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SUMMARY

In this work, a methodology is established to design optimum chip pulse shapes which are absolutely
bandlimited, their energy mainly concentrated in the chip duration, and which minimize the variance
of the time-delay estimation error of an unbiased estimator. The low-complexity optimization method is
based on the prolate spheroidal wave functions. Thus, the variational problem at hand can be transformed
into a tractable parametric optimization problem. It is shown that the designed optimum chip pulse shapes
significantly improve the synchronization performance of direct sequence code-division multiple access
systems by minimizing the Cramer–Rao lower bound (CRLB). The time-delay estimation bias under the
presence of multipath is compared with the conventionally used bandlimited rectangular chip pulse shape.
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1. INTRODUCTION

Precise code synchronization is desired for direct sequence code-division multiple access (DS-
CDMA) systems as the maximum achievable despreading gain and jamming margin can only be
reached for perfect synchronization. Regarding any kind of application where range measurements
are made, like active radar, sonar or navigation applications, accurate time-delay estimation is
needed. Especially for global navigation satellite systems (GNSS) like GPS or the upcoming
European Galileo system, highly accurate time of arrival estimation is essential, whereas 1 ns of
timing error results in approximately 30 cm of range error and the satellite signals are deeply buried

∗Correspondence to: Josef A. Nossek, Institute for Circuit Theory and Signal Processing, Munich University of
Technology (TUM), 80333 Munich, Germany.

†E-mail: nossek@nws.ei.tum.de
‡Dedicated to Professor Seán Scanlan on the occasion of his 70th birthday.

Copyright q 2007 John Wiley & Sons, Ltd.



566 J. A. NOSSEK AND F. ANTREICH

under the noise floor. Thus, for these applications, signal design shall be directed towards optimizing
synchronization performance. In the following we will exemplarily consider the synchronization
for GNSS.

Besides the design of the applied pseudo-random noise (PN) sequences with regard to cross-
correlation and autocorrelation properties [1], the design of the chip pulse shape for these PN
sequences also definitely needs to be considered in order to shape the autocorrelation function and
to control the bandwidth occupancy of the signal. Not only the time-delay estimation error should
be minimum, but also the signal design should enable robust code tracking and acquisition in
the receiver. Furthermore, especially in the framework of navigation applications, the signal shall
provide robustness against tracking errors induced by multipath signals [2]. However, as discussed
in the signal design of Galileo, the ongoing Galileo evolution program and the modernization of
GPS, a trade-off between meeting all these requirements and complexity of the receiver architecture
needs to be accomplished [2, 3].

In this work, a methodology is established to design optimum chip pulse shapes which are
absolutely bandlimited, their energy mainly concentrated in the chip duration, and that minimize
the tracking error variance subject to signal and performance requirements in order to enhance
signal design for DS-CDMA systems. This low-complexity optimization method is based on the
prolate spheroidal wave functions (PSWFs) [4], which allow to transform the variational problem
at hand into a tractable parametric optimization problem. As a cost function, we apply the Cramer–
Rao lower bound (CRLB) as proposed in [5], which gives the minimum variance of the time-delay
estimation error of any unbiased estimator. In the following, inter-chip interference (ICI) is also
considered as the chip pulse shapes are convolved with a PN sequence. The presented approach
allows a systematic treatment of the problem at hand by solving a parametric optimization problem.
Related work has been previously reported in [6], however, which minimized the tracking error
of a coherent delay lock loop (DLL) by considering absolutely time-limited chip pulse shapes
without taking into account constraints concerning acquisition or multipath performance. In [5],
pulse shapes were derived, however, not taking into account different performance requirements
besides minimizing the variance of the time-delay estimation error and this approach does not
allow a systematic treatment of the problem.

2. STATEMENT OF THE PROBLEM

We assume coherent downconversion of the radio frequency signal to baseband. The received
DS-CDMA baseband navigation signal of one satellite is given by

y(t)= √
Pc(t − �) + n(t) (1)

where P denotes the signal power, c(t) is the PN sequence, � is the time-delay and n(t) is the
white Gaussian noise with the two-sided power spectral density of N0/2. For the PN sequence, we
apply Gold codes as used for GPS C/A code [7] with a code period of T = 1ms, with a number
of chips Nc = 1023 per code period, and each chip has a time duration of Tc = 997.52 ns. Thus,
the PN sequence is given by

c(t)=
Nc∑
k=0

ck�(t − kTc) ∗ p(t) (2)

where p(t) denotes the chip pulse shape, and ck ∈ {−1, 1} are the code bits of the PN sequence.
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In order to perform precise synchronization in a navigation receiver, the delay � needs to be
estimated with high accuracy. The variance of the delay estimation error �2� of any unbiased
estimator is lower bounded by the CRLB. The CRLB can be given [8]

�2��
BL

C/N0 8�2

∫ ∞
−∞ |P( f )|2 d f∫ ∞

−∞ f 2|P( f )|2 d f (3)

where BL denotes the equivalent noise bandwidth of the generic estimator, P( f ) is the Fourier
transform of the chip pulse shape p(t), and C/N0 denotes the carrier-to-noise density ratio of
the received signal. For long PN sequences, the autocorrelation function R(�) can be approxi-
mated as

R(�) ≈
∫ ∞

−∞
p(t)p(t − �) dt =

∫ ∞

−∞
|P( f )|2e j2� f � d f (4)

3. OPTIMIZATION

The objective is to find the optimum chip pulse shape p(t) which is absolutely bandlimited to
[−B, B], its energy mainly concentrated within [−Tc/2, Tc/2] and which minimizes the tracking
error variance �2� as given in Equation (3). The interdependency of B>0 and Tc>0 is given by
the normalized time-bandwidth product 2� = 2�TcB [4, 9]. The minimization is subject to the
constraint ∫ ∞

−∞
|P( f )|2 d f = 1 (5)

We introduce an additional constraint in order to influence the shape of the autocorrelation function
of the PN sequence R(�) such that

∀
i∈N

|�i |�� (6)

where �i denotes the value of R(�) at the local extrema besides the global maximum of R(�)
for �= 0. Thus, we limit the absolute value of the local extrema of R(�) to � ∈ R+. The shaping
threshold � typifies the trade-off between the different performance requirements as the shape
of the autocorrelation function directly affects tracking accuracy, tracking robustness, acquisition
performance, and multipath performance.

3.1. Methodology

Although the resulting optimization problem is not tractable, it is converted to an equivalent
discrete formulation with reduced dimensions. This will be achieved by expanding the chip pulse
shape p(t) of a PN sequence using an adequate set of orthogonal basis functions. This approach
transforms the apparent variational problem into a parameter optimization problem solving for the
expansion coefficients that minimize the cost function. Special functions known as the PSWFs are
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particularly well suited to form such a set of basis functions [4]. Thus, for any B>0 and Tc>0, the
PSWFs form an infinite set of real functions 	0(�, t),	1(�, t),	2(�, t), . . . with associated real
positive eigenvalues 
0(�)>
1(�)>
2(�), . . . . The 	’s and 
’s are functions of the normalized
time-bandwidth product 2�= 2�TcB. The 	i (�, t) are bandlimited to [−B, B] and form a complete
and orthonormal set of functions [4]:

∫ ∞

−∞
	i (�, t)	 j (�, t) dt =

{
1, i = j

0, i �= j
(7)

They also form a complete and orthogonal set in the interval [−Tc/2, Tc/2] [4]:
∫ Tc/2

−Tc/2
	i (�, t)	 j (�, t) dt =

{

i (�), i = j

0, i �= j
(8)

The PSWFs are solutions of the integral equation [4]:


i	i (�, z) =
∫ Tc/2

−Tc/2

sin(2�B(t − s))

�(t − s)
	i (�, s) ds (9)

Finally, we propose the expansion

p(t) =
∞∑

m=0
�m	m(�, t) (10)

where {�m}∞m=0 are the expansion coefficients. We can now transform the primal variational
problem into the dual parametric optimization problem by setting P( f ) = ∑∞

m=0 �m�m(�, f ),
where {�m(�, f )}∞m=0 denotes the Fourier transforms of the PSWFs.

3.2. Problem reduction

For the current GPS C/A code, a rectangular chip shape is used and most of its signal power
is contained in the one-sided bandwidth of B = 1.023MHz. In order to exemplarily demonstrate
the proposed optimization methodology and the achievable performance using the designed chip
pulse shapes, we will follow the approach of designing an optimized chip pulse shape for a GNSS
with B = 1/Tc = 1.023MHz, � = �, and with most of its energy concentrated within the interval
[−Tc/2, Tc/2]. Thus, in the following, we simply write 	i (t), �i ( f ) and 
i without accounting
for the dependency concerning �. For simplicity, we also restrict our attention to chip pulse shapes
p(t) of even symmetry as done in [6] which allows us to solve only for {�m}∞m=0 if m is even, since
{	m(t)}∞m=0 are even if m is even and odd otherwise [4]. Because of Equations (7) and (8), a small
value of 
m implies that 	m(t) will have most of its energy outside [−Tc/2, Tc/2], whereas a value
of 
m near 1 implies that 	m(t) contains most of its energy within [−Tc/2, Tc/2]. For a fixed value
of �, the 
m decreases to zero rapidly with increasingm oncem has exceeded (2/�)�. As in our case,
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we have � = � only the {	m(t)}∞m=0 with m�2 have considerable large energy concentration within
[−Tc/2, Tc/2].

Thus, with negligible impact on accuracy, we propose the truncated expansion:

p(t) = �0	0(t) + �2	2(t) (11)

where �0 ∈ R and �2 ∈ R and with Equations (11), (3), (5), and (6) we obtain the parametric
optimization problem:

(�∗
0, �

∗
2) = arg min

(�0,�2)

{ ∫ ∞
−∞(�0�0( f ) + �2�2( f ))2 d f∫ ∞

−∞ f 2(�0�0( f ) + �2�2( f ))2 d f

}
(12)

s.t. ∫ ∞

−∞
(�0�0( f ) + �2�2( f ))

2 d f = 1 (13)

and

∀
i∈N

|�i |�� (14)

Please note that in Equations (12) and (13) we can write parentheses instead of the absolute
value as done in Equations (5) and (3), because 	0(t) and 	2(t) are real and even and therefore,
�0( f ) and �2( f ) are real. Applying Parseval’s theorem to Equation (7) the constraint given in
Equation (13) reduces to

�20 + �22 − 1= 0 (15)

Hence, the parametric optimization problem given in Equations (12) and (13) can be reduced
further as the additional constraint given in Equation (15) is a cycle for �0 and �2. Therefore,
�0 ∈ [−1, 1], �2 ∈ [−1, 1] and the whole problem is symmetric, because (�∗

0, �
∗
2) and (−�∗

0, −�∗
2)

are solutions of the problem.

4. RESULTS

In order to obtain the optimum chip pulse shape p(t) which is absolutely bandlimited to [−B, B],
mainly concentrated within [−Tc/2, Tc/2] and which minimizes the tracking error variance �2� while
taking into account the shaping threshold �, we solved the parametric optimization problem as given
in Equation (12) subject to the constraints (15) and (14) for B = 1.023MHz and Tc = 997.52 ns
by a simple line search. For the generation of the PSWFs, we followed [4, 10, 11].

Figures 1 and 2 depict the optimum chip pulse shape (OPT) for � = 1, 0.5, and 0.25 in time
and frequency domain. In Figure 3 the autocorrelation function R(�) of the optimum chip pulse
shape (OPT) for �= 1, 0.5, and 0.25 is illustrated.

In order to compare the performance of the optimum chip pulse shape (OPT) with the bandlimited
rectangular pulse (RECT) which is used for the GPS C/A signal at the moment, we generated GPS
C/A PN sequences as described in Section 2 with the different chip pulse shapes. The bandwidth
of the signal using a rectangular chip pulse is also B = 1.023MHz. As we convolved, the different
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Figure 1. Optimum chip pulse shape in time domain.
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Figure 2. Optimum chip pulse shape in frequency domain.

chip pulse shapes with a PN sequence ICI is accounted for. In Figure 4, the standard deviation of
the time-delay estimation error �� is evaluated through the CRLB (3) for C/N0 within the range
from 30 to 50 dBHz. We assume BL = 1Hz. If the generic estimator which is used to estimate the
time-delay is a DLL, then BL is also called the loop bandwidth. In Figure 5 the absolute maximum
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Figure 3. Autocorrelation function of optimum chip pulse shape.
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Figure 4. Standard deviation of the time-delay estimation error versus C/N0.

biases of the time-delay estimates produced by a single reflection versus the relative delay between
the line-of-sight signal (LOSS) and the multipath signal ��/Tc are plotted for the different chip
pulse shapes. The attenuation of the multipath signal is considered to be −3 dB. We assume a

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Circ. Theor. Appl. 2007; 35:565–574
DOI: 10.1002/cta



572 J. A. NOSSEK AND F. ANTREICH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.05

0

−0.05

−0.1

−0.15

−0.2

0.1

0.15

0.2

T
im

e-
D

el
ay

E
st

im
at

io
n

B
ia

s

RECT

OPT

OPT

OPT

Figure 5. Multipath error envelope for different pulses.
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Figure 6. Normalized early–late discriminator S-curve.

narrow correlator [12] with an early–late correlator spacing of 0.1 chip. The maximum biases
occur if the reflective multipath is either in phase or out of phase with the LOSS. Figure 5 depicts
the so-called multipath error envelope. Here, one can observe that for smaller �, the maximum
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biases get not only slightly larger for small ��/Tc but also smaller for larger ��/Tc. In Figure 6,
the normailzed early–late discriminator output of a DLL is plotted for the different chip pulse
shapes versus � which gives the difference of delay of the received signal to the local reference
code. We assume a narrow correlator [12] with early–late correlator spacing of 0.1 chip. The
signals with different chip pulse shapes are normalized in power. In Figure 6, one can observe
that for � = 1 we get the steepest slope of the discriminator S-curve at the tracking point (� = 0)
which results in the smallest standard deviation �� given in Figure 4. However, the S-curve offers
ambiguous and stable tracking points at |�/Tc|>1 which have to be avoided. This problem also
occurs for the Galileo BOC(1, 1) signal [13]. The smaller the chosen value of �, the less crucial
these false tracking points get. Thus, � represents the trade-off between the different performance
requirements. The smaller the selected �, the better the acquisition and multipath performance
and the more robust the tracking. On the other hand the closer � is to 1, the smaller the standard
deviation �� becomes.

5. CONCLUSION

In this work, we proposed a systematic methodology in order to design optimum chip pulse
shapes p(t) for a PN sequence which are absolutely bandlimited, their energy mainly concentrated
within the chip duration, and which minimize the variance of the time-delay estimation error
�2� subject to constraints concerning the shape of the autocorrelation function R(�). The shaping
threshold � typifies the trade-off between the different performance requirements as the shape
of the autocorrelation function directly affects tracking accuracy, tracking robustness, acquisition
performance, and multipath performance.

The results clearly show that the optimum chip pulse shapes obtained by the proposed
optimization method compared with the conventionally used bandlimited rectangular chip pulse
shape significantly reduce the standard deviation of the tracking error and the multipath error
simultaneously. Regarding tracking robustness which is given by the shape of the discriminator
S-curve of a DLL and good acquisition performance for which there should advantageously be
small local extrema �i (i ∈ N) of R(�), a trade-off can be accomplished by adjusting �.
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