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DESIGN AND LEARNING WITH CELLULAR NEURAL NETWORKS? 

JOSEF A. NOSSEK 

Institute for  Network Theory and Circuit Design, Technical University of Munich, Munich, Gern1un.v 

SUMMARY 

The template coefficients (weights) of a CNN which will give a desired performance, can either be found by design or 
by learning. ‘By design’ means that the desired function to be performed can be translated into a set of local dynamic 
rules, while ‘by learning’ is based exclusively on pairs of input and corresponding output signals, the relationship of 
which may be far too complicated for the explicit formulation of local rules. An overview of design and learning 
methods applicable to CNNs, which sometimes are not clearly distinguishable, will be given from an engineering point 
of view. 

1. INTRODUCTION 

To find a set of parameters (coefficients, synaptic weights) so that a network performs according to a given 
task is one of the core problems in the field of neural networks. This is of course also true in the case of 
continuous-time and discrete-time cellular neural networks (CT-CNNs and DT-CNNs), where the local and 
translationally invariant interconnections are put together in so-called templates. 

The methods utilized to find such templates can be roughly grouped into three areas, the borders between 
which are not always clear and sharp. In the following an attempt will be made to distinguish between the 
three approaches. The rest of this contribution will elaborate on learning and design, while the third 
approach, mapping, will not be dealt with in detail. 

Lcarning 

(Supervised) learning (see e.g. Reference 1) is solely based on a given set of pairs of input and desired 
output patterns. No intuition is used to prescribe any internal representation or trajectories. The aim is to 
find a parameter vector performing the desired global mapping from input and initial state to the 
corresponding desired output. Therefore it is also sometimes called global learning. 

Design 

Design with CNNs (see e.g. Reference 2) can have many different faces, e.g. programming the network 
to have some desired fixed points (or other attractors) or to evolve along a prescribed trajectory from a 
given initial condition to some desired fixed point under control of a given input or specifying some desired 
local dynamics. 

Mapping 

This last group (see e.g. References 3 and 4) summarizes situations where the CNNs are used to simulate 
or mimic a certain physical, chemical or biological phenomenon based on a set of equations (e.g. partial 

t Pan of this research has been reported in the Proceedings of the 1994 IEEE International Workshop on Cellular Neural Networks 
and Their Applications held in Rome. 
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differential equations (PDEs)). Here the discretization of space (and time) plays a central role in arriving at 
a set of ODES (or difference equations), which can be easily mapped onto a CT-CNN (or DT-CNN).5 Of 
utmost importance is to carry out the discretization such that invariants of the original phenomenon are still 
invariants of the discrete approximation. The mapping onto the CNN architecture is straightforward. 

System equations 

The equations for each cell c of a CT-CNN are 

while for a DT-CNN 

d E h Jc) d Ed, ( r )  

YII) = f k ( k -  1)) ( 2 )  
f ( x )  := sgn(x) 

The symbolic notation ad-' and bd-c of the feedback and control coefficients indicates that only the 
relative position of cells within a neighbourhood X, determines the connection weight. 

Outlirie 

The first useful templates have been derived by design in analogy to known image-processing 
algorithms, while the first systematic approach for the design of CT-CNNs was aimed at programming 
desired fixed points6 (see subsection 2.1). This technique has later been adapted to the discrete-time case in 
Reference 7 (see subsection 2.2) and it requires the a priori knowledge of the trajectories. Modified 
versions of recurrent backpropagation and backpropagation-through-time have been developed' to make 
sure that the CT-CNN will not only have the desired fixed point but also evolve from a given initial 
condition (e.g. input image) into the corresponding fixed point (output image) along a desired trajectory. 
While all the aforementioned techniques require the intuition of an experienced designer in choosing 
proper training patterns and specifying the local dynamics, the approach described in Section 3' for DT- 
CNNs leaves the choice of the trajectories to an optimization procedure. It is therefore the only (global) 
learning procedure in the strict sense. 

For such global learning approaches the question arises of how many samples (input-output pairs) are 
necessary for reliable generalization. In Reference 10 an upper bound on the sample size is derived by 
applying the probably approximately correct (PAC) learning theory to DT-CNNs. 

In a companion paper' ' various applications of global learning algorithms for DT-CNNs are described in 
some detail. 

Finally the optimization of the nominal parameters of a CNN, which has been designed with one of the 
previous procedures, with respect to parameter tolerances as well as pattern disturbances is treated (Section 
4)." This is already a step towards taking into account the hardware constraints at the design or learning 
stage. The approach in Reference 13 even proposes the use of modified network equations for the actual 
behaviour of a simplified CNN hardware. 

Multilayer CNNs, where a sequence of operations (various virtual layers) is carried out on one 
programmable physical layer taking advantage of in-place computations, I 4  are first broken down into 
individual tasks by the intuition and experience of the designer and then dealt with as in single-layer CNNs 
above. 
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2. DESIGN 

2.1. Designing jixed points 

In this subsection, the issue of designing fixed points xm of a CT-CNN specified by the corresponding 
output ym = f ( x " )  in the saturation region is discussed. Given an output in the saturation region I y," I = 1 
and a fixed input uc, the corresponding state must be given by 

since the derivative has to vanish. One still has to make sure that the output of the cell c, equation (3), 
really is given by the desired y w ,  which is equivalent to 

for each cell c of the network (c = 1, . . . , M). In general one has L > 1 desired fixed points ym"] along with 
some input patterns u"](l= 1, ..., L) .  For each pair of training patterns one obtains the system of affine 
inequalities, equation (4), for the unknowns u,  b and i.6 This can now be solved by many methods, e.g.the 
relaxation method in Reference 15, the perceptron algorithm, l 6  Rosenblatt's algorithmI7 and the AdaTron 
algorithm,'* to mention just a few. For each algorithm there is a convergence theorem stating that if a 
solution exists, the algorithm finds a solution. In some applications (e.g.image processing), rotationally 
invariant or isotropic templates are needed. All the above mentioned algorithms can be adapted to 
incorporate these additional equality ~onstraints .~. '~  

Simply replacing equation (4) by 

with some k ,  large enough for the network to settle at a fixed point will give the inequalities to programme 
the fixed points of a DT-CNN. 

In both cases (equations (4) and (5 ) )  the initial condition x(0) or y ( 0 )  is not involved in the learning of 
fixed points. Therefore no control of the basins of attraction of these fixed points is provided. In Reference 
20 a step towards taking into account initial conditions is made but this approach works reliably only if the 
transients are simply monotonic. 

2 2 .  Design of DT-CNNs with prescribed trajectories 

Gradient-based methods are not applicable to DT-CNNs, since error gradients do not exist everywhere in 
the space of the network parameters. The reason for this is the hard threshold function used as the non- 
linearity. The advantage is that the transition from y ( k )  to yfk + 1) can be described by linear inequalities. 
Hence the methods described in subsection 2.1 can be used, though one has to be willing and able to 
prescribe a sensible trajectory u, y(O), ..., y (T) .  From the recursion equation (2) the following set of 
inequalities can be derived for each time step k = 0,, ..., T - 1: 

Again more than one trajectory can be prescribed, and one can replace the inequality 50 '  in the above 
equation by ' b R' to ensure some kind of robustness of the s o l ~ t i o n . ~  This does not change the solvability 
of the system since by appropriately scaling a solution of the original system one obtains a solution of the 
new system. This reflects the fact that the space of solutions of a general system of inequalities 
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Table I. Template coefficients for edge dctection 
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2 := { p E RB.": p'v"]> R 0; voC1 E R N  for 1 S I <  L I is a convex cone. By increasing the value of R,  the 
vertex of the cone is moved away from the origin. A precise definition of the robustness of a solution 
p E Y and how the most robust solution is obtained will be discussed in Section 4. 

An example of the application of equation (6) for extracting the edges of an image and simultaneously 
suppressing the noise is given in Table I .  It is remarkable how simple the learning samples (Figure 1) are 
and how well this works for quite general images (Figure 2). 

Input 
I I  I 

Y (2) Y(3) 
Figure 1. Learning samples for edge detection 

Input 

Figure 2. Edge detection on 'Lena' image 
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2.3. Gradient-based metliods .for desigriing CT-CNNs with prescribed trajectories 

The design of fixed points, however, does not guarantee the correct behaviour of the dynamical system, 
since the initial states do not necessarily lie in the basins of attraction of the correct fixed points. It is thus 
necessary to find a parameter vector p = ((I, b, i) such that the output of the CNN equals the desired output 
d”](m) starting with a given initial state x“I(0) and input u[l] for all training patterns ( I  = I ,  . . . , L). 

A common way of learning in neural networks is to define an error measure or cost function of the fixed 
points and the desired outputs (recurrent hackl7rupagation”) or in general of the trajectory of the system 
and the desired trajectory (bac.kproi’agatio~z-tltro!lgh-rin2e?’): 

/ M  

/ =  I “ = I  

The gradient of this error with respect to the weights can then be used to descend to a local minimum of the 
error: 

For the sake of notational simplicity we will omit the index [ I ] ,  since the gradient is simply summed over 
all learning samples I = 1, . . . , L. 

Owing to the piecewise linear output function, it is better to define the error as a function of the states 
instead of the output.’ With the following function with a parameter R ,  

the state-based distance and the partial derivative are given by 

(10) 

In Figure 3 this state-based error function is visualized in contrast with a conventional one for the special 
case of robustness R = 0 and k = 1. The conventional error measure (e.g. e = 1 y, - d, I ) would lead to a 
constant error (and therefore vanishing gradient) as soon as a cell c was in the wrong saturation region, 
which is obviously not the case for the error measure (9). 

The error of a cell is zero whenever the cell is in the proper saturation region of the output function 
having at least a distance R to the boundary of this region. 

Recurrent backpropagation (RBP)” is a generalization of the well-known backpropagation algorithm to 
learn the fixed points of recurrent neural networks. The error is taken at the fixed points, assuming a fixed 
point is reached 

JE, ax, -- = e’{xcdc (R)d, -. 
ap aP 

E&,, 4 )  = e(s,d, IR), 

E , ( p )  = e(.,(=)d, I R )  (1 1) 

and the equations for RBP read 

where F ,  is the right-hand side of equation (I) ,  1 E R M  is an ‘error signal’ vector, which is computed from 
the associated dynamical system, with any initial condition 1,(0). Thereby, the ODES for 1 (the associated 
dynamical system) are simply introduced to avoid a matrix inversion, which would be necessary otherwise. 
If the algorithm succeeds in finding a suitable parameter vector, not only the fixed points of the dynamical 
system are learned but also the trajectories from the given initial states to the desired fixed points. 



20 J. A. NOSSEK 
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Figure 3. (a) Conventional and (b) state-based error measure and its derivative 

It is possible to implement, in addition to the CT-CNN itself, the associated dynamical system (equation 
(12)) also in hardware. By properly separating the time constants of the CNN and (equation (12)), a fully 
adaptive (learning) CNN can be constructed. 

The problem with RBP is that the algorithm breaks down if the CNN becomes unstable during some step 
of the learning procedure. To avoid this dilemma, backpropagation-through-time has been introduced. 

With backpropagation-through-time (BTT),22923 not only fixed points but also prescribed trajectories can 
be learned. The gradient of the state-based error can be simplified as 

using the associated dynamical system 

which has to be integrated backwards in time, since the boundary value of A, is known at the terminal 
time T :  

(15) 

Depending on the choice of e ,  and e2, B'IT can be used to follow a prescribed trajectory d:' '(t) or to 
gain information from the trajectory to find a parameter vector for which the system converges in a given 
time T to the desired output. 

One problem in common with all gradient-based learning algorithms is that only local minima of the 
error surfaces are found. Therefore the result depends on the selected initial parameter. Although this is 
true, the state-based versions of RBP and BTT described here are much better in this respect when 
compared with their output-based counterparts.' 

For both algorithms, versions applicable to DT-CNNs are also availablez4 provided that their threshold 
non-linearity is replaced by a continuously valued one. 

A r V )  = el(xc(T)dc I R ) 4  I,' e,(xr(t)dr IR) dt. 
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3. GLOBAL LEARNING FOR DT-CNNS 

In global learning algorithms the task which has to be learned by the network is defined by a set of input 
images (training patterns) and the corresponding desired output images of the network. The input images 
are inputs for the whole network as opposed to local cell input patterns in local learning algorithms. The 
global learning algorithm is used to find the network parameters for this task, which implies that the 
algorithm itself designs the trajectory. Thus much more complicated trajectories are obtainable and more 
complicated tasks can be implemented by the network. Unfortunately, global learning algorithms are 
computationally expensive. Following from the results in Reference 25, it can be concluded that global 
learning for DT-CNNs belongs to the class of NP-complete problems.' 

All variants of global learning algorithms are based on the idea that an objective function (cost function) 
is defined which measures how well the network maps a set of input images onto the desired output images. 
Learning is thus achieved by minimizing the cost function. 

DT-CNNs have two stable output behaviours: either they run into a stable fixed point or they perform 
stable limit cycles (oscillations). In many applications, oscillations cannot be tolerated and thus they have 
to be punished by the objective function. 

Let p be the parameter vector which contains the template coefficients of the DT-CNN. A distance 
measure A"](p) and the cost function o(p) are defined as 

- o,.(ylf,L(=) - ~! [ f ] )~  for stable output fixed points 
A"](P) = I' 4 r = ,  

11 for stable limit cycles 

I- 1 

The o, E [0, 1 ] and R, E [0, 1 ] are weighting factors which obey 
M L 

Coc = 1, Cn, = 1. 
c =  1 I -  I 

L is the number of training patterns and M is the number of cells in the network. yk!A(=) denotes the output 
of cell c when the input image ul'] is fed into the network and the network has reached a stable fixed point. 
d"] is the corresponding desired output image of the network. 

In some applications, moderate oscillations can actually be tolerated. In this case it makes sense to use a 
modified distance measure L"](p) in which the distances between the actual and the desired output image 
are averaged over one period of the limit cycle. 

Owing to the inherently non-linear behaviour of a DT-CNN cell (caused by the sign function in equation 
(2)), the objective function o(p) has some unpleasant properties: it consists of multidimensional plateaux 
with constant value and abrupt boundaries between the plateaux. Thus gradients of the objective function 
are either zero (on the plateaux) or undefined (at the boundaries) and classical optimization methods using 
gradient information are not applicable. 

Still, various ways seem feasible to solve the problem. One approach is to use optimization methods, 
which do not require gradient information, to minimize the objective function o(p). This has been done 
using alternate variable methods26and using a combination of Rosenbrock's method and the Simplex 
method. 24 

In another approach the sign-type non-linearity in equation (2) is replaced by a sigmoidal non-linearity 
with variable gain. In this case the system becomes a (continuously valued) discrete-time dynamical system 
where gradients are well defined and classical optimization algorithms can be applied. The idea is to use 
continuation methods, i.e.to start with a low gain of the sigmoidal function and find the minimum for the 
objective function in that case. Then the gain is increased by a small amount and the objective function is 
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minimized again using the result of the last optimization as the starting point. This scheme is repeated until 
the gain is very high and thus the sigmoidal function becomes similar to the sign-type non-linearity." 

A third method is based on the observation that even if the continuously valued template coefficients 
suggest otherwise, the underlying optimization problem has a finite state space and thus can be treated as a 
combinatorial optimization problem. Simulated annealing algorithms have been applied to this problem.' 

Genetic algorithms have also been tried in the global learning problem, both with CT-CNNs and DT- 
C N N S . ~ ~ . ~ '  The results have been mixed and it was at least pointed out that the coding of the coefficients for 
these algorithms is an open problem which is decisive for their success. 

All the above methods can be used to minimize the objective function, but extended experiments suggest 
that simulated annealing is the most robust tool and that it can find good solutions even in difficult cases. It 
has to be mentioned, though, that simulated annealing algorithms are expensive in terms of computational 
requirements. Global learning algorithms are no replacement for local learning algorithms but are an 
important complement to solve learning problems for DT-CNNs. It has to be mentioned that as with most 
learning algorithms for neural networks, the selection of the right training patterns is a crucial problem. 

In Reference 11 some interesting examples are given which are quite complex and certainly beyond the 
capability of local learning algorithms. The above global learning algorithms are quite successful there and 
open up interesting, practically relevant areas of application for DT-CNNs. 

4. ROBUST DESIGN ISSUES 

As already mentioned before, the trajectory of a DT-CNN (Subsection 2.2) and the fixed points of a CT- 
CNN (subsection 2.1) can be described by affine inequalities. The trajectory, as well as the fixed points, can 
be designed by intuition or an appropriate learning algorithm (see Sections 2.2, 2.3 and 3). In any case it is 
desirable to obtain templates which are robust against noise or deviations from their nominal values. It is 
possible to define several notions of robustness with respect to arbitrary q-norms on R N  for a solution 
p E 2 := ( p  E R N :  pTvl']g 0; V ~ ' ]  E RN for 1s f cL) (see Section 2.2).12 For example, the relative robust- 
ness in weight space, rJp), with respect to the Euclidean norm 11 - 11 is defined as the solution of 

(18) 

It can be shown that r,v(p) is the minimal distance of the vector p/ I( p 11 to the planes defined by the 
'patterns' vl']. The most robust solution p* is therefore obtained by solving 

max r subject to VAp E R": 11 Ap 11 = r 11 p 11 implies (p + Ap) E 3. 

(19) 

Obviously the solution is not unique, since an arbitrary positive scaling does not influence the robustness. 
Therefore one can add the additional constraint 11 p 1 1  = 1 to the optimization problem. It can be shown that 
if the problem is solvable, the objective and the constraints can be interchanged, resulting in an equivalent 
quadratic programming problem with linear inequality constraints: I* 

(20) 

Since the objective function is very simple and the constraints are affine, it is possible to obtain an explicit 
expression for the dual function @ provided by Lagrangian duality, which in this case is called the Wolfe 
dual. Denoting V[j l  = v [ ~ ] / v [ ~ ]  11 , the Wolfe dual can be written as 

PTV"] max rJp) = max min 
P P 1 -  l.....L 11 p 11 11 v"] 11 . 

min(IpI[subjecttopTv"l~IIv[ilI[ for I =  1, ..., L .  

xi(i;"'Tt"l)xi + c subject to xj B 0 for j = 1, . . ., L 
i -  I 

Any gradient method can now be applied and only minor modifications are necessary in order to satisfy the 
constraints, since they are very simple. The solution p* of the original problem (20) is obtained from a 
solution xx of (21) by p* = x i  x,%['l. The so-called AdaTron algorithm'* is one implementation of these 
ideas. 
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A solution which has been robustified in accordance with the above-described concept will be most 
insensitive both to the tolerances of the weights of the CNN due to an imperfect hardware implementation 
and to disturbances in the input vectors (images) to be processed. 

5 .  CONCLUSIONS 

The systematic steps towards design and learning with CNNs provide powerful techniques for finding the 
template coefficients (synaptic weights) to perform a desired task. In addition, they also open up the world 
of learning of general artificial neural networks to the VLSI-oriented world of CNNs. 
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