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Abstract — The SGN-type nonlinearity of a standard Discrete-Time Cellular Neural Network
(DTCNN) is replaced by a smooth, sigmoidal nonlinearity with variable gain. Therefore, the
resulting dynamical system is fully differentiable. Bounds on gain of the sigmoidal function are
given, so that the new, smooth system approzimates the standard DTCNN within certain limits.
A learning algorithm is proposed, which finds the template parameters for the standard DTCNN
by gradually increasing the gain of the sigmoidal function.

1 Introduction

The Discrete-Time Cellular Neural Network (DTCNN) was introduced in [1] as a discrete-
time version of the Cellular Neural Network [2]. In a vector notation, the DTCNN equa-
tions can be written as follows

x(t+1) = Ay(t)+Bu(t)+i )
y(t+1) = s(x(t+1)), ¥(0):=yo.

Let My be the number of (active and dummy) cells. u(t), y(t), and x(t) are the M-
vectors of input signals, of cell output signals, and of cell states, respectively. Note that the
dummy cells, which surround the array of active cells, are also included in the vectors. The
M, x Mo matrices A and B contain the feedback and the feedforward template coefficients.
Due to the local interconnection structure of the DTCNN and the translational invariance
of the template coeflicients, the two matrices are only sparse. i is the My-vector of
(identical) cell bias values. The vector-valued function s : RM — {—1,1} is equivalent
to an element-wise application of the sign function s : R — {-1,1} (s(z) = +1 for z > 0,
and ~1 otherwise) to each element of x(t) of the active cells and to a constant value for
the dummy cells. Due to the SGN-type cell nonlinearity s(z), the resulting dynamical
system is not differentiable. :

Since gradient information is not available, standard learning algorithms for differen-
tiable dynamical systems [3], [4], [5] cannot be applied. Therefore, the SGN-type func-
tion s(z) in Eq. 1 is replaced by a smooth, nonlinear, differentiable function §(8z) with

0-7803-2070-0/94/$4.00 © 1994 IEEE 171

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 2, 2009 at 05:12 from IEEE Xplore. Restrictions apply.


http://ho1giQnws.o-technik.tu-muenchen.de

§:IR — [—1,1]. 3(Bz) is a monotonous function with saturation regions, and it satisfies
i(z) = —i(—z), §(0) = 0, and 3(z — +oo) = 1. A typical choice is §(fz) := tanh(Sz).
B > 0 is an adjustable gain factor. In the limit 8 — oo, the smooth function 3(Bz)
is identical to SGN(z) for all z # 0. For large, but finite 8, the smooth function will

approximate the SGN-function except for small values of |z|.

For the rest of this work, all cell states x(t) and cell outputs y(t) belonging to the
system with the smooth nonlinearity will be distinguished from the standard DTCNN

system by a hat “#”. In analogy with Eq. 1, we define
x(t+1) Ay(t)+ Bu(t) +i
y(E+1) 8(Bx(t+1)), ¥(0)=y(0)=yo.

Il

This system is now fully differentiable with respect to the network parameters.

2 Approximation Properties

(2)

If in the original DTCNN from Eq. 1 all cell state values at all time-steps ¢ are nonzero,
then the behavior of the original DTCNN can be approximated with arbitrary precision

by the smooth system from Eq. 2:

Lemma 1 (Approximatioh properties of the smooth system): Let z,(t) # 0 for

allt and all cells pu. Let 0 < § < 1. a, is the u-th row of the matric A. Then

5 ' 5
%@+1)-§mwﬁ)2 3*0—6¥+54hm1 Yt>0,Vpu

™|~

is a sufficient condition for

ly(t) =¥l <6 V0.

Proof: by induction; omitted for lack of space

It is shown in [6] that the parameter space of the stan-
dard DTCNN system Eq. 1 is segmented into a very large
number of convex cones, in which the behavior of the sys-
tem is constant. The condition from Eq. 3 adds transi-
tion regions around the hyperplanes separating the convex
cones, where the system Eq. 2 does not necessarily ap-
proximate system Eq. 1. This is illusfrated for the case
of a two-dimensional parameter space ip Fig. 1, where the
transition regions are shown in grey. The system behavior
in the transition regions can be very complicated.

Lemma 1 implies that in the limit for very small § and
very large (3, the smooth system Eq. ? approximates the
original DTCNN system Eq. 1 almost everywhere in the
parameter space except for points where |z,(t)] < 1 for
some t, i, i.e. around the hyperplanes sef)uating the convex
cones in the parameter space.
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Fig. 1: Transition regions
and approximation regions



Note that the SGN-type nonlinearity in a DTCNN hardware realization is often re-
alized by a high gain amplifier [7]. Therefore, a hardware implementation is in fact a
smooth system of the form of Bq. 2. This implies that the template parameters of a
hardware implementation will have to obey the condition given in Lemma 1 in order to
work properly. This leads to even stricter accuracy conditions on the template parameters
than the ones derived in [6].

3 Learning by Continuation-Based Methods

Without loss of generality, we assume that the learning task consists of only one item. An
objective function is introduced, which seasures the deviation of the actual behavior of
the network outputs §(t) from the desived behavior d(t) € [~1,1]% for 1 <t < T. Let
p denote the parameter vector containing all independent template coeflicients and the
bias. We then define the objective function 5(p)

T T
op) = g o) [ -d@f,  wihacy, Ta=1. ()

0 tm) =1
This objective function is differentiable with respect to the template parameters. Gradi-
ents can be computed using methods like the Williams/Zipser method [4] or the discrete-
time version of the method proposed by Pearlmutter [5]. Note that the network is only
operated for a fixed number of T time-steps. The degree of freedom in systems Eq. 1 and
Eq. 2 (8 is counted as & system parameter as well) is eliminated by using a parameteri-

zation for p, which keeps the 2-norm of the parameter vector constant.

From Lemma 1, it can be concluded that a minimization of the objective function
Eq. 5 does not make sense for large values of 8, because in this case, Eq. 5 is a good
approximation of an objective function ef system Eq. 1 defined analogously to Eq. 5. In
the case of large f, the objective function Eq. 5 has large areas with very low gradient
values, and small areas, most notably the ones excluded by Eq. 3, where the gradients
can become very large. The minimisation of such an objective function is very difficult
from a numerical point of view.

Therefore, the mathematical tool of Contin- ]
uation is applied [8]. Let S? denote a smooth begin Continuation method;

system of the form Eq. 2 with a gain parameter randomize (pui) ;

f and a parameter vector p satisfying lipfla = 1. for j =0 t0 jmu do

Let &*(p) denote the corresponding objective Popt = optimize(P(p), pumi) ;
function according to Eq. 2. A PIDGIN AL- Pui = new.init(pop);

GOL [9] description of the Continuatien method end

is given in Fig. 2. end Continuation method;

The function optimize(6%(p),pw) mini- s g
ises the objective function 3%(p) ained Fig. 2: Continuation-based method
to (lplla = 1) using the ParTan slgorithm, which is an optimisation algorithm especially
suited for functions with “narrow valleys” {10]. This minimisation starts from the initial
point puy. It returns the parameter vector p, corresponding to a (local) optimum.
Boy - - - 1 Bimes i8 & monotonously increasing series of positive gain factors.
The algorithm works as follows: It starts with a small value S, and a random starting
point Pui. Let pop be the result of the optimisation of #(p). The new starting point
for the optimisation of 3+!(p) is computed by the function new.init(pem). In most
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cases, Pini = Popt i8 a reasonable strategy, but more elaborated extrapolation methods
can be used as well. Then, 8 is increased from J; to B;4:. This is repeated, until the
smooth system SPimsx sufficiently approximates the standard DTCNN system for some
large B;...- The idea behind the Contisuation method is that by increasing 8 from B; to
Bi+1, where 841 — B; should be reasonably small, the location of minimum pgp will not
move drastically, so that the new optimum is reached in relatively few steps.

The Continuation method can be visualized by a simple example. A one-dimensional
DTCNN consisting of 8 cells with only &n a-template is set up. This network is supposed
to learn the 1D Connected Component Detector task. The objective function of the
form (5) is summed over all possible L = 256 input patterns. Thus the network has 3
independent parameters. Due to the (|iplla = 1)-restriction, the parameter vector can be
reduced to two dimensions by using a transformation of the form

p1 =sinvy; p2 = cosv;sinvy; p3 = COSV;COSMy (6)

with v; € (-3, and v € [-—7r 7). Note that this transformation is cyclical in v;. The
objective function 6°(vy,v;) is shown in Fig. 3 for different values of 3. The objective
function value is coded as the greyscale value. Dark regions correspond to low objective
function values. Note that the objective function values are scaled differently in the
different plots. It can clearly be seen, how the objective function develops from a smooth
surface for small 3 to the plateau-type surface for large 5. The location of the minima for
the corresponding value of 8 changes slowly with 8. Due to the transformation in Eq. 6,
the shape of the convex cones in the parameter space is distorted.

4 Experimental Results

The Continuation-based algorithm described in Section 3 was first applied to easy learning
problems with low-dimensional parameter vectors. In most of these cases the algorithm
could easily find the expected global minimum of the described objective function 6(p)
without being very sensitive to the specific strategy of increasing the gain parameters ;.

However, the performance of the method deteriorates for more complicated problems
with parameter vectors of a higher dimensionality. This happens, because the optimization
algorithm can get stuck in undesirable local minima of the objective function Eq. 5. These
local minima lie in the transition regions excluded by Eq. 3, where at least one cell output
Yu(t) can have very small values, so that the signal levels are no longer “quasi-binary”.
The local minima can be very narrow and very deep, especially for large values of . They
correspond to solutions that cannot be performed by the original DTCNN system from
Eq. 1 due to its binary-valued tell outputs. Actually, it can be shown that it is possible
to chose a binary-valued desired output d(t), so that the objective function Eq. § has a

~local minimum in a transition region [11].

As an example, Fig. 4 shows 6(p) (solid line), the objective function of the smooth
system according to Eq. 5, and a corresponding: objective function o(p) of the standard
DTCNN system from Eq. 1 (dotted line). ‘Both functions are shown for parameter vector
values taken from a shart line sagment through a transition region in the parameter space,
symbolically denoted by p. Here, 3 is very large, and the local minimum, which only exists
for'the smooth system, is clearly visible..

In the case of inore complicated problems, the chonoe of the strategy for increasing
B becomes very important. By changing 8, the shape.of the objective function and the
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Figure 3: Objective function 6°(v;,v,) for the smooth system and the CCD task

location of the minima changes. If 8 is increased too fast, then the starting point for the
optimization of system S%, i.e. the result of the optimization of system S%-t, is too far
away from the actual location of the minimum of system S%. On the other hand, if 8 is
increased too slowly, then computation time is wasted, because the function optimize()
has to be called too many times. In addition, it becomes more likely that the algorithm
tracks one of the narrow, undesired minima in the transition regions until Bu,, is reached.
This solution is worthless, since it does not reflect the behavior of the standard DTCNN
system. For moderate increases of 4, the algorithm can “jump out” of the undesired local
minima while at the same time it can track the much broader minima corresponding to a
mapping performable by the standard DTCNN system.

175

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 2, 2009 at 05:12 from IEEE Xplore. Restrictions apply.



o 01 02 03 04 05 08 07, 08 03 1
Figure 4: Objective function.6(p) and o(p) in a transition region

References

[1] H. Harrer and J. A. Nossek, “Discrete-Time Cellular Neural Networks,” International
Journal of Circuit Theory and Applications, vol. 20, pp. 453467, Sept. 1992.

[2] L. O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE Trans. on Cir-
cuits and Systems, vol. 35, pp. 12567-1272, Oct. 1988.

{3] F.J. Pineda, “Dynamics and architecture for neural computation,” in Artificial Neu-
ral Networks: Paradigms, Applications and Hardware Implementation (E. Sdnchez-
Sinencio and C. Lau, eds.), pp. 58-81, IEEE press, 1992.

(4] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully
recurrent neural networks,” Neural Computation, vol. 1, pp. 270-280, 1989.

(5] B. A. Pearlmutter, “Learning state space trajectories in recurrent neural networks,”
Neural Computation, vol. 1, pp. 263-269, 1989.

[6] H. Magnussen and J. A. Nossek, “A geometric approach to properties of the discrete-
time cellular neural network (to be published),” IEEE Transactions on Circuits and
Systems — I: Fundamental Theory and Applications, 1994.

[7} H. Harrer, J.A. Nossek and R. Stelzl “An analog implementation of Discrete-Time
Cellular Neural Networks,” IEEE Transactions on Neural Networks, vol. 3, pp. 466~
476, May 1992.

[8] R. Seydel, “Tutorial on continuation,” Int. J. of Bifurcation and Chaos, vol. 1, no. 1,
pp. 3-11, 1991.

{9] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complezity. Prentice-Hall, 1. ed., 1982.

(10] D. G. Luenberger, Introduction to Linear and Nonlinear Programming. Addison-
Wesley, 1. ed., 1973.

[11] G. Papoutsis, “Implementierung eines Optimierungsalgorithmus als Lernalgorithmus
fiir Zeitdiskrete Zellulare Neuronale Netze (in german).” Diplomarbeit, Dec. 1993.

176

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 2, 2009 at 05:12 from IEEE Xplore. Restrictions apply.



