing the impinging wavefronts (signal copy) only 
requires a few additional computations. Asymptotically the array 
steering matrix A and QMEs span the same column space. Thus, 
there exists a full rank matrix T E Cdxd such that - 

A = QMEs T .  (13) 

It tums out that !? = TD-’, where Tis the matrix of eigenvectors 
obtainedfrom (12) andD E cdxd denotes some diagonal scaling 
matrix. Using (13) as an estimate of A, a linear estimate of the 
source signal matrix s E C d x N  takes the form [ 2 ~  

Each row of 2 contains a signal vector corresponding to one source. 
A brief summary of the whole algorithm is given in table 1. 

4. 2D Unitary ESPRIT in DFT Beamspace 

Reduced dimension processing in DFT beamspace is facilitated 
when one has a-priori information on the general angular locations 
of the signal arrivals, as in a radar application, for example. In this 
case, we can restrict the computations to those rows of the DFT 
matrix that form beams encompassing the sector of interest, thereby 
yielding reduced computational complexity. If there is no a-priori 
information, one may examine the DFT spectrum and apply 2 0  
Unitary ESPRIT in DFT beamspace to a small set of DFT values 
around each spectral peak above a particular threshold. In a more 
general setting, 20  Unitary ESPRITin D m  beamspace can simply 
be applied via parallel processing to each of a number of sets of 
successive DFT values corresponding to overlapping sectors. 

Similar to Unitary ESPRIT in element space [3], and in con- 
trast to the Beampace ESPRIT algorithm of Xu et al. [12], the 
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Table I: Sunmary of 2 0  Unitary ESPRIT in element space 

I .  Signal Subspace Estimation: Compute E ,  E RM x d  as 
thed dominantleft singularvectorsof T(g) E R M x Z N  
(square-root approach) or the d dominant eigenvectorsof 
7(k)7(?)H E RM x M  (covariance approach). 

2. (Total) Least Squares: Then, solve 

K,rE, T, M K,2Es and KUrEs Y, M K,zEs v v w v 
Rmz x d  p , x d  p % x d  R”!J x d  

by means of (total) least squares techniques. 

compositilon of the complex-valued d x d matrix 
3. Spatial Frequency Estimation: Calculate the eigende- 

Y , + ~ Y ,  = T A T - ’  with ~ = d i a g ( ~ i ) ; = ,  

p t = = 2  arctan(Re{X,}) 
vt == 2 arctan (Im {X i } )  

a=1,2, ..., d 
a = 1,2,. . . , d 

4 .  Signal Reconstruction: Estimate according to (14). 

DFT beamspace version of ID Unitary ESPRIT involves only 
real-valued computation from start to finish after the initial trans- 
formation to beanispace. Again, this is critically important for an 
extension to the 2D case, since after decomposingthe 2D problem 
into two independent (real-valued) 1D problems, the resulting two 
parameter sets are combined to correct parameter pairs through 
a complex-valued eigendecomposition similar to equation (12). 
Details can be found in [13]. 

5. Simulations 

The presented simulations compare the performance of 2 0  Uni- 
tary ESPRIT in ellement space with that of ACMP and the Cram& 
Rao (CR) lower bound [5], using a URA of M = 5 x 5 = 25 
elements, N = 40 snapshots, and 500 trial runs. Three uncorre- 
lated, equi-powered sources are located at (w , V I )  = (0.5,0.2), 
(UZ, v ~ )  = (0.4,0.3),and(u3,~3) = (0.3,0.4). Fig.4depictsthe 
the RMSE (in the U-v plane) as a function of the SNR, while Fig. 5 
shows scatter plots of the DOA estimates for an S N R  of 10 dB. 
Compared to ACA4P, 2 0  Unitary ESPRIT achieves a significantly 
better performance with a reduced computational complexity. 

6. Concluding Remarks 

20  Unitary ESPRIT is a new closed-form ESPRIT-like high resolu- 
tion algorithm to provide automatically paired 2D spatial frequency 
estimates in elemtat space or DIT beamspace. Except for the final 
eigendecomposition of dimension d ,  it is efficiently formulated in 
terms of real-valued computation throughout. Since the impin- 
ging wavefronts can easily be reconstructed, 2 0  Unitary ESPRIT 
is particularly attractive for spatial diversity reception with antenna 
arrays to improve the performance of mobile communication sy- 
stems. Moreover,, 2 0  Unitary ESPRIT can also be employed in a 
variety of applications other than array signal processing,  including 
2D harmonic retrieval for image analysis and high resolution radar 
imaging. 

100 
ACMP ...*.. 
M Uniruy ESPRIT -a- 

- 

Fig. 4: Mean value of the RMS error for the 3 sources in the U-’U plane as 
a function of the SNR. 

Fig. 5: Scatter plotsof the DOA estimates in the 21-21 plane for ACMP (left) 
and 2 0  Unitary ESPRIT (right), SNR = 10 dB. 
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