
CNNA-94 Third IEEE International Workshop on Cellular Neural Networks and their Applications 
Rome, Italy, December ia21,i~w 

Hardware-Oriented Learning for Cellular Neural Networks 

Andreas J. Schuler, Martin Brabec, Dirk Schubel, and Josef A. Nossek 
Institute for Network Theory and Circuit Design 

Technical University of Munich, Germany 
Email: ansc8nws.e-technik.t-muenchen.de 

Abstract This paper presents an approach to leaming, which focusses on finding a set of 
parameter values taking into account the nonidealities of a specific implementation. Theref re 
learning is done on a more accurate model of a CMOS cell, and not on the original CNN model 
proposed in 1988 [ I .  5). 

This hardware-oriented approach will be applied to a current-mode CNN-model based on the 
full-signal-range model published in [IO, 21, where the dynamic block consists of two current 
mirrors. It is shown, that a two-quadrant multiplier is sufficient for the multiplication with the 
template coefficients, by changing the model, further reducing the area consumption 
Using a hadware-oriented approach to learning thus not only allows to find template va- 
lues for a specific VLSI-implementation, but may also lead to further simplifications of CNN- 
implementations. 

1 Introduction 

Since their introduction in 1988 [ 1 J the design and learning of cellular neural networks (CNNs) 
has been an interesting research topic. On the other hand VLSI-implementation of C N N s  is 
a crucial point for the application of CNNs to real world problems. Currently the hardware 
implementation persuits two main directions, namely the development of an analogic CNN 
Universal Machine [ I  I], and the efficient implementation of simple, specialized CNN devices 
with optimized area consumption [ 10, 141. 

For the second approach modifications of the original model have proven to be useful, namely 
the use of different nonlinear functions and the full signal range, leading to a simplified VLSI- 
implementation. 
To find appropriate parameter values design or learning should be done on the modified model, 
taking into account the nonidealities of VLSI-implementations, in order to guarantee the correct 
operation of the actual chip. 
In this paper, an approach for hardware-oriented learning is presented which finds the parameters 
of a simplified full signal range C" using a ODE-model of the basic building blocks for 
current-mode CNNs. First, a simplified full-signal-range CNN architecture is presented, which 
requires only two-quadrant multipliers and thereby reduces the area consumption; then, the 
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hardware-oriemed ODE-model of the basic building blocks will be shown. Backpropagation- 
tkwgh-mme [9,7] can be used to learn the parameters of this ODE-model. 

2 A SimpIi6ed FullSignal-Range CNN (FSR-C") 

The full signal range CNN (FSR-CNN) model presented in [lo] originates from the fact, that the 
dynamic operator of a FSR-CNN can be easily implemented by a current-mode lossy integrator. 
The signal range of the state variables is equal to the signal range of the output, and therefore 
the cell output and cell state can be mcrgedjnto a single variable. 
In this paper a modified FSR-CNN, with a signal range of [0,1] is proposed, given by 

0 if x, = 0 

(1) -Xc -k Ud- ,Xd + kc ' if 0 < tc < 1 r x c  = 

if xc = 1 
' [ d€Nc 

The modified and the original FSR-CNN are equivalent since the signals and weights are related 
by a linear transformation, 

The variables z,, i, iid-c and kc are the comqsponding variablesoftbe original FSR-CNN, which 
has a signal range of [ - 1, +1]. From (3) it can be seen, that the template coefficients remain the 
same, and only the bias kc has to be changeki to obtain the same behaviour. 

3 Architecture of the modified FSR-CNN 
The FSR-CNN behaves similar to the original model by Chua and Yang, i.e. the equilibrium 
points are corresponding. Moreover it is much simpler to implement in cumnt mode techni- 
ques. The two kinds of building blocks n m  for implementation are the static blocks for 
summation, multiplication and nonlinearity, and the dynamic block. 
The dynamic operator, shown in Fig. 3% oo~lsists of hvo cascaded bias shifted current mirrors 
only. Dynamic operation k achieved due to the parasitic gate to source capacitances. Due to 
the nonlinear behaviour of the MOSFET transistors the necesary nonlinearity is aohieved at the 
same time. The linear transformation of the signal range of the output current iWt to positive 
values is obtained by bias-shifting the ouwt  of the second current mirror. A &tailed ODE 
model of the dynamic block will be derivedin the next section. 
In contrast to the original FSR-CNN model our modified model possesses only positive states, 
and as a result only twoquadrant multipliers are required for the multiplication of the weigh? 
ad-, and the states i d .  The twoquadrant njllltiplier can be implemented using a differential pair 
(Fig. 3b). The weight signal is differential, and can be defined as U, = uw+ - uw-. The output 
of the multiplier, i.e. the weighted signal $, is in current f m .  But the input vat is given in 
form of a voltage. The positive output cullrsnt of the dynamic b i d  is converted to a positive 
voltage wing a simple linear I-V converter. 
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For the summing block a current-input current-output adder is realized by Kirchhoffs Current 
Law at the input node of the dynamic block. Additionally to the weighted current signals of 
surrounding cells a bias current must be added according to (3). 
In an actual CMOS implementation of course, no truely static blocks exist, but the transient 
behaviour of the static blocks is much faster than the time constant of the dynamic block 7 .  

GND (a) Dynamic current-mode block 

(b) Two-quadrant multiplier 

Figure 1: Two basic current-mode building blocks of the modified FSR-CNN. (a) Dynamic 
block. (b) Two-quadrant multiplier 

4 A Hardware-oriented ODE-Model 

For gradient-based learning a mathematical description of the static and dynamic blocks of an 
implemented cell is necessary. With a suitable formulation parameter values can be found by 
learning, which guarantee the functionality of the actual realization. 
First, we will focus on the dynamic model of a biased current mirror. Then the ordinary 
differential equations of the dynamic block will be derived. Together with the description of 
the multipliers, which are assumed to be static, a hardware-oriented description of the modified 
FSR-CNN is achieved. 

4.1 

The two biased current mirrors forming the dynamic block differ only in the bias of the second 
MOSFET, which is I B  for the first, and 218 for the second. In a first step we will calculate the 
differential equation for one current mirror shown in Fig. 2. 
From the I-V characteristic of the MOSFET [3, 41, the capacitive behaviour of the gate node, 
and Kirchhoffs current law, the following equations can be obtained as long as zin1 > - 1 ~ :  

Dynamic Model of the Biased Current Mirror 

zdl  = k ( 1  + x v l ) ( v l  -.?'): 7 Zg1 = CVl 
ZdZ = k ( l + x v Z ) ( v l - W ' )  t ?92 = CCl (4) 

1,nI + IB = zd1  -t 291 + zgz 7 IB - Zoutl = z d 2 .  
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Figure 2: Biased current mirror 

From this equations, we find that ioutl < IS  and 

After the differentiation u1 and 6,  can be eliminated to obtain the differential equation 

Neglecting channel length modulation, i.e. A = 0, (6) can be simplified 

For zinl < -IB. it can be seen that toutl = IB and iwll = 0. The dynamic of (7) guarantees, 
that zoutl < IB. Thus the dynamical behaviour of the biased current mirror is described by the 
nonlinear differential equation (7). 

4.2 Differential Equation of the Dynamlc Block 

The equation of the second mirror can be obtained similarly, where the signal range of Zwt2 is 
restricted to iout2 < 218: 

as long as 2,,,2 > -IB. For g i n 2  < -IB. we find zmt2 = 21e, iout2 = 0. 

Putting (7) and (8) together and with tin2 = zmilr the dynamical behaviour of one cell is described 
by two nonlinear differential equations. The output cumnt of the dynamic block io,, = Zmt2 

possesses a signal range 0 < imi < 218. 

43 Initial Conditions 
For the initialization the cells are disconnected from each other, and each cell is loaded with 
z & ~ , ~ .  From (7) and (8) it can be seen thdt after a short transient: t&il ,c  = -z&, 2 k t 2 , c  = 
-zyn2,c  + IB = z:n',l,c + IB: 
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5 Learning on the Hardware-Oriented ODE-Made1 

In the previous section, we have found, that each cell can be modelled by two nonlinear 
differential equations (7, 8). The proposed hardware-oriented ODE-model of our improved 
FSR-CNN consisting of N cells is given by a set of 2N differential equations. 

These 2N state variables can be arranged into a single state vector x: 

(9) 
T x = (2outl,l,  2out2.1, . f . , 2outl,N, 20ut2,N) , 

and the dynamical system can be written in the common way: 

k=F(x,p). (10) 

The parameter vector p contains all controllable variables of the model, most importantly the 
voltages for the weights, but may as well contain physical parameters like the channel width 
and length of the MOSFETs. 
A common way for learning in neural networks is to define an error measure or cost function 
of the fixed points and the desired outputs (Recurrent Buckpropagation [8]) or in general of the 
trajectory of the system and the desired trajectory (Buckpropagation-Trough-lime [7]). 

Modified versions of recurrent backpropagation and backpropagation-through-time have been 
developed [13, 121 to make sure, that the CNN will not only have the desired fixed point, but 
evolve from a given initial condition into the corresponding fixed point. 

For each state variable an error E,(p) is defined using suitable functions and e2,c and the 
desired value of the variable d,. The total error for a particular problem is the sum of the 
individual errors of all states and all learning examples. The gradient of this error with respect 
to the weights, which can be used to descend to a local minimum of the error, can be simplified 

using the associated dynamical system 

(12) 

which has to be integrated backward in time, since the boundary value of A, is known at the 
terminal time T: 

(13) 

The partial derivatives of the right hand side of the dynamical system (10). dFd/dx, and aFc/ap 
can be obtained from the state equations of the ODE model (7, 8). 

The backward integration requires the storage of the whole trajectory of the state variables. This 
limits the applicability to small problems. However, because of the local processing in CNNs, 
learning with small examples is sufficient, and therefore this is not a serious restricion. 

aFd L = - 1 -Ad - e l , c ( ~ c ( ~ ) ~ c ) e ~ , , ( z c ( t ) d , ) d , ,  
d€Nc 

T 
U T )  = ei, ,(sc(T)dc)dc 1 e2.c(xc(t)dc)dt . 
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6 Conclusion 

Learning can not only be used to find new template values for the original CNN model. But 
hardware oriented l d n g  provides a tod for finding template values for an actual VLSI- 
implementation. The properties tnd nonidulities of the circuit can be taken into account, 
thus the correct functional behaviour can be trained. Although the ODE-description of the 
actual MOS circuit can become quite complicated, especially as more effects like channel 
length modulation, finite YO resistances. and finite frequency response of the static blocks are 
considend, gradient based learning still can be applied. This could lead to even further simpler 
cells, allowing larger cell densities with better yield concerning functional behaviour. 
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