CNNA-94 Third IEEE International Workshop on Cellular Neural Networks and their Applications
Rome, ltaly, December 18-21,1994

Hardware-Oriented Learning for Cellular Neural Networks

Andreas J. Schuler, Martin Brabec, Dirk Schubel, and Josef A. Nossek
Institute for Network Theory and Circuit Design
Technical University of Munich, Germany
Email: ansc@nws.e-technik.tu-muenchen.de

Abstract This paper presents an approach to learning, which focusses on finding a set of
parameter values taking into account the nonidealities of a specific implementation. Therefore
learning is done on a more accurate model of a CMOS cell, and not on the original CNN model
proposed in 1988 [1, 5].

This hardware-oriented approach will be applied to a current-mode CNN-model based on the
full-signal-range model published in [10, 2], where the dynamic block consists of two current
mirrors. It is shown, that a two-quadrant multiplier is sufficient for the multiplication with the
template coefficients, by changing the model, further reducing the area consumption.

Using a hardware-oriented approach to learning thus not only allows to find template va-
lues for a specific VLSI-implementation, but may also lead to further simplifications of CNN-
implementations.

1 Introduction

Since their introduction in 1988 [1] the design and learning of cellular neural networks (CNNs)
has been an interesting research topic. On the other hand VLSI-implementation of CNNs is
a crucial point for the application of CNNs to real world problems. Currently the hardware
implementation persuits two main directions, namely the development of an analogic CNN
Universal Machine [11], and the efficient implementation of simple, specialized CNN devices
with optimized area consumption [10, 14].

For the second approach modifications of the original model have proven to be useful, namely
the use of different nonlinear functions and the full signal range, leading to a simplified VLSI-
implementation.

To find appropriate parameter values design or learning should be done on the modified model,
taking into account the nonidealities of VLSI-implementations, in order to guarantee the correct
operation of the actual chip.

In this paper, an approach for hardware-oriented learning is presented which finds the parameters
of a simplified full signal range CNN using a ODE-model of the basic building blocks for
current-mode CNNs. First, a simplified full-signal-range CNN architecture is presented, which
requires only two-quadrant multipliers and thereby reduces the area consumption; then, the
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hardware-oriented ODE-mode! of the basic building blocks will be shown. Backpropagation-
through-Time [9, 7] can be used to learn the parameters of this ODE-model.

2 A Simplified Full-Signal-Range CNN (FSR-CNN}

The full signal range CNN (FSR-CNN) model presented in [10] originates from the fact, that the
dynamic operator of a FSR-CNN can be easily implemented by a current-mode lossy integrator.
The signal range of the state variables is equal to the signal range of the output, and therefore
the cell output and cell state can.be merged;into a single variable.

In this paper a modified FSR-CNN, with a signal range of [0, 1] is proposed, given by

0o Cif z=0
ri.={ % +' dz;f: ag-czd+k if 0<z. <1 )
0 if z.=1

The modified and the original FSR-CNN are equivalent since the sngnals and weights are related
by a linear transformation,

1.

T = 5(571:'*'1); ic"""éic ‘ )

T = ‘F; Gd-c = &d—c; kc = % (l—‘c - E @4 + 1) . (3)

deN.

The variables Z., 7, @4 and k. are the corresponding variables of the original FSR-CNN, which
has a signal range of [—1, +1]. From (3) it can be seen, that the template coefficients remain the
same, and only the bias k. has to be changed to obtain the same behaviour.

3 Architecture of the modified FSR-CNN

The FSR-CNN behaves similar to the original model by Chua and Yang, i.e. the equilibrium
points are corresponding. Moreover it is much simpler to implement in current mode techni-
ques. The two kinds of building blocks nep&ssary for implementation are the static blocks for
summation, multiplication and nonlmeanty, and the dynamic block.

The dynamic operator, shown in Fig. 3a, consists of two cascaded bias shifted current mirrors
only.. Dynamic operation is achieved due to the parasitic gate to source capacitances. Due to
the nonlinear behaviour of the MOSFET transistors the necessary nonlinearity is achieved at the
same time. The linear transformation of the signal range of the output current 7., to positive
values is obtained by bias-shifting the ouu)ut of the second current mirror. A detailed ODE
model of the dynamic block will be derived in the next section.

In contrast to the original FSR-CNN model our modified model possesses only positive states,
and as a result only two-quadrant multiphers are required for the multiplication of the weights
a4 and the states z,. The two-quadrant multiplier can be implemented using a dnffemntml pair
(Fig. 3b). The weight signal is differential, and can be defined as v,, = vy — Uy-. The output
of the multiplier, i.c. the weighted signal #;, is in current form. But the input v, is given'in
form of a voltage. The positive output cusrent of the dynanuc block is converted to a positive
voltage using a simple linear I-V converter.

184

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 2, 2009 at 05:08 from IEEE Xplore. Restrictions apply.



For the summing block a current-input current-output adder is realized by Kirchhoffs Current
Law at the input node of the dynamic block. Additionally to the weighted current signals of
surrounding cells a bias current must be added according to (3).

In an actual CMOS implementation of course, no truely static blocks exist, but the transient
behaviour of the static blocks is much faster than the time constant of the dynamic block 7.
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Figure 1: Two basic current-mode building blocks of the modified FSR-CNN. (a) Dynamic
block. (b) Two-quadrant multiplier

4 A Hardware-oriented ODE-Model

For gradient-based learning a mathematical description of the static and dynamic blocks of an
implemented cell is necessary. With a suitable formulation parameter values can be found by
learning, which guarantee the functionality of the actual realization.

First, we will focus on the dynamic model of a biased current mirror. Then the ordinary
differential equations of the dynamic block will be derived. Together with the description of
the multipliers, which are assumed to be static, a hardware-oriented description of the modified
FSR-CNN is achieved.

4.1 Dynamic Model of the Biased Current Mirror

The two biased current mirrors forming the dynamic block differ only in the bias of the second
MOSFET, which is [ for the first, and 215 for the second. In a first step we will calculate the
differential equation for one current mirror shown in Fig. 2.

From the I-V characteristic of the MOSFET [3, 4], the capacitive behaviour of the gate node,
and Kirchhoffs current law, the following equations can be obtained as long as ¢;,; > —Ip:

w = k(14 ) (v —vr)® = Ciy
e = k(14 dw) (v —vr)® 2 = Ciy (4)
tin1 + [B = 141+ g1 + 192 » IB —loutl = l42.
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Figure 2: Biased current mirror

From this equations, we find that ¢,,; < Ip and

IB Loutl
=/ . 5
vt V k(14 Avg) v (5)

After the differentiation v, and v; can be eliminated to obtain the differential equation

= A
tmt + I (” E(L+v2) ) T+ hug

i _ 2kAT5 = touns ©
VEQ+202) g — o) (B(1+20g))* |

IB = %outl ) IB — outl
T

Neglecting channel length modulation, i.e. A = 0, (6) can be simplified

. 1
loutl = —EV k (IB - loutl) (Iautl + linl) . (7)

For 1;,; < —Ip, it can be seen that 1,,;; = Ip and i,,; = 0. The dynamic of (7) guarantees,
that 7,4 < Ig. Thus the dynamical behaviour of the biased current mirror is described by the
nonlinear differential equation (7).

4.2 Differential Equation of the Dynamic Block

The equation of the second mirror can be obtained similarly, where the signal range of .. is
restricted t0 t,u2 < 2/p:

. 1
tout2 = ""é‘ k (213 - zout?) ("zou¢2 = tn2 + IB) ) ®)

as long as 15,2 > —Ip. For 43 < —Ip, we find 142 = 215, tou2 = 0.

Putting (7) and (8) together and with 1;,3 = 2,4, the dynamical behaviour of one cell is described
by two nonlinear differential equations. The output current of the dynamic block t,u: = tout2
possesses a signal range 0 < 14, < 215.

4.3 Initial Conditions

For the initialization the cells are disconnected from each other, and each cell is loaded with
11~ From (7) and (8) it can be seen that after a short transient: 25, ., = —
_l:?n2,c + IB = l?nl,c + [B"

9 22
inl,c* “out2,c
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5 Learning on the Hardware-Oriented ODE-Model

In the previous section, we have found, that each cell can be modelled by two nonlinear
differential equations (7, 8). The proposed hardware-oriented ODE-model of our improved
FSR-CNN consisting of NV cells is given by a set of 2/V differential equations.

These 2N state variables can be arranged into a single state vector x:

T
X = (%utl,ly Yout2,1y - + + y Loutl,N, 2outZ,N) y (9)

and the dynamical system can be written in the common way:
x = F(x,p). (10)

The parameter vector p contains all controllable variables of the model, most importantly the
voltages for the weights, but may as well contain physical parameters like the channel width
and length of the MOSFETs.

A common way for learning in neural networks is to define an error measure or cost function
of the fixed points and the desired outputs (Recurrent Backpropagation [8]) or in general of the
trajectory of the system and the desired trajectory (Backpropagation-Trough-Time {7]).

Modified versions of recurrent backpropagation and backpropagation-through-time have been
developed [13, 12] to make sure, that the CNN will not only have the desired fixed point, but
evolve from a given initial condition into the corresponding fixed point.

For each state variable an error £ (p) is defined using suitable functions e; . and e, . and the
desired value of the variable d.. The total error for a particular problem is the sum of the
individual errors of all states and all learning examples. The gradient of this error with respect
to the weights, which can be used to descend to a local minimum of the error, can be simplified

T JE. T JF,
Ep) = evelzd D)) [ eacladdt, 2= [TAzrd, ay
using the associated dynamical system
fe=de= T By e (e Tdep (el (12
den. 9% '

which has to be integrated backward in time, since the boundary value of A. is known at the
terminal time T': r
A(T) = € (2e(T)de)de / e2.0(ze(t)de)dt . (13)
0
The partial derivatives of the right hand side of the dynamical system (10), 3F;/0z. and 9 F./0p
can be obtained from the state equations of the ODE model (7, 8).

The backward integration requires the storage of the whole trajectory of the state variables. This
limits the applicability to small problems. However, because of the local processing in CNNs,
learning with small examples is sufficient, and therefore this is not a serious restricion.
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6 Conclusion

Learning can not only be used to find new template vatues for the original CNN model. But
hardware oriented learning provides a tool for finding template values for an actual VLSI-
implementation. The properties and nonidealities of the circuit can be taken into account,
thus the correct functional behaviour can be trained. Although the ODE-description of the
actual MOS circuit can become quite complicated, especially as more effects like channel
length modulation, finite I/O resistances, and finite frequency response of the static blocks are
considered, gradient based learning still can be applied. This could lead to even further simpler
cells, allowing larger cell densities with better yield concerning functional behaviour.
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