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Abstract - The SGN-type nonlinearity of a standad Dismte-The Cellular Neuml Network 
(DTCNN) is replaced by a smooth, SienOidcJ nonlinearity with variabk gain. T h m f m ,  the 
malting dynamical system is fully diffmtiobk. Bounds on gain of the function are 
given, ao that the new, anaoth system appnmimatea the a t a d a d  DTCNN d i n  certain limits. 
A learning aighthm is prqposed, which findr the template pammeters for the standard DTCNN 
by & d I y  increasing the gain of the sigmoidal finction. 

1 Introduction 
The DiscretoTime Cellular Neural Network (DTCNN) was introduced in [l] as a discrete- 
time version of the Cellular Neural Network [2]. In a vector notation, the DTCNN equa- 
tions can be written as follows 

(1) 
x(t  + 1) = Ay(t)  + Bu(t) + i 
y(t + 1) = s(x(t + 1)) , y(0) := yo . 

k t  MO be the number of (active and dummy) cells. u(t), y ( t ) ,  and x ( t )  are the MO- 
vecton dinput signala, of cell output sipah, and of cell states, rerpectively. Note that the 
dummy&, which surround the array of utive cella, are also included in the vectora. The 
MO x MO mrtricca A and B contain the fcglback and the fadforward template c d c i e n t s .  
Due to the local interconnection structure of the DTCNN and the translational invariance 
of the template coafficients, the two mrtricea arc only spane. i is the &-vector of 
(identical) cell biaa values. The vector-valued function I : lRMa + { -1,l}& is equivalent 
to an b e n t - w i s e  application of the sign function s : W -+ {-I, 1) (s(z) = +1 for 3: 2 0, 
and -1 otherwir) to each element of x ( t )  of the active cella and to a constant value for 
the dummy cella. Due to the SGN-type ecll nonlinearity a(z), the resulting dynamical 
system is not differentiable. 

Since gradient information is not available, standard learning dgorithms for differen- 
tiable dynamical rystema [3], [4], [5] cannot be applied. Therefore, the SGN-type func- 
tion s(z) in Eq. 1 is replaad by a smooth, nonlinear, differentiable function ;(as) with 
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j : IR + [-I, 11. i(/3t) is a monotonous function with saturation regions, and it satisfies 
j(z) = -i(-z), i(0) = 0, and i(z + foo)  = fl. A typical choice is i&) := tanh(8z). 
p > 0 is an adjustable gain factor. In the limit p + 00, the smooth function j(/3z) 
is identical to SGN(z) for all z # 0. For large, but fmite p, the smooth function will 
approximate the SGN-function except for small values of Izl. 

For the rest of this work, all cell states x(t) and cell outputs y ( t )  belonging to the 
system with the smooth nonlinearity will be distinguished from the standard DTCNN 
system by a hat “2’. In analogy with Eq. 1, we define 

?(t + 1) = Aj.(t) + Bu(t) + i 
f ( t  + 1) = q8jr(t + 1)) 1 f(0) := Y(0) = yo 

This system is now fully differentiable with respect to the network parameters. 

2 Approximation Properties 
If in the original DTCNN from Eq. 1 all cell state d u e s  at all time-steps t are nonzero, 
then the behavior of the original DTCNN can be approximated with arbitrary precision 
by the smooth system from Eq. 2: 

Lemma 1 (Approximation properties of t he  smooth system): Let z,(t) # 0 for  
all t and all cells p.  Let 0 < 6 < 1. a,, is the p-th row of t h e  matrix A. Then  

(3) 
6 6 

z,,(t + 1) - -a,y(t) 2 i i - 1 ( 1 -  6) + - .  2 llaclllt v t 2 0,v cc 
2 I P  

is a suficient condition f o r  

Ily(t) - f(t)llca L 6 v t 2 0 . (4) 

0 

Proof: by induction; omitted for lack of space 0 

It is shown in [6] that the parameter space of the stan- 
dard DTCNN system Eq. 1 is segmented into a very large 
number of convex cones, in which the behavior of the sys- 
tem is constant. The condition frsm Eq. 3 adds transa- 
tzon regions around the hyperplanes separating the convex 
cones, where the system Eq. 2 does not necessarily ap- 
proximate system Eq. 1. This is illustrated for the case 
of a two-dimensional parameter space ip Fig. 1, where the 
transition regions are shown in grey. The system behavior 
in the transition regions can be very complicated. 

Lemma 1 implies that in the limit for very small 6 and 
very large P ,  the smooth system Eq. 3 approximates the 
original DTCNN system Eq. 1 almost everywhere in the 
parameter space except for points where Iz,(t)l < 1 for 
some t, p, i.e. around the hyperplanen separating the convex 
cones in the parameter space. 

Fig. Transition regions 
and approximation regions 
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Note that the SGN-type n d n e u i t y  in a DTCNN hardware realisation ir o h  re- 
&mi by a high gain ampMer (71. Therefore, a hardware implementation is in fact a 
smooth nyntem of the form of Eq. 2. 'This i m p h  that the template pararnctam of a 
hardware implamenbtion will have to obey the condition given in Lannu 1 in order to 
work properly. Thin lurdr to even stricta accuracy conditions OLL the template parameters 
than the one derived in [SI. 

3 Learning by Continuation-Based Methods 
Without loa of generality, we aaume that the I d n g  tank d s t r  of only one item. An 
objective function in introduced, which llrrwura the deviation of the actual behavior of 
the network outputs f ( t )  from the den id  behrvior &t) E [-1,1]"4 for 1 5 t 5 T. k t  
p denote the pcrmmeter wdor containbg d indepandent tunplate ooeftidents and the 
bias. We then define the objective function 6(p) 

This objective function is differentiable with rcapcct to the template parameten. Gradi- 
ents can be computed wing methodo like the WiKama/Zipaer method [4] or the disaete- 
time version of the method propored by P w h u t t e r  151. Nok that the network is only 
operated for a h e d  number of T time-rkps. The degree of freedom in rptemn Eq. 1 and 
Eq. 2 (B is counted an a rystem paramder 88 d) is eliminated by using a paramet&- 
zation for p, which keeps the %norm of tht parameter vector coo4tant. 

F'rom Lemma 1, it can be concluded that a minimization of the objective function 
Eq. 5 does not make sense for large valuca of @, becaua? in thir case, Eq. 5 b a good 
approximation of an objective function of ayatcm Eq. 1 defined analogody to Eq. 5. In 
the case of large @, the objective function Eq. 5 han large arew with very low gradient 
d u c a ,  and rmall (VCM, mort notably the ones excluded by Eq. 3, where the gradients 
can became very large. The " h a t i o n  of mch an objective function is very dif6cult 
from a numerid point of view. 

Therefore, the mathematical tool of Contin- 
d o n  is applied [8]. Let Ss denote a anooth 
system of the form Eq. 2 with a d.in puunetet 
@ and a parameter vector p utirgirY flpIta = 1. 
Let #(p) denote the a"g ' objective 
function according to Eq. 2. A PIDGEN A L  
GOL [SI dercription of the Continution method 
is given in Fig. 2. 

miss the objective function *(p) amdrained 
to (llplla I 1) using the PurTun d p i t h ,  ~ t d e h  ir an optimiutiosr alprithm apaeirlly 
suited for f u n c t h  with * n a "  rrlleyr" [lo]. Thir m i n i "  starb from the initial 

Bo,. . . ,& is a m c " n d y  
The a l p i t h m  worka tu follorn: It -8 with a d d w  Bo urd a rurdm stuting 

point p ~ .  Let psc ba tba d t  of t b o p t i d m t i a n  of @(p). The new stuting point 
for the optimiution of *+l(p) is coenputed by the function nowfnit(pop(). In mort 

ben 
rwdzg(pM) ; 
for j = O  to j- do 

Pop( =I optt.ia.(~'(p), piail ; 
p~ = nrwln i t  (p-1; 

end 
end Continuation mathod; 

The function oPtbiz'(*(P), Phi) mi'- F& 2 b t i n u a t i 0 n - W  method 

point phl. It ret- the pura#ta vectw pop( v m  t0 8 (kd) Opti". 
d a  of pcmitivt gain factem. 
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casea, pd = popt is a rcaaonable strategy, but more elaborated extrapolation methods 
can be used as well. Then, B is i n c r e d  from B, to @j+l. This is repeated, until the 
smooth system Sh- sufficiently apprwrimates the standard DTCNN system for some 
large BA,. The idea behind the ContisuJion method is t h t  by increasing to 
&+I, where &+I - Bj  should be rcaopsbly s d ,  the location of minimum popr will not 
move drastically, so that the new optimum is reached in relatively few steps. 

The Continuation method can be visualized by a simple example. A one-dimensional 
DTCNN consisting of 8 cells with only EII a-template is set up. This network is supposed 
to learn the 1D Connected Component Detector task. The objective function of the 
form (5) is summed over all possible L = 256 input patterns. Thus the network has 3 
independent parameters. Due to the (kpl]~ = l).restridion, the parameter vector can be 
reduced to two dimensions by using a transformation of the form 

from 

p1 = sin vl; p2 = cos v1 sin v2; p3 = cos v1 cos v2 ( 6 )  

with v1 E I-;, 3 and v2 E [-T,x]. Note that this transformation is cyclical in 712. The 
objective function #(u1,v2) is shown in Fig. 3 for different values of p. The objective 
function value is coded as the greyscal: value. Dark regions correspond to low objective 
function values. Note that the objaeive function values are scaled differently in the 
different plots. It can clearly be seen, bow the objective function develops from a smooth 
surface for small 0 to the plateau-type rurface for large p. The location of the minima for 
the corresponding value of /3 changes slowly with p. Due to the transformation in Eq. 6, 
the shape of the convex cones in the parameter space is distorted. 

4 Experimental Results 
The Continuation-based algorithm described in Section 3 was first applied to easy learning 
problems with low-dimensional parameter vectors. In most of these cases the algorithm 
could easily find the expected global minimum of the described objective fusction 6(p) 
without being very sensitive to the specific strategy of increasing the gain parameters p,. 

However, the performance of the method deteriorates for more complicated problems 
with parameter vectors of a higher dimensionality. This happens, because the optimization 
algorithm can get stuck in undedirable local minima of the objective function Eq. 5. These 
local minima lie in the transition regions excluded by Eq. 3, where at least one cell output 
$,(t) can have very small values, so that the signal levels are no longer "quasi-binary". 
The local minima can be very narrow and very deep, especially for large values of p. They 
correspond to solutions that cannot be performed by the original DTCNN system from 
Eq. 1 due to its binary-valued tell outputs. Actuay, it can be shown that it is possible 
to chose a binary-valued desired output d(t), so that the objective function Eq. 5 has a 
lacal minimum in a transition region [Ill. 

As an example, Fig. 4 shows qp) (solid l i e ) ,  the objective function of the smooth 
system according to Eq. 5, and a corrr;arponding,objective function o(p) of the standard 
DTCNN system from Eq. 1 (ddted line). Both functions are shown for parameter vector 
values taken from a shart line w e a t  t k g h  a transition region in the parameter space, 
symbolically denoted by p. Here, f l  is wry large, and the local minimum, which only exists 
for the smooth system, is clearly visibk. 

In the caae of more complicated problems, the choice of the strategy for increasing 
/3 becomes very important. By changing @, the shape of the objective function and the 
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Figure 3: Objective function ~ ( u I , u ~ )  for the smooth system and the CCD task 

location of the minima changes. If /3 is increased too fast, then the starting point for the 
optimization of system Soj, i.e. the result of the optimization of system Spj-1, is too far 
away from the actual location of the minimum of system Saj. On the other hand, if p is 
increased too slowly, then computation time is wasted, because the function optimize0 
has to be called too many times. In addition, i t  becomes more likely that the algorithm 
tracks one of the narrow, undesired minima in the transition regions until ,Bmx is reached. 
This solution is worthless, since it does not reflect the behavior of the standard DTCNN 
system. For moderate increases of /?, the algorithm can “jump out” of the undesired local 
minima while at the same time it can track the much broader minima corresponding to a 
mapping performable by the standard DTCNN system. 
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Figure 4: Objective function-2(p) and o(p) in a transition region 
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