
Parallel SVD{Updating Using Approximate Rotations

J�urgen G�otze

Dept. of Electrical and Computer Engineering

Rice University, Houston, Texas 77251-1892, U.S.A

email: jugo@ece.rice.edu

Peter Rieder and Josef A. Nossek

Institute of Network Theory and Circuit Design

Technical University of Munich, Germany

email: peri@nws.e-technik.tu-muenchen.de

Abstract

In this paper a parallel implementation of the SVD{updating algorithm using approximate rotations is presented.

In its original form the SVD{updating algorithm had numerical problems if no reorthogonalization steps were applied.

Representing the orthogonal matrix V (right singular vectors) using its parameterization in terms of the rotation

angles of n(n�1)=2 plane rotations these reorthogonalization steps can be avoided during the SVD-updating algorithm

[18]. This results in a SVD{updating algorithm where all computations (matrix vector multiplication, QRD{updating,

Kogbetliantz's algorithm) are entirely based on the evaluation and application of orthogonal plane rotations. Therefore,

in this form the SVD{updating algorithm is amenable to an implementation using CORDIC{based approximate

rotations.

Using CORDIC{based approximate rotations the n(n�1)=2 rotations representing V (as well as all other rotations)

are only computed to a certain approximation accuracy (in the basis arctan 2i). All necessary computations required

during the SVD{updating algorithm (exclusively rotations) are executed with the same accuracy, i.e., only r � w (w:

wordlength) elementary orthonormal �{rotations are used per plane rotation. Simulations show the e�ciency of the

implementation using CORDIC{based approximate rotations.

1 Introduction

By computing the singular value decomposition (SVD) of an m � n data matrix it is possible to extract the signal

and noise subspaces of the data. The knowledge of these subspaces is essential in many application �elds, e.g. DOA{

estimation [16], state{space system identi�cation [13].

In practice, where the problems are usually time varying, it is important to be able to track these subspaces.

Therefore, in recent years various subspace tracking algorithms have been proposed. These algorithms are based on

rank revealing decompositions [3, 17], the Lanczos algorithm [4] or the SVD{updating algorithm [14].

The SVD{updating algorithm incorporates a new data vector by a matrix vector multiplication, a QRD{updating

step and a fraction of a sweep of Kogbetliantz's SVD algorithm [14, 6]. These types of computations are well suited for

parallel implementations and it has been shown in [15], that all the computations can nicely be combined to a systolic

algorithm and architecture for SVD{updating.

However, this original version of the SVD{updating algorithm [14] exhibits numerical problems since due to the

round{o� error accumulation the orthogonality of the singular vectors is lost. Reorthogonalization steps can avoid

this problem but are not appropriate for a systolic implementation. In [18] this problem was solved by using the

parameterization of the matrix of right singular vectors by n(n � 1)=2 plane rotations and updating the respective

rotation angles. In this form the SVD{updating algorithm is entirely based on the evaluation and application of plane

rotations.

These plane rotations can be implemented in the standard way using square roots and divisions or transzendental

functions. It has been shown in [9] that the use of approximate rotations is worthwile in order to avoid square

root computations or square root and division computations without degrading the performance of the SVD{updating

algorithm. With respect to an e�cient VLSI implementation another widely used method for the implementation of the

rotations is the CORDIC [19, 20]. Approximate rotations based on the idea of CORDIC, i.e., representing the rotation

angle � in the basis arctan 2�i with digits fi 2 f+1;�1g (� =
P

i fi arctan 2
�i), are advantageous for Jacobi{type

methods [12] and QRD-updating [8]. In [10] a method was derived that allows the evaluation of the optimal �{rotation

angle (i.e. �i = arctan 2�i) using �{rotations as well. An elementary architecture for evaluationg and applying the

�{rotations was presented in [11].

In this paper we demonstrate the e�ciency of approximate rotations based on simple CORDIC{type �{rotations

for the SVD{updating algorithm. This requires the extension of the ideas presented in [12] to the SVD, i.e., the use of

approximate CORDIC{type �{rotation is discussed for Kogbetliantz's SVD algorithm and applied to the SVD{updating

algorithm as given in [18]. Note, that only this numerically stable version of the SVD{updating algorithm is appropriate

with respect to a formulation of the entire algorithm based on CORDIC{type �{rotations, since only this version is

entirely based on plane rotations. Simulations show that very coarse approximations, i.e. using r �{rotations (r � w,

w being the wordlength) per plane rotation works as well as using exact rotations (i.e. r = w for the exact CORDIC).

In section 2 we present some preliminaries. First of all the de�nition of orthogonal plane rotations and their

implementation using CORDIC is given. Then, the linear algebra algorithms composing the SVD{updating algorithm

are reviewed, i.e., the QRD{updating and the SVD using Kogbetliantz's algorithm. Section 3 presents the SVD{

updating algorithm as given in [18], requiring only applications and evaluations of plane rotations throughout the

algorithm. Section 4 reviews the idea of using approximate rotations. Approximate rotations based on CORDIC{type

�{rotations are used for the SVD{updating algorithm in section 5. In section 6 simulations show the e�ciency of the

presented algorithm and section 7 concludes the paper.

2 Preliminaries

In this section the matrix decompositions (QRD,SVD) as required for the SVD{updating algorithm are de�ned and

their computation as appropriate for the SVD{updating algorithm (QRD-updating and SVD computations using Kog-

betliantz's algorithm) are reviewed. These algorithms are based on the evaluation and application of plane rotations.

The implementation of orthonormal plane rotations using CORDIC is also discussed.

2.1 Orthogonal Rotations

De�nition 1 (Orthonormal Plane Rotation) A plane rotation Gpq(�) 2 Rn�n is de�ned by the rotation angle �

and the (p; q){plane in which the rotation takes place. Gpq(�) is given by the embedding of cos(�) and sin(�) in the

(pp,pq,qp,qq) positions of an n� n identity matrix as follows:

p q

Gpq(�) =

2
6666666666666664

1
...

... 0
. . .

...
...

� � � � � � cos(�) � � � sin(�) � � � � � �
...

. . .
...

� � � � � � � sin(�) � � � cos(�) � � � � � �
...

...
. . .

0
...

... 1

3
7777777777777775

p

q

: (1)

Gpq(�) is an orthogonal rotation, since GT
pq(�)Gpq(�) = I.

Without loss of generality we will only consider in detail the evaluation and application of 2�2 orthogonal rotations.

G(�) =

"
cos � sin�

� sin� cos �

#
=

1p
1 + tan2�

"
1 tan�

� tan� 1

#
(2)

in the following. A vector [x; y]T is rotated by � by

"
x0

y0

#
= G(�)

"
x

y

#
: (3)

Frequently, � is computed such that y0 = 0, i.e.,

� = arctan
y

x
: (4)

Various possibilities for the implementation of orthogonal plane rotations have been presented, e.g. square root

free or square and division free rotations. With respect to an ASIC implementation CORDIC is another widely used

method for rotation computations.

2.2 CORDIC

The CORDIC procedure [19, 20] can be interpreted as a representation of the desired rotation angle � in an "arctan 2�k"

number system with digits fk 2 f�1; 1g. Hence, after w+1 iteration steps the input vector [x; y]T is rotated by � with

a precision of w bits. In matrix notation the CORDIC algorithm is governed by"
x0

y0

#
=

1

Kw

wY
k=0

"
1 sign(�k)2

�k

�sign(�k)2�k 1

#"
x

y

#
; (5)

where the scaling factor 1
Kw

is independent of the rotation angle.

1

Kw

=
wY
k=0

1p
1 + 2�2k

(6)

There have been e�orts to eliminate the scaling factor or at least to bring it into a simple binary representation. Delosme

[5] proposed a method for computing a variable scaling factor on{line. This case arises for variable iteration bounds in

(5). Let an elementary rotation by angle �k be composed of twice executing a rotation by �k/2. A double rotation is

given by "
x0

y0

#
=

1

K2
w

wY
k=0

"
1� 2�2k sign(�k)2�k+1

�sign(�k)2�k+1 1� 2�2k

#"
x

y

#
: (7)

Now, four shift and four add operations are required per iteration step but the scaling factor is square root free. To

avoid the division, too, the following simple identity can be used:

1

1 + 2�2k
= (1� 2�2k)(1 + 2�4k)(1 + 2�8k) � � � (8)

We will elaborate this further when approximate rotations are discussed.

2.3 QR{Decomposition

De�nition 2 (QR{decomposition) The QR-decomposition of a matrix X 2 Rm�n(m � n) is de�ned by

X = Q

"
R

O

#
; (9)

where Q 2 Rm�m is orthogonal (QTQ = I) and R 2 Rn�n is upper triangular.

The triangular matrix R is obtained by applying a sequence of rotations Gpq(�) to the matrix X , where Gpq(�)

annihilates the xpq element for 1 < q � n and q + 1 < p � m, i.e.,

Q =
Y
p;q

Gpq(�) (10)

An alternative for triangularizing X columnwise is to perform the triangularization row by row. This yields the

recursive QRD{updating. Let X [k�1] be the k � 1 � n data matrix available at time step k � 1 and xT[k] be the new

data vector measured at time step k, one obtains

X [k] =

"
�X [k�1]

xT[k]

#
; (11)

where � is the forgetting factor.

Given the QRD of X [k�1]

X [k�1] = Q[k�1]

"
R[k�1]

O

#
; (12)

the upper triangular factor R[k] is obtained by appending the new data vector xT[k] to the weighted matrix �R[k�1] and

using a sequence of Givens rotations Gpq(�) (p = k; 1 � q � n) to annihilate the appended row, i.e.,"
R[k]

0T

#

nY
i=1

Gki(�)

"
�R[k�1]

xT[k]

#
: (13)

2.4 Singular{Value{Decomposition

De�nition 3 (SVD) The SVD of a matrix X 2 Rm�n is de�ned by

X = U�V T (14)

where U 2 Rm�m and V 2 Rn�n are orthogonal matrices (UTU = I, V TV = I) and � = diag(�1; : : : ; �n) is an

m � n diagonal matrix containing the singular values �i.

With respect to a parallel implementation Kogbetliantz's algorithm is the method of choice for computing the SVD.

It is well known that it is advantageous to apply Kogbetliantz's SVD algorithm to the upper triangular matrix R

obtained by a preparatory QRD X = Q

"
R

O

#
(instead of applying it to X itself). The triangular Kogbetliantz SVD

algorithm is given as follows:

for l=0,1,2,: : :

for all index pairs (p,q)

R UT
p;q;l(�U) �R � V T

p;q;l(�V)

V V � V p;q;l(�V)

U U �Up;q;l(�U)

(15)

where Up;q;l(�U) and V p;q;l(�V) are the plane rotations in the (p; q){plane during the l{th iteration. For the index

pairs (p; q) a cyclic{by{row ordering scheme is used, i.e.,

(p; q) = (1; 2); (1; 3); : : : ; (1; n)(2; 3); : : : ; (2; n); : : :; (n� 1; n): (16)

The cyclic ordering scheme preserves the triangular structure of the initial matrix R such that Kogbetliantz's

algorithm must only work with triangular matrices throughout the whole algorithm. The execution of all n(n � 1)=2

pairs of (16) is called a sweep (l{th sweep).

The plane rotations Up;q;l(�U) and V p;q;l(�V) have to be determined such that the matrixR converges to a diagonal

matrix (i.e. �). Therefore, the o�{diagonal quantity

S =

vuutkRk2F �
nX
i=1

r2ii (17)

must be reduced by each transformation (15). This is usually obtained by annihilating the matrix entry rpq . Again

without restiction of generality we consider the 2� 2 subproblem

"
r0pp 0

0 r0qq

#
=

"
cos �U sin�U

� sin�U cos�U

#"
rpp rpq

0 rqq

#"
cos �V sin�V

� sin�V cos �V

#
: (18)

It has been shown in [21, 2], that the angles �U and �V can be determined using two angles �1 and �2 that can be

computed independent of each other:

�1 = arctan
�r12

r11 + r22
�2 = arctan

r12
r22 � r11

(19)

�U =
1

2
(�2 � �1) �V =

1

2
(�2 +�1): (20)

3 SVD{Updating Algorithm

The SVD{updating algorithm is based on a matrix vector multiplication, a QRD-updating step, and the computation

of the SVD by the triangular Kogbetliantz algorithm. Let X [k�1] = U [k�1]�[k�1]V [k�1] be the factorization of X [k�1]

at time step k � 1 and xT[k] be the new data vector. In order to put the QRD{updating and the SVD{computation

together it is necessary to multiply the new data vector xT[k] by the already computed matrix of right singular vectors

V [k�1]

~xT[k] xT[k]V [k�1] : (21)

Then, the QRD{updating is executed using ~xT[k] as the appended vector:

"
~R[k]

0T

#

nY
i=1

Gki(�)

"
�R(k�1)

~xT[k]

#
(22)

Now, the SVD of ~R[k] is computed using Kogbetliantz's algorithm. In order to reduce the complexity of the Kog-

betliantz's algorithm it was shown in [6, 14] that one sweep or even a fraction of a sweep of Kogbetliantz's SVD

algorithm is su�cient to track the subspace. Annihilating only the matrix elements ~ri;i+1(i = 1; : : : ; n) after each

update, i.e.

R[k]
n�1Y
i=1

UT
i;i+1;[k](�U) � ~R[k] �

n�1Y
i=1

V i;i+1;[k](�V)

(23)

V [k] V [k�1] �
n�1Y
i=1

V i;i+1;[k](�V) (24)

also enables a regular implementation of the SVD{updating on a systolic array [15]. In this form ((21)(22)(23)) the

SVD{updating algorithm requires a reorthogonalization of the matrices V [k]. This reorthogonalization can be avoided

by parameterizing the V [k] in terms of n(n � 1)=2 orthogonal rotations and updating the respective rotation angles

[18]. Now, the matrix vector multiplication (21) can also be refered to the application of rotations. Therefore, the

SVD{updating algorithm as presented in [18], is completely based on the evaluation and application of orthogonal

rotations. This enables the application of approximate rotations throughout the whole algorithm.

4 Approximate Rotations

While the execution of an exact rotation as described in (3), (4) guaranees y0 = 0, an approximate rotation G(~�),

de�ned by an approximate rotation angle ~� � � only ensures

j y0 j=j d j � j y j with 0 �j d j< 1: (25)

The reduction factor d depends on � = x=y and ~t = tan ~� as follows:

d(�; t) =
1� � � ~tp
1 + ~t2

: (26)

Obviously, for the exact rotation where ~t = tan y=x one obtains d = 0.

At this point having de�ned an approximate rotation we make use of the idea of CORDIC [19], i.e. with respect to

a simple implementation of the rotation we restrict ourselves to the set of approximate angles

~� = �i = arctan 2�i; (27)

where i 2 I = f0; 1; 2; : : : ; bg(b = wordlength). Therefore, we only allow rotations of the form

G(�i) =
1

Ki

Gu(i) =
1p

1 + 2�2i

"
1 �2�i

��2�i 1

#
: ; (28)

where Ki is the scaling factor and Gu(i) is an (unscaled) �{rotation.

The optimal CORDIC{based approximate rotation given by the optimal angle �l (optimal angle index l) is de�ned

by the CORDIC angle �i(i 2 I) which is closest to the exact rotation angle �, i.e.,

j �l � � j= mini2I j �i � � j : (29)

This optimal �l can be determined following the ideas presented in [10, 12].

Let man(a) and exp(a), repectively, denote the mantissa and the exponent of a binary
oating point number a.

� According to tan� = y=x � 2�l an estimate for l can be obtained as

le = exp(y) � exp(x): (30)

� Since man(y)=man(x) 2 [0:25; 1[one obtains

l 2 I = fle; le + 1; le + 2g (31)

� By computing [x̂; ŷ]T = Gu(i)�[x; y]T with i 2 I and checking the sign of ŷ the optimal value for l can be identi�ed

[10]. Note, that here only unscaled rotations are necessary.

This procedure guarantees j d(�; l) j� 1=3. In virtue of an easy scaling factor compensation the approximate rotation

is slightly changed by using a double rotation with l = l+ 1 in order to avoid the square root in the scaling factor [12].

The unscaled approximate double rotation Gdu(l) is

Gdu(l) =

"
1� 2�2l �2�l+1

��2�l+1 1� 2�2l

#
: (32)

The scaled double rotation is Gds(l) =
1
K2
l

Gdu(l), where 1=K2
l = 1=(1 + 2�2l) can recursively be computed by shift{

and{add operations as follows [12] (see 8):

K2
l = (1� 2�2l)

bY
i=1

(1 + 2�2i+1l) with b = log2[
w

2l
]: (33)

The number of shift and add operations for scaling decreases for increasing values of l (small angles), e.g. for l > b=2 no

scaling is required at all. It is even possible to further reduce the e�ort for scaling by using di�erent kinds of orthonormal

�{rotations [10]. This double rotation method slightly changes the original approximation and yields j d(j � j; l) j< 0:51

[8].

The CORDIC{based approximate rotation can also be used to actually generate y0 = 0 by applying the described

procedure iteratively. Thereby, only the CORDIC angles, which are really necessary to generate y0 = 0, are executed

while the original CORDIC uses the complete sequence of w CORDIC angles (suppose a small angle �, then CORDIC

also executes the large angles although they do not contribute to the reduction of y).

5 SVD{Updating Using Approximate Rotations

Now, we examine the SVD{updating algorithm for its performance using approximate rotations.

QRD{updating. Using approximate rotations, results in an iterative version of the exact QR{algorithm [8]. Several

sweeps are necessary to achieve a su�cient approximation of the exact QR{decomposition. Another possibility is

to improve the accuracy of the orthogonal plane rotation by increasing the number of orthogonal �{rotations per

plane rotation. This version is applied to the QRD{updating.

Kogbetliantz's SVD algorithm. Approximations of the Kogbetliantz's SVD algorithm have already been examined.

In [14, 15, 18] only a fraction of one sweep is executed per QRD{update without remarkable deterioration of the

results. Using approximate rotations, i.e., annihilating the o�{diagonal elements not completely by setting them

to zero but only reducing them, is a further approximation of the Kogbetliantz algorithm.

Important in this context is, that the o�{diagonal{quantity S of (17) must be reduced with each 2x2{rotation.

Using the exact angles �U and �V (18), the matrix R is diagonalized. Using a few (say r � w) orthonormal

�{rotations representing ~�U and ~�V , R is rotated to R0. Since using approximate rotations based on CORDIC{

type �{rotations does not preserve the upper triangular structure we consider a 2� 2 subproblem where r21 6= 0

(usually small). "
r11

0 r12
0

r21
0 r22

0

#
=

"
cos ~�U sin ~�U

� sin ~�U cos ~�U

#"
r11 r12

r21 r22

"
cos ~�V sin ~�V

� sin ~�V cos ~�V

#
(34)

In order to �nd the approximate rotations, we refer to (19), (20). The advantage of this method is, that �1 and

�2 can be computed separately of each other. Therefore, it is possible to �nd the nearest approximate rotation

based on ~�1 and ~�2. With
x1 = (r22 + r11)=2; x2 = (r22 � r11)=2;

y1 = (r21 � r12)=2; y2 = (r21 + r12)=2;
(35)

we determine ~�1 and ~�2 using the method outlined in section 4. Therefore, we obtain"
x01
y01

#
= G(~�1)

"
x1

y1

#
;

"
x02
y02

#
= G(~�2)

"
x2

y2

#
; (36)

Note, that using �1 and �2 as obtained from (19), (20) would yield y01 = y02 = 0. However, by using approximate

rotations, y01 and y02 are not completely set to zero but one obtains

y01 = d1y1; y02 = d2y2: (37)

where 0 <j d1 j; j d2 j< dmax = 0:51 (see section 4). Since

r012 = �y01 + y02 = �d1y1 + d2y2 = �d1(r21 � r12)=2 + d2(r21 + r12)=2 (38)

r021 = y01 + y02 = d1y1 + d2y2 = d1(r21 � r12)=2 + d2(r21 + r12)=2 (39)

it is easy to show that

r0212 + r0221 � d2max(r
2
12 + r221) � r212 + r221 : (40)

This condition is su�cient for the convergence of Kogbetliantz's SVD algorithm [7, 9].

Representation and updating of singular vectors. At time step k � 1 V (k � 1) is described by the n(n � 1)=2

angles of the systolic processor array by Bojanczyk et al. [1]. In order to get V (k), V (k� 1) is updated with the

n� 1 rotations V i;i+1;[k](�V), i.e. the angles have to be updated. In [18] a method for executing this updating

is proposed. It also refers the matrix vector multiplication to applications of rotations. Storing each angle in the

basis arctan 2�i with fi = f0; 1g this method can easily be extended to the use of approximate rotations.

6 Simulations

The performance of the algorithms is analysed for two di�erent kinds of signals:

� s1(t) is a signal where the frequency jumps suddenly

� s2(t) is a frequency modulate signal

In both cases SNR= 20dB holds. The frequencies are estimated in each time step using the ESPRIT algorithm based

on the signi�cant subspaces as obtained from the singular vectors of V [k] belonging to the dominant singular values.

Figure 1 (jump of frequency) and Figure 2 (modulation of frequency) compare the performance of the SVD{updating

algorithm using approximate rotations to the SVD{updating algorithmusing exact rotations. Both �gures are organized

as follows. The dotted line in each subplot shows the estimated frequency if a complete SVD is executed at each time

step (i.e. MATLAB: call svd(X [k]) for each k). The solid lines show the estimated frequencies using the SVD{updating

algorithm with exact rotations (upper plot) and the SVD{updating algorithm using approximate rotations composed

of 2 �{rotations (middle plot) resp. 3 �{rotations (lower plot).

7 Conclusions

In this paper it was shown that the use of approximate rotations based on CORDIC{type �{rotations is particularly

well suited for the SVD{updating algorithm. For example, slowly time varying processes correspond to small rotation

angles which is especially advantageous for approximate rotations. Compared to the original CORDIC (exact rotation)

only a fraction of the shift{and{add operations (fraction of the number of �{rotations) is required to obtain essentially

the same performance. It is even possible to reduce the computational e�ort further by adaptively changing the number

of orthogonal �{rotations executed per rotation depending on the time variance of the analysed signal. For example,

during the time where the respective frequency of s1(t) is constant approximating the rotations with one �{rotation

would be su�cient. Only when the frequency jumps 2 resp. 3 �{rotations are required for approximating the exact

rotations to a su�cient accuracy.

References

[1] A. Bojanczyk, R.P. Brent, and H.T. Kung. Numerically Stable Solution of Dense Systems of Linear Equations

Using Mesh{Connected Processors. SIAM J. Sci & Stat. Comput, 1:95{104, 1984.

[2] J.R. Cavallaro and F.T. Luk. CORDIC Arithmetic for an SVD Processor. J. Parallel & Distributed Computing,

5:271{290, 1988.

[3] T.F. Chan. Rank Revealing QR Factorization. Linear Algebra and Its Applications, 89:67{82, 1987.

[4] P. Comon and G.H. Golub. Tracking a Few Extreme Singular Values and Vectors in Signal Processing. Proceedings

of the IEEE, 78:1327{1343, 1990.

[5] J.-M. Delosme. CORDIC Algorithms: Theory and Extensions. In Proc. SPIE Advanced Alg. and Arch. for Signal

Processing IV, volume 1152, pages 131{145, 1989.

[6] W. Ferzali and J.G. Proakis. Adaptive SVD Algorithm for Covariance Matrix Eigenstructure Computation. In

Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pages 2615{2618, Toronto (Canada), 1990.

[7] G. Forsythe and P. Henrici. The Cyclic Jacobi Method for Computing the Pricipal Values of a Complex Matrix.

Trans. Amer. Math. Soc., 94:1{23, 1960.

[8] J. G�otze. An Iterative Version of the QRD for Adaptive RLS Filtering. In Proc. SPIE's Int. Conf. on Advanced

Signal Processing: Algorithms, Architectures and Implementations, San Diego (USA), 1994.

[9] J. G�otze. On the Parallel Implementation of Jacobi and Kogbetliantz Algorithms. SIAM J. on Sci. Comput.,

15:1331{1348, 1994.

[10] J. G�otze and G.J. Hekstra. Adaptive Approximate Rotations for EVD. In M. Moonen and F. Catthoor, editors,

In Algorithms and Parallel VLSI Architectures, Leuven, 1994.

[11] J. G�otze and G.J. Hekstra. An Algorithm and Architecture based on Orthonormal �{Rotations for Computing

the Symmetric EVD. VLSI{The Integration (submitted for publication), 1995.

[12] J. G�otze, S. Paul, and M. Sauer. An E�cient Jacobi{Like Algorithm for Parallel Eigenvalue Computation. IEEE

Trans. on Computers, 42:1058{1065, 1993.

[13] M. Moonen, B. De Moor, L. Vandenberghe, and J. Vandewalle. On{ and O�{Line Identi�cation of Linear State{

Space Models. Int. J. Control, 49:219{232, 1989.

[14] M. Moonen, P. van Dooren, and J. Vandewalle. A Singular Value Decomposition Updating Algorithm for Subspace

Tracking. SIAM J. Matrix Anal. Appl., 13:1015{1038, 1992.

[15] M. Moonen, P. van Dooren, and J. Vandewalle. A Systolic Array for SVD Updating. SIAM J. Matrix Anal. Appl.,

14:353{371, 1993.

[16] A. Paulraj, R. Roy, and T. Kailath. A Subspace Approach to Signal Parameter Estimation. Proceedings of the

IEEE, 74:1044{1045, 1986.

[17] G.W. Stewart. An Updating Algorithm for Subspace Tracking. IEEE Trans. on Signal Processing, 40:1535{1541,

1992.

[18] F. Vanpoucke, M. Moonen, and E. Deprettere. A Numerically Stable Jacobi Array for Parallel SVD Updating. In

SPIE Advanced Signal Processing: Algorithms, Architectures and Implementations V, volume 2296, pages 403{412,

San Diego (USA), 1994.

[19] J.E. Volder. The CORDIC Trigonometric Computing Technique. IRE Trans. Electronic Computers, EC-8:330{334,

1959.

[20] J.S. Walter. An Uni�ed Algorithm for Elementary Functions. In Proc. Spring Joint Computer Conference, vol-

ume 38, page 397. AFIPS press, 1971.

[21] B. Yang and J.F. B�ohme. Reducing the Computations of the Singular Value Decomposition Array Given by Brent

and Luk. SIAM J. Matrix Anal. Appl., 12:713{725, 1991.

0 50 100 150
−1

0

1

0 50 100 150
−1

0

1

0 50 100 150
−1

0

1

Figure 1: Frequency estimation of s1(t) using the exact SVD (dotted line), using the SVD{updating algorithm with

exact rotations (upper plot, solid line), with 2 �{rotations (middle plot, solid line), and with 3 �{rotations per rotation

(lower plot, solid line)

0 50 100 150
−1

−0.5

0

0 50 100 150
−1

−0.5

0

0 50 100 150
−1

−0.5

0

Figure 2: Frequency estimation of s2(t) using the exact SVD (dotted line), using SVD{updating algorithm with exact

rotations (upper plot, solid line), with 2 �{rotations (middle plot, solid line), and with 3 �{rotations per rotation (lower

plot, solid line)

