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Subchannel Allocation in Multiuser Multiple-
Input–Multiple-Output Systems
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Abstract—Assuming perfect channel state information at the transmitter
of a Gaussian broadcast channel, strategies are investigated on how to as-
sign subchannels in frequency and space domain to each receiver aiming
at a maximization of the sum rate transmitted over the channel. For the
general sum capacity maximizing solution, which has recently been found,
a method is proposed that transforms each of the resulting vector chan-
nels into a set of scalar channels. This makes possible to achieve capacity
by simply using scalar coding and detection techniques. The high com-
plexity involved in the computation of this optimum solution motivates the
introduction of a novel suboptimum zero-forcing allocation strategy that
directly results in a set of virtually decoupled scalar channels. Simulation
results show that this technique tightly approaches the performance of the
optimum solution, i.e., complexity reduction comes at almost no cost in
terms of sum capacity. As the optimum solution, the zero-forcing alloca-
tion strategy applies to any number of transmit antennas, receive antennas
and users.

Index Terms—Broadcast channel, multiuser multiple-input mul-
tiple-output (MIMO), orthogonal frequency division multiplexing
(OFDM), successive encoding, sum capacity, zero-forcing.

I. INTRODUCTION

Increasing demand for broadband services calls for higher data rates
in future wireless communication systems [1]. Data rates of several
Mb/s for high mobility scenarios and up to 1 Gb/s in low mobility or
static scenarios are expected in fourth generation systems. In the way
to such transmission rates there are two major barriers to be overcome.
The first is the scarcity of spectrum, which limits the amount of band-
width available for transmission. The second is the wireless channel
that severely distorts the signal due to multipath propagation.

The combination of multiple antennas and multicarrier tech-
nology seems to be ideal to achieve the expected rates under the
mentioned constraints [2]. On the one hand, multiple-input mul-
tiple-output (MIMO) channels resulting from the use of multiple
antennas at both transmitter and receiver show higher capacity than
single-input–single-output (SISO) channels and this difference linearly
grows for increasing transmit power. Thus, multiple antennas lead to
higher spectral efficiency. On the other hand, multicarrier techniques,
such as orthogonal frequency division multiplexing (OFDM), trans-
form the frequency selective broadband channel into a set of nearly
flat narrowband channels. As a result, distortion due to multipath is
reduced and equalization at the receiver is greatly simplified.

In the work at hand, we consider the downlink of a wireless commu-
nication system with multiple antennas at the transmitter and the re-
ceivers and OFDM as transmission scheme. We assume that receivers
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know their respective transmission channels perfectly and the trans-
mitter has perfect knowledge of the channel of every user. This as-
sumption presumes perfect channel estimates, a quasi-static scenario,
in which channels do not change significantly for the time between
two consecutive channel estimations, and channel reciprocity in case
of a time division duplex (TDD) system or a feedback link in case of
a frequency division duplex (FDD) system.1 Under these assumptions
we investigate how to allocate resources among the users, viz. power,
space and frequency, in order to maximize the sum of rates transmitted
to the receivers in the cell.

The downlink scenario with perfect channel-state information at the
transmitter (CSIT) has been extensively investigated in recent years
from different points of view. Assuming users with single receive an-
tennas, linear and non linear precoding solutions have been proposed
for criteria such as minimum transmit power subject to quality of ser-
vice constraints imposed by the mobile terminals [4], [5] or sum of
mean square errors (MSE) at the receivers with limited transmit power
and with or without zero-forcing constraints [6], [7]. An overview on
precoding approaches with non cooperative receive antennas can be
found in [8]. Users with multiple antennas have been considered in [9]
and [10], where beamforming algorithms have been proposed aiming
at a minimization of the transmit power under quality constraints for
transmission on each link. Following the same or related criteria, a
multiuser MIMO OFDM setting has been discussed in [11], [12] and
[13]. As pointed out in [11], a major open issue in such a setting is
subchannel allocation, i.e., over how many links should each particular
user receive information and at which frequencies.

From the viewpoint of information theory the downlink of a wireless
communication system is a broadcast channel. For our purposes, since
multiple antennas are available at the transmitter the channel is non de-
graded and since noise at the receivers is Gaussian the channel is also
Gaussian [14]. Contrary to the degraded broadcast channel, for the non-
degraded broadcast channel the capacity region has remained unknown
until very recently. The possibility to employ multiple antennas at the
base station has motivated the resumption of work related to nonde-
graded broadcast channels in the last years. This work is largely based
on results obtained in the late seventies and early eighties. In [15], it
was shown that, assuming single receive antennas and for the two-user
case, a successive encoding technique based on the coding technique
with known interference presented in [16] reaches the Sato upperbound
[17] on sum capacity for the broadcast channel. The achievability re-
gion obtained by successively encoding users, which happens to be a
particular instance of Marton’s region [18], was extended in [19] to
the case of multiple users and multiple antennas. This region has been
shown to reach the Sato bound and the transmit covariance matrices
achieving the points on its boundary have been characterized based
on duality results between the broadcast and multiple access channels
[20]. Recently, it has been found that the successive encoding region
is in fact the actual capacity region of the Gaussian broadcast channel
[21]. Computation of the sum capacity achieving covariance matrices
requires solving a convex optimization problem in the multiple ac-
cess channel and transforming the solution back to the dual broadcast
channel. For the computation of the covariance matrices that achieve
sum capacity, algorithms have been found in [22]–[24] that solve the
first step iteratively. Also motivated by these information theoretic re-
sults some work has recently been done considering criteria other than
sum capacity, e.g., [25]–[27].

In the present work, practical aspects of the optimum solution for
the sum capacity of a Gaussian nondegraded broadcast channel given

1The reader is referred to [3] for further references on the subject of channel
knowledge acquisition at the transmitter.

in [20] are discussed. In particular, we transform the resulting vector
channels into a set of scalar subchannels while preserving capacity and
discuss the extension of this solution to OFDM. Note that conversion of
vector channels to scalar subchannels is always beneficial as it simpli-
fies encoding and decoding of information. Due to the relatively high
complexity associated with the optimum solution for increasing num-
bers of subcarriers and users, we develop a zero-forcing subchannel
allocation method that simplifies computation of transmit covariance
matrices as well as downlink signaling while keeping close to the Sato
bound. The method proceeds sequentially assigning at each step a spa-
tial subchannel to a certain user so that no interference is caused on
already established subchannels. Interference caused by a certain sub-
channel on subsequently established subchannels is neutralized by suc-
cessive encoding. This is possible by choosing the encoding order to
be the same as the order in which subchannels are assigned. The result
is a set of virtually decoupled subchannels over which capacity can be
maximized by distributing transmit power according to the waterfilling
solution.

If all receive antennas are able to cooperate, our zero-forcing allo-
cation method is equivalent to a singular value decomposition (SVD)
of the MIMO channel, which does not require the successive encoding
feature. On the contrary, if no cooperation among receive antennas is
possible, our method is equivalent to a zero-forcing with successive
encoding approach (ZF-SE) (e.g., [28], [14], [29]) with optimized en-
coding order and user selection. In the intermediate cases, in which only
groups of antennas can cooperate with each other, the MIMO channels
corresponding to groups of cooperative receive antennas are effectively
diagonalized. Due to the ability to exploit the cooperation capability
of receive antennas and the successive allocation of subchannels to
users, we call our approach cooperative zero-forcing with successive
encoding and successive allocation method (CZF-SESAM).

With OFDM as transmission scheme, the algorithm can be applied
to every subcarrier simultaneously. If the number of transmit antennas
is exceeded by the number of users or receive antennas, the algorithm
jointly selects spatial dimensions, encoding order and users to be served
at each frequency, thus performing a kind of optimized subcarrier allo-
cation as a by-product.

The remainder of the correspondence is organized as follows.
Section II describes the system model employed in this work. In
Section III, the optimum solution for the sum capacity of a Gaussian
nondegraded broadcast channel is reviewed and practical aspects of
this solution are discussed. In Section IV, we start reviewing the ZF-SE
and SVD approaches, which apply to the case of non cooperative and
cooperative receive antennas, respectively. Combining the principles
of these two approaches and elaborating on the encoding order issue
we arrive at our CZF-SESAM approach and discuss its main prop-
erties. In Section V, simulation results are shown and commented
and, finally, the correspondence is concluded and the main results are
summarized in Section VI.

Notation

In the following, vectors and matrices are denoted by lower case bold
and capital bold letters, respectively. Random variables are represented
with sans-serif characters. We use (�)� for complex conjugation, (�)T

for matrix transposition and (�)H for conjugate transposition. Ef�g
and Trf�g denote the expectation and trace operators, respectively.
Given a matrix AAA, [AAA]i;� represents its ith row, [AAA]�;i its ith column
and jAAAj its determinant. For Hermitian matrices, AAA � 0 indicates that
matrix AAA is positive semidefinite. Letting fAAAigi=1;...;I be the set of
all matrices indexed by the variable i, diag[AAA1; . . . ; AAAI ] represents a
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block diagonal matrix with matrices fAAAigi=1;...;I as blocks in the main
diagonal. Finally, the identity matrix of dimension q is denoted by IIIq .

II. SYSTEM MODEL

A. Channel Model

We consider the downlink of a cellular wireless communication
system. The base station is equipped with t transmit antennas. Each
user k 2 f1; . . . ; Kg has rk receive antennas. An OFDM transmission
scheme is employed with a cyclic prefix that is assumed to be longer
than the length of the power delay profile of the channel so that no
intersymbol interference (ISI) occurs. The channel is assumed to be
invariant for the duration of an OFDM symbol so that orthogonality
between subcarriers is preserved during transmission and no inter-
carrier interference (ICI) occurs. According to these assumptions the
relationship between the vector of transmitted signals xxx(n) 2 t�1

and the vector yyyk(n) 2 r �1 of receive signals for user k at
subcarrier n 2 f1; . . . ; Ng can be expressed as

yyyk(n) = HHHk(n)xxx(n) +wwwk(n) (1)

where HHHk(n) 2
r �t is the channel matrix seen by user k at sub-

carrier n and wwwk(n) 2
r �1 a realization of a zero-mean circularly

symmetric complex Gaussian distributed random variable k(n) rep-
resenting noise with covariance matrix Ef k(n) k(n)

Hg = IIIr .
Noise processes of different subcarriers are considered uncorrelated.
The transmitter is assumed to perfectly know all matrices HHHk(n) and
the average transmit power over the whole spectrum is limited, i.e.

1

N

N

n=1

Tr Ef (n) (n)Hg � PTx: (2)

For notational convenience, the subcarrier index n will be omitted
whenever it is not essential for the understanding of the discussion.
For any subcarrier, stacking receive and noise vectors and the channel
matrices corresponding to every user, i.e., yyy = [yyyT1 . . . yyyTK ]T,
www = [wwwT

1 . . . wwwT
K ]T and HHH = [HHHT

1 . . . HHHT
K ]T, the following

expression is obtained that indicates the relationship between all sig-
nals in the downlink at that frequency:

yyy = HHHxxx+www: (3)

In the following, we call HHH the composite channel matrix to distin-
guish it from the individual channel matrices of each of the users. As the
conditional probability density function p j (yyyjxxx) is Gaussian, model
(3) represents a Gaussian broadcast channel [30], over which we as-
sume that independent information is transmitted to each user, i.e., no
common information is broadcast to all users.

B. Structure of the Transmit Signal

As far as the capacity limits of the nondegraded Gaussian broad-
cast channel are concerned, the appropriate dependence of the actually
transmitted signals, viz. xxx, on the signals intended for each user, as
well as the optimum way to generate these have for long time been
unclear. In [15] a linear relationship between transmit and intended
signals was proposed. This dependence together with a successive en-
coding of information was proved to be optimum in terms of sum ca-
pacity for K = 2 and single receive antennas, i.e., r1 = r2 = 1.
Posterior work [20], [21] has shown that this way of generating and
structuring the transmit signal is optimum in terms of capacity for any
number of receive antennas and users.

Based on these results the transmit signal can be written as

xxx =

K

k=1

VVV kPPP
1=2
k sssk (4)

where VVV k 2 t�m is a matrix with orthonormal column vectors,
PPP k 2 m �m is a diagonal power matrix and sssk 2 m �1 is the
vector of signals intended for user k, which is assumed to be a real-
ization of a zero-mean, circularly symmetric complex Gaussian dis-
tributed vector k with covariance Ef k

H
k g = IIIm and statistically

independent of signals intended for other users. The number of spatial
dimensions mk is less than or equal to minft; rkg and in order to sat-
isfy [2]

1

N

N

n=1

K

k=1

TrfPPP k(n)g � PTx: (5)

At each frequency, signals sssk are obtained as result of a succes-
sive encoding of information intended for the different users. Let �n :
f1; . . . ; Kg ! f1; . . . ; Kg be a bijective function assigning to each
user the order in which its intended information sequence is encoded
on subcarrier n. According to (1) and (4) the signal received by user
�n(1) is given by

yyy� (1) = HHH� (1)VVV � (1)PPP
1=2
� (1)sss� (1)

+HHH� (1)

i>1

VVV � (i)PPP
1=2
� (i)sss� (i) +www� (1)

zzz

:

Since at the time of encoding information for user �n(1), signals
sss� (i>1) are unknown, they can not be taken into account for the gen-
eration of sss� (1) and will add to the Gaussian noise to yield a total
noise term zzz� (1). Correspondingly, the mutual information between
the receive and transmit signals for user �n(1) can be written as

I( � (1); � (1)) = log
RRR� (1) +HHH� (1)QQQ� (1)HHH

H
� (1)

jRRR� (1)j
(6)

where

QQQk = VVV kPPP kVVV
H
k (7)

and

RRR� (j) = IIIr +HHH� (j)

i>j

QQQ� (i)HHH
H
� (j): (8)

User �n(j), for which information is encoded in the jth place, re-
ceives a signal vector

yyy� (j) =HHH� (j)VVV � (j)PPP
1=2
� (j)sss� (j)

+HHH� (j)

i<j

VVV � (i)PPP
1=2
� (i)sss� (i)

+HHH� (j)

i>j

VVV � (i)PPP
1=2
� (i)sss� (i) +www� (j)

zzz

: (9)

Now, at the time of encoding information for user �n(j), signals
sss� (i<j) are known and can be taken into account in the encoding
process to generate the signal sss� (j). Theoretically, such a way of en-
coding information allows to achieve a transmission rate as high as the
capacity of a channel in which the second term of (9) were not present
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[16], [19]. Accordingly, the mutual information between receive and
intended signals for user �n(j) reads

I( � (j); � (j)) = log
RRR� (j) +HHH� (j)QQQ� (j)HHH

H
� (j)

jRRR� (j)j
(10)

Note that for the last encoded userRRR� (K) = IIIr , i.e., the mu-
tual information is completely determined by its own covariance matrix
and the noise process at the receiver and it is not affected by signals in-
tended for other users. We also observe that, if E k

H
k = WWW k ,

noise whitening at the receiver does not affect mutual information, i.e.,
noise whitening preserves capacity. Therefore, there is no loss of gen-
erality in assuming Ef k

H
k g = IIIr , as it was done at the beginning

of this section.

III. SUM CAPACITY OF THE BROADCAST CHANNEL

A. Known Solution

For a frequency flat channel, single carrier transmission, i.e., N =
1, and a particular choice of encoding order and transmit covariance
matrices the sum of achievable rates is given by

C(�;HHH;QQQ1; . . . ;QQQK)

=

K

k=1

log

IIIr +HHH�(k)
i�k

QQQ�(i)HHH
H
�(k)

IIIr +HHH�(k)
i>k

QQQ�(i)HHH
H
�(k)

(11)

where � is the function that defines the order in which users are en-
coded.

Maximization of (11) is possible over the choice of encoding order
and covariance matrices subject to the transmit power constraint (5).
However, since (11) is neither a convex nor a concave function of the
covariance matrices, direct optimization will generally involve an ex-
haustive search over the entire space of covariance matrices that satisfy
the power constraint and over the set of encoding orders. An alternative
method to solve this problem has been found in [20] that exploits the
close relationship between the capacity region of the broadcast channel
and that of its dual multiple access channel.

Given a broadcast channel as described by (3), the system model for
the dual multiple access channel reads

ttt =

K

k=1

HHH
H
k rrrk +www;

where ttt 2 t�1 is the vector of receive signals, rrrk 2 r �1 is the
vector of signals transmitted by user k, which is assumed to be a re-
alization of a zero-mean circularly symmetric complex Gaussian dis-
tributed random variable k with covariance matrix Ef k

H
k g = ���k ,

and www 2 t�1 is a realization of a zero-mean circularly symmetric
complex Gaussian distributed noise process with unit covariance ma-
trix. Under a collective constraint on the sum of transmit powers, i.e.

K

k=1

Trf���kg � PTx; (12)

it has been shown in [20] that the set of rates achievable in the multiple
access channel by successively decoding users, which is optimum in
terms of capacity, is equal to the set of rates achievable in the dual
broadcast channel by performing a successive encoding of users.
Moreover, given a set of covariance matrices and a particular decoding
order, a method has been found to compute the covariance matrices
that achieve the same rates in the broadcast channel by encoding

users in reverse order, i.e., the user decoded first in the multiple
access channel is encoded last in the broadcast channel. Note that the
multiple access channel with constraint (12) is merely a mathematical
tool that allows computation of optimum operational points in the
broadcast channel. Obviously, a common power constraint shared by
non-cooperating users lacks practical relevance.

As a consequence of this result a maximization of (11) can be indi-
rectly performed by first maximizing the sum of achievable rates in the
dual multiple access channel and then computing the covariance ma-
trices that achieve that sum rate in the broadcast channel. Fortunately,
the sum of achievable rates in the multiple access channel, given by

C(HHH;���1; . . . ;���K) = log IIIt +

K

k=1

HHH
H
k���kHHHk ; (13)

is a concave function of the covariance matrices and, therefore, can be
maximized by using convex optimization techniques.

From the optimum set of covariance matrices in the multiple access
channel, which does not depend on decoding order, K! different sets
of covariance matrices for the broadcast channel can be obtained that
maximize the sum of achievable rates. Each of these sets corresponds
to a different encoding order. In [20] it has been shown that the max-
imum value of (11) subject to (12) reaches the Sato upperbound on sum
capacity for a Gaussian broadcast channel, i.e., successive encoding
achieves the sum capacity in this kind of channels.

B. Practical Issues

Successive encoding relies on the possibility to completely neu-
tralize interference that is only known at the transmitter by using
adequate codes. The existence of such codes was first proved in [16]
for scalar channels and this result has recently been extended to vector
channels by several authors (see [19] and references therein). How-
ever, these proofs use random codes that lack algebraic structure and
detectors based on statistical typicality, which is difficult to implement.

More convenient in practical terms are suboptimum coding tech-
niques that are able to counteract known interference with reduced
complexity such as the trellis codes presented in [19], [31] or the gen-
eral lattice codes dicussed in [32] and [33] of which the popular Tom-
linson-Harashima technique [34], [35] is a particular case. A common
characteristic of these techniques is that they are exclusively appli-
cable to scalar channels. As a consequence, it is covenient to look for a
method that, for a given set of covariance matrices and encoding order,
converts the resulting vector channels into sets of orthogonal scalar
channels while preserving the rate of each of the users. In this way,
capacity can be approached by using existing coding techniques for
scalar channels.

In the following, we propose a method that decomposes the vector
channel of each user into a set of orthogonal scalar channels while pre-
serving capacity. Recalling the channel model for the jth encoded user
(cf. (9)) we first apply a linear zero-forcing filter FFF �(j) at the receiver.
The output signal reads

yyy
0
�(j) = sss�(j) + FFF �(j)HHH�(j)

i<j

BBB�(i)sss�(i)

+FFF �(j) HHH�(j)

i>j

BBB�(i)sss�(i) +www�(j)

zzz

where for notational covenience BBB�(i) = VVV �(i)PPP
1=2
�(i) and the zero-

forcing filter FFF �(j) is given by

FFF �(j) = BBB
H
�(j)HHH

H
�(j)RRR

�1
�(j)HHH�(j)BBB�(j)

�1

BBB
H
�(j)HHH

H
�(j)RRR

�1
�(j):
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Note that this linear transformation of the receive signal preserves the
rate of user �(j) and, as it only applies to the receiver of that user, it
does not affect the rates of any other user.

The covariance matrix of the effective noise at the output of the zero-
forcing filter zzz0�(j) = FFF �(j)zzz�(j) equals

RRR
0

�(j) = BBB
H
�(j)HHH

H
�(j)RRR

�1
�(j)HHH�(j)BBB�(j)

�1

: (14)

Performing an eigenvalue decomposition of this matrix, RRR0�(j) =

UUU�(j)����(j)UUU
H
�(j), matrix UUUH

�(j) can be applied at the receiver to
decorrelate the effective noise and signals can be transmitted along the
column vectors of matrix UUU�(j), i.e., sss�(j) = UUU�(j)sss

0

�(j). As a result,
the equivalent channel

yyy
00

�(j) = sss
0

�(j) + UUU
H
�(j)zzz

0

�(j)

zzz

+UUU
H
�(j)FFF �(j)HHH�(j)

i<j

BBB�(i)sss�(i)

is obtained where the effective noise zzz00�(j) is uncorrelated and whose
capacity can be achieved by separately coding over each of the scalar
components. Note that correlation of the third term does not matter as
this term is known at coding time and, therefore, its effect on perfor-
mance can be completely nullified. As the transformation applied to
decorrelate the effective noise is invertible the rate achievable by user
�(j) is preserved and, as it only applies to the receiver of that user, it
does not affect the rates of any other user. As the statistics of �(j) are
invariant under any unitary transformation neither the rate of user �(j)
nor the rate of any other user is affected by this kind of precoding.

The second issue discussed in this section refers to the extension of
the sum capacity solution presented in [20] to an OFDM transmission
scheme, i.e., N > 1. This extension is straightforward if for each user
we arrange all frequency and space components in a unique block di-
agonal matrix

~H~H~Hk = diag[HHHk(1); . . . ;HHHk(N)] 2 Nr �Nt

and consider the channel model

~y~y~y1
~y~y~y2
...
~y~y~yK

=

~H~H~H1

~H~H~H2

...
~H~H~HK

~H~H~H

~x~x~x+

~w~w~w1

~w~w~w2

...
~w~w~wK

where ~w~w~wk = [wwwT
k (1) wwwT

k (2) . . . wwwT
k (N) ]T 2 Nr �1 and

~y~y~yk 2
Nr �1 and ~x~x~x 2 Nt�1 are defined analogously. With such a

model of the multicarrier broadcast channel the sum capacity maxi-
mizing transmit covariance matrices can be found by directly applying
the method described above. Specifically, the sum of achievable rates
in the corresponding dual multiple access channel is given by

C( ~H~H~H; ~�~�~�1; . . . ; ~�~�~�K) = log IIINt +

K

k=1

~H~H~H
H
k
~�~�~�k

~H~H~Hk (15)

where ~�~�~�k 2
Nr �Nr is the transmit covariance matrix of user k.

Using the same reasoning as in the proof of the Hadarmard’s inequality
given in [36] it is straightforward to show that matrices ~�~�~�k optimally
have a block diagonal structure matching the structure of their respec-
tive channels ~H~H~Hk , i.e.

~�~�~�k = diag [���k(1);���k(2); . . . ;���k(N) ] 2 Nr �Nr

where ���k(n) 2 r �r . As a consequence, the sum of achievable
rates given in (15) can optimally be expressed as sum of sum rates
achieved on each subcarrier of the system

C( ~H~H~H; ~�~�~�1; . . . ; ~�~�~�K) =

N

n=1

log IIIt +

K

k=1

HHH
H
k (n)���k(n)HHHk(n) :

(16)

Since this expression is an addition of concave functions of matrices
���k(n), it is itself concave and can be maximized subject to the power
constraint

1

N

N

n=1

K

k=1

Trf���k(n)g � PTx

by using convex optimization techniques. From the optimum transmit
covariance matrices that apply to a particular subcarrier in the multiple
access channel, a set of transmit covariance matrices that achieve the
same sum rate on that subcarrier with equal transmit power in the dual
broadcast channel can be computed by assuming a certain decoding
order and using the transformations presented in [20]. Since there are
K! different decoding orders, there will be K! such sets. The same
transformations can be performed on every subcarrier assuming dif-
ferent decoding orders, which yields a set of KN transmit covariance
matrices that achieve the sum capacity of the multicarrier broadcast
channel. Note that, although there are (K!)N different optimum sets of
transmit covariance matrices, there is a unique power allocation over
frequency that achieves the sum capacity.

C. Complexity

Maximization of (13) or (16) under their respective power con-
straints falls into the category of determinant maximization problems
with linear matrix inequality constraints. This kind of problems is at the
top of a hierarchy of standard convex optimization problems including,
among others, semidefinite programming or linear programming as
especial cases [37]. In order to avoid the complexity of the very
general numerical techniques that solve this kind of problems, iterative
algorithms have been proposed in [22], [23] and [24] that guarantee
convergence to the optimum solution. In the following we consider
the iterative waterfilling approach presented in [22] as a representative
of this kind of algorithms, which show similar properties and perfor-
mance.2 An extension of this algorithm to multicarrier transmission is
sketched in Table I. In the first step, computation of effective channels,
which result from noise whitening at the receiver, requires the inver-
sion ofKN matrices. The optimization problem in the second step can
be solved by diagonalizing the effective channels and waterfilling the
available transmit power over the resulting eigenvalues. This calls for
KN eigenvalue decompositions and a waterfilling computation over
N

K

k=1 qk dimensions with qk = minfrk; tg. These two steps must
be iteratively repeated until convergence is reached. Subsequently,
a conversion of the solution to the dual broadcast channel must be
performed that involves 2NK matrix inversions, as many matrix fac-
torizations andNK SVDs. Additionally, if the method to obtain scalar
channels described above is applied, further NK matrix inversions
and as many eigenvalue decompositions are required. The memory
required by these iterative approaches in order to store provisional
results is in the best case O(NK) (cf. [24]).

Finally, considering signaling, we observe that, in order to allow op-
timum detection, the transmitter should communicate to each receiver

2A detailed comparison of these algorithms is found in [23] and [24].
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TABLE I
ITERATIVE ALGORITHM FOR MAXIMIZATION OF SUM CAPACITY

k at least its corresponding transmit covariance matrices QQQk(n) and
covariance matrices of effective noise RRRk(n) on every subcarrier.

IV. COOPERATIVE ZERO-FORCING WITH SUCCESSIVE ENCODING AND

SUCCESSIVE ALLOCATION

In this section a technique is presented that needs a maximum
of KNt SVDs to find an encoding order and a set of unit-norm
transmit and receive weighting vectors that transform the broadcast
channel into a set of virtually decoupled scalar channels over which
the achievable sum rate is nearly equal to the sum capacity of the
original channel. Complexity is similar to that of one iteration in any
of the iterative approaches mentioned in the last section. Thus, as far
as computational complexity is concerned, the basic saving consists in
the fact that no iterations are required. Moreover, the solution directly
applies to the broadcast channel and can be readily implemented
using coding and detection techniques for scalar channels. In contrast
to iterative approaches, the algorithm only needs O(N) memory
positions for storage of provisional results. Finally, in order to perform
optimum detection, the transmitter must communicate to each user
only its corresponding covariance matrix, which leads to a reduction
of signaling overhead in the downlink [38]. This is a consequence
of the zero-forcing constraint that the algorithm employs to compute
transmit weighting vectors.

In the following, we first review and discuss two standard tech-
niques on which our method is based. These are the zero-forcing with
successive encoding technique (ZF-SE), which applies to channels
with non-cooperating single receive antennas, and the SVD, which
applies to single user channels in which antenna elements at the
receiver can cooperate. A direct combination of both techniques
results in a technique that we call block zero-forcing with successive
encoding (block-ZF-SE). This technique eliminates inter-user inter-
ference following a ZF-SE strategy and exploits cooperation between
antennas belonging to a same user. As all these techniques can be
trivially applied to OFDM by parallel execution on every subcarrier,
in the remaining of this section we assume a single carrier system, i.e.,
N = 1.

A. ZF-SE and SVD

Consider the system model given in (3) and assume that users have
single receive antennas and do not cooperate with each other. A stan-
dard transmission technique that applies to this setting is ZF-SE (e.g.,
[28], [14], [29]).

Considering a structure of the transmit signal as indicated by (4) and
an encoding order defined by a function �, the signal received by user
�(j) reads

y�(j) =hhh
T
�(j)vvv�(j)p

1=2
�(j)s�(j)

+ hhh
T
�(j)

i<j

vvv�(i)p
1=2
�(i)s� (i)

+ hhh
T
�(j)

i>j

vvv�(i)p
1=2
�(i)s�(i) + w�(j)

z

where hhhTk = [HHH]k;�. The ZF-SE technique selects vectors vvv�(i>j) so
that z�(j) = w�(j), i.e., it completely suppresses interference caused
by subsequently encoded users. The remaining intereference caused
by previously encoded users is neutralized by coding. Computation of
vectors vvvk can be done either by permuting the rows of matrix HHH and
performing an LQ factorization on the resulting matrix or in a succes-
sive way according to a Gram-Schmidt procedure as follows:

vvv�(j) =
TTT jhhh

�

�(j)

kTTT jhhh
�

�(j)k
; j = 1; . . . ; q

where TTT 1 = IIIt, TTT j+1 = TTT j � vvv�(j)vvv
H
�(j) and q is the rank of HHH .

It is easy to prove that TTT j is the projector matrix corresponding to the
subspace defined by the intersection of kernels of channelshhhT�(i<j) and,
as a consequence, hhhT�(i<j)vvv�(j) = 0. On the other hand, in general,
hhhT�(i>j)vvv�(j) 6= 0, which constitutes the part of interference that can
be combatted by coding. Effective transmission of information occurs
over the set of virtually decoupled channels fhhhT�(j)vvv�(j)gj=1;...;q and
the achievable sum rate is given by

C(�;HHH; p1; . . . ; pq) =

q

j=1

log 1 + p�(j)g
2
�(j) (17)

where g�(j) = hhhT�(j)vvv�(j) . Subject to a transmit power constraint,
(17) becomes maximum if power allocation is performed according to
the waterfilling strategy.

Now, we may consider again model (3) and assume that K receivers
with single antennas are able to cooperate or, equivalently, there is only
a single user in the system with K receive antenna elements. In this
case, it is well known that capacity is maximized by transmitting in-
formation along the right singular vectors of the channel matrix and
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allocating power according to a waterfilling strategy over the associ-
ated singular values [39]. At the receiver, though not essential, the re-
ceive signal can be filtered with the left singular vectors of the channel,
which greatly simplifies detection. Capacity for this cooperative setting
is given by

C(HHH; p1; . . . ; pq) =

q

k=1

log 1 + pk�
2
k (18)

where f�kgk=1;...;q are the singular values of matrix HHH .
It seems intuitively obvious that (18) give higher capacity values than

(17). Indeed, if cooperation between receive antennas were detrimental,
the receiver would always have the option to process receive signals
independently as in (17). In [14] it has been shown that for q = K

both capacity values converge at high SNR values, i.e., under these
conditions ZF-SE is optimum at high SNR values. This makes of ZF-SE
an attractive option if the complexity of the optimum solution described
above is to be reduced. However, ZF-SE as found in the literature only
applies to single non-cooperating receive antennas.

Finally, we consider model (3) in all its generality, i.e., rk � 1, 8 k.
This is an intermediate case of the two discussed above. Antenna el-
ements at the same receiver can cooperate, whereas between antenna
elements belonging to different users cooperation is not possible. For
such a setting we could do without the cooperation capability of groups
of receive antennas and directly apply the ZF-SE approach. Neverthe-
less, improved performance is obtained if cooperation is exploited by
combining the ZF-SE principle with the SVD. While the first combats
inteference between groups of antennas belonging to different users,
the second converts the vector channels of single users into a set of or-
thogonal scalar channels while preserving capacity. The essential dif-
ference between both a direct application of ZF-SE and a combination
of ZF-SE and SVD, which we call block-ZF-SE, is that while ZF-SE
eliminates the cross-talk between antennas of a same user, block-ZF-SE
exploits this cross-talk in order to increase capacity.

Transmit and receive weighting vectors for the block-ZF-SE ap-
proach can be sequentially computed as follows:

HHH�(j)TTT j = UUU�(j)����(j)VVV
H
�(j); j = 1; . . . ; � (19)

where the right hand side of (19) is the SVD of the matrix on the
left hand side, VVV �(j) 2 t�m and UUUH

�(j) 2 m �r are
the matrices of transmit weighting unit-norm column vectors and re-
ceive weighting unit-norm row vectors of user �(j), respectively and
m�(j) is the rank of matrix HHH�(j)TTT j , where TTT 1 = IIIt and TTT j+1 =
TTT j � VVV �(j)VVV

H
�(j). Finally, � is chosen such that �

j=1m�(j) = q.
Analogous to the ZF-SE approach, TTT j is the projector matrix corre-
sponding to the subspace defined by the intersection of kernels of the
matricesHHH�(i<j). Accordingly, considering the signal received by user
�(j) after weighting

yyy�(j) =UUU
H
�(j)HHH�(j)VVV �(j)PPP

1=2
�(j)sss�(j)

+UUU
H
�(j)HHH�(j)

i<j

VVV �(i)PPP
1=2
�(i)sss�(i)

+UUU
H
�(j) HHH�(j)

i>j

VVV � (i)PPP
1=2
� (i)sss� (i) +www� (j)

zzz

we observe that zzz�(j) = UUUH
�(j)www� (j), i.e., interference caused

by users �(i > j) is linearly suppressed by the choice of transmit
weighting vectors. The remaining interference, caused by users
�(i < j), can be rendered ineffective by coding. The effective channel
for user �(j) is a set of orthogonal scalar channels given by the
diagonal matrix ����(j), which has the same capacity as the projected

channel HHH�(j)TTT j . Note that applying the ZF-SE approach to this
projected channel would necessarily lead to a certain capacity loss as
pointed out before when comparing (17) and (18). It can be easily veri-
fied that our block-ZF-SE approach converges to a SVD of the channel
matrix if K = 1 and to a ZF-SE approach if r1 = � � � = rK = 1.

Aiming at a maximization of sum rate there are two parameters of
the block-ZF-SE approach, over which optimization can be done. As
described above, at each step, the algorithm assigns to a certain user as
many subchannels as the rank of its projected channel matrix. This is
clearly suboptimum if, for instance, some of the subchannels are weak.
In that case, contribution of these subchannels to the sum rate might be
negligible while they may impose severe constraints on subchannels of
subsequently encoded users. The second parameter is encoding order.
In the following, coming back to the ZF-SE approach, an algorithm is
proposed that orders users aiming at a maximization of the achievable
sum rate. Since the algorithm involves a successive allocation of sub-
channels to users we call this approach zero-forcing with successive
encoding and successive allocation method (ZF-SESAM). The crite-
rion employed for the allocation of subchannels in this algorithm to-
gether with the allocation of just a single subchannel to a particular
user at each step of the block-ZF-SE approach form the basis of our
CZF-SESAM approach discussed later in this section.

B. ZF-SE and Encoding Order

We consider again model (3) with r1 = � � � = rK = 1 and a ZF-SE
transmission approach. As already mentioned, the achievable sum rate
given in (17) is maximized by distributing power over the resulting
subchannels according to a waterfilling strategy

p�(j) = max � �
1

g2�(j)
; 0 (20)

where g�(j) = jhhhT�(j)vvv�(j)j is the channel gain of user �(j) and � is
the waterfilling level, which is chosen to fulfil the transmit power con-
straint p�(1) + � � � + p�(K) � PTx. Substituting (20) into (17) under
consideration of the transmit power constraint, the following expres-
sion results for the sum capacity of the system

C(�;HHH) = Q log
1

Q
PTx +

K

j=1
p 6=0

1

g2�(j)

+ log

K

j=1
p 6=0

g
2
�(j) (21)

where Q � K indicates the number of users for which p�(j) 6= 0, i.e.,
the number of users that are served by the base station. As we observe,
in contrast to the optimum solution, sum rate turns out to be a function
of the encoding order for the ZF-SE approach.

Encoding order has been studied in [29] for Q = K , i.e., full rank
matrix HHH , K � t and enough power so that every user can be served.
Under this assumption it can be shown that the second term in (21) is
independent of encoding order and sum rate is maximized by solving

argmax
�

K

j=1

1

g2�(j)
: (22)

Based on this insight, in [29] a successive ordering algorithm is pro-
posed that is shown to be optimum for K = 2. First, the last encoded
user is chosen to be the one with minimum channel gain under orthog-
onality constraints imposed by all other users. Then, the user encoded
before the last one is chosen to be the one with minimum channel gain
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TABLE II
SUCCESSIVE ALLOCATION ALGORITHM FOR ZF-SESAM

under ortgonality constraints imposed by all other users except for the
last one. The algorithm continues analogously until all users are or-
dered. This algorithm operates similarly to the V-BLAST [40] algo-
rithm for detection of spatially multiplexed signals but with a minimum
gain criterion instead of a maximum SNR criterion for the selection of
a user at each step. While this ordering method can straightforwardly
be applied for K � t, the case K > t is not addressed in [29].

Here, we propose a subchannel allocation algorithm for the ZF-SE
approach that aims at a maximization of the achievable sum rate and
readily applies to any number of transmit antennas and users. This al-
gorithm is sketched in Table II. In the first loop, the first encoded user
is chosen to be the one with largest channel gain. In the second loop,
considering the nullspace of the channel of the first encoded user, the
second encoded user is chosen to be the one that exhibits the largest
gain in this subspace. At any step of the algorithm, the user is se-
lected that exhibits the largest gain within the subspace orthogonal to
the channels of previously selected users. Due to the successive alloca-
tion of spatial channels to users we call this algorithm zero-forcing with
successive encoding and successive allocation method (ZF-SESAM).
The following two theorems provide some rationale for this ordering.

Theorem 1: Let Sj � f1; . . . ; Kg be the set of first j selected users
and let CS be the sum rate achieved by these users. Selecting the next
user according to the proposed method yields the maximum capacity
increment �C = CS � CS , where Sj+1 = Sj [ f�(j + 1)g.

Proof: See Appendix.
While the first theorem tells which user must be chosen to get the

largest capacity increment, the second gives the optimum order for the
selection of an additional pair of two arbitrary users.

Theorem 2: Let Sj � f1; . . . ; Kg be the set of first j selected users
and k1; k2 2 f1; . . . ; Kg n Sj so that khhhTk TTT j+1k � khhhTk TTT j+1k.
Define Sj+2 = Sj [ fk1; k2g and the ordering functions � and �0

so that �(i) = �0(i) 8 i � k, �(j + 1) = �0(j + 2) = k1 and
�(j + 2) = �0(j + 1) = k2. CS is maximized by choosing the
encoding order defined by �.

Proof: See Appendix.
While these two theorems do provide a rationale for our ZF-SESAM

algorithm, they do not prove its optimality. In fact, the final order re-
sulting from the application of the algorithm might not be optimum.
At each step the set of ordered users is optimally incremented provided
that the order of previously selected users in the set is not altered. How-
ever, reconsidering this order could yield a better solution.

For K � t, if K = 2, it can be shown that the ordering obtained by
applying this method is equal to that obtained in [29]. By contrast, if
K > 2 orderings will in general be different. Simulation results with
t = 4 show that, in this case, our method exhibits better performance in
the low SNR region whereas the ordering proposed in [29] outperforms
the method presented here in the high SNR region. However, in both
regions, performance difference is in the order of some hundredths of
a bit.

C. CZF-SESAM

The basic idea behind the successive allocation in our ZF-SESAM
approach is the selection at each step of the spatial subchannel with
largest gain within the subspace orthogonal to previously established
subchannels. This idea can straightforwardly be applied to the general
model (3) with rk � 1 in combination with our block-ZF-SE algo-
rithm. The resulting approach is called CZF-SESAM.

Contrary to the block-ZF-SE, the CZF-SESAM approach proceeds
assigning at each step only one scalar subchannel to a particular user.
An appropriate labelling of the allocated subchannels is given by a pair
(k; `) = �(j), where k indicates the user the subchannel established
in the jth place is assigned to and 0 � ` � minft; rkg identifies that
particular subchannel among the subchannels assigned to user k. The
function

� : f1; . . . ; qg ! f1; . . . ; Kg � f1; . . . ; tg

assigns to any index j, which indicates encoding order and can be
as high as the number of available spatial dimensions given by the
rank q of matrix HHH , the subchannel (k; `) allocated at step j. Any
subchannel �(j) is completely characterized by a transmit weighting
vector vvv�(j) 2

t�1 and a receive weighting vector uuu�(j) 2
r �1.

The output of the CZF-SESAM algorithm comprises the function �,
which indicates the encoding order of each subchannel, and the set of
transmit and receive weighting vectors, which characterize the allo-
cated subchannels.

The algorithm works as follows. After having established the first
j � 1 spatial subchannels, the projection matrix TTT j is computed as

TTT j = TTT j�1 � vvv�(j�1)vvv
H
�(j�1)

with TTT 1 = IIIt. This matrix represents the projector of the subspace
defined by the intersection of the kernels of the subchannels already
established.

Then, channel matrices of all users are projected into this subspace

HHH
j

k = HHHkTTT j ; 8 k

and SVDs of all projected channel matrices are performed

HHH
j

k = UUU
j

k���
j

kVVV
j;H
k ; 8 k:

Within the subspace defined by TTT j the scalar subchannel with max-
imum gain is characterized by the right and left singular vectors with
largest singular value. Following the logic of our ZF-SESAM approach,
that subchannel is selected,

(k0; s0) = argmax
k;s

�
j

k;s ; �(j) = (k0; `(k0));

vvv�(j) =VVV
j

k eees ; uuu�(j) = UUU
j

k eees

where �
j

k;s is the sth eigenvalue in the main diagonal of matrix ���j

k ,
eees is the s0th column of IIIq(k ;j), being q(k0; j) the rank of HHHj

k ,
and `(k0) denotes the number of subchannels provisionally assigned
to user k0. At this point the same procedure is repeated to allocate the
(j + 1)th spatial subchannel. An outline of this algorithm is provided
in Table III. For subchannel �(j) interference caused by subchannels
�(i > j) is forced to zero since vectors vvv�(i>j) lie within the kernel
of this subchannel, i.e.

uuu
H
�(j)HHHk(j)vvv�(i>j) = 0;

where k(j) indicates the user to which subchannel �(j) belongs. By
contrast, interference caused by subchannels �(i < j) is, in general,
not eliminated by the choice of transmit weighting vectors. It will be
neutralized by coding. An exception occurs when k(j0) = k(j) with
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TABLE III
SUCCESSIVE ALLOCATION ALGORITHM FOR CZF-SESAM

j0 6= j. In such case it can be shown that subchannels �(j) and �(j0)
are entirely decoupled. In fact, the algorithm results in a singular value
decomposition if applied to a single user scenario. Effective transmis-
sion of information occurs over each of the allocated scalar subchannels
whose gain is given by

g�(j) = uuu
H
�(j)HHHk(j)vvv�(j):

Over this set of virtually decoupled channels sum rate is maximized
by allocating the available transmit power according to a waterfilling
strategy. As already mentioned, this algorithm, as well as all other dis-
cussed in this section, allows a simultaneous and independent execution
over each of the subcarriers of an OFDM system, which represents a
further practical advantage of these approaches as compared to the op-
timum solution approaches discussed in Section III-C.

V. PERFORMANCE

Performance of the approaches discussed above has been evaluated
and compared by means of simulations.

Fig. 1 shows average sum capacity curves for a Rayleigh distributed
channel with t = 4 transmit antennas, K = 2 users and r1 = r2 = 2
antennas at each receiver. The entries in the composite channel matrix
HHH(n) corresponding to any subcarrier n have been assumed to be mu-
tually independent with variance equal to one. The horizontal axis rep-
resents the ratio between transmit power per subcarrier and the noise
variance, which is assumed to be equal for all receive antennas. We
have considered a multicarrier transmission system with N = 16, in
which channels of different subcarriers are assumed mutually uncor-
related. The basic difference between this setting and a system with
N = 1 is basically the additional degrees of freedom that the multicar-
rier system offers for allocation of power over the spectral components.
Performance of both systems would be identical if a uniform allocation
of power were performed over the subcarriers.

Beside the curves corresponding to the approaches discussed above,
for comparison purposes, we have also included the following curves.
The Sato upper bound on sum capacity, which is reached by the op-
timum solution [20]. The sum rate achieved by the downlink multiuser
MIMO decomposition technique independently reported in [41],
[42] and [43], which linearly suppresses interuser interference and is
labelled block-ZF. The sum rate achieved by using the column vectors
of HHH�1 normalized to norm one as transmit weighting vectors. This
approach, which is labelled ZF, linearly suppresses both interuser in-
terference and cross-talk between receive antennas. Finally, two curves
corresponding to OFDM access strategies with (OFDMA CSIT) and
without (OFDMA no CSIT) channel knowledge at the transmitter.

Fig. 1. Average sum capacity for a multiuser setting with spatially uncorrelated
Rayleigh fading Gaussian channels. t = 4, r = 2, r = 2, K = 2, N = 16.

Both techniques serve only one user on every subcarrier. “OFDMA no
CSIT” selects the user randomly as no channel knowledge is available
at the transmitter. “OFDMA CSIT” selects the user with maximum
Frobenius norm. For ZF-SE and block-ZF-SE encoding order has been
randomly chosen.

Successive encoding techniques converge to the Sato bound at high
values of transmit power. This is in agreement with the result reported
in [14], and mentioned before in this section, that states that, if the com-
posite channel matrix HHH has full row rank, sum capacity achieved by
a ZF-SE approach converges to the capacity of the single user MIMO
channel represented by the same matrix. Performance of CZF-SESAM
overlaps with the Sato bound. Block-ZF-SE and ZF-SESAM show a
similar performance with minimal losses with respect to CZF-SESAM
due to no optimization of encoding order and no use of cooperation,
respectively. As ZF-SE makes use of none of these two degrees of
freedom, its performance loss is larger, but still slight.

Linear zero-forcing techniques show a significant performance loss
with respect to successive encoding approaches. This is due to the
larger number of orthogonality constraints imposed on the choice of
transmit weighting vectors as compared to successive encoding tech-
niques, which counteract part of the interference by coding. The perfor-
mance gap observed between the block-ZF and ZF approaches is due
to the larger number of constraints imposed by the latter as a means
to suppress not only interuser interference but also cross-talk between
receive antennas of a same user. In spite of these constraint-induced
losses, at high SNR, the slope of curves corresponding to linear ap-
proaches is the same as the slope of curves corresponding to successive
encoding approaches. This is not surprising as the asymptotic slope is
determined by the number of subchannels over which information is
transmitted, which, for both linear and non linear approaches, is equal
to the rank of the composite channel matrix HHH .

By contrast, in OFDMA approaches only one user is served on each
subcarrier, and therefore, a maximum of two spatial dimensions are
used, which represents half of the rank of an average realization of the
composite matrix. Accordingly, OFDMA curves asymptotically grow
approximately half as fast as all other curves.

In Fig. 2 average sum capacity curves are shown for a scenario as
described by the settings used in Fig. 1 but where correlation has been
introduced between transmit antenna elements. A transmit correlation
matrix RRRTx = EfHHHHHHHg has been considered with the following
eigenvalue profile

��� = diag[14:6254; 1:3525;0:0220;0:0001]:
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Fig. 2. Average sum capacity for a multiuser setting with spatially correlated
Rayleigh fading Gaussian channels. t = 4, r = 2, r = 2, K = 2, N = 16.

The practical case of two users being in locations few meters apart from
each other that are reached by the base station through quite a narrow
bundle of angles of departure matches the setting proposed here.

The asymptotic slope of all curves decay due to the reduced rank
of the channel. As particular realizations of composite channel ma-
trices are, at least numerically, not any more full row rank, non-co-
operative successive encoding approaches do not approach optimality
at high SNR. As before, CZF-SESAM overlaps with the Sato upper
bound. The losses of all other successive encoding techniques due to
no cooperation and no ordering optimization become larger. Ordering
is now crucial since the first selected subchannel largely determines
performance as it imposes severe constraints on subsequent subchan-
nels. Cooperation is also important since constructive combination of
receive signals raises the gain of the first subchannel. In the light of the
simulation results, optimization of encoding order seems to provide
more benefit than cooperation between receive antennas. However, the
impact of cooperation on capacity will increase with increasing number
of receive antennas per user [44]. Linear zero-forcing techniques dra-
matically suffer from the reduced rank of the channel. Finally, it can
be observed that the asymptotic slopes of OFDMA strategies do not
strongly differ from the slopes of successive encoding approaches. In-
deed, the number of subchannels is, in this case, mostly limited by the
rank of the composite channel, which for most realizations is not larger
than one or two, and not by the fact of serving only one user on each
subcarrier.

Fig. 3 shows average sum capacity curves for a Rayleigh distributed
channel with t = 4 transmit antennas, K = 10 users and rk = 2
antennas at each receiver. Entries in the composite channel matrix of
each subcarrier are assumed mutually independent and with covariance
equal to one. The number of subcarriers in the system is N = 16 and
channels corresponding to different subcarriers are assumed mutually
uncorrelated. Different from the settings of Figs. 1 and 2, now, the total
number of receive antennas in the system is larger than the number of
transmit antennas. This calls for a decision regarding the users to be
served and the number of subchannels to be assigned to these users
on a particular subcarrier. This additional degree of freedom is ex-
ploited by the two approaches with successive allocation capability, i.e.,
CZF-SESAM and ZF-SESAM, and yields a significant performance
gain with respect to block-ZF-SE and ZF-SE, which randomly select
any two users. CZF-SESAM shows an insignificant loss with respect
to the optimum approach. Also moderate is the gain due to receive an-
tenna cooperation of CZF-SESAM with respect to ZF-SESAM. This
gain would however increase if receivers with more than two antennas

Fig. 3. Average sum capacity for a multiuser setting with spatially uncorrelated
Rayleigh fading Gaussian channels. t = 4, r = 2, K = 10, N = 16.

Fig. 4. Average sum capacity for a multiuser setting with spatially correlated
Rayleigh fading Gaussian channels. t = 4, r = 2, K = 10, N = 16.

were considered. Linear zero-forcing approaches are not directly appli-
cable to this setting as the number of orthogonality constraints required
to linearly suppress interference exceeds the number of dimensions of
the transmit weighting vectors. Nevertheless, these techniques might be
endowed with a mechanism to preselect a particular group of receive
antennas so as to guarantee their applicability. This possibility has not
been considered here and, therefore, curves of linear zero-forcing ap-
proaches are not included. The slower asymptotic growth of OFDMA
strategies with respect to successive encoding strategies can be ob-
served again.

Fig. 4 shows average sum capacity curves for a scenario as described
by the settings used in Fig. 3 but where correlation has been intro-
duced between transmit antenna elements. For these simulations, the
following eigenvalue profile of the transmit covariance matrix has been
considered

��� = diag[9:6645; 4:9001;1:2398; 0:1957]:

This profile may very well match a scenario in which a group of users
located in a same certain area, such as a square or street, are reached
from the base station over the same moderately broad bundle of angles
of departure.
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TABLE IV
AVERAGE NUMBER OF ITERATIONS NEEDED BY ITERATIVE ALGORITHM [22] TO ACHIEVE 0.999 R

-

Again, the moderate rank loss of the channel causes a decay of the
asymptotic growth of all approaches. As in Fig. 3, CZF-SESAM shows
an insignificant performace loss with respect to the optimum solution
and a modest performance gain with respect to ZF-SESAM. Also com-
pared to Fig. 3, the gap between techniques with and without succes-
sive allocation capability remains approximately equal while the gap
between successive encoding techniques and OFDMA strategies di-
minishes as the asymptotic growth of the latter is not limited by the
rank of the composite channel matrix and, as a result, is practically not
affected by the rank reduction due to correlation.

As it can be observed in all four plots, our CZF-SESAM approach
practically achieves the performance of the optimum solution while it
involves significantly less complexity, as we discussed in Section III.
However, this advantage does not come at no cost. Considering a mul-
ticarrier transmission system with K users and N subcarriers, we al-
ready saw that sum capacity can be achieved in (K!)N different ways
corresponding to all possible combinations of encoding orders on every
subcarrier. This represents a degree of freedom that can be used to con-
sider further aspects of system design such as user requirements or fair-
ness. On the contrary, with the CZF-SESAM the ordering is already
optimized and we will not have as much flexibility if we want to keep
close to the sum capacity of the system. Despite that, simulation results
have recently shown that at least for two users the rate region achieved
by CZF-SESAM is in most scenarios almost as large as the actual ca-
pacity region [45].

In any case, CZF-SESAM as well as all other zero-forcing ap-
proaches constitute an efficient method to diagonalize the broadcast
channel resulting in a set of virtually decoupled scalar subchannels.
These can be used as a platform over which bit and power loading
can efficiently be optimized according to the most diverse criteria,
possibly at the expense of sum rate. Note that the optimum solution
yields a set of mutually coupled channels due to interference. Also the
largest singular value criterion used for the successive allocation can
be modified if, for instance, an even distribution of spatial dimensions
over the users is to be guaranteed. In sum, the CZF-SESAM approach
is very versatile and lends itself to be used for system design under a
wide range of different criteria, being sum rate just a particular case.

Table IV shows the average number of iterations required by the
optimum iterative algorithm of Table I in order to reach 99.9% of the
sum rate achieved by CZF-SESAM (RCZF�SESAM). Numbers range
between almost one iteration for uncorrelated scenarios at low SNR and
more than 50 iterations at �10 dB, K = 2 and correlated channels.
This indicates that the additional computational complexity of optimal
iterative approaches relative to CZF-SESAM strongly depends on the
particular setting.

VI. CONCLUSION

In this work allocation methods have been investigated that aim at
a maximization of the sum rate transmitted over a broadcast channel.
For the sum capacity achieving solution a method has been presented
that transforms the resulting vector channels into a set of independent
scalar subchannels while preserving capacity, which is meaningful for

practical purposes. Also an extension of this solution to a multicar-
rier system has been proposed. Due to the high complexity of this so-
lution, suboptimum techniques have been investigated that are more
easily implementable. To this end, the standard zero-forcing with suc-
cessive encoding and the SVD approach, which apply to systems with
non cooperative and cooperative receive antennas, respectively, have
been reviewed. Combining the basic principles of these two techniques
and elaborating on the encoding order issue of successive encoding ap-
proaches, a novel zero-forcing approach for broadcast channels with
groups of cooperating antennas has been presented that is based on suc-
cessive encoding and a successive allocation of subchannels to users.
Simulation results have shown that this technique achieves a larger sum
rate than any other state-of-the-art zero-forcing technique closely ap-
proaching the Sato upper bound on sum capacity. This bound is reached
by the optimum solution with considerably more complexity.

APPENDIX

Proof of Theorem 1: Let be k1; k2 2 f1; . . . ; Kg n Sj so that
khhhTk TTT j+1k � khhhTk TTT j+1k. Define Sj+1 = Sj [ fk1g and S 0j+1 =
Sj [ fk2g and two ordering functions � and �0 such that �(i) =
�0(i) 8 i � j, �(j + 1) = k1 and �0(j + 1) = k2. We shall then
prove CS � CS .

Assume that the optimum waterfilling allocation for the set S 0j+1
yields the waterfilling level �� (cf. (20)). For the set Sj+1, consider a
suboptimum power allocation where the users �(i � j) are waterfilled
to the level �� and user k1 receive the same power as user k2 in the set
S 0j+1. Obviously, the first j users achieve the same transmission rate in
both sets. Provided that power assigned to users k2 and k1 is different
from zero, transmission rate achieved by user k1 will be larger than
that achieved by user k2 as the channel gain of user k1 is larger than
the channel gain of user k2. If power is zero the maximum transmission
rate of both users is zero. Waterfilling allocation of power over the set
Sj+1 can only lead to an even larger transmission rate CS .

Proof of Theorem 2: First, assume that there is enough transmit
power so that all users in Sj+2 are allocated some power. For this case,
maximizing capacity is equivalent to maximizing (22) and since the
order of the first j selected users is fixed the proof reduces to demon-
strating

1

g2
�(j+1)

+
1

g2
�(j+2)

�
1

g2
� (j+1)

+
1

g2
� (j+2)

: (23)

By definition we have

g
2
�(j+1) = khhhTk TTT j+1k

2
;

g
2
� (j+1) = khhhTk TTT j+1k

2
;

g
2
�(j+2) = hhh

T
k TTT j+1 �

TTT j+1hhh
�

k hhhTk TTT j+1

kTTT j+1hhh
�

k k2

2

(24)

g
2
� (j+2) = hhh

T
k TTT j+1 �

TTT j+1hhh
�

k hhhTk TTT j+1

kTTT j+1hhh
�

k k2

2

(25)

Authorized licensed use limited to: T U MUENCHEN. Downloaded on March 4, 2009 at 04:50 from IEEE Xplore.  Restrictions apply.



4732 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 10, OCTOBER 2006

and extracting khhhTk TTT j+1k
2 and khhhTk TTT j+1k

2 out of the norm operator
in (24) and (25), respectively, we obtain

g2�(j+2) = g2� (j+1);

g2� (j+2) = g2�(j+1)

where  = (1�khhhTk TTT j+1hhh
�

k k2=kTTT j+1hhh
�

k k2kTTT j+1hhh
�

k k2). Substi-
tuting these expressions in (23) and observing 0 <  < 1 the result
follows.

Now, assume that transmit power decreases so that the water-filling
level associated with the ordering � sinks below g�2

�(j+2) =

1=g2� (j+1). For the same transmit power, let �� be the water-
filling level corresponding to the ordering �0 and P the amount of
optimally allocated power to users k1 and k2 for this ordering. Con-
sider a suboptimum power allocation for the channels resulting from
ordering � as follows. Users �(i � j) are waterfilled to level �� and
power P is optimally distributed between users k1 = �(j + 1) and
k2 = �(j + 2) according to a water-filling strategy. With this power
allocation, capacity of users �(i � j) is equal for both orderings. In
the following we prove that the sum rate achieved by users k1 and
k2 with the ordering � and under the suboptimum power allocation
described above is larger than the sum rate achieved by these same
users with ordering �0 and the optimum waterfilling power allocation.

If P > g�2
�(j+2) � g�2

�(j+1) the proof reduces to demonstrating (23),
which has already been done.

If jg�2
� (j+1) � g�2

� (j+2)j < P � g�2
�(j+2) � g�2

�(j+1), we define
P 0 = g�2

�(j+2) � g�2
�(j+1) and the power increment �P = P 0�P . Let

C�(k1; k2) be the sum rate achieved by users k1 and k2 with ordering
� and power P , and C� (k1; k2) the sum rate achieved by these same
users with ordering �0. According to these definitions

C�(k1; k2)� C� (k1; k2) = log
(�0 ��P )�0

�1 �
�P
2

2 (26)

where �1 = g�2
� (j+2) + g�2

� (j+1) + g�2
�(j+2) � g�2

�(j+1) =2 is the

waterfilling level for �0 when P = P 0 and �0 = g�2
�(j+1) + P 0 =

g�2
�(j+2). The capacity difference in (26) is nonnegative if and only if

f(�P ) = (�0 ��P )�0 � �1 �
�P

2

2

� 0: (27)

If g�2
� (j+1) � g�2

� (j+2), the maximum power increment is given by
�Pmax = g�2

�(j+2) � g�2
�(j+1) + g�2

� (j+2) � g�2
� (j+1), and

f(�Pmax) = g�2� (j+1) � g�2� (j+2) g�2�(j+2) � g�2� (j+1)

� 0 (28)

if g�2
� (j+2) � g�2

� (j+1), �Pmax = g�2
�(j+2) � g�2

�(j+1) � g�2
� (j+2) +

g�2
� (j+1), and

f(�Pmax) = g�2� (j+2) � g�2� (j+1) g�2�(j+2) � g�2� (j+2)

� 0: (29)

From (28) and (29) and observing that f(�P ) is monotonically de-
creasing the result follows.

Finally, if P � g�2
� (j+1) � g�2

� (j+2) , all power P is assigned to

only one of the two users �0(j + 1) and �0(j + 2). Since g2� (j+1) �

g2�(j+1) and g2� (j+2) � g2�(j+1), user �(j + 1) achieves necessarily a
higher transmission rate.

The optimum water-filling power allocation over ordering� can only
provide larger rates.
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The Effect of System Load on the Existence of Bit
Errors in CDMA With and Without Parallel Interference

Cancelation

Remco van der Hofstad, Matthias Löwe, and Franck Vermet

Abstract—In this correpsondence, we study a lightly loaded code-divi-
sion multiple-access (CDMA) system with and without multistage hard-
and soft-decision parallel interference cancelation (HD-PIC and SD-PIC).
Throughout this paper we will only consider the situation of a noiseless
channel, equal powers and random spreading codes. For the system with
no or a fixed number of steps of interference cancelation, we give a lower
bound on the maximum number of users such that the probability for the
system to have no bit-errors converges to one. Moreover, we investigate
when the matched filter system, where parallel interference cancelation is
absent, has bit errors with probability converging to one. This implies that
the use of HD-PIC and SD-PIC significantly enhances the number of users
the system can serve.

Index Terms—Bit-error analysis, code-division multiple access, large de-
viations, matched filter, number of users, parallel interference cancellation.

I. INTRODUCTION

The third generation of mobile communication systems has
refreshed the interest in so-called code-division multiple access
(CDMA), which in third generation (3G) systems is used to increase
the communication capacity of the third generation mobile com-
munication systems (see [23] for the history of CDMA). In CDMA
systems, all users use the full time window and band of frequencies.
Interference with other users is reduced by a coding scheme in which
each user multiplies his signal with an individual coding sequence. At
the receiver, the signal is retrieved by taking the inner product of the
transformed total signal with the corresponding coding sequence. We
refer to [27] for general background on CDMA multiuser detection.

While theoretically the coding sequences would best be orthogonal,
for practical purposes this is often not necessary and not practical. The
orthogonality is thus replaced by ”almost orthogonality” as provided
e.g., by pseudorandom sequences. This immediately raises the ques-
tion how many users the system might host, or, in other words, for how
many users orthogonal or ”almost orthogonal” spreading sequences
have the same performance. Of course, the answer to this question is
intimately related to the way the interference of signals is canceled.
Apparently, the most promising and practical technique are soft- and
hard-decision parallel interference cancellation (SD-PIC and HD-PIC),
which will be introduced in the next section.

The purpose of the present note is to investigate the CDMA model
with spreading sequences of length n and a number of users k = kn

that is of order O( n

logn
) or even larger. Here and in what follows we

will write k instead of kn whenever there is no danger of confusion. We
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