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Latin Symbols

c [m/s] Speed of sound

c [m] Chord length

Ce [m/s] Equilibrium speed of sound

cy -] Skin friction coefficient

¢p -] Drag coefficient

CDp ] Pressure drag coefficient

cr ] Lift coefficient
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k [J/kg] Turbulent kinetic energy

K ] Runge-Kutta stage
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L [J/kg] Latent heat of vaporization

M -] Mach number

n ] Normal vector
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nk ] Maximum grid points in z-direction
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NOMENCLATURE

Pressure

Turbulent production term
Prandtl number

Turbulent Prandtl number

Heat flux

Vector of conserved variables
Radius

Bubble radius

Initial bubble radius

Reynolds number

Residual vector

Mass-specific entropy

Source vector

Surface area vector

Wave speeds in Riemann problem
Surface tension

Strain tensor

Strouhal number

Time

Temperature

Turbulence intensity

Velocity component in z-direction
Vector of primitive variables
Velocity component in y-direction
Specific volume

Volume

Velocity component in z-direction
Weighting function in Galerkin method
Cartesian coordinates

Mass fraction of vapor

Void fraction

Angle of attack

Runge-Kutta coefficient
Turbulence model closure coefficients
Limiter function

Control volume surface

Kronecker delta

Turbulent dissipation rate

Specific heat capacity

Heat conductivity

Eigenvalues of the equation system
Dynamic viscosity



NOMENCLATURE

v [m/s]
p [kg/m?]
Oref -]

o, 0" -]

T [s]

Tij [N/m?]
¢ -]

Xb> Xo ]

v -]

w [1/s]
§2; [1/s]

Q -]

Superscript Indices

ausm
hlle
hybrid

num

Kinematic viscosity

Density

Reference cavitation number
Turbulence model closure coefficients
Relaxation time

Shear stress

Pressure relaxation coefficient
Turbulence model closure coefficients
Mesh scale in cavitating flows
Specific dissipation rate

Rotation tensor

Control volume

Initial conditions

Total conditions

Interface value

Equilibrium condition

Gas

Inlet conditions

Initialization conditions
Liquid

Saturated liquid

Left value

Maximum value

Minimum value

Mixed reflecting/non-reflecting boundary conditions
Reference conditions

Right value

Saturation conditions
Turbulent

Vapor

Saturated vapor

Free stream or inlet condition

Equilibrium value
Star region value for the Riemann problem
Dimensionless variable

AUSM (Advection Upstream Splitting Method) Riemann solver

VII

HLLC (Harten-Lax-van Leer Contact wave) Riemann solver

Hybrid Riemann solver
Time instant
Numerical value



VIII NOMENCLATURE

— Mean value

~ Favre averaged value

! Fluctuation in Reynolds averaging
" Fluctuation in Favre averaging

All symbols that are not found in the list are defined in the text.



Abstract

The aim of this research is to model and analyze compressible 3-D cavitating liquid
flows with special emphasis on the detection of shock formation and propagation. For
that purpose the 3-D compressible finite volume flow solver CATUM (CAvitation
Technische Universitédt Miinchen) is developed, which enables the simulation of un-
steady 3-D liquid flows with phase transition at all Mach numbers. The compressible
formulation of the full set of governing equations is solved by a modified Riemann
approach, which is specially constructed to overcome the low Mach number problem.
The phase transition is modeled according to equilibrium thermodynamics and it is
validated against a series of test cases.

The CFD tool CATUM is then applied to various highly unsteady two-phase flows
inside fuel injection systems and to the flow around hydrofoils. In order to resolve
the wave dynamics that leads to acoustic cavitation as well as to detect regions of
instantaneous high pressure loads, time steps down to nanoseconds are used in the
calculations. Second order time and space discretizations are used throughout the
simulations, as the geometrical complexity of the relevant applications restrict the
usage of higher order schemes in terms of CPU requirements.

In the case of a multi-hole injection nozzle with an inlet pressure of 600bar, a maximum
pressure of about 2100 bar is observed inside the sack region and therefore ahead of the
nozzle bore holes. Similarly, instantaneous local pressure peaks of the order of 100 bar
are identified in the calculation around a 3-D twisted hydrofoil. These high intensity
pressure loads are thought to be responsible for the erosive damage of the surfaces in
such flows. Finally, symmetry break-up mechanism of the two-phase cavitating flows is
investigated through a fully symmetric twisted wing. Moreover, in all the applications
the time dependent development of vapor clouds, their shedding mechanism and the
resulting unsteady variation of flow variables are discussed in detail and compared with
the experimental results whenever possible.

IX






Zusammenfassung

Der Inhalt dieser Arbeit ist die kompressible Modellierung und numerische Analyse von
kavitierenden 3-D Fliissigkeitsstromungen einschliellich der durch Rekondensation ini-
tiierten Stoffbildung und StoBlausbreitung. Dafiir wurde die Finite Volumen Methode
CATUM (CAvitation Technische Universitdt Miinchen) entwickelt, die die Simula-
tion von 3-D Stromungen mit Phaseniibergang bei allen Machzahlen ermdglicht. Die
kompressibel formulierten Bilanzgleichungen fiir Masse, Impuls und Energie werden
unter Verwendung eines modifizierten Riemann Losers, der das “low Mach number
problem” umgeht, diskretisiert. Der Phasenwechsel wird durch thermodynamische
Gleichgewichtsbeziehungen fiir Wasser, Wasserdampf und deren gesattigte Mischung
modelliert.

Schwerpunkte der mit dem CFD Tool CATUM durchgefiihrten numerischen Analysen
sind hoch instationire Zweiphasenstromungen in Einspritzdiisen und um Schaufelmod-
elle. Zur zeitlichen Auflosung wellendynamischer Phanomene, wie akustische Kavita-
tion und instantanen Druckspitzen, sind numerische Zeitschritte in der Grolenordnung
von 107 s erforderlich. Alle Simulationen werden mit hochauflésenden Diskretisierun-
gen zweiter Ordnung in Raum und Zeit durchgefiihrt. Die hohe geomerische Kom-
plexitdt der relevanten Anwendungen verhindert den Einsatz von Schemata hoherer
Ordnung, da diese die erforderlichen Rechenzeiten mindestens um den Faktor 30
erhohen und somit nur fir sehr einfache Testfélle praktikabel waren.

Die Simulation der kavitierenden Stromung in einer Mehrlochdiise bei 600 bar Vor-
druck zeigt das Auftreten von instantanen Druckspitzen von 2100 bar stromauf
der Spritzlocher. Analog werden Druckspitzen in der GroBenordnung von 100 bar
bei der Simulation der kavitierenden Stromung um ein verwundenes Schaufelpro-
fil identifiziert. Es wird davon ausgegangen, dafl diese intensiven lokalen Druck-
spitzen an Bauteiloberflachen ein treibender Mechanismus fiir die erosive Schadigung
sind. Anhand der Stromungssimulation um ein zur halben Spannweite symmetrisches
Schaufelmodell wird die Instabilitat kavitierender Stromungen und der resultierende
Symmetriebruch der numerischen Losung aufgezeigt und analysiert. Die zeitliche En-
twicklung der Zweiphasengebiete, deren Ablose- und Kollapsverhalten und das resul-
tierende dynamische Verhalten des Stromungsgebiets werden im Detail dargestellt,
analysiert und mit verfiigharen experimentellen Ergebnissen verglichen.

XI






Chapter 1

Introduction

1.1 Background

This thesis work is the result of an ongoing research in the field of compressible for-
mulation of liquid and two-phase flows where accurate time resolution of shock and
wave dynamics in these flows is of fundamental interest. More specifically, in order to
simulate such flows, first a 3-D compressible flow solver is developed for ideal gases.
Subsequently, the code is modified to handle compressible liquid flows. Then, with the
addition of two-phase modeling capability, it is extended to simulate the cavitation
phenomenon. In the following sections, first some insight will be given on compress-
ible flows, liquid compressibility and the cavitation phenomenon. Then, the numerical
motivation behind this study will be explained briefly, followed by a literature survey
on the subject and finally an overview of the thesis will be presented.

1.2 Motivation

The main physical motivation behind this research lies in understanding the un-
steady compressible behavior of liquid flows, especially when phase transition (cav-
itation) takes place. As a natural consequence of compressibility, shock and expansion
waves form and propagate inside the flow domain continuously. Accurate prediction
of these highly unsteady flow phenomena is important in predicting the short time
scale flow characteristics of the applications. Together with cavitation and subsequent
re-condensation, a high temporal resolution is necessary to resolve the wave dynamics
and detect regions of instantaneous high pressure loads resulting from violent collapses
of cavitation regions. These pressure loads are thought to be responsible for the erosive
damages in most of the applications that experience cavitation. The flow problems that
are considered in the scope of this thesis are divided into two groups: The first group
deals with micro-scale and high-speed applications like internal flows in fuel injection
systems. Therefore, the required temporal resolution is extremely high, typically of the
order of Atcrp = 107195, The second group of flows exhibits low-speed and large-scale
characteristics, where cavitating flows in hydraulic machinery such as ship propellers
and pump or turbine blades are investigated. In both application groups, cavitation
is an important and dominating feature of the flow field and, together with collapse



2 CHAPTER 1. INTRODUCTION

induced shocks, an accurate resolution and understanding of the flow phenomena is the
physical motivation behind this study. Due to the dominance of inertia effects within
the considered two-phase flows, viscous effects are neglected in the formulation of the
problem and the conservation principles are expressed in terms of Euler equations.

1.2.1 Fluid Compressibility

By definition, flows undergoing density variations due to the imposed pressure field
are characterized as compressible flows. Whereas in incompressible flows the density is
assumed to be constant along a particle path. The density variation in a compressible
fluid is a direct consequence of the pressure force exerted on the fluid particles. For
a small element of fluid volume v, the pressure acting on the surfaces is p. If this
pressure is increased with an infinitesimal amount of dp, the volume of the element will
be correspondingly compressed by dv. Therefore, the compressibility of the fluid 7 is

defined as
1dv

T=———. 1.1

o (1.1)
Since the volume is reduced, dv is a negative quantity [5]. Thus, a negative sign is added
in front of the Eq. 1.1. This equation still needs some attention as the compression
process normally is not adiabatic. Therefore, isothermal compressibility can be defined

where the temperature of the fluid particle is kept constant

= —% (%)T . (1.2)

This equation demonstrates an important physical condition. As the compressibility
of a substance cannot be negative, following Eq. 1.2, the derivative (Ov/dp), must be
negative for the complete thermodynamic range in consideration. This is a necessary
condition for defining an equation of state and will be discussed in chapter 2 in detail.

Similarly, for adiabatic and reversible processes (without any dissipation mechanisms)
isentropic compressibility can be defined as

Ts = —% (g—;)s . (1.3)

Equation 1.1 can be rewritten by using the density p of the fluid if v is defined as the
specific volume of the fluid element, such that

_1dp

=0 (1.4)

T

Liquids have very low compressibility values compared to gases. Water, for example,
at standard conditions has a compressibility value of 70 = 5- 107! m?/N, whereas
for air the same value reads 77 = 107° m?/N. As a result, it seems reasonable to
treat liquids as incompressible at first glance (where 7 = 0). But per definition, the
description of waves and the resolution of wave propagation require the treatment of
all fluid components as compressible substances, since the finite propagation speed of
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the waves is defined by the equilibrium speed of sound ¢, which is a direct consequence
of the isentropic compressibility of the fluid. This relation can be written as

Ce = : (1.5)

or equivalently the isentropic speed of sound in equilibrium flow is given by

[ Op
Ce ap . ( 6)

The discussion on equilibrium conditions and equilibrium flow will be given in chapter 2;
for the time being, one can assume ¢ = ¢.. Both definitions show that if compressibility
is not taken into account, a finite wave propagation speed —speed of sound— cannot
be defined, as 7 = 0 suggests ¢ — oo.

Additionally, the importance and the necessity of treating liquids as compressible sub-
stances can be demonstrated by studying the “water hammer” problem, which is some-
times referred to as “Joukowski shock”. Here, an initially moving liquid is instanta-
neously stopped. The sudden deceleration of the flow velocity to u = 0m/s results in an
upstream travelling shock. The strength of the pressure variation Ap across the shock
can be approximated by linearized 1-D acoustic theory [138], where perturbations
of the flow variables are used to derive the acoustic relations from the inviscid flow
equations together with the assumption that the considered wave motion is isentropic.
Therefore, following relation is obtained for the pressure variation

Ap =~ pcAu . (1.7)

It should be noted that this equation is derived from the linearized gasdynamic equa-
tions and therefore it assumes any change in pressure p causes an isentropic change
in density p [5]. For an initial flow velocity of u = 1 m/s at standard conditions the
resulting pressure jump across the shock is 15 bar and the resulting shock Mach num-
ber is My = 1.001. Hence, the isentropic relation Eq. 1.7 is quite accurate. Whereas
incompressible consideration for the pressure variation results in the following equation
derived directly from the Bernoullis relation

Ap =~ pulu , (1.8)

which shows that the hydrodynamic coupling scales with the convective velocity u
in contrast to unsteady wave dynamics across a wave front in which the scaling is
proportional to the speed of sound c.

The divergence-free condition in incompressible formulations does not permit the for-
mation of pressure waves with finite propagation speeds and thus cannot model the
pressure jump created by the unsteady wave motion. As a result, the “water hammer”
problem demonstrates that even for a very slow liquid flow, compressibility is needed
to be taken into account to resolve the wave dynamics and its consequences.
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1.2.2 Cavitation Phenomenon

Another important difference of liquids over gases is that even though liquid is a con-
tinuous medium it breaks down under very low pressures and evaporates. This phe-
nomenon is known as cavitation. Following this definition, it can be said that in
cavitation the driving mechanism is the pressure decrease inside the flow field (Fig.
1.1). In a simplified consideration, as surrounding liquid shows only a very minor tem-
perature change, isothermal path (blue line) can be assumed, i.e. temperature is taken
as constant. But in the actual case, the process needs heat transfer and non-isothermal
phase change occurs (red line). The difference T'— T" is called thermal delay in cav-

"4 critical point
liquid
cavitation vapor
Psat (T)' _____________
non-equilibrium state
“““““ R
triple : -
point | .
' T 1 -7
T
|
superheat

Figure 1.1: p,—T diagram for a general substance with emphasis on the cavitation process.

itation [30] and the path of the curve is towards left hand side (i.e. decreasing
temperature). This is because the surrounding liquid temperature decreases as
the liquid behaves like a heat source to complete the vaporization process. In order to
resolve this behavior, the energy balance must be taken into account in the modeling
strategy.

Even moderate convective accelerations in liquid flows can result in strong “negative
pressure” gradients or tensions forcing the liquid to evaporate leading to “hydrody-
namic cavitation”. However, cavitation can also occur in static or nearly static liquid
through an oscillating pressure field or a moving expansion wave. This kind of cavita-
tion is referred to as “acoustic cavitation” [135].

In both types of cavitation, the driving mechanism is the drop of the local pressure
below some threshold value where liquid cohesion is no longer possible. This threshold
value in most cases is the vapor pressure of the liquid at the given temperature. There-
fore, the liquid immediately vaporizes. But this is not necessarily a requirement and
deviations from the vapor pressure value can exist when a purified liquid is considered.
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This situation is referred to as non-equilibrium state and represented by the dashed
lines in Fig. 1.1. The detailed discussion on non-equilibrium and meta-stable states
will be given in chapter 2.

The most important parameter of cavitating flows is the cavitation number o,.¢, which
is defined as

pref — Psat (Tref)
Oref = 1

. (1.9)
§,Oliq(pref7 Tref) . Ufef

The cavitation number is defined with respect to the reference conditions of the flow
field. The location of the reference values depends on the application that is considered
and the corresponding experimental data present. But generally the reference condi-
tions are defined at the inlet of the flow domain. A smaller value of the cavitation
number o,.¢ favors the possibility of cavitation.

The start of cavitation in a system is referred to as “cavitation inception” and defined
by the critical cavitation number ;. It is a usual practice to expect cavitation at a
location when the pressure drops to vapor pressure p,,;. However, as mentioned earlier,
deviations from this value are possible and the real cavitation inception depends on
different parameters such as fluid quality or initial gas content. Whereas, “developed
cavitation” refers to a continuous situation of the steady or unsteady cavity with a
significant effect on the flow dynamics and performance of the machines.

The second important parameter related with cavitation is the void fraction «, which

is given by

‘/vap
= —. 1.10
“ V;“ef ( )

This equation represents the vapor fraction inside a reference volume, V,.r. When
this value is integrated through the whole domain, it gives the total amount of vapor
volume with respect to the total volume of the flow domain.

Another important dimensionless parameter used in this thesis is the Strouhal number
St. It relates the oscillating frequency to the reference velocity and the reference flow
dimension, i.e.

[l

St .
Uref

(1.11)

For an unsteady cavitating flow f [Hz] is the unsteady shedding frequency, [ is usually
taken as the mean cavity length and u,.y is the flow velocity.

The Reynolds number Re;,, defines the ratio of the inertial forces to the viscous forces
and can be written as
. Poo * Uref - lref

ref [oo )
where p,, and ji, are the density and the dynamic viscosity of the fluid respectively,
Ures is the reference velocity of the flow and [, is the reference or characteristic length
of the flow problem. In cavitating nozzle flows the reference length is usually taken
as the nozzle diameter, whereas for the flows around hydrofoils it is the chord length.
As Eq. 1.12 suggests, the Reynolds number increases with decreasing viscosity and
therefore, for flows with low viscosity fluids inertial forces dominate over the viscous

forces. But the viscosity is still the controlling quantity for the flow attachment and

Re, (1.12)
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flow separation behaviors, so one should evaluate the flow field for such effects before
neglecting the viscosity and assuming inviscid flow.

In terms of single bubble dynamics, the viscosity has a damping effect on the growth
and collapse characteristics of the bubbles [49], [50]. But for the liquids with a small
viscosity value like water (p = 1.002 - 107 Pa - s at T = 293.15 K,p = 1 bar) this
damping effect is negligible [50]. The effect of viscosity and turbulence on cavitation
will be discussed in chapter 2 in detail.

1.2.2.1 Cavitation Types

Once the cavitation starts to develop, it can take different forms depending on the
profile shape, water quality, cavitation number and so on. Initially, it strongly depends
on the non-cavitating flow structure and as it develops, the vapor structure disturbs
and modifies the main flow also. The basic types of cavitating flows can be grouped
as [30]:

e Bubble cavitation: This kind of cavitating flows consist of a small number of
big bubbles, where the cavitation is seen in the regions of low pressure as a result
of the rapid growth of initially present air nuclei. The bubbles are carried along
the flow until they collapse and disappear as they enter areas of high pressure.

Fluid quality, especially the dissolved gas content of the flow, plays a big role on
the quantity and the quality of the bubbles. Higher concentration of gas results
in big bubbles, whereas lower concentration of dissolved gas results in a higher
number of smaller bubbles [74].

e Sheet Cavitation: These cavities are often formed in the vicinity of the leading
edge of wing type bodies, especially on the suction side of propeller blades and
hydrofoils [67].

e Supercavitation: As the cavitation number decreases, the sheet cavity attached
to the body grows and starts to surround a larger part of the body. When the
whole solid body is totally enclosed in a vapor region, it is referred as supercavi-
tation [30].

e Cloud cavitation is the cavitation regime consisting of many small bubbles
(radius about 107°- 107" m) associated with intermediate pressure levels. It
usually occurs when a partial or sheet cavity oscillates in length and periodically
sheds clouds of vapor structure [57].

e Vortex Cavitation: Rotational structures generate low pressure regions like
vortex cores or turbulent wakes inside the flow field. Such pressure drops can
result in evaporation of the liquid and thus cavitation [58].

Different kinds of vortices exist depending on how they are produced. Well-
defined, steady state vortices are usually attached to solid bodies and they are
accompanied with circulation. Whereas the rotational coherent structures ob-
served in the shear flows which are not attached to solid bodies are free and their
life time is usually short due to viscous dissipation. Therefore, the character of
the vortex cavity depends on how the vortex is created in the single-phase region.
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Some experimental examples of the cavitation types discussed above are given in section
1.4.2. It should be noted that, in literature, with the exception of vortex cavitation, an
exact distinction between the cavitation types does not exist. Especially the transition
between cloud and bubble cavitation is not clear and most of the sheet cavitation
applications are coupled with cloud cavitation and cloud shedding structures.

The flow problems that are considered in this investigation exhibit combined sheet and
cloud cavitation behavior. In both application groups (injection nozzles and hydrofoils)
initially a sheet cavity begins to develop at the surfaces where the local static pressure
drops to the vapor pressure value. Subsequently, because of the flow dynamics of the
problems, these sheet cavities grow and start to separate from the surface and form
cloud cavitation with unsteady cloud shedding mechanism. Additionally, in one special
case (section 5.1.4, 3-D multi-hole injection nozzle) the sheet cavity grows without
breaking-up and forms a steady state supercavitation inside the nozzle bore hole.

Main effects of cavitation in hydraulic systems are related with the growth and collapse
of the vapor regions that alter the flow characteristics, especially the pressure field,
around the body. These effects can be summarized as

e decreasing the performance of the system, due to decrease in lift and increase in
drag, reducing the turbomachinery efficiency

e production of noise and vibration

e instantaneous pressure loads on the body resulting from the collapse induced
shocks

e crosion of solid surfaces.

1.2.2.2 Collapse Dynamics of Cavitation Bubbles

As of our primary interest, shock formation and related erosion effects can be depicted
in the following basic sketch (Fig. 1.2). Assuming a pure vapor bubble already exists
in a flow domain, because of the pressure imbalance between the bubble and the sur-
rounding liquid (Peusbie << Diiguid), it starts to shrink and eventually collapses. This
mechanism can be related to the water hammer problem, as the convective acceleration
of the bubble surface during the collapse results in liquid flow towards the center of the
bubble, and when the bubble collapses completely the impulse of the liquid collision at
the center initiates a shock that propagates into the surrounding liquid. In this figure,
three collapse situations are shown; an isolated bubble collapse and the resulting shock
front (1), collapse of a bubble that is in contact with a solid surface (2) and interaction
of a isolated bubble collapse with another bubble, which is in contact with a solid
surface (3).

1) The isolated bubble collapse follows the description given above, where the im-
posed pressure difference initiates the collapse, and when the bubble collapses
completely a shock forms and propagates into the surrounding liquid. Vogel et
al. [125] measured in an experimental investigation peak pressures of the acous-
tic transients emitted during the bubble collapse and correlated them with the
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shock front
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Figure 1.2: Representation of a pure vapor bubble collapse due to imposed pressure differ-
ence Pyupble << Pliquid- Collapse of an isolated bubble (1), isolated collapse situation near a
solid surface (2), interaction of a isolated collapse with a bubble near a solid boundary (3).

initial bubble radius R,,,,. For an initial radius of R,,,., = 2 mm they reported
a peak pressure of 150 bar behind the propagating shock.

The collapse of a bubble near a solid surface exhibits different characteristics
than the isolated bubble. Because of the asymmetry of the problem, one side
of the bubble accelerates inward more rapidly than the opposite side and this
results in a liquid re-entrant micro-jet that is penetrating inside the bubble [13].
The speed of the re-entrant micro-jet is much higher in this case compared to
the isolated bubble and together with the collapse mechanism described previ-
ously a more intense shock forms at the surface and propagates again into to the
surrounding flow field. This highly localized high amplitude pressure increase at
the solid surface due to the shock and the micro-jet results in material damage
or erosion. Vogel et al. [125] and Philipp and Lauterborn [85] measured liquid
jet velocities of the order of 100 m/s, when the bubble is directly in contact with
the solid boundary. Depending on the shape of the tip of the liquid jet, “water
hammer” pressures from 1500 bar up to 4500 bar are observed in the mentioned
investigations. In addition to the liquid jet, Vogel et al. [125] found that the
maximum pressure inside a collapsing bubble near the boundary can be as high
as 2500 bar. Therefore, one can conclude that the combined effect of these two
mechanism are responsible for the cavitation erosion [85].

Picture 3 of Fig. 1.2 depicts a situation where the shock emitted from the isolated
bubble collapse interacts with another bubble in contact with a solid boundary.
Tomita and Shima [118] observed similar cases and concluded that at the final
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stages of a main collapse, tiny bubbles created earlier would be exposed to the
high pressure pulse emitted by the main bubble and so they may collapse rapidly
causing multiple impulsive pressure pulses that impinge on the solid surface.
The collapse mechanism of these tiny bubbles close to the solid surface follows
the description given above. In fact, the liquid jet velocities associated with
this mechanism is considerably higher than the one discussed earlier. Tomita and
Shima [118] reported that a shock with a strength of 50 bar hitting a gas bubble
produces jets with a velocity of 200 — 370 m/s. Similarly, Dear and Field [25]
have observed jets with velocities of 400 m/s after the cavity was struck by a
shock with a strength of 2600 bar. The tiny bubbles at the surface and therefore
the observed eroded area corresponds to a torus or a ring shape, which suggest
that these tiny bubbles are produced by the reflected jet flows and the following
expansion waves of the previous larger bubble collapses [85].

Although negative effects of cavitation are usually stressed, cavitation has also some
favorable features. Especially with the help of ultrasonic devices, cavitation gained
importance in the medical industry. One example for such an application is the extra-
corporeal shock wave lithotripsy, where collapse induced shocks are focused to break
kidney stones [48]. Another example is the use of cavitating jets to clean surfaces.
In addition to these, supercavitation is an important research topic for the military
industry in order to develop low drag supercavitating torpedoes.

Cavitation is also a very important aspect of fuel injection systems of modern Diesel
and Otto internal combustion engines. Recent developments in these systems include
increasing pressure differences Ap = pi, — Powr up to 2000 bar, as well as individual mass
flow control strategies by pilot and multi-point injection with time scales of At < 1074
s. These conditions result in cavitation which is not avoidable in such systems. There-
fore, control and optimization of cavitation in injection nozzles became an important
research subject. Cavitation has an strong effect on spray formation and atomization,
which is also associated with the efficiency of the combustion process [137]. It is also
shown that supercavitation and turbulence will cause disturbances that will initiate
atomization at the nozzle exit [19]. Moreover, with the help of swirling flow, cavita-
tion region can be stabilized and moved away from the solid surfaces, where it causes
erosion. Several 2-D and 3-D injection nozzle geometries are investigated in this thesis
and their results will be discussed in chapter 5.

As explained briefly in the previous pages, cavitation is a technically very important
subject in hydrodynamics and its prediction is crucial in the design phases of such
devices. Therefore, an appropriate modeling strategy is needed for an accurate defini-
tion of the phase transition process. It is also known that, in comparison to pure fluid
components, the speed of sound in two-phase mixtures decreases essentially by orders.
The detailed discussion on two-phase modeling and the speed of sound will be given in
chapter 2.

1.3 Numerical Motivation

Numerical simulation of cavitating flows is a long investigated subject. Methods based
on the pressure correction technique are widely applied to simulate the periodic forma-
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tion of the sheet cavity and its break-up dynamics for 2-D and 3-D applications [96],
[109], where both phases are assumed to be incompressible. Chorin [21] introduced the
artificial compressibility concept to solve incompressible flow equations as a hyperbolic
system. In this method, the flow is still assumed to be incompressible but the solution
procedure resembles the compressible treatment. Chen and Heister [20] presented a
method based on this formulation to simulate 2-D cavitating flows, where the density
of the liquid is taken as constant. Additionally, preconditioning techniques in combina-
tion with density based numerical methods enable the incorporation of compressibility
effects for both phases. Furthermore, these methods allow for the simulation of low
speed unsteady flows through the use of a dual time-stepping approach [111], [59].

Although these methods allow for the prediction of steady and unsteady flow charac-
teristics based on the time scale of the convective velocity, they do not resolve wave
dynamic effects. This is due to the fact that, preconditioning, when implemented
alone, alters the physical propagation speed of waves and thus unsteady behavior is
no longer contained in the solution. Although combination of preconditioning with
dual time stepping algorithms reassures time accuracy on the time scale of the convec-
tive velocity, this approach is computationally not suitable for the resolution unsteady
wave dynamics, which is the primary interest of the current study. For this reason,
in the course of this thesis a 3-D compressible, block-parallel flow solver, CATUM
(CAvitation Technische Universitdt Miinchen), is developed.

The compressible formulation of the flow allows for the hyperbolic treatment of the
governing equations. Therefore, the time dependent flow characteristics are included
in the solution procedure. It is known that Godunov type methods are well suited
to calculate the numerical fluxes in the arising flow problem. These methods rely on
approximate solutions of the Riemann problem across adjacent cells [119]. They can
accurately reproduce even complicated wave structures and discontinuities. So far, this
strategy and the resulting solution procedure are straightforward and well applied to
aerodynamics or gas dynamics. However, as mentioned in the previous section, liquid
flows undergo strong negative pressure gradients that enforce the liquid to break-up
and cavitate, which results in a strong decrease of the sonic speed in two-phase regions.

As a result, when considering compressible liquid flows with phase transition, any
proposed numerical model should accurately resolve a wide range of Mach number
variations in the flow field as in two-phase regions with M >> 0 and in the pure liquid
phase with M — 0. Moreover, as the compressible equation system with conservation
of energy is coupled through an equation of state, a consistent and accurate equation
of state should be defined for both pure phases, including the transition between the
liquid and the vapor.

However, the classical approaches fail in the limit of multidimensional low Mach number
flows (low Mach number problem) [38] and require substantial modifications to achieve
accurate solutions in regions of pure liquid where M — 0. Moreover, with respect to
the high acoustic impedance p- ¢ of liquids, the decrease of accuracy further intensifies.
The details of the numerical model and the low Mach number problem will be given
in chapter 3.
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1.4 Literature Overview

Cavitation is a long known and an extensively studied phenomenon for different con-
ditions and applications. It makes sense to classify these studies according to their
theoretical, experimental or numerical origin.

1.4.1 Theoretical Studies

As already discussed in section 1.2.2; cavitation occurs due to pressure drop, when the
local pressure exceeds the tensile strength of the liquid. The maximum tensile strength
of the liquid without undergoing cavitation depends on the molecular properties as well
as on the initial purity of the liquid. Some previous researchers tried to understand
tension characteristics of the liquids, and thus cavitation inception through theoretical
and experimental studies.

Theoretical analyses based on statistical thermodynamics overestimate the allowable
tension as they consider a homogeneous nucleation process occurring on a molecu-
lar level [30]. Kinjo and Matsumoto [54] calculated the nucleation rate of cavitating
bubbles using molecular dynamics and found nucleation rate to be eight orders of mag-
nitude larger than that of the classical nucleation theory. As an example, simple theo-
retical modeling of a microscopic bubble with a diameter of an order of intermolecular
distance (107'% m) results in 7000 bar of tension, whereas the van der Waals equation
predicts about 1000 bar at room temperature [134]. However, experimentally obtained
tension levels are much lower than these estimated values even for artificially cleaned
and degassed liquids. Trevena [120] pointed out in his survey paper various experimen-
tal methods and setups to measure the “negative pressures” in liquids. Accordingly,
Briggs [14] found the breaking tension of distilled water as 277 bar, which is the highest
experimental value ever reported. This value is still one order lower than the theoretical
estimates, which suggests even cleaned water contains some foreign nuclei that result in
heterogeneous nucleation [26]. Whereas untreated water or tap-water contains a large
number of impurities which immediately results in the formation of vapor bubbles [12].

In terms of single bubble dynamics, theoretical formulations started with Besant [10]
and his studies on the movement of an empty spherical bubble in an incompressible
and inviscid liquid, where he predicted the pressure field in the liquid and the collapse
time of the empty bubble [110]. Subsequently, Rayleigh [91] studied the same problem
theoretically and derived its analytical formulation. Later, Plesset [86] modified the
equation derived by Rayleigh by including surface tension and viscous effects. The
resulting equation is known as the “Rayleigh-Plesset Equation” and governs the growth
and collapse of a spherical bubble under the effect of a surrounding pressure field, which
is filled with the vapor of the surrounding liquid (treated as incompressible fluid,
i.e. piy, = const.) and a non-condensable gas content.

3K :
_ t 2
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This equation describes the temporal evolution of the bubble radius R, where R is the
velocity of the bubble surface and R is the acceleration of it. pg, is the vapor pressure
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inside the bubble, p.(t) is the surrounding liquid pressure as a function of time, and
piiq is the liquid density. Therefore, the first term on the right hand side accounts
for the pressure difference and hence represents the inertia effects. The second term
stands for the non-condensable gas content inside the bubble, where p,o is the initial
gas pressure, Ry is the initial bubble radius, and « is the polytropic constant of the
gas. The third term accounts for the surface tension S of the liquid and the last term
is the effect of the liquid viscosity v;,. This equation is widely used in the literature
with different levels of approximation to analyze the behavior of bubbles. Most of
the attempts to solve this equation are numerical, therefore they will be discussed in
section 1.4.3.

1.4.2 Experimental Studies

Experimental studies in cavitating flows can be divided into two classes. The first one
concentrates on single or multiple bubble dynamics and analyze their growth, collapse
and interaction mechanisms, while the second group focuses on flow applications and
the resulting hydrodynamic cavitation properties rather than single bubble observa-
tions.

The collapse mechanism of the single isolated bubble has been extensively studied
through experimental investigations. These experimental observations for the collapse
of a single bubble as well as a bubble cloud demonstrate that violent shock structures
occur [34]. In various papers Lauterborn investigated cavitation bubble dynamics [65].
The following picture series shows the production of a spherical bubble, its growth and
subsequent collapse with a resolution of 75000 fps, i.e. time increment between two
subsequent frames is Aty ~ 1.33-107° s. A laser pulse is used in the experiments
to generate hot plasma inside a water tank that expands and initiates the bubble
growth. The bubble contains water vapor and non-condensable gas, which is

initially dissolved in the water.
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Figure 1.3: Growth and collapse of a spherical bubble initiated by a laser pulse in water,
maximum bubble radius 7mae = 1.3 mm, Ati_eng ~ 4.5 - 107% 5. The bubble contains water
vapor and non-condensable gas. Experiment by Lauterborn and Ohl [65].

Once the bubble reaches its maximum size, the pressure field imposed by the surround-
ing liquid forces it to collapse. The bubble does not collapse completely because of the
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non-condensable gas content trapped inside, causing subsequent growth and collapses
in a weakened manner. This behavior is referred to as “rebounding”.

; Atl—end ~ 5.5 10_4 S

Figure 1.4: Collapse of a bubble near a solid surface; maximum bubble radius before first
collapse Tynax = 1.45 mm, Ati_eng =~ 5.5-10"% s. The bubble contains water vapor and
non-condensable gas. Experiment by Philipp and Lauterborn [85].

The second series (Fig. 1.4) depicts another bubble collapse situation near a solid wall
[85] inside a water tank. The vapor bubble is initiated again using a laser pulse and
analogous to the previous case it also contains some amount of non-condensable gas,
which is initially dissolved in the water. Growth behavior of the bubble is similar to
the previous case but the collapse characteristics are effected by the presence of the
wall (model 2 in Fig. 1.2). During the collapse, the bubble interface near the wall
flattens while a hollow develops on the opposite face. Thereby, a re-entrant jet forms
that is directed towards the solid wall and finally strikes the solid wall. Because of the
high velocity of the re-entrant jet, a shock forms and propagates into the liquid. This
mechanism has already been discussed in section 1.2.2. Therefore, the solid surface
undergoes a strong pressure force which is usually considered as a possible mechanism
of cavitation erosion. Fujikawa and Akamatsu [34] reported shock intensities of the
order of 100 bar in magnitude at the wall when the collapsing bubble is close to the
surface. Philipp and Lauterborn [85] observed pressures up to several 10? bar acting
on the material surface due to the collapse of bubbles which are in direct contact with
the solid wall. The following series is again taken from Philipp and Lauterborn [85]

shock front

4 mm

end

Aty pg =T7-10755

Figure 1.5: Emitted shock waves due to the collapse dynamics of a bubble near a solid
surface. First row shows the side view and second row shows the top view. Maximum bubble
radius before first collapse rmaz = 1.45mm, Ati_eng = 7-107%s. The bubble contains water
vapor and non-condensable gas. Experiment by Philipp and Lauterborn [85].

and corresponds to a similar bubble collapse as given in Fig. 1.4 within a time interval
of Aty _eng = 7-107% 5. Propagation of the shock front can be seen from the third
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picture of the first row and the second row shows the situation from the top. During
the collapse, a thick liquid jet forms and flows through the bubble forming a ring shape
at the later stages of the collapse.

As stated earlier, the second class of experimental observations focus on cavitation in
hydrodynamic applications which includes pump and turbine blades, ship propellers,
underwater projectiles and injection nozzles of high pressure systems. Experiments
related to pumps and propellers are mainly performed by using isolated 2-D or 3-D
hydrofoil models in water channels. Depending on the experimental conditions, cavita-
tion number and angle of attack, it is possible to observe sheet, cloud or supercavitation
patterns. The following pictures are taken from the experiments of Franc and Michel
[31], where different types of cavitation on a 2-D hydrofoil can be clearly seen.

These experiments are performed on a 2-D NACA 16012 hydrofoil at an almost constant
Reynolds number with different cavitation numbers and angles of attack [31]. The first
picture (Fig. 1.6) depicts traveling bubble cavitation together with cloud cavitation
structures.

NACA 16012
Re. = 10% a = 17°
Oref = 1.2,c=0.1m

Figure 1.6: Traveling bubble cavitation, NACA 16012 hydrofoil, chord length ¢ = 0.1 m,
Re. =10°% 0,0 = 1.2, « = 17°. Experiment by Franc and Michel [31].

NACA 16012
Re.=10°% a =11°
Orey = 0.81, ¢c=0.1m

Re.=6-10°, a = 6°
Orey = 0.81, ¢c=0.1m

Figure 1.7: Combined sheet and cloud cavitation, NACA 16012 hydrofoil, chord length
c=0.1m, Re, = 105, 0,.y = 0.81, o = 11° (top), Re. = 6 - 10°, 0,cy = 0.81, a = 6°
(bottom). Experiment by Franc and Michel [31].
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Figure 1.7 demonstrates a sheet cavitation pattern near the leading edge of the foil
with cloud shedding behavior over the trailing edge. In these pictures, the structure of
the sheet cavitation and the cloud shedding pattern changes with the angle of attack.

For low values of the cavitation number, supercavitation can be observed independent
of the angle of attack (Fig. 1.8).

NACA 16012
Re, =6-10°, o = 8°
Oref = 0.13, c=0.1m

Re, =6-10°, o = 15°
Oref = 0.13, c=0.1m

Figure 1.8: Supercavitation, NACA 16012 hydrofoil, chord length ¢ = 0.1 m, Re. = 6 - 105,
Oref = 0.13, a = 8° (top), @ = 15° (bottom). Experiment by Franc and Michel [31].

As mentioned in section 1.2.2, another type of cavitation is the vortex cavitation, which
is associated with rotational bodies as well as with vortex cores in free shear flows. An
example of such a situation is given in Fig. 1.9.

Figure 1.9: Vortex cavitation at the tip of a propeller blade and sheet cavitation on the
blade surface of a ship propeller [58].
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A ship propeller is investigated in the experiments [58]. Here, a vorticial cavitation
pattern is observed at the tip of the blade and sheet cavitation is visible on the blade
surface.

In contrast to hydraulic machinery, cavitation in injection systems is much harder to
observe due to their micro scale geometry. Observations of cavitation in large scale
nozzles have shown the presence of cavitation bubbles and bubble clouds [19], [95].
Whereas Roosen et al. [93] observed sheet-type cavitation in small scale nozzles. Many
authors have pointed out shedding of the cavitation region and unsteady behavior [100].
Chaves [19] also concluded that it is difficult to identify the structure of the cavitating
flow, whether it is a sheet-type cavitation or cavitation cloud. Other investigations
also confirmed that different types of cavitation structures can occur simultaneously
inside the nozzle [75].

[ =1mm

Dezit = 40 bar
Rel =~ 105

Figure 1.10: Experimental observation of cavitation in a 2-D planar injection nozzle at two
time instants, p;, = 120 bar, peyir = 40 bar. Experiment by Schmidt et al. [100].

The two pictures in Fig. 1.10 show cavitation regions inside a 2-D planar injection
nozzle at two different time instants.

[=1mm

Dezit = 20 bar
Red = 104 - 105

Figure 1.11: Cavitation pattern (dark area) inside a 3-D injection nozzle, bore hole con-
nected to the side of the sack volume, p;;, = 600 bar, peri+ = 20 bar. Experiment by Busch
[15].

Busch [15] has experimentally investigated 3-D real-size single and multi-hole injection
nozzles in his Ph.D. thesis. Figure 1.11 visualizes a 3-D injection nozzle with a single
bore hole connected to the side wall of the sack volume. Here, the cavitation regions
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inside the bore hole appear as dark regions, whereas the darker area outside the bore
hole corresponds to the spray.

The last picture given by Fig. 1.12 clearly demonstrates the erosive effects of cavitation.
The picture shows the leading edge of a propeller blade which is eroded due to the
collapse of the cavitation structures. The eroded surface shows a typical roughness,
illustrating that the erosion is due to many strong impacts on the surface concentrated
on small areas [58].

Figure 1.12: Detail of an eroded ship propeller [58].

1.4.3 Numerical Studies

As shown in the previous section, measurements of cavitating flows are extremely diffi-
cult, especially in the case of injection systems, because of the micro-scales associated
with the problem. Moreover, the liquid quality and the accuracy of the measurement
instruments effect the overall results obtained from the experiments. For that reason,
parallel to experimental investigations, numerical modeling of cavitating flows gained
progress in recent years.

Earlier numerical attempts for the solution of cavitating flows consider the Rayleigh-
Plesset equation (Eq. 1.13). Investigations focusing on single and multiple bubbles
are referred to as bubble dynamics in the literature. Numerical investigations of single
bubble dynamics are closely related to the previously mentioned theoretical work, as
they serve for the physical understanding of the bubble growth and collapse problem
for different boundary conditions. The pioneering work by Plesset and Prosperetti
[87], Hickling and Plesset [43], Ivany and Hammit [49] and others [11],[88],[18] served
as the fundamental understanding of the solution of the Rayleigh-Plesset equation, and
therefore, of the bubble dynamics.

Another subgroup of bubble dynamics is the 1-D flow of bubbly liquids. In this case,
the solution of the Rayleigh-Plesset equation is coupled with a 1-D or quasi 1-D flow
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problem. The detailed investigation of such flow problems can be found in the work of
Brennen [3] and Delale et al. [27].

Beside single bubble dynamics, different numerical models are developed for calculation
of cavitating flows. They focus on the global flow character and cavitation patterns
that are dominant in the flow field rather than the dynamics of single isolated bubbles.
These models use different methods and different levels of approximation. There are
two main approaches used to model two-phase flows according to their interpretation
of the flow problem as single-fluid or multi-fluid domain.

Multi-fluid models assume different velocities, temperatures or pressures that can be
present for the species. This is achieved by applying independent sets of continuity,
momentum and energy equations for each phase. Therefore, simulations for dispersed
non-equilibrium flows with defined internal structures and separate flow characteristics
for every phase can be performed. However, these methods require the definition of
appropriate closure and interface relations for each phase under consideration, which
are usually empirical and problem dependent. Thus, these models are hard to imple-
ment and to verify for a wide variety of flow problems, especially for the calculation of
three-dimensional transient cavitating flows in complex geometries. Saurel et al. [98]
used multi-fluid models to calculate multi-phase and multi-material flows including
cavitation.

Alternatively, two-phase modeling using single-fluid or “homogeneous mixture” ap-
proach is widely accepted and implemented. These models use one set of governing
equations for all phases and accordingly, if needed, another transport equation is solved
for the vapor fraction of the second phase. The single-fluid models can be divided into
subgroups according to their definition of phase transition. In the first group, the cav-
itation model is based on the transport equation of the void fraction which has the
following form

a(plal) + 8(p1051Uj) _ Sog ) (114)
ot 8:1cj
Equation 1.14 governs the transport of phase 1 having a void fraction o and density py .
The source term S, on the right hand side of this equation is the defining parameter
of the different models and it is a function of the fluid properties and of the phase
transition process. In this approach the phase transition is assumed to occur in a non-
equilibrium process, which is modeled through the definition of the source term. In
the literature, different definitions are found for the source term. Empirical models for
evaporation and re-condensation are encountered frequently in the work of Kunz et
al. [59], Chen and Heister [20]. Additionally, source term formulations based on the
Rayleigh-Plesset equation with some simplifications are also used to define the phase
transition process. In previous studies by Schnerr [106], Yuan and Schnerr [137] and
Sauer [96], the Rayleigh model is used as source term in an incompressible formulation.
Alajbegovic et al. [4] also predict the evaporation and re-condensation rates by using
a simplified Rayleigh model. It should be noted that these models include bubble
dynamics with different levels of approximation to calculate the void fraction a value
only. All the other aspects of bubble dynamics related to the growth and the collapse
behavior of single bubbles are not included and not modeled in these approaches.
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Another methodology in modeling the phase transition is to assume the phases in
thermal equilibrium and define a mixture density to represent both phases, i.e. equi-
librium phase transition. These kinds of models do not need an extra transport
equation for the void fraction, and coupling of the equation system is achieved by a
consistent equation of state. Most of these models use a baratropic definition of pres-
sure, i.e. p = p(p), therefore, the energy equation is not solved [56]. Hence, phase
change is described as an isothermal process in this description. A more complex mod-
eling can be proposed by considering the full set of governing equations, including the
conservation of energy. This definition requires a consistent equation of state in the
form of p = p(p,T) for both phases. The distinction between the equilibrium and
the non-equilibrium processes is discussed in chapter 2 in detail.

Additionally, commercial flow solvers are widely used in the industry to simulate cav-
itating flows. But the leading solver packages such as ANSYS-CFX and STAR-CD
rely on pressure correction methods and they consider liquid flows as incompressible
[7], [16]. In the area of internal combustion engine simulations, AVL-FIRE [9] is also a
widely used and specialized commercial tool, which includes a multi-fluid model with
interfacial closure relations to simulate cavitation. But again, like the previous ones
the numerical algorithm is based on pressure correction methods and considers all the
phases as incompressible. Therefore, all these mentioned commercial packages neglect
compressibility effects and the related wave dynamics.

1.5 Thesis Overview

The current thesis is started as a development of a 3-D compressible, high-order, un-
steady flow solver for gas dynamics. An unsplit finite volume method (FVM) is used for
the solution of the full set of conservation equations of mass, momentum and energy on
structured grids and flux calculation is carried out by the Riemann approach. Higher
order spatial accuracy is achieved by using TVD/MUSCL type methods. A four stage
Runge-Kutta method with enlarged stability region is used for temporal integration.

Once the initial code structure for ideal gases is finished, it is verified through various
test cases such as 1-D shock-tube problems and 2-D airfoil and wing simulations. As the
next step, the compressible liquid definition is included into the code. For that purpose,
a detailed literature survey is carried out in order to find the most suitable equation
of states. As a result, the modified Tait equation is chosen and implemented into the
code to define the liquid water, which is the test fluid currently. Water shock tube
experiments are used to verify the code with the chosen equation of state. Together
with these modifications, the code is parallelized via multi-block structure using MPI
libraries by Thalhamer [116].

As a last modification, in the scope of this thesis work but not the least, a two-phase
modeling method based on the integral average quantities and equilibrium thermo-
dynamics is included in the code, which resulted in our state of the art CEFD-tool
CATUM (CAvitation Technische Universitiat Miinchen). In the current state of the
code, the vapor phase is defined by the ideal gas equation of state for water vapor,
the liquid phase is defined by the modified Tait equation and for the mixture region
saturation conditions are assumed.
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Chapter 2 covers the physical aspects of the phase change process and introduces the
governing equations. Together with the physical modeling, the chosen equation of state
and the speed of sound calculation are discussed in detail. In chapter 3, the numerical
modeling of the governing equations and the boundary treatments are explained.

To verify the developed solver, several standard test cases are considered in chapter
4. First, single-phase shock tube calculations for both ideal gas and liquid water
are performed. Then, the proposed two-phase model is validated through the single
bubble collapse problem and compared with the analytical solution of the Rayleigh-
Plesset equation. Finally, the mesh and discretization dependence of the model is
demonstrated by using a 2-D planar injection nozzle calculation.

Chapter 5 presents the simulation results from the applications. The first group belongs
to 2-D and 3-D injection nozzles, which characterize the internal cavitating flow in high-
speed, small-scale devices. The second group of applications focuses on hydrofoils that
represent pump or turbine blades and ship propellers, which are mainly low-speed and
large-scale devices. The results in this chapter are explained and discussed in detail
and comparisons with the available experimental data are also presented.



Chapter 2

Physical Model

First we guess it. Then we compute the consequences of the guess to see what would
be implied if the law we guess is right. Then we compare the result of the computation
to nature, with experiment or experience, compare it directly with observation, to see
if it works. If it disagrees with experiment it is wrong. In that simple statement is the
key to science. It does not make any difference how beautiful your guess is. It does not
make any difference how smart you are, who made the guess, or what your name is - if
it disagrees with the experiment it is wrong. That is all there is to it. Richard Feynman

As cavitating flows involve a large variety of physical phenomena such as bubble dynam-
ics, non-equilibrium thermodynamics, multi-phase turbulence and multi-phase wave
and shock dynamics, its prediction is one of the most challenging tasks of modern
CFD. Moreover, each physical aspect incorporates specific spatial and temporal scales
depending on the considered flow field. Even the use of high performance comput-
ers does not presently enable simulations which resolve the combination of all these
arising physical aspects, especially not for 3-D unsteady flows of typical technical ap-
plications. Therefore, suitable modeling strategies are needed for accurate simulation
of the given flow problem. This chapter focuses on the physical definition of the con-
sidered flow problems and the corresponding physical modeling that is used by the
numerical method.

2.1 Equilibrium vs. Non-equilibrium Processes

2.1.1 Flows with Non-equilibrium Effects

Before proposing any physical model, it is useful to clarify the meaning of equilibrium
and non-equilibrium processes as they are encountered often in the literature. The
following discussion in this subsection is based on chapter 7 of Vincenti [124] and it is
extended in terms of cavitating flows. This analysis is divided into two parts. The first
part considers a closed static system without any flow and in the second part an open
system with a fluid flow through its boundaries is analyzed. In both cases, a micro
scale system analysis of the order of an infinitesimal control volume is performed and
then it is represented by a corresponding macro scale physical problem.

21
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First we consider a closed static system where no flow is flowing through its bound-
aries. Figure 2.1 depicts an infinitesimal control volume corresponding to this system.

\:] dz
T~

L’
dy

T
dx

Figure 2.1: An infinitesimal closed control volume, without flow through its boundaries. ¢
represents any variable produced or modified inside this control volume due to any thermo-
dynamical or chemical process.

We can define a variable q that is produced or modified inside this control volume
due to any thermodynamical or chemical process and it denotes a general scalar non-
equilibrium value per unit mass. In cavitation, due to the phase transition process,
vapor is produced inside the control volume. Therefore ¢ can be taken as the volume
fraction « or the mass fraction x of the vapor, which are defined as

‘/'Uap mvap
, r=—-. 2.1
Viot Mot ( )

The time rate of change of ¢ inside the control volume can be written by using the
generalized rate equation as follows

dq
-2 = T q). 2.2
( dt > int.proc w<p’ 7 q> ( )

Here, w defines the complete function in terms of thermodynamic state variables p, T
and ¢. This equation represents an internally occurring process inside the control
volume without any flow flowing through its boundaries as mentioned earlier, as the
subscript “int.proc” suggests, and it can be reformulated for the definition of the
local relaxation time 7(p,T,q). It is obvious that the function w in Eq. 2.2 has the
dimensions of ¢ divided by time. Therefore, the partial derivative (Ow/0q),r has the
dimensions of time™!, as the dimension of ¢ is eliminated through the differentiation.
As a result, the local relaxation time 7 of the rate equation reads as
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1

—(3w/3q)p,T . (2.3)

T(IO7 T7 q) - -

The negative sign comes from the fact that the derivative in Eq. 2.3 is always negative
[124]. Equation 2.2 can be rewritten in the following form

() xero o

dt int.proc a T(p7 T? Q) ’
where the function x(p, T, q) is given as

w

x(p,T,q) = “Owjoa)r (2.5)

Equation 2.5 is defined to represent the non-equilibrium rate equation as the ratio of
two functions as given by Eq. 2.4.

Considering a situation where p and T are constant, an equilibrium state is possible
and corresponds to the condition

dq dq
R =0. 2.6
dt ( dt ) wnt.proc ( )

For all finite values of 7, an equilibrium value of ¢ can be defined as ¢*, which corre-
sponds to

x(p,T,q") =0, (2.7)
¢ =qpT). (2.8)

As a result, the equilibrium state of a system without flow suggests (dq/dt)int proc = 0
but it does not necessarily force the local relaxation time to be zero, i.e. 7 = 0. The
discussion so far assumes a closed system without any flow flowing across its boundaries.
At the macro system level this process can be interpreted through a piston-cylinder
device as shown in Fig. 2.2 (left). We assume that initially the system contains only
liquid water at constant temperature 7' = 293.15 K. If the piston is gradually moved
upwards while keeping the temperature constant, at some point the pressure inside the
control volume reaches the vapor pressure value p,,; = 2340 Pa at that temperature
and a phase change process from liquid to vapor would begin (point 1 on p—v diagram,
a; = 1 = 0). During the phase transition, both temperature and pressure are kept
constant but the specific volume v increases. The piston-cylinder sketch in Fig. 2.2
corresponds to an intermediate state on the saturation line, where both liquid and
vapor are present (point 2). From the sketch it can be interpreted that the vapor
volume inside the cylinder is about two times the liquid volume, which corresponds
to a vapor volume fraction of aps = 0.67. At the given temperature T" = 293.15 K,
this vapor volume fraction value leads to a vapor mass fraction of x = 3.5-107°. The
constant mass fraction line that passes through the considered state is also depicted
in the p — v diagram of Fig 2.2. At the end of the process all the fluid vaporizes
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Figure 2.2: Equilibrium phase change process at constant temperature. Piston-cylinder
device (left). Pressure reduced through the movement of the piston, heat transfer with
surroundings is allowed. p—v diagram of the phase change process (right), point 2 corresponds
to depicted state of the piston-cylinder device.

and further reduction of pressure results in further increase in specific volume. This
process corresponds to an equilibrium phase change, where the local relaxation time
7 plays no role. Therefore, a phase change from liquid to vapor takes place through
the constant pressure line as depicted in the p — v diagram of Fig. 2.2. It should
be noted that during this process the temperature of the system is kept constant by
allowing the heat transfer with the surroundings. Therefore the entropy of the system
increases during the vaporization process. A comparable analysis can be performed by
considering the same process within an isolated piston-cylinder device, i.e. adiabatic

isolated
piston
/ H p[Pal a1 =02, =0
—— | Wy =0.67,2,=35-10"°
| | 10"F
control—1 sat. vapor |
volume T,p = Psat(T) | 10°F
| | 10°F
| |
| | 10°F
isolated '} L[ =
. | 0 T e 103 | \S =const
cylinder | sat. liquid | B1L6571 =7 7~ fripleTine T = 273.16 K \: 293.15K
| T,p = psat(T) | ool
________ 16'3 16'2 16'1 16" 161 162 163 v [m®/kg]

Figure 2.3: Equilibrium phase change process at constant entropy. Isolated piston-cylinder
device (left). Pressure reduced through the movement of the piston, no heat transfer with
surroundings is allowed. p—v diagram of the phase change process (right), point 2 corresponds
to depicted state of the piston-cylinder device, AT} _o ~ 0.24 K.
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process (Fig. 2.3). Moreover, if the piston movement is slow enough then the overall
process can be assumed as reversible and thus isentropic. In contrast to the previous
case, in this idealized process the phase change occurs along the isentrope depicted as
the red curve in Fig 2.3 (right). Therefore, the temperature is not constant anymore but
decreases along the isentrope, so the system gets colder (AT} 5 ~ 0.24 K) and the
depicted state (point 2) now lies on the isentrope not on the isotherm. An important
property of the isentropes in two-phase regions is that they have a negative slope in
the logp — logv diagram and they terminate at the triple line within the two-phase
region. This observation is important, as in such an isolated piston-cylinder device a
complete vaporization of the liquid is not possible through an isentropic process
and it can only be achieved if the heat transfer is allowed with the surroundings as
in the previous case. The maximum amount of vapor that can be produced in this
process is limited by the triple line, where the isentrope terminates. For the considered
initial conditions (77 = 293.15 K and p; = pse = 2340 Pa) the maximum void fraction
at the intersection of the isentrope and triple line is found as ., = 0.99986, which
corresponds to maximum mass fraction of x,,,, = 0.03239.

In the second part we couple this closed system analysis with convective flow. For that
purpose we assume a fluid flow without any dissipation mechanisms, which corresponds
to the system of Euler equations of fluid dynamics. The assumption of Euler flow in
terms of cavitating flows will be justified in section 2.2. For any standard flow without
non-equilibrium effects, the set of Euler equations requires an equation of state as a
closure relation. For equilibrium flows, the specific enthalpy in the form of h = h(p, p)
can be used as an equation of state. For non-equilibrium flows, a third variable should
be introduced in order to specify this non-equilibrium process. So, the equation of the
state takes the form h = h(p, p, q), where ¢ is a general scalar non-equilibrium variable
per unit mass as discussed earlier. The addition of this new variable ¢ requires an
extra equation, namely a transport equation, as the change of this new variable is now
influenced by the flow of the fluid. The following sketch shows an infinitesimal control
volume, where the flow of the non-equilibrium variable ¢ is shown.

\<
\

L,

dz

/[

~—a [pqu + %dx]dy dz

\
dy

dx

Figure 2.4: An open infinitesimal control volume showing the z-component of the flow of a
non-equilibrium variable q.
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Assuming that the non-equilibrium process is the same as in the static system previ-
ously defined, the transport equation takes the following form

0 0 B dq
@(PQ) + a—(pquj) =p ( dt)mw , (2.9)

Ly

The right hand side of this equation represents the time rate of change of ¢ inside
the control volume due to any internal process, as discussed previously, whilst the left
hand side corresponds to the change of variable ¢ due to the net inflow into the control
volume. In fact, this equation resembles the transport equation given for the void
fraction defined in Eq. 1.14, where ¢ = . Repeating Eq. 1.14 here once more

a(plal) + 5(01%“3’)

o T S, - (2.10)

Hence, the previously mentioned source term S,, is nothing but the rate equation of
the non-equilibrium process. A similar transport equation was also used by Sauer [96]
in his cavitation model to predict the vapor production in the calculations, i.e.

Ja O(au)  O(av) no d (4
8t+ Ox * dy _1+n0-§7rR3 dt SWR ’ (2.11)

where ng is the nuclei concentration per unit volume of pure liquid and R is the bubble
radius. It can be seen from this equation that the rate of the process is defined through
the change in the bubble volume. One difference of this transport equation is that it
does not include the transport of density p inside it, as Sauer assumed both phases are
incompressible with the density of each phase being constant [96]. As a result, all three
transport equations given by Eqgs. 2.9 - 2.11 govern the same physical phenomenon of
non-equilibrium flow, where the time rate of change of the non-equilibrium property
inside the control volume is described by an additional transport equation. Moreover, in
terms of cavitating flows this non-equilibrium variable can be taken as the void fraction
a together with a corresponding source term depending on the modeling strategy.

In order to describe the properties of this transport equation and discuss the concept
of the local relaxation time 7, we turn back to the general formulation Eq. 2.9 and
rewrite it by using the definition given by 2.4

9 9 N x(p,p,q)

(2.12)
The equation given above can be rearranged by using the substantial derivative, to-
gether with the definition of the continuity equation as

dt — 7(p,p,q)

In these equations, p and p are chosen as thermodynamic properties in accordance with
the definition of the specific enthalpy proposed earlier.
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The physical interpretation of Eq. 2.12 depends on the flow problem that is consid-
ered. This equation suggests that for any non-equilibrium flow, there should be a corre-
sponding rate equation to describe the physical process. Flows with non-equilibrium
phase transition (evaporation and condensation) are particularly good examples of
such processes. Condensation of a steam or moist air due to rapid expansion of the
fluid is a non-equilibrium process, which means that the time rate of nucleation is
itself an internal process and needs to be modeled with an appropriate rate equation.
Similarly, rapid expansion of a liquid flow can result in a metastable state where the
pressure of the liquid drops below the saturation pressure without formation of the va-
por phase, i.e. “liquid tension”. Therefore, non-equilibrium phase change takes place
for the evaporation process which is defined by a rate equation for cavitation [75].
This behavior is already mentioned in chapter 1 and the thermodynamic background
of these processes will be explained in the next section.

With the definitions of equilibrium and non-equilibrium processes, it is now possible to
discuss the local relaxation time 7 and to describe its physical meaning. If one performs
perturbation analysis of Eq. 2.5 [124], one ends up with a formulation that reflects the
physical interpretation of 7. The details of this analysis are beyond the scope of this
thesis work. Hence, the quantity 7 can be understood as the local relaxation time
needed for the system to recover its equilibrium conditions for small departures of ¢
from the equilibrium state ¢*. It is of interest to examine the transport Eq. 2.12, when
the relaxation time 7 of the non-equilibrium process is negligibly small (7 — 0) or
infinitely large (7 — 00).

In the limit 7 — oo, the rate Eq. 2.13 shows that dgq/dt = 0 for all values of y. As
a result, for an infinitely slow rate process, the value of ¢ for a fluid element remains
constant [124]. This process is regarded as “frozen flow”.

The limit 7 — 0 is more interesting and it constitutes the base of the physical modeling
used in this work. If we assume that dg/dt remains finite, it follows from Eq. 2.13 that
x — 0 as 7 — 0, however contrary to the previous case this requires

lim 2 = finite . (2.14)
T—0 T
x—0

Moreover, in the consideration of the static system it was shown that x(p,p,q) = 0
defines the equilibrium value of ¢*, i.e.

a=q(p,p)- (2.15)

As aresult, the limit 7 — 0 leads to the well known equilibrium flow of gas dynamics.
Therefore, an infinitely fast rate process will lead to an instantaneous establishment of
local equilibrium conditions as fluid elements move through the flow [124].

Similar to the previous discussion, we realize this process through a cavitating hydrofoil
calculation as depicted by Fig. 2.5 (top). Because of the acceleration of the liquid flow
over the foil suction side, the local pressure value drops to the vapor pressure and
cavitation takes place as shown by the void fraction o values in the figure. The details
of the two-phase model is explained later in this chapter but as already mentioned in
chapter 1, in an actual process during cavitation the surrounding liquid temperature
decreases as the liquid behaves like a heat source to complete the vaporization process.



28 CHAPTER 2. PHYSICAL MODEL

streamlines

T s T

=Sy, "Wy

triple line T = 273.16 K T=293.15K

10° 102 10" 10° 10* 10° 10° VImikg]

Figure 2.5: Cavitating flow over a 2-D hydrofoil, void fraction a and streamlines (top).
Corresponding p — v diagram of the phase change process. 2-D NACA 0009 hydrofoil, chord
length ¢ = 0.13 m, angle of attack a = 6°, channel height 0.3 m, channel length 0.6 m.
Water inflow from left to right, inlet conditions u;, = 12m/s, Tinir = 293 K, outlet condition
Dout,miz = 0.5 bar, Euler flow with equilibrium phase change, AT|_4 ~ 0.4 K.
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Figure 2.6: Zoomed area of the p — v diagram given in Fig. 2.5. The points 1-4 correspond
to the cell values on the depicted streamline, AT} 4 ~ 0.4 K, Ap1_4 =~ 55 Pa.

This phenomenon is also seen in the calculation and as we move along the streamline
shown in the figure, the temperature decreases from point 1 to point 4 and the void
fraction increases. Figure 2.5 (bottom) shows the process in the p — v diagram. In the
calculation the temperature difference between points 1 and 4 is extremely small, i.e.
AT,_4 ~ 0.4 K. Moreover, as there is no heat transfer to the system from outside,
analogous to the closed system discussion given earlier, the process follows the isentrope
depicted by the red curve. As the temperature difference is not recognizable, a zoomed
in view of the yellow boxed area is given in Fig. 2.6. Here one can see that the
depicted points follow the isentrope and the last point corresponds to a void fraction
value of av = 0.726 or a mass fraction value of z = 4.67-107°. This calculation and the
implemented model are based on the equilibrium flow assumption. The motivation of
this assumption will be discussed in section 2.4.1. But from the discussion so far, we
can conclude that, in a steady-state Euler flow the equilibrium phase change
along a streamline follows the isentrope and thus the mentioned process is
isentropic.

It should also be noted that equilibrium flow is different from the equilibrium
conditions in a closed system. Equilibrium conditions assumes dq/dt = 0 for all values
of 7, whereas in equilibrium flow dg*/dt # 0 and 7 = 0. Accordingly, equilibrium flow
can involve changes in ¢ as a result of species production due to the effects of the flow
field or the convective flow.

Thus, considering any internal process occurring during the flow one can postulate the
following definitions:

e Non-equilibrium flow means that the time rate of the internal process is im-
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portant within the time scale of the flow and it should be therefore modeled (by
means of new transport equations and time dependent source terms).

e Equilibrium flow means that the time rate of this internal process is vanish-
ingly small and it is therefore not taken into account in the formulations of such
problems.

2.1.2 Vapor-liquid Equilibria

In conjunction with the discussion in the previous section, thermodynamics of the phase
transition processes, especially the vapor-liquid equilibria, will be discussed here.

Thermodynamically distinct phases of pure substances can be visualized through phase
diagrams where equilibrium conditions or phase boundaries are characterized by curved
lines. The following p-v-T' diagram of water represents the solid, liquid and vapor
phases together with co-existence regions [81].

Solid and
liquid

Solid

Critical

Pressure P

Constant-temperature line

Figure 2.7: Representative p-v-T surface for water. The axes show pressure p, specific
volume v and temperature 7' [81].

The p-v-T surface given in Fig. 2.7 requires further consideration. The equilibrium
condition given by the horizontal line connecting the two ends of the co-existence
curve is not always experienced in real applications. The best known example of such
a process is often seen in steam turbines, where a supersaturated vapor state can
occur although the phase diagram suggests that vapor should condense so that liquid
and vapor should coexist in equilibrium. This supersaturated state is referred to as
metastable state.
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Similarly, another metastable state can be observed by the overexpansion of the liquid
phase. This case has already been mentioned and discussed in chapter 1 as liquid
tension, where the liquid expands below the saturation pressure without forming the
vapor phase. In such processes, even “negative pressures” (or tension) can be observed
for short periods of time.

In order to clarify the discussion of the metastable states, one can consider the isotherms
of the p — v diagram. This can be done by considering a general equation of state such
as the van der Waals equation. This equation describes the isotherms inside the liquid-
vapor equilibrium region not with horizontal lines but allows metastable states. Figure
2.8 depicts corresponding sub-critical isotherms 7T and 75 following the van der Waals
equation. Moreover, one can connect the maxima and the minima of the van der Waals
isotherms to the critical point. The resulting left hand side curve X(@Qc is referred to
as the liquid spinodal line and the right hand side curve ZSc is referred to as the
vapor spinodal line.

p A

T T, T.

X

Figure 2.8: The isotherms of the p — v diagram following the analytical expression of the
van der Waals equation. The equilibrium behavior is given by DE and AB. D@ and AX
represent the overexpansion of the liquid, SE and ZB correspond to the supersaturation
of the vapor. The grey area bounded by the spinodal lines depicts physically not-allowable
states (see Eq. 2.17 or 2.26).

If one considers the Ty isotherm, the analytical solution gives the DQRSFE curve,
whereas equilibrium phase change takes place along the horizontal line DFE, where the
pressure is constant and equal to ps. In order to see the physical limitations on the
theoretical isotherms, we consider the straight red line passing through the points @)
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and S, such that it connects the minimum and maximum points of the considered
isotherm. From the figure it can be seen that the slope of this line is positive and is
equal to (Op/0v)r. Recalling the definition of the isothermal compressibility, which

was derived in chapter 1 as
1 [0v
—_ = ) 2.16
E v (ap ) T ( )

We have already concluded in chapter 1 that as the compressibility of a substance
cannot be negative, following Eq. 2.16, the derivative (0v/Jdp),; must be negative for
the complete thermodynamic range in consideration, i.e.

(g—;)T <0. (2.17)

The positive slope portions of the van der Waals isotherms (Q RS and X Z lines) violate
this condition and therefore they define physically not-allowable states. As a result,
the grey area in Fig. 2.8, bounded by the spinodal lines depicts non-physical conditions.

One can end up with the same conclusion by considering the fundamental thermo-
dynamic laws. Maxwell introduced a way for finding the vapor pressure from the
isotherms of the analytical equations [77]. Thus, the Gibbs free energy per unit mass
for a pure phase is defined as

g=h—-"Ts. (2.18)

When unit mass of a liquid is vaporized, the change of Gibbs free energy is given by

Jo — g1 = /vdp, (2.19)

where the integration is carried along the DQRSFE portion of the isotherm. By defini-
tion, when the vapor and liquid are in equilibrium the Gibbs free energy of the phases
are equal to each other, i.e. g, = g,. Therefore, the integral in the Eq. 2.19 reduces to
zero. This means that the area bounded by the curve DQR and the line DR should
be equal to the area between the curve RSE and the line RE.

Although equilibrium phase transition takes place through the line DE previously dis-
cussed metastable states can also be realized on the isotherms. The segment SE of the
isotherm 75 corresponds to the supersaturation states and, similarly, the segment D)
corresponds to the states of overexpansion. Moreover, “negative pressures”’ that lead
to liquid tension are observed through the AX segment of the T} isotherm. It should
be noted that these isotherms follow analytical expressions and do not always resemble
physical behavior. In order to relate the analytical expression to physical observations,
one must consider the thermodynamic constraints. Thereby, the Helmholtz free energy
per unit mass is defined as

f=e—Ts. (2.20)

The second law of thermodynamics states that a stable state has the minimum value of
Helmholtz free energy f with respect to variations at constant temperature and volume
[45]. An isothermal variation of Helmholtz free energy with respect to specific volume
v is plotted in Fig. 2.9.

If point a corresponds to any stable state of a substance, alterations from this point
are possible via isothermal expansion or isothermal compression. Thereby, a new state
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Figure 2.9: Isothermal variation of the Helmholtz free energy f with respect to specific
volume v for a stable system.

can be achieved by compressing a portion of the system to point b and expanding the
remaining portion to point ¢ by ensuring the total volume remains the same. The
resulting Helmholtz free energy value of the new state is given by point d. It is seen
from the figure that the new state d has a higher Helmholtz free energy, hence it
is unstable. If the curve was concave downward, the new state would have a lower
Helmholtz free energy and would be more stable. Thus, we conclude that the concave
upward curve given by Fig 2.9 satisfies the following Eq.

o2 f
(W)T >0 (2.21)

and envelopes a series of stable states. A small change in Helmholtz free energy (Eq.
2.20) is given by
df =de —d(Ts) =de—Tds — sdT . (2.22)

From the first law of thermodynamics it is known that

de = T'ds — pdv . (2.23)
Combining the equations 2.22 and 2.23, one obtains

df = —sdT — pdv . (2.24)

For the isothermal process discussed previously where d7" = 0, the change in Helmholtz
free energy with respect to the specific volume v becomes

(2) e
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Comparing the equations 2.21 and 2.25, one can conclude that

<%)T <0. (2.26)

As expected we end up with the same conclusion as in the previous analysis. Equa-
tions 2.17 or 2.26 are important in understanding the physical behavior of the phase
change process. It states that any equation of state in the form p = p(v,T') can rep-
resent a series of allowable states if, and only if, the condition given by Eq. 2.26 is
satisfied. Otherwise, the system would be unstable with respect to any infinitesimal
density fluctuation. This was already discussed in the first part, where the analytical
isotherms plotted in Fig. 2.8 were analyzed with respect to their slopes. It is clear
that the portions D@ and SE have negative slopes, therefore they satisfy Eq. 2.26
and thus represent the stable states of the system with respect to small fluctuations in
the density. These regions correspond to the metastable states of overexpansion and
supersaturation respectively, while the portions QRS and X Z have positive slopes, i.e.
(Op/0v)r > 0, which means that the states described by these segments are not even
metastable and in fact they are physically not defined, as already explained earlier.

2.2 Effect of Molecular Viscosity and Turbulence

Viscosity can be defined as “the macroscopic effect of the momentum transport taking
place in the molecular level in a fluid domain” [124] and it tends to damp out the flow
perturbations inside the flow field [76]. As already given in chapter 1, for a given fluid,
viscosity is measured by using the coefficient of dynamic viscosity p or by using the
kinematic viscosity v = u/p.

In terms of single bubble dynamics, viscosity plays a role in the final stages of the
collapse only when the bubble radius is of the order of 1077 m [30]. Such a spatial
resolution in a numerical simulation is hardly applicable in the flow problems that are
considered. Moreover, Ivany et al. [49], [50] investigated the growth and collapse of
cavitation bubbles and found out that the damping effect of viscosity can be neglected
in low viscous fluids like water.

In terms of low dynamics, in the applications that are considered, it is known a priori
from the experiments or from the previous simulations that the corresponding single-
phase liquid flows do not separate and therefore the boundary layer is attached.
As a result, the global flow will experience only a weak displacement effect, as
long as the boundary layers are thin and remain attached. Similarly in the unsteady
developed cavitation dynamics, which is the main topic in this investigation, the
cloud shedding behavior, their collapse mechanisms and the resulting shock and wave
dynamics are all driven by the inertia effects and therefore viscosity plays a minor
role.

In order to demonstrate the effects of viscosity on the flow dynamics we can consider
the Reynolds number, which is defined in chapter 1 as

o Poo * Uref * lref

Relref = 0
(o ¢]

(2.27)
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In wall bounded flows the thickness of the viscous boundary layer can be written
as a function of the Reynolds number [99], [129]. Depending on the nature of the
flow (laminar or turbulent) boundary layer thicknesses for a flat plate flow can be
approximated as follows [99]

Stam 5.0

_ , 2.28
. T (2.28)
Owr _ 0.37 (2.20)

x V/Re,

It should be noted that these equations are approximations for flat plate flows but they
can be used to determine the length scale of the boundary layers associated with the
considered flow problems.

In hydrofoil calculations the reference velocity is u,.; = 10 — 50 m/s and the reference
length is the chord length of the hydrofoils, which is on the order of ¢ ~ 0.1 m.
In a single-phase water flow with viscosity ps = 1.002 - 1072 Pa - s and density
Poo = 998 kg/m3, the Reynolds number turns out to be Re = 1.0-10° —5.0- 10°. Using
equations 2.28 and 2.29 laminar and turbulent boundary layer thicknesses at the end
of the hydrofoil are found as &gm = 5-107* m and 64, = 2.3 - 1073 m respectively.

A similar analysis for the injection nozzles with bore lengths of the order of 1072m and
with a reference velocity of u,.; = 100 m/s results in laminar and turbulent boundary
layer thicknesses 0jqm = 1.6 - 107° m and d,,, = 3.9 - 107° m respectively. However,
due to the extremely short length scales (bore hole length [ ~ 1073 m and diameter
d=~2—4-10"*m), the flow cannot fully develop inside the bore hole - the boundary
layers remain thin and do not merge. Therefore, the flow is most likely to be of
transitional type.

Both studies show that the boundary layers in the considered single-phase water flows
are thin with respect to the characteristic dimensions of the flow domains and high
Reynolds numbers associated with the flow conditions suggest that only weak displace-
ment effect is expected in the unseparated single-phase flow. But as high Reynolds
numbers drive the flow field into the turbulent regime, one should consider the effect
of turbulence on cavitating flows. A pressure fluctuation level due to turbulence can
be determined by using the definition of turbulence intensity T'u as

Tu=-~——, (2.30)

where @ is the mean velocity of the flow and «’ is the turbulent fluctuation velocity
[131]. The turbulent pressure fluctuation can be approximated as

1
P~ apu’2 . (2.31)

In the injection nozzle calculations that will be presented in chapter 5, the flow ac-
celerates at the nozzle throat and reduces the turbulence effects inside the bore hole.
Therefore, one can assume that the flow has a weak turbulence intensity 7w on the
order of ~ 1073, i.e.

Tu = ~ 1073, (2.32)
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For a mean velocity of « = 100m/s, the turbulent fluctuation velocity «’ can be found
by using the above equation as |u'| = 0.1 m/s. This velocity corresponds to a pressure
fluctuation which can be approximated as

1 1
P épu/Q = 5 - 1000 0.12=5Pa. (2.33)

This pressure fluctuation can also be interpreted in terms of the change in the cavitation
number of the considered flow problem, i.e.
p /
Aory, = S —

: (2.34)

Therefore for the given injection nozzle calculation the change in the cavitation number
due to turbulence can be estimated as Aoy, = F 0.0001. As a result the effect of
turbulence in cavitating flows can be neglected if Aoy, << 0pin, Where o,,;, is the
minimum cavitation number in the flow field.

In terms of cavitating flows, the viscosity tends to decrease the critical cavitation num-
ber as it slows down the growth of individual bubbles through the damping effect
mentioned earlier [96]. The decrease the in critical cavitation number alters the cavita-
tion inception behavior and it is significant for the flows where flow separation exists.
The experiments of Arakeri [8] showed that laminar separation on a wall provides a
site for cavitation inception and by eliminating the laminar separation they could con-
trol the inception. Similarly, Franc and Michel [31] found that a well developed cavity
always detaches downstream of the laminar separation of the boundary layer and the
existence of separation generates conditions that the cavity can remain attached to the
wall. If the boundary layer does not separate, the cavity is affected by the upcoming
flow and cannot remain attached [30].

As mentioned earlier, in the applications that are considered in this thesis, unsteady
cavitation dynamics, cloud shedding and their collapse mechanisms are of primary
interest together with the shock and wave dynamics inside the flow field. All these
mentioned effects are inertia controlled [32], [92] and therefore viscosity plays a minor
role.

Nonetheless, substantial care should be taken into account when neglecting viscosity
in flows, where viscous separation is likely to occur. To ensure that the unsteady
two-phase flow dynamics and related cloud shedding mechanisms are dominated by
inertia effects, one must a priori verify that the single-phase flow for the same geometry
and flow conditions remains attached at all times. This can be checked either by
experimental observations or Navier-Stokes simulations of the flow field. For 2-D and
3-D hydrofoil flows that are presented in chapter 5, experimental observations show
that viscous separation does not occur in single-phase flow [32], [96], whilst for the
considered injection nozzle geometry, viscous flow simulations ensure that the flow
remains attached inside the bore hole [107], [137].

2.3 Governing Equations

The focus of the present thesis work can be stated as the development of a new multi-
purpose solution package for compressible flow dynamics including pure liquids and



2.3. GOVERNING EQUATIONS 37

phase transition, chemical reaction and heat addition. The phase transition process
from liquid to vapor is modeled by assuming equilibrium flow and for the preliminary
development, following the discussion given in the previous subsection, viscosity is ne-
glected and the conservation principles are expressed by the Euler equations. However,
the inclusion of dissipative mechanisms into the model is easily possible; this will be
shortly presented in appendix B for single-phase ideal gas flows.

2.3.1 Differential Form of the Equations

The differential form of the Euler equations in the vector form without body forces can
be written as

dq  Of 9 Oh

of oh _ 2
o Tor oy Ta: (2:35)

where q is the vector of conserved quantities and f, g and h are the physical flux
vectors at each spatial direction x,y and z given by

P pu pv pw
U ,ou2 +p pLU puwU
q=| pv f=| puw g=|p’+p h=| puwv (2.36)
pw puw powW pw? +p
pE puH pvH pwH
Total energy E and total enthalpy H are defined as
Loy, o 2
E:e+§(u +v°+w), (2.37)
Loy 2 2 p
H:h+§(u +ov 4t w?)=FE+=, (2.38)
P

where e is the specific internal energy and h is the specific enthalpy per unit mass. In
addition to the above given relations, the set of Euler equations requires the definition
of a closure relation to couple the energy equation with the momentum equation.
This closure relation in the case of Euler equations is the equation of state of the
considered fluid. Therefore, for a single-phase flow an equation of state in the form, e =
e(p, p) is necessary and sufficient. If the considered fluid is not chemically reacting (i.e.
equilibrium flow) and if the intermolecular forces are ignored the resulting system is
called thermally perfect and specific internal energy and specific enthalpy are functions
of the temperature only [5], i.e.

e=e(T),

h=n(T). (2.39)

Similarly for a thermally perfect system, specific heats at constant pressure ¢, and at
constant volume ¢, are also functions of temperature only and following relations hold

de = ¢, dT",

dh = c,dT . (2.40)
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Moreover, if the specific heats are constant, the system is called calorically perfect and
following equations can be written

e = ¢, 1,
= 1, (2.41)
= (k=1)pe,
where x is the ratio of the specific heats as K = ¢,/c,.

As the flow problems that are considered in this thesis involve cavitating two-phase
flows with water and water vapor, each phase should be represented correctly. Water
vapor can be treated as a thermally perfect gas [17] and therefore, specific internal
energy and specific enthalpy are the functions of temperature only. For liquid water
perfect gas assumption is not valid and a suitable equation of state is needed in order
to close the equation system. Similarly, for the cavitating two-phase flows, an
equation of state is needed for the complete thermodynamic range from liquid to vapor
phase including the mixture state. A complete description of the cavitation modeling
and the equation of states of the phases will be given in the following sections (see
section 2.5).

The three flux components f, g and h in equations 2.35 and 2.36 can be written in a
single flux vector by using the unsplit formulation for the Euler equations as [119]

1 0
u (511'
Fq =pu;-| v |+p-| 02 | . (2.42)
w 53Z
FE U;

In this equation Fj(q) is the physical flux in coordinate direction z;, u; denotes the
velocity vector components at each coordinate direction as u; = (u v w)” and §;;
denotes the Kronecker symbol. Thus, the differential or point-wise form of Eq. 2.35
reads

9 +§333F-( ) =0 (2.43)
8tq i1 6@ =4 '

2.3.2 Integral Form of the Equations

The differential form of the Euler equations (2.35 or 2.43) is valid only if the flow vari-
ables are differentiable and continuous through the whole flow domain. However, in
order to model shock and wave dynamics in compressible flows and to represent phase
boundaries in cavitating flows, we have to take the arising discontinuities into consid-
eration. Therefore, the weak form or so-called integral form of the Euler equations
should be used.

To define the weak formulation for the equation system given by Eq. 2.35 or 2.43, first
we consider the following conservation law of the form

oU
SrHVF=Q, (2.44)
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where F is the flux vector containing only convective contributions in the domain 2
bounded by I' = I'y U 'y with the following initial and boundary conditions [44]

Ux,0) = Up(x) t=0,2¢€,
Ux,t) = Ui(x) t=0,zely, (2.45)
E, = g t>0,zel,,

where F,, = ¢ is the boundary value of the flux vector. Defining a weak formulation
with a weighting function W on I'j leads to

/Q%_[t]WdQ + /Q(V -F)YWdQ = /QQWdQ. (2.46)

This method is originally derived for the finite element Galerkin method [82], where
Eq. 2.46 is solved at every node J of a subdomain €2; with a weighting function
equal to a interpolation function at that node, i.e. W = N; [44]. We consider the
following arbitrary subdomain (or control volume) 2; corresponding to node J,
which is located at the center of the domain.

Qg

Figure 2.10: An arbitrary control volume €27 and corresponding cell center J.

By defining the weighting function as

WJ(X):O X%QJ,
1 xeQy, (2.47)

Eq. 2.46 becomes

oU
—dQ+/QJ(V-F)dQ:/ QdS . (2.48)

o, Ot Q,

Gauss theorem can be applied to the flux term, which leads to the conservation equation
in integral form written for each subdomain €2; bounded by the corresponding closed
surface I'; having an outward normal vector S.

a—UdQJrf F-dS= [ QdQ. (2.49)
Qg ot ry Qg
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As the derivative and integral are interchangeable, the above equation can also be
written as

2/ UdQ+]{ F-dS:/ QdS . (2.50)
ot Qy Ty Q

If the physical problem or the equation system does not involve any source terms, i.e.
@ = 0, the equation simplifies to

2/ UdQ+7§ F-dS=0. (2.51)
ot Jo, -

These resulting two equations are the integral conservation form of the general differ-
ential conservation equation given by Eq. 2.44. As the system of the Euler equations
is also in the conservation form and it mimics Eq. 2.44 with U = q, F = Zle Fi(q)
and @@ = 0, one can write

L qdo+ 7{ dS=0. (2.52)
at/ Lyi=1

Equation 2.52 is the weak formulation of the system of Euler equations and it can be
replaced by its discrete form, where the volume integral is expressed as its averaged
values in cell J such that q; = A (q), where A;(q) is the cell average operator defined
as

As(q) = i/ qdQ2, (2.53)

and the surface integral is replaced by a sum over all the bounding faces I'; of the
considered volume € ;

dt J+ZZF "AS=0. (2.54)

FJZ].

Equation 2.54 is the discrete form of the governing equations for a flow domain divided
into finite control volumes of €2 ;. This equation is valid for any type of multi-component
and multi-phase inviscid flow, even if the species do not share a common pressure,
temperature or velocity. The solution of the flow problem requires an appropriate
numerical discretization scheme, which will be explained in detail in chapter 3.

2.4 Equilibrium Two-phase Model

As stated in chapter 1, various methods are applicable to model the phase transition
associated with cavitating flows. The focus of the present thesis work relies on com-
pressible dynamics and the corresponding wave propagation phenomena in such flows.
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Therefore, the proposed model should correctly resolve the arising two-phase regions
as well as the wave propagation throughout the flow domain.

The weak formulation given in the previous section allows for the computation of
integral average values of the flow variables in each computational cell. Once the flow
variables are determined according to the arising flow field, phase transition should be
taken into account.

2.4.1 Relaxation Time in Cavitating Flows

Overexpansion of the liquid phase and the corresponding liquid tension properties have
already been discussed in the previous sections. One must consider these metastable
states before proposing a phase transition model. In that sense, the time scale of the
convective and wave motion should be taken into account.

It is known that traveling expansion waves may cause tension and therefore metastable
states in the liquid before the equilibrium condition is reached [53]. The cavitating
shock tube experiments of Bode et al. [12] showed that the maximum tension is closely
related to the initial purity of the water. These experiments have demonstrated that
an increase in the initial cavitation nuclei density in the liquid tends to diminish pres-
sure oscillations including tension. Moreover, Trevena [120] suggested that, by using
processes such as boiling and de-ionization, the allowable liquid tension of water can
be increased significantly and meta-stable states far beyond saturation conditions can
be observed. As a comparison, an analytical estimate together with an experimental
observation for the relaxation time of the tensile stress is given by Kendrinskii [53],
where cavitation in a vertically accelerated tube is investigated. In the experiment,
cavitation is produced near the bottom of a vertical tube filled with liquid when the
tube is suddenly accelerated downward by an impact. The experiment is simulated
numerically by using a one-dimensional model by Kendrinskii [53], where in the model
an infinitesimally small initial gas content and radius (ap = 1079 and Ry = 1-107%m)
are considered with an expansion wave of a strength of 300 bar. For these conditions,
the relaxation time of the tensile stresses in the cavitating liquid turns out to be of
order of 1078 5. This value is obtained for a relatively low gas content that is normally
not applicable to real systems [120], [12] and thus the relaxation time decreases signifi-
cantly with increasing the initial gas content of the water. Accordingly, tap water does
not show this meta-stable behavior where the large number of impurities immediately
results in heterogeneous nucleation [26] and thus in the formation of vapor bubbles.

As a result, the pressure relaxation time from meta-stable state to stable state is ex-
tremely short when compared with both the convective and the acoustic time scales
of the flows that are considered in the current investigation. Furthermore, the devel-
opment of the cavitation zone is mainly determined by the velocity of the fluid and
the phase change process is considered to be fast enough that an instantaneous estab-
lishment of the equilibrium conditions is reached, i.e. 7 — 0 (see the discussion in
section 2.1.1). Due to this equilibrium assumption, meta-stable states are neglected in
the proposed two-phase model. Consequently, the coexistence of both phases implies
that the Clausius-Clapeyron relation holds, i.e. p = psu:(T"). Moreover, following the
analysis given in section 2.1.1, if there is no heat transfer between the system and the
surroundings, the phase change from liquid to vapor takes place along the isentropes
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of the p — v diagram. Therefore, the temperature of the system decreases. As the
isentropes have negative slope in the log p—log v plane and they terminate at the triple
line within the two-phase region, the current model does not allow the full vaporization
of the liquid phase. It was also shown previously that if the Euler flow is steady,
the equilibrium phase change along a streamline follows the isentrope and
thus the process is isentropic.

2.4.2 Integral Average Formulation

In this subsection, the physical consequence of Eq. 2.54 on the flow field and two-phase
domains will be discussed. As already introduced in chapter 1, the void fraction « can
be written as

‘/vap
a=—. 2.99
chell ( )

This equation gives the ratio of the vapor volume in a computational cell to the total
volume of the cell; it does not contain any sub-grid information such as the structure

of the vapor inside the cell or the bubble radius. In the following figure two identical
control volumes are considered.

discrete bubbles model representation a
Oleelly 1

Aleelly

— >

Aeelly = Oleell,y

1 2

0

Figure 2.11: Physical situation and model representation of a control volume with vapor
content.

The control volume on the left hand side depicts a possible physical situation with
discrete bubbles of equal size. It should be noted that this is not the only possible
situation and any kind of bubble size and distribution is possible in a physical system.
The integral average formulation given in the previous section allows for defining the
cell average values for the flow variables. Therefore, the void fraction value of the
computational cell on the right hand side of Fig. 2.11 corresponds to the total void
fraction value of the discrete bubble structures seen in the left picture, i.e. awen; = e, -
As a result, sub-grid structures are not modeled but their effects are included in the
integral average formulation, so that no additional specification of small scale structures
(radius, number density, etc.) is required. This is an important advantage of CATUM,
as these parameters are problem dependent and their determination is hardly possible
and requires complex experimental techniques.

The discretization of the flow domain through fixed control volumes of €2; introduces a
local length scale 7, which can be defined as [; = /€. In the case of cavitating bubbly
liquid flow, the resolution of two-phase features depends on the fraction ¥ = R/l; of
the bubble radius R and the induced length scale [;. If ¥ << 1 the model resembles
the average behavior of a mixture, while it fully resolves single bubbles if ¥ >> 1.
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Using Eq. 2.53, the integral average of the conservative variables, q, inside the control
volume €2 ; are defined as

1
P = — sy,
P Q, QJ/O
1
i = = [ (pu)ao, (2.56)
Qs Ja,
— 1
pE = — [ (pE)dQ.
Qs Ja,

The average specific internal energy e follows from the average total energy by sub-
tracting the specific kinetic energy such that

1 (p—E_ %Zf’zl(pum) , (2.57)

As the physical model is based on the integral average quantities that are evaluated
in each computational cell, all variables follow this definition. Therefore, one can drop
the bar over the variables and use the usual representation.

Assuming consistent initial and boundary data are strictly available, at each instant of
time, the solution of the system Eq. 2.54 gives the average density p;, velocity u and
total energy E; within the cell €2;. However, the calculation of pressure, p; requires
additional model equations depending on the phase or the model under consideration.

It is important to note that the formulation given by Eqs. 2.56 and 2.57 does not
distinguish if the considered flow is an ideal gas flow, liquid water flow or cavitating
two-phase flow. Therefore, it is applicable to any flow type that is under consideration,
as long as correct closure relations are defined depending on the flow type.

For the two-phase domains, integral average formulation together with thermodynamic
equilibrium suggest that the average density p; within cell {2, is a convex combination
of temperature dependent saturation densities p; sat(17), pusat(Ty) of liquid and vapor.
Using the void fraction «, the average density p; is defined as

Py =g - pv,sat(TJ) + (1 - aJ) : pl,sat(TJ) . (258)

Following the above equation, the void fraction a; of the considered control volume is
found directly from
_ pr— prsa(Ty)
g = .
,Ov,sat(TJ) - pl,sat (TJ>

By using the vapor mass fraction x;, the internal energy e; of the considered control
volume is given by

(2.59)

vy py=ay pusally), (2.60)
€ =2xjg - 6v73at(TJ) + (1 — I‘J) . elysat(T]) . (261)

In accordance with the thermodynamic equilibrium, the average pressure for the two-
phase domains is simply the saturation pressure at the given temperature, as

Py = psat(TJ) . (262)
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As a result, the unknown quantities 1y, oy, z; and p; are found as solutions of the
system given by Eqs. 2.58-2.62. The temperature dependent saturation conditions
are modeled according to the Oldenbourg polynomials [83], given in A.1. Therefore,
the required closure relation in the case of two-phase flow is completely defined. The
numerical implementation of the solution procedure will be given in chapter 3.

2.5 Equation of State and Speed of Sound

In the previous section the two-phase modeling strategy for the cavitating flows is
explained, which is defined by the saturation conditions of the liquid. This section
will focus on the equation of state and the sonic speed definitions that are used in the
model.

As mentioned earlier, the set of Euler equations requires definition of a closure relation
to couple the energy equation with the momentum equation. This closure relation is
the equation of state of the considered fluid. For ideal gas flows these relations are
already given in section 2.3.1. Whereas for liquid flows these relations are not that
straightforward and accurate. For this reason, a detailed survey and analysis is needed
to decide on an equation of state to model the behavior of the liquid. In the current
state of the solver, liquid water is used as the test fluid, so the investigated equations
of state are compared with the available water data. The reference data for water and
water vapor is taken from the IAPWS - International Association for the Properties of
Water and Steam [47].

An often encountered equation of state for liquids is the stiffened equation of state or
sometimes called “Tammann Equation”, given by

p=np(p,e) = (v —1)pe —vpc. (2.63)

The advantage of this equation is its simple form and resemblance to the ideal gas
equation of state 2.41. The values of constants p. and v are liquid dependent. In [84]
these constants are given for water as; v = 2.8 and p. = 8.5 x 108Pa. This EOS is
suitable for describing pure liquids without phase change at high pressures and for
liquid flows undergoing non-isentropic processes like underwater explosions or blast
waves [51].

The second equation of state under consideration is the famous Tait equation, which
has different forms in literature. The usual representation given by Thompson [117] is

p=plp)=B Kﬁ)n - 1] +po - (2.64)

In this equation, B is a weak function of entropy and usually taken as constant, py,
po and n are constants depending on the liquid. For water these constants are defined
as B = 3.3 x 10® Pa, n = 7.15 and py = 1000 kg/m?® [84]. Although the given
form of the Tait equation is quite accurate for water up to 25000 bar [51], it is not
applicable to the current formulation, as it describes a baratropic process, i.e. p =
p(p), where temperature dependence is neglected. Hence, the calculation of the energy
equation becomes redundant. Saurel et al. [97] suggest a modification to Tait equation
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by including the temperature dependency through replacing the constant reference
properties with temperature dependent saturation pressure and corresponding liquid
saturation density, such that

p=rp. 1) =B | (L) 1| D), (2.65)

Pl,sat

This equation will be referred to as the modified Tait equation from this point on.
A caloric equation of state that is thermodynamically consistent with the Tait equation
is given by

e=e(T) =cyiiqg- (T —Tref) + €10, (2.66)
where ¢, i, is the specific heat of water at constant volume, which is taken as con-
stant ¢, ;4 = 4186 J/kg - K , T,y = 273.15 K is the reference temperature and e is
the reference energy at this temperature (617 J/kg) [97]. In order to define a stable
thermodynamical system, Eq. 2.65 must satisfy the following condition given in Eq.

2.26 ;
Cﬁ) <0. (2.67)
ov ),

ML(T)) - 1] T peaeT) (2.68)

and as differentiation is performed at constant temperature, saturation functions in
Eq. 2.68 can be replaced by constants, i.e.

pzp@JD:B{Gﬂgn—q44L. (2.69)
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Rewriting Eq. 2.65 using v = 1/p

pzpwJUIB{<

Thus,

Let us consider each term in this equation individually; B and n are the constants
of the Tait equation and B > 0, n > 0. We defined C; = p; s0¢(T") which cannot be
negative, and v is the specific volume of the fluid and always positive. As a result,
as —n is negative, the derivative is also negative and therefore the condition given by
Eq. 2.67 is satisfied. This means that the modified Tait equation represents a series of
stable thermodynamic states.

Before deciding on one of the equations given above, one should also test the accuracy
of these equations for the thermodynamic ranges in question. In the following graphs
(Figs. 2.12 and 2.13) all three equations are compared with the IAPWS data for two
different temperatures.
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Density vs. pressure values for liquid water at T=300 K (27 °C)

p [bar]
200
Stiffened gas law
Tait equation
—————— Modified Tait equation
150 - . IAPWS data
100
50 |-
I [ | I I I ki /m3
0 980 1000 1020 1040 1060 p lkg/m’]

Figure 2.12: Comparison of the pressure vs. density values for the stiffened gas equation,
Tait equation and modified Tait equation with the IAPWS data for T" = 300 K.

Density vs. pressure values for liquid water at T=323 K (50 °C)
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Figure 2.13: Comparison of the pressure vs. density values for the stiffened gas equation,
Tait equation and modified Tait equation with the IAPWS data for T" = 323 K.

Both figures clearly show that the modified Tait equation is far superior to the stiffened
equation of state and the standard Tait equation. Moreover, the modified Tait equation
is the only model that provides a continuous connection to the saturation conditions.
Although the stiffened equation of state can be improved by adjusting the constants in
the equation, it still can not predict the correct behavior and is therefore not applicable
to the current investigation.
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Table 2.1 shows the maximum error of each equation of state with respect to the
TAPWS data for the investigated pressure range (0 — 200 bar) and temperatures (7" =
300 K, 323 K).

Table 2.1: Maximum error of density for each equation of state with respect to the TAPWS
data for liquid water in the investigated pressure range 0 — 200 bar.

Temperature ‘ 300 K 323 K

Stiffened EOS 72 kg/m?® (7.16 %) 9.8 kg/m?* (1.00 %)
Tait EOS 71kg/m? (0.711%) 1.9kg/m? (0.19 %)
Modified Tait EOS | 0.44 kg/m? (0.04 %) 0.3 kg/m3 (0.03 %)

For the pure water vapor phase, the following well known ideal gas equation of state
definition is used,
p=pRT, (2.71)

together with a caloric equation of state in the form

e = Cv,vap . (T - Tref) + Lvap,ref + €l - (272)

In the equations given above, R is the specific gas constant of the fluid, which is given
by R = R/M, where M is the molecular weight in kg/mol and R is the universal
gas constant (R = 8.31451 J/mol - K). For water M = 18.015- 1072 kg/mol and R =
461.5J/kg- K. In Eq. 2.72 ¢, ,qp is the specific heat of water vapor at constant volume,
Lyqap rer is the latent heat of vaporization at 7)..; and ¢ is the constant in the equation,
which is given by e = 617 J/kg. For the calculations, the reference temperature is
chosen as T,.r = 273.15 K and the corresponding latent heat of vaporization for water
18 Lyapres = 2501.3 - 103 J/kg. In Fig. 2.14 a comparison of ideal gas values with the
IAPWS data for the water vapor at T' = 293.15 K is presented.

Figure 2.14 verifies the accuracy of the ideal gas equation in the case of water vapor.
Therefore, together with the previously given saturation state and liquid water defini-
tions, the equation of state formulation for the whole range of interest is completed.
In Fig. 2.15 the p-v behavior of the combined equation of state is plotted for all the
phases, together with the IAPWS data for comparison. The saturation curve (green
line) is obtained by the temperature dependent saturation functions given in A.1.

Both the modified Tait equation and the proposed two-phase model are based on
temperature dependent saturation functions of the fluid under consideration. The con-
stants of the Tait equation for various fluids can be found in literature (see Thompson
[117]). Therefore, the two-phase formulation applicable to any liquid as long as the
saturation conditions can be expressed by temperature dependent functions and if the
constants in the Tait equation are known.

After completing the definition of an applicable equation of state as the numerical
solution procedure requires, a sonic speed formulation is needed for all phases under
consideration. The equation for the isentropic speed of sound in equilibrium flow is

already given in chapter 1 as
dp
=4/ = . 2.73
=150 (2.73)
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Density vs. pressure values for water vapor at T=293.15 K (20°C)

p [Pa]
2400

o IAPWS data
2200 ———— Ideal gas EOS

2000 |
1800 -
p..=2339.2 Paat T =293.15K

1600 -

1400

1200

1000

800 ! ! ! ! ! ! e [kg/m3]
0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Figure 2.14: Pressure vs. density values for water vapor. Solid line: ideal gas equation, red
squares: IAPWS data for T = 293.15 K.
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Figure 2.15: Combined equation of state, together with IAPWS data at T' = 293 K. The
green line depicts the saturation curve obtained by the temperature dependent saturation
functions.
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This equation is not limited to the ideal gas case and valid for the whole thermodynamic
range as long as the the thermodynamic states are in equilibrium. For pure vapor
domains, the sonic speed formulation is rather trivial. Using the ideal gas definition
together with Eq. 2.73 results in the following formula for the speed of sound

c=VKRT. (2.74)

The values of k and R depend on the ideal gas under consideration. For air k = 1.4,
R =287.1J/kg - K; for water vapor x = 1.327, R = 461.5 J/kg - K.

Similarly, the speed of sound for liquid water can also be determined from Eq. 2.73.
Using the modified Tait equation given by Eq. 2.65, the sonic speed can be efficiently
and accurately approximated by the following relation

Clig = A / ;(p + B) . (275)

This completes the definition of sonic speed for single-phases. In two-phase domains,
however, this definition is not that straightforward and needs more attention. The
following definition, which is named as Wallis formula [126], is often encountered in
literature and associated with two-phase flows in many sources [55]

1 1—
= a + a : (2.76)

L2 .02 02
p-c Pvap Cvap Pliq Cliq

where p is the mixture density and c is the mixture speed of sound. This equation
gives the equilibrium speed of sound in two-component flows like air/water mixtures,
where phase transition does not occur, i.e. the mass fraction of each component remains
constant [13]. When the flow undergoes a phase transition process, this definition still
can be used, but it would result in the frozen speed of sound in two-phase flow.

The following investigation is given in Franc and Michel [30] in detail. Considering a
homogeneous mixture of water and water vapor in equilibrium, a pressure variation
of dp induces phase transition to occur. Accordingly, if the mass of liquid decreases by
om through vaporization, the same amount of mass is transferred to the vapor phase.
Using Eq. 2.73 and after some manipulation [30] the equilibrium speed of sound
in two-phase flow becomes

1 o 11—« om
5 = - 5 (2.77)
p-c Puap * Cvap Pliq Cliq Pvap * OP

For an adiabatic process, the heat balance is given by the latent heat of vaporization
L, and the temperature difference 07"

om LU@P - _<1 - a)pliq Cp lig oT 5 (278)

which can be rearranged

om (1 — a)piig Cpyiig (5_T

2.
op Lyqp op (2.79)
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From the Clapeyron relation it is known that [17]

8]7 ) Lvap
e =" 2.80
(aT sat T(UUGP - Uliq) ( )
as Uyjg << Uygp, ONE can write
@ o~ Lvap _ Lvap )Ovap (2 81)
oT ) ... TV T ’ ’

Substituting Eq. 2.81 into 2.77 finally gives

1 a l—a (1 —a)pugcpiigT

~

2 = 2 2 ] 2
p-c Pvap * Cpap  Plig " Clig (Poap * Loap)

(2.82)

Equation 2.82 is the definition of the mixture speed of sound in the case of phase
transition. FExcept in cases where the void fraction is close to one, the last term
dominates the sonic speed. The following figure depicts the comparison of the mixture

Comparison of mixture speed of sound of water T =300 K
Two-component formulation vs. two-phase formulation

c [m/s]

10° f

¢ numerical data

10°|

equation 2.76

4.345 m/s
10°
equation 2.82
0.136 m/s /
10"} /
0 0.5 1

o

Figure 2.16: Comparison of mixture speed of sound of water/water vapor, two-component
formulation (red line - Eq. 2.76), two-phase formulation (blue line - Eq. 2.82). Black
points correspond to calculated mixture sonic speeds in a numerical experiment performed
for different void fraction values.

speed of sound for water and water vapor with and without phase transition (Eqs. 2.82
and 2.76 respectively).

Figure 2.16 shows the difference between the two formulations. For a void fraction of
50%, Eq. 2.76 gives a value of 4.345 m/s, whereas, if the phase transition is taken
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into account by using Eq. 2.82; the sonic speed is found out to be 0.136 m/s. As a
result, the sonic speed in two-phase domains is governed by Eq. 2.82 (blue line) and
hence it determines the physical propagation speed of the sonic waves. Additionally,
to see the accuracy of Eq. 2.82 and to check the consistency of the developed code,
a numerical experiment is performed. Thereby the propagation speed of a pressure
pulse is measured in a rectangular numerical domain for different void fraction values.
The black points in Fig. 2.16 correspond to these numerically calculated mixture sonic
speeds. As it is seen, they match perfectly to the analytical expression given by Eq.
2.82.

The jump on the speed of sound as a — 0 in two-phase formulation is due to the
last term in Eq. 2.82 and can be explained by examining the p — v diagram and the
corresponding isentropes. The following figure presents the p — v diagram of water as
we have already investigated at the beginning of the chapter.

p [Pa]

108 -

10

10° -

10°

10*

10°F oo N D

61LES7T ™ friple line T = 273.16 K 1x=0.08239 \ T = 293.15 K
, |oe = 0.99986
10°+ |
| | | | IV =6.67 mslkg |

10° 102 10T 10° 10 10® 10° VImkg]

Figure 2.17: p—o diagram of water including the isentropes corresponding to the saturation
liquid and saturation vapor states together with vapor quality lines.

Considering the general form of the equation for the isentropic speed of sound in
equilibrium flow, which was given earlier as

[ Op
= = . 2.
c o). (2.83)
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Figure 2.18: Zoomed view of the p — v diagram of water including the isentropes corre-
sponding to the saturation liquid (zoom 1) and saturation vapor states (zoom 2).

Rewriting this equation in terms of the specific volume v results in

/ Op
_ 2
c= Caew R (2.84)

Therefore, the speed of sound is defined by the derivative of the pressure p with respect
to the specific volume v over an isentrope. If we examine Figs. 2.17 or 2.18-left we
observe that the isentrope coming from the pure liquid phase has a discontinuity in
the first derivative at the saturated liquid state. Due to this discontinuity the pressure
is not differentiable at that point and thus the mixture speed of sound experiences a
jump as a — 0. The isentrope coming from the pure vapor phase experiences only a
minor discontinuity as it passes through the saturated vapor point see Fig. 2.18-right.
Mathematically, this minor discontinuity results in a jump as a — 1, but such a jump
is not observed in Fig. 2.16. The reason therefore is that the derivation of Eq. 2.82 is
approximate - it does not consider mass transfer from vapor into liquid as this effect
is negligible for a@ < e, &~ 0.999. The inclusion of the mass transfer from vapor to
liquid in the derivation would result in a « dependent term on the right hand side
of Eq. 2.82 and would cause a minor jump when o = 1 as well (see Brennen [13]).
Therefore, this equation is accurate for a very close to 1, i.e. 0 < a < Qe ~ 0.999.

Although Eq. 2.82 is relevant for the calculation of the physical propagation speed in
two-phase domains, Eq. 2.76 is used as mixture sonic speed in the numerical scheme.
This distinction is important and should be cleared here; as it will be presented in the
next chapter, the numerical scheme uses a sonic speed while calculating the convective
fluxes. This sonic speed is purely a numerical variable and defines the numerical
dissipation included in the scheme which is proportional to pcAu. Therefore, using
two-component formulation (Eq. 2.76) will result in a higher sonic speed, and thus
a larger numerical dissipation. So overestimating the speed of sound stabilizes the
scheme, while an underestimation destabilizes it. As a result, a slight overestimation
is preferred, i.e.

Crum > Cphys ~—  otherwise unstable (2.85)

Once again, when physical values of sonic speed or Mach number are presented or
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mentioned in any test case, it means that they are approximated according to the
definition of the local speed of sound given by Eq. 2.73.

The behavior of the mixture speed of sound in two-phase flows with respect to tem-
perature is also of interest in this study. Therefore, in Fig. 2.19 the mixture speed of
sound is compared for different temperatures, 7" = 300—480 K. As it can be seen in the
figure, when the temperature increases, the curves shift upward, therefore the mixture
speed of sound increases. As an example, for a void fraction of 50%, ¢ = 0.136 m/s at
T =300 K, whereas ¢ = 35.04 m/s when T" = 480 K.

Comparison of mixture speed of sound of water

Two-phase formulation at T = 300-480 K
¢ [m/s]

T:480K

10*

10°

10% T=300K AT=20K

0 0.5 1
o

Figure 2.19: Comparison of the mixture speed of sound for temperatures 7' = 300 — 480 K,
AT = 20 K, calculated by Eq. 2.82.

This figure has also the same behavior as the previous one and includes discontinuities
when o — 0. As discussed above, this is due to different character of the isentropes at
the saturation states.
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Chapter 3

Numerical Method

The governing equations of fluid dynamics constitute a coupled non-linear differen-
tial equation system, of which closed form analytical solutions cannot be achieved.
Therefore, with the help of increasing computer power, computational fluid dynam-
ics, namely CFD, provides methods for the numerical simulation of fluid flows. These
methods depend on the considered flow problem and the desired level of physical ap-
proximation.

This chapter will present the details of the applied numerical method according to the
physical modeling described in the previous chapter.

3.1 Governing Equations

The set of Euler equations together with the model dependent closure relations have
already been given in chapter 2. The numerical model is based on the weak or integral
formulation of the governing equations, as they allow for the arising discontinuities
inside the flow field in comparison to the differential form.

The discrete form of the governing equations for a flow domain divided into finite
control volumes of €2; was given as follows

G+ Rl as =0, (3.1

r; i=1
where
p 1 0
p U U 014
a=|pv |, E@=pu-| v |+p-| 0. (3.2)
pw w 631

95



56 CHAPTER 3. NUMERICAL METHOD

3.2 Geometry Definition

The physical model explained in the previous section is based on the integral average
quantities that are evaluated in each computational cell. As a result, the system given
by Eq. 3.1 is evaluated at each finite control volume depicted in the following figure.

Figure 3.1: The sketch of a finite control volume €2 ;. Typical grid geometry.

The flow domain consists of non-overlapping hexahedra cells in ijk order as the example
given above, i.e. for any point p it can be written

Pijk = P, Pijk+1 = D5
Pitr1,5k = P2, Pi+1,5,k+1 = DPs; (3.3)
Pi+1j+1.k = P3, Pit1j+1,k+1 = P17,
Pij+1,k = P4, Pij+1,k+1 = DPs-

The ijk ordering of the flow domain is the necessary condition for structured grids and
its numerical implementation is straightforward when compared to unstructured grids,
as no neighborhood information or connectivity table is needed. Moreover, structured
grids are more efficient from a CFD point of view, in terms of accuracy, CPU time
and memory requirement [44]. In the newly developed code, the cell-center approach
is used, where the unknown flow variables are defined at the centers of the cells and
the convective fluxes are calculated through each cell surface. The center point J is
designated after the lowest corner, i.e. J = 1,5, k. The finite volume formulation
requires calculation of every cell volume and surface areas of each cell. As seen in Fig.
3.1 the points are not necessarily co-planar. The surface area calculation is performed
according to Fig. 3.2. The area of the surface ['5673 can be calculated by using vectors
Xgs and x57. Hence the area is given by

1
Dsers = B} | 68 % X357 ||, (3.4)
whereas the corresponding normal vector of the surface is

X
N5e78 = K68 % o7 . (3-5)
|| Xe8 X Xs7 ||
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Figure 3.2: Surface area of I'sg78 and corresponding normal vector nsgrs.

The volume €2, of the given hexahedral cell can be estimated with different formulas.
In this investigation, following Fig. 3.3 the considered cell is divided into 12 tetrahedra
using the cell center J, which is found by arithmetic averaging of all corner nodes.

8

Figure 3.3: Partitioning of the control volume €2; into tetrahedra volumes using the cell

center J.

The volume of the given red tetrahedron is calculated as [44]

1
oz = gXJ2 (X23 X X34) , (3.6)
similarly the opposite volume is
1
Q104 = ale - (X12 X Xo4) . (3.7)

Therefore, each face of the hexahedron corresponds to two tetrahedra volumes, so the
total volume §2; is found by adding all the tetrahedra volumes.
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3.3 Convective Flux calculation

The numerical solution procedure requires the calculation of fluxes through each cell
interface, which is defined by two-dimensional surfaces with a given normal vector as
explained in the previous section. Among the wide variety of methods that have been
developed for the solution of the flow equations, the Godunov approach [36] is employed
in the current solver. In this approach approximate solutions of the Euler equations
for a local region of the flow are pieced together to form the general solution of a flow
field [6]. The local solution mentioned is found by solving the approximate solution of
the Riemann problem at the interface, which is discussed in the next subsection.

3.3.1 Riemann Problem

The Riemann problem is a special type of initial value problem for a given partial dif-
ferential equation, where the initial data has a jump discontinuity [60]. Moreover for a
time dependent, strictly hyperbolic system, the solution of the 1-D Riemann problem
consists of waves propagating in the (z — t) plane. Furthermore, hyperbolicity guaran-
tees that all the eigenvalues of the equation system are real. A detailed mathematical
analysis of the Riemann problem is outside the scope of this thesis but the readers are
encouraged to refer to Toro [119] or Laney [60].

The solution of the Riemann problem for Euler equations involves three elementary
wave types that are known from gas dynamics: shock, expansion wave and contact dis-
continuity. The set of 3-D Euler equations is rotational invariant [119]. This property
of the Euler equations and the definition of the Riemann problem allow for the use
of a z-split form of the equations for a 3-D Riemann problem, which is given by the
following initial value problem with Eq. 3.2 evaluated in z-direction

dq  F(q)
—+——==0 3.8
ot~ or (3:8)
with
- qr, <0
q(z,0) = { an >0 (3.9)
where
P pu
pu pu? +p
a=|pv |, Fla=| pw |, (3.10)
pw pUw
pE put

and q, and qg correspond to the left and right states respectively. One can consider the
x-split system as the component of the flux function in x-direction in a 3-D flow domain.
Therefore, finding the solution of the Riemann problem for the split 3-D equations is
in fact the same as finding the solution for the corresponding 1-D Riemann problem.
The following figure depicts this situation for two computational cells in z-direction
for a 3-D domain. The 1-D Riemann problem is evaluated through the grey surface.
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Figure 3.4: Discretization of the 3-D numerical domain. The z-split numerical flux is
calculated through the grey surface, i +1/2, from the left state L, to the right state R,i+ 1.

As can be seen in Fig. 3.4, the x-split numerical flux is calculated through the grey
surface, i + 1/2, which can be written from Eq. 3.1 as follows

d

p7ie i —F(qQi{1)2) - Siv1/2, (3.11)
where the vector S;;;/, gives the surface area and its normal direction of the cell
interface. Therefore, in order to obtain the numerical result one needs to determine
the numerical flux function F(qj}7),). As stated earlier, among many other methods
the Godunov approach is chosen, where F (qzﬂ%) is given by the solution of the local
Riemann problem. The advantage of z-splitting of the Riemann problem is that it
is only needed to evaluate the same set of the equations through each face of the

computational cell separately and then add them together.

The solution of the Riemann problem with specified left and right states for x-split 3-D
Euler equations results in a three-wave structure, which is shown in Fig. 3.5. Each of
these waves correspond to eigenvalues of the equation system, given by

AN = u-—c

A = u

A3 = u (3.12)
A = u

As = u-+tc.

The exact solution of the Riemann problem is possible through iterative methods
as long as the chosen equation of state ensures the hyperbolicity of the equation system.
But, as it is needed at every interface between the computational cells, for practical
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Figure 3.5: Structure of the z-split 3-D Riemann problem.

applications approximate Riemann solvers are developed, which are explicit and
time efficient. In the following two subsections two of such approximate Riemann
solvers are considered.

3.3.2 The HLLC Riemann solver

Among a number of approximate Riemann solvers the HLLC (Harten-Lax-van Leer
Contact wave) method has an advantage of capturing all three-wave families, therefore
the complete structure of the exact solution is obtained. Figure 3.6 shows the three-

wave structure of the HLLC solver with wave speeds Sy, Sg and S*.
t

IO
K / 2
qar dr
qar qr
>

Figure 3.6: HLLC approximate Riemann solver. The solution in the star region consists of
two states separated from each other by a middle wave of speed S*.

The derivation of the HLLC method follows from the integral form of the equations
[119], which is not given here. Using the Rankine-Hugoniot relations over each wave
one can write

F(qy) = F(qr)+Sc(qa; —aw)
Flaz) = F(q)+S"(az —az) (3.13)

F(ar) = F(ar)+ Sr(dr —ar) -
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The aim is to find the left and right vectors qj and q}, so that the fluxes F(q}) and
F(q};) can be determined from the equations given above. The following conditions
for primitive variables are imposed in the approximate Riemann solver

u; = up=u"

P = Pr=P

v = vy

Vp = Vg (3.14)
w; = w

wyp = WR

St o=

Substituting the conditions given by Eq. 3.14 into the Rankine-Hugoniot relations (Eq.
3.13) gives the solution vector for the star region as

1
S 5
£ _ PK — UK Uk 3.15
E * *
| 2 (ST ) |5 i |

with K = L and K = R. Thereby, the fluxes F(q}) and F(q},) are completely defined.
Hence, the flux function of the HLLC method can be written as

F(qr) 0<S;
F(q;)=F(qr) +Sc(a; —aqr) Sp<0<S*
Flajli) = : L 3.16
(q2+§) F(ay) = F(qr) + Sr(qy; —qr) S* <0< Sg ( )
F(qar) 0> Sp

To complete the HLLC Riemann solver one must define the wave speeds Sy, Sg and S*.
The following formulas are often encountered in literature [119] and thus implemented
in the code

Sy = min(uy — g, ug — Cr)
Sk = max(uy + cp,ug + Cr) (3.17)

pr — pr + prur(Sy —ur) — prur(Sr — ur)

St o=
pr(Sr —ur) — pr(Sk — ur)

As HLLC Riemann solver captures the complete structure of the exact solution, the
ideal gas calculations are performed by using it without any modifications.
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3.3.3 The AUSM Family of Methods

The AUSM (Advection Upstream Splitting Method) scheme dates back to 1993 when it
was first published by Liou and Steffen [70]. From that time on, it was highly celebrated
for its straightforward formulation with robustness and improved by its original author
and several others [71], [73]. The AUSM method falls into the group of methods that
are called flux vector splitting (FVS), where the numerical flux function is split into a
positive and negative part

F(q) = F*(ar) + F~(ar) . (3.18)

The main idea in the advection upstream splitting method is to divide the numerical
flux into a convective flux part and a pressure flux part, i.e.

F(q) = F(q) +p=m%+p, (3.19)
where
1 0
u p
’(/) - v ) P = 0 5 (320)
w 0
H 0
and
m = pu = pchl . (3.21)

Following the previous definition of the numerical flux function, Eq. 3.19 is evaluated
at the cell interface i + 1/2,

F(Q") = tjatprje + puye (3.22)
with
'l,bL m1/2>0 . oL M1/2>0
= . , and 1y = crpMij - . 3.23
¢1/2 { b i /2 <0 1/2 1/24V11 /2 oR ,\[1/2 <0 ( )

The interface relations are defined as follows

Myjp = M* (M) + M~ (Mg) (3.24)
pijp =P (Mp)pL + P~ (Mr)pr , (3.25)
where " ;
ML = — ; MR - A ) (326)
C1/2 C1/2

and interface speed of sound ¢y is given by
1
61/2 = E(CL + CR) . (327)

The split Mach number and pressure functions M and P are given by [72] as
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S (M & M) M > 1
ME(M) = : (3.28)
i%(M +1)* £ %(MQ — 1) M| <1
1 :
5(1 + sign(M)) M| >1
PE(M) = 1 \ : (3.29)
1(M +1)*)2F M) + 1—6(1\42 —1)? M| <1

3.3.4 The Low Mach Number Problem

The framework discussed in previous subsections is well developed for the simulation of
steady and unsteady compressible aerodynamics of moderate and high Mach number
flows as well as for the investigation of wave propagation phenomena including sharp
and accurate shock capturing in unsteady flows. Furthermore, methods based on Eq.
3.11 are conservative by construction and enable efficient time dependent simulations.
Contrary to pressure based approaches, all fluxes are calculated without the need for
sub-iterations. However, Godunov type methods fail in the limit of multidimensional
low Mach number flows (low Mach number problem) [38], [78], [79] and require
substantial modification to overcome the low Mach number problem. Otherwise, the
accuracy and the convergence of the Godunov approximation significantly decreases if
the Mach number is in the weakly compressible regime, M < 0.1. The slow convergence
is associated with the large difference between the acoustic wave speed |u| + ¢ and the
convective flow speed u. The stiffness of the equation system is defined by the condition
number C', which is defined by the ratio of the largest eigenvalue of the system to the

smallest one, i.e.

lu| + ¢ 1
= =1+ —. 3.30
As the maximum time step is limited by the fastest wave speed |u| + ¢ (see subsection
3.5.3), a larger condition number, where M — 0, reduces the convergence rate of the

numerical scheme.

C

On the other hand, the decrease of accuracy is associated with the incorrect estimation
of the numerical dissipation in standard schemes in the low Mach number limit [38].
In particular due to the high acoustic impedance of liquids, the decrease of accuracy is
further intensified. In order to demonstrate this failure we consider the definition of the
interface pressure in the Godunov approach. If the variations of the state variables are
smooth, any method based on compatibility relations or on Rankine-Hugoniot relations
will lead to an interface pressure definition comparable to

*:pL+pR UL—UR_E
2 2 p )

(3.31)

where p and ¢ are the average density and speed of sound respectively. As can be seen
in Eq. 3.31 this coupling is weighted by the acoustic impedance, which is close to a
constant value if the Mach number remains small within the flow field. Moreover, this
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second term in Eq. 3.31 adds to the numerical dissipation in the numerical scheme. To
demonstrate the failure of this equation a very simple accelerating flow is considered,
where the total pressure pg is constant and the average speed of sound is taken as
¢ = 1500 m/s with the following left and right states

pr = 1 bar urp =10m/s  pr = 1000 kg/m?

pr=095bar ug=10.5m/s pg ~ 1000 kg/m® . (3.32)
Application of Eq. 3.31 results in an interface pressure of
p* = —2.78 bar (3.33)

which is obviously wrong. The obtained pressure value indicates the difficulty to calcu-
late the numerical pressure flux for a smooth water flow. Therefore, one can conclude
that the calculated interface pressure p* is extremely sensitive even to small variations
in the velocity field, as the Godunov approach treats all variations as discrete jumps.
Thus, the low Mach number problem is directly related to the numerical approximation
of the interface pressure p* based on the compatibility relations.

In numerics, preconditioning methods are frequently used to handle stiff equation sys-
tems [44]. The main idea of this method is to multiply the time derivative term with a
suitable preconditioning matrix, which alters the eigenvalues of the system and reduces
the acoustic wave speed to the order of the convective one. Chorin [21] introduced the
artificial compressibility method for incompressible flows, where he included an arti-
ficial time derivative of pressure in the continuity equation. This method is regarded
as one of the first preconditioning techniques used in computational fluid dynamics.
Later on several different other preconditioning techniques are introduced by Turkel
[121], [122], Turkel et al. [123] and others [128]. As mentioned earlier, preconditioning
alters the physical propagation speed of waves and thus, the unsteady behavior is no
longer physical, so it is applicable only to steady state problems. Combination
of preconditioning with dual time stepping algorithms reassures time accuracy of the
problem on the time scale of the convective velocity, so unsteady calculations can be
performed in order to resolve unsteady convective motion [128]. In this method-
ology during each physical time step At, the system of preconditioned equations are
solved in artificial or pseudo time steps A7 to reach a steady state in pseudo time. As
physical time steps of the order of acoustic time scale is needed, dual time stepping
methods are computationally not applicable for the resolution of unsteady wave
dynamics, which is the primary interest of the current study.

3.3.5 Modification for Liquid Flows - Hybrid Formulation

As can be seen from the previous section, the standard formulations used in Godunov
approach fail in calculating the interface pressure in smooth flow conditions when
the acoustic impedance of the medium is extremely large. Moreover, preconditioning
methods are not suitable for the flow problems and time scales that are considered in
this investigation.

To understand the behavior of the numerical flux better, Schmidt et al. [103] investi-
gated Eq. 3.31 numerically and concluded that the numerical error that is introduced
by the application of Eq. 3.31 grows inversely proportional to the Mach number M.,
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as long as the number of cells N is kept constant. As a result, in order to use this
equation it would require a factor of N ~ M_! mesh points in every direction, which
is not practical for the calculations that are investigated here.

In order to overcome the low Mach number problem Schmidt et al. [103] introduced
a modified numerical flux for cavitating liquid flow, which is developed by using an
asymptotically consistent pressure flux definition, i.e.

P = PL + DR , (3.34)
2
and a corresponding velocity flux u* as
oy PEeLUL + PRCRUR + DL — PR ‘ (3.35)

PLCL + PRCR

The hybrid formulation is developed by using the idea of pressure and velocity splitting
as in the AUSM method. Therefore, the numerical flux function for the x-split system
takes the following form

1 0
u* 1

F(a™") = pu| v |+p"| 0 (3.36)
? w; 0
Ei u*

The proposed pressure flux definition does not contain the coupling of pressure and
velocity which causes the low Mach number problem. Although this definition is slightly
less dissipative than the standard approximate Riemann approaches, the numerical
stability is well preserved in our simulations. Thus, one can conclude that the definition
of u* includes sufficient coupling of pressure and velocity. The underlying mathematical
analysis and the asymptotical expansion of the governing equations are beyond the
scope of this thesis and can be found in the literature [38], [78]. A detailed discussion
of the implemented hybrid scheme is given in the Ph.D. thesis of Schmidt [104].

3.4 Higher Order Reconstruction

As explained earlier while calculating the numerical flux the local Riemann problem
is evaluated at cell interfaces by using the left and right states. Until now, in the
formulation primitive variables at the cell centers of the corresponding left and right
states are used as they were (Fig. 3.4), i.e.

L
Uit = W
R _
Uitie = Wit (3.37)
where u is the vector of primitive variables, i.e. u = (pu v w p)T. This methodology

results in first order accuracy in spatial directions. In order to achieve higher order
accuracies in space, several methods have been proposed over the years for Riemann



66 CHAPTER 3. NUMERICAL METHOD

solvers [60] based on extrapolating the left and right states by using the values of the
neighboring computational cells. Following Shu [112] second order linear reconstruction
can be written as

L 1 1 L 3 1
Wit1/2 = W + 5 Wit Wiije = 5W = 5
1 1 3 1
uﬁ_l/Z = éuz + §ui+1 uﬁ_I/Q = §uz‘+1 — §Ui+2 . (338)

As long as the solution is smooth and not experiencing any kind of jumps (shocks,
contact discontinuities or phase boundaries) the formula given above or higher order
reconstructions with more points are applicable. But if the flow field is not smooth, the
above and similar linear reconstructions result in oscillations of the calculated variables.

Van Leer introduced the idea of modifying the piece-wise constant data in the first-order
Godunov method [66]. This technique is referred to as MUSCL (Monotone Upstream-
Centered Schemes for Conservation Laws) or variable extrapolation approach. Com-
bined with TVD (Total Variation Diminishing) methods, non-linear higher order re-
constructions are possible without the problems stated earlier [119]. TVD methods
ensure that as a result of reconstruction, no new extrema may be created and the value
of a local minimum increases, whereas the value of a local maximum decreases. Hence,
total variation is a decreasing function in time [40], [68]. The total variation of a scalar
¢ for a piece-wise constant function is given as

TV (¢) = Z |Gy — &4 - (3.39)

1=—00

Therefore, the TVD reconstructed function gzgn(x, t,) of the scalar ¢ fulfills the following
relation

TV (9" (,t.)) < TV (4(tn)) - (3.40)

Based on the mathematical formulation and definitions found in literature [60], [119]
various TVD-limiters are defined. A TVD limiter can be written as follows

Si,L u; — ;1

Si,r = Wiyl — U, (341)

where s; ;, and s; p are left and right sided slopes of the primitive variable inside a cell.
The slope function r; is therefore

ri = %L Wi T W1 (3.42)

Si,R Wi — W
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The following limiter functions ~y(r;) are implemented in the code

Minmod y(r) = max (0, min(1,r;))

Superbee  v(r;) = max(0, min(1,2r;), min(r;,2))

i) " 1 I3
VanAlbada ~(r;) = max(0,7:) - (1+ 1)

(1+7r?)
max(0, 2r;)
VanLeer y(r) = _
(14 Jri])
1 .
MC v(r) = max(O,min(%,Z%i)).

These are only a few and the most popular of the limiters that can be found in literature
[69] and it is always possible to derive a combination of those according to the numerical
needs. The resulting TVD reconstruction of the primitive variables inside the cell 7 is
therefore given by

(x —x;) - sig

u(:c) = + ’}/(7“1) with =z € [xi—l/ani—i—l/Q] . (343)
Tit1/2 — Ti-1/2

In the simulations, unless otherwise stated or smooth solutions without any discon-
tinuities are expected (for example subsonic single-phase liquid flows), always higher
order non-linear MUSCL/TVD type reconstructions are used.

3.5 Time Integration

The semi-discrete form of the governing equations given by Eq. 3.1 allows for the cal-
culation of the numerical fluxes at a fixed point in time, which is mostly referred to as
method of lines [60]. The advantage of this method is that one can independently com-
bine any kind of temporal and spatial discretization schemes. Since the compressible
Euler equations are hyperbolic in time, time-marching methods are applicable both for
steady and unsteady flow problems.

3.5.1 1st Order Time Integration

The simplest method for marching the solution in time is the first order explicit method
or sometimes called Euler method. In Eq. 3.11 the time operator is evaluated through
the first order forward method and the flux function is evaluated at the cell interfaces
at 1 4+ 1/2 and ¢ — 1/2 for the z-split equations

qt — g ~ F(Q?+1/2> — F(Q?—l/z) (3.44)
AL Ax ’ |

or
q; = q; — Ar [F(qi+1/2) - F<qi—1/2)} 5 (3.45)



68 CHAPTER 3. NUMERICAL METHOD

where n+1 corresponds to the next time instant, t+At, Ax is the cell size in z-direction
and the flux function includes changes from both of the interfaces in the z-direction.
The time step At is determined from Courant-Friedrichs-Lewy (CF'L) criteria, which
will be explained in subsection 3.5.3. As x-splitting includes changes only in the -
direction, for a 3-D problem the contributions from all the cell faces should be included
into the flux function. Following the notation introduced in chapter 2, the 3-D form of
Eq. 3.45 can be written as

n n At’b, i,k n n
qlﬁ =k — Fjjk [ F(qi+1/2,j,k> - F(qifl/Q,j,k)

+ F(dj120) — F(A} 51 /2) (3.46)

+ F(A7 1 /2) — F(ng',kq/z)] ;

where AV} ;5 is the volume of the cell 7, j, k and At is the time step calculated for
the same cell.

3.5.2 4-Stage Runge-Kutta Method

First order time integration is not enough in most of the calculations, especially if the
unsteady behavior of the flow field is of interest.

Compared to the Euler method described earlier, the Runge-Kutta schemes achieve
high orders of accuracy by introducing multiple stages. These methods have been first
applied to the solution of Euler equations in the well known paper from Jameson et al.
[52] and are further developed and used in highly efficient numerical codes [44].

The basic idea of Runge-Kutta methods is to evaluate the right-hand side of Eq. 3.11 at
several values of q in the interval between t and ¢+ At and then combine them to obtain

a high order approximation of q"*!. The number of intermediate levels corresponds to
the stage of the Runge-Kutta method [44].

In this thesis, to optimize memory usage, a low-storage Runge-Kutta method is applied.
For a K stage scheme it is given by

©  _ gn
Qije = Dijk

M o Atijk ()
Qir — Qijk— al_A‘/i’j’k Rz’,j,k:

0@ = o — ek )
i,5,k i,7,k A‘/g,j,k 1,5,k

(3.47)
Qi j k Qi jk KAVz',j,k 0,5,k
n n Atl, ',k K
qzﬁ = Yk ’ o

- 5.k
AVije
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where «; is the coefficient of the ith stage and R is the residual vector following Eq.
3.46 of the previous subsection

Ry = [ F(Ao0) — F(Aiy o p) + F (A 41 /28)

_F(qu—l/Zk) + F(ng',k+1/2) - F(qu,k—l/Q)] . (3.48)

In the current version of the code, the following second-order accurate 4-stage Runge-
Kutta method is employed

1 n i,j,k n
q;j{k = q 0.11 =%k ngj?k

bk AV, ik
a” = alu - 0.2766%:; R,
Aok = Ay 0-52;5/;:;; Rp% (349)
R N e

The coefficients a are chosen such that the stability of the scheme is improved. The
corresponding stability analysis of the scheme is performed by Schmidt [101].

3.5.3 Time Step Calculation

The prediction of the time step At is one of the most important aspects of a flow solver.
As we are mainly interested in unsteady short time-scale behavior of the applications,
we implemented two explicit time integration schemes as discussed in the previous
subsections. Explicit time integration schemes are relatively easy to implement and
they are computationally efficient as no matrix operations are needed. But on the other
hand because of the stability concerns, the applicable time step is limited. On a 1-D
basis the CF'L (Courant-Friedrichs-Lewy) condition states that At must be less than
or at most equal to the time it takes the fastest wave to move from one grid point to
the next one [6]. One can consider a 1-D problem with grid points i and ¢+ 1 separated
with a distance of Ax. Assuming a right running wave with velocity of \; and a left
running wave with a velocity of Ay, the C'F'L condition imposes that

Ax Ax
At =min (| —, — | , 3.50
(5 ) (3:50)
therefore the C'F'L number is defined as
At
CFL=—Mpaz < 1. 3.51
AL (3.51)

Whereas for a 3-D problem waves propagate in every direction inside the computational
cell, so one must consider all the possible wave speeds and directions. It was stated in
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section 3.3.3 that the eigenvalues of the Euler equations correspond to the wave speeds
of the problem. If one examines Eq. 3.12, the fastest wave speed corresponds to u + ¢
for a x-split system. Therefore one can propose the following definitions for the fastest
wave speeds in a 3-D problem

Ae = |u] + ¢
Ay = v+ ¢ (3.52)
A, =|wl+ec.

Following Eq. 3.52, the C'F'L numbers in three space directions can be written as

At At At
CFLe= A CFLy=3 A, CFLi=ZA. (3.53)

In 3-D domains, the CF'L numbers can be written using the following definition

AyAz
——\, = AtA—V/\gc : (3.54)

therefore the time step should be restricted according to

(3.55)

At =CFL min< BVijp QVijh Vi ) .

BAYAzN, 3AxAzN, BAzAyN,

The factor 3 comes from the three space dimension that waves can propagate. In 2-D
problems the time step is found analogous to Eq. 3.55 with factor 2 in the denominator.
In the simulations depending on spatial reconstruction, for first order time integration
maximum C'F'L number of 0.9 and for RK4 method a maximum of 1.7 — 1.9 are used.

The formulation explained above determines a different time step at each computa-
tional cell, depending on the corresponding wave speeds and cell size, which is called
local time stepping. This approach, which accelerates the simulation, is favorable in
steady-state calculations. But for unsteady calculations the whole flow field should be
integrated with the same time step, without destroying the stability condition. Because
of this reason, for unsteady calculations the smallest time step in the domain is found
and used for all the cells. This approach is referred to as global time stepping.

3.6 Initial and Boundary Conditions

3.6.1 Initial Conditions

Initialization of a numerical domain is crucial in the sense of starting a stable solution
and minimizing the calculation time. The initialization of the domain depends on the
type of flow problem (external or internal).

For external flows the domain can be initialized by far field values. For internal flows,
on the other hand various options are possible, while the easiest way is to use the inlet
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conditions for the whole domain. Alternatively, exit pressure and inlet velocity can
also be used for initialization.

3.6.2 Boundary Conditions

For inviscid flows three types of boundary conditions are implemented in CATUM.
Solid walls represent the geometry of the investigated body, thus they are purely phys-
ical, whilst inlet and outlet boundaries define the outer limits of the numerical domain,
so they are purely numerical. In addition to those, periodic boundaries are also used
in the code to simplify and accelerate the solution of symmetric problems.

3.6.2.1 Solid Walls

Physically, impermeable solid surfaces in inviscid flows have only one property, which
is the flow tangency condition. This property also satisfies the no-penetration condi-
tion without restricting the flow in any other way. In particular a solid surface may
be replaced by an image or ghost-flow [60]. In this investigation, all boundaries are
treated with two ghost-cells, in order to be consistent for higher order reconstructions
of flow variables also at the boundaries. For a simplified 2-D case, wall boundary is
demonstrated in Fig. 3.7.

[ ] [ ] [ ]
flow i-1,4 i,4 i+1,4
—_—
[ J ° ) [
i-1,3 i,3 i+1,3 .
solid
' ! : ! wall
[ ] : [ ] [ ]
i-1,2 ' i,2 i+1,2
. : . : . :
11 il T N ghost cells

Figure 3.7: 2-D representation of the numerical discretization of solid wall boundaries.

The flow tangency condition is satisfied by the following relation
v-n=0, (3.56)

where v is the average velocity vector on the wall and n is the wall normal. The best
practice for constructing the ghost-flow is reflection, where scalar quantities reflect
symmetrically onto the ghost-region and vector quantities such as velocity reflect with
a change in sign [60]. Therefore, following Fig. 3.7, ghost-cell values for cell (i,2) are
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defined as follows

Pi2 = Pi3
Vie = Vi3—2n;3-(v;3-n;3) (3.57)
Pi2 = DPi3,

and for cell (i,1)
Pil = Pia
Vil = Via—2n;4-(Vi4-D;4) (3.58)
Pi1 = DPi4-

Schmidt [101] has further improved wall boundary conditions by considering the cur-
vature of the solid surface, where a pressure gradient function is implemented in the
wall normal direction depending on the curvature.

3.6.2.2 Periodic Boundaries

Periodic boundaries are used to simplify and accelerate the simulations of symmetric
flow problems such as circular pipe flows, where every quadrant is assumed to has
exactly the same flow field. They are also needed for the connectivity plane of ¢- or
o-grids, which are often used for the simulations of wing type bodies.

[ ] [
i—-1,4 i+1,4
_>
[ ) [ ]
flow i-1,3 i+1,3 .
periodic
i,nj—3 boundary
) [ [ ] A [ ]
i-1,.2 i,2 i+1,2
— —
i,nj—4
[} [ ) [ ]
i-1,1 i1 i+1,1

Figure 3.8: 2-D representation of the numerical discretization of periodic boundaries in
y-direction. The last cell (i,nj — 3) and the first cell (7,3) are adjacent to each other.

The periodic boundary condition is implemented again by considering the ghost-cell
method explained earlier. The main idea behind periodic boundaries is that in the
direction where periodicity is assumed, the last cell and the first cell are adjacent
to each other. Figure 3.8 depicts a situation where the flow domain has a periodic
boundary in y-direction. Therefore, the ghost-cells in both directions coincide with the
normal cells. Such that, (i,1) — (i,nj —4), (¢,2) — (i,nj —3), ({,nj —2) — (i,3) and
(i,nj — 1) — (i,4). Hence, the boundary values are set as follows
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Pi2 = Pinj-3,
Vi2 = Vinj-3, (3-59)
Pi2 = Pinj-3,

and
Pil = Pinj—4,
Vil = Vinj—4, (3-60)
Pix = Pinj—4 -

3.6.2.3 Inlet and Outlet Boundaries

As before, two ghost-cells are used again to determine the flow variables at the inlet
and outlet boundaries. Figure 3.9 shows this method for a simplified 2-D case.
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vl 25+1 | 341 | 4j+1 ni—4,j+1ni=3,j+Yni-2j+Lni-1j+1
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. Wl Y 4™ ( (
N r ) )
E [ ] E [ ] [ ] [ [ ]
N R Y ¥ 4 ni—4,j
__________________ ( (
1 T ) ) [l 1
e i ° o . e o ° E . E
E 1j-1 - 2j-1] 3j-1| 4j-1 ni—4,j—1ni—3,j—Yni—2,j—Lni-1,j—1
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1 1 ) ) 1 1

Figure 3.9: 2-D representation of the numerical discretization of inlet and outlet boundaries
in z-direction. Red lines represent the propagation direction of the waves given by Eq. 3.61
for subsonic inlet and outlet condition

The one-dimensional characteristic theory is usually applied when considering inlet
and outlet boundaries [60]. The number of physical variables that have to be imposed
at a boundary depends on the propagation properties of the system, especially on
the information propagated from the boundary towards the inside of the flow field
[44]. According to the wave propagation properties, the number of required physical
boundary conditions are determined depending on the type of the boundary, which is
summarized in Table 3.1.
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Table 3.1: Number of required boundary conditions according to one-dimensional charac-
teristic treatment.

subsonic supersonic

inlet 2 3
outlet 1 0

However, from the numerical point of view in order to solve the equation system at
the boundary, information about all the variables is needed in addition to physical
conditions. This additional information is determined numerically. It is important to
note that this discussion is based on one-dimensional characteristic theory and therefore
the total number of variables to be determined is 3, i.e. density, pressure and velocity.

Supersonic inlet and outlet boundary conditions are easiest to consider. For a super-
sonic inlet no information can propagate in upstream direction, so all the information
comes from the outside domain. Therefore, the inlet variables are simply the physi-
cal inlet conditions of the flow field. Whereas for a supersonic outlet no information
can propagate into the numerical domain, so all the boundary values are determined
numerically using the inside values.

For a subsonic outlet, only one condition is needed to be specified and in most of the
practical applications exit or back pressure is used a physical boundary condition.

The subsonic inlet boundary condition requires most consideration among all. From
Table 3.1 it can be seen that one boundary condition needs to be calculated and two
must be specified (see Fig. 3.9). Characteristic variables and primitive variables are
related to each other by using the following differential form

dw; = du — @ ,
pc
dp

dws = du + @ )
pc

In this equation the characteristic variables wq, wy and w3 correspond to wave speeds
u — ¢, u and u + ¢ respectively. Therefore for a subsonic inflow, u < ¢, wy carries the
information from the internal domain to the inlet boundary and hence it should not
be specified. This observation concludes that the specification of both u and p in the
subsonic inlet results in a ill-posed problem. For a well-posed subsonic inlet bound-
ary condition either the (p,p) or (p,u) pair should be chosen as a physical condition
[60]. Once the physical boundary conditions are decided, they are simply set in the
corresponding ghost-cell in the code.

The discussion so far was focused on which physical boundary conditions should be
specified according to the nature of the boundary. The next step is to determine
numerical boundary conditions. One method is simply to use first or second order
extrapolations of the inner variables to calculate the values in the ghost-cells. As an
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example, density and velocity in the ghost-cell (ni — 2, j) can be approximated as

Pri—2j = 2Pni-3j — Pni-4j ;

Upi—2,5 = 2 Uni—3,5 — Uni—4,j - (3-62)

Specifying a constant pressure at the inlet or outlet boundaries cause significant prob-
lems, as waves cannot propagate through the boundaries and reflect back into the
flow field, which can damage the numerical solution. To overcome this problem, non-
reflecting boundary conditions for inlet and outlet can be used, which are based on
Riemann-invariants of the one-dimensional characteristic theory [44]. To illustrate this
method, one can consider a subsonic outlet, where the first relation of Eq. 3.61 corre-
sponds to the u — ¢ characteristic, which propagates into the flow field. Rewriting this
relation by using difference operator gives
Ap

Awy = Au — — . (3.63)
pe

Evaluating this equation at the outlet boundary (ni — 2, j) and assuming constant far
field values as u,, = 0 and p,, = const one gets

Ay = (g = i) = P (3.64)

To solve this equation, dw; must be specified. A typical choice is dw; = 0 [60]; with
Uso = 0, Eq. 3.64 reduces to

Pni—2,j = Poo T PooCoollni—2,j - (3.65)

Together with the extrapolations given by Eq. 3.62, Eq. 3.65 results in a purely non-
reflecting boundary condition, which is applicable to free-stream calculations directly.
But particularly for cavitation calculations non-reflecting boundary conditions are un-
suitable, as they do not provide a time-averaged constant boundary value due to the
continuous wave propagation through the boundaries. On the other hand, a reflecting
boundary condition can damage the numerical solution inside the flow domain, as men-
tioned earlier. These facts are taken into account by the use of essentially non-reflective
or mixed reflecting/non-reflecting conditions. Based on the idea proposed by Rudy and
Strickwerda [94] the physical boundary conditions at the inlet and outlet are relaxed
during the solution procedure. For steady state calculations a relaxation formula for
the mixed reflecting/non-reflecting outlet pressure can be written as follows

Pout,miz = Pni—2,j = (bpoo + (1 - Qb)pnif?),j ) (366)
similarly at the inlet
Pinmiz = P2,j — gbpoo + (1 - ¢)p3,j ) (367)

where ¢ > 0 is the relaxation coefficient and depends on the problem and flow condi-
tions.

For unsteady inlet and outlet boundaries the formulation of mixed reflecting/non-
reflecting boundary condition needs more attention, as the effect of the unsteady wave
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propagation at the boundaries should also be taken into account. In this case, the
relaxation coefficient ¢ is a function of the time step of the calculation, i.e.

C- AtCFD

T (3.68)

¢ =
where ¢ is the speed of sound, [ is the cell length and Atcprp is the global time step
used in the calculation. Let the superscripts + and — denote the values of the current
and the previous instants in time respectively, the pressure and velocity at the inlet
boundary are given by

. _ P +05-9- [P35 + Doy + pay oy (oo — u3g)]

p:;mm = Do 1+o , (3.69)
_ Do — P3j
2,5 2,

similarly for the outlet boundary

o Pri—oj T+ 0.5-¢- [pm‘—&j + Do+ Pri—2j " Cri—a; (Uni—35 — u;if2,j)]

pout,mza} pnz—Q,] 1+ §b ( )7
3.71
2,0 723
u:ut,mix = u2+,j = 1+ d) (372)

In both cases the specification of the average density is performed by the modified Tait
model and numerical inlet and outlet boundaries are assumed to be located far from
two-phase domains.

Once all the ghost-cell values are determined according to their boundary condition
type, the flux calculation is performed through the boundaries by using the Riemann
approach as explained before. Moreover, implementing two ghost-cells in every direc-
tion allows for higher order reconstruction even for the boundary variables.



Chapter 4

Validation

In order to validate the developed code several test cases have been performed. The
first test cases focus on the fundamental validation of the code through numerical shock
tube examples of ideal gas flow and liquid water. Then, the proposed two-phase model
is compared with the solution of the Rayleigh-Plesset equation for the collapse of an
isolated single bubble filled with water vapor only. Finally, the importance of the order
of the discretization and the effects of the mesh resolution are demonstrated by 2-D
injection nozzle calculations.

4.1 1-D Shock Tube

4.1.1 Ideal Gas

The first two shock tube test cases are often used in the validation of numerical methods
that involve ideal gas flows. These tests were first suggested by Sod [113] and are usually
referred to as Sods test problems in the literature. They consist of initially specified
left and right states separated at ¢y = 0 s similar to the real shock tube setup where
a membrane or a valve divides the flow domain. The computational flow domain is
depicted in Fig. 4.1. The tube is assumed to be infinitely long, which means that the
initiated waves travel through the tube without being disturbed by numerical boundary
conditions.

r=05m

PL,UL,PL

|

gas : gas
|
: PR UR, PR
|

/[ / /
! =
membrane

Figure 4.1: Representation of shock tube problem for ideal gas test cases. Flow domain at
to =0s.

7
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The first test case has the following initial conditions

w(z,0) = { wr <0 (4.1)

wr 20

where w is the vector of primitive variables given by

pL Lkg/m?
w;, = |up | = 0m/s ;
DL 100000 Pa
(4.2)
PR 0.125 kg/m?
Wgp = |ug |= 0m/s
PR 10000 Pa

The solution of this case consists of a left expansion wave, a contact surface and a right
running shock. Numerical calculations are performed in the spatial domain 0 < z < 1m
with 100 equidistant computational cells. Figure 4.2 shows the solution profiles for
pressure (left) and density (right) at time ¢ = 6.0 - 107% s. These profiles correspond
to first order discretization in space and time. As ideal gas flow is considered, non-
modified flux formulation is chosen here.

p [Pa] p [kg/m’]
100000 Ny 1
M, ~ 1.65
08l
06}
50000
04l
02}
% 05 1 % 05 1
Xl il

Figure 4.2: Numerically obtained pressure p and density p profiles at ¢ = 6.0-1073 5. First
order calculation in space and time. Initial conditions: pr, = 1kg/m?, pr = 0.125kg/m?,
pr, = 100000 Pa, pr = 10000 Pa, ur, = ur = 0 m/s, initial discontinuity at = 0.5 m, tube
length 1 m, 100 mesh points.

The density profile in Fig. 4.2 shows all three wave structures that are present in
the problem. The smearing of the discontinuous waves (contact surface and shock) is
caused by the first order discretization of the problem. The following figure depicts the
same situation calculated by second order scheme with four-stage Runge-Kutta time
integration and Van-Leer limiter, where smearing is avoided and the discontinuities are
resolved as sharp interfaces.
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Figure 4.3: Numerically obtained pressure p and density p profiles at t = 6.0 - 1073 s.
Second order calculation with Van-Leer limiter and 4-stage Runge-Kutta scheme.
Initial conditions: pr, = 1 kg/m?, pr = 0.125 kg/m3, py = 100000 Pa, pr = 10000 Pa,
ur, = ug = 0m/s, initial discontinuity at = 0.5 m, tube length 1 m, 100 mesh points.

The second shock tube example is somewhat more challenging than the first one and
some numerical methods fail to resolve the physical solution. The initial conditions are
given for this case as

wr <0
w(z,0) = { W; >0 (4.3)
where w is
prL Lkg/m?
w, = |up | = 0m/s )
L 100000 Pa
(4.4)
PR 0.01 kg/m?
Wgp = |ug|= 0m/s
PR 1000 Pa

As the previous test case, the solution of this problem also consists of an expansion
wave, a contact surface and a right running shock. The small separation distance
between the shock and contact surface makes it difficult for the numerical model to
resolve both of them smoothly. Moreover, both the expansion wave and the shock
contain sonic points, which can cause problems with some solvers. Together with the
large initial pressure ratio between the left and right states, the difficulty of the test
case increases. The following figure gives the pressure and density profiles for the first
order calculation at ¢ = 3.32 - 1073 s.

As in the previous test case, the first order results suffer from the smearing of the
discontinuities but this time it is much more intensified. Moreover, as seen in the
density profile, it is obvious that the numerical method experiences difficulty resolving
the three-wave structure as they are very close to each other. The sonic point in
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Figure 4.4: Numerically obtained pressure p and density p profiles at ¢t = 3.32 - 1073 s.
First order calculation in space and time, 100 mesh points. Initial conditions: py =
1 kg/m?, pr = 0.01 kg/m?, pr = 100000 Pa, pgr = 1000 Pa, u;, = up = 0 m/s, initial
discontinuity at x = 0.5 m, tube length 1 m.

the expansion wave can be observed at x = 0.5. Whereas the second order results
given by Fig. 4.5 show the improvement in the resolution of the waves, and their
structures are visible. It should be noted that, although second order results have a
better quality, smearing effects in the discontinuities still exist. This is due to the
relatively coarse mesh used in the calculation. The effect of the mesh resolution on
capturing the discontinuous interfaces like contact surface and shock is demonstrated
in Fig 4.6, where 250 mesh points are used in the same domain.

p [Pa] p [kg/m’]
100000 Ms ~ 237 1

0.8F

0.6
50000
0.4r

0.2F

o 05 1 o 05 1
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Figure 4.5: Numerically obtained pressure p and density p profiles at ¢t = 3.32 - 1073 s.
Second order calculation with Van-Leer limiter and 4-stage Runge-Kutta scheme,
100 mesh points. Initial conditions: p; = 1 kg/m3, pr = 0.01 kg/m3, pr, = 100000 Pa,
pr = 1000 Pa, u;, = ur = 0 m/s, initial discontinuity at = = 0.5 m, tube length 1 m.
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Figure 4.6: Numerically obtained pressure p and density p profiles at t = 3.32 - 1073 s.
Second order calculation with Van-Leer limiter and 4-stage Runge-Kutta scheme,
250 mesh points. Initial conditions: p; = 1 kg/m?, pr = 0.01 kg/m?, pr = 100000 Pa,
pr = 1000 Pa, ur, = ur = 0 m/s, initial discontinuity at = = 0.5 m, tube length 1 m.

The final ideal gas shock tube experiment is given by Toro [119] and referred to as a
very severe test problem. The solution contains a left expansion wave, a contact surface
and a right running shock. Originally, this test case was investigated by Woodward
and Collela [133] as a blast wave problem. Here, only the left half of this problem is
considered. Like the previous cases, the initial conditions are given as

) owp <0
w(z,0) = { W 23>0 (4.5)
with
L Lkg/m?
wr, = |ug |=| 0m/s |,
oL 1000 Pa
(4.6)
PR 1 kg/m’
wrp = |ug|=| 0m/s
PR 0.01 Pa

As the test case is extremely challenging, a finer mesh with 500 points is used and
second order results for pressure and density are presented only in Fig 4.7.

The solid line shows the results of the reference calculation obtained with the same
method on a grid with 5000 cells, while the blue dots correspond to the calculation
with 500 mesh points. As can be seen in the pressure profile, expansion wave and shock
are captured within a couple of cells at the correct locations. The contact surface is
also not smeared out and resolved as a sharp interface as seen in the density profile.
But it experiences numerical overshoot associated with the second order reconstruction
of Van-Leer. This effect can also be seen in the pressure profile as a small oscillation,
where the contact surface is located.
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Figure 4.7: Numerically obtained pressure p and density p profiles at ¢ = 0.012 s. Second
order calculation with Van-Leer limiter and 4-stage Runge-Kutta scheme, 500
mesh points. Black line corresponds to reference calculation with 5000 mesh points. Initial
conditions: pp = 1kg/m?, pgr = 1 kg/m3, py, = 1000 Pa, pr = 0.01 Pa, ur, = ur = 0m/s,
initial discontinuity at x = 0.5 m, tube length 1 m.

The ideal gas shock tube test cases considered in this subsection are encountered often
in the literature and used to test inviscid flow solvers. It is shown that the developed
code accurately captures the discontinuities in these tests. But the resolution of the
interfaces is highly dependent on the mesh and the accuracy of the solver scheme that
is used.

4.1.2 Liquid Water

Single-phase Shock Tube

In this subsection, shock tube problems with liquid water are considered. These test
cases are important to demonstrate the potential of the method to capture and predict
wave dynamics in compressible liquid flows.

The first test case is very similar to the Sods shock tube experiments. A 1-D tube of
length 1 m is assumed to be filled with liquid water at 293 K. The tube is initially
divided into two regions of length [/2 as before. The initial conditions are depicted in
Fig. 4.8 and given as

w(z,0) = { wr <0 , (4.7)

wrp 20
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T, =293 K | Th = 293 K
i1 / [
) i
membrane

Figure 4.8: Representation of first shock tube problem for single-phase liquid flow. Flow
domain at tyg = 0 s.

with

PrL 2500 bar

w, = |ug |=| 0m/s |,
Ty 293 K

(4.8)

PR 0.025 bar

wgp = |ug |=| 0Om/s
Th 293 K

The flow is initially at rest (uy = ug = 0m/s) and the densities on both sides are
determined by Eq. 2.65. The numerical domain is divided into 250 equidistant com-
putational cells. Figure 4.9 depicts the pressure and velocity profiles for the given
conditions.

p [bar] u [mis]
2500 L
M, =~ 1.17 60l Liquid

2000
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20+
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p—————— ==

o
x ©
=
N
o

Figure 4.9: Numerically obtained pressure p and velocity u for 4 equidistant instants in
time (tg = 0s, At = 4.9-107° s). Second order calculation with minmod limiter
and 4-stage Runge-Kutta scheme, 250 mesh points. Initial conditions: p;, = 2500 bar,
PR = Psar = 0.025bar, Ty, = Tr = 293 K, uy, = ug = 0m/s, initial discontinuity at z = 0.5m,
tube length 1 m.

On the left of Fig. 4.9 the pressure is plotted for three instants in time, which shows the
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shock and the rarefaction wave that are captured without the presence of overshoots.
Due to the high acoustic impedance of O(10°) of the liquid, the convective velocity u
reaches hardly 70m/s (Fig. 4.9 - right). The shock Mach number M; for the presumed
pressure ratio is still rather small, M, ~ 1.17.

The second liquid shock tube test focuses on the resolution of the contact discontinuity.
This is important in the sense of cavitating flows, as the phase interfaces behave like
contact a surface. A traveling contact surface is simulated by initializing the domain
with different left and right temperatures and a constant velocity, which is depicted in
Fig. 4.10.

x=0.5m
[ l f
) liquid | liquid )
pr = 1 bar | pr = 1 bar
ur, =500m/s i ur = 500m/s
T, = 293 K | Tp =323 K
IL ] [
) =
membrane

Figure 4.10: Representation of second shock tube problem for single-phase liquid flow.
Flow domain at ty = 0 s.

The initial conditions are given as

- wr, <0
w(z,0) = { W 23>0 (4.9)
with
PrL 1 bar
W = ur | = 500 m/s s
Ty 293 K
(4.10)
PR 1 bar
wrp = | ugr |=|500m/s
Tr 323 K

The densities on both sides are determined by Eq. 2.65. Figure 4.11 depicts the
temperature for three instants in time. The initial discontinuity of the temperature
(see Fig. 4.11) is well preserved although the pressure and the velocity experience
oscillations due to the form of the modified Tait model. This is because the pressure
cannot be represented by a function in the form p = c¢ype + co, where ¢; and ¢, are
constants [44].
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Figure 4.11: Numerically obtained temperature T for 4 equidistant instants in time (o =
0s, At =2.2-107% 5). Second order calculation with minmod limiter and 4-stage
Runge-Kutta scheme, 250 mesh points. Initial conditions: 77, = 293 K, T = 323 K,
pr = pr = lbar, ur, = ug = 500 m/s, initial discontinuity at = 0.5 m, tube length 1 m.

Two-phase Shock Tube

The two-phase shock tube example uses the phase transition model and the
combined equation of state definition that were introduced in chapter 2. The decrease
of density below the saturation density and therefore evaporation of the pure liquid
phase is enforced by two symmetric expansion waves moving opposite to each
other with 10 m/s. The domain is the same as in the previous test cases, 0 <z < 1m
(Fig. 4.12), discretisized by 250 mesh points.

r=05m
I | [
} liquid | liquid }
pr = 1 bar | pr = 1 bar
up, =—10m/s i up =10m/s
T, = 293 K | Th = 293 K
i1 / [
) =
membrane

Figure 4.12: Representation of shock tube problem for two-phase calculation. Flow
domain at tg = 0 s.

The initial conditions in the tube is as follows

w;, =<0
w(x,O):{ W; +>0 (4.11)
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with

PrL 1 bar

w, = |up |=|—-10m/s |,
17 293 K

(4.12)

DR 1 bar

wg = |ug |=|10m/s
Tg 293 K

Two-phase flow
0.4r

0.3F
0.2

0.1r

1
T
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Figure 4.13: Numerically obtained pressure p for 4 equidistant instants in time (9 =
0s, At = 6.0-1073 s) and void fraction « at t3 = 1.8 - 10~* 5. Second order calculation
with minmod limiter and 4-stage Runge-Kutta scheme, 250 mesh points. Initial
conditions: ur = —10 m/s, ug = 10 m/s, pp = pr = lbar, T, = Tr = 293 K, initial
discontinuity at x = 0.5 m, tube length 1 m.

In figure 4.13 the resulting pressure and void fraction profiles are shown. Because of
the initially enforced velocity field, two expansion waves initiate at x = 0.5 m and
propagate against each other. The expansion is strong enough for the pressure to drop
instantly to vapor pressure and evaporation of the liquid is observed as the void fraction
a suggests. As expansion waves propagate against each other, contact waves initiate in
the region between them and propagate with the convective velocity of the flow which
can be estimated by the linearized acoustic theory given in chapter 1 by

Ap =~ pcAu (4.13)

or A
N = (4.14)

pc

The pressure decreases from 1bar to vapor pressure pg,; = 2340 Pa across the rarefaction
wave. Using the conditions ahead of the wave (py, and c¢;,) and initial velocity of
10 m/s gives the velocity of the contact wave as 9.935 m/s. This is the velocity of
the convective motion, which corresponds also to the propagation speed of the vapor
region and results in d ~ 0.004 m.
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4.2 3-D Bubble Collapse

Single- and two-phase compressible liquid formulation has been tested in the previous
sections using numerical shock tube experiments. In this section, the proposed two-
phase model will be investigated for an isolated single bubble collapse.

As already mentioned in chapter 1, the collapse mechanism of a single isolated bubble
has been extensively studied theoretically and experimentally by numerous research
groups for different conditions [34], [65], [85].

The growth and collapse dynamics of a spherical bubble are governed by the Rayleigh-
Plesset equation given by 1.13. This equation can be simplified in the absence of viscous
effects and surface tension. Following Young [135] we consider an empty spherical
bubble for the analytical solution of the bubble collapse, which is governed by

RR+ =
2 Pligq

, (4.15)
where py, is the pressure in the liquid at the bubble wall [135]. In the analytical solution
we assume that the pressure at the bubble wall is equal to the vapor pressure and is
constant, i.e. pp = psat(To) = 2340 Pa. The flow conditions and the properties of the
analytical model and the numerical code are summarized in the following table

Table 4.1: Comparison of the flow conditions and model assumptions for the analytical
model and CATUM simulation.

Rayleigh-Plesset solution CATUM simulation
liquid liquid
empty vapor
bubble T bubble
(o] = Too
p F{:nubble pwt p
oo oo
RO
pL
“empty bubble” pure vapor bubble
inviscid inviscid
no gas content no gas content
no surface tension no surface tension
incompressible (liquid) compressible (liquid and vapor)
Poo = 1 bar Poo = 1 bar
T, =293 K T, =293 K
pL = psat<Too> = 2340 Pa Poubble = Psat
Ry =0.4mm Ry =0.4mm

By using Eq. 4.15, the temporal evolution of the bubble radius R(¢) can be calculated
for a given initial radius Ry and an enforced pressure difference between the bubble
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wall and the surrounding liquid. The collapse of an empty spherical bubble defined
by the incompressible, inviscid Rayleigh-Plesset equation without surface tension and
without gas content is referred to as “Besant problem” in the literature [10].

In the numerical calculation a pure vapor bubble is considered. It is known from
the theory and the observations that a vapor bubble initially in equilibrium with the
surrounding liquid at ) = 0 and ps g = Pser Will start to collapse if the pressure in the
liquid is raised to poo > psar by t > 0 and held constant at the boundaries of the liquid
domain (at infinity). The bubble collapses completely in this situation within the so
called Rayleigh time trayicigh-

In the calculation, a spherical vapor region is constructed in a 3-D flow domain. The
resolution of the region corresponds to a discrete bubble in contrast to the application
simulations where the resolution in space is restricted to large scale structures such as
bubble clouds. The following picture depicts the initial vapor region that is constructed
to calculate the bubble collapse.

vapor bubble
initial radius
Ry =0.4mm at
t= to

R,=0.4 mm

Figure 4.14: Isolated pure vapor bubble, initial radius Ry = 0.4 mm at t = ty. Bubble
surface visualized by iso-surfaces of void fraction cu;, = 0.1.

The numerical boundaries are located 25 diameters away from the bubble and the
corresponding boundary conditions model constant pressure p,, = 1.0 bar and T,, =
293 K at infinity. The pressure inside the bubble is given by the vapor pressure pg,; =
2340 Pa at T, = 293 K. The initial radius of the vapor bubble is Ry = 0.4mm and the
grid resolution of [; = 0.02mm results in ¥ = 20 with respect to Ry; hence, the initially
defined bubble is fully resolved (see section 2.4.2). Figure 4.15 shows the meridional
plane of the discretization domain with the corresponding mesh.

The bubble interface is defined by the variation of void fraction values from o = 0.99
inside the bubble and o = 0 in the surrounding liquid, according to the defined initial
radius Ry.

Based on the C'F'L requirement stated in chapter 3 the applied numerical time step
in this problem is of the order of At = 6.5 nanoseconds. Although the numerical
method includes compressibility effects, the results are compared with the solution
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Figure 4.15: 3-D bubble structure at initialization, tg = 0 s, meridional plane of the dis-
cretization domain. ps, = 1.0 bar and T, = 293 K, Ry = 0.4 mm, psq = 2340 Pa at

T = 293 K. Mesh resolution corresponds to ¥ = 20.

of the incompressible Rayleigh-Plesset model. This comparison is motivated by the
analytical investigation of Gilmore [35], where it is demonstrated that the incorporation
of liquid compressibility results in only a slight increase of the dimensionless collapse
time of 0.5% as compared to the incompressible model. Moreover, as stated by Franc
and Michel [30], surface tension is negligible in the collapse for the initial radius of
Ry = 0.4 mm considered here. The collapse time of the bubble can be found from Eq.

4.15 by rewriting the left hand side and taking p; = psa: as

1 i[RQRB] _ Psat — poo(t)
2RR? dt Pligq

dt Pliq

Integrating the above equation

/ 9 Rt = / 2RR (p—“‘t P ”(t)) dt
dt Pliq

— t .
RIR3 = stat—poo(t)/RR?dt
Pliq 0

Psat — poo(t) . R3 _ R%
pliq 3

@ _ gpsat _poo(t) N Eg
d — \I3  pu R3)

R’R® = 2

or

i[RQR?)] — 9RR? (psat_pOO(t))‘

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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As during the collapse dR/dt < 0, the sign inside the square root can be changed

dR 2 Psat — poo(t) RS
ar |2 (o ) 4.22
dt \/3 Pliq R? (422)

Rearranging this equation and integrating from R to 0 for collapse time ¢ rayicignh gives

d 2 — Poolt
4R 2 P () (4.23)
R} 3 Priq

R

/0 dR 2 Psat — Poo(t) /tRayzeigh » 424
Ry |R3 3 Pliq 0 '
’/E_
0
/ 4R 2 Pampe®) (4.25)
Ro R_(?)’_l 3 Pliq
V'R

The integral on the left hand side can be evaluated through factorial gamma function,

which gives [30]
~ plzq
tRayleigh = 0.915 Ry, | ——— . 4.26
fragtetgh ’ Poo — Psat ( )

Figure 4.16 shows the time dependent evolution of the normalized bubble radius with
respect to the time normalized by the Rayleigh time ¢ gqyeign. The solid line corresponds

° CATUM simulation

Rayleigh-Plesset equation 4.26
0.2 -

1
0 05
t/t

Rayleigh

Figure 4.16: Comparison of simulation and bubble dynamics for a single bubble collapse.
Evolution of dimensionless radius R/Ry with respect to dimensionless time ¢/t rqyicign from
simulation (dots) and solution of the Rayleigh-Plesset equation for the collapse of a spherical
vapor bubble, Atcpp = 6.5-1077 s.
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to the solution of the Rayleigh-Plesset equation and the dots represent the results of
the CATUM simulation. The collapse velocity |R| can be approximated from Eq.
4.22 when R — 0 as

2 sa R
‘ 2 Poat = Po(t) < 0) , (4.27)
plzq R
or
) R R 3/2
|R| = 0.747 —2— (-0) . (4.28)
Rayleigh R
120
100 o
80
0
o
40 - D CATUM simulation
Rayleigh-Plesset equation 4.28
20
0O 0.5 1

Rayleigh

Figure 4.17: Comparison of simulation and bubble dynamics for a single bubble collapse.
Evolution of collapse velocity ]R\ with respect to dimensionless time ¢/t gqyieign from simula-
tion (dots) and solution of the Rayleigh-Plesset equation for the collapse of a spherical vapor
bubble, Atcpp = 6.5-1079 s.

In both of the figures, the solid line corresponds to the solution of the Rayleigh-Plesset
equation and the dots represent the results of the 3-D compressible simulation. The
agreement of both data sets demonstrates the ability of the numerical method to accu-
rately predict the collapse dynamics of the single bubble. Therefore, the model reduces
to the Rayleigh-Plesset dynamics for the Besant problem.

During the collapse, the liquid accelerates towards the center of the bubble and initiates
the formation of an outward propagating shock when it impacts at the center of the
recondensed bubble. The intensity of the shock is related to the impact velocity of
the liquid. For the presumed initial conditions and the defined spatial resolution, the
obtained maximum instantaneous pressure reaches 1040 bar within the control volume
located at the center of the domain. In accordance to the theory, the spherical shock
then propagates into the surrounding liquid and attenuates inversely proportional to
its distance from the origin. Due to the high acoustic impedance of the liquid, the
shock speed is only slightly supersonic. This shock intensity is driven by the inertia
effects and the viscosity plays a minor role on the underlying dynamics.
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4.3 Discretization and Mesh Dependence of the
Cavitation Regions

In the previous section an isolated single bubble collapse was considered. In that case,
the mesh resolution (Ax = 0.02 mm) was fine enough to resolve a single bubble with
an initial radius of Ry = 0.4 mm. This test is performed in order to validate the
proposed model in the limit of single bubble dynamics. But, as mentioned earlier, the
main aim in the current study is to predict the unsteady cavitation characteristics of
relevant applications. Therefore, the resolution of single bubbles for these applications
is not possible. In this case the implemented “homogeneous mixture model” assumes an
average behavior of the cavitation regions, which are described by the thermodynamical
properties.

At this point, we discuss the effects as well as the limits of the mesh resolution and of the
discretization scheme on the resolved structures. Figure 4.18 depicts four calculations
of a 2-D injection nozzle geometry; the flow conditions in all of the calculations are the
same, with a fixed inlet pressure of p;, = 80 bar and an outlet pressure of poytmir =
26 bar, which is the mixed reflecting /non-reflecting approach as described in chapter 3.

The first row in Fig. 4.18 shows the meshes used in the calculation. The second row
and the third row correspond to calculations performed by 1st order time and space dis-
cretization and 2nd order time and space discretization respectively. Figure 4.18 gives
an overview on the mesh and discretization dependence of the flow problem. At first
glance, it can be seen that, by using a higher order scheme, cavitation regions grow and
become highly unsteady. Moreover, the results obtained with the fine mesh show high
fragmentation and small-scale structures, especially in the second order calculation.
But the frequencies of the shedding cycles are nearly equal (f =~ 62 Hz coarse mesh,
f = 61 Hz fine mesh) for both meshes. Additionally, we have seen in several other test
cases that large scale cavitation structures are grid convergent and show comparable
dynamic behavior. Whereas, the small scale structures fragment continuously as the
mesh is refined. This suggests that the order of the discretization has a stronger effect
on the global cavitation dynamics than the mesh resolution. Therefore, higher order
numerical schemes are necessary to resolve and predict unsteady cavitation dynamics.
However the commercial solver packages Fluent and ANSYS-CFX apply a first order
discretization to the void fraction transport equation due to stability reasons. In our
implementation we apply the minmod limiter on the density field in order to ensure
second order discretization in smooth regions. We investigated to use of higher order
WENO schemes for the density field as well, but it turned out that this results in
overshoots in the regions of steep density gradients, especially at the closure region of
sheet cavities. Therefore, we propose to apply the minmod limiter for the density field
together with a less dissipative second order reconstruction for the velocity field (like
van-Leer limiter). Overall the spatial discretization is thus limited to second order due
to the sensitivity of the density field.

The observed mesh dependence of the arising small-scale structures (see Fig. 4.18)
raises the question of the physical limits due to the mesh refinement. The limit on
the mesh refinement is purely physical and depends also on the flow characteristics.
Therefore, we assume that it would be possible to perform simulations for any finite
number of grid cells, and we ask for arising violations of the physical aspects. It turns
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Figure 4.18: Representation of the mesh and discretization dependence of the cavitation
regions. 2-D injection nozzle calculation, inlet pressure p;, = 80 bar, outlet pressure of
Dout,miz = 26 bar. First row: coarse mesh (left), fine mesh (right); second row: 1st order time
and space discretization (left: coarse mesh, right: fine mesh); third row: 2nd order time and
space discretization (left: coarse mesh, right: fine mesh).

out that the first limitation is given by the neglected effects of the surface tension.

The effect of the surface tension is investigated for two cases. In the first case, presum-
ing that the mesh resolution resolves single bubbles of radius R, the bubble is assumed
to be in mechanical equilibrium with its surroundings, which is regarded as the
static condition. Following the Young-Laplace equation [135] the static condition
of a spherical bubble containing pure vapor only requires the following relation to be
satisfied

25

Dsat = Poo T E 5 (429)
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where p,q; 18 the vapor pressure, po is the pressure of the surrounding liquid domain and
S is the surface tension of the liquid. For water and water vapor at room temperature
these values are py,; = 2340 Pa and S = 0.072 N/m. Then the pressure difference due
to the surface tension can be written as

28

Ap = Psat — Poo — E . (430)

It can be seem from this equation that the smaller the bubble radius is, the larger the
effect of the surface tension on the pressure difference that maintains the mechanical
equilibrium. In order to give a numerical estimation, if we consider static equilibrium
condition of a spherical bubble with a radius of r = 1-107°m at 20°C' the above given
formula results in

2x0.072
2340 — = — 4.31
Poo = —12060 Pa . (4.32)

Equation 4.32 shows that a “negative” surrounding pressure value is required to main-
tain the static equilibrium condition. This means that the surrounding liquid has to
be in tension. As already discussed in chapters 1 and 2 such “negative” pressures and
deviations from the saturation conditions are associated with thermodynamic non-
equilibrium states (see Fig. 1.1) and they are not considered in the implemented phys-
ical model. Therefore, surface tension effect is not included in the model and in the
calculations presented in this thesis. The following table demonstrates the effect of the
surface tension on the pressure difference that maintains the mechanical equilibrium
for different bubble radii.

Table 4.2: The effect of different bubble radii on the pressure difference that maintains the
mechanical equilibrium according to Eq. 4.30.

Radius | 5-103m [ 1-103m [ 1-10*m [ 1-107°m
Ap 28.8 Pa 144 Pa 1440 Pa | 14400 Pa

As in the calculations the fragmented cavitation regions are resolved, the smallest
mesh size in these regions could correspond to tiny single bubbles, where the surface
tension may influence the flow dynamics. In order to conclude if the surface tension is
significant for a given calculation, one should investigate the flow conditions together
with the mesh resolution. Table 4.3 summarizes the smallest mesh sizes encountered in
the calculations that will be presented in the next chapter together with the pressure
differences that maintain the mechanical equilibrium when these meshes correspond to
single “resolved bubbles”.

The injection nozzle calculation that is considered in this section has the smallest
mesh size around the inlet of the bore hole of the order of 6 - 107%m, which is also the
smallest mesh size encountered among all the calculations that are performed in this
thesis. Therefore it is the most critical flow problem in terms of the possible effects of
the surface tension. According to the mechanical equilibrium discussion given above,
if an isolated single mesh apart from the cavitation regions is filled with vapor, it
would correspond to a tiny single bubble with a radius on the order of that mesh size.
Following Eq. 4.30, this mesh size (6 - 107% m) would result in a pressure difference of
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Table 4.3: The smallest mesh sizes encountered in different calculations and the equivalent
pressure differences that maintain the mechanical equilibrium when these meshes correspond
to single “resolved bubbles”.

calculation 2-D injection | 3-D injection | 2-D hydrofoil | 3-D wing
nozzle nozzle

smallest mesh size | 6-107%m 1-107°m 5-107%m 1-1073m

corresponding Ap | 24000 Pa 14400 Pa 288 Pa 144 Pa

of the “resolved

bubble”

Ap = 24000 Pa. When compared with the inlet pressure of p;, = 80 bar, it is clear
that the effect of this pressure difference can be neglected. Moreover, as it can be seen
from table 4.3 that in hydrofoil calculations the smallest mesh size is on the order of
5-107% — 1073 m which corresponds to a pressure difference of O(10%) Pa. This value
is also not significant when compared with the inlet conditions of these problems.

In the second case, we analyze the effect of the surface tension on the collapse dy-
namics. It was mentioned in the previous subsection that the surface tension can be
neglected during the collapse for the initial radius considered here. The collapse veloc-
ity given in the previous section (Eq. 4.22) can be rewritten by including the surface
tension effect as follows [30]

9 o 3 2 3 2
AR [2Psa = Po(t) B + 5 Hg 1—R—2 : (4.33)
dt 3 Pliq R3 priglo B3 R
or
2 Paat — : 2 3
@ _ _psat pOO(t) & —1)+ S & — @ . (434)
dt 3 Pliq R3 Prig o R3 R

As initially R = Ry, the two terms inside the square root can be compared by using
their coefficients. Thus, the accelerating effect of surface tension becomes significant if

25 2 Psat — Poolt
>_pt Poo(t)

, 4.35
priglto 3 Pliq (4:35)
or 35
Ry < ———, (4.36)
Poo — Psat

Therefore, at standard conditions, ps, = 1bar, T, = 293.15 K and ps.; = 2340 Pa with
S =0.072 N/m, the surface tension must be considered if

Ry <22-10%m=22um. (4.37)

Thus, when the mesh resolution is smaller than this value, the fragmented cavitation
regions correspond to tiny single bubbles that surface tension is no longer negligible
and influences the collapse dynamics. As a result, in the current model the limit given
by Eq. 4.36 is considered when refining the computational grid.
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Similar to the mechanical equilibrium analysis given earlier, we again consider 2-D
injection nozzle problem in terms of collapse dynamics. If we assume that the liquid
pressure ps, that surrounds the cavity regions is also of the order of the inlet pressure
Pin = 80 bar, Eq. 4.36 results in a limiting radius of Ry ~ 2.7 -107% m. This value is
two orders smaller than the smallest mesh size in this example, thus the effect of the
surface tension on the collapse dynamics can also be neglected.

4.4 Validation Summary

Before presenting any results, it is necessary to validate a newly developed code. In
this chapter, the convective flux definition and ability to resolve sharp discontinuities of
CATUM was tested via a series of numerical shock tube test cases for gas and liquid
water flows. It was shown that the code accurately captures and resolves the wave
propagation even for severe test cases. The quality of the solution strongly depends on
the mesh resolution and the order of the scheme that is used.

To validate the two-phase model proposed earlier, several additional tests were also
performed. In the first case, a cavitating shock tube was considered, where two opposite
running expansion waves are used to initiate evaporation. In the second test, an isolated
single bubble collapse was considered and compared with the solution of the Rayleigh-
Plesset equation. This case showed a perfect match for the collapse time, the bubble
radius evolution and the collapse velocity with respect to the theory.

Finally, the mesh and discretization dependence of the cavitating flow field was demon-
strated by using a 2-D injection nozzle calculation. The fragmentation and the cavita-
tion dynamics showed that a higher order discretization is needed to resolve such flow
features.

Second order time and space discretizations are used throughout all the validation
cases. It is possible to implement third or higher order WENO schemes for the 1-D
shock tube problems, but the geometrical complexity of the 3-D applications restrict
the usage of higher order schemes in terms of CPU requirements. For comparison, the
required numerical effort to realize third order accuracy in space and time increases by
a factor of 30 for the considered 3-D applications (see also the discussion in section
5.2.3, page 159).

The results that will be presented in the next chapter will also serve as validation for
the developed code and the proposed phase transition model, as various experimental
comparisons are included.



Chapter 5

Results and Discussion

In the previous chapter the developed solver and the proposed two-phase model were
validated through a series of single and multi-phase liquid flow test cases together
with numerical shock tube experiments. This chapter presents the results from the
applications that are considered in the scope of this thesis. These applications can be
divided into two main categories according to their physical and flow properties. The
first category focuses on the flow dynamics inside the fuel injection systems, which are
characterized by high-speed, micro-scale flows. The second application area focuses
on the flows around hydrodynamic machinery such as pump or turbine blades as well
as ship propellers. In the following sections, results of 2-D and 3-D injection nozzle
simulations and hydrofoil calculations will be presented.

5.1 Injection Nozzles

Control and optimization of cavitation in injection nozzles are subjects of intense re-
search and development. Because of the pressure differences Ap = pin — Powr Up to
2000 bar and unsteady excitation according to the frequency of the motor cycle it is
obvious that wave dynamics plays a dominant role. Moreover, individual mass flow
control strategies by pilot and multi-point injection systems operate within the time
scales of At < 10~*s. Therefore, the arising flow field inside the injection nozzle experi-
ences variations on multiple time scales together with both hydrodynamic and acoustic
cavitation. As wave dynamics and hydrodynamics are strictly coupled, a separate con-
sideration of these scales is not possible. Hence, numerical time steps Atcpp of the
order of 1071% s are necessary to ensure the complete resolution of hydrodynamics and
wave dynamics within the numerical simulation. Beside these flow dynamic scales, the
injection cycle introduces a time scale At;j.. = 1073 s as well. Consequently, the dy-
namic phase transition processes like cavitation and recondensation can be experienced
within all considered time scales 10710 < At < 1073 s.

Due to typical bore hole diameters of the order of 0.1 — 0.3 mm, experimental inves-
tigations are difficult and limited. Therefore, detailed studies of the flow field require
numerical simulations [4].

97
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5.1.1 2-D Plane Injection Nozzle

As a first test case and for comparison with the previous research done by Yuan and
Schnerr [137] the cavitating flow through a 2-D planar injection nozzle is simulated.
This nozzle geometry was also used in the experiments of Roosen et al. [93].

Figure 5.1 shows the layout and the discretization of the computational domain. The
computational mesh for the full injection nozzle is obtained by mirroring the lower
half with respect to the center line of the domain. Hence, a perfectly symmetric
mesh is constructed. Even for this symmetric mesh, an asymmetric flow solution can
be observed because of the strong gradients associated with the two-phase flow. This
phenomenon will be discussed in section 5.1.1.1 in detail.

The inlet pressure p;, is kept constant and at the outflow domain a mixed non-
reflecting /reflecting boundary condition pyutmi, is applied (see chapter 3). The size
of the nozzle bore hole is given by the total height of 0.28 mm and the length of
1.0 mm. With respect to cavitation, the radius of wall curvature at the inlet of the
nozzle is one of the most sensitive parameters of this problem. Rounding the edge with
a radius r = 2.8 - 107° m ensures that the single-phase viscous flow remains attached
in this inlet region. This important fact has been controlled by additional single-phase
Navier-Stokes simulations [136]. Otherwise, strong interaction of viscous separation
and cavitation cannot be excluded, i.e. conditions which make reasonable conclusions

difficult.

outflow: 80 x 113 nodes _— Pout,mix
p,, = 80 bar _

T, =293K

nozzle:189 x 49 nodes

1 mm 55 mm

0.28 mm

2mm 1 mm 6 mm

Figure 5.1: 2-D injection nozzle grid with outflow domain and corresponding boundary
conditions.

The numerical domain includes the nozzle as well as the outflow region. The initial
conditions for the entire numerical domain model liquid water at rest at temperature
Tinit = 293 K and pressure poutmiz = 26 bar. At the inlet we prescribe p;, = 80 bar.
This moderate pressure ratio 80/26 bar is typical for direct injection in Otto engines
(FSTI - Fuel Stratified Injection). Due to the initially prescribed pressure jump Ap =
Din — Pout,miz = D4 bar at the inlet, a shock wave propagates through the nozzle and
initiates the convective motion.
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Figure 5.2: Time history of the integrated vapor volume V,q, [% total volume of the
computational domain|, py, = 80 bar, pout,miz = 26 bar, Tiny = 293 K, Atcpp = 1079 s,
second order in space and in time.

Figure 5.3: Vapor volume fraction a due to acoustic cavitation inside the bore hole at
t1 = 4.42-107% s, time interval Ati_19 = 6.90 - 10~ 7s, pi, = 80 bar, Dout,miz = 26 bar,
Tinit = 293 K, Atcpp = 1079 s, second order in space and in time.
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In Fig. 5.2 the time history of the vapor formation V,,, inside the low domain is shown.
This graph clarifies the various time scales experienced during an injection process. A
typical engine cycle corresponds to 1073 s and the cavitation cycle has a time scale of
the order of 107 s. Two additional time scales are introduced into the flow due to the
imposed wave motion. Both of them are short time scale characteristics of the flow
field and experienced during the start-up phase.

As the shock reaches the exit of the bore hole, a reflected rarefaction wave forms and
propagates upstream through the throat. The interaction of the hydrodynamic flow
acceleration with the pressure drop due to rarefaction waves enforces acoustic cavitation
around time ¢ ~ 4.7-107% s (Fig. 5.2).

Within At ~ 1075 s the evaporated domain recondenses completely. The sequence of
10 pictures in Fig. 5.3 represents a time interval of At;_;o = 6.90- 10 "s, beginning at
t1 = 4.42-107% 5. In this series, acoustic cavitation is visualized by the vapor volume
fraction a. It can be seen from this figure that in the region between two expansion
waves vapor develops and acoustic cavitation takes place. From Pic. 1 to Pic. 4 the
region grows as the expansion waves move farther away from each other. Starting
with picture 5, reflected compression waves interact with the cavitating region and
compress it. Although due to the compression the region shrinks in size, the absolute
value of the vapor volume fraction increases as a direct consequence of the volume
reduction. Picture 10 depicts the maximum vapor fraction reached during this wave
induced cavitation process. As compression waves move further towards each other
and finally collide, all the vapor recondenses and the acoustic cavitation process ends.
It should also be noted that the resulting maximum vapor volume fraction value is of
the order of 1072. This is because the pressure drop due to the expansion wave is weak
as compared to the hydrodynamic acceleration.

5.1.1.1 Symmetry Break-up of the Flow Field

Further acceleration of the flow field results in hydrodynamic cavitation at the inlet of
the bore hole (Pic. 1 Fig. 5.4). In Pics. 2-3 of Fig. 5.4 the onset of a flow instability
that leads to asymmetric collapses at the closure region of the cavities (Pics. 5-6 of
Fig. 5.4) is observed. The time increment between the pictures is At = 3.425 - 10-8
s; this emphasizes the short time dynamics of this micro scale two-phase flow. The
asymmetry of the collapse induced shocks is depicted in Pics. 7-9 of Fig. 5.4. The
further attenuation and propagation of these first asymmetric shocks drive the entire
flow topology towards global asymmetry with highly non-predictable random behavior
(Pics. 10-12 of Fig. 5.4). The graph of the integrated vapor volume, Fig. 5.2, also
demonstrates this highly random, non-periodic flow character.

The predicted break-up of the symmetry is interesting by its own right, especially with
respect to the inviscid nature of the governing equations. Therefore, this phenomenon
is investigated in detail. By introducing “corresponding sensor cells” positioned at
two symmetrically located finite volumes at the entry region of the bore hole (see Fig.
5.5), pressure signals are recorded during the whole simulation. Figure 5.6 depicts the
normalized static pressure difference Ap in logarithmic scale given by

log,o(Ap + ) = log, (w + 8) , (5.1)
01
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recorded at the given two monitor points. The pressure difference value is normalized
by the inlet total pressure pg; and a cut-off value of ¢ = 10~ is used to avoid the zero
point in log scale. This pressure difference is a way to measure the asymmetry of the
flow field. It also shows the development of the instabilities in the domain. Strong
gradients like phase change or shocks around the monitor points cause local extrema
of the pressure signals.

t, =4.539-10°s

Aty =3.425-10° s

0.2
T
£0
>
0.2
: t,,=4.577-10°s 4 [bar]
T ‘
£0
}
0.2

0 1 x[mm]

Figure 5.4: Static pressure contours and cavitation regions (orange lines a,;, = 0.001),
transient re-arrangement from symmetric to asymmetric cavitation at ¢; = 4.539-107%s, time
interval At_1o = 3.8-1077 s, pin = 80bar, Dout,miz = 26 bar, Tiniy = 293 K, Atcrpp = 1079 s,
second order in space and in time.
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upper monitor point

0.2 /

y [mm]
o

o2fi \

lower monitor point

0 O‘.5 1
X [mm]
Figure 5.5: Upper and lower monitor points, located at the upper and the lower walls -

symmetrically to the axis of the bore hole, p;, = 80 bar, pout,miz = 26 bar, Ti; = 293 K,
Atcpp = 1079 s.
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Figure 5.6: Time dependent normalized static pressure difference Ap, two-phase calcula-
tion, logarithmic scale, p;, ~ po1 = 80bar, pout,miz = 26 bar, Ty = 293 K, Atcrp = 1079 s,
second order in space and in time.
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Figure 5.6 clearly shows that the instability in the flow field starts to grow already
from the beginning of the simulation and it fluctuates continuously as the transient
solution proceeds. A pressure fluctuation level due to turbulence is estimated for the
considered flow conditions. Due to the acceleration of the flow through the nozzle of
the bore hole, one can assume that the flow has a weak turbulence intensity 7w on the
order of ~ 1073, i.e.

Tu=-+——~10"%. (5.2)

For a mean velocity of = 100 m/s, the turbulent fluctuation velocity ' can be found
by using the above equation as |u'| = 0.1 m/s. This velocity corresponds to a pressure
fluctuation which can be approximated as

/

1
P~ pu'2:§-1000-0.12:5pa. (5.3)

N | —

Normalizing this value with respect to the inlet total pressure py; ~ 80 bar and taking
the logarithm of it results in the gray bars depicted in Figs. 5.6 and 5.7.

In order to exclude the effect of phase transition on the break-up, a single-phase
simulation using exactly the same numerical algorithm but without taking the phase

Single-phase calculation
log,,(Ap+e)
0 = — pup-plowl
: AP =",

1 ; e=10"°

average pressure fluctuation

turbulent fluctuation

/

|
ol

| | | ! | | ! | | | | | | | | | | )
0 | 5.10° 1.10* 1.5.10* 2.10* 2.4.10*
onset of acoustic cavitation t[s]
4.2.10°%s

Figure 5.7: Time dependent normalized static pressure difference Ap, single-phase cal-
culation, logarithmic scale, p;, ~ por = 80 bar, pout,miz = 26 bar, Ty = 293 K,
Atcrpp = 1079 s, second order in space and in time.
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Figure 5.8: Close-up views of time dependent normalized static pressure difference Ap,
0 <t < 8-107% s, single-phase calculation (top), two-phase calculation (bottom),
linear scale, pi, = po1 = 80 bar, Pout.miz = 26 bar, Ty = 293 K, Atcpp = 1079 s, second
order in space and in time.
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change into account (pure liquid flow) is also performed. Again, the same perfectly
symmetric grid, which was generated by mirroring the lower half with respect to the
nozzle axis, is used together with the same initial and boundary conditions. Figure 5.7
shows the normalized pressure difference recorded at the monitor points in logarithmic
scale.

As seen in the Fig. 5.7 the numerical noise arising in the single-phase simulation
initially grows during the time evolvement and decays during the transient process
towards the steady state solution. The steady state solution still contains a small
amount of noise of the order of 1071° for any normalized quantity. This noise does not
further reduce due to unavoidable numerical round-off errors. However, the numerically
predicted flow field is symmetric up to the mentioned order and remains stable. Global
asymmetries are not observed within single-phase simulations.

The difference of the recorded pressure signals in the single- and in the two-phase
simulations are compared in the previous two figures for 0 < t < 8-107%s. It can
be seen from Fig. 5.8 that the numerical noise arising in both simulations is identical
as long as there is no cavitation present, i.e. the two-phase simulation is not yet
affected by phase transition. In the previous section it is shown that due to wave
propagation inside the bore hole, acoustic cavitation forms and within a very short
time interval (= 1079 s) it recondenses completely forming pressure waves propagating
in both directions. When this pressure wave reaches the monitor points, it causes an
unbalanced pressure increase and therefore, the numerical noise arising in two-phase
simulation is intensified, which causes the sudden peaks after the onset of acoustic
cavitation as depicted in Fig. 5.8 (bottom). The maximum magnitude of these peaks
reach 0.1 — 0.15 bar, which is outside the scale of the figure. Moreover, it is seen from
the results that before acoustic cavitation occurs, the flow variables that are calculated
inside the upper and lower monitor control volumes are exactly the same.

As a result, it is seen that the considered single-phase flow is stable within small
perturbations (numerical noise), whereas, the corresponding two-phase flow shows an
instable behavior. It is therefore important to distinguish between the numerical origin
of the instability (that is the occurrence of the numerical noise due to round-off errors,
compiler settings, internal processor routines, etc.) and the resulting behavior of the
governing equations. The compatibility relations for the Euler equations imply that
the variation of acoustic impedance d(pc) is a measure of the non-linearity due to
compressibility. The acoustic impedance is nearly constant for single-phase flows but
it varies several orders of magnitude in two-phase flows (see Fig. 2.16 and chapter 3).
Therefore, it is reasonable to associate the observed instability in two-phase calculations
to the increased non-linearity due to compressibility and is therefore not controlled by
viscosity effects.

It should be also noted that the discussed symmetry break-up analysis is performed
on the same computer with same compiler settings both for the single-phase and two-
phase calculations. Repetition of these calculations on the same computer gives exactly
the same results, as expected. But repetition on different architectures or with differ-
ent compiler settings or on different computers can result in a completely different
time history of the recorded pressure signals, as every computer has different machine
accuracy and internal routines.
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5.1.1.2 Cavitation Cycle

Figure 5.9 is the enlarged plot of the total vapor volume integrated within the entire
computational domain and shows the investigated cavitation cycle with a time interval
of Ateyqe = 1.639 - 107° 5. The sequence of 8 void fraction pictures in Fig. 5.10
represents this cavitation cycle with a shedding frequency of f.yqe = 61 kHz. It can be
easily seen from the pictures that, although the flow topology in the upper and in the
lower halves of the nozzle is at some instances similar, it is completely unsymmetrical.
The mass flow defect due to cavitation is an important parameter for the operating
conditions of injection nozzles and for the efficiency of the engine. In this calculation the
time dependent fluctuation of this quantity, normalized with the single-phase reference
value, is Am/mMgingie—phase = 18% £ 5%. This value is in good agreement with the
observations of Chaves et al. [19].

The flow within the cavitation cycles experiences violent shock structures due to col-
lapses. Figure 5.11 (top) depicts the instantaneous flow field corresponding to a violent
collapse at t = 1.992 - 10~* s, which is given by the first black point in Fig. 5.9 respec-
tively close to picture 1 of Fig. 5.10. The pressure behind the shock is 314 bar, which is
more than one order higher than the outflow static pressure. The corresponding shock
Mach number is M, = 1.01. Similarly, in the bottom picture of Fig. 5.11, formation of
a circular shock front within the free shear layer of the external flow is observed. This
time the maximum pressure behind the shock is 264 bar and this collapse corresponds
to the time instant ¢t = 2.330 - 107 s.
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Figure 5.9: Time history of the integrated vapor volume V4, pin = 80bar, pout,miz = 26bar,
Tinit = 293 K, Atcpp = 1079 s, second order in space and in time.

t, = 1.990-10%s

At=2.050-10°s

Figure 5.10: Unsteady and asymmetric high frequency void fraction formation in cavitating
flow through 2-D plane injection nozzle at t; = 1.990 - 10~% s, time interval At; g = 1.639 -
1075 s, pin = 80 bar, Dout,miz = 26 bar, Tiny = 293 K, Atcrp = 107 s, second order in space
and in time.
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Figure 5.11: Instantaneous formation of a strong shock after violent cloud collapse in the
nozzle bore hole (top), inside the outflow domain (bottom), pmaes = 314 bar, p;, = 80 bar,
Pout,miz = 26 bar, Tinie = 293 K, Atcpp = 1079 s, second order in space and in time.
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5.1.2 3-D Injection Nozzle with Swirl

Because cavitation in injection nozzles cannot be avoided and as it is always accom-
panied by erosion, especially at the inlet of the nozzle bore hole, active control of the
static pressure in this region can be achieved by superimposing appropriate vortex flow.
The vortex flow would separate the cavity from the nozzle bore holes and would avoid
the contact of the solid surfaces with the cavity structure. The 3-D injection nozzle ge-
ometry with 4 quasi-tangential admission openings at the inlet and the corresponding
computation mesh is presented in Fig. 5.12. In order to reduce the calculation time, a
90° section (82000 nodes) together with periodic boundaries is simulated. The merid-
ional cross section of this 3-D test case is identical with the layout of the 2-D nozzle
model of the previous section. Therefore, the diameter of the bore hole is 0.28 mm,
the nozzle length is 1.0 mm and the radius of the wall curvature at the inlet into the
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Figure 5.12: 3-D injection nozzle with tangential inlets, geometry and corresponding grid
with outflow domain.
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bore hole is r = 2.8 - 107° m.

Because of the faster decay of disturbances in 3-D flow, the pressure boundary condition
of the outflow regime is prescribed by a constant value p,,; = 23bar. The inlet pressure
and temperature are p;, = 80 bar and T},;; = 293 K respectively. The resulting swirl
number Sw, as the ratio of reference values of the circumferential velocity v4 and the
axial velocity v,, is in the range of 0.67 and 0.79, depending on the reference location
and on the existence of cavitation or not. This parameter is an important indicator for
vortex breakdown if it exceeds a certain value. Sw < 1 indicates that vortex breakdown
is not to be expected, at least not in single-phase flow. As vortex flow acts as a flow
control tool, a more predictable flow pattern is expected in this case as opposed to
the highly non-periodic behavior seen in the previous section. The integrated vapor
volume of the entire computational domain (Fig. 5.13) confirms the global periodic
nature of the process with an average shedding frequency of f.,q. = 59 kH z.

0.03
__002f
S
H f~ 59 kHz
>
0.01
Aty =1.686-10°s
ol {5
0 5.10° 1-10* [s]

Figure 5.13: Time history of the integrated vapor volume V,qp, pin, = 80 bar, pour = 23 bar,
Tinit = 293 K, Atcpp = 1079 s, second order in space and in time.

The pictures of the sequence given in Fig. 5.14 are directly correlated with the discrete
points 1-8 of Fig. 5.13. The presented cavitation cycle starts at ¢t; = 7.390 - 107° s
and covers a time interval of At.yq. = 1.686 - 107° 5. From these pictures it is quite
obvious that the dominating part of the flow inside the injection nozzle remains steady.
The significant advantage of the superimposed vortex is the complete separation of the
cavity from the nozzle walls. Therefore, this configuration avoids direct contact of the
collapsing vapor clouds with the structure and thus minimizes the erosion problem
substantially. Moreover, the constant pressure ratio of 80/23 bar establishes a swirl
number of Sw = 0.67 at the radial position R = 7,,4, = 0.14 mm in the nozzle exit
plane.
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1
t, =7.390-10°s

2 A, =210810°s

Figure 5.14: Unsteady periodic void fraction formation in cavitating flow through 3-D
injection nozzle at t; = 7.390 - 107° s, time interval Ateycre = 1.686 - 107 s, feyele = 59 kH z,
Pin = 80 bar, pout = 26 bar, Tini = 293 K, Atcpp = 1072 s, second order in space and in
time.
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The enlargement given by Fig. 5.15 resolves details in the collapse region and the
reverse flow after condensation of the vapor. This shedding behavior is not vortex
breakdown, it is actually the corresponding mechanism as known from re-entry jets
with cloud separation from the sheet cavities seen in wing type bodies [107].

The resulting steady mass flow defect due to cavitation is A /" gingte—phase = 17% and
is therefore of the same order as in the 2-D plane test cases.
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Figure 5.15: Close-up of the collapsing vapor vortex - enlargement of external flow region
according to pictures 3-6 of Fig. 5.14. p;, = 80 bar, pout = 23 bar, Tini: = 293 K, Atcpp =
1079 s, second order in space and in time.

To give an overall impression of the velocity field, streamtraces starting from the inlets
to the outflow exit are generated (Fig. 5.16). One can also observe the acceleration
in the convergent nozzle part and the rotational symmetric vapor core, which is made
visible by iso-surfaces of void fraction a,;, = 0.05 (blue core).
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Figure 5.16: Streamtraces through the 3-D nozzle corresponding to the time instant 5 in Fig.
5.14, colored with the static pressure values. Cavitation region is made visible by iso-surfaces
of void fraction cmin = 0.05. pin = 80 bar, pour = 23 bar, Tinie = 293 K, Atcpp = 1077 s
second order in space and in time.
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5.1.3 3-D Injection Nozzle with Swirl and Divergence

To provide a better understanding of the swirl flow and its interaction with the main
flow dynamics, the injection nozzle studied earlier is slightly modified. The parallel
bore hole is replaced with a divergent channel having a 50% larger diameter at the
exit plane. Figure 5.17 (top) shows the injection nozzle geometry and the applied
boundary conditions. The mesh size is the same as the previous calculation and as
before to reduce the calculation time, a 90° section together with periodic boundaries
is simulated. The diameter of the bore hole is 0.28 mm at the inlet plane and 0.42 mm
at the exit plane, the nozzle length is 1.0 mm and the radius of the wall curvature at
the inlet into the bore hole is r = 2.8-107°m. The cylindrical wall of the bore hole has
a smooth divergence following a quadratic function. The detail of the computational
mesh around the bore hole can be seen in Fig. 5.17 (bottom).

'

T, =293K Pyt = 23 bar

Pyt = 23 bar

0.42 MMy

r=2.8-10°m *

~— I mMm——»

i

Figure 5.17: 3-D injection nozzle geometry with tangential inlets and the corresponding
boundary conditions (top). Detail of the computational mesh around the bore hole (bottom).

The same boundary conditions are applied as the previous calculation, where the inlet
pressure and temperature are p;, = 80 bar and T},;; = 293 K respectively, and at the
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outflow domain a constant pressure value p,,; = 23 bar is prescribed. The integrated
vapor volume curve of the entire computational domain (Fig. 5.18) shows a periodic
character of the flow field, but it is not as predictable as the previous case. This is
mainly due to the effect of the divergence of the bore hole. Although vortex flow acts
as a flow control mechanism and stabilizes the flow dynamics, the divergent geometry
acts on the opposite sense by decreasing the axial velocity component and increasing
the static pressure in the flow direction. Therefore, when the pressure increase interacts
with the main cavity structure it causes partial collapses and destroys the stability of
the core flow.
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Figure 5.18: Time history of the integrated vapor volume V,qp, pin = 80 bar, pout = 23 bar,
Tinit = 293 K, Atcpp = 1079 s, second order in space and in time.

Figure 5.19 presents the picture series of the investigated cavitation cycle as shown in
Fig. 5.18. The given cavitation cycle starts at t; = 3.004 - 10~* s and covers a time
interval of At.yqe = 5.445 - 107° 5. If we examine these pictures and compare it with
Fig. 5.14, we immediately see that the stable portion of the cavity is completely de-
stroyed and cloud shedding mechanism now takes place inside the bore hole. Moreover,
fragmentation of the cavitation cloud and small scale structures are visible in all of the
pictures. It should be also noted that, the cavitation structures are still separated from
the nozzle walls and direct contact of the cavity with the solid walls is again avoided.
For this case the constant pressure ratio of 80/23 bar establishes a maximum swirl
number of Sw = 0.41 at the radial position R = 7,4, = 0.21 mm in the nozzle exit
plane.
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Figure 5.19: Unsteady periodic void fraction formation in cavitating flow through 3-D
injection nozzle at t; = 3.004 - 10~ s, time interval Ateycle = 5.445 - 1075 s, feyele = 18 kH z,
Pin = 80 bar, pour = 26 bar, Tiny = 293 K, Atcpp = 1072 s, second order in space and in
time.
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The enlargement given by Fig. 5.20 resolves the details inside the bore hole. Pictures 3
and 4 show the growth of the cavity inside the nozzle. Between time instants 4 and 5 the
tip of the cavity separates from the main body and collapses in the downstream. This
collapse initiates re-entry jets that are seen in picture 5 and when they interact with
the main cavitation structure, cloud separation occurs, which can be seen in picture 6.
Therefore, whole flow dynamics is similar to the previously investigated case and both
are analogous to the cloud shedding mechanisms seen in hydrofoils (see section 5.2).

—u=100 m/s

Figure 5.20: Close-up of the collapsing vapor vortex - enlargement of bore hole region
according to pictures 3-6 of Fig. 5.19. p;, = 80 bar, pour = 23 bar, Tini: = 293 K, Atcpp =
1079 s, second order in space and in time.

As the unsteady cloud shedding mechanism takes place inside the bore hole, the re-
sulting mass flow defect due to cavitation is also unsteady with an average magnitude
of A1 /Msingie—phase = 40%. This value is higher than the previous test cases, which is
due to the enlarged cavitation region within the bore hole.
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5.1.4 3-D Multi-hole Injection Nozzle

As a third 3-D flow example a multi-hole injection nozzle is considered. Figure 5.21
depicts a 180 degree section of a multi-hole fuel injection geometry (left). The position
of the needle is fixed at its maximum lift. Six cylindrical bore holes are connected to
the lower part of the sack volume.

The inner diameter of the nozzle is 3.9 mm and the needle diameter is 3.26 mm. The
length of the bore hole is 1 mm and its diameter is 0.22 mm. The inlet of the bore
holes are rounded with a radius of wall curvature of » = 2.8 -107°m. This ensures that
the single-phase flow remains attached at the inlet of the bore hole.

The discretization of the flow domain is given by Fig. 5.21 (right). The 6-fold symme-
try of the injector geometry allows for the numerical analysis of a periodic 60 degree
configuration. At the outlet of the bore hole an outflow domain is added in order to
simulate the arising flow field outside of the nozzle as well. The finest mesh used for
this calculation consists of 85 blocks and 4 - 10° cells (Fig 5.21 - right).

Pin = 600 bar

Figure 5.21: 3-D 6-hole injection nozzle, geometry and corresponding grid with outflow
domain. Each 60 degree section consists of 4 - 10° cells.

Again, the entire numerical domain initially contains pure water at rest at poutmir =
26 bar, Ti,;: = 333 K. At the inlet the prescribed rail pressure is p;, = 600 bar.

Figure 5.22 shows the time history of the integrated vapor volume V,,, and mass flow
rate m plotted against the logarithmic time axis. The graphs demonstrate a strong
transient behavior of the flow field, which is converging asymptotically to a steady
state value at time ¢ ~ 10™* s. However, comparison of the final value with the
maximum and minimum values during the transient flow development demonstrates
the necessity of time accurate simulations of the injection process, especially if pilot
or multi-injection strategies are considered. Moreover, this unsteady behavior is also
observed for the mass flow rates at the inlet and the outlet of the injection system,
which highlights the compressible effects of the liquid fluid and the wave dynamics as
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dominating features. This observation is important, as any incompressible formulation
would enforce a divergence free velocity field and thus, the equality of mass flow rates
throughout the simulation.
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Figure 5.22: Time history of the integrated vapor volume V,q, [% total volume of the
computational domain], p;, = 600 bar, poutmiz = 26 bar, Tinie = 333 K, Atcpp = 10710 5,
second order in space and in time.

Figures 5.23 and 5.24 depict flow features arising at the time scale At ~ 1079 s.
Due to the initially enforced pressure jump Ap = pin — Dout.miz = 574 bar a shock
instantaneously forms and propagates through the nozzle. The resulting post shock
velocity @ can be estimated by the characteristic compatibility conditions [138]

Pin — Pout,mix
. 5.4
e (5.4)

U=

Together with the given conditions and the properties of water at T},;; = 333 K, the
post shock velocity @ turns out to be 38.2m/s.

The shock strength as well as the post shock velocity remain unaltered as long as
the wave propagates through the constant area gap between the needle and the inner
nozzle wall. As the initial shock reaches the convergent part of the annular gap, area
contraction and wall curvature enforce shock focussing and shock deflection respectively
(Pics. 1-2 of Fig. 5.23). Downstream of the needle tip the shock front remains no longer
planar (Pic. 3). Assoon as it interacts with the bore hole inlets diffraction takes place.
The diffraction results in a wave propagating towards the bottom of the sack and nearly
planar wave fronts traveling through the bore holes (Pic. 4).

When the primary shock focuses at the bottom of the sack the maximum instantaneous
pressure rise .. = 2163 bar in the system is observed (Fig. 5.24 - left). As the shocks
reach the exits of the bore holes, reflected rarefaction waves propagate inside the holes.
This expansion is strong enough to reduce the static pressure to p,,; and thus to enforce
acoustic cavitation (Fig. 5.24 - right).

Figure 5.25 depicts the instantaneous flow field corresponding to a violent collapse and
resulting shock formation at ¢t = 2.04 - 107° s inside the nozzle bore hole. This leads
to a maximum pressure of p,,.. = 1029 bar, which is about twice the inlet pressure
Pin = 600 bar. The corresponding Mach number of the shock front is M, = 1.02.
Moreover, the cavitation regions at the bore hole inlet and near the collapse are visible
as orange lines of ay,;, = 0.001.
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' t,=4.6310°s

t,=5.3610°s

Figure 5.23: Pressure contours showing the pure liquid wave dynamics inside the nozzle as
consequence of the initiated shock wave, time interval At;_4 = 5.36 - 1075 s, p;, = 600 bar,
Dout,miz = 26 bar, Tiniy = 333 K, Atcrp = 10710 s, second order in space and in time.
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Figure 5.24: Shock wave inside the sack-hole, pya: = 2163 bar (top), acoustic cavitation
in the bore holes (orange lines - bottom), pi, = 600 bar, poutmiz = 26 bar, Tini = 333 K,

Atcrp = 10710 s, second order in space and in time.

For the prescribed pressure difference Ap = pi, — Pour = 574 bar at t > 107* s this
strong wave motion is no longer present and a stationary cavitation pattern establishes
inside the bore holes. The flow field reaches a steady state and thus the vapor volume
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t=2.0410"s

Figure 5.25: Instantaneous formation of a strong shock after violent cloud collapse in the
nozzle bore hole at ¢t = 2.04 - 107° S, ppmaz = 1029 bar, pin = 600 bar, Dout,miz = 26 bar,
Tinit = 333 K, Atcrpp = 10710 s, second order in space and in time.

as well as the mass flow remain constant. In Fig. 5.26 the resulting steady state
supercavitation structure at the meridional plane of the injector is presented.

Figure 5.26: Vapor volume fraction a. 3-D steady-state supercavitation inside the bore
holes - meridional plane at t > 10~* s, mass flow defect A/ Msingle—phase = 24%, Din =
600 bar, pout,miz = 26 bar, Tiniy = 333 K, Atcrp = 10719 s, second order in space and in
time.

Figure 5.27 shows the isolated 3-D view of the steady cavity structure inside the bore
hole (top). At the bore hole inlet the vapor pocket is nearly circular shaped. Slightly
downstream of the inlet the structure is confined to the upper part of the spray hole.
The bottom picture in Fig. 5.27 shows a similar view of an injection nozzle from the
experiments performed by Busch [15] with p;, = 600 bar, p,; = 1 bar. Here, the
cavitation regions inside the bore hole appear as dark areas.
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simulation

experiment

Figure 5.27: Isolated 3-D perspective view of the calculated cavitation pattern (blue surface)
inside the bore hole at t > 107* s, p;, = 600 bar, Dout,miz = 26 bar, Tinyg = 333 K (top).
Cavitation pattern (dark area) inside the bore hole from the experiment of Busch [15], p;, =
600 bar, poyr = 1 bar (bottom).

The resulting contraction of the effective bore hole exit area due to the cavitation region
decreases the mass flow. Here we observe a reduction of the discharge of the nozzle
to 76% of its theoretical maximum value. This defect can be interpreted as a 24%
reduction of the outlet area. Chaves et al. [19] report comparable discharge defects in
several experimental investigations. It is also known that for sufficiently large pressure
differences Ap = p;;, — pour N0 further increase of the mass flow is achievable, even if
the outlet pressure is significantly decreased [102]. In order to simulate and predict
this effect, without changing the inlet pressure, a series of outlet pressures of 60, 40, 26
and 15 bar are tried. In all cases the numerically obtained mass flows are equal while
the integrated vapor volume V,,, increases accordingly.
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5.2 Hydraulic Machinery

The cavitating flows in hydraulic machinery demonstrate different characteristics than
the injection nozzles studied previously. The main differences lie in the flow velocities
and the geometrical scale of the applications. Hydraulic machinery applications are
generally large-scale and operate within low velocities. Therefore, sheet cavities with
resulting break-up, together with cloud shedding and subsequent collapses of these
clouds are commonly seen in these flows. This collapse-like re-condensation of vapor
clouds has already been seen and studied in the previous sections. These collapses
result in strong noise production and erosion in hydraulic machines. The collapse
mechanism of a single isolated bubble is explained in chapter 1 and simulated in the
previous chapter. Experimental observations indicate a comparable behavior for bubble
clouds as well, in spite of being much more complicated due to various bubble-bubble
interaction processes [61],[67]. However, the reported maximum intensity of those
shock waves not only varies according to the operating conditions for a given setup
but it seems to be strongly dependent on the properties of the selected measurement
equipment. The range of maximum instantaneous pressure variations reported in the
literature covers the huge interval of O(1) bar to O(100) bar [92]. These instantaneous
pressure loads due to the collapses are believed to be related to erosion critical areas.

In this section, first results from a 2-D planar hydrofoil are presented and then a 3-D
twisted wing geometry is investigated in detail with experimental comparison.

5.2.1 2-D NACA 0015 Hydrofoil

Figure C.8 depicts the computational domain and the corresponding boundary condi-
tions for this test case.

inviscid adiabatic walls
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Figure 5.28: 2-D NACA 0015 hydrofoil - computational domain and boundary conditions.
Chord length ¢ = 0.13 m, angle of attack o = 6°, channel height 0.3 m, channel length 0.6 m.
Water inflow from left to right, inlet conditions u;, = 12m/s, Tiny = 293 K, outlet condition
Pout,miz = 0.742 bar, reference cavitation number o,y = 1.0.

The hydrofoil geometry is the standard NACA 0015 at 6° angle of attack with a chord
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length of 0.13m. The inflow velocity is 12m/s, at the outlet the mixed reflecting non-
reflecting boundary condition is applied with poumiz = 0.742 bar and the reference
cavitation number is set to be o, = 1.0.

Figure 5.29 represents one cycle of the periodic formation of a sheet cavity and the
corresponding cloud shedding in a sequence of 8 pictures.

Figure 5.29: Unsteady shedding mechanism of cavitation cycle, feycie = 8.93 Hz, Aty_g =
1.12-107 1 s, uyy = 12 m/s, Tinit = 293 K, Pout,miz = 0.742 bar, oref = 1.0, Atcpp = 107 s,
second order in space and in time.
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In Fig. 5.30 the distribution of the time averaged normal and tangential forces (lift
and drag forces) per unit meter in depth, together with the vapor volume fraction
within one cycle are demonstrated. The dynamic behavior of the shedding mechanism
results in strongly time dependent lift and drag variations. The dominating peak values
indicate instantaneous negative lift force pulses. The main reasons for the inversion of
the normal force direction are either the formation of expansion waves as reflections of
shocks at phase boundaries with constant pressure, or the pressure raise due to shocks
impacting on the suction side.
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Figure 5.30: Time history of drag force Fp ,[N/m], lift force Fy,[N/m] and integrated vapor
volume Viyap, feyeie = 8.93 Hz. The black dots numbered 1-8 correspond to the 8 instances
in time presented in Fig. 5.29. wi, = 12m/s, Tinit = 293 K, Pout,miz = 0.742 bar, opep = 1.0,
Atcrp = 1077 s, second order in space and in time.

A more detailed investigation of the forces acting on the wing is performed through
the enlargement of the scaling at the ordinate and the subsequent zooming in on a
collapse situation (Fig. 5.31). Figure 5.31 (top) resolves the maximum values of the
instantaneous lift force per unit meter in depth up to £50000 N/m. It should be noted
that the flow around such a 2-D foil geometry with a finite span always develops highly
three-dimensional and strongly influenced by alternating sidewall effects. Therefore,
this kind of a maximum load is not experienced along the entire span.

To analyze the correlation of the instantaneous peak values of the lift force with the
macroscopic structure of the global flow field, the time resolution in Fig. 5.31 is in-
creased stepwise by zooming close to 3 time instants. Zoom 3 of Fig 5.31 enlarges the
time interval of At = 6-107° s with indication of the position of three flow visualiza-
tions (pictures 1-3 of Fig. 5.32) within this interval. The time increment between the
pictures is At,;. = 2.1-107° s, which is two orders larger than the numerical time step
used in the calculation, Atcpp = 107" s
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Figure 5.31: Shock formation at the leading edge. High resolution zoom 1 (top) to zoom 3
(bottom) of lift force variation of Fig. 5.30, feycie = 8.93 Hz. wip, = 12m/s, Tiny = 293 K,
Pout,miz = 0.742 bar, o,y = 1.0, Atcpp = 1077 s, second order in space and in time.



5.2. HYDRAULIC MACHINERY 127

p [bar]
3

0

Figure 5.32: Instantaneous shock emerging after cloud collapse at the leading edge at 3
instants in time within the interval At;_3 = 4.2 - 107° s, according to indication of picture
1-3 of Fig. 5.31 (bottom). wus, = 12m/s, Ting = 293 K, Dout,miz = 0.742 bar, o,c5 = 1.0,
Atcorpp = 1077 s, second order in space and in time.
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Figure 5.32 highlights details of the correlated instantaneous flow field with the forma-
tion of a cylindrical shock at the leading edge and its fast propagation into the oncoming
flow. This shock forms instantaneously after the collapse of a small vapor cloud at the
leading edge. Because the shock front spreads with approximately 1500m/s into a flow
field with an average convective flow speed of the order of 10 m/s, the front remains
perfectly circular. On top (picture 1), the pressure increase through the shock is about
15 bar. Compared with the average static pressure of p = 0.7 bar in the main flow the
pressure ratio across this shock is p/p = 20 (Fig. 5.33). In single-phase gas dynamics
such a strong pressure ratio requires a pre-shock Mach number above 4 [138]. However,
because of the different acoustic impedance of the liquid component, the shock Mach
number remains close to one, My = 1.001. Figure 5.33 depicts the static pressure decay
along the radial direction shown.
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Figure 5.33: Radial pressure decay after cloud collapse at the leading edge with formation
of instantaneous shock, according to picture 1 (top) of Fig. 5.32. u, = 12m/s, Tini = 293K,
Pout,miz = 0.742 bar, orey = 1.0, Atcpp = 107 s, second order in space and in time.

Similar to the leading edge case, Fig. 5.34 demonstrates the instantaneous peak values
of the lift force for a collapse at the trailing edge. The time resolution in Fig. 5.34
is increased again stepwise by zooming close to 3 time instants close to the maximum
positive pulse of the order of +50000 N/m. Zoom 3 of Fig 5.34 enlarges the time
interval of At = 1.1-10"* s with indication of the position of three flow visualizations
(pictures 1-3 of Fig. 5.35) within this interval. In Fig 5.35 (picture 3) the circular
shock front encloses the entire hydrofoil with a maximum strength at the pressure side
of 11 bar. This is the reason for the extraordinary high lift force F, at this instant.
At the origin (Fig. 5.35 - picture 1) the maximum static pressure ratio across the
emerging shock is about 50 and the shock front starts to propagate in the surrounding
liquid phase with M, = 1.003. For comparison, a static pressure ratio of 50 requires in
classical gas dynamics a shock Mach number M, = 6.5 [138].
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Figure 5.34: Shock formation at the trailing edge. High resolution zoom 1 (top) to zoom 3
(bottom) of lift force variation of Fig. 5.30, feycie = 8.93 Hz. wip, = 12m/s, Tiny = 293 K,
Pout,miz = 0.742 bar, orep = 1.0, Atcpp = 1077 s, second order in space and in time.
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Figure 5.35: Instantaneous shock emerging after cloud collapse at the trailing edge at 3
instants in time within the interval At;_3 = 8.4 - 107° s, according to indication of picture
1-3 of Fig. 5.34 (bottom). wus, = 12m/s, Ting = 293 K, pout,miz = 0.742 bar, o.c5 = 1.0,
Atcorpp = 1077 s, second order in space and in time.
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Figure 5.36 depicts the static pressure decay along the radial direction corresponding
to picture 2 of Fig. 5.35.
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Figure 5.36: Radial pressure decay after cloud collapse at the trailing edge with formation of
instantaneous shock, according to picture 2 (middle) of Fig. 5.32. u;, = 12m/s, Tiny = 293K,
Pout,miz = 0.742 bar, orep = 1.0, Atcpp = 1077 s, second order in space and in time.

In Fig. 5.35 another important aspect of such simulations concerning the treatment of
strong wave propagation can be seen. It was already mentioned in chapter 3 that in
order to achieve a realistic flow domain with respect to experimental investigations, the
numerical reflection associated with the inflow and outflow boundaries should be min-
imized. Hence the applied so-called mixed pressure boundary conditions that ensure
that oncoming waves can pass through the interface at the outlet via time dependent
damping parameters. Instantaneously the waves pass through the cross section without
any reflection. With increasing time, amplitude and extension of weak wave reflections
increase so that a given value of the static pressure poy: mir at the outlet asymptotically
can be maintained.

One interesting observation from the cavitation experiments is that unsteady cavitation
dynamics can generate vapor formation at the pressure side of hydrofoils. This is
driven by instantaneous pressure decrease at the pressure side as a result of expansion
waves and wave reflections inside the system. Typically, violent shocks and intense
expansion waves follow each other in rapid succession. Figure 5.37 shows, as before,
stepwise increased time resolution of the lift force. Zoom 2 of Fig 5.37 enlarges the
time interval of At = 8 - 10~* s with indication of the position of picture series 1-15
of Fig. 5.38, within this interval. The shown picture series covers a time interval of
Aty 15 =2.995-10* 5. The first column of Fig. 5.38 visualizes (from top to bottom)
the instantaneous propagation of an expansion wave (dark blue region) at the pressure
side of the hydrofoil from the trailing edge toward the leading edge (pictures 1-5),
followed by the subsequent inversion of this wave motion, high pressure recovering and
the formation of a circular shock front, when the vapor starts to collapse close to the
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trailing edge (pictures 13-15).
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Figure 5.37: Instantaneous pressure side cavitation.. High resolution zoom 1 (top) to zoom
2 (bottom) of lift force variation of Fig. 5.30, feycte = 8.93 Hz. uin = 12m/s, Tiny = 293 K,
Pout,miz = 0.742 bar, o,er = 1.0, Atcpp = 1077 s, second order in space and in time.



5.2. HYDRAULIC MACHINERY 133

=

)

?g
-
.

05 1
CL

! il

Figure 5.38: Instantaneous pressure side cavitation emerging after violent cloud collapse at
the trailing edge at 15 instants in time within the interval At;_ 15 = 2.995-10~% s, according
to indication of picture 1 - 15 of Fig. 5.37 (bottom). win, = 12m/s, Tinit = 293 K, Dout miz =
0.742 bar, o,ey = 1.0, Atcrp = 1077 s, second order in space and in time.
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During the first time increments shown, a thin sheet cavity forms at the pressure side
(Fig. 5.38, pictures 2-5). In picture 6 the recovered higher ambient pressure initiates a
global shrinking of the vapor region. A small fragment collapses (picture 11) while the
remaining domain shrinks with increasing speed. At the last stages (between picture
12 and 13), prior to the final collapse, the velocity field close to the vapor domain
behaves like a sink relative to the mean flow.
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5.2.2 3-D NACA 0009 Twisted Wing - Half Wing Calculation

Due to the inherent instability of the cavitation process, the time dependent develop-
ment and shedding behavior of a 2-D hydrofoil are not perfectly two-dimensional and
remain unpredictable to a certain extent. Therefore, in order to study the true 3-D
character of the cavitating flows around wing type bodies, three-dimensional simula-
tions are needed.

Figure 5.39 depicts the numerical test section consisting of a rectangular flow domain
with the dimensions 0.3 x 0.3 x 1.0 m. The hydrofoil is placed at the center of the test
section and defined by the NACA 0009 profile with chord length 0.15m. The profile is
twisted relative to midspan plane to obtain a varying angle of attack from —1° at the
sidewalls to +10° at midspan. Therefore, the interaction of the cavitation pattern with
the sidewalls of the test section is avoidable for a certain range of operating conditions
[24]. Furthermore, this setup and other comparable geometries are experimentally
investigated in detail by Foeth [32] and Foeth et al. [33], where it is demonstrated
that the described hydrofoil is suitable to study well defined and repeatable shedding
structures.

The experimentally observed flow field is symmetric with respect to the midspan up to
small scale fluctuations. This motivates first a symmetric numerical treatment of
the test section in order to reduce the computational effort. Therefore, only half of the
depicted flow domain is simulated here. Then in the subsequent section, the full wing
calculation and the asymmetric behavior of the cavitation dynamics will be shown.

Numerical Simulation
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Figure 5.39: 3-D twisted NACA 0009 hydrofoil - computational domain and boundary
conditions. Chord length ¢ = 0.15 m, span s = 0.3 m, angle of attack —1° (walls) and +10°
(midspan), channel height 0.3 m, channel length 1 m. Water inflow from left to right, inlet
conditions us = 50 m/s, T, = 300 K, outlet condition p,, = 10 bar, reference cavitation
number 0.,y = 0.81. Grid: 3 - 10° hexahedrons.
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The computational mesh consists of 300000 hexahedrons, the spatial resolution is
refined close to the surface of the hydrofoil. Thereby we obtain cell lengths of
1 mm < Iy < 5mm of those computational cells, where two-phase flow is supposed
to occur. Experimental investigations show that the maximum radius of the vapor
bubbles for the considered cloud cavitation pattern is of the order of 1 mm. Therefore,
the applied spatial resolution describes the behavior of the vapor clouds.

At the inlet domain pure liquid water flows with a velocity of u., = 50 m/s and a
temperature of T,, = 300 K. At the outlet plane the reference static pressure is pre-
scribed as po = 10 bar. Therefore, according to Eq. 1.9, the reference cavitation
number o, is found as o,.y = 0.81. It should be remembered that both inlet and
outlet boundaries are described by mixed reflecting and non-reflecting boundary con-
ditions and hence the prescribed values are asymptotically reached in the course of
the simulation. The flow conditions and the mesh resolution require a numerical time
step of Atgpp = 4.5-107% 5. The initialization of the domain is achieved by a steady
state solution of the single-phase pure water simulation by applying the same boundary
conditions as for the two-phase simulation. This methodology is plausible since it has
been observed in the test calculations that different initializations of the domain give
matching results. The time history of the integrated vapor volume V,,, of the whole
calculation is given in Fig. 5.40.
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Figure 5.40: Time history of the integrated vapor volume V4, [% total volume of the
computational domain]. Half wing calculation. Investigated cycles 1 and 2 are highlighted.
NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), ue = 50m/s, Toe = 300 K, ps =
10 bar, opep = 0.81, Atcpp = 4.5 - 108 s, second order in space and in time.

Figure 5.41 depicts the integrated vapor volume V,,, for the last calculated 9 periods.
In total, more than twenty shedding cycles are calculated in a real time interval of 0.15s
as shown in the previous figure. The fast Fourier transform of the whole calculation
gives an average frequency of f ~ 220 Hz, this value is constant up to 5%. The
investigated cycles 1 and 2 are highlighted in the figure.
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Figure 5.41: Time history of the integrated vapor volume V,q, [% total volume of the
computational domain|. Half wing calculation. Investigated cycles 1 and 2 are highlighted.
NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50 m/s, Toe = 300 K, poo =
10 bar, oyef = 0.81, Atcpp = 4.5 - 1078 s, grid: 3-10° hexahedrons, second order in space
and in time.
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Figure 5.42: Time history of drag force Fp, [N], lift force Fy, [N] and integrated vapor
volume Viap, feyele = 230 Hz. Half wing calculation. The black dots numbered 1-10
correspond to the 10 instances in time presented in Fig. 5.43. NACA 0009 hydrofoil, —1°
(walls) and +10° (midspan), ue = 50m/s, Toe = 300 K, poo = 10bar, o,y = 0.81, Atcpp =
4.5-1078 s, grid: 3 - 10° hexahedrons, second order in space and in time.
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The dynamic behavior of the shedding mechanism results in strongly time dependent
lift and drag variations. Figure 5.42 depicts the time history of drag force Fp,, lift
force Fp, and integrated vapor volume V,,, of cycle 1 and of the subsequent cycle 2.
Both forces exhibit significant peaks including highly negative values subsequent to
the collapse corresponding to time instant 7. The shedding mechanism of cycle 1 is
analyzed in Figs. 5.43 and 5.44 at ten representative instants in time within the time
interval At;_jop = 4.416 - 1073 s. The pictures in Fig. 5.43 depict perspective views of
the hydrofoil together with iso-surfaces of the void fraction composed of all cells with
Apin = 0.05.

At the first instant in time the formation of an attached sheet cavity close to the leading
edge of the hydrofoil is observed. Slightly upstream of the trailing edge a horseshoe
shaped detached cloud is visible. The vertical elongation of this cloud is of the order of
50% of the chord length. At the second instant in time the previously attached sheet
separates from the hydrofoil due to the onset of reverse flow between the cavity and
the surface of the hydrofoil. At the leading edge of the hydrofoil the reformation of the
attached sheet cavity takes place. Furthermore, the cloud located close to the trailing
edge recondenses. The third instant is similar to the second one, where the sheet
cavity at the leading edge grows and the detached cloud convects to the downstream.
The cloud cavity over the trailing edge grows again in this instant due to the expansion
caused by the previous recondensation. In the pictures corresponding to the fourth and
fifth instants in time the attached sheet cavity at the leading edge reaches its maximum
length and the detached cloud is still connected to the sheet. Here the re-entry jet
below the cloud is no longer formed by pure reverse flow but includes a significant
spanwise velocity component, i.e. a side re-entrant jet [32], [33], [61], [62]. The collision
of the re-entrant flow with the side entrant jets below the vapor cloud causes the
cloud to separate completely from the suction side of the hydrofoil. Thereby, the
formation of vortices takes place that superimpose on to the main flow and accelerate
the cloud downstream. This behavior is observed within various experimental setups
and analyzed in detail [92], [32], [67].

Between the time instants five and seven the cloud undergoes a strong compression
that is initiated by the surrounding pressure field, where it shrinks in size and convects
through the downstream (picture 6). Picture 7 of Fig. 5.43 shows the vapor cloud just
before its final collapse occurs. Moreover, two secondary instabilities located at the
closure of the triangularly shaped sheet cavity indicate vortex structures due to side
entrant flow.

At the last instants in time (pictures 8 and 9) a series of small scale vapor structures
close to the trailing edge are observed. One of them is located nearly at the same
position as the previously collapsed cloud. Indeed, this structure forms due to the
post-expansion corresponding to the collapse induced shock. Cycle 1 ends with time
instant ten, where the attached sheet cavity close to the leading edge starts to develop
again and the detached cloud above the trailing edge, which is seen in time instant
one, begins to grow behind the sheet cavity.
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half wing calculation

Figure 5.43: Unsteady shedding mechanism, cavitation cycle 1, f ~ 230 Hz, At1_19 =
4.416 - 1072 s.  NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50 m/s,
Too = 300 K, poo = 10 bar, o.c; = 0.81, Atcpp = 4.5 - 1078 s, second order in space and in
time.
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half wing calculation
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Figure 5.44: Unsteady shedding mechanism, cavitation cycle 1, top view, f = 230 Hz,
Aty_19 = 4.416-1073s. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us, = 50m/s,
Tow = 300 K, pos = 10 bar, o,y = 0.81, Atcpp = 4.5 - 1078 s, grid: 3 -10° hexahedrons,
second order in space and in time.
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The lift and drag force curves given in Fig. 5.42 require further attention. Both forces
exhibit significant peaks including highly negative values subsequent to the collapse
corresponding to time instant 7 in Figs. 5.42 and 5.43. Here, the small vapor cloud
located above the trailing edge of the hydrofoil collapses violently and the resulting 3-D
shock front propagates through the domain. The zoom area of Fig. 5.42 is enlarged in
Fig. 5.45, which corresponds to a time interval of At = 7.5-107% s.
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Figure 5.45: Lift force F1,[N] corresponding to zoom area of Fig. 5.42 showing instantaneous
3-D shock formation emerging after cloud collapse at the trailing edge. Half wing calculation.
The black dots named a-d correspond to the 4 instances in time presented in Fig. 5.46. NACA
0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50 m/s, Toe = 300 K, pso = 10 bar,
oref = 0.81, Atcpp = 4.5+ 10~% s, second order in space and in time.

The black dots named a-d correspond to the 4 instances in time presented in Fig. 5.46,
where At,_q = 7.05- 107> s. This picture series presents the evolution of the collapse
and the subsequent shock propagation in detail by using the static pressure contours
at the midspan plane as well as at the surface of the hydrofoil. In time instants a
and b the small vapor cloud located above the trailing edge shrinks as a result of
the surrounding pressure field. Time instant b corresponds exactly to point 7 of the
previous picture series. The collapse takes place just after time instant b as suggested
by the sudden drop in the lift curve and picture ¢ shows the flow domain subsequent to
the collapse. The maximum pressure behind the shock reaches 230 bar. This leads to
an instantaneous maximum pressure of 105 bar on the surface of the hydrofoil, directly
after the shock impinges on the suction side, which is depicted by the negative peak in
the lift curve between the time instants b and the c¢. In the process strongly decreasing
lift and drag forces are observed for a time interval of 14 - 107° s.

Picture d illustrates more interesting gas dynamic details of the interaction of a shock
with two-phase boundaries enclosing constant pressure regimes. As the vapor regions
have much less acoustic impedance than that of the liquid, a portion of the shock
reflects from those regions as rarefaction waves and the remaining portion propagates
around two-phase regions.

The shock intensity and the propagation dynamics of the waves are driven by the
inertia effects and viscosity plays a minor role. The inclusion of viscous effects in
the simulation would cause no significant differences on the lift and the drag curves
depicted earlier.
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Figure 5.46: Instantaneous 3-D shock front emerging after cloud collapse at the trailing
edge. Half wing calculation. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan),
Uso = 50m/s, Tog = 300 K, poo = 10 bar, opep = 0.81, Atcpp =4.5- 1078 s, second order in
space and in time.
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Experimental Comparison

As mentioned earlier Foeth has performed various twisted wing experiments
and visualized the resulting unsteady cavity structures and shedding behavior through
PIV methods [32]. In the experiments, he used different hydrofoil profiles with
different twist angles. The calculations presented in this subsection correspond to a
3-D NACA 0009 hydrofoil with a total twist angle of 11°, where the angle of attack is
—1° at the walls and +10° at midspan.

In his Ph.D. thesis, Foeth used this geometrical setup and analyzed experimentally
with different flow conditions. The experiments were performed with an inlet velocity
of u, = 7m/s and a reference cavitation number of o,.; = 0.81. Whereas in the
calculations a higher inlet velocity (uo, = 50 m/s) is chosen in order to accelerate
the numerical solution. But to achieve a comparable flow, outlet pressure is adjusted
so that (ps = 10 bar) the same reference cavitation number o,.f = 0.81 is obtained.
Therefore, in the calculation similarity with respect to the geometry and the cavitation
number is achieved.

On the next page a series of three instants in time depicts visualizations from the
experiment of Foeth [32] and the corresponding numerical simulation. The numerical
visualizations of these three instants in time belong to cavitation cycle 1 (pictures 2, 5
and 6) shown in Figs. 5.43 and 5.44. Figure 5.47 is the integrated vapor volume curve
of cycle 1 with the corresponding points of the discussed time instants.

The comparison of the global flow structure as well as of fine details such as the
secondary instabilities leads to the conclusion that numerical simulation reproduces
the experimental observations accurately. Moreover, the shedding frequency and the
resulting Strouhal number are comparable to the experimental values. The numerically
predicted Strouhal number is St... = 0.27 (based on the cavity length, which is about
40% of the chord length). From the experimentally visualized shedding cycle a Strouhal
number of St.;, ~ 0.22 is estimated. It should be noted that the exact visualization of
the maximum length of the attached cavity might incorporate some uncertainty.
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Figure 5.47: The black dots marked as 2,5 and 6 correspond to the 3 instances in time
presented in Fig. 5.48. Half wing calculation. NACA 0009 hydrofoil, —1° (walls) and +10°
(midspan), ue, = 50m/s, Toe = 300 K, poo = 10bar, opcp = 0.81, Atcpp = 4.5- 1078 s, grid:
3 - 10° hexahedrons, second order in space and in time.
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Figure 5.48: 3-D twisted NACA 0009 hydrofoil, experimental results from Foeth [32] (left),
numerical calculation (right). Iso surfaces of void fraction with au,;, = 0.05 at 3 instances
from cavitation cycle 1 (right). Angle of attack —1° (walls) and +10° (midspan). Experiment:
Uoo = Tm/5, Opef = 0.81, Steyp = 0.22. CATUM simulation: 1, = 50 m/s, T = 300 K,
Poo = 10 bar, oyer = 0.81, Steqe = 0.27, Atcpp = 4.5 - 108 s, grid: 3 - 10° hexahedrons,
second order in space and in time.
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5.2.3 3-D NACA 0009 Twisted Wing - Full Wing Calculation

Although it is experimentally confirmed and shown by Foeth [32] that the investigated
twisted wing geometry experiences symmetrical cavitation dynamics at large scales
with respect to the midspan, small scale structures, especially at the closure regions of
the cavities exhibit asymmetric behavior as discussed in the same work.

This subsection presents the results from the full wing calculation of the 3-D twisted
wing geometry introduced in the previous subsection. The same computational domain
given by Fig. 5.39 is used in the calculation, but this time full wing is simulated by
using 6 - 10° hexahedrons. To ensure that the symmetry breakup is purely a physi-
cal phenomenon, a perfectly symmetrical mesh is generated with respect to the
midspan. For that purpose, the computational mesh used in the previous section is
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Figure 5.49: Time history of the integrated vapor volume V,q, [% total volume of the
computational domain]. Comparison of half wing calculation (3 - 105 hexahedrons, top)
with full wing calculation (6 - 10° hexahedrons, bottom). Investigated cycles 1 and 2
are highlighted. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50 m/s,
To = 300 K, poo = 10 bar, o,y = 0.81, Atcpp = 4.5 - 1078 s, second order in space and in
time.
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mirrored with respect to the symmetry axis by using our in-house mesh generation
tool. Moreover, in order to achieve a one-to-one comparison with the previous half
wing calculation, exactly the same initialization and flow conditions are applied in the
simulation. At the inlet domain pure liquid water flows with a velocity of u., = 50m/s
and a temperature of T, = 300 K. At the outlet plane the reference static pressure is
prescribed as po, = 10 bar, which results in a reference cavitation number o,.; = 0.81.
As before, the initialization of the domain is achieved by a steady state solution of the
single-phase pure water simulation by applying the same boundary conditions as for
the two-phase simulation. Figure 5.49 shows the time history of the integrated vapor
volume both for the half and full wing cases for the complete calculation. It can be
seen from the figure that the frequency and the amplitude of the cavitation dynamics
are comparable in both calculations, as are the investigated cycles.

The following figure depicts the integrated vapor volume V,,, of the half and full wing
calculations zoomed around the investigated cavitation cycles 1 and 2. The fast Fourier
transform of the whole calculation gives an average frequency of f = 205 Hz for the
full wing calculation, this value is constant up to 5%.
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Figure 5.50: Close-up view, time history of the integrated vapor volume V,,, [% total
volume of the computational domain]. Comparison of half wing calculation (top) with
full wing calculation (bottom). Investigated cycles 1 and 2 are highlighted. NACA 0009
hydrofoil, —1° (walls) and +10° (midspan), us, = 50 m/s, Tne = 300 K, ps = 10 bar,
oref = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 - 10° hexahedrons, second order in space and in
time.
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As before, the dynamic behavior of the shedding mechanism results in strongly time
dependent lift and drag variations. Figure 5.51 depicts the time history of the drag
force Fpp, the lift force F7, and the integrated vapor volume V,,, of the cycle 1 and
of the subsequent cycle 2. The shedding mechanism of cycle 1 is analyzed in Figs.
5.52 and 5.53 at ten representative instants in time within the time interval At;_1o =
4.995 - 1073 s. The pictures in Fig. 5.52 depict perspective views of the hydrofoil
together with iso-surfaces of the void fraction composed of all cells with a,,;, = 0.05.
Whereas Fig. 5.53 shows the same sequence as seen from above.

One can immediately recognize the asymmetry of the cavitation cloud by examining
Figs. 5.52 and 5.53. At the first instant in time an attached sheet cavity at the leading
edge of the hydrofoil is observed. Although the shape of the cavity is asymmetric,
it resembles the triangular structure as seen in the half wing calculation. Above the
trailing edge a small vapor cloud is visible, but only on one half of the hydrofoil. At
the second instant in time the sheet cavity and the small vapor cloud convect further
downstream. The third instant is similar to the second instant of the previous half
wing calculation (picture 2 of Figs. 5.43 and 5.44), where the attached sheet cavity
separates from the hydrofoil due to the onset of reverse flow between the cavity and
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Figure 5.51: Time history of drag force Fp, [N], lift force Fy, [N] and integrated vapor
volume Vyap, feycle = 210 Hz. Full wing calculation. The black dots numbered 1-10 corre-
spond to the 10 instances in time presented in Figs. 5.52 and 5.53. NACA 0009 hydrofoil,
—1° (walls) and 410° (midspan), us = 50 m/s, T = 300 K, ps = 10 bar, o,y = 0.81,
Atcpp = 4.5-1078 s, grid: 6 - 10° hexahedrons, second order in space and in time.
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the surface. At the leading edge of the hydrofoil an attached sheet cavity starts to
reform. In addition to that, the cloud over the trailing edge recondenses and is no
longer present. During the fourth and fifth instants the sheet cavity at the leading
edge grows further and the detached cloud convects to the downstream. As discussed
in the previous subsection, re-entry jet below the cloud includes significant spanwise
velocity components (side re-entrant jet). The collision of the re-entrant flow with the
side entrant jets below the cloud causes the cloud to separate completely from the
suction side of the hydrofoil (time instant 6). This time due to the asymmetry of the
flow dynamics, side entrant jets have different velocities. Therefore the cloud structure
is completely asymmetric, being larger on the right hand side of the hydrofoil. At time
instants 7 and 8 the cloud undergoes a strong compression that is initiated by the
surrounding pressure field, so it shrinks in size and convects downstream (picture 8).
Meanwhile, the attached sheet cavity at the leading edge reaches its maximum length.
Picture 9 of Figs. 5.52 and 5.53 shows the vapor cloud just before its final collapse.
Moreover, as before, secondary instabilities located at the closure of the triangularly
shaped sheet cavity indicate vortex structures due to side entrant flow. Cycle 1 ends
with time instant 10, where the attached sheet cavity at the leading edge has the same
structure as time instant one.
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full wing calculation

Figure 5.52: Unsteady shedding mechanism, cavitation cycle 1, f = 210 Hz, At1_19 =
4.995 - 1073 5. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50 m/s,
Too = 300 K, poo = 10 bar, o.c; = 0.81, Atcpp = 4.5 - 1078 s, second order in space and in
time.
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full wing calculation

Figure 5.53: Unsteady shedding mechanism, cavitation cycle 1, top view, f = 210 Hz,
Aty_19 = 4.995-1073s. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us, = 50m/s,
Tow = 300 K, pos = 10 bar, o,y = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 -10° hexahedrons,
second order in space and in time.
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As before, the lift and drag force curves given in Fig. 5.51 exhibit significant peaks
including negative values subsequent to collapses. The zoom area of Fig. 5.51 is
enlarged in Fig. 5.54, which corresponds to a time interval of At = 8.1-107*s. Here, a
small vapor cloud located above the midspan of the hydrofoil and another vapor cloud
just standing on the surface collapse and result in 3-D shock fronts that propagate
through the domain.

full wing calculation
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Figure 5.54: Lift force Fy, [N] corresponding to zoom area of Fig. 5.50 showing instanta-
neous 3-D shock formation emerging after cloud collapse near the trailing edge. Full wing
calculation. The black dots named a-d correspond to the 4 instances in time presented in Fig.
5.55. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50 m/s, Tse = 300 K,
Poo = 10 bar, o.cp = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 - 10° hexahedrons, second order in
space and in time.

The black dots named a-d correspond to the 4 instances in time presented in Fig.
5.55, where At,_q = 6.84 - 107° s. This picture series presents the collapse of two
vapor structures close to the midspan plane of the hydrofoil. The time instants a and
b show the vapor structures before the collapse. The collapses takes place just after
the time instant b and picture ¢ shows the flow domain subsequent to the collapse.
There is a sudden drop in the lift curve between time instants ¢ and d, which is due
to the impingement of the collapse induced shocks on the surface of the hydrofoil.
The maximum pressure behind the shock reaches 250 bar. Whereas, the collapse near
the surface results in a maximum pressure of 50 bar on the surface of the hydrofoil.
Thereby, strongly decreasing lift and drag forces are observed for a time interval of
5-107° s.

The full wing calculation furthermore allows us to analyze the symmetry break-up
process in detail. In order to understand it better, a number of monitor points are
prescribed on the hydrofoil surface and the pressure p, the spanwise velocity component
w, and the vapor volume fraction « are recorded at each point for the overall calculation.
Figure 5.56 depicts these monitor points on the surface of the hydrofoil. Note that three
pairs of points are used and the points in each pair are located perfectly symmetric to
each other with respect to the midspan. The results from the pair located near the
trailing edge (monitor pair 1, Fig. 5.56) will be discussed only, as it is seen that at
this location symmetry break-up occurs earlier than all of the other pairs. Figure 5.57
(top) shows the static pressure signals recorded by the right (red lines) and left (blue
lines) monitor points. At the bottom, the integrated vapor volume V,,, is also given. It
is seen from the figure that a very short time after the simulation starts, the recorded
values deviate from each other. Therefore, to see the deviation clearly, the first 0.02 s
of the simulation is zoomed in. The zoomed view (Fig. 5.58) shows that shortly after
the second order scheme is switched-on, symmetry is no longer present.
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full wing calculation

Aty g=0684-1075s

Figure 5.55: Instantaneous shock fronts due to collapses at the midspan. Full wing
calculation. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50m/s, Toe =
300 K, poe = 10 bar, orep = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 - 10° hexahedrons, second
order in space and in time.
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Figure 5.56: Location of the right and left monitor points on the surface of the hydrofoil.
Full wing calculation. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us = 50m/s,
Th =300 K, poo = 10 bar, opcy = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 - 10° hexahedrons.

A similar analysis is performed for the spanwise velocity component w. Figure 5.59
(top) shows the magnitudes of the spanwise velocity component recorded by the right
(red lines) and left (blue lines) monitor points (pair 1). At the bottom, the integrated
vapor volume V,,, curve is given again for comparison. As before a very short time
after the simulation starts, the recorded values deviate from each other. One should
here note that, for a perfectly symmetric flow domain spanwise velocity components
should have the same magnitude but opposite sign at the symmetric locations. Figure
5.60 (top) depicts the zoomed view of the recorded values. To see the deviation easily,
the difference between the left and right values of the spanwise velocity component
Aw = wy, — wg is also calculated and plotted in Fig. 5.60 (bottom). As expected, the
difference between the left and right values is zero at the beginning of the calculation.
After the second order scheme is switched-on, symmetry continues for a while but then
slowly breaks-up.

The asymmetric flow dynamics and the symmetry break-up process discussed here have
also seen in the 2-D injection nozzle simulation (section 5.1.1) and discussed in detail.
As before, Fig. 5.61 depicts the normalized static pressure difference Ap in logarithmic
scale given by

log,o(Ap + ¢) = logy, (m;np_—plow‘ + 5) ) (5.5)
01

recorded at the monitor pair 1. The pressure difference value is normalized by the inlet
total pressure py; and a cut-off value of ¢ = 107 is used.
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Figure 5.57: Pressure signals recorded by the right (red lines) and left (blue lines) monitor
points (top). Integrated vapor volume V,q, (bottom). Full wing calculation. NACA 0009
hydrofoil, —1° (walls) and +10° (midspan), us, = 50 m/s, Toe = 300 K, ps = 10 bar,
oref = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 - 10° hexahedrons, second order in space and in

time.
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Figure 5.58: Pressure signals corresponding to the zoom area of Fig. 5.57, demonstrating
the break-up of the symmetry. Full wing calculation. NACA 0009 hydrofoil, —1° (walls) and
+10° (midspan), e = 50m/s, Too = 300 K, poo = 10bar, o,cf = 0.81, Atcpp = 4.5-1078 s,
grid: 6 - 10° hexahedrons, second order in space and in time.
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Figure 5.59: Spanwise velocity component w recorded by the right (red lines) and left (blue
lines) monitor points (top). Integrated vapor volume V,q, (bottom). Full wing calculation.
NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), ue = 50m/s, Toe = 300 K, pso =
10 bar, orcf = 0.81, Atcpp = 4.5 - 1078 s, grid: 6 - 10° hexahedrons, second order in space
and in time.
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Figure 5.60: Spanwise velocity component w corresponding to the zoom area of Fig. 5.59
(top). Difference between right and left values of the spanwise velocity Aw = wp — wg,
demonstrating the break-up of the symmetry. Integrated vapor volume V,q;, (bottom). Full
wing calculation. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan), us, = 50 m/s,
Too = 300 K, poo = 10 bar, o, = 0.81, Atcpp = 4.5-107% s, grid: 6 - 105 hexahedrons,
second order in space and in time.
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Figure 5.61: Time dependent normalized static pressure difference Ap, full wing cal-
culation, logarithmic scale. NACA 0009 hydrofoil, —1° (walls) and +10° (midspan),
Uso = 50m/s, Too = 300 K, pes = 10 bar, o,ep = 0.81, Atcpp = 4.5-107% s, grid: 6 - 10°
hexahedrons, second order in space and in time.

Figure 5.61 clearly shows that the instability in the flow field starts to grow already
from the beginning of the simulation and it fluctuates continuously as the transient
solution proceeds.

A pressure fluctuation level due to turbulence is determined for the considered flow
conditions, where the Reynolds number based on the chord length is Re. ~ 10° and
assuming a lower turbulence intensity 7w value on the order of ~ 10% as before, i.e.

Tu = ~ 107°. (5.6)

N

For a mean velocity of u = 50 m/s, turbulent fluctuation velocity ' can be found by
using the above equation as, |u/| = 0.05 m/s. This velocity corresponds to a pressure
fluctuation which can be approximated as

1 1
P A §pul2 = 5 - 1000 0.05* = 1.25 Pa . (5.7)

Normalizing this value with respect to the inlet total pressure py; ~ 10 bar and taking
the logarithm of it results in the gray bar depicted in Fig. 5.61.
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As a result, it is seen that the full wing calculation is almost symmetric with respect
to large scale cavitation dynamics but asymmetric behavior is observed in terms of
small scale structures and especially at the regions of cavity closure and in the vicinity
of collapses.

In terms of symmetry break-up investigation, a comparable analysis with respect to
the single phase solution as in the case of the 2-D injection nozzle is not performed,
which would require an extensive amount of additional computational time. More-
over, from the previous experience it is known that single-phase flow is stable within
small perturbations (numerical noise) and remains symmetric. Therefore, no additional
information is expected from the single-phase solution of the 3-D twisted wing.

This calculation is performed by using 6 - 10° hexahedrons divided equally into two
blocks. The total physical time of 0.15 s took 12 days on two processors (Dell Precision
390 workstation with 2 processors). The inclusion of viscous effects would require the
resolution of the boundary layer which would increase the mesh count approximately 2
times. Together with a standard two-equation turbulence model and a wall resolution
of y© = 1, one can estimate that the overall CPU requirement would increase 150
times, which would result in a required calculation time of 1800 days or 5 years. This
requirement further increases by a factor of 30 if third order discretizations are used
instead of the current second order scheme. Such high CPU requirements can of course
be reduced by using more processors and code optimization but this simple estimation
shows the challenge of the investigated flow problem in terms of the CPU requirements.
Therefore, the current inviscid model is well suited for the applications that are consid-
ered in this thesis, as the unsteady cavitation dynamics and their collapse mechanisms
are inertia controlled.

The following experimental visualization is taken from Foeth [33]. It is a slightly
different but comparable geometry with a twisted NACA 0009 hydrofoil and an angle
of attack of 1° at the walls and +9° at the midspan. The reference cavitation number
in this experiment is o, = 0.77£7.4% and the flow velocity is uo, = 7.04£1.16%m/s.

Figure 5.62: Experimental visualization of asymmetric cavitation structure [33]. NACA
0009 hydrofoil, 1° (walls) and 9° (midspan), us = 7.04 £ 1.16% m/s, 0.77 + 7.4%.

Figure 5.62 shows two time instants in the shedding cycle of the cavitating flow. From
the pictures one can recognize the small scale asymmetry of the cavitation structure
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although the global structure of the cavity pattern remains symmetric. This experi-
mental visualization is in good agreement with our results that are presented in this
section, where the global cavity structure is almost symmetric with respect to the
midspan but small scale asymmetry is present especially around the closure regions
and collapses.

In order to resolve large scale asymmetry of the cavitation structures of a symmetric
body a very fine computational mesh is required globally. This investigation is part of
the Ph.D. thesis of Schmidt and it is discussed there in detail [104].



Chapter 6

Conclusions

6.1 Summary

In the course of this thesis, a state of the art 3-D compressible flow solver - CATUM
- has been developed in order to simulate liquid and two-phase flows with special
emphasis on the arising shock and wave dynamics inside the flow field.

Simulation of unsteady cavitating flows is an important subject of computational fluid
dynamics. Both in academia and in industry researchers have been using different
numerical methods in order to predict characteristics of such flows. Most of the methods
in literature rely on incompressible treatment of the flow field and time-averaged or
long time behavior of the flow variables. Whereas our fundamental interests in the
ongoing research project are the time accurate resolution of the cavitation dynamics —
mainly the short time scale flow characteristics of the applications — and the arising
wave propagation phenomenon due to continuous phase transition processes and their
interaction with the flow field. Therefore, the compressibility has to be taken into
account in the solution procedure as well as a high temporal resolution to resolve the
wave dynamics and detect regions of instantaneous high pressure loads resulting from
violent collapses of cavitation regions. Moreover, it is known that inertia effects are
dominant in the flows considered here and thus viscous effects are neglected in the
formulation.

The full compressible equation system is coupled through a combined equation of state
defining all the phases under consideration. The liquid phase is defined by a modified
Tait equation, the vapor phase is given by the ideal gas equation and the two-phase
regions are calculated through saturation conditions. Therefore, the applied two-phase
model assumes thermodynamic equilibrium of the phases. Moreover, as the physical
model is directly based on the integral average properties of the arising flow field,
no additional specification of small scale structures, like initial bubble concentration
or radius, is required. The well known Riemann approach is used in the numerical
scheme. But this approach fails in the limit of multidimensional low Mach number
flows (low Mach number problem) and requires substantial modifications to achieve
accurate solutions in the regions of pure liquid where M — 0. As a result, we devel-
oped a modified numerical flux for cavitating flows based on the characteristic theory
and equipped with an asymptotically consistent pressure flux which ensures accurate

161
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solutions for M — 0 as well. At the inlet and the outlet of the discretisized solution
domain, weakly reflective boundary conditions are applied. Contrary to classical non-
reflective boundary conditions, a prescribed pressure poy: mi: is ensured asymptotically
with this approach.

The developed code is verified through a series of single and two-phase shock tube
problems. The accuracy of the proposed two-phase model is tested against the solution
of the Rayleigh-Plesset equation for the Besant problem, where a perfect agreement
with the analytical solution is found.

Two application areas are considered in this thesis. First one focuses on the micro-scale
and high-speed internal flows in fuel injection systems. Whereas the second application
area corresponds to cavitating flows around hydraulic machinery such as ship propellers
and pump or turbine blades, which are characterized by large-scale, low-speed flows.

The importance and the necessity of the compressible treatment of these flow problems
is shown by the detection of wave dynamics as the essential and dominating feature of
the temporal flow development. Furthermore, the observed unsteady flow phenomena
manifest the necessity of time accurate calculations with numerical time steps down to
Atcorp = 107 s in order to predict short time flow characteristics. Moreover, collapse
induced shocks are resolved in all of the applications that are considered. The locations
as well as the intensities of these loads are thought to be related to erosion critical areas.
The arising cavitation pattern in the 3-D multi hole injection nozzle and the shedding

characteristics of the 3-D twisted wing match the experimental observations [15], [19],
[32].

Thus, one can conclude that the proposed model is well applicable to predict the
cavitation dynamics of the complex flow applications.

6.2 Recommendations for Further Development

As CATUM is developed in a modular and structured basis, extensions and modifi-
cations can be implemented in a straightforward manner.

From the code-development point of view, especially the input and initialization struc-
ture of the code can be improved. Similarly, for the pre-processing phase mentioned a
graphical user interface would be extremely useful and would serve as a starting point
for a complete solver package.

As this code is always thought to be the heart of our multi-purpose solution package
for compressible flow dynamics including pure liquids and phase transition, chemical
reaction and heat addition, the physical modeling of homogeneous and heterogeneous
condensation is regarded to be the next important step in the modeling. In addition
to that an extensive knowhow in the physics and the numerics of condensing flows is
already present in the research group [105], [42], [37].

For liquid and two-phase flows, implementation of a non-condensable gas component is
currently under development and the preliminary tests show that cavitation behavior
can be effected strongly by the amount of the initial gas content. Another improvement
has been foreseen as the inclusion of a second (gas) component into the flow field,
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resulting in a multi-phase/multi-component model. Thus, it would be possible to
simulate the gas outflow situation in an injection nozzle calculation.

As discussed in the appendix, CATUM has already been extended to viscous flows
using URANS equations. The initial tests are performed with single-phase laminar ideal
gas flows and the subsequent implementation and verification of the k& — w turbulence
model. In the current development state CATUM is able to simulate single-phase
compressible laminar and turbulent ideal gas flows. Moreover, Lauer [63] has extended
the turbulence modeling capability of CATUM through the Wilcox Stress-w Reynolds-
stress model. Although it has been shown in this thesis that the cavitation dynamics of
the considered flow examples are mainly inertia dominated, the effects of viscosity are
always important in the flow development. Hence, in this authors opinion, completing
and verifying the viscous formulation for two-phase cavitating flows should be the
next enhancement in CATUM, as a single-phase ideal gas version has already been
completed and tested. One important difficulty in such a formulation is that a widely
applicable and accepted two-phase turbulence model does not exist and the existing
ones should be tuned according to the cavitating flow in consideration. This step needs
an extensive literature survey and well documented validation test cases.

Further investigations are planned for the 3-D twisted wing case, which will include
statistical analysis of the observed effects, like instantaneous maximum pressure loads
on the surface and their frequency of appearance as well as one-to-one comparison with
recently obtained experimental data.
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Appendix A

Physical Constants and Relations

A.1 Saturation Variables

In the two-phase modeling that is implemented, the vapor and the liquid phases are
assumed to be in thermodynamic equilibrium. Therefore, the corresponding saturation
conditions are defined by Tyop = Tig = Tsat and p = peat(Tsar). Introducing the
following temperature function

T
=1-— Al
T (A1)
where the critical conditions for water are
T.,, = 647.096 K ,
Per = 22.064-10° Pa, (A.2)

per = 322.0kg/m?*.

Using the above definitions, saturation pressure py,, liquid saturation density p; sq; and
vapor saturation density p, s, are defined by Oldenbourg as follows [83]

sa TC?“
In (p t) T [a19 + ax0'® + az0® + a,0*° + az0* + a607'5] ) (A.3)
pcr sat
PLsat 1 4 0% 4 byB3 + byf + 010 + bs0 + bed™s" (A4)
pCT
o <M) — 108 + o5 + 306 + 406 + 506 4 g0 . (A.5)
pc""

Parameters of the given saturation equations are summarized in Table A.1.

175



176 APPENDIX A. PHYSICAL CONSTANTS AND RELATIONS

Table A.1: Parameters of the saturation equations from Oldenbourg [83]

Index a b c

1 —7.85823 1.99206 —2.02957
2 1.83991 1.10123 —2.68781
3 —11.7811 —0.512506 —5.38107
4 22.6705 —1.75263 —17.3151
5 —15.9393 —45.4485 —44.6384
6 1.77516  —6.75615-10° —64.3486

A.2 Liquid and Gas Constants

Constants used in liquid water, water vapor and ideal gas equation of states are sum-
marized in this section. The equations are already given in chapter 2 and repeated
below for convenience.

Liquid Water

e=e(T) = cyiig- (T —Trep) + €0, (A.7)
i =[S0+ B). (A8)

Table A.2: Thermodynamic constants in equations of state and sonic speed definition of
liquid water

| B[Pa] | n | couuqlJ/kg- K] | Ty [K] | €0 [J/Ry] |
13.3-10% | 7.15 | 4186 | 27315 | 617 |

Water Vapor - Ideal Gas Constants
p = pRyapT | (A.9)

e = Cuﬂjap ° (T - TTEf) + Lvap,ref + 610 3 (A]_O)

Coap = \/ KRyapT . (A.11)
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Table A.3: Thermodynamic constants in equations of state and sonic speed definition of
water vapor

| Roap [J/kg - K] | Cowvap [J/kg - K] | Tres [K] | Luapres [J/kg - K] | ew [J/kgl [ |
| 461.5 \ 14108 | 27315 | 2501.3-10° [ 617 | 1.327|

Air - Ideal Gas Constants

p = pRu/ T, (A.12)
€ = Cy,air ° T ) <A13)

Cair = V/ KRair T . (A.14)

Table A.4: Thermodynamic constants in equations of state and sonic speed definition of air

’ Rair [J/kg ) K] ‘ Co,air [‘]/kg i K] ‘ Cp,air [‘]/kg ) K] ‘ K ‘
| 287.1 | 71775 [ 100485 [14]
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Appendix B

Viscous Flow Formulation

As mentioned earlier, all the application simulations in this thesis are performed using
inviscid formulation. This assumption is plausible since the inertia effects are dominant
in these flows. But still viscous flow dynamics has effects on the flow field, especially
when boundary layer separation is expected. Moreover, apart from cavitating flows
since CATUM is planned as a complete simulation package for complex single and
multi-phase compressible flows, simulation of viscous flow equations is unconditionally
required. This is performed as a final step in the current thesis. It should be noted
that, the implementation is in the actual development and only single-phase ideal
gas flow case is considered here.

B.1 Navier-Stokes Equations

The flow of a viscous fluid is governed by Navier-Stokes equations. Analog to chapter 2
the compressible Navier-Stokes equations without body forces and volumetric heating
can be written in vector form as

oq Of o0g 0Oh
oq , Of  Og  Oh _ B.1
ot "o oy "o Y (B-1)

whereas the vectors in the viscous case are defined as follows

P pu
puU qu + P — Tax
q=1| pv |, f= PUV — Tgy )
pw PUW — Ty
pE put — UTyy — VTpy — WThs + @
pv pw
PUU — Tyz PWU — Tog
g = pv*+p — Ty , h= PWU — Ty
POW — Ty pr TP~ T
pvH — uty, — vty — WTy. + qy pwH — UT,y — T,y — WT,, + G,

(B.2)

The components of the shear stress and heat flux are given by
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g2 (o ou
I T L W dy 0z
2 (o o o
Tw = May 31\ ox oy 0z
— 28_71)_2 @_i_@_i_a_w
Tz = u@z 3" \0xr Oy 0z
ov  Ou
Tey = Tyz = M %‘i‘a_y
ou  Ow
ow v
Tyz = Ty = U a_y_‘_&
oT
oT
qy = _Aﬁ_y
oT
q: = _)\57

where p is the coefficient of molecular viscosity and A is the heat conductivity of the
considered fluid. Total energy and total enthalpy are defined as before

1
E:e+§(u2+v2+w2), H=£+"2 (B.4)
p

The system of Navier-Stokes equations should be coupled through an equation of state,
which is the ideal gas law for the current status.

B.2 Favre Averaged Navier-Stokes Equations

The equation system given by B.1-B.2 is in fact governs both laminar and turbulent
flows. Therefore, its solution would give an exact definition of the flow field with defined
initial and boundary conditions. But it requires direct numerical simulation (DNS) of
the entire turbulent spectrum to smallest scale, which is not possible with the current
computing power for the Reynolds number range and geometrical length scale of the
practical applications [131]. Thus, for the solution of the system, the unsteady turbu-
lent fluctuations should be expressed in terms of time-averaged quantities and random
fluctuations, which introduces additional unknown terms into system. Therefore, the
closure of the new system is completed with an appropriate turbulence model.
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In order to predict the turbulent fluctuations in compressible flow, density weighted
time averaging of Favre [29] is applied. The Favre-average for a scalar f is defined as

f=r+f, (B.5)
with fluctuation part f” and mass-averaged part ]7
i
F=r B.6
¥ (B.6)
where
o 1 to+At
pf = tlim Z/ p fdt. (B.7)
—00 to

Favre-averaging is used for the velocity components u, v, w, internal energy e, tem-
perature T" and turbulence model variables. Whereas, the density p and the pressure
p are averaged by using the conventional Reynolds (time) averaging, i.e.

p=p+p (B.8)
p=p+7p, (B.9)
Where 1 to+AL 1 to+AL
p = lim — pdt, p=lim - pdt, (B.10)
t—oo { to t—oo { to

and p’, p’ corresponds to the fluctuations in density and pressure respectively. To
illustrate the averaging procedure of the governing equations one can consider the
continuity equation and start with the conventional Reynolds averaging both for the
density p and the velocity components u;. Using the Einstein summation rules, the
continuity equation reads

0 0
with averaged variables
(9 — / a R J— — /]
a(p+p)+ax'(pui+pui+pui+pu):0. (B.12)

The next step is time averaging the whole equation. Using the following definitions;
f = fand f =0 [131], the Reynolds averaged continuity equation becomes
0 0 —
—p pu; + plu’) =0. B.13
ai7 + o P+ p) (B.13)

For the closure of this equation a correlation between p’ and u; is needed. From the
definition of the Favre-average B.6 one can write

pu; = puy, (B.14)

using the Reynolds averaging for the right hand side of this equation results in

Pl = pit; = pui; + pU; + pul + p'u/ = pii; + (B.15)
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Substituting the above given result in Eq. B.13 gives the Favre-averaged continuity
equation

9,9
o’ T o

(5a;) =0. (B.16)

X

One can directly see that continuity equation has the same form as the laminar case
therefore, averaging did not introduce any additional terms.

The flow variables that are used in the averaged equations are defined as follows

wp = U +ul
p = p+yp
p = Pty
h = h+h
e = e+¢
T = T+T"
4G = q+dq;-

The set of Navier-Stokes equations in Favre-averaged form is given below. As their
derivation is cumbersome, momentum and energy equations are written directly.

dp  O(pw)

o Tom 0, (B.17)
- g~ PUjuy B.1
ot * ox; Oz + oz, (TU Pujul) ; (B.18)

0 ~  pulu! 0 o~ pulu!
. —E 7 7 — H i 7 7
ot (p T >+axj (pu] M )

0 _ — — wlul
~ s (‘qﬂ’ o p“?T)
a -~ — ", n
+_8x» [uZ (Tij — pujui)} ) (B.19)
j

The momentum equation differ from the laminar case by the appearance of the Favre-
averaged Reynolds-stress tensor,

1

p(7ij)r = —puiuj . (B.20)
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The energy equation includes more terms that should be clarified. First one is the
double correlation between u and itself. This is the kinetic energy per unit volume of
turbulent fluctuations, which is usually defined as turbulence kinetic energy k

"y,
P Ui

: (B.21)

pk =
The next additional term is the correlation between w; and h” on the right hand side,
which is the turbulent heat flux, i.e.

qr; = pujh” . (B.22)

1,11
ui ’U,Z-

The remaining two terms W and pu}=5+ correspond to molecular diffusion and
turbulent transport of turbulence kinetic energy respectively. Due to arising additional
terms, the closure of the equation system requires the definition of them in terms of the
known flow variables. Following the well known Boussinesq assumption, the turbulent
shear stress can be related to the mean strain through the definition of a scalar turbulent
eddy viscosity, pur [90]. Thus, with this assumption Eq. B.20 takes the following form

3 - ou;  Ou, 2 Juy, 2_
) = —pulu! = — ——— ;i | — =pk ;i . B.2
p(Tij)T pu;Uu; = fr {(&Ej + axi) 3 0y 5%3} 3p 0ij (B.23)

At this point one can use the Prandtl number Pr and define its counterpart, turbulent
Prandtl number Prr as

Pr= % ., Prp= CZ;’;T . (B.24)

For the turbulent heat flux term B.22 one can simply use the classical analogy that is
given in the laminar case and obtain

Gl or

qr; = pu;./h” =

The molecular diffusion and the turbulent transport of turbulence kinetic energy terms
are usually ignored, which is quite accurate if the Mach numbers in the flow field
are up to the supersonic range [131]. However, when hypersonic regime is of interest
their effect should be included. With the following definitions of Favre-averaged ideal
gas equation, total energy and total enthalpy the set of Favre-averaged Navier-Stokes
equation is completed

p=pRT (B.26)
— 1.

— o~ 1. _
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In the above given formulation the only missing relation is the definition of turbulence
kinetic energy k, which is introduced in Eq. B.21. Its definition depends on the
turbulence model that is chosen and will be explained in the next section. From this
point on the averaged variables are not explicitly displayed.

B.3 Single-phase Turbulence Modeling

Although the advancement of computing power favors the use of LES (Large Eddy
Simulation) and related complex modeling strategies (see Adams [1], [2]), two-equation
models are still in great use due to their relatively simple formulation, applicability and
validation.

Most of the two-equation turbulence models use a relation for turbulence kinetic energy
k. But the choice for the second transport variable was long time under discussion.
The most used variable is the turbulent dissipation rate e. A dimensional analysis
results in the following relation
k2

pr o~ p= - (B.29)
Launder and Sharma [64] suggested a transport equation for e and corresponding clo-
sure relations, which became the famous k-e model that is being used for decades.
Wilcox [132] defined specific dissipation rate w instead of the turbulent dissipation rate
e and proposed the following definition for the turbulent viscosity

k
Hr = p— - (B.30)
w

The current implementation of the turbulence modeling considers only the single-phase
ideal gas case of the k-w turbulence model.

B.3.1 Wilcox k-w Model

The transport equations for the turbulent kinetic energy k& and specific dissipation rate
w are written as follows [131]

d(pk) = O(pujk)  Ou, . 0 . Ok

I(pw)  O(pujw) w Oy , 0 Ow
=0T — — — . B.32
at b, ORTigy, PPt gy (om0 (B-32)

Closure coefficients and auxiliary relations are
13 * * *

Oé:%a 6:60fﬁa ﬁ :60fﬁ*7 0g=0 :057 (B33>

9 1+ 70x, €525 Sk
= — = == = |—— B.34
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1 Xk <0
9 ’ 1 0k Ow
By =—=, fa- =14 14680x; , Xk = <57 - (B.35)
Y100 1+ 1002 1 400x2 Xt >0 w3 0x; 0x;

The mean rotation €2;; and the mean strain-rate S;; tensors are defined by
1 (0u; Ou; 1 (0u;  Ou;
Qi == L] Sii == - 2. B.36

The 75 g;f? term encountered in the transport equations is called the turbulent produc-
J

tion term P. Using the definition of the Reynolds-stress tensor given by Eq. B.23 one
can write

 Ouy Ou;  Ou;j 2 Juy, 2 ou;
b= sza_xj B ['UT [(8@ i axi) 3 Oxy, 52]} 3pk: 54 oz (B.37)

For stability reasons one needs to limit the specific dissipation rate [37], i.e.

852
3

(B.38)

w = max |w, 3"

The numerical implementation of the turbulence model will be given in the next section.

B.4 Numerical Formulation

The numerical formulation of CATUM is already discussed in chapter 3. For the im-
plementation of viscous effects, diffusive fluxes and turbulence model equations should
be discretisized and appropriate boundary conditions are needed for the slip-walls.

B.4.1 Nondimensionalization of the Variables

It is an usual practice to cast the Navier-Stokes equations and turbulence model re-
lations into dimensionless form. This technique normalizes the flow variables between
0 and 1. The dimensionless form is obtained by using reference flow variables in the
following way

xr = z
lref 7 lref ’ lref 7
u* = = ) U* = ! ) w* = = )
Cref Cref Cref
. P . p o L . € g P
P = ’ - 2 - T ) I - "9
Pref Pref Cref ref Cref Cref
k w
S ko=, W= (B.39)
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where [,.; is the characteristic length of the problem and other reference values are
defined as

Trer =1m (B.40)
Pres = 15%1 (B.41)
Crep = V/KRTy (B.42)
firep = p(To1) - (B.43)
The reference Reynolds number can then be written as
Reyey = PrefCrefTref (B.44)

Mref

Therefore, all flow variables in the equations are expressed in terms of their dimension-
less forms and implemented in the numerical model accordingly.

B.4.2 Governing Equations with k-w Turbulence Model

For the numerical solution of the turbulent flows Navier-Stokes equations given in
section B.1 is reformulated as follows

oq  Of.  Og. ahc_(afu Og. +@hv)zs, (B.45)

— + + + +

ot Oxr  Jy 0z ox oy 0z
where the flux vectors are divided into convective and viscous parts and and a source
term s appears on the right hand side because of the turbulence model, i.e.

P pu pu pw
pU qu +p puv puw
pu UV pv? +p pow
a=|pw |, fo=| puw g.=| pow h.=| pw® +p
pE puH pvH pwH
pk puk pvk pwk
pw puw pUwW pUwW
0 0
Trx Tyx
Ty Tyy
f, = Tz , By = Tys , (B.46)
UTgy + VUTpy + WTee — Qa UTyg + UTyy + WTy — Qy
o ,ukky
oWz oWy
0 0
Tox 0
sz O
h, = Tz y S = 0 )
UT,e + UTzy + wT,, — q- 0
k. pP — pfBrkw
MWz pOf%P - PﬁWZ
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where turbulence production term P is defined in Eq. B.37 and
ok ok ok

kp = — ) ky =+ ) k.= — )
ox Y Oy 0z

pe = p+otur, (B.47)
fo = pi+opr.

The components of shear stress and heat flux are already defined in Eq. B.3, with only
difference that the coefficient of dynamic viscosity p have to be replaced everywhere
by effective viscosity fiery

fesr = p+ bt (B.48)

where p is the molecular viscosity and up is the turbulent viscosity defined by Eq.
B.30 for the single-phase k-w model.

B.4.3 Discussion about Two-phase Turbulence Modeling

As mentioned earlier, currently only single-phase turbulence modeling is implemented
in CATUM. A two-phase turbulence modeling for cavitating flows is planned for future
versions of the code. This section discusses briefly the two-phase turbulence modeling
strategies that are encountered in the literature and that are used by other research
groups.

Similar to the single-phase flows, the most frequently used turbulence models in cavitat-
ing flows are also two equation models that are based on the Boussinesq eddy viscosity
approach [59], [127], [137]. In these models the molecular viscosity of the mixture i,
is calculated through the convex combination of the vapor and the liquid viscosities by
using the void fraction « as

fim = O flyap + (1 — @)« g - (B.49)

Wang et al. [127] implemented a k-e turbulence model with wall functions to calculate
cavitating flows. They also modified the original empirical model constants for the
two-phase formulation. Whereas, Kunz et al. [59] used a standard k-e model in their
calculations of cavitating flows.

The two equation models, which are developed for single-phase flows, have a tendency
to overestimate viscous effects in two-phase regions. Therefore, they need empirical
corrections to model parameters [127], [137]. These corrections mainly account for
lowering the eddy viscosity of the mixture region with high gas or vapor contents.
Yuan and Schnerr [137] implemented the original single-phase version of the k-w tur-
bulence model with wall functions to calculate the cavitating flows in injection nozzles.
Subsequently, they modified the turbulent viscosity definition with a density depen-
dent function as introduced by Coutier-Delgosha et al. [23], which results in a lower
turbulent viscosity in two-phase region and therefore viscous effects are scaled correctly
in two-phase domains.

In a recent investigation Huuva [46] used LES to calculate cavitating flows around
hydrofoils and compared its results with RANS calculation. In this research he didn’t
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introduce any additional explicit length scales and modifications in the LES formulation
and used the mixture viscosity definition as given by Eq. B.49. It is concluded in the
research that LES is advantageous over RANS calculations as it is able to predict both
the average and the instantaneous flow field with better accuracy but it still needs
more understanding especially in the case of two-phase modeling.

As a result, most of the efforts to calculate cavitating flows with turbulence models
are based on the current models for single-phase flows with empirical or problem de-
pendent corrections. Therefore, turbulence modeling for cavitating flows is still an
uncertain area because to date, no model has been evaluated against well-established
experimental evidences [127].

B.4.4 Diffusive Flux Calculation

The convective fluxes are calculated according to chapter 3 with the addition of two
new transport equations for turbulent kinetic energy k and specific dissipation rate w.
The diffusive fluxes on the other hand, need a different consideration as gradients of
the flow variables appear in the transport equations. They are calculated by using the
method of help cells, which is demonstrated by the grey volume (2, in Fig. B.1 for
the fluxes in x—direction.

3,j+1,k+1 Qhelp

i+1,5+1,k+1

1,J,k+1 i+2,5+1,k+1

i+1,5,k+1
42,5, k+1

i
®
L

i+1,5,k

i+2,5.k

Figure B.1: Discretization of the 3-D numerical domain for diffusive fluxes. The gradients
are calculated using help cell (grey volume).

The gradients at the interface surface (i+1/2) -blue surface- between the computational
cells are calculated according to the Green’s formula. For any flow variable ¢

0¢> 1 / 0o 1 /
-~ - Aoty = —— ¢ dS, B.50
<8x i41/2, Qhetp Sy, o Qherp Jry, ( )

gives its gradient in the z-direction. The surface integral on the right hand side is
evaluated for every surface of the help cell using the z-normal of the surface. The
gradients of the variables in y and z-directions are calculated similarly by using the
help cells in the corresponding directions.
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The turbulence production term P given by Eq. B.37 also includes the gradients of
the velocity components. But this time they must be evaluated not on the cell faces
but at the cell center. Therefore, help cells are not needed and Eq. B.50 is evaluated
directly for the considered computational cell.

B.4.5 Boundary Conditions

The boundary conditions in viscous flows are also calculated according to section 3.6 of
chapter 3 by using two ghost-cells in every direction. The only difference is the no-slip
boundary conditions for the viscous solid walls, where all velocity components reduce
to zero. According to Fig. 3.7 the values at the ghost-cells are given as

Pi2 = Pig3

Via = —Vi3

Pi2 = Dig3

Pil = Pia (B.51)
Vit = —Via4

Pi1 = DPia-

Moreover, turbulent kinetic energy and specific dissipation rate in the ghost-cells are
calculated from Wilcox [131] as

kio = —kis
6 p

Wi2 = Wi = > —5, B.52
Bo py3 (B.52)

and

kiin = —kia
6 p

Wil = Wia= 5 —5, B.53
%pyZ ( )

where y3 and y, are the cell center distances of cells (i,3) and (i,4) to the considered
wall.
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B.5 Test Case Calculations for Single-phase Ideal
Gas Flows

To verify the implementation of the viscous effects into the code several standard test
calculations are performed. First, laminar case is considered to see if the diffusive fluxes
are correctly calculated. Thus, a laminar flat plate flow is performed and compared
with the analytical solution. Then, the turbulence model is verified through a turbulent
plate simulation and 2-D transonic flow over RAE 2822 airfoil.

B.5.1 Laminar Flat Plate

The laminar flat plate flow is a standard test case to verify the calculation of laminar
viscous effects. In this calculation a subsonic parallel low with M., = 0.3 and Re; = 10°
is considered. Figure B.2 depicts the flow geometry, where the solid wall starts at z = 0.
The figure is not drawn to scale and the upper wall is twice the plate length away from
the lower boundary. The mesh used in the calculation consists of 55 x 55 cells, which
are refined refined on the plate and at the stagnation point x = 0.

The calculated dimensionless velocity profile u/uy, is compared with the Blasius solu-
tion [99].

boundary layer development

-

}—» T wall

Figure B.2: The sketch of the flow domain used in boundary layer calculations.

The wall friction coefficient c; is also compared with the analytical solution over the
flat plate. The local friction coefficient is given by
Tw

1 2
§puoo

Cr = (B54)

where 1, is the wall shear stress defined as

Tw = [ Z—Z (B.55)
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Figure B.3 shows the numerical solution for the velocity profile u/u+, and skin friction
coefficient ¢; compared with the analytical solution of Blasius [99].

y [m]

0.015
analytical solution
0.001 . CATUM result L
0.01
0.0005 -
0.005
u
| TR L LoX|m
00 0.5 1 u, 00 0.05 0.1 [m]

Figure B.3: Laminar flat plate results, velocity profile u/u~, (left), skin friction coefficient
cy (right). Red line: analytical solution of Blasius [99], blue dots: CATUM calculation.

It is clear from the figures that the laminar flat plate results fit very good with the
analytical solution.

B.5.2 Turbulent Flat Plate

As implementation of turbulence model equations is cumbersome and relatively com-
plicated, it is very likely that errors can occur during coding. Therefore, turbulence
modeling of a CFD code have to be tested carefully. Similar to the laminar case, a
turbulent flow over a flat plate is chosen as a first test case. The flow field is similar to
the laminar case given by Fig B.2 but with different scaling. The reference calculation
and the mesh is taken from “Computational Fluid Dynamics Validation and Verifica-
tion Web Page” of NPARC Alliance [80]. The flow conditions are given as My, = 0.2,
Poo = 1 bar, T, = 294.44 K and the length of the flat plate is [ = 5.089 m. The
calculation is performed by using & — w turbulence model with an initial turbulence
intensity of Tu = 5% and pr = 10pu. Following figure shows the skin friction coefficient
¢y over the flat plate compared with the experiment of Wieghardt [130]. The flat plate
length is non-dimensionalized by using the Reynolds number as
Pooloo®

Re, = . B.56
- (B.50
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Cf
0.008
CATUM result
. experiment Wieghardt
0.006 |
0.004
0.002
0 ! ! ! | Re
0 3E+06 6E+06 9E+06 1.2E+07 X

Figure B.4: Turbulent flat plate result, skin friction coefficient c¢;. Red points: experiment
of Wieghardt [130], blue line: CATUM calculation.

The agreement between the calculation and the experimental data shows that the k-w
turbulence model correctly predicts the flow characteristics.

B.5.3 RAE 2822 Airfoil

As a second verification test case, transonic flow over RAE 2822 airfoil is considered.
This configuration is a classical test case for external flow calculations and the experi-
mental data is available [22]. The geometry and the reference data are again taken from
the NPARC Alliance web site [80]. Figure B.5 depicts the flow domain and the mesh
used in the calculation with an enlarged view over the airfoil. The mesh corresponds to
a yT ~ 1 with 15-20 mesh points inside the boundary layer and therefore, turbulence
model equations are integrated to the wall without any need for wall functions.

The experimental values are corrected and specified in the NPARC Alliance site [80]
as

Table B.1: Flow conditions for the RAE 2822 test case, chord length ¢ = 0.1 m.

Mach number angle of attack Reynolds number
M., =0.729 a=231° Re, oo = 6.5-10°

These conditions correspond to case 6 of the experiments performed by Cook [22].
Figure B.6 compares the measured pressure coefficient ¢, with the numerical results,
where

P~ P

1 2
5Pl

(B.57)

Cp:
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Figure B.5: RAE 2822 flow domain and mesh with 349 x 40 cells (left). Closeup view of
the airfoil (right). y* ~ 1.

[
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The comparison also includes two calculations from the NPARC site [80], where NASA
NPARC and WIND codes are used (green and black lines respectively). The blue line
corresponds to the current calculation with & — w turbulence model, whereas NASA
calculations are performed by using Spalart-Allmaras model [114].

The current calculation is started as turbulent from the beginning. Therefore, the
leading edge compression is underestimated (effect 1), which is mainly due to the
laminar separation around the leading edge. From the comparison it can be seen
that all calculations follow the same trend on the suction side and they fall below the
experimental values (effect 2). The shock location is best catched by the CATUM
calculation (effect 3) but the trailing edge separation is also underestimated in our
calculation (effect 4).
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experiment Cook
CATUM result
————— NASA NPARC code
— — = - NASA WIND code

effect 3
0.5

-0.5
effect 4

! ! ! ! | X/C
0 0.2 0.4 0.6 0.8 1

Figure B.6: Pressure coefficients over the RAE 2822 airfoil.

B.6 Outlook

In this chapter the extension of CATUM for viscous flow calculations is introduced. In
the current development state CATUM is able to simulate single-phase compressible
laminar and turbulent ideal gas flows. As a turbulence model two equation k& — w
turbulence model is implemented and verified. Additionally, Lauer [63] has extended
the turbulence modeling capability of CATUM through the Wilcox Stress-w Reynolds-
stress model.

As shown in the previous sections, the preliminary results of viscous flow calculations
for laminar and turbulent boundary layers and turbulent RAE 2822 airfoil calculation
are satisfactory. But as the formulation is still in the development phase, additional
tests are needed.

It should be noted that the current implementation considers only single-phase ideal
gas flow. As discussed in section B.4.3 extension of the current model to two-phase
cavitating flow is possible with some corrections to the model parameters.

Hence, completing and verifying the viscous formulation for two-phase cavitating flows
should be the next enhancement in CATUM, as a single-phase ideal gas version has
already been implemented. As already mentioned, one important difficulty in such
a formulation is that a widely applicable and accepted two-phase turbulence model
does not exist and the existing ones should be tuned according to the cavitating flow
in consideration. This step needs an extensive literature survey and well documented
validation test cases.



Appendix C

CATUM Manual

This section is included to give an overview of the internal structure of the CATUM
and to explain how to setup a run and start the simulation.

CATUM is developed initially for 3-D single block structured grids using FORTRAN
90 language. Afterwards, it is parallelized as multi block structured via MPI libraries by
Thalhamer [116]. Both serial and parallel versions of the code can run under Windows
and Linux operating systems and in Linux clusters. The details of the parallelization
and parallel run setup can be found in the mentioned work.

As already discussed in chapter 3, the flow domain consists of non-overlapping hexahe-
dra cells in 75k order. The ijk ordering of the flow domain is the necessary condition
for structured grids and each index corresponds to a cartesian coordinate direction, i.e.
i — x, j — y and k — z. Following figure is repeated here to explain the geometry
calculation procedure inside the code.

Figure C.1: Surface area of 5678 and corresponding normal vector nsgrs.

The normal vectors are named according to the direction of the surfaces, i.e. 1 — &,
j — nand k — (. Therefore the normal vector nsg7g of the given surface can be written
as

195
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Xg8 X Xp7

Ns678 = 5678 = | = Gl + Gj + Gk, (C.1)

| Xg8 X Xs7 ||

where (;, ¢, and (. are the components of the normal vector in the corresponding
spatial directions. Similarly, the normal vectors of the surfaces I'y367 and I'syrg are
given by

Nozer = Eazer = Sal + &yj + &k
N3478 = M3a78 = Nl + 1yj + 1.k (C.2)

The volume of each control volume is calculated according to the method described in
chapter 3. The geometry calculation is performed in the subroutine “new_geo”.

CATUM requires two input files to start a simulation. One is the data file that defines
the settings of the run and the other one is the grid file that defines the geometry. The
data file is named as DANE.DAT and has the following structure.

' DANE.DAT - Editor
Datel Bearbeften Format Ansicht ?

test Task_name (no file extension)

test Task_directory (no file extension)

test.grd Grid_name (extension .grd required)

test Restart_file_name (no file extension, automatic adding of extension "_restart")
100000.00 300.0 PTOT, TTOT

80000.0 0.00 POUT i_Ma

0.0 0.0 ALPHA, PST ( alpha = <u,v>, psi = <u,w> )

9 4 IRIEM(1,4,9), ITIME(1,4)

100000 1000 100 IRERMAX, ISAVE, ITERMOD

{05501 B R ) 1 CUTOFF , P_FACTOR , SWITCH (0 off, 1 on)

000 RESTART (0,1), Movie (0,1), curvaturecontrol (0,1)

220091 Limiter €0,..,11),ISPACE (1,2), CFL, IDTMIN

1 PHYSICAL CHORD

0.0 0.0 smoothing coefficient, fast smoothing

0.0.1 Enthalpy-damping, damping coefficient

0 generate testcase grid (0 -> off, 1 -> on)

1 Qutput in cell_center (1) or cell_vertex format (0)

2 iphase (0:air ideal gas, l:one phase 1liq, 2:two-phase-cavitation)

Figure C.2: Input data file DANE.DAT, that defines the settings of the run.
The details of each input line is as follows:

e Line 1: Name of the run (output file is created using this name).

Line 2: Name of the directory that will be created for the results.

Line 3: Name of the grid file with extension.

Line 4: Restart file name if the run is restarted from a previous solution.

Line 5: The total pressure [Pa] and the total temperature [K] at the inlet.
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e Line 6: The static pressure at the outlet [Pa] and inlet Mach number.

e Line 7: The angle of attack and the yaw angle, used for airfoil and wing calcula-
tions.

e Line 8: Solver scheme (1: AUSM, 4: HLLC, 9: Hybrid solver) and time integra-
tion scheme (1: First order time integration, 4: 4 stage Runge-Kutta method)

e Line 9: Maximum number of iterations, save frequency of the restart file, display
frequency of the residual and time step on the screen.

e Line 10: Not used in the current version.

e Line 11: Flag to control if the run will be restarted from a previous solution (0:
new run, 1: restart), flag that controls if movie data will be saved (0: no movie
data, 1: movie data), flag to switch on curvature corrected wall boundaries (0:
no curvature correction, 1: curvature correction).

e Line 12: Limiter function for higher order reconstruction (1: van Albada limiter,
2: van Leer limiter, 3: minmod limiter, 4: superbee limiter, 5: MC limiter),
order of the space discretization (1: first order, 2: higher order with limiters),
CFL number, flag to control local or global time stepping (0: local time stepping,
1: global time stepping).

e Line 13: Reference length of the problem |[m], used in viscous calculations to
non-dimensionalize the lengths.

e Line 14: Not used in the current version.
e Line 15: Not used in the current version.

e Line 16: CATUM includes a simple grid generator. This feature can be activated
by using this flag (0: normal run, 1: grid generator).

e Line 17: The structure of the output file that is written for the TECPLOT
program (default value is 1).

e Line 18: Flag that controls the fluid type (1: air as an ideal gas, 2: single-phase
liquid water, 2: two-phase water flow with cavitation).

The second input file defines the computational domain by including the coordinates
of the grid points in a ordered way. The name of the grid file and the extension should
be the same as the one given on line 3 of the DANE.DAT file (see Fig. C.2). The
structure of the grid file is depicted in Fig. C.4. The first line contains the maximum
grid number at each spatial direction, i.e. %4z, Jmae @0d ks Starting with the second
line x, y and z coordinates of the grid points are written in ijk order (in meters). For
2-D domains two k—planes are needed for the solver to construct a control volume,
i.e. kpar = 2 for 2-D calculations. To demonstrate the read and write structure of the
coordinate points, following pseudo-code can be used.



198

I test.grd - Editor
Datel Bearbeiten Format Ansicht ?

DO K=1,kmax
DO J=1,jmax
DO I=1,imax

READ(1,%*) X(I,J,K),Y(I,J,K),Z(I,J,K)

ENDDO
ENDDO
ENDDO

APPENDIX C. CATUM MANUAL
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Figure C.3: Structure of the

in the

input file.

computational grid file. The name of the grid file is specified

As described in chapter 3, CATUM includes four kinds of boundary conditions, which
are named as inlet, outlet, periodic and wall boundaries. All of these boundary condi-
tion types are included in the code for every spatial direction. In the current version the
boundary condition settings are not parameterized through the input files. Therefore,
the code should be modified according to the flow problem that is going to be solved
and then should be compiled with the given boundary conditions. All the possible
boundary condition functions are included in the “ghost_cells” subroutine. Automa-
tion of this selection process through the input file is thought to be one of the next steps
in the code development. Once the executable or the binary file is created, CATUM
can be started in a directory where all the input files and the executable are present.
During the run the residual and time steps can be monitored through the terminal
screen and the data file can be plotted after each save sequence.

CATUM results are post-processed by using TECPLOT program developed by Tec-
plot Inc. [115]. The output data is written by employing the point structured data

format as explained in the TECPLOT manual.

A simplified flow diagram of CATUM is presented in the following figure.
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Figure C.4: A simplified flow diagram of CATUM.
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C.1 Single-phase Inviscid Ideal Gas Calculation

In this section a single-phase ideal gas calculation will be demonstrated. For that
purpose we consider a supersonic air flow over a 2-D circular arc geometry as shown
in the following figure.

inviscid wall
inlet boundary Inviscia w

\ ‘ outlet boundary
M, =14 L
T, =293K s
Py, =1 bar B i
y =——
L. >

inviscid wall

Figure C.5: Computational mesh for the circular arc calculation. Thickness parameter
7 =0.1. 240x80 grid points (every two mesh line is depicted in the figure).

The computational mesh is generated separately and written in a format that CATUM
can read. The format of the mesh file is given in the previous section. For this example
we assume an inlet Mach number of M., = 1.4, the inlet total temperature Ty; = 293 K
and the inlet total pressure pg; = 1 bar.

P DANE_example1.DAT - Editor

Datei Bearbeten Format Ansicht ?

bump2D Task_name (no file extension)

bump2D Task_directory (no file extension)

bump2D.grd Grid_name (extension .grd required)

bump2D Restart_file_name (no file extension, automatic adding of extension "_restart™)
100000.00 293.0 PTOT, TTOT

100000.0 1.40 POUT i_Ma

0.0 0.0 ALPHA, PST ( alpha = <u,v>, psi = <u,w> )

4 4 IRIEM(1,4,9), ITIME(L,4)

100000 1000 100 IRERMAX, ISAVE, ITERMOD

0.01 1.0 O CUTOFF , P_FACTOR , SWITCH (0 off, 1 on)

000 RESTART (0,1), Movie (0,1), curvaturecontrol (0,1)

3 279,390 Limiter (0,..,11),ISPACE (1,2), CFL, IDTMIN

1 PHYSICAL CHORD

0.0 0.0 smoothing coefficient, fast smoothing

0 0.1 Enthalpy-damping, damping coefficient

0 generate testcase grid (0 -> off, 1 -> on)

1 output in cell_center (1) or cell_vertex format (0)

0 iphase (0:air ideal gas, l:one phase 1iq, 2:two-phase-cavitation)

Figure C.6: Input data file DANE.DAT for single-phase circular arc calculation.

Figure C.6 shows the input data file DANE.DAT for this calculation. It can be seen
from the figure that we choose HLLC Riemann solver and 4-stage Runge-Kutta method
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(line 8) with second order space discretization using minmod limiter (line 12). The
inlet Mach number is given as M, = 1.4 (line 6). The inlet total pressure and the
inlet total temperature are set to pg; = 1 bar and Ty, = 293 K respectively (line 5).
The calculation uses a C'F'L number of 1.3 and local time stepping algorithm as we are
interested in the steady state solution (line 12). Finally, air is set as the working fluid
in line 18.

Following Fig. C.4 the boundary conditions should be set manually in the subroutine
“ghost_cells” as mentioned earlier. From the geometry, x = 0 plane corresponds to the
inlet and = = x,,4, plane corresponds to the outlet. Therefore for i = 1 plane supersonic
inlet boundaries (where the flow variables are prescribed) should be switched on and
for i = ime. plane standard outlet boundary condition can be used (where pressure is
either interpolated from inside for supersonic outflow or pressure outlet condition is
imposed when the outflow is subsonic). Inviscid wall boundary condition is chosen for
j=1and j = jne planes. As this is a 2-D calculation the solver does not calculate
fluxes in z direction, therefore it is not needed to set any boundary conditions for
k—planes. After the boundary conditions are correctly set in the solver, the program
should be compiled and linked accordingly and then the binary file can be executed.
A converged steady state solution is obtained after 5000 iterations and following figure
depicts the Mach number contours plotted by using the TECPLOT program (note that
solution domain is mirrored with respect to the r—axis).

-

A

M 0.9 11 1.3 1.5 1.7

Figure C.7: Mach number contours, circular arc 7 = 0.1, My = 1.4, Tp; = 293 K and
Pout = 1 bar. Solution is mirrored with respect to the r—axis.
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C.2 Single-phase Inviscid Liquid Water Calculation

The second simulation example considers a single-phase steady state liquid flow over a
2-D NACA 0015 hydrofoil. This hydrofoil geometry is the same one that was already
introduced in chapter 5 for the two-phase calculation. The following figure shows the
computational mesh and the flow conditions.

inviscid adiabatic walls

_— 181 x 31 nodes
0.15 AN ‘I‘I‘I///////
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0.05
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Pin = Py, 203

- Poutmix = 0-742 bar

E o
>

T
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il
111
111

N
i
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inviscid adiabatic walls

; ‘ /. [
015 =52 0.1 0

Figure C.8: 2-D NACA 0015 hydrofoil - computational domain and boundary conditions.
Chord length ¢ = 0.13 m, angle of attack o = 6°, channel height 0.3 m, channel length 0.6 m.
Water inflow from left to right, inlet conditions u;, = 12m/s, Tini = 293 K, outlet condition
Pout,miz = 0.742 bar (see chapter 3).

The input data file is depicted in Fig. C.9.

P DANE_example2.DAT - Editor
Datel Bearbeiten Format Ansicht ?

LOX)

2dnaca Task_name (ho file extension)
2dnaca Task_directory (no file extension)
2dnaca0015.grd Grid_name (extension .grd required)
2dnaca Restart_file_name (no file extension, automatic adding of extension "_restart')
100000.00 293.0 PTOT, TTOT
74200.0 1.40 POUT i_Ma
0.0 0.0 ALPHA, PSI ( alpha = <u,v>, psi = <u,w> )
9 1 TRIEM(1,4,9), ITIME(L,4)
100000 1000 100 TRERMAX, ISAVE, ITERMOD
AT A0 [0 CUTOFF , P_FACTOR , SWITCH (0 off, 1 on)
00 RESTART (0,1), Movie (0,1), curvaturecontrol (0,1)
1070 Limiter (0,..,11),ISPACE (1,2), CFL, IDTMIN
PHYSICAL CHORD
0 0.0 smoothing coefficient, fast smoothing
0.1 Enthalpy-damping, damping coefficient

H Q] COHOOO

generate testcase grid (0 -> off, 1 -> on)
Qutput in cell_center (1) or cell_vertex format (0)

iphaske (0:air ideal gas, l:one phase 1iq, 2:two-phase-cavitation)

Figure C.9: Input data file DANE.DAT for single-phase liquid water calculation.
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This calculation will serve as a initial condition for the two-phase cavitation simulation
that will be discussed in the next section. Therefore, we use a first order accurate
scheme in time and space (lines 8 and 12 respectively) and hybrid solver scheme (line
8). For single-phase water and two-phase cavitation calculations the initial conditions
should also be set manually inside the source code by modifying the variables u_init
and temp_init in the subroutine “init_and_restart”. As before, the boundary conditions
are given in the subroutine “ghost_cells”. The generated mesh has an o-grid structure
around the hydrofoil with a periodicity at ¢ = 1 and ¢ = 4,,,, planes and the airfoil
surface corresponds to 7 = 1 boundary, which is set as an inviscid wall in the subroutine.
For this type of o-grid domains around hydrofoils, special care is needed for the 7 = 7,02
boundary, as both inlet/outlet boundaries and upper and lower walls are on this plane.
This distinction is made in the program by setting first the complete 7 = j,,.. plane
as an inviscid wall and then correcting the inlet and the outlet portions according to
their start and end indices using the function jNJ_farfield_3. In this calculation mixed
reflecting /non-reflecting inlet and outlet boundary conditions are used for the pressure
calculation (see chapter 3).

Figure C.10 depicts the static pressure contours on the hydrofoil. Note that on the
suction side “negative pressure” values are encountered, as the modified Tait equation
allows for “negative pressures” for single-phase liquid water calculations.

p[Pa] -30000 20000 70000 120000

ylc

-0.5 0 0.5 1
x/c

Figure C.10: Pressure contours, 2-D NACA 0015 hydrofoil, single-phase water flow, chord
length ¢ = 0.13m, angle of attack @ = 6°, channel height 0.3 m, channel length 0.6 m. Water
inflow from left to right, inlet conditions w;, = 12 m/s, Tini = 293 K, outlet condition
Dout,miz = 0.742 bar.
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C.3 Two-phase Cavitating Hydrofoil Calculation

In this section we will restart the previous first order single-phase calculation result
with switching on the cavitation model and using second order scheme in space and
time. The same mesh file is used with the same initial and boundary conditions, so
it is not needed to modify anything in the code. Same executable will be started by
using the following input data file.

P DANE_example3.DAT - Editor Cax
Datei Bearbeten Format Ansicht ?

2dnaca Task_name (ho file extension)

2dnaca Task_directory (no file extension)

2dnaca0015.grd Grid_name (extension .grd required)

2dnaca Restart_file_name (no file extension, automatic adding of extension "_restart')

100000.00 293.0 PTOT, TTOT

74200.0 1.40 POUT i_Ma

0.0 0.0 ALPHA, PSI ( alpha = <u,v>, psi = <u,w> )

9 4 TRIEM(1,4,9), ITIME(L,4)
100000 1000 100 TRERMAX, ISAVE, ITERMOD
£ N | CUTOFF , P_FACTOR , SWITCH (0 off, 1 on)
) RESTART (0,1), Movie (0,1), curvaturecontrol (0,1)
$0.7® Limiter (0,..,11),ISPACE (1,2), CFL, IDTMIN
PHYSICAL CHORD
.0 0.0 smoothing coefficient, fast smoothing
0.1 Enthalpy-damping, damping coefficient

[=R=1

generate testcase grid (0 -> off, 1 -> on)
Qutput in cell_center (1) or cell_vertex format (0)

iphase (0:air ideal gas, l:one phase Tiq, 2:two-phase-cavitation)

o P

Figure C.11: Input data file DANE.DAT for two-phase cavitating flow calculation. Restart
from previous result files.

The hybrid solver and 4-stage Runge Kutta method is used (line 8) together with the
second order spatial discretization (line 12). The important modifications in the input
file are marked with red circles. As this run will continue from the previous results,
the restart flag is set to 1 (line 11). Moreover, as we want to see the unsteady results
and further post-process them as picture series and movies, movie flag is also set to 1
(line 11). Therefore, at each save frequency a new solution data will be created. In
line 12 the global time stepping is activated and finally two-phase cavitating flow is
set in line 18.

The detailed results of this run are already discussed in chapter 5.2.1 (page 123) with
picture series of the unsteady cloud shedding and with the detailed evaluation of the
collapse dynamics.
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