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ABSTRACT 
An algebraic method for the design of discrete wavelet 

transforms based on several scaling junctions is presented. 
Solving systems of partly nonlinear equations is necessary 
to compute the discrete Coefficients. Wavelet transforms 
based on several scaling junctions enable properties that 
are impossible an the single-wavelet case. Wavelet trans- 
forms based on several scaling junctions can also be de- 
signed wavelet-like, what leads to a better approximation of 
the continuous bases. In this paper we show how to con- 
struct the discrete wavelet transforms based on several scal- 
ing junctions with the algebraic design method and discuss 
the properties of the resulting wavelet bases. 

1. INTRODUCTION 
In recent years wavelet transforms have gained a lot of in- 
terest in many application fields, e.g. signal processing [4], 
solving differential and integral equations 131. Different va- 
riations of wavelet bases (orthogonal, biorthogonal, multi- 
wavelets) have been presented and the design of the corre- 
sponding wavelet and scaling functions has been adressed 
[5, 6, 8, lo]. In [I] a purely algebraic approach to  the de- 
sign of these discrete wavelet transforms was taken, while 
the different properties of the wavelet bases were discus- 
sed with respect to orthogonality, approximation proper- 
ties and symmetry. In this paper we extend the algebraic 
design method to  multiwavelet transforms based on several 
scaling functions. Multiwavelets using several scaling func- 
tions enable to fullfil properties, that are impossible in the 
single-wavelet case. Using for example 2 scaling functions 
and 2 wavelets enables orthogonality and symmetry at the 
same time [Ill. Furthermore it is possible to construct no- 
noverlapping bases with arbitrary approximation order (not 
possible with one scaling function [I,  71). 
An alternative to the standard wavelet transform is the use 
of wavelet-like transforms. Those multiwavelet-like trans- 
forms are mostly based on as many scaling functions as 
wavelets [2, 31. They are called multiwavelet-like, since the 
wavelet coefficients used in the different stages of the wave- 
let transform vary from stage to  stage. 

All these wavelet transforms can be computed with an 
algebraic design method by solving systems of partly non- 
linear equations. How to gain the discrete equations for 
the algebraic design of the multiwavelet transforms based 
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on several scaling functions from the properties of the con- 
tinuous basis functions is shown in section 2. Designing 
multiwavelet-like transforms requires a different basis ma- 
trix for each stage of transform. How to compute these 
different stages, and the differences to standard wavelet 
transforms (these use the same coefficients for all stages) 
is discussed in section 3. 

2. MULTIWAVELET TRANSFORMS BASED 

The transform matrix U of a discrete wavelet transform is 
the product of the different stages U;, as it is shown in [l]: 
U = Ui . . . UzUl. Each stage of transform is composed out 
of the basis matrix W, which can be divided in an upper 
part Wu representing the scaling functions (the number of 
rows of Wu is equal to the amount of scaling functions that 
are used) and a lower part WL representing the wavelet 
functions (the number of rows of WL is equal to the amount 
of wavelets that are used). For convenience the algebraic 
design method is presented for an example with 2 scaling 
functions and 2 wavelets, i.e. W is of size 4xn and WL and 
Wu are of size 2xn. The matrix W can be divided into 
h matrices A, of size 4x4, with n=4h. The coefficients of 
the rows of W are named ai, bi ,  ci, di as it is shown in the 
following equation: 

ON SEVERAL SCALING FUNCTIONS 

W = (  Ai A2 . . .  A h ) ;  

@I and @z as well as the multiwavelets '31 and '32 can be re- 
presented by a linear combination of dilated and translated 
versions of the scaling functions @ I  and @z. The coeffi- 
cients with even index, namely a2kr b z k ,  Czk, dzk belong to  
@ I ,  the coefficients with odd index, namely u z k + l ,  b 2 k + l ,  

C Z k + f ,  dzk+l belong to the scaling function @ 2 .  

k=O k r O  

Zh-1 2h--1 

k=O k r O  
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2h-1 
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Orthogonality 
A sufficient condition for orthogonality of the transform is, 
t,hat the matrix W fullfils the orthogonality and the shifted 
orthogonality conditions: 

j 
WWT = I; 

Approximation 

A,Ah+;-j = 0 ,  j = 1 , 2  ... 1 - 1 ;  
i = l  

The continuous wavelet functions have to fullfil the equa- 
tions of vanishing moments for a maximum approximation 
order p .  

t - m  +CO 

0 = s t j Q l  ( t ) d t ;  0 = s t j 9 2  ( t ) d t ;  

In order to formulate these equations quite easily, the 
moments of the scaling functions @I and @ 2  are computed. 

I ,  = J t j @ l  ( t )  d t ;  

The additional parameters I j  and J j  appear in the system 
of equations and have influence on the smoothness of the 
generated bases. 

The most important step of the algebraic design method 
is the conversion of the conditions for the continuous func- 
tions to equations for the discrete coefficients of the matrix 
W. We proceed from the equation of vanishing moments 
and insert the dilation equations. The result is a set of 
equations for the coefficients c; of the matrix W and the 
parameters I j  and Jj. 

O l j l p .  
--oo --oo 

$03 +m 

J ,  = J t j @ 2  ( t )  d t ;  O l j s p .  
--oo --m 

+a, 

O =  J t j Q I ( t ) d t ,  j = ~ ,  . . . p -  1 
--m 

3 3 
0 = (:)I. C2kk3-' + 1 ( I ) J r  C2k+lk3- '  

r=O k r = O  k 

The algebraic design method yields similar equations for 
\ k2  ( d : ) ,  @ 1  ( a , )  and 9 2  (h ) .  The moments of @ 1  and @2 

do not vanish, what leads to the parameters I3 and J 3 .  

f 
o =  k ( 3 , ) 1 r x d 2 k k ' - r +  ( 3 , ) J r c d 2 k + l k 3 - r  

r=O k r=O k 
3 

2 ' + ' 1 ~  = k c>rr a 2 k k 3 - r  + ( 5 ) ~ .  a 2 k + l ~ - r  
r=O k r=O k 

3 
2"'Jj = 2 ( : ) I r c b 2 k k 3 - '  + ( ~ ) J r ~ b 2 k + l k 3 - r  

r = O  k r=O k 

Those approximation equations together with the orthoge 
nality conditions have to be solved to design the multiwa- 
velets and the corresponding multiscaling functions. 

An advantage of wavelet transforms based on several sca- 
ling functions is, that properties can be fullfilled, which 
are absolutely impossible with single-wavelet transforms. 

Strang has shown [ll], that it is possible to compute an 
orthogonal multiwavelet transform with 2 wavelets and 2 
scaling functions fullfilling the property of symmetry. For 
single-wavelet bases it is only possible to compute symme- 
tric wavelets by releasing the orthogonality [4, 61. The ex- 
ample of Strang, that offers symmetry and orthogonality, 
is a special case for an approximation order p = 2 ,  that has 
not yet been generalized. The algebraic design method ena- 
bles the computation of Strang's multiwavelets by solving 
a system of partly nonlinear equations after formulation of 
the marginal conditions of symmetry. Figure 1 shows the 
2 scaling functions (upper row) and the 2 multiwavelets 
(lower row) to the computed orthogonal matrix Ws, that 
includes the symmetric rows. Plotted are the corresponding 
rows of the matrix U. As these plots only approximate the 
continuous functions. they show some discontinuities. A 
possibility to  avoid these small saw teeth is discussed in 
the next section. 

6 a  0 0 0 
sJz -;; 9 l0Jz  9 -3Jz -1  w s =  ( - 1  - 1  -3Jz 9 -1045 9 -3Jz -1  

& 6 - 9 4  0 9 f i - 6  -6 

Figure 1. 
bases ( p = 2 )  

Another restriction of single-wavelets is, that it is im- 
possible to compute nonoverlapping bases of approxima- 
tion order p > l  (Haar basis) [l]. Uncoupled wavelet bases 
find application in solving differential and integral equati- 
ons [3]. Using more than only one scaling functions offers 
the possibility of generating uncoupled wavelets of any ap- 
proximation order. For an approximation order p ?  p scaling 
functions and p wavelets are needed. The algebraic design 
yields a basis matrix W of size 2px2p .  Remarkable is the 
fact, that the multiwavelets can be chosen symmetric, while 
the multiscaling functions cannot. This is shown for p=3, 
i.e. 3 scaling functions (lower row) and 3 multiwavelets 
(upper row) in Figure 2 .  

Plots of the transform matrix based on Strang's 

3. WAVELET-LIKE TRANSFORMS BASED 

The only nonoverlapping wavelets known up to now have 
been designed by Alpert e t  al. [ 2 ,  31. Having the same 
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Figure 2. Uncoupled Multiwavelet transform of p = 3  

areas of application and the same possibilities of implemen- 
tation, as the uncoupled wavelets of the previous section, 
there is the fact, that these bases are only wavelet-like. The 
difference between a wavelet transform and a wavelet-like 
transform is, that wavelet-like transforms need a new basis 
matrix Wi for each stage i of the transform. 

The algebraic design of these wavelet-like basis matri- 
ces differs.a little bit from the computation of the previous 
wavelet bases. As Alpert's bases are nonoverlapping, or- 
thogonality of Wi is ensured without fullfilling any shifted 
orthogonality conditions, i.e. 

WiW' = I  

suffice for orthogonality. The ultimate transform matrix 
U of Alpert [2, 31 has only symmetric rows, so we have to 
choose W1 symmetric. The odd rows are symmetic and the 
even rows are antisymmetric. For convenience we restrict 
our presentation to p = 2 ,  i.e. W1 is 

The multiwavelets have to fullfil approximation criteria. 

0 = ijci  0 = aid; j = 0 , 1 ,  . . . , p - 1;  
i i 

The moments of the scaling functions lead to the parame- 
ters Ij and Jj, while in order to get a definite solution the 
ith row of Alpert's start matrix W1 fullfills a-1 approxi- 
mation equations, what leads to Jo = 0 in our example. 

i 1 

The matrices Wi (25251) show no symmetry, they only 
guarantee symmetry of the rows of the ultimate U, and 

therefore have a definite form. We restrict our considerati- 
ons to WZ: 

Also, the matrices Wi fullfil no approximation criteria, they 
only guarantee, that the rows of U fullfil the approximation 
equations. The matrix Wz is computed with the algebraic 
design method in the same way as in section 2. The only 
difference is, that I, and J3 (j=O,l;) are no more free para- 
meters, but predetermined by the startmatrix WI.  

T = O  c r = O  k 

i i 
O = (I)IrChzkkj-'$ t ) J r E h ~ k + ~ k ' - '  

r=O k r=O k 

The matrices Wi23 are computed in the same manner as 
Wz. Of course, since we have to compute all the matri- 
ces Wi, many more equations have to be solved for these 
wavelet-like transforms than for standard transforms. The 
matrices Wi, however, converge rapidly with increasing i, 
and the complexity of unknowns is reduced to one matrix 
W1 and 1 or 2 further matrices Wi [ l ] .  Figure 3 shows the 
wavelet-like bases for p = 3 .  Plotted are the last rows of the 
matrix U that correspond to the 3 wavelets (upper row) 
and to the 3 scaling functions (lower row). :::m 0 ;;Kj ::;m 
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Figure 3 .  Alpert's scaling functions and wavelets for p 

Remark Alpert's scaling functions are well known as 
Legendre polynomials in literature. He computes his nono- 
verlapping bases not by the algebraic design method. The 
matrix W1 is computed by a QR decomposition of the mo- 
ment matrix [2, 3, 91. Clearly, the QR decomposition with 
its linear operations can be computed with less efforts than 
solving a system of partly nonlinear equations. The alge- 
braic design, however, is a general tool for computing all 

0 
Finally we want to adress why it makes sense to use wavelet- 
like transforms, when standard wavelet transforms can be 

locally supported bases (including Alpert's). 
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done with less effort, i.e. only one basis matrix W for all 
stages. In the case of a multiwavelet transform based on 
several scaling functions, the discrete coefficients of the di- 
lation equations do not always approximate the continuous 
bases. Though the moments of the continuous wavelet func- 
tions vanish, the discrete wavelet coefficients do not fullfil 
these approximation equations (see Strang’s bases, where 
adding the coefficients of the third row of Ws, the sum 
differs from zero). In the case of a multiwavelet-like trans- 
form, the matrix W1, used as a start matrix (1st stage of 
transform), approximates the continuous bases. Therefore, 
the discrete wavelet coefficients are chosen in order to fullfill 
approximation equations. For the higher stages again the 
matrices Wi are needed to transform the bases from the 
coarse to the next finer resolution (dilation equation). The 
matrices Wi do not have to fullfil approximation criteria, 
they only have to conserve them. As the coefficients of Wi 
appear in the dilation equations, this would cause only one 
matrix Wi,2, but as the coefficients of W1 only approxi- 
mate the continuous functions, and as this approximation 
is getting better with each stage, a matrix W, is needed 
for each stage. Therefore, it is also clear, that the matrices 
W, converge quite fast. 

The wavelet transform based on Strang can be modified, 
in order to design a ’Strang-like’ wavelet transform. The 
structure of the nonzero elements of the matrices Wi and 
Wi stays the same. The third and forth row of W1 re- 
presenting the multiwavelets have to fullfil approximation 
equations. 

Then the matrices Wiz2 preserve the symmetry and the 
approximation properties. Comparing the matrix W2 with 
Strang’s basis matrix Ws shows only small differences, 
what is coherent. The matrices W, converge to WS with 
increasing i. The Strang-like discrete wavelet transform is 
based on the same continuous basis functions as the stan- 
dard transform computed with Ws.  In the Strang-like case 
not only the continuous wavelet functions fullfil approxi- 
mation criteria, but also each row of the discrete transform 
matrix. Therefore, the discontinuities (Figure 3) can be 
avoided. Figure 4 shows the plots of the the rows of the 
Strang-like transform matrix U. The Strang-like transform 
converges to the exact continuous functions for cc stages. 

4. CONCLUSION 
In this paper we have extended the algebraic design method 
to multiwavelet transforms based on several scaling func- 
tions. At first the properties of the continuous functions 
@i and 9, are formulated. Inserting the dilation equations 
enables to convert these equations to equations for discrete 
coefficients. Solving the resulting system of partly nonlinear 
equations yields these discrete coefficients and the discrete 
transform matrix can be composed. Using several scaling 
functions enables to compute orthogonal, overlapping and 
nonoverlapping bases, while also in the nonoverlapping case 
symmetric bases can be generated, what is impossible in the 
single-wavelet case. Using several scaling functions the dis- 
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2 0 4 0 6 4  
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Figure 4. Plots based on a Strang-like transform 

Crete transform can be designed wavelet-like, what leads to 
a better approximation of the continuous basis functions. 
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