
Institut für Informatik

der Technischen Universität München

A Client-Server Architecture for Customized

Graphical User Interfaces on the Client Side

Roland Haratsch

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. G. J. Klinker, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr.h.c. J. Eickel

2. Univ.-Prof. Dr. H. M. Gerndt

Die Dissertation wurde am 29.04.2009 bei der Technischen Universität

München eingereicht und durch die Fakultät für Informatik am 29.10.2009

angenommen.

Abstract

This thesis treats the generation of customized graphical user interfaces for restricted client de-
vices, which are mainly characterized by severe limitations in terms of processing power, available
memory, and input/output interface. Since the late 1990s devices like mobile phones, PDAs, etc.
have proliferated in the consumer and embedded market. In the beginning, these limited devices
could hardly access Web content and other network services on the application layer, since the
Internet technology and its provided services like the World Wide Web (WWW) have originally
assumed networked clients with sufficient system resources. Whereas the industry has mainly
concentrated on drastically increasing the hardware capabilities of such handheld devices, the
approach of this thesis takes particularly the severe hardware restrictions into consideration. The
attempt to save hardware resources as much as possible has become an essential part of the emerg-
ing initiative called Green Computing. As a result, this thesis proposes a uniform client-server
architecture that enables a wide variety of client-devices to access Web content, from very low-
end devices like wristwatches to mobile phones and even high-end workstations. The generation
of graphical user interfaces for restricted clients with small displays imposes technical as well as
ergonomic challenges. This thesis focuses on the technical aspects.

On the client side, a new and low-level binary format for describing graphical user interfaces is
presented. This format is independent of any particular layout design and takes into account
from scratch the different rendering and display capabilities of the restricted client devices by
allowing user interface descriptions of different complexity. This new format does not depend
on other formats and technologies. In addition, a new virtual machine, called Client Virtual
Machine (CVM), is introduced which runs on the client device. The main tasks of the CVM
are to communicate with the server, called CVM packet server, and to interpret the received
CVM packets, which contain the user interface descriptions. The main design goal of the CVM
is a simple and modular architecture so that small and restricted client devices can implement it
without large efforts. In contrast to the recent developments in the area of handheld, mobile, and
embedded devices, which came along with rising costs for their development and manufacturing,
the CVM focuses particularly on very cheap client devices for the mass market to keep the per-unit
manufacturing costs as low as possible.

On the server side, an exemplary framework for the generation of client-specific user interfaces is
presented. After a client request, client-specific user interfaces are generated from an abstract user
interface description and from the obtained profile data about the client capabilities such as screen
dimensions, memory size, etc. The service providers can decide on their own how they create
appropriate CVM packets for the requesting clients. This thesis proposes a technical platform
that leaves the service providers as much flexibility and also responsibility in layout-related and
other ergonomic issues as possible.

For the client-server communication a simple application protocol, called the CVM packet trans-
fer protocol (CPTP), is proposed. It runs on top of the transport layer and is a very “thin”
counterpart to the HTTP protocol, which is used in the WWW. Mainly, it consists only of a few
protocol methods for requesting and delivering CVM packets and for sending profile data about
the client capabilities.

The proposed concepts do not depend on Java-, XML-, or WAP-based technologies. They have
been implemented in the C programming language and are demonstrated by several examples.

Acknowledgment

This thesis would not have been possible without the support of many people. First of all,
I would like to thank my supervisor Prof. Jürgen Eickel for the opportunity to work on
this dissertation at his chair. I am grateful for his support and guidance during the course
of this work.

I would also like to thank the members of the doctoral committee, Prof. Michael Gerndt
and Prof. Gudrun Klinker, for their assistance and valuable comments.

In addition, I have also benefited from the technical discussions with my former colleagues
at the chair, in particular Dr. Alfons Brandl and Dr. Aurel Huber. Special thanks go to
Mr. Franz Hassmann for his administrative support and encouragement.

Finally, I thank my family for their support in every respect.

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Client-Specific Service and Content Adaptation 3
1.3 Thesis Scope — Client-Specific Graphical User Interfaces 5
1.4 Related Work — Overview . 6
1.5 Summary of the Chapters . 10

2 Proposed Client-Server Architecture — Overview 12
2.1 Main Components of Interactive Network Services 12
2.2 Client Side . 13

2.2.1 User Interface Description Format 13
2.2.1.1 Compactness vs. Scalability 14
2.2.1.2 Declarative vs. Operational 20

2.2.2 Client Virtual Machine (CVM) . 24
2.3 Server Side . 25
2.4 Communication Protocol . 29

3 Client Virtual Machine (CVM) 31
3.1 Core . 32

3.1.1 Data Types . 32
3.1.2 Operation Modes . 33
3.1.3 Register Stack . 34
3.1.4 Memory . 36

3.1.4.1 Data and Code . 37
3.1.4.2 Stack . 38
3.1.4.3 Heap . 41

3.1.5 Error Handling . 41
3.1.5.1 Error Processing . 41
3.1.5.2 Error Codes . 42

3.1.6 Event Handling . 45
3.1.6.1 Event Processing . 46
3.1.6.2 Event Registers . 47
3.1.6.3 Special Events . 48
3.1.6.4 Event Codes . 49

3.1.7 History Buffer . 52
3.1.8 Bookmarks Menu . 56
3.1.9 Interval Timer . 57
3.1.10 Runtime Behavior . 58

3.2 Visual . 75

i

ii Contents

3.2.1 Graphics State . 76
3.2.2 Graphics Primitives . 78
3.2.3 Fonts . 79

3.3 Keyboard, Mouse . 81
3.4 Network . 82
3.5 Libraries . 83
3.6 Home Menu . 86
3.7 CVM Profile . 89
3.8 CVM Packet . 93
3.9 Instruction Set . 98

3.9.1 Overview . 99
3.9.2 Reference . 100

3.10 Implementation Notes . 117
3.11 Related Work . 123

4 CVM Packet Transfer Protocol (CPTP) 127
4.1 Message Format . 127
4.2 Protocol Methods . 128
4.3 Implementation Notes . 131
4.4 Example . 131

5 CVM Packet Server (CVMPS) 135
5.1 Abstract User Interface Description (AUI) 135

5.1.1 Concrete Syntax . 136
5.1.2 Abstract Syntax . 147
5.1.3 Builtin Functions . 148
5.1.4 Example . 149

5.2 Session Manager . 154
5.2.1 Session Data . 155
5.2.2 Main Loop . 156

5.3 Service Generator . 159
5.3.1 Fixed Part of the Service Instance 160
5.3.2 Generated Part of the Service Instance 161

5.4 CVM Packet Generator . 163
5.5 CVM User Interface (CVMUI) . 166

5.5.1 Global Structure . 166
5.5.2 Page . 170
5.5.3 (Single-Line) Text . 177
5.5.4 Text Paragraph . 179
5.5.5 Text Box . 182
5.5.6 Hyperlink . 187
5.5.7 Button . 192

5.6 Implementation Notes . 198

6 Conclusions 202
6.1 Summary . 202
6.2 Results . 204
6.3 Future Work . 205

Contents iii

A Notations 206
A.1 Miscellaneous . 206
A.2 Context Free Grammars . 207
A.3 Data Types . 208

A.3.1 Syntax of Data Type Definitions . 208
A.3.2 Data Access . 210
A.3.3 Example . 212

A.4 Code Templates . 212

B CVM Assembler (CVMA) 216
B.1 Syntax . 216
B.2 Data Types . 222
B.3 Macros . 224
B.4 Builtin Functions . 227
B.5 Implementation Notes . 232
B.6 Examples . 234

C CVMUI Library (CVMUI Lib) 249
C.1 libMisc.cvm . 249
C.2 libGui.cvm . 251
C.3 libGui3D.cvm . 255
C.4 libGuiTxtSmp.cvm . 256
C.5 libGuiTxt3D.cvm . 256
C.6 libGuiTxpSmp.cvm . 256
C.7 libGuiTxp3D.cvm . 256
C.8 libGuiHlk.cvm . 257
C.9 libGuiHlkSmp.cvm . 257
C.10 libGuiHlk3D.cvm . 259
C.11 libGuiIxt.cvm . 260
C.12 libGuiIxtSmp.cvm . 262
C.13 libGuiIxt3D.cvm . 264
C.14 libGuiBtnSmp.cvm . 265
C.15 libGuiBtn3D.cvm . 267

D CVM Packet Server: Example 272
D.1 Generated Part of the Service Instance . 272
D.2 Generated CVM Packets . 274

D.2.1 Without Customization . 274
D.2.2 With Customization . 295

Bibliography 324

Index 329

List of Figures

1.1 Common Internet Scenarios with Different Types of Clients 2
1.2 Software Requirements of a WWW Client 3
1.3 Simplified Client-Server Architecture for Client-Specific Service and Content

Adaptation . 4
1.4 J2ME: High-Level Architecture . 8

2.1 Different Levels of Abstraction for User Interface Components 14
2.2 Simple User Interface Example . 14
2.3 Modular Architecture of the CVM . 25
2.4 Client-Server Session . 26

3.1 CVM Modules and Functional Units . 31
3.2 CVM Core: Functional Units . 32
3.3 Procedure Stack Frame . 40
3.4 Example of a Client-Server Session . 55
3.5 History Buffer Behavior of an Exemplary Client-Server Session 56
3.6 CVM Screen Shot 1: homeMenu.cvm . 86
3.7 CVM Screen Shot 2: homeMenu.cvm . 87
3.8 CVM Screen Shot: fibTimer.cvm . 122

4.1 CPTP Example Session . 132

5.1 CVM Screen Shot: AUI Page p0 from registration.aui 149
5.2 CVM Screen Shot: AUI Page p1 from registration.aui 150
5.3 generateAuis: Structure of the output tree genAuis 165

iv

List of Tables

3.1 Comparison: JVM ↔ CVM . 125

D.1 Customized CVM Packets: registration.aui, CVMUI pages for AUI page
p0 . 296

D.2 Customized CVM Packets: registration.aui, CVMUI pages for AUI page
p1 . 297

v

Chapter 1

Introduction

1.1 Problem

New Consumer Devices as Networked Clients The growing popularity of the World
Wide Web (WWW) [92] and the proliferation of small, network enabled, and embedded
consumer devices since the late 1990s, e.g., mobile phones, PDAs, hand-helds, set-top
boxes, in-car computers, etc., have imposed new challenges on our network and user in-
terface technology. Besides, new network services have emerged in the fields of E-Business
and E/M-Commerce in addition to the classical network services like WWW, Email, Telnet
[63], FTP [64], etc. In particular, M-Commerce aims at customers with mobile devices.

Traditionally, the access to Web content and other network services was limited to general
purpose computers such as PCs or high-end workstations. In general, these are bound to a
fixed place and are supplied with the typical system resources, e.g., a powerful processor,
sufficient memory and secondary storage, monitor, mouse, keyboard, etc. With the new
consumer devices, however, there has emerged a growing demand to access Web content
and other network services with any — possibly mobile, wireless, and embedded — device,
as illustrated in Figure 1.1 (page 2). A very common use case might be surfing the WWW
with a mobile phone or an in-car computer.

Constrained System Resources Restricted consumer devices are often dedicated to
a special purpose and therefore do not have the hardware and software capabilities as
general purpose computers have. The typical limitations of the first consumer devices can
be summarized as follows:

• Low processing power: e.g. 1-10 MIPS

• Small memory: e.g. 128-512 Kbytes RAM, 0.5-1 Mbytes ROM

• Network connection often wireless and intermittent with limited bandwidth (e.g. 9600
bps or less), often no TCP/IP [69], high latency, etc.

• Restricted input capabilities: limited keyboard with a few input buttons, no mouse,
possibly a touchscreen instead of a keyboard, possibly acoustic input via microphone,
etc.

1

2 1. Introduction

...

Mobile Phone

PC

PDA

{
Client Devices

Server

Embedded
 Devices

User
Interaction

Service and Content
 Adaptation

Client-Specific
User Interfaces

Figure 1.1: Common Internet Scenarios with Different Types of Clients

• Restricted output capabilities: small display with low resolution (e.g. 50x30, 100x72,
150x100 dots), restricted colors (e.g. mono color) and character fonts (e.g. only single
font), possibly acoustic output via speaker, etc.

• Restricted power consumption, often operating with battery power

The capabilities of the consumer devices — particularly in terms of processing power,
memory size, network bandwidth, battery life, etc. — have increased drastically since
their appearance until today, however along with rising costs for their development and
manufacturing. Therefore, the restricted capabilities still remain an issue particularly
for very ”thin” and low-cost devices on the consumer and embedded mass market. For
example, typical “thin” clients might be in-car computers in the automotive industry,
networked home appliances such as fridges, or wearables like wristwatches. In addition,
the attempt to save hardware resources as much as possible has become an essential part
of the emerging initiative called Green Computing [37].

Need of Client-Specific Adaptation of Network Services Apart from other in-
volved technical problems relating to mobile, wireless, and ad-hoc networks [68, 82, 61, 83]
and to embedded systems [9], the problems due to the limited system resources of the
restricted client devices have to be approached as well, because the entire Internet tech-
nology and its provided network services originally have not been designed for different
types of clients with constrained capabilities. Instead, the service providers have assumed
general purpose computers as clients with sufficient system resources such as PCs or work-
stations. For example, Figure 1.2 (page 3) shows the software requirements of a WWW

1.2. Client-Specific Service and Content Adaptation 3

client. Nowadays, a WWW client is supposed to process protocol and data formats like

HTTP

Interpreter

GUI

Network
communication

Native

{

{

{
{

XML, CSS, JavaScript, Java Bytecode, Flash,
MPEG, WMA, GIF, JPEG, PNG, PDF, etc.

Hardware

+

Software

Browser

HTML

TCP/IP

OS

CPU

Figure 1.2: Software Requirements of a WWW Client

HTTP [10], HTML [65] and other XML [16]-based formats, CSS [12], JavaScript [27], Java
bytecode [42], PDF [5], and several graphics, audio, and multimedia formats like GIF [29],
JPEG [39], PNG [1], MP3 [46], WMA [93], MPEG [47], and Flash [28] for images, sounds,
movies, and animations. Clearly, a restricted consumer device hardly can manage this
variety of quite complex data formats.

To make network services accessible to the restricted client devices, a client-server archi-
tecture is required that adapts a requested network service to the particular hardware
and software capabilities of the client device. Adaptation of network services can be per-
formed on all layers of the ISO/OSI [81] protocol stack. For example, on the application
layer mainly (user-)interactive network services are concerned. These are network services
where the user of the client device is directly involved in the events of the network service.
Here a so-called user agent runs on the client device which manages the communication
with the server, makes the received server responses with the help of user interfaces visible
or audible on the client device, and provides facilities for the user to interact. The WWW
is an example of an interactive network service. Here, the browser software, e.g., Microsoft
Internet Explorer or Mozilla Firefox, represents the user agent and displays the downloaded
HTML documents on the client’s screen. The user can scroll within the downloaded HTML
document and follow hyperlinks via mouse clicks.

In addition to the client capabilities, the user of the client device should also be able to
report his or her preferences when requesting a particular interactive network service. For
example, the user might set a certain language, turn the sound off/on, or deactivate the
reception of images.

1.2 Client-Specific Service and Content Adaptation

In general, data like HTML documents, images, etc., are involved in interactive network
services. These resources are widely called content. Service adaptation usually involves
content adaptation, as well. A common example of content adaptation is the filtering of
HTML documents. Complex HTML markup elements, e.g., <TABLE>, <FRAME>, or images
might be replaced by simpler markup elements or alternative representations, or they might
be stripped off. Another example is the conversion of related data formats, e.g.:

• HTML [65] (WWW [92]) ←→ WML [56] (WAP [54])

4 1. Introduction

• JPEG [39] ←→ GIF [29] ←→ PNG [1]

• WAV [47] −→ WMA [93], MP3 [46]

• color image ←→ gray scale image ←→ mono color image

• written text ←→ spoken language

The conversion of the communication protocols HTTP [10] (WWW)←→WSP [57] (WAP)
is also an example of service adaptation.

Simplified Architecture and Requirements A simplified client-server architecture
for client-specific adaptation of interactive network services is illustrated in Figure 1.3
(page 4). Service and content adaptation is performed by the server or some proxy†. On

User
Interaction

Service and Content
 Adaptation

2

Client

Device with
 User Agent

Server,
Proxy

Request with Client Profile

User Interfaces
3

1

Figure 1.3: Simplified Client-Server Architecture for Client-Specific Adaptation
of Interactive Network Services

the one hand, this reduces network bandwidth, because the client does not receive data, e.g.,
images, which it might discard. And network bandwidth is particularly in wireless networks
a scarce resource. On the other hand, a restricted consumer device might not be capable of
performing resource-intensive tasks such as service or content adaptation. However, server
or proxy side adaptation requires that the client reports its hardware/software capabilities
and current user preferences within a so-called client profile during a request (step 1) to
the server or proxy. For this purpose a suitable format for the client profile as well as a
communication protocol for efficient service and content negotiation are required. Service
and content adaptation (step 2) can be carried out in three different ways, each one with
growing complexity:

• Selection: The server or a proxy might always keep several versions available and,
when there is a client request, select the one which best fits to the constraints given
in the client profile. For example, a Web server might choose between several HTML
and possibly WML document versions of a particular Web site.

• Transformation: The server might keep only one reference version permanently
and transform it dynamically, i.e., when there is a client request, into a client-specific
version. For example, a Web server might transform an XML [16] or HTML document

†Commonly, a proxy is an intermediary application that acts both as a server and a client. Incoming
requests from other clients can be served internally or passed to other servers with possible translations.

1.3. Thesis Scope — Client-Specific Graphical User Interfaces 5

into a suitable WML document. The XML based tree transformation language XSLT
[22] might be used for such transformations.

• Generation: Finally, the server might keep an abstract description of its offered
network service and content and generate dynamically a client-specific client-server
session with adapted content. This requires, among other things, a language for
describing network services, user interfaces, and content abstractly. The client-server
architecture that is proposed in this thesis is based on the generative approach and
will be discussed in more detail later on.

The adapted content is then sent to the client (step 3). In an interactive network service,
the user agent of the client device presents the received content as a user interface. For
example, in the WWW the HTML markup language is used as the description format
for the user interface, whereas the browser software renders the HTML document and
displays it on the screen of the client device. Considering the different rendering and
display capabilities of the consumer devices, the description format for the user interfaces
is a main issue. For example, the WAP Forum [54] has developed the less powerful markup
language WML [56] for the wireless consumer devices.

In addition, the presentation of user interfaces on small displays also leads to major chal-
lenges in the fields of layout design and therefore might involve ergonomic factors. For
example, one important question might be, how information can be rendered ergonomi-
cally on a small display to make it as much readable as possible. On the other hand, it
might also be important, how visual information and its inherent logical structure, which is
for example given by an HTML document, can be transformed best into spoken language.

1.3 Thesis Scope — Client-Specific Graphical User

Interfaces

The topic of client-specific network service and content adaptation is very large and can
be discussed at all levels of the ISO/OSI [81] reference model with all kinds of different
content formats and client devices.

Therefore, this thesis mainly focuses on interactive network services on the application
layer. Particularly, it deals with the generation of client-specific client-server sessions and
graphical user interfaces (GUIs) from abstract user interface descriptions. Because of the
large diversity of today’s and future consumer devices, the proposed thesis mainly addresses
devices with a graphic display for the output and with a keyboard and optionally a mouse
for the input. However, other devices, e.g., devices with acoustic input and output, are
taken into consideration as far as to enable enhancements towards these devices without
substantial changes in the proposed ideas of this thesis.

The conversion of related multimedia, image, or other content formats and the conversion
of written text or graphical user interfaces into speech for acoustic output are not covered
here. Below the application layer a reliable network transport service, like TCP/IP [69] in
the Internet, is assumed. How such a transport service is established in mobile, wireless,
and ad-hoc networks is not covered here, either.

Finally, the proposed thesis only deals with the technical aspects regarding the generation
of client-specific client-server sessions and graphical user interfaces, but it does not address

6 1. Introduction

layout-related or other ergonomic issues to avoid unnecessary restrictions. Rather, it pro-
poses a technical platform that leaves service and content providers as much flexibility and
also responsibility in layout-related and other ergonomic decisions as possible.

1.4 Related Work — Overview

A lot of working groups, many of them from the industrial sector, have early addressed the
topic of providing interactive content and services for restricted client devices. Here, only
the most important activities are introduced briefly:

World Wide Web Consortium (W3C) The World Wide Web Consortium (W3C)
[92] has several working groups that deal with the description format for documents and
user interfaces in the World Wide Web (WWW):

XHTML Basic The modularization of XHTML, XHTML 1.1 [6], decomposes
XHTML 1.0 [60], which is the successor of HTML 4.01 [65], into functional subsets called
modules. The module XHTML Basic [8] is specifically designed for Web clients such as mo-
bile phones, PDAs, pagers, set-top boxes, etc., that do not support the full set of XHTML
features. Mainly, XHTML Basic contains markup elements for basic text (including head-
ings, paragraphs, and lists), hyperlinks and links to related documents, basic forms, basic
tables, images, and meta information. However, it does not support style sheets, scripting,
and frames.

XML, CSS, XSL The XML [16] working group of W3C pursues a separation of
content and layout. In contrast to HTML documents which contain both content and
layout information, the XML documents only contain logically structured content. As
the XML elements have no intrinsic presentation semantics, layout has to be provided by
additional style sheets, e.g., CSS [12] or XSL [2].

A CSS style sheet document is sent together with the XML document to the client device.
On the client device a rendering engine, which understands CSS, formats and displays the
XML document according to the style directives given in the CSS style sheet. As CSS is a
quite powerful and complex style sheet language, a subset of CSS has been defined, called
CSS Mobile Profile [95], which is tailored to the needs and constraints of mobile devices.

XSL consists of the tree transformation language XSLT [22] and a set of formatting objects
and properties XSL-FO [2]. The XML document is first transformed with a given XSLT
style sheet document into the resulting document. The client then renders and displays
the resulting document. Note that the resulting document does not necessarily need to
comply to XSL-FO. It may as well have any other XML-like format that is understood
by the client. The tree transformation can be performed on the server or on the client
side. If it is performed on the server side, then only the resulting document is sent to
the client. Otherwise, both the XML and the XSLT style sheet documents are sent to
the client. However, a resource-constrained client device might not be capable to perform
such a resource-intensive task such as tree transformation. With the use of XSL an existing
XML document might serve as a reference which is transformed dynamically to other XML
documents that suit the client capabilities.

1.4. Related Work — Overview 7

XForms The XForms [24] working group of W3C deals with the next generation of
Web forms which can be used with a wide variety of platforms including desktop computers,
hand-helds, information appliances, etc. The XML-based language XForms describes user
interfaces declaratively, i.e., not operationally, and on a quite high, i.e., abstract, level.

Composite Capabilities/Preferences Profiles (CC/PP) The CC/PP working
group [90] of W3C has developed the Composite Capabilities/Preferences Profiles (CC/PP)
framework [66] [49]. It consists mainly of an RDF [44] and XML [16] based format for de-
scribing the hardware and software capabilities of the client device and its user preferences,
the CC/PP Profile [40], and an exchange protocol for content negotiation between client
and server, the CC/PP Exchange Protocol [53]. The client sends its CC/PP profile within
the request to the service provider. The service provider can use this information to cus-
tomize its provided service or content, before it replies to the client. The vocabulary of the
CC/PP profile is designed to be broadly compatible with the UAProf specification [59] from
the WAP Forum [54]. It includes information about the hardware platform (e.g. vendor,
model, class of device, screen size, etc.), the software platform (e.g. operating system, level
of HTML, CSS, JavaScript, Java, and WAP support, etc.), and about an individual ap-
plication (e.g. browser, etc.) of the client device. The CC/PP exchange protocol is based
on the HTTP Extension Framework [48]. Note that HTTP is the assumed underlying
protocol but the CC/PP framework might also be transportable over other protocols.

In the meantime the CC/PP working group has closed and its work moved to the Device
Independence working group [91].

Wireless Application Protocol Forum (WAP) The Wireless Application Protocol
Forum (WAP) [54] has specified a network protocol stack and an application framework
for wireless consumer devices. Among others, they have developed WSP [57], WML [56],
and WMLScript [58] which are, roughly speaking, the counterparts of HTTP, HTML, and
JavaScript in the WWW respectively. In addition, the WAP Forum has also developed a
core vocabulary, UAProf [59], for mobile devices, which complies with the CC/PP profile
format of W3C. UAProf describes the hardware and software characteristics of the client
device as well as the type of network to which the client device is connected. It defines
attributes for the components “HardwarePlatform”, “SoftwarePlatform”, “NetworkChar-
acteristics”, “BrowserUA”, “WapCharacteristics”, and “PushCharacteristics”.

In the meantime, the WAP Forum has consolidated into the Open Mobile Alliance (OMA)
[55] and no longer exists as an independent organization. However, the specification work
from WAP continues within OMA.

Java 2 Platform, Micro Edition (J2ME) Sun Microsystems has grouped its Java
technologies [77] into three editions with each aiming at a particular area in computing
industry: the Java 2 Enterprise Edition (J2EE) for enterprises, the Java 2 Standard Edition
(J2SE) for the desktop computer market, and the Java 2 Micro Edition (J2ME) [74] for the
consumer and embedded device market. The high-level architecture of J2ME is illustrated
by figure 1.4 (page 8).

For the host operating system only a minimal operating system is assumed that manages
the underlying hardware. Support for separate address spaces or processes, guarantees
about real-time scheduling or latency behavior, etc., are not required.

8 1. Introduction

Host Operating System

Configuration:
Core Libraries +
Virtual Machine

P
ro

fil
e

P
ro

fil
e

...

Figure 1.4: J2ME: High-Level Architecture

The configuration layer consists of a customized virtual machine and a minimal set of core
Java class libraries available for a particular category of device. Devices of a particular
category have similar characteristics in terms of memory budget and processing power.
Currently, there are two configurations: the Connected Device Configuration (CDC) [72]
and the Connected Limited Device Configuration (CLDC) [73]. CLDC is the smaller of
the two configurations and designed for mobile devices with very little memory (measured
in Kbytes) and processing power such as mobile phones, two-way pagers, personal digital
assistants (PDAs), etc., whereas CDC is designed for fixed devices that have more memory
(at least 2 Mbytes) and processing power such as TV set-top boxes, in-vehicle telematics
systems, etc.,

The profile layer is implemented upon a particular configuration and provides additional
APIs which are more domain specific for a particular family of devices. For instance, the
Mobile Information Device Profile (MIDP) [78] operates on top of the CLDC configuration.
Devices of a particular family have much more similar characteristics than devices of a
particular category, i.e., a family is a refined subset of a particular category. For a particular
configuration more than one profile might exist and a device can support multiple profiles
at a time.

As a result, the modular and scalable J2ME architecture is mainly defined in a model with
the following (software) layers built upon the host operating system of the device: a cus-
tomized virtual machine, core and broad-range APIs provided by a particular configuration,
and more specific APIs provided by profiles.

Connected Limited Device Configuration (CLDC) CLDC [73] has been de-
veloped by Sun Microsystems in collaboration with major consumer device manufacturers
since 1999. The devices targeted by the CLDC Specification have the following general
characteristics:

• At least 192 Kbytes of total memory budget available for the Java platform, i.e., at
least 160 Kbytes non-volatile memory for the virtual machine and CLDC libraries
and at least 32 Kbytes of volatile memory for the virtual machine runtime and object
memory (i.e., the heap space)

• 16/32-bit processor

• Low power consumption, often operating with battery power

1.4. Related Work — Overview 9

• Network connection often wireless, intermittent, and with limited bandwidth

The underlying Java virtual machine is the K Virtual Machine (KVM) [79]. The KVM
is derived from the standard Java Virtual Machine (JVM), but designed from the ground
up for small-memory, limited-resource, and network-connected devices. The “K” in KVM
stands for “kilo”, i.e., memory budget is measured in kilobytes. The KVM includes the
execution of byte code, automatic garbage collection, and multi-threading. On the Java
language and virtual machine level all central aspects are maintained with the following
restrictions:

• No finalization of objects (i.e., Object.finalize()), no asynchronous exceptions, no
user-defined class loaders, no thread groups and daemon threads, and no Java Native
Interface (JNI)

• Limited set of error classes

CLDC contains classes that are identical or a subset of the corresponding standard J2SE
classes, e.g., from the packages java.lang.*, java.util.*, java.io.*, and it contains
additional classes outside J2SE which are specific to CLDC and inside the package javax.-
microedition.*.

CLDC does not cover application management (installation, launching, deletion) and user
interface functionality (user interface components and event handling). These features
have to be addressed by profiles implemented on top of the CLDC.

Mobile Information Device Profile (MIDP) The MIDP is designed for mobile
phones, PDAs, and similar devices. Mainly it provides Java APIs for user interfaces,
network connectivity, local data storage, sound, timers, and application management. The
devices targeted by the MIDP Specification should have the following minimum hardware
characteristics:

• Visual Output: screen size: 96x54, display depth: 1 bit, pixel shape (aspect ratio):
approximately 1:1

• Input: one-handed keyboard or two-handed keyboard or touch screen

• Memory:

– 256 Kbytes of non-volatile memory for MIDP implementation, beyond what’s
required for CLDC.

– 8 Kbytes of non-volatile memory for application-created persistent data

– 128 Kbytes of volatile memory for the Java runtime (e.g. Java heap)

• Networking: two-way, wireless, possibly intermittent, with limited bandwidth

• Sound ability

Other Some other activities like [11], [19], [25], [94], [84], [13], [23], etc., concentrate
more on the layout-related and ergonomic aspects of content adaptation and presentation,
which is performed on the server/proxy-side. For the description of user interfaces they
rely on existing XML-based formats like HTML [65] and WML [56].

10 1. Introduction

1.5 Summary of the Chapters

This section gives a summary for each chapter to come:

2 Proposed Client-Server Architecture — Overview This chapter gives an over-
view of the proposed client-server architecture that enables the generation of client-specific
user interfaces for restricted client devices within the context of interactive network services
on the application layer. It motivates the main ideas but does not go too much into details.

First, the main components of interactive network services are listed. Then, it is discussed
which user interface description format is most suitable for client devices with different
and restricted capabilities. In particular, the requirements of scalability, compactness, and
functionality are addressed and it is discussed whether the description format should be
declarative or operational. Thereby, different levels of abstraction are considered. As a
result, a new virtual machine, called the Client Virtual Machine (CVM), is introduced
that runs on the client device and serves as an interpreter for the new description format.
On the server side a framework is presented where client-specific user interfaces with the
new description format are generated and sent as CVM packets to the requesting client.
For the client-server communication a simple application protocol, called the CVM packet
transfer protocol (CPTP), is introduced briefly.

Reading this chapter is sufficient to get the basic idea of this thesis. The next chapters
discuss the involved components of the proposed client-server architecture in detail.

3 Client Virtual Machine (CVM) This chapter specifies in detail the CVM and
serves as a reference for any CVM implementor. The specification focuses mainly on
the behavior and special characteristics of its modules and functional units by avoiding
unnecessary restrictions that are implementation specific. This chapter specifies also the
CVM profile and the CVM packet format. The CVM profile format is used by the CVM
when it reports its capabilities and user preferences to the CVM packet server during
a request. The CVM packet format is the new user interface description format and
represents the binary executable format for the CVM. At the end of this chapter the main
differences between the CVM and the JVM/KVM virtual machines from Sun Microsystems
are outlined.

4 CVM Packet Transfer Protocol (CPTP) This chapter specifies in detail the
CPTP protocol which manages the client-server communication between the CVM and the
CVM packet server. The CPTP protocol runs on top of the transport layer and is a very
“thin” counterpart to the HTTP protocol which is used in the World Wide Web. At the
end of this chapter an exemplary CPTP session is demonstrated.

5 CVM Packet Server (CVMPS) This chapter specifies an exemplary server-side
architecture for the CVM packet server. The CVM packet server processes the client
requests and generates session instances and CVM packets that are optimized for the
individual client capabilities. The exemplary CVM packet server consists of the following
components:

1.5. Summary of the Chapters 11

• An abstract user interface description language (AUI) has been developed to specify
interactive network services on the application layer. It provides language constructs
to specify the client-side user interface components as well as language constructs to
embed code for state-dependent actions that are executed on the client and server
side. Client-side actions are specified in CVM assembler whereas server-side actions
can be specified in any common programming language.

• The session manager processes all incoming client messages and stores the data that
are involved during the client-server sessions.

• The service generator generates the client-specific service instance from a given AUI
description and CVM profile.

• The CVM packet generator generates customized CVM packets from a given AUI
description and CVM profile. These CVM packets are called CVM user interfaces.
A CVM user interface may contain all parts of the requested AUI page or only a
smaller subset.

6 Conclusions This chapter summarizes the main results and outlines perspectives
for future work.

A Notations This appendix contains a description of the used notations.

B CVM Assembler (CVMA) This appendix specifies the CVM Assembler. Its
syntax is used for the generated code samples throughout this thesis.

C CVMUI Library (CVMUI Lib) This appendix contains an exemplary imple-
mentation of the CVMUI library. The CVMUI library contains constant and function
definitions that are imported by CVMUI programs.

D CVM Packet Server: Example This appendix contains the C and CVMA source
code of the generated service instance and the CVM packets of an AUI description for an
exemplary network service.

Chapter 2

Proposed Client-Server Architecture
— Overview

On the client side, different levels of abstraction for describing graphical user interfaces
are discussed and a new description format for it is presented. This format takes into
account from scratch the limited display capabilities of the restricted consumer devices
and thus enables scalability, i.e., “thinner” client devices may receive simpler user interface
descriptions. A new virtual machine, called Client Virtual Machine (CVM), runs on the
client device and serves as the user agent. It interprets and displays the received user
interface descriptions.

On the server side, client-specific user interfaces and client-server sessions are generated
from abstract user interface descriptions.

The communication between the client and the server is managed by a new and simple
application protocol, called CVM packet transfer protocol (CPTP).

As already said in the introduction of this thesis, the proposed architecture for the genera-
tion of client-specific user interfaces mainly deals with the technical, but not layout related
or other ergonomic aspects. As the basic ideas of the proposed client-server architecture
are independent of any particular layout design, the service providers gain as much flex-
ibility and also responsibility in layout-related and other ergonomic decisions as possible
when creating user interfaces for restricted clients with limited capabilities.

2.1 Main Components of Interactive Network

Services

First, the essential components that are necessary to implement interactive network services
on the application layer will be summarized:

The server contains the control logic of the network service, manages the involved content,
and supplies the client with user interfaces to be displayed. The control logic defines
the course of the network service. A network service might consist of several phases.
Between the phases client-server communication takes place to exchange data. In general,
the control logic can be implemented by an (unrestricted) state machine. The involved
content might be any data, e.g., text documents, forms, images, databases, etc., and is
packed into user interfaces. The main task of a client is — apart from sending its request

12

2.2. Client Side 13

to a server for a particular network service — to display the received user interfaces on the
client device. Therefore it needs a runtime environment or interpreter which is frequently
also called browser or user agent. At last, a protocol is required for the client-server
communication on the application layer.

The WWW is an example of an interactive network service on the application layer. How-
ever, in the traditional WWW the above components are not clearly separated: On the
one hand, HTML [65] — possibly enriched with JavaScript [27] and Java [36] code — is
used as the user interface description format on both the server and the client side. On
the other hand, parts of the control logic, for instance the handling of status and error
messages, are specified in the HTTP [10] communication protocol, instead.

2.2 Client Side

On the client side mainly a user interface description format is needed which suits the
different capabilities and limitations of the networked clients and thus enables scalability.

2.2.1 User Interface Description Format

In general, a graphical user interface consists of several user interface components, where
each user interface component is characterized mainly by its graphic appearance and event
semantics. The event semantics is usually defined by an event table which specifies for
each event type, e.g., a mouse click, a sequence of actions to be executed after the user has
triggered an event of that type. However, some components of a user interface might not
have any event semantics, e.g., a paragraph of simple text or an illustrative image. These
non-interactive components are mainly used for informational or stylistic purposes. For
reasons of generality they are referred to in this thesis as (non-interactive) user interface
components as well.

Requirements The user interface description format for networked clients with different
and restricted capabilities must meet the following requirements:

1. Scalability: The user interface description format must be as general and scalable
as to be displayable by current and future client devices with different capabilities,
especially by small and restricted consumer and embedded devices. Ideally, its ap-
pliance should also be suitable for general purpose computers with sufficient system
resources such as PCs or workstations.

2. Compactness: The user interface description format must allow compact encodings
of user interfaces to reduce network bandwidth during transport from the server to
the client.

3. Functionality: The user interface description format should provide equal function-
ality and be as powerful as the current technologies that are used in the Internet
nowadays such as HTML [65], JavaScript [27], and — to some extent — Java [36],
because otherwise additional technologies are needed for more complicated and dy-
namic tasks. This is the case with HTML which often includes JavaScript or Java
code for dynamic tasks.

14 2. Proposed Client-Server Architecture — Overview

2.2.1.1 Compactness vs. Scalability

To meet the requirements of scalability and compactness, a compromise must be found
between different levels of abstraction which are illustrated in figure 2.1 (page 14). The

Pixel-Bitmap

HTML: e.g. , , <A>,
<TABLE>, <FORM>, <INPUT>,
<FRAME>, etc.

Elementary Graphic Shapes:
e.g. line, circle, rectangle, etc.

Level of Abstraction

Higher Level:
Logical Description,

Compactness,
Client-Side Rendering Efforts

Lower Level:
Layout-Related Description,

Scalability,
Server-Side Administration Efforts

Figure 2.1: Different Levels of Abstraction for User Interface Components

more abstract the user interface components are, the more compact the user interface
description becomes. But then less scalability can be achieved.

The different levels of abstraction will be discussed in more detail with the help of an
example of a simple user interface that is shown in figure 2.2 (page 14). This user interface

x

y

Screen

80

40

 0

0 50 100

A hyperlink: http://www.in.tum.de

Here a list with 2 items:

Second item
First item

Finally a button: Click me

An example user interface

Cursor

Figure 2.2: Simple User Interface Example

example begins with a title on the top. Then an unnumbered list with two list items
follows. The next line represents a hyperlink to a WWW site at the given URL [26]. The
last line begins with some text and finishes with a button. The current cursor position
is indicated here by a narrow horizontal line. It depends on the peripherals of the client
device how the user can control the cursor. As most consumer devices have limited input
capabilities, some kind of arrow keys of the limited keyboard must be used for this task
instead of a mouse which is usually only available on general purpose computers such as
PCs or workstations. Apart from the cursor this user interface contains two interactive
components: the hyperlink and the button. The user can activate such an interactive
object by first moving the cursor into the geometric region of the object and then pressing

2.2. Client Side 15

some kind of Enter key on the keyboard. The activation of the hyperlink results in a
new client request for the WWW site at the explicitly given URL. After the button is
pressed, any actions can be performed and are not specified here in more detail. In the
following discussion, this user interface will be described with respect to different levels of
abstraction.

High-Level Components A high-level user interface component does not predefine a
specific layout presentation. Instead, the user agent which displays this user interface
component can choose a particular layout presentation. The only formatting constraint is
that its appearance reflects to the user intuitively what kind of user interface component it
is. For example, a button should look like a button. In addition, a high-level user interface
component may be of any complexity and might consist of several sub-components. For
example, a list usually consists of several list items, a table usually consists of several rows
which in turn consist of several columns each, or a form usually consists of several input
fields, buttons, etc. Typically, the default event semantics of a high-level user interface
component is predefined implicitly without an explicit event table.

The markup language HTML [65] is an example of a high-level language for describing
user interfaces because it has several high-level markup elements such as , , <A>,
<TABLE>, <FORM>, <INPUT>, <FRAME>, etc. For example, an unnumbered list can be described
in HTML with the markup element . Its list items are described each with the markup
element and listed as children inside the parental element. The <A> element
is used for hyperlinks. An input form is expressed by the <FORM> element and its sub-
components, called controls, can each be specified with the <INPUT> element. The type
attribute of the <INPUT> element then specifies the control type, which might be a button,
a text input field, etc. A button, for example, is expressed with the type attribute value
"button". In general, the default event semantics of an interactive HTML element is
implicitly predefined. Additional event semantics must be specified with the help of a
scripting language such as JavaScript [27]. The corresponding scripting code is embedded
into the HTML document. For example, the scripting code for the actions on a button
click can be provided by the value of the onclick attribute of the corresponding <INPUT>
element. The rendering of a high-level markup element into a particular layout presentation
on the display of the client device is performed by the browser which runs on the client
device and interprets the downloaded HTML document. Therefore, the browser determines
the graphic appearance of a high-level markup element. In the course of time, however,
similar representations for most markup elements have emerged for the common browsers
like the Microsoft Internet Explorer or Mozilla Firefox. The above user interface can be
specified in HTML as follows:

<HTML>
<HEAD>
<TITLE>An example user interface</TITLE>
<META http-equiv="Content-Script-Type" content="text/javascript"/>

</HEAD>
<BODY>

<I>An example user interface</I>
<P>Here a list with 2 items:

First item

16 2. Proposed Client-Server Architecture — Overview

Second item

A hyperlink: http://www.in.tum.de
<FORM action="http://somesite.com/handle" method="post">
Finally a button:
<INPUT type="button" value="Click me"

onclick="/* Here comes the JavaScript code */"/>
</FORM>

</P>

</BODY>
</HTML>

The benefit of a high-level description language like HTML is that its language constructs
allow quite compact descriptions of user interfaces, which is good to keep network band-
width low. But on the other side, the client-side rendering efforts rise, because the client
has to interpret these abstract user interface elements and perform the formatting into a
particular layout presentation. Because of the complexity of some user interface compo-
nents, this task might impose a lot of effort for the client. Therefore, a resource-limited
client can hardly process complex user interface elements. The only way for a resource-
limited client then is to omit user interface components with higher complexity. In terms
of HTML, only a subset of its markup elements, which excludes elements like <TABLE>,
<FORM>, <INPUT>, <FRAME>, etc., can be processed by a resource-limited client. Content
adaptation then would rather become a matter of content filtering. As a result, because
of its lack of scalability, a high-level description language for user interfaces like HTML is
not suitable for limited client devices.

Pixel Bitmap Image If user interfaces are described on a lower level, more scalabil-
ity and flexibility can be achieved for their adaptation. The lowest level for describing
a particular user interface component might be a pure pixel bitmap that represents the
image of its graphic appearance and an explicit event table that defines the event seman-
tics. Then, the whole user interface description is an image whereas each user interface
component occupies a particular geometric area inside the image. The event table defines
the corresponding event semantics for each geometric area of the image that belongs to
an interactive user interface component. Then, the above user interface can be described
exemplarily in a C-like syntax [20] as follows:

char pixel_bitmap[] =
{
/* Byte array which encodes the image of the user interface

as a pixel bitmap. */
}

void event_table()
{
if (/* Arrow left key pressed ? */)
{ /* Move cursor left. */ }

else if (/* Arrow right key pressed ? */)
{ /* Move cursor right. */ }

else if (/* Arrow up key pressed ? */)

2.2. Client Side 17

{ /* Move cursor up. */ }
else if (/* Arrow down key pressed ? */)
{ /* Move cursor down. */ }

else if (/* Enter key pressed ? */)
{
if (/* Current cursor position inside of rectangle

[(5, 50), (90, 60)] ? */)
{
/* Action code for the hyperlink: a new WWW request

with the URL "http://www.in.tum.de". */
}

else if (/* Current cursor position inside of rectangle
[(50, 65), (80, 75)] ? */)

{ /* Action code for the button: application specific ... */ }
}

}

For reasons of brevity and clearness this description concentrates only on the essential parts.
In addition, some sections are expressed informally within comments. The user interface
description consists of two main parts: First comes the byte array (pixel bitmap[]) that
encodes the image of the user interface as a pixel bitmap. Next comes the event table
(event table()). The event table defines the corresponding actions for each event type,
e.g., Enter key pressed, and the xy coordinates of the current cursor position. If the cursor
position falls inside the geometric region of an interactive element while the user triggers
an event of a particular type, then the corresponding actions are executed. Here, the
geometric region of the hyperlink is defined by the rectangle with the (x, y) corners (5,
50) and (90, 60), and the geometric region of the button is specified by the rectangle with
the corners (50, 65) and (80, 75). The event table and its actions must be encoded in a
language format that the client device understands.

The main benefit of this approach is that the client does not need to render the graphic
description of the user interface into a particular layout presentation because it is already
encoded as a pure pixel bitmap image.

However, this approach also results in serious problems: First, the transport of bitmap
images from the server to the client wastes too much network bandwidth, because bitmap
images are quite huge even for small displays. If each pixel point is specified using the 24-bit
RGB color model [70], then the whole size of the user interface description, which consists
of the pixel bitmap and the event table, exceeds 100x80x3 = 24000 bytes. In comparison,
the equivalent HTML description of the above user interface only requires approximately
700 bytes. In spite of the rapid developments in the area of wired and wireless network
technology to provide more bandwidth, e.g., UMTS [87], network bandwidth might always
be a limited resource. Compact image encoding formats like GIF [29], JPEG [39], etc.,
might help to reduce bandwidth requirements but not sufficiently. In addition, the client
device then would have to perform some processing to decode the image.

Another problem is that user interaction is very hard to implement this way, because a
user interface component might change its appearance when the user interacts with it. For
example, the shading of a button might change when it is pressed or the color of a hyperlink
might change after it has been visited by the user. A more complex example might be an
editable text field which updates synchronously the contents of its text field while being

18 2. Proposed Client-Server Architecture — Overview

edited by the user. In addition, the cursor — which is also part of the image — changes
its position when the user presses one of the arrow keys. Whenever the user interface
components change their appearance, the client — if we assume that it does not perform
any rendering of the user interface — has to send an appropriate notification message to
the server and wait for an updated image that reflects the new state of the user interface.
The server, on the other side, has to keep track of the current state of the client-side user
interface and send the updated image to the client after each received notification message.
Thus, each user interaction leads to additional network traffic and might cause a network
overload. In addition, the server has to do a lot of administration tasks. After each user
interaction, it has to process a notification message and deliver the image that reflects the
current state of the user interface.

It becomes clear that this approach cannot be implemented practically. This approach
reduces the rendering efforts of the client to a minimum, but the bandwidth requirements
and server-side administration efforts are immense. Therefore, more capabilities of the
client are required to decrease the bandwidth requirements and server-side administration
efforts.

Elementary Graphic Shapes The previously discussed approaches are extreme in na-
ture. The first one describes a user interface from a very abstract and logical view without
a strict relation to a particular layout presentation. The second approach defines a user
interface by a pixel bitmap image and an explicitly defined, coordinate-based event table.
Apart from the pixel point — which is the most elementary and unsplittable graphic object
at all — the second approach does not assume any other or even higher-level components
to form the graphic appearance of a user interface.

As a result, a compromise between these two extreme approaches might be elementary
user interface components that are low level enough to serve as building blocks for more
complicated user interface objects, but still allow compact descriptions of user interfaces.
Besides text, the building blocks are elementary graphic shapes that occur frequently in
user interfaces components such as lines, circles, rectangles, etc.

For example, the above user interface can be described with these elementary graphic
shapes in an XML-like syntax [16] as follows:

<paint fontName="Helvetica" fontStyle="normal" fontSize="14pt" color="black">
<text x="5" y="12" fontStyle="bold italic" fontSize="17pt"

string="An example user interface"/>
<text x="5" y="25" string="Here a list with 2 items:"/>
<circle x="10" y="30" radius="3" fill="true"/>
<text x="20" y="35" string="First item"/>
<circle x="10" y="38" radius="3" fill="true"/>
<text x="20" y="43" string="Second item"/>
<text x="5" y="55" string="A hyperlink: http://www.in.tum.de"/>
<line x1="5" y1="57" x2="85" y2="57"/>
<text x="5" y="72" string="Finally a button:"/>
<rect x1="50" y1="65" x2="80" y2="75"/>
<text x="55" y="72" string="Click me"/>

</paint>
<eventTable>

<!-- entry for the hyperlink: -->

2.2. Client Side 19

<entry x1="5" y1="50" x2="90" y2="60" type="Enter key pressed" action="..."/>
<!-- entry for the button: -->
<entry x1="50" y1="65" x2="80" y2="75" type="Enter key pressed" action="..."/>

</eventTable>

The names of the markup elements and attributes should be self-explanatory. This user
interface description consists of two main sections. The first section is enclosed by the
markup element <paint> and defines the visual appearance of the graphical user interface.
The second section is limited by the markup element <eventTable> and contains the event
table. By default, each child element inherits the attribute values of its parent element, if
it does not overwrite them. For example, the first occurring <text> element in the above
user interface description inherits the fontName attribute of the parental <paint> element,
whereas it overwrites the parental fontStyle and fontSize attributes. The child elements
of the <paint> element represent elementary graphic shapes which serve as building blocks.
For example, the <text> element prints out the string that is given by its string attribute
on the display at the coordinate position that is given by its x and y attributes. The
<line> element draws a line that starts at the coordinate position given by the x1 and y1

attribute values and ends at the position given by the x2 and y2 attribute values. Each
<entry> element defines the corresponding actions for a particular user event. If the type
of the user event matches the value of the type attribute and the current cursor position
falls into the rectangular area that is limited by the corners (x1, y1) and (x2, y2), then the
client device executes the sequence of actions given by the value of the action attribute.
For this the sequence of actions must be encoded in a language that the client understands.

In the following discussion, the building block idea is demonstrated by comparing particular
sections of this user interface description with the equivalent sections of the corresponding
HTML description: The lines

<circle x="10" y="30" radius="3" fill="true"/>
<text x="20" y="35" string="First item"/>
<circle x="10" y="38" radius="3" fill="true"/>
<text x="20" y="43" string="Second item"/>

build the unordered list which is expressed in HTML with

First item
Second item

.

The lines

<text x="5" y="55" string="A hyperlink: http://www.in.tum.de"/>
<line x1="5" y1="57" x2="85" y2="57"/>

...
<!-- entry for the hyperlink: -->

<entry x1="5" y1="50" x2="90" y2="60" type="Enter key pressed"
action="..."/>

build the hyperlink which is expressed in HTML with

20 2. Proposed Client-Server Architecture — Overview

A hyperlink: http://www.in.tum.de.

The lines

<rect x1="50" y1="65" x2="80" y2="75"/>
<text x="55" y="72" string="Click me"/>

...
<!-- entry for the button: -->

<entry x1="50" y1="65" x2="80" y2="75"
type="Enter key pressed" action="..."/>

build the button which is expressed in HTML with

<FORM action="http://somesite.com/handle" method="post">
...

<INPUT type="button" value="Click me"
onclick="/* Here comes the JavaScript code */"/>

</FORM>.

In order to relieve the client from the task of performing layout computations, this user
interface description explicitly contains the absolute xy coordinate positions for each user
interface component. A mixture of relative and absolute xy coordinates might also be
used. The formatting and assignment of the xy coordinates is performed by the server.
As a result, the client can draw instantly the elementary graphic shapes without large
rendering efforts.

Here, a pixel point is used as the measuring unit for the xy coordinates. However, as
the dimension of a pixel point generally varies between different screen types of the client
devices, an absolute and platform-independent measuring unit such as the Big Point or
shortly Point (pt) might be used as well. The size of a Point equals to 1/72 inch and is
widely used as the typographic unit in computer industry.

As this user interface description is only a little larger than the equivalent HTML descrip-
tion, this approach satisfies the two requirements of scalability and compactness. However,
this user interface description does not specify how the cursor is controlled. In addition,
this approach does not address the issue, which programming language might be used to
encode the actions of the interactive components, either. These topics are discussed next.

2.2.1.2 Declarative vs. Operational

The third requirement of functionality leads to the question whether the user interface
description should be declarative† or operational. Declarative means that the user interface
is described without control-flow language constructs. In combination with high-level user
interface components with default event semantics quite compact user interface descriptions
can be achieved. HTML is an example of a declarative language. However, a declarative
language reaches its limitations, when dynamic aspects of the user interface need to be
specified explicitly such as individual and application-specific event semantics of particular
interactive user interface components, because it is very difficult to describe actions, which
are operational by nature, in a declarative way. HTML, therefore, has to include code

†The term descriptive is occasionally used as a synonym for the term declarative.

2.2. Client Side 21

written in another operational language, e.g., JavaScript [27], for these tasks. To avoid
the dependence on another operational language the user interface must be described in
an operational manner. Besides, an operational language can be interpreted by the client
more directly and easier than a declarative language. Using this approach, a particular user
interface description is a program for a virtual user interface machine, which is here called
the Client Virtual Machine (CVM). Then, the above user interface might be described
operationally in a C- and assembler-like syntax exemplarily as follows:

/* application specific variable declarations */

/* xy position and length of cursor */
int xPos = 0, yPos = 0, lenCursor = 10;

/* state of the hyperlink */
boolean isVisited = false;

/* state of the button */
boolean isCurrentlyPressed = false;

/* paint procedures */

/* entry point for execution */
main:
call paintUserInterface
call paintCursor
abort

/* paint procedure for the user interface */
paintUserInterface:
setcolor black
setfont Helvetica, bold italic, 17 /* name, style, size */
text 5, 12, "An example user interface" /* x, y, string */
setfont Helvetica, normal, 14
text 5, 25, "Here a list with 2 items:"
circlefill 10, 30, 3 /* x, y, radius */
text 20, 35, "First item"
circlefill 10, 38, 3
text 20, 43, "Second item"
call paintHyperlink
text 5, 72, "Finally a button:"
call paintButton
ret

/* paint procedure for the hyperlink */
paintHyperlink:
if (isVisited == false)

{ setcolor blue }
else

{ setcolor red }
text 5, 55, "A hyperlink: http://www.in.tum.de"

22 2. Proposed Client-Server Architecture — Overview

line 5, 57, 85, 57 /* x1, y1, x2, y2 */
setcolor black
ret

/* paint procedure for the button */
paintButton:
if (isCurrentlyPressed == false)
{ setcolor green }

else
{ setcolor red }

rectfill 50, 65, 80, 75 /* x1, y1, x2, y2 */
setcolor black
rect 50, 65, 80, 75 /* x1, y1, x2, y2 */
text 55, 72, "Click me"
ret

/* paint procedure for the cursor */
paintCursor:
line xPos, yPos, xPos + lenCursor, yPos
ret

/* event semantics */

/* event attributes */
int deviceCode, eventCode, eventPars[];

/* global event handling procedure */
eventTable:
if (deviceCode == KEYBOARD)
{
if (eventCode == PRESSED)

{
/* eventPars[0] contains the key code */
if (eventPars[0] == LEFT_KEY && xPos > 0)
{
xPos = xPos - 1
call paintUserInterface
call paintCursor
}

else if (eventPars[0] == RIGHT_KEY && xPos < XMAX)
{
xPos = xPos + 1
call paintUserInterface
call paintCursor
}

else if (eventPars[0] == UP_KEY && yPos > 0)
{
yPos = yPos - 1
call paintUserInterface
call paintCursor

2.2. Client Side 23

}
else if (eventPars[0] == DOWN_KEY && yPos < YMAX)

{
yPos = yPos + 1
call paintUserInterface
call paintCursor
}

else if (eventPars[0] == ENTER_KEY)
{
if (xCursor >= 5 && xCursor <= 90 &&

yCursor >= 50 && yCursor <= 60)
{
isVisited = true
call paintHyperlink
/*
Further instructions for the actions after the hyperlink was
pressed.
*/
}

if (xCursor >= 50 && xCursor <= 80 &&
yCursor >= 65 && yCursor <= 75)

{
isCurrentlyPressed = true
call paintButton
/*
Further instructions for the actions after the button was
pressed.
*/
}

}
}

else if (eventCode == RELEASED && eventPars[0] == ENTER_KEY &&
xCursor >= 50 && xCursor <= 80 &&
yCursor >= 65 && yCursor <= 75)

{
isCurrentlyPressed = false
call paintButton
}

}

This program consists of three sections: a section for application-specific variable declara-
tions, a section for paint and possibly other procedures, and a section for the event seman-
tics. The current xy position of the cursor is stored in the variables xPos and yPos. The
length of the horizontal line that represents the cursor is stored in the variable lenCursor.
The state of the hyperlink, i.e., if already visited or not, is stored in the variable visited.
The state of the button, i.e., if currently being pressed or not, is stored in the variable
isBeingPressed.

The next section contains the procedures. Execution starts at the main procedure. The
painting of the user interface is performed by the paintUserInterface procedure. It calls
the auxiliary procedures paintHyperlink and paintButton. If the hyperlink is not yet

24 2. Proposed Client-Server Architecture — Overview

visited, it is painted with blue color, otherwise with red color. The background color of
the button switches from green to red while being pressed by the user.

The last section defines the event semantics of the user interface components. The at-
tributes of the latest occurring event are stored in the variables deviceCode, eventCode
and eventPars. The deviceCode indicates the device where the event has occurred, e.g.,
KEYBOARD. The eventCode indicates the type of event, e.g., PRESSED, RELEASED. The array
eventPars contains additional event parameters. For example, the key code of a pressed
key is stored in eventPars[0]. Whenever a user event occurs, the CVM automatically
first assigns the corresponding values to these variables and then executes the eventTable

procedure.

In order to relieve the client from the task of performing layout computations, this user
interface program explicitly contains the absolute xy coordinate positions of each user inter-
face component. For example, the instruction line 5, 57, 85, 57 draws a line between
the points (5, 57) and (85, 57). The formatting and assignment of the xy coordinates is
performed by the server. Thus, the client can draw immediately the elementary graphic
shapes without large rendering efforts.

In contrast to an HTML document, which is in plain ASCII format, a CVM program is
transmitted in a compact and executable binary format from the server to the client. This
saves network bandwidth and relieves the client from assembling the CVM program into
an executable form.

In general, the amount of CVM code that is required for a particular user interface com-
ponent depends on how luxurious it is painted, e.g., with 3D look and feel, interactive
highlighting effects, etc., and on its structural and functional complexity. Examples of
complex user interface components are tables, frames, editable text fields, etc. Therefore,
scalability — in terms of describing a user interface — can be achieved through the size
and complexity of the corresponding CVM program.

2.2.2 Client Virtual Machine (CVM)

The main tasks of the CVM are the presentation of downloaded user interfaces and the
communication with the server. The CVM should serve as a common subset of all possible
client devices, i.e., small, restricted consumer and embedded devices as well as general
purpose computers. Any client device should be able to run the CVM either with a
software interpreter or as a hardware implementation without requiring a lot of system
resources. Therefore, its architecture, instruction set, and runtime environment should be
as simple as possible and restrict itself only to the most essential parts. Some concepts of
related existing virtual machines, e.g., JVM [80], KVM [79], PostScript [4], DVI [41], etc.,
might be adopted. The JVM is an object-oriented virtual machine with automatic garbage
collection. Because of its complexity, it is quite hard to implement the JVM together with
the extensive Java APIs [75] purely in hardware. Therefore, shrunken versions of the JVM,
e.g., the KVM, have been developed. The KVM, however, still shows a quite complex
architecture because of its object-oriented design principles which are not considered in
this thesis to be essential for a simple user interface machine. PostScript and DVI are
not object oriented and they have instructions for drawing elementary graphic shapes.
However, they are only designed for non-interactive documents. In addition, PostScript is
a quite powerful, but also complex virtual machine. For example, it contains operators for

2.3. Server Side 25

coordinate system transformations, which are not considered to be essential for a simple
user interface machine, either.

As the network enabled client devices may vary a lot in their characteristics and capabilities,
the CVM must have a modular architecture which is illustrated in figure 2.3 (page 25). A

Key-
board

Net-
WorkMouse LibrariesAudioVisual ...

Core

Home Menu

Figure 2.3: Modular Architecture of the CVM

particular device need not implement all components of the CVM, only those for which
it has the corresponding hardware. The optional components are marked by dashed lines
in figure 2.3 (page 25). The components of the CVM are specified in detail in section 3
(page 31). The component Core provides the fundamental runtime environment. User
input is managed by the components Audio, Keyboard, Mouse, and possibly other, not
yet specified components. User output is managed by the components Audio, Visual,
and possibly other, not yet specified components. The module Home Menu represents
the default menu system of the CVM. A mobile phone, for example, might contain the
components Core, Network, Audio, Visual, Keyboard, and Home Menu.

The modular design enables a flexible handling of the capabilities of a device. For example,
its capabilities might be enlarged by inserting a new plug-in card into the device that
provides the required hardware and the implementation of the corresponding CVM module.

The description of the client characteristics and capabilities, called CVM profile, contains
the configuration parameters of the existing CVM components, e.g., the memory size of
the component Core, the resolution, available fonts and colors of the component Visual,
etc.

The CVM is specified in detail in section 3 (page 31).

2.3 Server Side

Figure 2.4 (page 26) illustrates the proposed client-server architecture. The CVM packet
server keeps a collection of abstract user interface descriptions for each offered interactive
network service. For this purpose, an abstract user interface description language is re-
quired that contains language constructs to specify the user interface and the control logic
of an interactive network service. The user interface consists of several user interface pages.
Each user interface page in turn contains several “high-level” user interface components
such as buttons, text fields, etc. as well as actions that are executed by the client, for

26 2. Proposed Client-Server Architecture — Overview

(PROFILE, sessionId = sid, profileItemCodes)

(CVMP, sessionId = sid, cvmpNo = ...,
pageMemAdr = ..., cvmPacket = ...)

User

User
Interaction

Time

AUI +
 CVM Profile

CVMUI

1

2

5

6

3

4

Abstract User
Interface Descriptions

CVM User
Interface

Service
Generator

Session
 Manager

AUI
...

(PROFILE, sessionId = sid, cvmProfile = ...)

(GET, sessionId = 0, serviceNo = svNo,
pageNo = 0, subpageNo = 0, cvmProfile = ...,

 numBytes = 0, dataBytes = [])

Client

CVM

(GET, sessionId = sid, serviceNo = svNo,
pageNo = ..., subpageNo = ..., cvmProfile = ...,

numBytes = ..., dataBytes = [...])

CVM Packet Server

...

CVM Packet
Generator

Service
Instance

AUI +
 CVM Profile

AUI +
 CVM Profile

7

CVMUI
8

AUI +
 CVM Profile

(CVMP, sessionId = sid, cvmpNo = ...,
pageMemAdr = ..., cvmPacket = ...)

...

9

Generation

Generation

Figure 2.4: Client-Server Session

2.3. Server Side 27

example event handling procedures. The control logic of a network service contains actions
that are executed on the server side. Each interactive network service is referenced by
a well-defined service number. Let AUI be the abstract user interface description of the
interactive network service with the service number svNo.

A new client-server session is initiated by a client request with a GET message from the
CVM to the CVM packet server (step 1). Section 2.4 (page 29) gives an overview of the
GET and other used protocol methods. The session manager module of the CVM packet
server processes all client requests and stores the session-specific data. The CVM packet
server first assigns a new identification value (sid 6= 0) to the new client-server session. A
CVM packet server might serve more than one CVM at the same time and therefore needs
this unique value to distinguish between them when it receives a message from a CVM.
The value zero indicates the beginning of a new client-server session.

If the profile data of the CVM which is given by the message item cvmProfile in the GET

message is incomplete, the CVM packet server responds with a PROFILE message to ask for
the missing profile items (step 2). The CVM then sends a PROFILE message to the CVM
packet server that contains these items. Note that the CVM packet server and the service
instance can send a PROFILE message to the CVM at any time during the client-server
session.

After all necessary profile data is available, the service generator module generates a client-
specific service instance that meets the hardware and software capabilities as well as the
user preferences of the client (step 3). It is generated from the abstract user interface
description AUI and from the client description, the CVM profile. It mainly contains the
state machine that implements the control logic of the network service that is specified in
the AUI. The lifetime of the client-specific service instance is limited by the time span of
the respective client-server session. Its limited lifetime is indicated by the dashed lines in
the figure.

The CVM packet generator generates the CVM user interface CVMUI from the abstract
user interface description AUI and the CVM profile (step 4). This CVM user interface is a
CVM program that contains an adapted version of the requested AUI page. This version
meets the client capabilities and user preferences. The CVM instructions of a CVM user
interface mainly encode the appearance and event handling semantics of the user interface
components at a low level of abstraction. Note that a CVM user interface may contain all
user interface components of the respective AUI page or only a subset, depending on the
client capabilities like memory, screen size, etc. The missing parts may be generated and
delivered in subsequent client requests.

The generated CVMUI is then sent by the client-specific service instance to the requesting
CVM in a binary format that is called the CVM packet format (step 5). The transmitted
CVM packet is executed by the CVM.

The CVM packet may contain instructions that result in another GET request (step 6).
Mostly, this is the case when the user interacts with a particular user interface component
of the currently executed CVM packet, which causes the CVM to execute the respective
event handling procedure that may contain such instructions. The GET request may also
contain data that is encoded in the CVM packet or that results from client-side processings
or user input. This data is sent in the message item dataBytes of the GET message. It is
used by the state machine of the service instance as input for server-side processings.

Note that both the contents and format of this data are encoded in the instructions of the

28 2. Proposed Client-Server Architecture — Overview

CVM packet, whereas the CVM packet is generated by the CVM packet generator from the
given AUI. Thus, the client-server communication and data transfer are mainly managed
on the server side and the CVM does not need any “intelligence”. It just executes the
instructions in the received CVM packet.

In addition, the data in dataBytes might be needed by the CVM packet generator for
the generation of subsequent CVM user interfaces. For example, this is the case when the
user of the CVM receives a CVM packet that contains a summary of all data that the
user has input in previous input forms. As a CVM user interface generally depends on
user data that might dynamically change during the client-server session it needs to be
generated each time again on demand. Therefore it is generally not possible to generate
the CVM user interfaces of a given abstract user interface description in the beginning of
the client-server session all at once.

Steps 6, 8, and 9 are equal to the steps 1, 4, and 5, respectively. Step 7 differs from step
3 in that the client-specific service instance already exists and need not be generated any
more during this client-server session. The AUI description and the CVM profile are just
passed by the session manager to this service instance.

In addition to the screen size of the CVM, its memory size is also a key factor in determining
how a user interface needs to be customized for the CVM. If the CVM has enough memory,
all parts of an AUI page can be sent in one CVM packet to it. Then, of course, a user
interaction for navigating between the different parts need not cause any CVM requests.
However, if the CVM does not have enough memory, the AUI page must be split into smaller
subpages, where each CVM packet of a subpage must fit into the memory of the CVM.
Then, the CVM packet server first sends to the CVM the CVM packet that contains the
subpage with the starting user interface portion. Each subpage must provide user interface
elements — or even simpler, just “invisible” event handling procedures — that serve as
hyperlinks to the other subpages, in order to enable the user to navigate between them.
The activation of such an hyperlink by the user results in a GET request for the demanded
subpage. The CVM packet server then replies with the requested subpage. To reduce the
amount of network transactions, the server should try to use the memory of the client as
efficiently as possible when partitioning a user interface into smaller subpages. In general,
smaller subpages might imply more client-server transactions. As a result, the partitioning
of a user interface also leads to an optimization problem with respect to the memory size
of the client and the number of network transactions.

Drawing an analogy to the field of document preparation systems, the user interface of
an interactive network service corresponds to a document. The abstract description of
the user interface corresponds to the description of the logical structure of the document,
whereas the CVM packets correspond to the layout structure of the document. In addition,
the CVM packet generator acts as a rendering engine, whereas the CVM profile represents
a collection of formatting constraints.

The abstract specification of user interfaces for interactive network services requires a
suitable language. The service providers on the server side can choose such a language
freely. It is totally their concern how they specify their interactive network services and
store their provided content. For example, the description languages XForms [24], UIML
[86], BOSS [67], EmuGen [14] [15], WSDL [21], etc., might be used for specifying abstract
user interfaces and Web services. It is also the service providers’ business, how they
generate appropriate and valid CVM packets. In addition to the client capabilities and
user preferences, which are technical constraints, the service providers also have to consider

2.4. Communication Protocol 29

layout- and ergonomic-related issues when generating user interfaces for client devices with
limited input and output capabilities.

Compiler technology might be used for the generation of client-specific CVM user inter-
faces from abstract specifications. Depending on the specification language, the dynamic
generation of client-specific service instances and CVM user interfaces from abstract user
interface descriptions for interactive network services might be a quite complex task. There-
fore, the CVM packet server might also keep “simpler” user interface descriptions such as
HTML/XML documents that do not define complex workflows. Then, the CVM packet
generator mainly resembles a compiler that translates HTML/XML documents into ap-
propriate CVM user interfaces.

As a proof of concept, an exemplary language for abstract user interface descriptions, an
exemplary structure for CVM user interfaces, and an exemplary server-side architecture
for the generation of client-specific service instances and CVM packets are presented in
this thesis. These components are specified in detail in the sections 5.1 (page 135), 5.5
(page 166), and 5 (page 135), respectively.

2.4 Communication Protocol

The protocol for the client-server communication should be as simple and universal as
possible. On the one hand, any small and restricted client device should be able to im-
plement it either in software or even in hardware without great use of system resources.
On the other hand, this protocol should be suitable for all kinds of different interactive
network services. Therefore, the application-specific protocol mechanisms must be sepa-
rated from the elementary ones. The application-specific protocol mechanisms depend on
the particular network service and might be shifted into the control logic of the network
service. They might also be specified in the abstract description of the corresponding user
interface. In effect, the communication protocol consists then mostly of the elementary
protocol methods that are essential and always needed.

As a result, the proposed client-server architecture does not adopt the HTTP [10] protocol,
which is used in the WWW for the client-server communication. Instead, a new communi-
cation protocol, called the CVM packet transfer protocol (CPTP) is proposed in this thesis.
CPTP consists only of a few protocol methods. The protocol methods that occur in figure
2.4 (page 26) are described here briefly:

• CVMP: (CVMP, sessionId = sid, cvmpNo = ..., pageMemAdr = ..., cvmPacket = ...)
This protocol method is used when the CVM packet server sends the CVM packet
cvmPacket to the CVM. sessionId contains a value that identifies the current client-
server session, because the CVM packet server might serve more than one client at the
same time. cvmpNo contains the number of this CVM packet. pageMemAdr contains
the absolute memory address of the CVM instruction, where the CVM should start
execution, after it has loaded this CVM packet into its memory.

• GET: (GET, sessionId = 0, serviceNo = svNo, pageNo = ..., subpageNo = ...,
cvmProfile = ..., numBytes = ..., dataBytes = [...])

This protocol method is similar to the GET and POST methods of the HTTP [10]
protocol. It is used by the CVM to send the data in the data array dataBytes to the

30 2. Proposed Client-Server Architecture — Overview

CVM packet server and then request from it the CVMUI page that is addressed by
the page number pageNo and the subpage number subpageNo. sessionId contains a
value that identifies the current client-server session, because the CVM packet server
might serve more than one client at the same time. At the beginning of a new client-
server session, the CVM packet server assigns a new value other than zero to the new
session. sessionId has the value zero in the first GET message from the CVM to the
CVM packet server. serviceNo contains a well-defined number (svNo) that refers
to a particular interactive network service that is offered by the CVM packet server
and requested by the CVM. pageNo and subpageNo each contain an unsigned integer
number. They refer to a particular CVMUI page that belongs to the interactive
network service with the number serviceNo. cvmProfile contains the profile data
about the capabilities and user preferences of the requesting CVM. numBytes contains
the number of bytes of the data array dataBytes. At the beginning of a client-server
session, i.e., when sessionId is zero, pageNo and numBytes usually have the default
value zero.

• PROFILE: (PROFILE, sessionId = sid, cvmProfile = ...) or
(PROFILE, sessionId = sid, profileItemCodes)

This protocol method is used by the CVM and the CVM packet server for content ne-
gotiation. sessionId contains a value that identifies the current client-server session.
cvmProfile contains the profile data about the capabilities and user preferences of
the requesting CVM. profileItemCodes lists the missing profile items whose values
are needed by the CVM packet generator.

The CPTP protocol is specified in detail in section 4 (page 127).

Chapter 3

Client Virtual Machine (CVM)

The CVM is motivated and introduced in section 2.2 (page 13). The main task of the
CVM is to display downloaded user interfaces for networked clients with different and
restricted hardware capabilities. Therefore, the main design goal is a simple and modular
architecture with a simple runtime environment to enable hardware implementations even
on very “thin” and cheap clients. In addition, the CVM instructions should allow compact
and also scalable encodings of user interfaces to make the CVM applicable to more powerful
clients up to general purpose computers such as PCs or workstations as well. As there is
no general and formal approach to “deduce” such a virtual machine, a lot of ideas have
been examined, tried out, and also rejected mainly with the intuition of an engineer. As a
result, the following proposal for the CVM is made without claiming that it is exclusively
the best solution.

The proposed CVM architecture with its modules and functional units inside each module
is illustrated in figure 3.1 (page 31). The optional modules and functional units inside a
model are marked by dashed lines. However, at least one input module, e.g., Keyboard,

Key-
board

Net-
WorkMouse LibrariesAudioVisual ...

Core

Basic Execution and
Memory Access

Home Menu (CVM Packet)

History Buffer
Bookmarks

Menu Interval TimerError Handling Event Handling

Figure 3.1: CVM Modules and Functional Units

Mouse, Audio, etc., and at least one output module, e.g., Visual, Audio, etc., should be
available to enable user interaction. Other input and output modules may be defined in
the future as well. Except for the Audio module, all the illustrated CVM modules and
their functional units are going to be discussed in detail in the following sections. The

31

32 3. Client Virtual Machine (CVM)

description of the modules mainly focuses on their behavior and special characteristics.
Everything else is left to the implementors’ choice.

3.1 Core

The Core module provides the basic runtime environment. Its characteristic components
are illustrated in figure 3.2 (page 32). The special registers of the CVM are reserved for

Core

Special Register
for Register Stack

AccessRegister Stack

regRSP...

R[cvmNumGeneralRegs]

Special Registers

Special Registers
for Instruction and

Memory Access

regSS

regBP

regSP

Memory

Code

Stack

...

...

...

regEventTableAdr...

regEventPar3...

mem[0]

mem[stackSegmentAdr]

mem[cvmMaxMem - 1]

R[1] operand
R[2] operand

Undeclared
Data

Declared
Data

regIP...
mem[codeSegmentAdr]

mem[dataDeclSegmentAdr]

Heap

Special Registers

regTimerSignal...

regTimerInterval...

regTimerHandleAdr...

Basic Execution and Memory Access Error Handlng

regState...

Special Register
for CVM State

Event Handling

regErrorCode...

Special Register

Interval Timer

regEventPar2...

regEventPar1...

regEventCode...

regEventEnable...

History Buffer Bookmarks Menu

Figure 3.2: CVM Core: Functional Units

special purposes. Mainly, these registers store the current state of the CVM. Note that for
the implementation of the CVM additional special registers might be required. However,
as these internal special registers are not needed to specify the characteristic behavior of
the CVM, they are not specified here and are left to the implementors’ choice.

3.1.1 Data Types

The CVM operates on the data types Int, Nat, and String.

3.1. Core 33

Int, Nat Int numbers are 1-, 2-, 3-, and 4-byte signed two’s-complement integer numbers
with values in the ranges of [−27; 27 − 1] for 1-byte, [−215; 215 − 1] for 2-byte, [−223;
223 − 1] for 3-byte, and [−231; 231 − 1] for 4-byte Int numbers. Nat numbers are 1-, 2-,
3-, and 4-byte unsigned one’s-complement integer numbers with values in the ranges of [0;
28−1] for 1-byte, [0; 216−1] for 2-byte, [0; 224−1] for 3-byte, and [0; 232−1] for 4-byte Nat
numbers. Multibyte Int and Nat numbers are stored in big-endian order, i.e., the high bytes
come first. In the following, the term Int1 (or Nat1) will be used as an abbreviation for
“1-byte Int (or Nat)”, the term Int2 (or Nat2) as an abbreviation for “2-byte Int (or Nat)”,
and so on. In addition, the term Int<1|...|4> and Nat<1|...|4> will be used to address all
the Int and Nat types, respectively.

The distinction between signed (Int) and unsigned (Nat) integer numbers and the consid-
eration of their required byte sizes mainly affects the CVM instructions with immediate
operands and the declaration of integer numbers within the CVM packet. It reduces code
size and thus saves network bandwidth and CVM memory usage, because for each integer
value only the minimum number of required bytes is used in the CVM packet and cor-
responding CVM program. Refer to section 3.8 (page 93) for more information on CVM
packets. The Nat type is useful, because unsigned integer numbers in the ranges of [27;
28−1], [215; 216−1], and [223; 224−1] need 1, 2, and 3 bytes, when encoded as Nat numbers,
but 2, 3, and 4 bytes, when encoded as Int numbers, respectively.

Larger integer numbers, from 5 bytes up to 8 bytes, and floating point numbers are not
supported directly by the CVM, as they are scarcely needed for user interfaces — ac-
cording to the author’s point of view. When necessary, these numbers must be emulated
by combining two or more directly supported integer numbers and providing appropriate
procedures that implement their arithmetics. These procedures can be provided explic-
itly by the CVM programmer or packet generator, or implicitly by particular Core library
functions. Refer to section 3.5 (page 83) for more information on library functions.

String Strings are character sequences. There are two binary string formats:

String = { Nat1 length; // 0 < length ≤ 255

Nat1[length] bytes }
or
{ Nat1 0;

Nat2 length; // 0 ≤ length ≤ 65535

Nat1[length] bytes }

The byte array bytes contains UTF-8 [89] string characters. Multibyte UTF-8 characters
are stored in big-endian, i.e., high byte first, order. Note that the value of length represents
the number of bytes in the byte array, but not the length of the resulting string. The second
string representation is to enable longer strings, i.e., strings whose UTF-8 encodings require
more than 255 bytes. However, the shorter binary string format should suffice in most cases.
The binary representation of an empty string is { Nat1 0; Nat2 0 }.

3.1.2 Operation Modes

In order to address a broad range of client devices with different hardware complexities
and system resources, the CVM can be implemented either as a 16- or 32-bit CVM. In the

34 3. Client Virtual Machine (CVM)

following, the term cvmIntLen is used to denote the byte length of an integer number on a
given CVM implementation, depending on the operation mode (or equivalently called CVM
mode). In addition, the CVM types Int and Nat often are also used in the following for
Int<cvmIntLen> and Nat<cvmIntLen>, respectively, i.e., their byte lengths are cvmIntLen.

16-Bit CVM On a 16-bit CVM, cvmIntLen is 2. A 16-bit CVM operates only on integer
numbers with at most 16 bits. The general purpose registers of the register stack and the
memory stack items are each 16 bit wide. The special registers are also 16 bits wide, except
for some special registers like regRSP, regColorRed, etc., which might require less bits. All
data items in memory including the memory stack items are 16-bit aligned. The memory
size of a given 16-bit CVM implementation can be at most 216, i.e., cvmMemMaxAdr ∈ [0;
216 − 1], with cvmMemMaxAdr referring to the highest memory address of a given CVM
implementation. In addition, the memory load and store instructions loada, loadr, storea,
and storer each access 16-bit signed integer numbers (Int2).

32-Bit CVM On a 32-bit CVM, cvmIntLen is 4. A 32-bit CVM operates only on integer
numbers with at most 32 bits. The general purpose registers of the register stack and the
memory stack items are each 32 bit wide. The special registers are also 32 bits wide, except
for some special registers like regRSP, regColorRed, etc., which might require less bits. All
data items in memory including the memory stack items are 32-bit aligned. The memory
size of a given 32-bit CVM implementation can be at most 232, i.e., cvmMemMaxAdr ∈ [0;
232 − 1], with cvmMemMaxAdr referring to the highest memory address of a given CVM
implementation. In addition, the memory load and store instructions loada, loadr, storea,
and storer each access 32-bit signed integer numbers (Int4). In addition, the instructions
aload4, astore4, loadc3, loadc4, loadcu2, loadcu3, setcolor32, setbgcolor32, and setfont32 are
only supported by a 32-bit CVM.

3.1.3 Register Stack

The register stack is a set of 2- or 4-byte general purpose registers, dependent on the CVM
mode. It serves as a quick operand stack for the CVM instructions. Except for a few
instructions that have immediate operands, the instructions usually fetch their operands
from the register stack. Immediate operands of an instruction appear in the CVM program
right after the opcode. A possible result of an instruction is always pushed onto the top
of the register stack. Therefore, the CVM code is a kind of stack machine or 0-address
code and the register stack might be called operand stack, as well. Figure 3.2 (page 32)
illustrates the register stack.

cvmNumGeneralRegs The term cvmNumGeneralRegs is used for the total number of
general purpose registers in the register stack of a given CVM implementation. The total
number of general purpose registers can vary for each CVM implementation. However,
there must be enough registers to store at least all the operands of each instruction and
to enable further computation on the register stack. For example, the computation of the
last operand of a given instruction with n operands by an addition of the two top-most
register stack values causes a general stack depth of at least n+ 1, which requires at least
n+ 1 registers. Approximately, 10 general purpose registers might be sufficient.

3.1. Core 35

regRSP The special register regRSP (“Register Stack Pointer”) contains a Nat1 number
that indexes the top-most general purpose register in the register stack. The top-most
general purpose register — also called the top of the register stack — is the general purpose
register that contains the most recently pushed value. The general purpose registers are
indexed starting with 1. Therefore, the value of regRSP also corresponds to the number
of available operands on the register stack. The term R[i] (1 ≤ i ≤ cvmNumGeneralRegs)
represents the ith general purpose register or its value. The initial value of regRSP is zero,
i.e., at the beginning of program execution the register stack is naturally empty. The value
of regRSP is mainly affected and modified implicitly by the register stack behavior of the
instructions. However, the instructions rdup, rempty, rskip, and rswap particularly aim at
the management of the register stack.

Loading Values onto the Register Stack As already mentioned, values are pushed
always onto the top of the register stack. The basic register stack loading instructions
are loadc<1|...|4>, loadcu<1|...|3>, loadc 0, loadc 1, and loadc m1. Other instructions,
e.g., arithmetic operations, might produce new values onto the register stack as well. The
loading process of a new value v consists of the following steps: First, the CVM checks if
the value of the special register regRSP is below cvmNumGeneralRegs. If this is the case, the
CVM increments the value of regRSP by 1 and then stores v into the register R[regRSP]. An
error condition is reached, if the value of regRSP is not below cvmNumGeneralRegs before
loading. Then, instead of loading, the CVM aborts execution of the current instruction
and starts error handling with the error code RegisterStackOverflow. Refer to section 3.1.5
(page 41) for more information on error handling.

Retrieving Values from the Register Stack An operand consuming instruction
fetches its register stack operands either from the current top of the register stack —
which is referred to as Dynamic Popping — or from designated general purpose registers
inside the register stack — which is referred to as Static Popping. The appropriate operand
fetching method of each instruction is specified in the instruction reference in section 3.9.2
(page 100).

Dynamic Popping The process of Dynamic Popping for an instruction that needs
n (n > 0) operands consists of the following steps: First, the CVM checks if the value
of the special register regRSP is at least n. If this is the case, the n top-most values of
the register stack, i.e., R[regRSP], ..., R[regRSP− n+ 1], are popped and used as operands
for the instruction. After all, regRSP is decremented by n. An error condition is reached,
if the value of regRSP is below n before popping. Then, instead of popping, the CVM
aborts execution of the current instruction and starts error handling with the error code
RegisterStackUnderflow. Refer to section 3.1.5 (page 41) for more information on error
handling.

The instructions that perform Dynamic Popping, e.g., arithmetic instructions, are called
in-between instructions. Their main purpose is to compute the operands for the so called
final instructions, which perform Static Popping.

Static Popping The process of Static Popping for an instruction that needs n
(n > 0) operands consists of the following steps: First, the CVM checks if the value of the

36 3. Client Virtual Machine (CVM)

special register regRSP is equal to n. If this is the case, the values in the register stack, i.e.,
R[1], ..., R[n], are popped and used as operands for the instruction. Then, regRSP is set
to its initial value zero. An error condition is reached, if the value of regRSP is not equal
to n before popping. Then, instead of popping, the CVM aborts execution of the current
instruction and starts error handling with the error code RegisterStackUnderflow, if regRSP
is less than n, or with the error code RegisterStackStaticOverflow, if regRSP is greater than
n. Refer to section 3.1.5 (page 41) for more information on error handling.

The instructions that perform Static Popping are called final instructions. The main
purpose of Static Popping is to gain more runtime performance during operand fetching,
because each operand is located in a designated register with a known index. For example,
the drawing instructions of the CVM module Visual are final instructions.

3.1.4 Memory

The memory consists of an array of bytes that can be read and written during execution
of a CVM program. The memory size depends on the given CVM implementation. Each
byte in memory can be addressed by its array index, whereas counting starts with 0. The
term mem[i] (0 ≤ i ≤ cvmMemMaxAdr) represents the ith byte in memory or its value.
The highest memory address of a given CVM implementation is referred to with the term
cvmMemMaxAdr. Generally, all multibyte Int and Nat numbers and UTF-8 [89] characters
are stored in big-endian, i.e., high byte first, order.

During execution of a CVM program, the memory is partitioned into four sections: the
Data, Code, Stack, and the optional Heap section. Figure 3.2 (page 32) illustrates the
partitioning of the memory.

Basically, every byte in any memory section can be read or written. Therefore, it is
technically feasible that the CVM program overwrites its own instructions in the Code
section during execution. Whether this is useful, is left to the responsibility of the CVM
programmer or packet generator.

If during a memory access the resulting absolute memory address is not inside the range
[0; cvmMemMaxAdr], the CVM aborts execution of the current instruction and starts error
handling with the error code IllegalMemoryAddress. Refer to section 3.1.5 (page 41) for
more information on error handling.

Absolute Memory Access An absolute memory address is always a Nat number. The
instructions loada, storea, aload<1|2|4>, and astore<1|2|4> address the memory absolutely
with their address operands. The address operands reside on the register stack and are
absolute indices into the memory, respectively. The instruction loada reads a signed integer
number in big-endian order from memory and pushes its value onto the register stack. The
instruction storea pops a signed integer number from the register stack and writes its value
into memory in big-endian order. The byte length of a signed and unsigned integer number
depends on the CVM mode and is referred to with the term cvmIntLen. It is 2 on a 16-bit
CVM and 4 on a 32-bit CVM. The instructions aload<1|2|4> and astore<1|2|4> read and
write 1-, 2-, or 4-byte integer numbers from and into arrays in memory, respectively.

3.1. Core 37

Relative Memory Access A relative memory address is always an Int number, i.e., it
can be positive as well as negative. The instructions loadr and storer address the memory
relatively with their address operands. The address operands reside on the register stack
and are relative indices into the memory segment that starts at the base address given by
the special register regBP, respectively. The CVM computes the resulting absolute memory
address by adding the relative address operand to the base address given by regBP. The
resulting memory address can point to any byte in every memory section. The instruction
loadr reads a signed integer number in big-endian order from the memory and pushes its
value onto the register stack. The instruction storer pops a signed integer value from the
register stack and writes its value into memory in big-endian order. Again, the byte length
of a signed and unsigned integer number depends on the CVM mode and is referred to
with the term cvmIntLen. It is 2 on a 16-bit CVM and 4 on a 32-bit CVM.

When not stated explicitly in this thesis that a memory address is relative, a memory
address is always regarded as being absolute.

The main purpose of relative memory access instructions is to access procedure parameters
and local variables that reside on the memory stack. For this topic, refer to section 3.1.4.2
(page 39).

regBP The special register regBP (“Base Pointer”) contains an absolute memory address
that marks the beginning of a memory segment anywhere in memory. It is used by the
instructions loadr and storer as a base address for retrieving and storing values from and
into memory. The value of regBP is modified by the instructions setbp, newstackframe, and
oldstackframe. The initial value of this register is zero. The main purpose of regBP is to
point to the current stack frame that contains the parameters and local variables of the
currently executed procedure. For this topic, refer to section 3.1.4.2 (page 39).

The memory address in regBP is a Nat value and the byte length of this register depends on
the given CVM implementation, but must be adequate to address the whole CVM memory.
This rule also applies to the other special registers that store absolute memory addresses.

3.1.4.1 Data and Code

The Data section can be subdivided into the Undeclared and the Declared Data sec-
tion, which contain undeclared and declared data, respectively. The Undeclared Data
section starts at the memory address 0 and ends at dataDeclSegmentAdr − 1, whereas
the Declared Data section starts at the memory address dataDeclSegmentAdr and ends
at codeSegmentAdr− 1. The Code section starts at the memory address codeSegmentAdr
and ends at stackSegmentAdr−1. The Code section contains the instructions of the CVM
program.

dataDeclSegmentAdr, codeSegmentAdr, and stackSegmentAdr are items of the CVM
packet, which is transmitted from the CVM packet server to the CVM. Mainly, the CVM
packet contains declared data with initial values and CVM instructions. Refer to section
3.8 (page 93) for more information on the structure of CVM packets and their items.

regIP The special register regIP (“Instruction Pointer”) contains the absolute memory
address of the opcode or of an immediate operand of the currently executed instruction.

38 3. Client Virtual Machine (CVM)

The CVM increments regIP automatically during execution to fetch the next opcode or
immediate operand unless the currently executed instruction sets regIP explicitly. Its value
can be set or modified explicitly by the control flow instructions call, ret, jmp, je, jne, jl, jle,
and page. If the CVM fetches the opcode or an immediate operand of an instruction while
regIP has an address outside the interval [0; cvmMemMaxAdr], the CVM aborts execution of
the current instruction and starts error handling with the error code IllegalMemoryAddress
(page 43).

When loading the declared data items and instructions from a CVM packet into memory,
the CVM sets regIP to the value of the CVM packet item codeSegmentAdr. Execution of
the loaded CVM program starts at this memory address. Refer to section 3.8 (page 93)
for more information on CVM packets and their items.

Note that during execution of a CVM program regIP can be loaded with any memory
address that points to any byte in any memory section. Therefore, execution of CVM
instructions outside the Code section in memory is technically feasible. Whether this is
useful, is left to the responsibility of the CVM programmer or packet generator.

3.1.4.2 Stack

The Stack section starts at the memory address stackSegmentAdr and ends at cvmMem-
MaxAdr. stackSegmentAdr is an item of the CVM packet, which is transmitted from the
CVM packet server to the CVM. Commonly, the stack is used for storing temporary and
local variables, and for storing parameters and return addresses during procedure calls.
Each stack item can hold a whole integer number. Therefore, the byte length of a stack
item depends on the CVM mode and is referred to by the term cvmIntLen. It is 2 on a
16-bit CVM and 4 on a 32-bit CVM.

regSS The special register regSS (“Stack Segment”) contains the absolute memory ad-
dress of the beginning of the memory stack. The value of this register cannot be modified
by the CVM instructions during execution of a CVM program. Its initial value is set to
the value of the CVM packet item stackSegmentAdr when the CVM packet is loaded into
memory. Refer to section 3.8 (page 93) for more information on CVM packets and their
items.

regSP The special register regSP (“Stack Pointer”) contains the memory address that
marks the top of the memory stack, i.e., it contains the memory address of the next
unused memory stack element. The value of this register is modified by the instructions
addsp, decsp, incsp, push, pop, call, ret, newstackframe, and oldstackframe. The initial and
minimum value of regSP is equal to the value of regSS. The maximum value of regSP is
equal to the value of cvmMemMaxAdr.

Loading Values onto the Stack The instruction push pops an integer number from the
register stack and pushes its value onto the memory stack. The loading process consists of
the following steps: First, the CVM checks if the value of the special register regSP is less
than or equal to cvmMemMaxAdr− cvmIntLen + 1. If this is the case, the CVM stores the
value into the memory cells mem[regSP], mem[regSP + 1], ..., mem[regSP + cvmIntLen− 1]
in big-endian order. Then, the CVM increments regSP by the value cvmIntLen. An error

3.1. Core 39

condition is reached, if the value of regSP is not less than or equal to cvmMemMaxAdr −
cvmIntLen + 1 before loading. Then, instead of pushing, the CVM aborts execution of the
current instruction and starts error handling with the error code StackOverflow. Refer to
section 3.1.5 (page 41) for more information on error handling.

Retrieving Values from the Stack The instruction pop pops an integer number from
the memory stack and pushes its value onto the register stack. The retrieving process con-
sists of the following steps: First, the CVM checks if the value of the special register regSS
is less than or equal to the value of regSP− cvmIntLen. If this is the case, the CVM loads
the value that is stored in the memory cells mem[regSP − 1], ..., mem[regSP − cvmIntLen]
in big-endian order onto the top of the register stack. Finally, the CVM decrements regSP
by the value cvmIntLen. An error condition is reached, if the value of regSS is not less
than or equal to regSP− cvmIntLen before retrieving. Then, instead of popping, the CVM
aborts execution of the current instruction and starts error handling with the error code
StackUnderflow. Refer to section 3.1.5 (page 41) for more information on error handling.

Procedure Parameters and Local Variables Figure 3.3 (page 40) illustrates the stack
frame of a procedure proc with the return value result, the parameters par1 , ..., parn , and
the local variables loc1 , ..., locm at an arbitrary point of time during execution after it
has been called by main. Let the return value, the parameters, and the local variables be
integer numbers. The corresponding CVM assembler code fragment might be as follows:

main:

incsp // Reserve space for result on memory stack
<Load value of par1 onto register stack> push // Load par1 onto memory stack
...
<Load value of parn onto register stack> push // Load parn onto memory stack
loadcr proc call // Call procedure proc

loadc −n addsp // Discard procedure parameters on memory stack
pop // Load result from memory stack onto register stack
...
halt

proc:

loadc n + 1 newstackframe // Adjust regBP to new stack frame
loadc m addsp // Reserve space for local variables on memory stack
...
loadc −m addsp // Discard local variables on memory stack
oldstackframe // Restore regBP to previous stack frame
ret // Return to caller main

Refer to sections B (page 216) and B.3 (page 224) for a description of the CVM assembler
and the macros loadc and loadcr. Refer also to the instruction reference in section 3.9.2
(page 100) for a description of the used CVM instructions.

Then, the relative memory addresses of the result, the parameters pari (1 ≤ i ≤ n), and
the local variables locj (1 ≤ j ≤ m) are 0, i ∗ cvmIntLen, and (n + 2 + j) ∗ cvmIntLen,

40 3. Client Virtual Machine (CVM)

respectively.

Stack
Growth

Memory Stack

regSS

regSP...

...

regBP...
result

par 1

par n

return address

regBP (old)

loc 1

loc m

Special Registers

Figure 3.3: Procedure Stack Frame

An equivalent, but more convenient and readable version of the above CVM assembler code
fragment by declaring the result, the parameters, and the local variables of the procedure,
and by using the macro fcall is as follows:

main:

incsp // Reserve space for result on memory stack
<Load value of par1 onto register stack> push // Load par1 onto memory stack
...
<Load value of parn onto register stack> push // Load parn onto memory stack
fcall proc // Call procedure proc

pop // Load result from memory stack onto register stack
...
halt

.fct proc (Int id(par1), ..., Int id(parn)) Int {

Int id(loc1)
...
Int id(locm)
...
return } // Return to caller main

The procedure (or equivalently called function) declaration and the macros are explained
in the sections B.1 (page 220) and B.3 (page 224), respectively. id(pari) (1 ≤ i ≤ n)

3.1. Core 41

and id(locj) (1 ≤ j ≤ m) represents the name of the ith parameter or j th local variable,
respectively. A complete example that illustrates the access of procedure parameters and
local variables within a procedure declaration is given in section B.6 (page 237).

3.1.4.3 Heap

The Heap section is used for storing all data that are created during runtime, i.e., dynam-
ically during execution of a CVM program. The Heap section is optional and logically
separated from the other memory sections Data, Code, and Stack, i.e., it does not need
to belong to the same address space. In addition, the Heap section does not need to be
explicitly and directly mapped by a given CVM implementation right after the Stack sec-
tion. For example, the CVM might be emulated in software and the heap of the native
computer architecture might be used for the Heap section.

In the following, the term “(CVM) memory” only refers to the Data, Code, and Stack
section, whereas the Heap section is mentioned explicitly when referred to.

The Heap section cannot be accessed by the common memory load and store instructions
loada, loadr, storea, storer, aload<1|2|4>, and astore<1|2|4>, but only with the special heap
management instructions new, free, hload, and hstore to avoid ambiguities between equal
memory addresses of different address spaces. A given CVM implementation only needs
to support the heap management instructions if it possesses a Heap section.

The CVM profile item cvmLibraries reports to the CVM packet server whether the CVM
possess a Heap section. Refer to section 3.7 (page 89) for more information on the CVM
profile.

If a given CVM implementation does not have a Heap section but dynamic data is still
needed in a particular application, the CVM programmer or packet generator can model
the heap in the Data section and has to provide explicit procedures in the CVM code for
its management. However, this is not going to be discussed here in more detail.

3.1.5 Error Handling

During loading a CVM packet and executing a CVM program errors might occur. For
example, the format of the CVM packet might be malformed or the register stack might
overflow during execution of a particular CVM instruction.

regErrorCode The special register regErrorCode stores the error code number of the re-
cently occurred error. Refer to section 3.1.5.2 (page 42) for a complete list of all error
types and their respective error codes. The value of this register cannot be modified by
the CVM instructions, but is set automatically by the CVM each time an error occurs. Its
initial value is zero.

3.1.5.1 Error Processing

If an error occurs, the CVM aborts its current activity, i.e., loading a CVM packet or
executing a CVM program, and performs the following steps:

42 3. Client Virtual Machine (CVM)

First, the CVM writes the respective error code number into the special register regError-
Code and sets the special register regState to the state value Error, i.e., it moves to the
state Error. Refer to section 3.1.10 (page 58) for more information on CVM states.

Then, the CVM deactivates the timer, if there is one and if it has been activated before.
Refer to section 3.1.9 (page 57) for more information on interval timers.

Next, the CVM outputs an error message to the output device to inform the user. Depend-
ing on the type of the output device, i.e., a screen or speaker, the CVM outputs a written
and/or an acoustic version of the error message. The written version of the error message
has the following form: "CVM Error: error name ". Section 3.1.5.2 (page 42) contains a
list of all error names and their respective error code numbers. The CVM first clears the
screen and then writes the error message on the blank screen. The background color of the
screen, the foreground color and the font of the error message are not specified here and
can be chosen freely by the CVM implementor. The acoustic version of the error message
might be a particular signal tone or a voice that reads out the written version of the error
message. If there is both a speaker and a screen existing, the CVM always outputs the
written error message on the screen, whereas the acoustic error message is optional.

After the CVM has output the error message, it clears the event queue, i.e., it discards
all buffered events that have not been processed yet, and waits until the user confirms the
error message. If there is a keyboard available, the user can press the Enter key. If there
is a microphone available, the user can reply by saying ”OK”. Alternatively, the user can
as well raise one of the builtin events, e.g., menu home. Refer to section 3.1.6.3 (page 49)
for more information on builtin events. Refer also to the CVM state transitions in section
3.1.10 (page 58).

Finally, if the CVM program has been received from a CVM packet server, the CVM
sends a notification message to the CVM packet server by using the protocol method
ERROR. Refer to section 4.2 (page 129) for more information on the message format of this
protocol method. The main purpose of the notification message is to provide additional
information to enable bug fixes on the server side.

How the CVM proceeds after error processing depends on how the user has confirmed the
error message. If the user has acknowledged with the Enter key or by speaking something
like “OK” into the microphone, the CVM initializes itself and continues executing the
current CVM packet. However, if the user has confirmed with one of the builtin events,
the CVM performs the appropriate actions. Refer also to section 3.1.10 (page 58) for more
information on the CVM’s runtime behavior and particularly to the actions in the CVM
state Error.

3.1.5.2 Error Codes

The instruction reference in section 3.9.2 (page 100) specifies for each instruction which
errors might occur during its execution. In the following, the currently supported error
codes are listed alphabetically and described using the following description format:

error name = error code
verbose description

The error name represents the mnemonic of the error code. The error code is a unique
Nat1 number greater than zero identifying a particular error type.

3.1. Core 43

DivisionByZero = 1
This error occurs, if an (arithmetic) instruction tries to divide by zero.

IllegalMemoryAddress = 2
This error occurs with instructions that deal with memory addresses, e.g., with memory
read and write instructions, if the involved memory address is out of the range [0; cvm-
MemMaxAdr].

ImageLoadFailure = 3
This error occurs with instructions and library functions such as pixmap, etc., that load
images from memory, if something goes wrong during the loading process, e.g., the image
format is malformed.

InvalidScreenSection = 4
This error occurs only with the instructions mem2screen and screen2mem, if the specified
rectangular area is not completely inside the visual drawing area of the CVM.

MalformedHomeMenu = 5
This error occurs, if the format of the HomeMenu CVM packet is malformed, when it is
loaded into memory. Refer to sections 3.6 (page 86) and 3.8 (page 93) for more information
on the HomeMenu and on the CVM packet format, respectively.

MalformedCPTPMessage = 6
This error occurs during a CPTP session, if the received CPTP message is malformed.
Refer to section 4.1 (page 127) for more information on the CPTP message format and to
section 4.2 (page 129) for more information on CPTP messages with the protocol method
ERROR.

MalformedCVMPacket = 7
This error occurs, if the format of the CVM packet that is currently being loaded into
memory is malformed. Refer to section 3.8 (page 93) for more information on the CVM
packet format. The CVM packet has been received recently from a CVM packet server
over the network.

MalformedCVMProfile = 8
This error occurs during a CPTP session, if the format of the CVM profile that the CVM
has sent to a CVM packet server is malformed. Refer to section 3.7 (page 89) for more
information on the CVM profile format and to section 4.2 (page 129) for more information
on CPTP messages with the protocol method ERROR.

NetworkError = 9
This error occurs with the instructions rcv, send, and sendrcv, if the specified data cannot
be received from or sent to the specified CVM packet server due to any network failure
that might occur during the connection establishment or data transmission.

44 3. Client Virtual Machine (CVM)

NoDNSLookup = 10
This error occurs with the instructions rcv, send, and sendrcv, if the specified host address
is a DNS [45] name, but the given CVM implementation cannot perform automatic DNS
lookup. Refer also to the profile item cvmDNSLookup (page 90).

RegisterStackOverflow = 11
This error occurs, if an instruction tries to push a value onto the register stack that already
contains cvmNumGeneralRegs elements, i.e., regRSP = cvmNumGeneralRegs before pushing.

RegisterStackStaticOverflow = 12
This error occurs with a final instruction, i.e., an instruction that performs Static Popping,
if the register stack before popping contains more elements than the instruction needs as
operands.

RegisterStackUnderflow = 13
This error occurs with an instruction, if the register stack before popping contains less
elements than the instruction needs as operands.

StackOverflow = 14
This error occurs, if during execution regSP reaches a value greater than cvmMemMaxAdr+
1. For example this is the case, if an instruction tries to push a new value onto a full memory
stack, i.e., before the push operation the value of regSP is greater than cvmMemMaxAdr−
cvmIntLen + 1. Refer to section 3.1.2 (page 33) for more information on cvmIntLen.

StackUnderflow = 15
This error occurs, if during execution regSP reaches a value less than regSS. For example
this is the case, if an instruction tries to pop a value from an empty memory stack, i.e.,
before the pop operation the value of regSP−cvmIntLen is less than regSS. Refer to section
3.1.2 (page 33) for more information on cvmIntLen.

UnexpectedCPTPMethodCode = 16
This error occurs during a CPTP session, if the received CPTP message has an unexpected
protocol method. Refer to section 4.2 (page 129) for more information on CPTP messages
with the protocol method ERROR.

UnknownFont = 17
This error occurs with the instructions setfont, setfont32, setfontcode, and setfontsize, if the
resulting font is not supported by the given CVM implementation. Refer to section 3.2.3
(page 79) for more information on fonts.

UnknownMouseFont = 18
This error occurs with the instruction setmousefont, if the specified mouse font code is not
supported by the given CVM implementation. Refer to section 3.3 (page 81) for more
information on the mouse.

3.1. Core 45

UnknownLibraryFunction = 19
This error occurs with the instruction lib, if the CVM encounters a library function code
that it does not support. Refer to section 3.5 (page 83) for more information on the library
functions.

UnknownOpcode = 20
This error occurs, if the CVM encounters an unknown instruction opcode during the exe-
cution.

Comments The error codes can also be grouped according to the CVM modules and
their functional units they belong to, respectively:

• Core:

– Execution: DivisionByZero, RegisterStackOverflow, RegisterStackStaticOverflow,
RegisterStackUnderflow, StackOverflow, StackUnderflow, UnknownOpcode, Mal-
formedCVMPacket

– Memory Access: IllegalMemoryAddress

– Error Handling: (So far, no error codes)

– Event Handling: (So far, no error codes)

– History Buffer: (So far, no error codes)

– Bookmarks Menu: (So far, no error codes)

– Interval Timer: (So far, no error codes)

• Visual: InvalidScreenSection, UnknownFont

• Audio: (Not covered in this thesis)

• Keyboard: (So far, no error codes)

• Mouse: UnknownMouseFont

• Network: MalformedCPTPMessage, MalformedCVMProfile, NetworkError, NoDNSLookup,
UnexpectedCPTPMethodCode

• Libraries: UnknownLibraryFunction

• Home Menu: MalformedHomeMenu

3.1.6 Event Handling

Event handling enables user interaction. Here, an event is a notification of a user action
on an input module of the client device. For example, the user might press a key on the
keyboard, move the mouse, etc. The event data, i.e., the data describing the event, consists
of the event code and possibly some event parameters. The event code is a positive integer
number that identifies the action the user has performed on the input module, e.g., a key
press. The event parameters depend on the event code and provide additional information

46 3. Client Virtual Machine (CVM)

on the event, e.g., the key code of a pressed key. Refer to section 3.1.6.4 (page 49) for a
complete reference of the event code and the event parameters for each event type.

Events occur asynchronously during program execution and are buffered in an event queue
in the FIFO (First In, First Out) manner. The length of the event queue is left to the
implementors’ choice. Naturally, it must be at least one. After the user has performed
some action on an input device, e.g., pressed a key, the CVM inserts the corresponding
event data, i.e., the event code number and the event parameters, into the event queue.
However, if the event queue is already full, the new incoming event is discarded, instead.

The CVM regularly checks the event queue only in the states Error, EventProcessBuiltin,
Execute, CptpGET, and Wait, i.e., regState = Error ∨ EventProcessBuiltin ∨ Execute ∨
CptpGET ∨ Wait.

In the following, the event handling of the CVM is described without going too much into
details for reasons of readability. Refer to section 3.1.10 (page 58) for more details on event
handling, CVM states, and the overall state behavior of the CVM.

3.1.6.1 Event Processing

Here it is described how the CVM behaves when it checks the event queue in the states
Execute or Wait, i.e., regState = Execute ∨ Wait.

If there is an event in the event queue, the CVM removes the event from the event queue and
writes the event code into the special event register regEventCode and the event parameters
into the special event parameter registers regEventPar<1|2|...>. Next, the CVM sets the
value of the special state register regState to the state value EventProcess.

In the state EventProcess the CVM first checks whether the event code matches the event
code of a builtin event. If this is the case, it sets the value of the special state register
regState to the state value EventProcessBuiltin and processes the builtin event. Refer to
section 3.1.6.3 (page 49) for more information on builtin events.

However, if the event code does not match the event code of a builtin event, the CVM checks
next in the state EventProcess whether the value of the special event register regEventEnable
is zero. If this is the case, the event will not be further processed and is discarded. The user
then has to wait until the value of that register is set to a non-zero value by the instruction
enableevents within the CVM program and then repeat his/her input activity.

If regEventEnable is not zero, the CVM checks the event table from top to bottom, whether
there is an entry with an event code that corresponds to the event code of the currently
processed event. The event table is part of the CVM program and begins in memory at the
absolute address given by the special register regEventTableAdr. Its binary data structure
is described in section 3.1.6.2 (page 48). If there is an event table entry with an event code
that corresponds to the event code of the currently processed event, the CVM first saves
the current values of the special registers regIP, regRSP, regSP, regBP, the previous state
— i.e., the state, when the CVM has detected the event in the event queue —, and the
register stack values. It is left to the implementors’ choice whether these values are saved
into memory, e.g., onto the memory stack, or into some internal CVM structures. Then,
the CVM loads the instruction pointer register regIP with the instruction address given by
the found event table entry and sets the special registers regRSP and regBP to the value
zero. Finally, it sets the special state register regState with the state value EventExecute

3.1. Core 47

and continues execution with the instruction at the address given by the new value of regIP.
This instruction address marks the beginning of the respective event handling subroutine
code for this type of event. As well as the event table, the event handling subroutine code is
also specified by the CVM programmer or packet generator and thus it is a part of the CVM
packet within the Code section. Event handling terminates when the CVM encounters the
halt instruction in the event handling subroutine code. After event handling, the CVM
reloads the previously saved values into the special registers regIP, regRSP, regSP, regBP,
and regState, respectively. It also reloads the previously saved register stack values and
resumes its previously interrupted activity.

If there is an event table entry with the event code 1, then the CVM aborts checking the
current event table, jumps to the parent event table, and starts checking that event table
in the same manner.

However, if there is no event table entry with an event code that corresponds to the event
code of the currently processed event the CVM terminates event processing and resumes
its previous activity.

Not checking the event queue in the states EventProcess and EventExecute ensures that an
immediately following event cannot overwrite the current values of the regEventCode and
regEventPar<1|2|...> registers while the current event is still being processed or its event
handling subroutine is still being executed. As a result, successive events are processed
completely one after another without mutual interference.

3.1.6.2 Event Registers

Several special registers are involved in the event handling process, called event registers.

regEventCode The special register regEventCode contains the event code, i.e., a Nat
number, of the currently or recently processed event. Refer to section 3.1.6.4 (page 49) for
a complete reference of all event codes. The value of this register is set automatically by
the CVM during event processing and cannot be modified by the CVM instructions. Its
initial value is zero.

regEventEnable The special register regEventEnable serves as a flag register. If its value
is not zero, then all incoming events will be processed. Otherwise, all incoming events will
be discarded — except for the builtin events. Refer to section 3.1.6.3 (page 49) for more
information on builtin events. The value of this register is modified by the instructions
enableevent and disableevent. Its initial value is zero.

regEventPar1, regEventPar2, regEventPar3 The special event parameter registers reg-
EventPar<1|2|3> contain the event parameters of the currently processed event. The event
parameters are integer (Int) values. Refer to section 3.1.6.4 (page 49) for a complete
reference of the event parameters for each event type. The initial values of these registers
are undefined. Note that the values of these registers are only defined, when an event is
currently processed. Therefore, the access to these values should only take place in the
provided event handling subroutines. Otherwise, the values of these registers are undefined.
So far, only three event parameter registers are needed. Future releases of the CVM might
have more, if necessary.

48 3. Client Virtual Machine (CVM)

regEventTableAdr The special register regEventTableAdr contains the absolute memory
address of the beginning of the event table in memory. The CVM only accepts an event
for further processing if the value of this register is greater than zero. The value of this
register is set by the instruction seteventtableadr. This instruction occurs in the CVM
program usually after the user interface components have been placed onto the output
module, e.g., drawn onto the screen. This instruction is also used to change the input
focus of an graphical user interface component. The initial value of this register is zero,
because user interaction generally starts after the user interface components have been
placed onto the output module.

The event table is specified by the CVM programmer or packet generator and therefore it
is a part of the CVM program. The binary data structure of an event table is as follows:

EventTable = { EventTableEntry [] entries ;
Int<cvmIntLen> 0 }

EventTableEntry = { Int<cvmIntLen> eventCode; // eventCode > 0

Int<cvmIntLen> memAdr }

An event table is a (possibly empty) list of event table entries, whereas each entry consists
of an event code (eventCode) and the absolute memory address (memAdr) of an instruction.
However, if eventCode is 1, then memAdr contains the memory address of the parent event
table. Refer to section 3.1.2 (page 33) for more information on cvmIntLen. The end of the
list is indicated by the value 0 for the event code. During event processing, the CVM checks
the event table from the beginning to the end. If the event code of an entry (eventCode)
equals the event code of the currently processed event, the CVM loads the instruction
pointer register regIP with the corresponding memory address and proceeds there with the
execution. This memory address marks the beginning of the appropriate event handling
subroutine which is specified by the CVM programmer or packet generator and thus is a
part of the CVM program within the Code section. However, if eventCode is 1, the CVM
jumps to the event table at the memory address memAdr and starts checking that event
table. Note that it is left to the responsibility of the CVM programmer or packet generator
to avoid infinite recursion. If eventCode is 0, the CVM terminates event processing and
resumes its previous activity.

3.1.6.3 Special Events

In addition to the ordinary events there are also special events. They are grouped into
shortcut events and builtin events.

Shortcut Events Shortcut events are very often needed in user interfaces and are there-
fore defined separately and directly. Generally, event subroutine code can be defined for
their behavior in the event table the same way as it is defined for any other ordinary event.
But under certain conditions, i.e., when the CVM is in a particular state, e.g., Error, par-
ticular shortcut events might also have a predefined meaning, which is specified by the
CVM state transitions in section 3.1.10 (page 58).

So far, the following keyboard and mouse related shortcut events are defined: key pressed-
enter, key released enter, key pressed escape, key released escape, mouse pressed left, and

3.1. Core 49

mouse released left. Refer to section 3.1.6.4 (page 49) for more information on these event
codes. If a given CVM implementation has a keyboard and/or mouse, all keyboard and/or
mouse related shortcut events must be supported, respectively. Additional shortcut events
may be defined in the future for the keyboard and mouse as well as for other input devices.

Builtin Events Builtin events differ from the ordinary events and the other special
events, because no event handling subroutine code can be assigned for their behavior in
the event table. Instead, their behavior is predefined. It is specified by the CVM state
transitions in section 3.1.10 (page 58) in the CVM state EventProcessBuiltin. Refer also to
section 3.1.6.4 (page 49).

In addition, builtin events are raised by very specific user actions, i.e., by reserved keys or
buttons, if the CVM has a keyboard, or by reserved verbal commands, if the CVM has
a microphone. The appearance of these keys and the wording of these commands is not
specified here and can be chosen freely by the CVM implementor.

So far, the following builtin events are supported: cvm quit, history back, history forward,
history reload, menu bookmarks, menu home, and input hostAdr.

The handling of the builtin events cvm quit, menu home, history back, history forward, and
history reload is mandatory for all CVM implementations.

The builtin events history back, history forward, and history reload refer to the history buffer.
Refer to section 3.1.7 (page 52) for more information on the history buffer.

The builtin event menu bookmarks may only occur and be handled, if the functional unit
Bookmarks Menu in the Core module is implemented. Refer to section 3.1.8 (page 56) for
more information on the bookmarks menu.

The builtin event input hostAdr may only occur and be handled, if the CVM module Net-
work is implemented.

Device Specific Builtin Events In addition to the builtin events that are specified
here in the thesis, the CVM implementors are free to define further builtin events for their
specific client devices. For example, they may define a builtin event that opens a menu for
editing user preferences, or a builtin event that opens a help menu, etc. However, these
device or vendor specific builtin events are not going to be discussed here in more detail.

3.1.6.4 Event Codes

In the following, the currently supported event codes are listed alphabetically and described
using the following description format:

event code name = event code: event parameters
verbose description

The event code name is the verbose name of the event code and serves as a mnemonic.
It can be used in a CVM assembler program. The event code name of an ordinary event
consists of two parts: the name of the input module or one of its components and the
name of the user action, e.g., key pressed, mouse pressed, etc. Mostly, the event code name
is self-explanatory and need not be explained further.

50 3. Client Virtual Machine (CVM)

The event code is a unique Nat number and identifies a particular event type. In a CVM
assembler program, however, the event code name should be used instead of its event code
to address a particular event type for reasons of readability. The CVM assembler then
performs the mapping of the event code name to the corresponding event code number.

The event parameters depend on each event, but a particular event may also have none.
The order of the event parameters from left to right reflects in which event parameter
register each event parameter is stored, i.e., the first event parameter is stored into the
regEventPar1 register, the second into the regEventPar2 register, and so on. Each event
parameter is shown in the form identtype . ident can be any identifier to characterize the
use of the parameter. type denotes the type of the operand and must be one of the CVM
types Int or Nat. For example, xNat might be used to identify an x coordinate of the type
Nat. If not otherwise stated, the byte length of Int and Nat is given by cvmIntLen. Refer
to section 3.1.2 (page 33) for more information on cvmIntLen. An empty parameter list is
marked by “−”.

cvm quit = 2: −
Terminate CVM execution and turn off the CVM.

history back = 3: −
“Load previous page from history buffer”.
If the history buffer contains a preceding entry relative to the current history buffer position,
the CVM sets the current history buffer position to the preceding entry and starts loading
the respective CVMUI page. If this CVMUI page is not inside the currently processed
CVM packet, the CVM requests that page from the respective CVM packet server. If
the history buffer position does not contain a preceding entry, do nothing. Refer also to
section 3.1.7 (page 52) for more information on the history buffer and to the CVM state
EventProcessBuiltin in the CVM state transitions in section 3.1.10 (page 58).

history forward = 4: −
“Load next page from history buffer”.
Same functionality as history back. However, the next entry in the history buffer is con-
cerned instead of the previous one.

history reload = 5: −
“Reload current page”.
The CVM starts reloading the currently processed CVMUI page. If this CVMUI page is
not a part of the HomeMenu, the CVM requests that page from the respective CVM packet
server. Refer also to the CVM state EventProcessBuiltin in the CVM state transitions in
section 3.1.10 (page 58).

input hostAdr = 6: −
“Input host address and load page”.
The CVM opens a dialog mask that asks the user of the client device to input an address
of a network host, which acts as a CVM packet server, and the number of one of its offered
network services. Then, the CVM loads the CVMUI page that is provided by that host

3.1. Core 51

and belongs to the offered network service. The output methods for presenting the dialog
mask and the input methods for editing the network address depend on the modules that
are available on the given CVM implementation. If the CVM has a screen and a keyboard,
the dialog mask appears on the screen and the network address can be typed in by the user.
If the CVM has only a speaker and a microphone, the dialog box is output acoustically by
the CVM through the speaker and the URL is spoken by the user into the microphone.
Whether the dialog mask accepts IP [62] addresses and/or DNS [45] names depends on
the implementors’ choice. Refer to the profile item cvmDNSLookup (page 90). Refer also
to the CVM state EventProcessBuiltin in the CVM state transitions in section 3.1.10 (page
58).

key pressed = 7: keyCode Int

keyCode reflects the key that was pressed by the user. Refer to section 3.3 (page 81) for a
list of all key codes. If the user holds the key pressed, the CVM generates a sequence of
key pressed and key released events as long as the key is being pressed. This is to enable
smooth cursor movements while pressing one of the arrow keys. The number of generated
events within the sequence depends on the given CVM implementation. Note that this
event is not raised, if it matches one of the respective shortcut events. Then, only the
respective shortcut event is raised.

key pressed enter = 8: −
This event is raised, if the user presses the Enter key.

key pressed escape = 9: −
This event is raised, if the user presses the Escape key.

key released = 10: keyCode Int

keyCode reflects the key that was released by the user. Refer to section 3.3 (page 81) for a
list of all key codes. Note that this event is not raised, if it matches one of the respective
shortcut events. Then, only the respective shortcut event is raised.

key released enter = 11: −
This event is raised, if the user releases the Enter key.

key released escape = 12: −
This event is raised, if the user releases the Escape key.

menu bookmarks = 13: −
“Open bookmarks menu”.
Refer also to section 3.1.8 (page 56) for more information on the bookmarks menu and to
the CVM state EventProcessBuiltin in the CVM state transitions in section 3.1.10 (page
58).

52 3. Client Virtual Machine (CVM)

menu home = 14: −
“Load HomeMenu”.
The CVM starts loading the HomeMenu. Refer to section 3.6 (page 86) for more information
on the HomeMenu and refer also to the CVM state EventProcessBuiltin in the CVM state
transitions in section 3.1.10 (page 58).

mouse moved = 15: x Int y Int button Int

This event occurs when the mouse is moved while at the same time one or none of its
mouse buttons is being pressed. mouse moved events will continue to be delivered until
the mouse is not moved anymore. x and y reflect the new xy coordinate position of the
mouse pointer. button indicates which mouse button is being held down. Refer to section
3.3 (page 81) for the code numbers of the mouse buttons.

mouse pressed = 16: x Int y Int button Int

x and y reflect the xy coordinate position of the mouse pointer. button indicates which
mouse button was pushed down. Refer to section 3.3 (page 81) for the code numbers of
the mouse buttons. Note that this event is not raised, if it matches one of the respective
shortcut events. Then, only the respective shortcut event is raised.

If the user rotates the mouse wheel up (or down), a mouse pressed (or mouse released) event
is generated with the button value being wheelUp (or wheelDown).

In addition, another event code such as mouse doubleClicked could be defined as well in
this section to reflect immediate double clicks on one of the mouse buttons by the user.
Right now, however, the CVM programmer or packet generator has to provide additional
CVM code in the event handling subroutines that detects mouse double clicks.

mouse pressed left = 17: x Int y Int

This event is raised, if the user presses the left button. x and y reflect the xy coordinate
position of the mouse pointer.

mouse released = 18: x Int y Int button Int

x and y reflect the xy coordinate position of the mouse pointer, respectively. button
indicates which mouse button was let up. Refer to section 3.3 (page 81) for the code
numbers of the mouse buttons. Note that this event is not raised, if it matches one of the
respective shortcut events. Then, only the respective shortcut event is raised.

mouse released left = 19: x Int y Int

This event is raised, if the user releases the left button. x and y reflect the xy coordinate
position of the mouse pointer.

3.1.7 History Buffer

The history buffer is mandatory for a given CVM implementation. Similar to the common
browsers, the CVM automatically saves the addresses of the recently loaded CVMUI pages
into an internal buffer. The size of the internal buffer, i.e., the maximum number of entries

3.1. Core 53

it can store, is implementation dependent but must be at least one. In addition, it is also
left to the implementors’ choice whether the history buffer is cleared each time the user
switches the CVM off.

The term current history buffer position is used here to refer to the position of the entry
within the history buffer that is currently active, i.e., the entry at the current history buffer
position references the CVMUI page that has been loaded most recently and is currently
processed by the CVM.

History Buffer Entry A history buffer entry addresses a particular CVMUI page. Gen-
erally, a CVM user interface contains several CVMUI pages that are grouped into CVM
packets. The internal structure of a history buffer entry is left to the implementors’ choice,
but must contain at least the following items:

{ Nat1[] hostAdr;
Nat1[4] sessionId;
Nat serviceNo, pageNo, subpageNo, cvmpNo, pageMemAdr }

hostAdr represents the address of the network host where the respective CVM packet
comes from. Whether it is an IP [62] address or a DNS [45] name is left to implementors’
choice. Refer also to the profile item cvmDNSLookup (page 90). If the respective CVM
packet is the HomeMenu, then hostAdr refers to the host name “ home ”. Otherwise,
hostAdr refers to the network address of a particular CVM packet server. The array type
Nat1[] is used for a byte stream of any data.

sessionId identifies the respective client-server session. Refer to regSessionId in section
3.4 (page 82) and to sessionId in section 4.1 (page 128) for more information on session
identifiers.

serviceNo represents the number of an interactive network service that is offered by the
CVM packet server with the host address hostAdr. The addressed CVMUI page is part of
the CVM user interface that belongs to the interactive network service with the number
serviceNo. The data type Nat is used as a shortcut for the data type Nat<cvmIntLen>.
Refer to section 3.1.2 (page 33) for more information on cvmIntLen.

pageNo represents the number of the abstract user interface (AUI) page. An AUI de-
scription consists of several AUI pages that are numbered starting with zero. During the
customization process one or more CVM user interface (CVMUI) pages are generated from
the requested AUI page. Each CVMUI page represents a subpage of the respective AUI
page. An AUI subpage contains all or a smaller subset of the user interface components in
the respective AUI page, depending on the client capabilities. Subpages are also numbered
starting with zero. Refer to sections 5.1 (page 135), 5.5 (page 166), and 5.4 (page 163) for
more information on AUI descriptions, CVMUIs, and the generation process.

subpageNo represents the number of the AUI subpage.

cvmpNo represents the number of the CVM packet that contains the respective CVMUI
page. CVM packets are numbered starting with zero.

pageMemAdr represents an absolute memory address of an instruction where the respective
CVMUI page starts in memory after the respective CVM packet has been loaded into
memory.

54 3. Client Virtual Machine (CVM)

In the future, additional history buffer entries that save the state of a CVMUI page when
it was last visited may be defined. For example, common browsers save the most recent
x and y positions of the cursor or viewport area within the respective CVMUI page and
reload them automatically at the beginning of the next page access.

History Buffer Events The following builtin events apply to the history buffer: his-
tory back, history forward, history reload. With the builtin events history back and his-
tory forward the user can move in the history buffer backward and forward and — if there
is such an entry — reload the referenced CVMUI page. The current history buffer posi-
tion then is moved one position backward or forward, too. The builtin event history reload
reloads the currently processed CVMUI page from the respective CVM packet server, if it
does not belong to the HomeMenu. Refer also to section 3.1.6.4 (page 50) and to the CVM
state EventProcessBuiltin in the CVM state transitions in section 3.1.10 (page 58) for more
information on these builtin events and the CVM’s predefined behavior on these events.

Example The behavior of the history buffer is illustrated by an example. Figure 3.4
(page 55) shows an example of a client-server session. Figure 3.5 (page 56) shows the
corresponding dynamic behavior of the history buffer during that CVM session. The short
and dashed horizontal arrows in figure 3.5 mark the current history buffer position.

At the beginning, the CVM first starts with the 0th page of the HomeMenu.

When the CVM encounters the instruction “page 3, memAdr3 ” (step 1), it loads the third
subpage of the HomeMenu. Refer to the instruction reference in section 3.9.2 (page 108)
for more information on the instruction page. memAdr3 represents the memory address
of the instruction, where the code block of the third subpage starts in CVM memory. The
service number, the AUI page number, and the CVM packet number of the HomeMenu
are always zero by definition. How the CVM comes to encounter the instruction “page 3,
memAdr3 ” is not important here. Normally, this instruction might occur in some event
handling subroutine code and be executed after the user has raised an event.

When the CVM encounters the instruction “rcv remoteHostAdr1, 7, 0” (step 2), it con-
tacts the CVM packet server with the network address remoteHostAdr1 and requests the
0th subpage of the 0th AUI page of the user interface that belongs to the interactive net-
work service with the service number 7 — provided that the value of the special register
regSessionId is zero. Refer to the instruction reference in section 3.9.2 (page 108) for more
information on the instruction rcv and to section 3.4 (page 82) for more information on the
special register regSessionId. The specified CVM packet server then sends the CVM packet
cvmpR10 which contains the CVMUI pages with the numbers 0, 1, and 2. After the CVM
has loaded this CVM packet into its memory, it starts execution at the memory address
pageMemAdrCVMP, where the code block of the 0th subpage starts. Refer to section 4.2 (page
129) for more information on the protocol message item pageMemAdr of the CPTP protocol
method CVMP.

When the CVM encounters the instruction “page 2, memAdr2 ” (step 3), it loads the second
subpage of the CVM packet cvmpR10. As the second page is part of the currently processed
CVM packet, the CVM only has to jump to the code block of the second page and execute
its instructions.

When the CVM encounters the instruction “rcv remoteHostAdr1, 9, 4” (step 4), it contacts
the CVM packet server with the network address remoteHostAdr1 again to request the 4th

3.1. Core 55

subpage of the 9th page of the user interface. The specified CVM packet server then sends
the CVM packet cvmpR14 which contains the CVMUI pages with the numbers 0, 1, 2, 3,
and 4. After the CVM has loaded this CVM packet into its memory, it starts execution at
the memory address pageMemAdrCVMP, where the code block of the 4th subpage starts. The
CVM packets cvmpR10 and cvmpR14 belong to the user interface of the same network
service.

When the CVM encounters the instructions “sidzero” and “rcv remoteHostAdr2, 5, 0” (step
5), it first sets the value of the special register regSessionId to zero and then contacts the
CVM packet server with the network address remoteHostAdr2 to request the 0th subpage
of the 0th page that belongs to the interactive network service with the service number 5.

In the steps 6 to 9 the user raises the builtin events history back and history forward. The
current history buffer position then moves one position backward or forward each time and
the CVM reloads the respective CVMUI page. Note that in the steps 6 and 7 the CVM has
to contact the respective CVM packet server to load the requested CVMUI page, because
it is not part of the currently processed CVM packet.

Step 10 is analogous to step 4. Note that the CVM additionally deletes all history buffer
entries behind the current history buffer position.

remoteHostAdr1 remoteHostAdr1_home_Host Address:

Cvm Packet Number: 0 0 4

Cvm Packet:

...

0

cvmpR10

cvmpR14

1

2 3

0 1

2

0 1

2 3

4
HomeMenu

1 2
3

7

5

6

4

8 9

remoteHostAdr2

0

cvmpR20

0 1

10

Service Number: 0 7 7 5

page 3, memAdr31

rcv remoteHostAdr1, 7, 02

page 2, memAdr23

rcv remoteHostAdr1, 9, 44

sidzero
rcv remoteHostAdr2, 5, 0

5

history_back6

history_back7

history_back8

history_forward9

rcv remoteHostAdr1, 9, 110

AUI Page Number: 0 0 9 0

Session Id: 0 1563 1563 729

AUI Subpage Number =
CVMUI Subpage Number

AUI Subpage =
CVMUI Page

Figure 3.4: Example of a Client-Server Session

56 3. Client Virtual Machine (CVM)

page 3, memAdr31

history_back6

history_back8

history_forward9

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr1, 1563, 7, 9, 4, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr2, 729, 5, 0, 0, 0, pageMemAdr)
(remoteHostAdr1, 1563, 7, 9, 4, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

rcv remoteHostAdr1, 7, 02

page 2, memAdr23

rcv remoteHostAdr1, 9, 44

sidzero
rcv remoteHostAdr2, 5, 0

5

(remoteHostAdr2, 729, 5, 0, 0, 0, pageMemAdr)
(remoteHostAdr1, 1563, 7, 9, 4, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr2, 729, 5, 0, 0, 0, pageMemAdr)
(remoteHostAdr1, 1563, 7, 9, 4, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

history_back7

rcv remoteHostAdr1, 9, 110

(remoteHostAdr2, 729, 5, 0, 0, 0, pageMemAdr)
(remoteHostAdr1, 1563, 7, 9, 4, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr2, 729, 5, 0, 0, 0, pageMemAdr)
(remoteHostAdr1, 1563, 7, 9, 4, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)

(remoteHostAdr1, 1563, 7, 9, 1, 4, pageMemAdr)cvmpR14

(remoteHostAdr1, 1563, 7, 0, 2, 0, memAdr2)
(remoteHostAdr1, 1563, 7, 0, 0, 0, pageMemAdr)cvmpR10

(localHostAdr, 0, 0, 0, 0, 0, codeSegmentAdr)HomeMenu

(localHostAdr, 0, 0, 0, 3, 0, memAdr3)
cvmpR20

cvmpR20

cvmpR20

cvmpR20

cvmpR20

Figure 3.5: History Buffer Behavior of an Exemplary Client-Server Session

3.1.8 Bookmarks Menu

The bookmarks menu is optional for a given CVM implementation. Similar to common
browsers, the user can store in it the addresses of frequently visited CVMUI pages in order
to retrieve them later conveniently. Naturally, the bookmark entries are not cleared after
the user switches the CVM off. The maximum number of bookmark entries as well as
the user interface of the bookmarks menu itself is left to the implementors’ choice. The
internal structure of a bookmarks entry is left to the implementors’ choice, too, but must
contain at least the following items:

{ Nat1[] hostAdr; Nat serviceNo, pageNo }

hostAdr represents the address of the network host where the respective CVM packet
comes from. Whether it is an IP [62] address or a DNS [45] name is left to implementors’

3.1. Core 57

choice. Refer also to the profile item cvmDNSLookup (page 90). If the respective CVM
packet is the HomeMenu, then hostAdr refers to the host name “ home ”. Otherwise,
hostAdr refers to the network address of a particular CVM packet server. The array type
Nat1[] is used for a byte stream of any data.

serviceNo represents the number of an interactive network service that is offered by the
CVM packet server with the host address hostAdr. The addressed CVMUI page is part
of the user interface that belongs to the interactive network service with the number
serviceNo. The data type Nat is used as a shortcut for the data type Nat<cvmIntLen>.
Refer to section 3.1.2 (page 33) for more information on cvmIntLen.

pageNo represents the number of the AUI page.

The builtin event menu bookmarks opens the bookmarks menu. Refer to section 3.1.6.4
(page 51) and to the CVM state EventProcessBuiltin in the CVM state transitions in section
3.1.10 (page 58) for more information on this event.

3.1.9 Interval Timer

The interval timer component is optional for the CVM. Its purpose is to provide an in-
terrupt mechanism that is controlled periodically. The interval timer provides millisecond
accuracy. When active, it runs over and over again, sending a signal each time it expires.
For example, the interval timer might be used to manage several execution threads that are
part of the same CVM program and run concurrently. In the following, the special interval
timer registers are described. Refer also to section 3.1.10 (page 58) for more details on the
interval timer concept, CVM states, and the overall state behavior of the CVM.

regTimerSignal The special register regTimerSignal contains a flag bit with the possible
values 0 (”unset”) and 1 (”set”). Whenever the time period that is given by the special
register regTimerInterval expires, the timer sets the value of this register to 1. On the
other hand, the CVM automatically unsets this register each time it checks its value. The
CVM checks the value of this register in the states Execute, EventExecute, and Wait, i.e.,
regState = Execute ∨ EventExecute ∨ Wait. This register cannot be modified by the CVM
instructions. The initial value of this register is zero.

regTimerHandleAdr The special register regTimerHandleAdr stores the absolute memory
address, a Nat value, of the first instruction of the timer handle code block in memory. The
timer handle code block is a part of the loaded CVM program (and packet). Each time the
CVM notices that the interval timer has expired, the CVM interrupts its current activity
and jumps to that code block to continue execution there. The instruction settimerhandleadr
sets the value of this register. The initial value of this register is zero.

regTimerInterval The special register regTimerInterval stores a Nat value that defines the
time period in milliseconds. If the value is zero, the timer function is deactivated, otherwise
activated. The instruction settimerinterval sets the value of this register. The initial value
of this register is zero.

58 3. Client Virtual Machine (CVM)

Note that it is left to the responsibility of the CVM programmer or packet generator to
ensure that the interval timer is not activated before the memory address of the timer
handle code block has been declared by the instruction settimerhandleadr.

3.1.10 Runtime Behavior

The runtime behavior of the CVM can be modelled as a state machine. Note that the state
machine that is presented in this section only specifies the functional runtime behavior of
the CVM, but does not provide a concrete implementation for it.

regState The special register regState (“State Register”) stores the current state of the
CVM, which is a Nat number. There are the following CVM states: CptpGET = 1, Error
= 2, EventExecute = 3, EventProcess = 4, EventProcessBuiltin = 5, Execute = 6, Init = 7,
LoadCvmPacket = 8, TimerExecute = 9, and Wait = 10. The value of this register cannot
be modified by the CVM instructions. Its initial value is LoadCvmPacket.

State Transitions The actions the CVM performs in each state, and the conditions
under which the CVM performs a particular state transition are specified by the following
pseudo-code in a generally understandable notation. Note that this pseudo-code only spec-
ifies the runtime behavior of the CVM but does not represent a concrete implementation.
Whenever possible, particular parts are described informally and as general as possible to
leave CVM implementors most freedom. Italic font is used for auxiliary variables. Informal
descriptions appear as internal procedure calls and are presented in italics as well. These
procedures have meaningful names and are not specified in more detail. Instead, they are
described informally afterwards in the alphabetically sorted list.

#IF CVM module Visual available

regMeasure := ...; // Refer to section 3.2.1 (page 77).
#ENDIF // (CVM module Visual available)
#IF CVM module Network available

regSessionId := 0;
regServiceNo := 0;
#ENDIF // (CVM module Network available)
cvmPacket := HomeMenu;
historyEntry := addHistoryEntry(” home ”, 0, 0, 0, 0, 0, 0);
regState := LoadCvmPacket; // CVM always starts with the state LoadCvmPacket.
repeat forever {

switch (regState) {
#IF CVM module Network available

CptpGET:
/∗ cptpMethod = GET ∗/
cvmPacketIsLoaded = false;
cptpTransactionStart();
while (regState = CptpGET) {

if (regErrorCode 6= 0) {
newError := true;
regState := Error;

3.1. Core 59

} else if (cptpTransactionFinished() = true) {
cvmPacket := cvmPacketCVMP;
regSessionId := sessionIdCVMP;
sessionIdhistoryEntry := sessionIdCVMP;
cvmpNohistoryEntry := cvmpNoCVMP;
pageMemAdrhistoryEntry := pageMemAdrCVMP;
regState := LoadCvmPacket;
} else if (checkEventQueue() = true ∧ isEscapeEvent() = true) {

#IF Interval timer available

regTimerInterval = 0; // Deactivate timer, if currently active
#ENDIF // (Interval timer available)

regEventEnable := 0;
regState := Wait;
} else {

cptpTransactionContinue();
}
}

#ENDIF // (CVM module Network available)
Error: // Refer also to section 3.1.5.1 (page 41).

#IF Interval timer available

regTimerInterval = 0; // Deactivate timer, if currently active
#ENDIF // (Interval timer available)

outputErrorMessage();
clearEventQueue();
repeat {

while (checkEventQueue() = false) { sleepOrSkip(); }
} until (isBuiltinEvent() = true); // Other events are discarded.

#IF CVM module Network available

if (newError = true ∧ hostAdrhistoryEntry 6= ” home ” ∧
regErrorCode 6= NetworkError) {

cptpMethod := ERROR;
cptpTransactionStart();
while (cptpTransactionFinished() = false) {

cptpTransactionContinue();
}
}

#ENDIF // (CVM module Network available)
newError := false;
nextState := Error;
regState := EventProcessBuiltin;

EventExecute:
#IF Interval timer available

if (regTimerSignal = 1) {
regTimerSignal := 0;
save(regIP, regRSP, regBP, regState,R[]);
regIP := regTimerHandleAdr;
regRSP := 0;
regBP := 0;

60 3. Client Virtual Machine (CVM)

regState := TimerExecute;
break;
}

#ENDIF // (Interval timer available)
checkInstruction();
if (regErrorCode 6= 0) /∗ Error code depends on each instruction. ∗/ {

newError := true;
regState := Error;
break;
}
if (opcodeinstruction = halt) {

restore(regIP, regRSP, regBP, regState,R[]);
/∗ regState ∈ {Execute, Wait} ∗/
} else if (opcodeinstruction = page) {

historyEntry := addHistoryEntry(hostAdrhistoryEntry , sessionIdhistoryEntry ,
serviceNohistoryEntry , pageNohistoryEntry , subpageNopage,
cvmpNohistoryEntry , regIP + pageMemAdrRelpage);

regState := Init;
}

#IF CVM module Network available

else if (opcodeinstruction = rcv ∨ opcodeinstruction = sendrcv) {
readHostAdrFromMemAt(hostAdrMemAdr<rcv | sendrcv>, cptpHostAdr);
if (regErrorCode 6= 0) {

// regErrorCode ∈ {IllegalMemoryAddress, NoDNSLookup}
newError := true;
regState := Error;
break;
}
cptpMethod := GET;
if (regSessionId = 0) {

regServiceNo := pageOrServiceNo<rcv|sendrcv>;
cptpPageNo := 0;
cptpSubpageNo := 0;
} else {

cptpPageNo := pageOrServiceNo<rcv|sendrcv>;
cptpSubpageNo := subpageNo<rcv|sendrcv>;
}
if (opcodeinstruction = rcv) {

cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
} else {

cptpNumBytes := numBytes sendrcv;
cptpDataBytesMemAdr := dataBytesMemAdr sendrcv;
}
historyEntry := addHistoryEntry(cptpHostAdr , regSessionId, regServiceNo,

cptpPageNo, cptpSubpageNo, 0, 0);
regState := CptpGET;
}

3.1. Core 61

#ENDIF // (CVM module Network available)
else {

executeInstruction();
}

EventProcess: // Refer also to section 3.1.6.1 (page 46).
// nextState ∈ {Execute, Wait}
if (isBuiltinEvent() = true) {

regState := EventProcessBuiltin;
} else if (regEventEnable = 0) {

regState := nextState; // Discard event.
nextState := ⊥;
} else {

memAdr := regEventTableAdr;
repeat { // Search event table:

if (readIntFromMemAt(memAdr , eventCode) = false) {
nextState := ⊥;
newError := true;
regErrorCode := IllegalMemoryAddress;
regState := Error;
} else if (eventCode = 0) {

regState := nextState;
nextState := ⊥;
} else if (eventCode = 1) { // Jump to parent event table.

if (readIntFromMemAt(memAdr + cvmIntLen,memAdr) = false) {
nextState := ⊥;
newError := true;
regErrorCode := IllegalMemoryAddress;
regState := Error;
}
} else if (eventCode = regEventCode) {

save(regIP, regRSP, regBP, nextState,R[]);
nextState := ⊥;
if (readIntFromMemAt(memAdr + cvmIntLen, regIP) = false) {

newError := true;
regErrorCode := IllegalMemoryAddress;
regState := Error;
} else {

regRSP := 0;
regBP := 0;
regState := EventExecute;
}
} else {

memAdr := memAdr + 2 ∗ cvmIntLen;
}
} until (regState = Error ∨ eventCode = 0 ∨ eventCode = regEventCode);
}

EventProcessBuiltin:
/∗ nextState ∈ {Error, Execute, Wait} ∗/

62 3. Client Virtual Machine (CVM)

if (regEventCode = cvm quit) {
turnOffCVM ();
} else if (regEventCode = history back ∨

regEventCode = history forward) {
historyEntryTmp := historyEntry ;
if (setHistoryPosition(historyEntry) = true) {

nextState := ⊥;
regErrorCode := 0;
if (hostAdrhistoryEntry = ” home ”) {

if (hostAdrhistoryEntryTmp = ” home ” ∧
cvmPacketIsLoaded = true) {

regState := Init;
} else {

cvmPacket := HomeMenu;
regSessionId := sessionIdhistoryEntry ;
regServiceNo := serviceNohistoryEntry ;
regState := LoadCvmPacket;
}
}

#IF CVM module Network available

else if (hostAdrhistoryEntry = hostAdrhistoryEntryTmp ∧
sessionIdhistoryEntry = sessionIdhistoryEntryTmp ∧
pageNohistoryEntry = pageNohistoryEntryTmp ∧
cvmpNohistoryEntry = cvmpNohistoryEntryTmp ∧
cvmPacketIsLoaded = true) {

regState := Init;
} else {

regSessionId := sessionIdhistoryEntry ;
regServiceNo := serviceNohistoryEntry ;
cptpMethod := GET;
cptpHostAdr := hostAdrhistoryEntry ;
cptpPageNo := pageNohistoryEntry ;
cptpSubpageNo := subpageNohistoryEntry ;
cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
regState := CptpGET;
}

#ENDIF // (CVM module Network available)
} else {

regState := nextState;
nextState := ⊥;
}
} else if (regEventCode = history reload) {

nextState := ⊥;
regErrorCode := 0;

#IF CVM module Network available

if (hostAdrhistoryEntry 6= ” home ”) {
cptpMethod := GET;

3.1. Core 63

cptpHostAdr := hostAdrhistoryEntry ;
cptpPageNo := pageNohistoryEntry ;
cptpSubpageNo := subpageNohistoryEntry ;
cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
regState := CptpGET;
} else {

#ENDIF // (CVM module Network available)
regState := LoadCvmPacket;
}

#IF CVM module Network available

}
#ENDIF // (CVM module Network available)
#IF CVM module Network available

else if (regEventCode = input hostAdr) {
openInputHostAdrAndServiceNoUI ();
repeat {

while (checkEventQueue() = false) { sleepOrSkip(); }
if (isInputHostAdrAndServiceNoEvent() = true) {

doInputHostAdrAndServiceNoAction();
}
} until (isAcknowledgeEvent() = true ∨ isEscapeEvent() = true)
closeInputHostAdrAndServiceNoUI ();
if (isEscapeEvent() = true) {

regState := nextState;
nextState := ⊥;
} else { // isAcknowledgeEvent() = true

nextState := ⊥;
regErrorCode := 0;
regSessionId := 0;
regServiceNo := inputServiceNo;
historyEntry := addHistoryEntry(inputHostAdr , regSessionId, regServiceNo,

0, 0, 0, 0);
if (inputHostAdr = ” home ”) { // regServiceNo = 0

cvmPacket := HomeMenu;
regState := LoadCvmPacket;
} else {

cptpMethod := GET;
cptpHostAdr := hostAdrhistoryEntry ;
cptpPageNo := pageNohistoryEntry ;
cptpSubpageNo := subpageNohistoryEntry ;
cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
regState := CptpGET;
}
}
}

#ENDIF // (CVM module Network available)

64 3. Client Virtual Machine (CVM)

#IF Bookmarks available

else if (regEventCode = menu bookmarks) {
openBookmarksMenu();
repeat {

while (checkEventQueue() = false) { sleepOrSkip(); }
if (isBookmarksEvent() = true) { doBookmarksAction(); }
} until (isBookmarksEventFinished() = true);
closeBookmarksMenu();
if (bookmarkEntryHasBeenSelected() = false) {

regState := nextState;
nextState := ⊥;
} else {

nextState := ⊥;
regErrorCode := 0;

#IF CVM module Network available

regSessionId := 0;
regServiceNo := serviceNobookmarksEntry ;

#ENDIF // (CVM module Network available)
historyEntry := addHistoryEntry(hostAdrbookmarksEntry , regSessionId,

regServiceNo, pageNobookmarksEntry , 0, 0, 0);
#IF CVM module Network available

if (hostAdrhistoryEntry = ” home ”) {
#ENDIF // (CVM module Network available)

cvmPacket := HomeMenu;
regState := LoadCvmPacket;
}

#IF CVM module Network available

else {
cptpMethod := GET;
cptpHostAdr := hostAdrhistoryEntry ;
cptpPageNo := pageNohistoryEntry ;
cptpSubpageNo := 0;
cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
regState := CptpGET;
}
}

#ENDIF // (CVM module Network available)
}

#ENDIF // (Bookmarks available)
else if (regEventCode = menu home) {

cvmPacket := HomeMenu;
nextState := ⊥;
regErrorCode := 0;

#IF CVM module Network available

regSessionId := 0;
regServiceNo := 0;

#ENDIF // (CVM module Network available)

3.1. Core 65

historyEntry := addHistoryEntry(” home ”, regSessionId, regServiceNo,
0, 0, 0, 0);

regState := LoadCvmPacket;
} else {

processDeviceSpecificBuiltinEvent();
}

Execute:
#IF Interval timer available

if (regTimerSignal = 1) {
regTimerSignal := 0;
save(regIP, regRSP, regBP, regState,R[]);
regIP := regTimerHandleAdr;
regRSP := 0;
regBP := 0;
regState := TimerExecute;
break;
}

#ENDIF // (Interval timer available)
if (checkEventQueue() = true) {

nextState := Execute;
regState := EventProcess;
break;
}
checkInstruction();
if (regErrorCode 6= 0) /∗ Error code depends on each instruction. ∗/ {

newError := true;
regState := Error;
break;
}
if (opcode instruction = halt) {

regState := Wait;
} else if (opcodeinstruction = page) {

historyEntry := addHistoryEntry(hostAdrhistoryEntry , sessionIdhistoryEntry ,
serviceNohistoryEntry , pageNohistoryEntry , subpageNopage,
cvmpNohistoryEntry , regIP + pageMemAdrRelpage);

regState := Init;
}

#IF CVM module Network available

else if (opcodeinstruction = rcv ∨ opcodeinstruction = sendrcv) {
readHostAdrFromMemAt(hostAdrMemAdr<rcv | sendrcv>, cptpHostAdr);
if (regErrorCode 6= 0) {

// regErrorCode ∈ {IllegalMemoryAddress, NoDNSLookup}
newError := true;
regState := Error;
break;
}
cptpMethod := GET;
if (regSessionId = 0) {

66 3. Client Virtual Machine (CVM)

regServiceNo := pageOrServiceNo<rcv|sendrcv>;
cptpPageNo := 0;
cptpSubpageNo := 0;
} else {

cptpPageNo := pageOrServiceNo<rcv|sendrcv>;
cptpSubpageNo := subpageNo<rcv|sendrcv>;
}
if (opcodeinstruction = rcv) {

cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
} else {

cptpNumBytes := numBytes sendrcv;
cptpDataBytesMemAdr := dataBytesMemAdr sendrcv;
}
historyEntry := addHistoryEntry(cptpHostAdr , regSessionId, regServiceNo,

cptpPageNo, cptpSubpageNo, 0, 0);
regState := CptpGET;
}

#ENDIF // (CVM module Network available)
else {

executeInstruction();
}

Init:
regIP := pageMemAdrhistoryEntry ;
regRSP := 0;
regSS := stackSegmentAdrcvmPacket ;
regSP := regSS;
regBP := 0;
regErrorCode := 0;
regEventEnable := 0;
regEventCode := 0;
regEventTableAdr := 0;

#IF Interval timer available

regTimerHandleAdr := 0;
regTimerInterval := 0;
regTimerSignal := 0;

#ENDIF // (Interval timer available)
#IF CVM module Visual available

regClipX := 0; regClipY := 0;
#IF regMeasure = 0

regClipWidth := cvmScreenWidth;
regClipHeight := cvmScreenHeight;
regLineWidth := 1;

#ELSE // (regMeasure = 0)
regClipWidth := cvmScreenWidthMM;
regClipHeight := cvmScreenHeightMM;
regLineWidth := ...; // ≈ 1pt

#ENDIF // (regMeasure = 0)

3.1. Core 67

regColorRed := 0; regColorGreen := 0; regColorBlue := 0;
regBgColorRed := 255; regBgColorGreen := 255; regBgColorBlue := 255;
regFontCode := fontFixedStandard; regFontSize := 13;
regHTextLine := 0; regXTextLine := 0;
clearScreen();

#ENDIF // (CVM module Visual available)
#IF CVM module Mouse available

regMouseFont = XC top left arrow;
#ENDIF // (CVM module Mouse available)

clearEventQueue();
regState := Execute;

LoadCvmPacket:
if (loadCvmPacketIntoMem() = true) {

cvmPacketIsLoaded := true;
if (hostAdrhistoryEntry = ” home ” ∧

pageNohistoryEntry = 0 ∧ subpageNohistoryEntry = 0) {
pageMemAdrhistoryEntry := codeSegmentAdrcvmPacket ;
}
regState := Init;
} else {

cvmPacketIsLoaded := false;
newError := true;
if (hostAdrhistoryEntry = ” home ”) {

regErrorCode := MalformedHomeMenu;
} else {

regErrorCode := MalformedCVMPacket;
}
regState := Error;
}

#IF Interval timer available

TimerExecute:
checkInstruction();
if (regErrorCode 6= 0) /∗ Error code depends on each instruction. ∗/ {

newError := true;
regState := Error;
break;
}
if (opcodeinstruction = halt) {

restore(regIP, regRSP, regBP, regState,R[]);
/∗ regState ∈ {EventExecute, Execute, Wait} ∗/
} else if (opcodeinstruction = page) {

historyEntry := addHistoryEntry(hostAdrhistoryEntry , sessionIdhistoryEntry ,
serviceNohistoryEntry , pageNohistoryEntry , subpageNopage,
cvmpNohistoryEntry , regIP + pageMemAdrRelpage);

regState := Init;
}

#IF CVM module Network available

else if (opcodeinstruction = rcv ∨ opcodeinstruction = sendrcv) {

68 3. Client Virtual Machine (CVM)

readHostAdrFromMemAt(hostAdrMemAdr<rcv | sendrcv>, cptpHostAdr);
if (regErrorCode 6= 0) {

// regErrorCode ∈ {IllegalMemoryAddress, NoDNSLookup}
newError := true;
regState := Error;
break;
}
cptpMethod := GET;
if (regSessionId = 0) {

regServiceNo := pageOrServiceNo<rcv|sendrcv>;
cptpPageNo := 0;
cptpSubpageNo := 0;
} else {

cptpPageNo := pageOrServiceNo<rcv|sendrcv>;
cptpSubpageNo := subpageNo<rcv|sendrcv>;
}
if (opcodeinstruction = rcv) {

cptpNumBytes := 0;
cptpDataBytesMemAdr := 0;
} else {

cptpNumBytes := numBytes sendrcv;
cptpDataBytesMemAdr := dataBytesMemAdr sendrcv;
}
historyEntry := addHistoryEntry(cptpHostAdr , regSessionId, regServiceNo,

cptpPageNo, cptpSubpageNo, 0, 0);
regState := CptpGET;
}

#ENDIF // (CVM module Network available)
else {

executeInstruction();
}

#ENDIF // (Interval timer available)
Wait:

#IF Interval timer available

if (regTimerSignal = 1) {
regTimerSignal := 0;
save(regIP, regRSP, regBP, regState,R[]);
regIP := regTimerHandleAdr;
regRSP := 0;
regBP := 0;
regState := TimerExecute;
break;
}

#ENDIF // (Interval timer available)
if (checkEventQueue() = true) {

nextState := Wait;
regState := EventProcess;
break;

3.1. Core 69

}
sleepOrSkip();

} // End of switch block
} // End of repeat block

Comments:

• #IF condition

pseudo-code1

#ELSE

pseudo-code2

#ENDIF

groups conditional parts of the pseudo-code. The condition is expressed informally.
If the condition is true, then the pseudo-code1 is inserted at this place, otherwise
the pseudo-code2. The #ELSE part is optional and is omitted, if pseudo-code2 is empty.

• addHistoryEntry(hostAdr , sessionId , serviceNo, pageNo, subpageNo, cvmpNo, page-
MemAdr) creates a new entry in the history buffer and returns it. The components
of the entry are given by the parameters hostAdr, sessionId, serviceNo, pageNo,
subpageNo, cvmpNo, and pageMemAdr. The new history entry is always inserted
behind the current history position and the current history position is then set to
the new entry. The other entries behind the new entry are deleted, if available. If
the history buffer is already full, then the first entry is deleted before the new entry
is inserted behind the current history position. If the maximum size of the history
buffer is only one, then the old entry is simply replaced by the new one. If the history
entry of the current history position has the same hostAdr, sessionId, pageNo, and
subpageNo, then no new history entry is created and the current history entry is
returned. Refer to section 3.1.7 (page 52) for more information on the history buffer.

• bookmarkEntryHasBeenSelected() returns true, if the user has previously selected a
bookmark entry to be accessed, otherwise false.

• checkEventQueue() returns true, if the event queue is not empty, otherwise false. If
the event queue is not empty, it removes the first event from the event queue and sets
the event registers regEventCode and regEventPar<1|2|3> with the appropriate values
of that event. As already said, events are buffered in an event queue in the FIFO
(First In, First Out) manner. Note that a new event can occur and be appended
into the event queue at any time in any state. However, the CVM checks the event
queue only in the states Error, EventProcessBuiltin, Execute, CptpGET, and Wait. In
addition, the CVM checks here in the state Execute every time for a new event.
However, this frequency is not necessary in a given implementation provided that
ergonomic event handling is ensured for the user.

• checkInstruction() checks whether the execution of the current instruction might
cause an error. The memory address of the current instruction is given by the in-
struction pointer register regIP. If an error might occur, the special error register
regErrorCode is automatically set to the appropriate error code value that depends
on the instruction. Refer to section 3.1.5.2 (page 42) for a list of all error codes. The

70 3. Client Virtual Machine (CVM)

instruction reference in section 3.9.2 (page 100) describes for each instruction which
errors might occur.

• clearEventQueue() removes all events from the event queue and discards them.

• clearScreen() fills the whole visual drawing area with the default background color,
which is white. Refer also to section 3.2.1 (page 76).

• closeBookmarksMenu() closes the bookmarks menu that has previously been opened
by openBookmarksMenu(). If the bookmarks menu has been displayed on the screen,
the screen sections that have been obscured by the bookmarks menu are restored
with their original contents.

• closeInputHostAdrAndServiceNoUI () closes the input host address user interface that
has previously been opened by openInputHostAdrAndServiceNoUI (). If this user
interface has been displayed on the screen, the screen sections that have been obscured
by that user interface, are restored with their original contents.

• cptpMethod, cptpHostAdr, cptpPageNo, cptpSubpageNo, cptpNumBytes, cptpData-
BytesMemAdr are variables for building up CPTP transactions. In general, these
variables are set before the CVM enters the state stateCptpGET. Refer to section 4
(page 127) for more information on the CPTP protocol. It depends on the protocol
method (cptpMethod) which of these variables are needed for a CPTP transaction,
whereas cptpMethod and cptpHostAdr are always needed. If the protocol method is
GET, the variables cptpPageNo, cptpSubpageNo, cptpNumBytes, and cptpDataBytes-
MemAdr are needed as well. Refer also to the instructions rcv (page 108) and sendrcv
(page 110).

• cptpTransactionStart() starts a CPTP transaction with a CVM packet server. The
CPTP protocol method is given by the variable cptpMethod. The host address of the
CVM packet server is given by the variable cptpHostAdr. If the value of cptpMethod
is ERROR, then cptpHostAdr refers to the CVM packet server from which the currently
processed or executed CVM packet comes from. Refer also to the comments on the
variables cptpMethod, cptpHostAdr, etc., in this section and to the CPTP protocol
methods ERROR and GET in section 4.2 (page 129).

Note that the amount of data that the CVM sends to and/or receives from the CVM
packet server at a time is left to the implementors’ choice. However, the user should
be able to interrupt and stop the transaction with an escape event. If an error occurs
during the transaction, the special error register regErrorCode is set automatically
with the appropriate error code. However, if the protocol method is ERROR, then an
error during the transaction, e.g., NetworkError (page 43), can be ignored silently by
the CVM.

It is left to the implementors’ choice whether a mechanism for local caching of CVMUI
pages is implemented or not. If yes, then cptpTransactionStart() first checks the
local cache, if it already contains the requested CVMUI page. It only starts a CPTP
transaction with a CVM packet server, if the CVM does not have a valid copy in its
local cache.

• cptpTransactionContinue() resumes the previously started and still ongoing CPTP
transaction. As already said, the amount of data that the CVM sends to and/or

3.1. Core 71

receives from the CVM packet server at a time is left to the implementors’ choice. In
addition, each time, the CVM receives a CPTP message from a CVM packet server,
it stores the value of the received message item sessionId into its special register
regSessionId. Refer to sections 3.4 (page 82) and 4.1 (page 128) for more information
on regSessionId and sessionId, respectively.

• cptpTransmissionFinished() returns true, if the previously started CPTP transaction
is finished, i.e., all the relevant data have been sent and/or received by the CVM over
the network. Otherwise, cptpTransmissionFinished() returns false.

• cvmPacket is a variable that refers to the currently processed CVM packet. At the
beginning, it refers to the HomeMenu. The binary format of a CVM packet is specified
in section 3.8 (page 93).

• cvmPacketIsLoaded is a variable that indicates whether the CVM memory contains
a loaded and valid CVM packet that conforms to the current history entry.

• doBookmarksAction() performs the respective actions according to the currently pro-
cessed bookmarks event. Among other things, these actions might include the selec-
tion, creation, and deletion of a bookmark entry. These actions are implementation
dependent and need not be specified here in more detail.

• doInputHostAdrAndServiceNoAction() performs the respective actions according to
the currently processed event that applies to the input host address dialog mask.
These actions are implementation dependent and need not be specified here in more
detail. Mainly, these actions might include the input, presentation, and editing of a
character string that represents the address of a network host and a service number.
Whether the address is an IP [62] address and/or a DNS [45] name is left to the
implementors’ choice. Refer also to the profile item cvmDNSLookup (page 90).

• executeInstruction() executes the instruction at the memory address given by the in-
struction pointer register regIP and afterwards automatically sets regIP to the mem-
ory address of the next instruction. Refer to the instruction reference in section 3.9.2
(page 100) for a description of each instruction.

• eventCode is a variable that stores an event code for temporary use. Refer also to
the comments on readIntFromMemAt(memAdr , eventCode).

• historyEntry is a variable that refers to the history entry at the current history
position.

• historyEntryTmp is a variable that refers to a history entry for temporary use.

• HomeMenu refers to the home menu of the CVM. Refer to section 3.6 (page 86) for
more information on the home menu.

• codeSegmentAdrcvmPacket and stackSegmentAdrcvmPacket refer to the CVM packet
items codeSegmentAdr and stackSegmentAdr of the CVM packet cvmPacket. Refer
to section 3.8 (page 93) for more information on these packet items.

72 3. Client Virtual Machine (CVM)

• <hostAdrMemAdr | subpageNo | pageOrServiceNo | pageMemAdrRel | numBytes |
dataBytesMemAdr><page | rcv | sendrcv> each refer to the parameters hostAdrMemAdr,

subpageNo, pageOrServiceNo, pageMemAdrRel, numBytes, and dataBytesMemAdr of
the CVM instructions page, rcv, and sendrcv, respectively.

• <hostAdr | sessionId | serviceNo | pageNo | subpageNo | cvmpNo |
pageMemAdr><historyEntry | historyEntryTmp>

each refer to the hostAdr, sessionId, serviceNo, pageNo, subpageNo, cvmpNo, and
pageMemAdr item of an history entry structure, respectively. The variables historyEn-
try and historyEntryTmp refer to an history entry structure. Refer also to section
3.1.7 (page 52) for more information on the history buffer.

• <hostAdr | serviceNo | pageNo><bookmarksEntry> each refer to the hostAdr, service-
No, and pageNo item of a bookmarks entry structure, respectively. The variable
bookmarksEntry refers to a bookmarks entry structure. Refer also to section 3.1.8
(page 56) for more information on the bookmarks menu.

• inputHostAdr is a variable that refers to the IP [62] address or the DNS [45] name of
a network host. It stems from openInputHostAdrAndServiceNoUI ().

• inputServiceNo is a variable that refers to the number of an interactive network
service. It stems from openInputHostAdrAndServiceNoUI ().

• isAcknowledgeEvent() returns true, if the values of the special event registers regEvent-
Code and regEventPar<1|2|3> indicate an acknowledgment by the user. For exam-
ple, this is the case if the CVM has a keyboard and if the value of regEventCode is
key pressed enter. However, if the CVM has a microphone instead, the user might
as well speak something like “Yes” into it. Otherwise, isAcknowledgeEvent() returns
false. It is left to the implementors’ choice which user actions cause an acknowledge
event. However, for reasons of usability they should be self-evident.

• isBookmarksEvent() returns true, if the value of the special event register regEvent-
Code matches an event code that applies to the bookmarks menu. These event codes
can be chosen freely by the CVM implementor and need not be specified here in
more detail. In addition to the standard event codes, the CVM implementor might
also add vendor-specific bookmark event codes. However, these must not interfere
with the standard CVM event codes, which are listed in section 3.1.6.4 (page 49).
Otherwise, isBookmarksEvent() returns false.

• isBookmarksEventFinished() returns true, if the value of the special event regis-
ter regEventCode matches an event code that applies to the bookmarks menu, i.e.,
isBookmarksEvent() = true, and if that event code indicates that the user wants
to finish the bookmarks menu. These event codes can be chosen freely by the CVM
implementor, e.g., key pressed enter (page 51), key pressed escape (page 51), etc. Oth-
erwise, isBookmarksEventFinished() returns false.

• isBuiltinEvent() returns true, if the value of the special event register regEventCode
matches the event code of a builtin event. Refer to section 3.1.6.3 (page 49) for more
information on builtin events.

3.1. Core 73

• isEscapeEvent() returns true, if the value of the special event registers regEvent-
Code and regEventPar<1|2|3> indicate an escape or abort by the user. For example,
this is the case if the CVM has a keyboard and if the value of regEventCode is
key pressed escape. However, if the CVM has a microphone instead, the user might
as well speak something like “Stop”, “Escape”, or “Abort” into it. It is left to the
implementors’ choice which user actions cause an escape-event. However, for reasons
of usability they should be self-evident.

• isInputHostAdrAndServiceNoEvent() returns true, if the value of the special event
register regEventCode matches an event code that applies to the input host address
dialog mask. The set of these events can be chosen freely by the CVM implementor
and need not be specified here in more detail. Besides the standard events like
key pressed, other, i.e., non-standard, event codes are also possible. The non-standard
event codes are also implementation dependent and need not be specified here in more
detail. However, they must not interfere with the standard event codes. The standard
event codes are listed in section 3.1.6.4 (page 49).

• loadCvmPacketIntoMem() loads the data and code of the current CVM packet (cvm-
Packet) into memory. Refer to section 3.8 (page 93) for more information on the
CVM packet format. The current CVM packet might be the HomeMenu or it might
have been received over the network from a CVM packet server. If the format of the
CVM packet is malformed, loadCvmPacketIntoMem() returns false, otherwise true.

Note that the CVM does not clear its memory before it loads a new CVM packet
into memory. This enables incremental download of additional data and code and
selective overwriting of specific data and code of the recently executed CVM program.
For example, the user might decide during execution of a CVM program, whether
optional images should be downloaded and embedded into the current CVM program
to be displayed.

• memAdr is a variable that stores a memory address for temporary use.

• nextState is a variable that refers to a CVM state. The purpose of this variable is to
save a default state into which the CVM might fall back in the further processing.

• newError is a variable that indicates whether the current error has already been
processed in the state Error. If not, then it’s value is true, otherwise false.

• opcodeinstruction refers to the operation code of the currently executed instruction.
Refer to the instruction reference in section 3.9.2 (page 100) for a complete list of all
operation codes.

• openBookmarksMenu() presents the bookmarks menu on the output device of the
CVM. If the CVM has a screen, it displays a GUI that contains the bookmark entries.
If the CVM has no screen, but a speaker, an acoustic version of the bookmarks menu
is presented. The appearance of the user interface for the bookmarks menu can be
chosen freely by the CVM implementor and need not be specified here in more detail.

• openInputHostAdrAndServiceNoUI () presents a user interface on the output device
of the CVM in which the user can input the address of a network host (inputHostAdr)
and the number (inputServiceNo) of one of its provided interactive network services.

74 3. Client Virtual Machine (CVM)

The appearance of this user interface can be chosen freely by the CVM implementor
and need not be specified here in more detail. In the following, this user interface is
referred to with the term input host address dialog mask.

• outputErrorMessage() outputs an error message on the output device to inform the
user. Refer also to section 3.1.5.1 (page 41).

• processDeviceSpecificBuiltinEvent() is implementation dependent and therefore not
specified here in more detail. Refer to section 3.1.6.3 (page 49) for more information
on device specific builtin events.

• readHostAdrFromMemAt (hostAdrMemAdr<rcv | sendrcv>, cptpHostAdr) reads a host
address from CVM memory which starts at the memory address hostAdrMemAdr
and assigns it to the variable cptpHostAdr. The host address might be a DNS [45]
name or an IP address [62] in standard dot notation. It is not checked whether the
host address is valid or not. If the memory is not accessed inside its bounds, which
is given by the interval [0; cvmMemMaxAdr], the special error register regErrorCode
is set to the error code value IllegalMemoryAddress (page 43). If the host address is a
DNS name, but the CVM does not support automatic DNS lookup, the special error
register regErrorCode is set to the error code value NoDNSLookup (page 44). Refer
also to the profile item cvmDNSLookup (page 90).

• readIntFromMemAt(memAdr , eventCode) reads an integer (Int<cvmIntLen>) value
from the memory at the address memAdr and assigns it to the variable eventCode.
If the memory is not accessed inside its bounds, which is given by the interval [0;
cvmMemMaxAdr], the return value is false, otherwise true.

• readIntFromMemAt(memAdr + cvmIntLen,memAdr) reads an integer (Int<cvmInt-
Len>) value from the memory at the address memAdr + cvmIntLen and assigns it
to the variable memAdr. If the memory is not accessed inside its bounds, which is
given by the interval [0; cvmMemMaxAdr], the return value is false, otherwise true.

• readIntFromMemAt(memAdr , regIP) reads an integer (Int<cvmIntLen>) value from
the memory at the address memAdr and stores it into the special register regIP.
If the memory is not accessed inside its bounds, which is given by the interval [0;
cvmMemMaxAdr], the return value is false, otherwise true.

• restore(...) writes the values back into the respective special and general registers
that have been saved previously with save(...).

• save(...) saves the current execution context that is given by the parameters in (...)
onto the memory stack or into an internal structure inside the CVM which is not
specified here in more detail, but left to the implementors’ choice.

Note that in the state EventProcess the state nextState is saved instead of the current
state which is given by the special state register regState. After the CVM finishes
event handling in the state EventExecute and restores the saved execution context
with restore(...), it loads the previously saved state nextState into regState, i.e., it
resumes with the state nextState, which is Execute or Wait.

• <sessionId | cvmpNo | pageMemAdr | cvmPacket>CVMP each refer to the protocol mes-
sage items sessionId, cvmpNo, pageMemAdr, and cvmPacket of the CPTP message

3.2. Visual 75

with the protocol method CVMP. Refer to sections 4 (page 127) and 4.2 (page 129) for
more information on the CPTP protocol and on the protocol method CVMP.

• setHistoryPosition(historyEntry) moves the current history buffer position to the
previous or next history entry, if the value of the special event register regEventCode
matches the event code history back or history forward, respectively. Next, it assigns
the variable historyEntry the history entry that is referred to by the new current
history buffer position and returns true. However, if there is no previous or next
history entry, respectively, the current history buffer position is not changed and
the variable historyEntry remains unchanged. The return value then is false. Refer
also to the builtin events history back (page 50) and history forward (page 50) and to
section 3.1.7 (page 52) for more information on the history buffer.

• sleepOrSkip() is implementation dependent. The following actions are possible: The
CVM may wait until an event or a timer signal occurs. Or the CVM might sleep
for a fixed amount of time. This time period then should be small enough to enable
smooth event and timer interrupt handling. However, the CVM may as well not wait
or sleep at all. Then, if sleepOrSkip() appears with checkEventQueue() in a loop, the
CVM performs a kind of waiting that is generally known as “busy waiting”.

• turnOffCVM () turns the CVM off.

• XC top left arrow refers to an X11 [52] cursor font name. Refer also to section 3.3
(page 82).

• Note that a timer signal can occur in any CVM state. As already said, a timer signal
sets the value of the special timer register regTimerSignal to 1. However, the CVM
checks for the value of regTimerSignal only in the states EventExecute, Execute, and
Wait, i.e., interval timer interrupt handling is performed only in these states. To
ensure real-time conformity as much as possible, the CVM code that is executed in
the state TimerExecute should not consume too much time, i.e., its execution time
should not exceed the time period of the interval timer. Therefore, instructions like
rcv and sendrcv should be omitted in that CVM state, because in the state CptpGET
no interval timer interrupt is handled.

3.2 Visual

The CVM module Visual controls the visual output on the client device’s visual drawing
area of the screen. Mainly, this module covers the basic graphic operations such as drawing
elementary graphic shapes, text, and pixel maps, because these tasks occur most often in
graphical user interfaces. The more complicated tasks such as scrolling, affine transfor-
mations, and animations as well as the more complex drawing operations such as drawing
cubic curves or handling diverse image and multimedia formats like GIF [29], JPEG [39],
MPEG [47], etc. are not supported directly by this module. These tasks can be achieved
either explicitly by providing appropriate procedures in the CVM program or by calling
appropriate library functions. Refer to section 3.5 (page 83) for more information on the
library functions.

76 3. Client Virtual Machine (CVM)

3.2.1 Graphics State

The graphics state includes the current foreground and background colors, the text font,
etc. These informations are used by the graphics primitives, i.e., the CVM drawing in-
structions, implicitly. As a result, they need not be provided as operands for each graphics
primitive, which reduces network traffic between the CVM packet server and the client.
The graphics state is stored in the following special registers:

regColorRed, regColorGreen, regColorBlue The special registers regColorRed, regCol-
orGreen, and regColorBlue store with their Nat1 values the red, green, and blue components
of the current foreground color — according to the 24-bit RGB [70] color model. The fore-
ground color for drawing shapes and writing text onto the screen is defined by these three
registers and used by all graphics primitives implicitly. The foreground color represents
the drawing color. Most drawing instructions only draw with the foreground color in the
foreground and leave the background untouched. The initial value of each register is zero,
which corresponds to the black color. The values of these registers are modified by the
instructions setred, setgreen, setblue, setcolor, and setcolor32.

Note that a given CVM implementation need not be able to display 24-bit RGB colors.
How the CVM approximates these colors and whether it uses internal colormaps is left to
the implementors’ choice.

regBgColorRed, regBgColorGreen, regBgColorBlue The special registers regBgCol-
orRed, regBgColorGreen, and regBgColorBlue store with their Nat1 values the red, green,
and blue components of the current background color — according to the 24-bit RGB [70]
color model. The background color is only used by the drawing instructions bitmapbg,
textbg, textbgl, textbglm, textbgm. These instructions draw their graphic shapes with the
foreground color and fill the background area of the bounding box of the respective shape
with the background color, respectively. The initial value of each register is 255, which cor-
responds to the white color. The values of these registers are modified by the instructions
setbgred, setbggreen, setbgblue, setbgcolor, and setbgcolor32.

regClipX, regClipY, regClipWidth, regClipHeight The special registers regClipX, reg-
ClipY, regClipWidth, and regClipHeight store with their integer values the xy coordinate
position, width, and height of the current rectangular clip area within the screen’s visual
drawing area. Only the pixels inside this clip area are affected in a drawing operation. The
measuring unit of the xy coordinate system is defined by the special register regMeasure.
The initial values of these registers are 0, 0, cvmScreenWidth (or cvmScreenWidthMM),
and cvmScreenHeight (or cvmScreenHeightMM), respectively. If the value of regMeasure is
zero, cvmScreenWidth and cvmScreenHeight are used, otherwise cvmScreenWidthMM and
cvmScreenHeightMM. That is, the initial clip area is the entire visual drawing area of the
screen. Refer to section 3.7 (page 92) for more information on cvmScreenWidth(MM) and
cvmScreenHeight(MM). The values of these registers are modified by the instruction setclip
(page 112).

regFontCode The special register regFontCode stores with its Nat value the code number
of the current font that is used by all text-drawing graphics primitives. The respective font

3.2. Visual 77

size is given by the special register regFontSize. Refer to section 3.2.3 (page 79) for a list
of all font codes. The initial value of this register is fcFixedStandard. The value of this
register can be modified by the instructions setfontcode, setfont, and setfont32.

regFontSize The special register regFontSize stores with its Nat value the size of the
current font. The size is given in pixels, if the value of the special register regMeasure is
zero, otherwise in tenths of a Point (pt). The initial value of this register is 13. The value
of this register can be modified by the instructions setfontsize, setfont, and setfont32.

regLineWidth The special register regLineWidth stores with its Nat value the line width
that is used by the drawing instructions for drawing the borders of the elementary graphic
shapes such as lines, rectangles, circles, etc. The measuring unit of the line width is defined
by the special register regMeasure. If the value of regMeasure is zero, the initial value of
regLineWidth is one, which corresponds to one pixel point. Otherwise, the initial value of
regLineWidth can be chosen freely by the CVM implementor. However, it should be then
approximately one pt or less, with 1pt = 1/72 inch ≈ 0.3528 mm. pt refers to the Big
Point (or shortly Point) and is widely used as the typographic unit in computer industry.
The value of this register can be modified by the instruction setlinewidth.

regMeasure The special register regMeasure defines with its Nat2 value the measuring
unit of the xy coordinate system in the visual drawing area. All Visual instructions refer
to this measuring unit. If its value is zero, a pixel point of the visual drawing area serves as
one unit of measure. The measuring unit is then device specific. If the value of regMeasure
is greater than zero, one unit of measure is defined by the expression pt/regMeasure, with
pt = 1/72 inch ≈ 0.3528 mm. pt refers to the Big Point (or shortly Point) and is widely
used as the typographic unit in computer industry. For example, if the value of regMeasure
is 1000, the length of the measuring unit is 1/1000 pt . The measuring unit is then absolute
and platform independent and the client has to perform the rasterization. Whether the
client applies anti-aliasing during rasterization is left to the implementors’ choice.

The coordinates of the upper left corner are (0, 0). Going right or down increases the x or
y coordinate, respectively.

The value of regMeasure depends on the CVM implementation and cannot be modified at
all. For restricted client devices it will typically be zero. The value is sent by the client to
the server within the CVM profile during a client request. Refer to section 3.7 (page 89)
for more information on the CVM profile.

regHTextLine, regXTextLine The special registers regHTextLine and regXTextLine store
a Nat and Int value that represents the height of a text line and the x coordinate of the
beginning of a text line, respectively. These values are used by the text drawing instructions
textp, textpm, textpbg, and textpmbg for drawing a text paragraph, which consists of one or
several lines of text, onto the visual drawing area. The measuring unit of the xy coordinate
system is defined by the special register regMeasure. The initial values of both registers
are zero. The values of these register can be modified by the instructions sethtextline and
setxtextline, respectively.

78 3. Client Virtual Machine (CVM)

3.2.2 Graphics Primitives

The CVM instructions that perform drawing operations are called graphics primitives.
However, a graphics primitive only specifies the general shape, i.e., a line, rectangle, circle,
text, etc., of a graphic object, whereas the graphics state provides additional information
on the appearance of the graphic object. Therefore, the operands of a graphics primitive
mainly concentrate on specifying the shape of the graphic object that is to be drawn.

Note that if a graphics primitive tries to draw beyond the current clip area of the screen,
the CVM only draws that part which is inside this clip area. Everything else is clipped
automatically without producing an error.

Elementary Graphic Shapes Elementary graphic shapes for constructing graphical
user interfaces are horizontal and vertical lines, rectangles, and circles. As already said,
these shapes are essential for most graphical user interfaces. In the following, the CVM
instructions for these elementary graphic shapes are introduced. Refer to section 3.9.2
(page 100) for a complete reference. The drawing of other graphic shapes like arbitrary
lines, quadratic or cubic curves, etc., requires appropriate CVM library functions. Refer
to section 3.5 (page 83) for more information on the CVM library functions.

Horizontal and Vertical Lines The instructions linehoriz and linevert draw hor-
izontal and vertical lines on the screen in the current color, respectively. Horizontal lines
are often needed for underlining text. In addition, both horizontal and vertical lines might
be used for drawing tables and for the visual separation of the drawing area into logical
parts.

Rectangles The instructions rect and rectfill draw and fill rectangles in the current
color, respectively. Rectangles are often needed for buttons in user interfaces. rect and
rectfill can also be used to draw single pixel points. Then, the width and height values of
the rectangle must both be set to one.

Circles The instructions circle and circlefill draw and fill circles in the current color,
respectively. Circles are often needed for round buttons in user interfaces and for tickmarks
in enumeration lists.

Text The instructions text, textm, textp, textpm, textbg, textmbg, textpbg, and textpmbg
write text on the visual drawing area in the current font and color. The instructions textp,
textpm, textpbg, and textpmbg are useful for writing a whole text paragraph, i.e., several
successive lines of text.

Bitmaps The instructions bitmap and bitmapbg draw bitmap images. The image data
is located in memory. The format of the bitmap image complies to the X BitMap format
XBM [96]. Bitmaps are often needed for icons. For the rendering of images in the XPM
[38], GIF [29], JPEG [39], or other formats and of multimedia content in MPEG [47]
format, etc., appropriate CVM library functions are required. Refer to section 3.5 (page
83) for more information on the CVM library functions.

3.2. Visual 79

Screen Buffering Sometimes a particular screen section needs to be buffered in memory
and later restored again because it is obscured temporarily by another graphic shape, e.g.,
a moving text cursor or a pop-up window. The instruction screen2mem performs the
buffering from screen into memory, whereas the instruction mem2screen restores the screen
section by drawing the buffered screen section from memory onto the screen. The format
of the buffered screen section in memory is internal for the given CVM implementation.
However, each pixel value may take at most three bytes. This predefined upper boundary
is necessary, because the CVM programmer or packet generator must reserve enough bytes
for it in the Data section of the CVM memory.

3.2.3 Fonts

There are a lot of different fonts from different font providers like Adobe [3], TrueType
[85], etc., available. Unfortunately, there is neither a well-defined and universally accepted
taxonomy for classifying all different kinds of fonts nor a standardized unique code number
for each type of font. The font capabilities of the client devices may vary and naturally a
restricted client device cannot be assumed to cope with all existing fonts. As a proof of
concept, the code numbers of some commonly used pixel-based fonts in X11 [51] are defined
here. The definition of additional fonts and of specific fonts for devices with restricted
display capabilities is left as an open issue in this thesis. Besides, CVM library functions
for managing more complex fonts may be defined in the future and are left as an open
issue as well.

In the following, the currently supported font codes are listed using the following description
format:

font code name = font code: pixel sizes ; tenth point sizes
X11 font descriptor name

The font code name represents the mnemonic of the font code and can be used in a CVM
assembler program. The font code is a unique Nat number greater than zero identifying
a particular font type. pixel sizes is a comma separated list of positive integer numbers
that contains the legal sizes of the respective font in pixels. tenth point sizes is a comma
separated list of positive integer numbers that contains the legal sizes of the respective
font in tenths of a Point (pt). If the special register regFontCode of a given CVM contains
a particular font code value, the special register regFontSize can only contain one of the
respective values. Whether the font size is given in pixels or tenths of a point, depends
on the value of the special register regMeasure. The unit is assumed to be a pixel, if the
value of regMeasure is zero, otherwise a tenth of a Point. The X11 font descriptor name
specifies the font by using the X11 terminology XLFD [50, 51].

• fcFixedStandard = 1: 13; 120
-misc-fixed-medium-r-semicondensed--*-*-75-75-c-60-iso8859-*

• fcFixedStandardBold = 2: 13; 120
-misc-fixed-bold-r-semicondensed--*-*-75-75-c-60-iso8859-*

• fcFixedStandardItalic = 3: 13; 120
-misc-fixed-medium-o-semicondensed--*-*-75-75-c-60-iso8859-*

80 3. Client Virtual Machine (CVM)

• fcFixed = 4: 6, 8, 10, 13, 15, 20; 60, 80, 100, 120, 140, 200
-misc-fixed-medium-r-normal--*-*-75-75-c-*-iso8859-*

• fcFixedBold = 5: 13, 15; 120, 140
-misc-fixed-bold-r-normal--*-*-75-75-c-*-iso8859-*

• fcFixedItalic = 6: 13; 120
-misc-fixed-medium-o-normal--13-120-75-75-c-70-iso8859-*

• fcCourier = 7: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-courier-medium-r-normal--*-*-75-75-m-*-iso8859-*

• fcCourierBold = 8: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-courier-bold-r-normal--*-*-75-75-m-*-iso8859-*

• fcCourierItalic = 9: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-courier-medium-o-normal--*-*-75-75-m-*-iso8859-*

• fcCourierBoldItalic = 10: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-courier-bold-o-normal--*-*-75-75-m-*-iso8859-*

• fcHelvetica = 11: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-helvetica-medium-r-normal--*-*-75-75-p-*-iso8859-*

• fcHelveticaBold = 12: 8, 10, 12, 14, 18, 24; 80, 10, 12, 14, 24
-adobe-helvetica-bold-r-normal--*-*-75-75-p-*-iso8859-*

• fcHelveticaItalic = 13: 8, 10, 12, 14, 18, 24
-adobe-helvetica-medium-o-normal--*-*-75-75-p-*-iso8859-*

• fcHelveticaBoldItalic = 14: 8, 10, 12, 14, 18, 24
-adobe-helvetica-bold-o-normal--*-*-75-75-p-*-iso8859-*

• fcNewCenturySchoolbook = 15: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-new century schoolbook-medium-r-normal--*-*-75-75-p-*-iso8859-*

• fcNewCenturySchoolbookBold = 16:
8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-new century schoolbook-bold-r-normal--*-*-75-75-p-*-iso8859-*

• fcNewCenturySchoolbookItalic = 17:
8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-new century schoolbook-medium-i-normal--*-*-75-75-p-*-iso8859-*

• fcNewCenturySchoolbookBoldItalic = 18:
8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-new century schoolbook-bold-i-normal--*-*-75-75-p-*-iso8859-*

• fcTimes = 19: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-times-medium-r-normal--*-*-75-75-p-*-iso8859-*

• fcTimesBold = 20: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-times-bold-r-normal--*-*-75-75-p-*-iso8859-*

3.3. Keyboard, Mouse 81

• fcTimesItalic = 21: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-times-medium-i-normal--*-*-75-75-p-*-iso8859-*

• fcTimesBoldItalic = 22: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-times-bold-i-normal--*-*-75-75-p-*-iso8859-*

• fcSymbol = 23: 8, 10, 12, 14, 18, 24; 80, 100, 120, 140, 180, 240
-adobe-symbol-medium-r-normal--*-*-75-75-p-*-adobe-fontspecific

The font code fcFixedStandard is supported by every CVM implementation, whereas all
other font codes are optional. Refer also to cvmFonts in section 3.7 (page 90).

3.3 Keyboard, Mouse

The CVM modules Keyboard and Mouse are optional in a given CVM implementation.

Keyboard The keyboard may differ from device to device. Smaller devices often have
less keys than customary keyboards for PCs or workstations. In addition, restricted devices
often have special keys that are not available on customary keyboards, e.g., a button on
the mobile phone to open the address book immediately. Unfortunately, the character
codes for these special buttons have not been standardized yet. The definition of keyboard
(or keypad) layouts and character sets especially suited for restricted client devices is not
addressed in this thesis. Therefore, as a proof of concept, the virtual key code values
of the X11 type KeySym [50, 51, 52] are used to address the individual keys of the client
device’s keyboard. The virtual key codes and their names are defined in the X11 system file
<X11/keysymdef.h>. Of course, a given CVM implementation does not need to support
all of them. As far as needed, the special keys are emulated by particular key combinations.

The keyboard events are key pressed, key pressed enter, key pressed released, key released,
key released enter, and key released escape. Refer to section 3.1.6.4 (page 51) for more
information on these events.

Mouse The positive Nat numbers 1, 2, 3, 4, 5 reflect the left (leftButton), middle
(middleButton), right (rightButton), wheel up (wheelUp), and wheel down (wheelDown)
mouse buttons, respectively. The names enclosed within the parentheses serve as mnemon-
ics and might be used in a CVM assembler program. Note that the wheel up and wheel
down buttons are physically the same wheel button. However, the wheel up button signifies
that the mouse wheel was rotated up, i.e., away from the user, whereas the wheel down
button signifies that the mouse wheel was rotated down, i.e., towards the user.

The mouse events are mouse moved, mouse pressed, mouse pressed left, mouse released, and
mouse released left. Refer to section 3.1.6.4 (page 52) for more information on these events.

In an application, the mouse may have different graphic shapes on the screen, depending
on its position. For example, if the mouse points into a text box, it often looks like a
vertical line to symbolize a cursor. However, if it points at a hyperlink, it often looks like
a pointing hand. Here, as a proof of concept, the X11 [52] cursor fonts are used for the
different mouse shapes. The names and integer code numbers of the X11 cursor fonts are
defined in the X11 system file <X11/cursorfont.h>. The X11 cursor font names can be

82 3. Client Virtual Machine (CVM)

used in the CVM assembler programs. Refer to section B (page 216) for a description of
the CVM assembler.

Note that the screen section that is obscured by the mouse shape at its current screen
position is restored automatically by the CVM, when the mouse moves to another screen
position.

regMouseFont The special register regMouseFont stores with its Nat value the code num-
ber of the current mouse font (or shape). The initial value of this register is 132, which
corresponds to the X11 cursor font name XC top left arrow. The value of this register
can be modified by the instruction setmousefont.

3.4 Network

For the data transmission over the network a reliable network transport service, like
TCP/IP [69] in the Internet, is assumed. How such a transport service is established
in mobile, wireless and ad-hoc [61] networks is not addressed in this thesis. Generally, the
CVM communicates over the network with a CVM packet server. The used application
protocol is CPTP. It runs on top of the transport layer and is a very “thin” counterpart
to the HTTP [10] application protocol in the World Wide Web. Refer to section 4 (page
127) for more information on CPTP.

The instruction rcv initiates a request for a particular CVMUI page. Then, the addressed
CVM packet server sends a CVM packet that contains the requested CVMUI page to the
CVM. The instruction sendrcv is similar to the instruction rcv. However, it first sends data
to the specified CVM packet server before it requests a particular CVMUI page from that
CVM packet server.

Refer also to the CVM state transitions in section 3.1.10 (page 58), especially to states
EventExecute, EventProcessBuiltin, Execute, CptpGET, and TimerExecute.

Note that if the CVM has not implemented the Network module, it can only execute its
Home Menu. In particular cases this may be sufficient, for example for home devices with
only “local” tasks such as washing machines. However, in the normal case, the Network
module is available for a given CVM implementation.

regSessionId The special register regSessionId contains a Nat1[4] value that identifies the
current client-server session with a particular CVM packet server. Each time, when the
CVM receives a CPTP message from a CVM packet server, it stores the value of the CPTP
message item sessionId into its special register regSessionId. Each time, when the CVM
sends a CPTP message to a CVM packet server, it writes the current value of regSessionId
into this message item. Refer to section 4.1 (page 128) for more information on the CPTP
protocol and on sessionId.

The value of this register is modified by the instruction sidzero and by any received CPTP
message from a CVM packet server. Otherwise, its value is modified internally by the
CVM. Refer to the CVM state transitions in section 3.1.10 (page 58), especially to the
states EventExecute, EventProcessBuiltin, Execute, CptpGET, and TimerExecute. The initial
value of this register is zero. The value zero indicates that currently no session with any
CVM packet server is running.

3.5. Libraries 83

regServiceNo The special register regServiceNo contains an integer value that refers to
the service number of the most recently requested and possibly currently still ongoing
interactive network service which is offered by a particular CVM packet server. The value
of this special register is used each time the CVM sends a GET message to the CVM packet
server. If the CVM packet server has “forgotten” the client during a client-server session,
it can still resume that session from the informations provided by the GET message. This
may happen, if the CVM sends a GET message to the CVM packet server after a long time
of idleness, so that the CVM packet server has in the meantime assumed that this session
is not alive anymore and therefore has deleted this client from its maintenance table.

Under certain conditions, the value of this register is modified by the instruction rcv. Oth-
erwise, its value is modified internally by the CVM. Refer to the CVM state transitions in
section 3.1.10 (page 58), especially to the states EventExecute, EventProcessBuiltin, Execute,
and TimerExecute. The initial value of this register is zero.

3.5 Libraries

The CVM instruction set covers only the most essential operations that are needed for
a client device to display user interfaces. In addition, CVM libraries might be provided
for more complex tasks that occur frequently. For example, a math library might enable
additional mathematical operations and even floating point arithmetics. A POSIX thread
[18] library might be used for concurrent tasks. A graphics library might provide additional
drawing operations such as drawing arbitrary lines, quadratic or cubic curves, etc. A GUI
library that is intended for more powerful client devices might provide whole user interface
components such as buttons, selection lists, etc. Then, these user interface components
need not be programmed manually with the simple CVM instructions.

For some operations, however, it is difficult to determine clearly whether they should be
specified as CVM instructions or library functions. For example, the CVM instructions
bitmap and bitmapbg might as well be specified as library functions, instead. Or the library
function line might be specified as an CVM instruction, instead.

It is left to the implementors’ choice which libraries are supported and how they are
implemented in a given CVM.

A library contains a set of library functions. Each library is identified by a unique integer
number, called the libCode, and each library function is as well identified by a unique integer
number, called the libFctCode. Note that two different library functions must always have
different libFctCodes, even if they belong to different libraries. However, libCodes and
libFctCodes need not be different. The libCode is used in the CVM profile by the profile
item cvmLibraries. If a given CVM implementation supports a particular library, it must
implement all its library functions. For reasons of flexibility, a CVM library might be
provided through an interchangeable plug-in card.

The CVM instruction lib calls the library function whose libFctCode resides on the register
stack. The definition of CVM libraries is left as an open issue in this thesis. Here, as a
proof of concept, only the libraries that have been needed so far are defined and described.
Of course, these libraries should be considered more prototypical than final. In the future,
additional libraries for file operations, e.g., managing cookies files, etc., may be defined.

84 3. Client Virtual Machine (CVM)

In the following, these libraries are defined using the following description format:

library name = libCode:
verbose description overview

• library function name = libFctCode:
register stack behavior
verbose description of semantics

• ...

Refer to section 3.9.2 (page 100) for register stack behavior. The rest of this description
format should be self-explanatory.

CoreMisc = 1
The CoreMisc library contains utility routines for the Core module.

• getDate = 1:
... → ..., yearNat, monthNat, dayNat

Get the current date, with year ≥ 1900, 1 ≤ month ≤ 12, and 1 ≤ day ≤ 31.

• setDate = 2:
..., yearNat, monthNat, dayNat → ...
Set the current date. However, if the specified year, month, and day are not inside
the legal bounds, do nothing.

• getTime = 3:
... → ..., hourNat, minuteNat, secondNat

Get the current time, with 0 ≤ hour ≤ 23, 0 ≤ minute ≤ 59, and 0 ≤ second ≤ 59.

• setTime = 4:
..., hourNat, minuteNat, secondNat → ...
Set the current time. However, if the specified hour, minute, and second are not
inside the legal bounds, do nothing.

VisualMisc = 2
The VisualMisc library contains utility routines for drawing graphical shapes or displaying
data, e.g., numbers, on the visual drawing area of the screen.

• line = 5:
xInt, yInt, dx Int, dy Int → ε
Draw line from start point (x, y) to end point (x + dx , y + dy). Note, for drawing
horizontal or vertical lines use the CVM instructions linehoriz (page 105) or linevert
(page 105) instead.

• printInt = 6:
num Int, xInt, yInt → ε
Write the integer number num onto the visual drawing area at the xy coordinate
position (x, y) with the current foreground color.

3.5. Libraries 85

• printIntBg = 7:
num Int, xInt, yInt → ε
Write the integer number num onto the visual drawing area at the xy coordinate
position (x, y) with the current foreground color. At the same time, fill the rest of
the bounding rectangle with the current background color.

• printKeyName = 8:
keyCode Int, xInt, yInt → ε
Write the key name of the key with the X11 [51] key code keyCode onto the vi-
sual drawing area at the xy coordinate position (x, y). The mapping of the key
code to its key name corresponds to the mapping method of the Xlib [52] function
XKeysymToString().

• rectRound, rectRoundFill = 9, 10:
xInt, yInt, widthNat, heightNat, ewidthNat, eheightNat → ε
If width > 0 and height > 0, draw or fill rectangle with rounded corners. Other-
wise, do nothing. The upper-left and the lower-right corners of the rectangle are
at the xy coordinate positions (x, y) and (x + width − 1, y + height − 1), respec-
tively. The width and height of the rectangle are given by width and height. ewidth
and eheight are the width and height of the bounding box that the rounded cor-
ners are drawn inside of. However, if ewidth or eheight are zero or more than half
of width or height, respectively, no rounded corners are drawn. These library func-
tions correspond to the Xmu Library [52] functions XmuDrawRoundedRectangle()

and XmuFillRoundedRectangle().

• triangle, trianglefill = 11, 12:
xInt, yInt, dx1 Int, dy1 Int, dx2 Int, dy2 Int → ε
Draw, fill triangle with the corners (x, y), (x + dx1 , y + dy1), and (x + dy2 , y +
dy2).

VisualImage = 3
The VisualImage library contains utility routines for rendering and displaying images in
various formats on the visual drawing area of the screen. So far, only the X PixMap format
XPM [38] is supported.

• pixmap = 13:
xInt, yInt, widthNat, heightNat, memAdrAbsNat → ε
Draw pixmap image. The image data is located in memory and starts at the address
memAdrAbs. The rectangular area of the screen given by the corners (x, y) and
(x+ width − 1, y+ height − 1) is tiled with the pixmap image. The image data is an
ASCII character string that represents an exact copy of an X PixMap (XPM) [38]
file in memory. Note that the terminating null character is not mandatory. Pixmaps
are useful for small icons and background patterns. Refer also to the error code
ImageLoadFailure (page 43).

• pixmapgz = 14:
xInt, yInt, widthNat, heightNat, memAdrAbsNat → ε
Same functionality as pixmap. However, the image data is additionally compressed
with gzip [35].

86 3. Client Virtual Machine (CVM)

• png = 15:
xInt, yInt, widthNat, heightNat, memAdrAbsNat → ε
Draw PNG image. The image data is located in memory and starts at the address
memAdrAbs. The rectangular area of the screen given by the corners (x, y) and
(x+ width − 1, y+ height − 1) is tiled with the image. The format of the image data
complies to the Portable Network Graphics (PNG) [1] image format. Refer also to
the error code ImageLoadFailure (page 43).

3.6 Home Menu

The home menu (HomeMenu) is the default menu system of the CVM. The CVM starts
execution with the home menu as soon as it is switched on. Therefore, the home menu is
an essential part of the CVM and is not requested over the network from a CVM packet
server. Its format complies with the CVM packet format. Refer to section 3.8 (page 93)
for more information on the CVM packet format.

Note that the contents and complexity of the home menu is implementation dependent
and can be chosen freely by the vendor. For example, home menus might be provided
that are similar to the menu systems of the mobile and embedded devices in the common
market nowadays. To gain more flexibility, the home menu need not be fixed but can
be realized through an interchangeable card or it might be obtained from the vendor by
software download, which is quite useful for installing updates.

In the following, a very simple home menu is presented as a CVM assembler program.
Refer to section B (page 216) for a description of the CVM assembler. Figures 3.6 (page
86) and 3.7 (page 87) contain exemplary screen shots.

Figure 3.6: CVM Screen Shot 1: homeMenu.cvm

.16Bit
// or .16BitEmu, .32Bit, .32BitEmu

.code
loadcr page_main
jmp

///////

// Misc
///////

.const
_cvmScreenWidth 250
_cvmScreenHeight 150

///////

3.6. Home Menu 87

Figure 3.7: CVM Screen Shot 2: homeMenu.cvm

// Page
///////

.const
page_x 5

.data
Int page_y 0

.const
page_dy 6
page_w MAX (caption_w, par_w)
page_h caption_h + par_h

// Foreground Color
page_fgr 0 // Red
page_fgg 0 // Green
page_fgb 0 // Blue

// Background Color
page_bgr 255 // Red
page_bgg 255 // Green
page_bgb 255 // Blue

// Font
page_fc fcFixedStandard // Font Code
page_fs 13 // Font Size
page_fh fontHeight (page_fc, page_fs)

.code
page_main:
loadc page_fc loadc page_fs setfont
loadc page_x setxtextline
fcall page_draw
loadc page_et seteventtableadr
enableevents

halt

.code

.fct page_draw ()
{
Int yCaption
Int yPar
loadc page_bgr loadc page_bgg
loadc page_bgb setcolor

loadc 0 loadc 0
loadc _cvmScreenWidth
loadc _cvmScreenHeight
rectfill

loadc page_fgr loadc page_fgg
loadc page_fgb setcolor

load page_y loadc caption_fh add
store yCaption

loadc caption_x load yCaption
text caption_str

loadc caption_x load yCaption inc
loadc caption_w linehoriz

load yCaption loadc caption_h add
store yPar

load yPar textp par_str
return
}

.fct page_mv (Int dy)
{
load dy loadc 0 loadcr page_mv_dn
jl

page_mv_up:
loadc 0 load page_y loadcr page_mv_
je

loadcr page_mv_1 jmp
page_mv_dn:
load page_y

88 3. Client Virtual Machine (CVM)

loadc 2*caption_fd + page_h add
loadc _cvmScreenHeight
loadcr page_mv_ je

page_mv_1:
load page_y load dy add
rdup loadc 0 loadcr page_mv_2 jl
rskip loadc 0 loadcr page_mv_3 jmp

page_mv_2:
rdup loadc _cvmScreenHeight -

page_h - 2*caption_fd
rswap loadcr page_mv_3 jle

rskip loadc _cvmScreenHeight -
page_h - 2*caption_fd

page_mv_3:
store page_y

fcall page_draw
page_mv_:

return
}

.data
EventTable page_et [

key_pressed, page_kp
]

.code
page_kp:
page_kp_down:

loadep1 loadc XK_Down
loadcr page_kp_up jne

loadc page_dy neg push
fcall page_mv

halt
page_kp_up:

loadep1 loadc XK_Up
loadcr page_kp_pgDn jne

loadc page_dy push fcall page_mv
halt

page_kp_pgDn:
loadep1 loadc XK_Next
loadcr page_kp_pgUp jne

loadc _cvmScreenHeight neg push
fcall page_mv

halt
page_kp_pgUp:

loadep1 loadc XK_Prior
loadcr page_kp_shiftD jne

loadc _cvmScreenHeight push
fcall page_mv

halt
page_kp_shiftD:

loadep1 loadc XK_D
loadcr page_page_kp_ jne

loadc cvmps_hostAdr
loadc cvmps_serviceNo
loadc 0 rcv

halt
page_page_kp_:
halt

//////////
// Caption
//////////

.const
caption_str "CVM Home Menu"
caption_x page_x + (par_w - caption_w)

/ 2
caption_w textWidth (caption_str,

page_fc, page_fs)
caption_h textHeight (caption_str,

page_fc, page_fs, 0) + 6
caption_fh fontHeight (page_fc,

page_fs)
caption_fd fontDescent (page_fc,

page_fs)

////////////
// Paragraph
////////////

par_str textBreakLines (
"Use Up/Down arrow keys or "

+ "PgUp/PgDn keys to scroll within "
+ "the Home Menu.\n\n"
+ "Use the following key "
+ "combinations for the builtin "
+ "events:\n\n"
+ "cvm_quit: Ctrl+C\n"
+ "history_back: Ctrl+B\n"
+ "history_forward: Ctrl+F\n"
+ "history_reload: Ctrl+R\n"
+ "input_hostAdr: Ctrl+I\n"
+ "menu_bookmarks: Ctrl+O\n"
+ "menu_home: Ctrl+H\n\n"
+ "Press Shift+D "
+ "to start demo.",
page_fc, page_fs,
_cvmScreenWidth - 2 * page_x)

par_w textWidth (par_str, page_fc,
page_fs)

par_h textHeight (par_str, page_fc,

3.7. CVM Profile 89

page_fs, 0)

////////////////////
// CVM Packet Server
////////////////////

.data
String cvmps_hostAdr "127.0.0.1"

.const
cvmps_serviceNo 1

Examples of home menus can be found in the subdirectory Implementation/Cvm/Home-

Menu/.

3.7 CVM Profile

At the beginning of a request, the CVM sends its CVM profile to the CVM packet server
to report its capabilities and user preferences. The CVM packet generator then uses these
informations to generate the client-specific CVM packets. The format of the CVM profile
is presented here as a tuple data structure by using the generally understandable notation
from section A.3 (page 208). Successive components within a tuple or array structure are
stored in the CVM profile sequentially, without padding or alignment. Multibyte values
are stored in big-endian order. Refer to section 3.1.1 (page 32) for more information on
the CVM data types Nat<1|...|4>. The array type Nat1[] is used for byte streams of any
data. The format of the CVM profile is as follows:

CVMProfile = { Nat1 cvmMode;
Nat4 profileId;
ProfileItem[] profileItems ;
Nat1 0 }

ProfileItem = { Nat1 profileItemCode;
Nat1[] profileItemValue }

cvmMode This item reports to the server the mode of the CVM implementation on the
client device. Refer to section 3.1.2 (page 33) for more information on CVM modes. There
are the following values for cvmMode: 16Bit = 0, 16BitEmu = 1, 32Bit = 2, and 32BitEmu
= 3. On a 16-bit CVM, cvmMode must be 16Bit or 16BitEmu. On a 32-bit CVM, cvmMode
must be 32Bit or 32BitEmu.

The emulation modes 16BitEmu and 32BitEmu indicate that the CVM is implemented
efficiently in software, i.e., some properties in the data and code block of the CVM program
are evaluated only once at the beginning of execution and then reused all the time during
execution. Therefore, the received CVM packet must meet some restrictions to be executed
correctly. These restrictions are listed in section 3.8 (page 98).

profileId The profiles of the common client devices on the market might be stored by
the CVM packet server or any other server. Then, each of these profiles might be referenced
by a unique integer number (profileId) and a client device with a well-known profile has
to transmit only its profile identification number to the CVM packet server. In addition,
subsequent profile items (profileItems) in the CVM profile are optional and only to change
the values of that profile items which differ from those in the referenced profile.

90 3. Client Virtual Machine (CVM)

However, if profileId has the value zero, no profile is referenced and all the characteristics
of the client device are listed in the subsequent list (or array) of profile items.

The definition of profiles and profileIds for common client devices on the market is left
as an open issue in this thesis.

profileItems profileItems is a possibly empty list of profile items (ProfileItem). The
order of the profile items is not important. Each profile item consists of a profile item
code (profileItemCode) that identifies a particular component of the CVM, and of its
value (profileItemValue). Each profile item code is greater than zero. In the following, the
currently supported profile items are listed alphabetically and described using the following
description format:

profile item name = profileItemCode: profileItemValue
verbose description

The profile item name is the verbose name of the profileItemCode. profileItemValue is
shown as a data structure. Again, subsequent items within a tuple structure are stored
without padding or alignment.

Additional profile items, for example for the Audio module, as it is not covered in this
thesis, may be defined in the future. In addition, new profile items especially for reporting
user preferences may be defined in the future as well. For example, the user of the client
device might wish to enable or disable explicitly the reception of images, sound files, or
other multimedia content to save network bandwidth and thus speed up download time.

cvmAudioAvailable = 1: -
This profile item reports to the CVM packet server, whether the CVM module Audio
is implemented on the CVM. If this profile item is not specified, no Audio module is
available. Otherwise, it is available. This profile item does not have a profileItemValue.
The specification of the Audio module is not covered in this thesis but left for future work.
Therefore, if new profile items for the description of the Audio module are defined later,
this profile item must not be needed anymore in this specification, because the presence
of these Audio related profile items already indicates, whether there is an Audio module
available or not.

cvmDNSLookup = 2: -
This profile item reports to the CVM packet server, whether the CVM can perform auto-
matic DNS [45] lookup. If this profile item is specified, the CVM can perform automatic
DNS lookup. Otherwise, it cannot. If the CVM supports automatic DNS lookup, the
instructions rcv, send, and sendrcv can each use DNS names to address a network host
— besides IP [62] addresses in standard dot notation. This profile item does not have a
profileItemValue.

cvmFonts = 3: { Nat2 maxFontCode } | { Nat2 0; Nat2[] fontCodes; Nat2 0 }
This profile item reports to the CVM packet server the fonts that are supported by the
CVM. maxFontCode represents the maximal font code that is supported by the CVM,
i.e., the CVM supports all fonts with font codes less or equal than maxFontCode. If

3.7. CVM Profile 91

maxFontCode is zero, then each supported font code is listed in the following zero ter-
minated byte array fontCodes. Each font code is greater than zero. If this profile item is
not specified, the maximal supported font code is fcSymbol. This profile item must not be
specified, if the CVM has no Visual module. Refer also to section 3.2.3 (page 79) for more
information on CVM fonts.

cvmHeapAvailable = 4: -
This profile item reports to the CVM packet server, whether the CVM has a Heap section.
If this profile item is not specified, no Heap section is available. Otherwise, it is available.
This profile item does not have a profileItemValue. Refer to section 3.1.4.3 (page 41) for
more information on the Heap section.

cvmKeyCodeSet = 5: { Nat2 keyCodeSetId }
This profile item reports to the CVM packet server the key codes that are supported by
the keyboard of the CVM. Therefore, standardized key code sets with unique identification
numbers (keyCodeSetId) especially for restricted client devices are required. However, if
keyCodeSetId has the value zero, all the characters (or key codes) of a customary keyboard
are supported by the CVM. If this profile item is not specified, no keyboard is available on
the CVM. Refer also to section 3.3 (page 81) for more information on the CVM module
Keyboard.

cvmLibraries = 6: { Nat1 byteLen; Nat<byteLen> [] libCode; Nat<byteLen> 0 }
This profile item reports to the CVM packet server the libraries that are supported by
the CVM. byteLen must be in the range of 1 to 4. The following zero terminated array
of numbers with the byte length byteLen contains the libCodes of the supported libraries.
Each libCode is greater than zero. If this profile item is not specified in the profile,
then no libraries are supported by the CVM. Refer also to section 3.5 (page 83) for more
information on CVM libraries.

cvmMeasure = 7: { Nat2 regMeasure }
This profile item reports to the CVM packet server the measuring unit of the visual drawing
area of the CVM. regMeasure equals the value of the special register regMeasure. If
this profile item is not specified, the default value zero is assumed. If a given CVM
implementation has no Visual module, then this profile item must not be specified. Refer
also to section 3.2.1 (page 77) for more information on the special register regMeasure.

cvmMemMaxAdr = 8: { Nat<cvmIntLen> cvmMemMaxAdr }
This profile item reports to the CVM packet server the size of the CVM memory. cvmMem-
MaxAdr refers to the highest memory address of the given CVM implementation. If this
profile item is not specified, the memory of the CVM is “unlimited”. This is the case, if the
CVM runs as an emulation on a general purpose computer with sufficient system resources.
Refer also to the sections 3.1.2 (page 33) and 3.1.4 (page 36) for more information on the
CVM modes and the CVM memory, respectively.

92 3. Client Virtual Machine (CVM)

cvmMouseButtons = 9: { Nat1 numButtons }
This profile item reports to the CVM packet server the number of mouse buttons of the
CVM, i.e., the CVM module Mouse has the mouse buttons with the numbers from 1 to
numButtons, with 1 ≤ numButtons ≤ 5. If the CVM has implemented the CVM module
Mouse, this profile item must be specified. Otherwise, not. Refer to section 3.3 (page 81)
for more information on the Mouse module.

cvmNumGeneralRegs = 10: { Nat1 cvmNumGeneralRegs }
This profile item reports to the CVM packet server the number of general purpose registers
in the register stack of the CVM. If this profile item is not specified, the default value 10 is
assumed. However, the value zero indicates that an “unlimited” number of general purpose
registers are available. This is the case, if the CVM runs as an emulation on a general
purpose computer with sufficient system resources such as a PC or workstation. Refer also
to section 3.1.3 (page 34) for more information on the register stack.

cvmOutputCharSet = 11: { Nat1[] charBlockNames; Nat1 0 }
This profile item reports to the CVM packet server the Unicode [88] character blocks that
are supported by the CVM’s output device(s) to display. charBlockNames consists only
of printable ASCII characters from the US-ASCII charset and contains a comma sepa-
rated list of Unicode character block names. For example, the value of charBlockNames

might be “Basic Latin,Latin-1 Supplement,Miscellaneous Symbols,Supplemental

Mathematical Operators”. However, if this profile item is not specified, then the de-
fault Unicode character blocks “Basic Latin,Latin-1 Supplement” are assumed.

cvmUPLanguage = 12: { Nat2 num }
This profile item reports to the CVM packet server the preferred language of the textual
content that is presented on the CVM. num is a unique number greater than zero identifying
a particular natural language. The definition of unique numbers for all kinds of existing
languages is left as an open issue in this thesis. Here, as a proof of concept, the numbers 1
and 2 are defined for the languages English-US and German, respectively. Note that this
user preference is just a hint but not a must for the CVM packet server. It can still send
the textual content in another language. If this profile item is not specified, then the CVM
packet server can choose the language.

cvmScreenHeight = 13: { Nat2 num }
This profile item reports to the CVM packet server the height of the client device’s visual
drawing area in pixels. If the CVM has a screen and the module Visual is implemented,
this profile item must always be specified; there is no default value for it. If this profile
item is not specified, then the CVM has no Visual module.

cvmScreenHeightMM = 14: { Nat2 num }
This profile item reports to the CVM packet server the height of the client device’s visual
drawing area in tenths of a millimeter. If the CVM has the module Visual implemented
and if the value of the special register regMeasure is not zero, this profile item must always
be specified; there is no default value for it.

3.8. CVM Packet 93

cvmScreenWidth = 15: { Nat2 num }
This profile item reports to the CVM packet server the width of the client device’s visual
drawing area in pixels. If the CVM has a screen and the module Visual is implemented,
this profile item must always be specified; there is no default value for it. If this profile
item is not specified, then the CVM has no Visual module.

cvmScreenWidthMM = 16: { Nat2 num }
This profile item reports to the CVM packet server the width of the client device’s visual
drawing area in tenths of a millimeter. If the CVM has implemented the module Visual
and if the value of the special register regMeasure is not zero, this profile item must always
be specified; there is no default value for it.

cvmTimerAvailable = 17: -
This profile item reports to the CVM packet server, whether the CVM has an interval
timer. If this profile item is not specified, no interval timer is available. Otherwise, it is
available. This profile item does not have a profileItemValue. Refer to section 3.1.9 (page
57) for more information on the interval timer.

Comments The profile items can also be grouped according to the CVM module they
belong to, respectively. Profile items that refer to the user preferences are listed at the
end.

• Core: cvmHeapAvailable, cvmMemMaxAdr, cvmNumGeneralRegs, cvmTimerAvailable

• Visual: cvmFonts, cvmMeasure, cvmOutputCharSet, cvmScreenWidth, cvmScreenWidth-
MM, cvmScreenHeight, cvmScreenHeightMM

• Audio: cvmAudioAvailable, cvmOutputCharSet

• Keyboard: cvmKeyCodeSet

• Mouse: cvmMouseButtons

• Network: cvmDNSLookup

• Libraries: cvmLibraries

• User Preferences: cvmUPLanguage

3.8 CVM Packet

A CVM packet is transmitted from the CVM packet server to the client and represents the
binary executable for the CVM. The term CVM program, however, is used to refer to the
data and code of the CVM packet after it has been loaded into memory by the CVM. A
CVM packet is a stream of 8-bit bytes. Its format is presented here as a tuple data structure
by using the generally understandable notation from section A.3 (page 208). Successive
components within a tuple or array structure are stored in the CVM packet sequentially,
without padding or alignment. Multibyte values are stored in big-endian order. Refer

94 3. Client Virtual Machine (CVM)

to section 3.1.1 (page 32) for more information on the CVM data types Int<1|...|4> and
Nat<1|...|4>. The array type Nat1[] is used for byte streams of any data. The general
CVM packet format is as follows:

CVMPacket = { Nat4 magic;
Nat1 attributes;
Nat<cvmpAdrLen> dataDeclSegmentAdr,

codeSegmentAdr,
stackSegmentAdr,
lenDataDecl,
lenInstructions;

Declaration[] data;
Instruction[] instructions }

Declaration = { Nat1 declCode;
Nat1[] dataBytes }

Instruction = { Nat1 opcode;
Nat1[] immOperands }

magic The value of the magic item identifies the format of the byte stream and must be
0x63766D70, which corresponds to the ASCII sequence ’CVMP’.

attributes This packet item contains the operation mode of the CVM, for which this
CVM packet is destined to, and the byte length of the memory addresses that are hardcoded
in the CVM packet. Hardcoded memory addresses are the next three following packet items
and the memory addresses in the event table structure. Refer to the data declaration code
eventtable in section 3.8 (page 96) for more information on the event table structure in the
CVM packet. The operation mode is referred to with the term cvmMode, the byte length of
the hardcoded memory addresses is referred to with the term cvmpAdrLen. cvmMode must
be equal to the CVM profile item cvmMode which has been sent by the CVM previously to
the CVM packet server during the client request. The values of cvmMode and cvmpAdrLen

are extracted from attributes as follows:

cvmMode = attributes & 0x03. So far, cvmMode may only have the value 0, 1, 2, or 3,
which corresponds to the CVM mode 16Bit, 16BitEmu, 32Bit, or 32BitEmu, respectively.
As already said in section 3.1.2 (page 33), the value of cvmIntLen is 2, if cvmMode is 16Bit
or 16BitEmu, and 4, if cvmMode is 32Bit or 32BitEmu.

cvmpAdrLen = ((attributes � 4) & 0x03) + 1. If the value of cvmMode is 16Bit or
16BitEmu, then cvmpAdrLen may only have the value 1 or 2. If the value of cvmMode is
32Bit or 32BitEmu, then cvmpAdrLen may only have the value 1, 2, 3, or 4. To save packet
size and thus network bandwidth, cvmpAdrLen is set by the CVM packet generator to the
minimum number of bytes that is required by the largest hardcoded memory address which
appears in this CVM packet.

dataDeclSegmentAdr This packet item contains the starting memory address of the data
that is declared in this packet. The declared data is listed in the data section of the CVM

3.8. CVM Packet 95

packet and copied into CVM memory beginning at the address dataDeclSegmentAdr.
The Declared Data section extends to the beginning of the Code section which starts
at the memory address codeSegmentAdr. Refer to section 3.1.4.1 (page 37) for more
information on the Data section. The byte length of this packet item depends on the value
of cvmpAdrLen.

Depending on the CVM mode, the first byte of the declared data in CVM memory is
aligned on a 2- or 4-byte boundary. That is, on a 16-bit CVM, dataDeclSegmentAdr is a
multiple of 2, and on a 32-bit CVM, dataDeclSegmentAdr is a multiple of 4.

If the CVM mode is not an emulation mode, i.e., if the CVM mode is not 16BitEmu or
32BitEmu, then only data with essential initial values are declared in the CVM packet.
The event table data items are declared by the declaration code eventtable. All other
data items are grouped together and declared by using one of the appropriate declaration
codes bytesz<1|...|4> and bytes<1|...|4>, respectively, to save packet size and thus network
bandwidth.

If the CVM mode is an emulation mode, then every single data item is declared separately
with at least the “dummy” initial value zero.

dataDeclSegmentAdr must be an unsigned integer number less than or equal to cvmMem-
MaxAdr.

codeSegmentAdr This packet item contains the starting memory address of the Code
section in CVM memory. The transmitted CVM instructions inside the instructions array
are copied into this memory section starting at the address codeSegmentAdr. The Code
section extends to the beginning of the Stack section. Refer to section 3.1.4.1 (page 37)
for more information on the Code section.

After loading the CVM packet into CVM memory, the CVM starts execution with the
instruction at the memory address codeSegmentAdr. However, if the CVM packet has been
received from a CVM packet server within a CPTP message using the protocol method
CVMP, the CVM starts execution at the memory address that is given by the protocol
message item pageMemAdr. Refer to sections 4 (page 127) and 4.2 (page 129) for more
information on the CPTP protocol and on the protocol method CVMP.

Depending on the CVM mode, the first byte of the code array in CVM memory is aligned
on a 2- or 4-byte boundary. That is, on a 16-bit CVM, codeSegmentAdr is a multiple of
2, and on a 32-bit CVM, codeSegmentAdr is a multiple of 4.

codeSegmentAdr must be an unsigned integer number greater than or equal to dataDecl-

SegmentAdr + lenDataDecl, but less than or equal to stackSegmentAdr.

stackSegmentAdr This packet item contains the starting memory address of the Stack
section in CVM memory. The Stack section extends to the end of the CVM memory. Refer
to section 3.1.4.2 (page 38) for more information on the Stack section.

Depending on the CVM mode, the first byte of the Stack section in CVM memory is aligned
on a 2- or 4-byte boundary. That is, on a 16-bit CVM, stackSegmentAdr is a multiple of
2, and on a 32-bit CVM, stackSegmentAdr is a multiple of 4.

stackSegmentAdr must be an unsigned integer number greater than or equal to codeSeg-

mentAdr + lenInstructions, but less than or equal to cvmMemMaxAdr.

96 3. Client Virtual Machine (CVM)

lenDataDecl This packet item contains the total byte length of all data declarations
within the data section of the CVM packet. lenDataDecl must be an unsigned integer
number less than or equal to cvmMemMaxAdr.

lenInstructions This packet item contains the total byte length of all instructions
within the instructions section of the CVM packet. lenInstructions must be an un-
signed integer number less than or equal to cvmMemMaxAdr.

data data is a sequence (or array) of data declarations and their initial values. Each
declaration consists of its declaration code (declCode) and the data bytes (dataBytes) that
contain the initial value. During loading a CVM packet, the CVM copies the initial values
into the Declared Data section in memory starting at the address dataDeclSegmentAdr

in the same order as they appear in the CVM packet. Note that depending on the CVM
mode, all initial values are aligned on a 2- or 4-byte boundary. That is, the CVM places
the first byte of each initial value in memory at an address that is a multiple of 2 on a
16-bit CVM, or a multiple of 4 on a 32-bit CVM. In the following, the currently supported
declaration codes are listed alphabetically and described using the following description
format:

declaration code name = declCode: dataBytes

verbose description

The declaration code name is the verbose name of the declCode. dataBytes is specified
as a tuple structure. Dependent on the declaration code, however, it may also be empty.

bytes<i> (1 ≤ i ≤ 4) = 1 + i− 1: { Nat<i> numBytes; Nat1[numBytes] val }
Declaration of a sequence of bytes with numBytes representing its byte length and val

representing the initial byte values. Note that only the first byte of the byte array val

is aligned on a 2- or 4- byte boundary on a 16-bit or 32-bit CVM, respectively. For
performance reasons, integer numbers that occur inside this byte array should be aligned
properly in the CVM packet by padding zero bytes. Note that the declaration codes bytes3
and bytes4 are only supported by a 32-bit CVM.

bytesz<i> (1 ≤ i ≤ 4) = 5 + i− 1: { Nat<i> numBytes }
Declaration of a sequence of zero bytes with numBytes representing its byte length. The
initial zero bytes are not transmitted over the network to save bandwidth. The CVM
automatically fills the memory cells mem[j], ..., mem[j + numBytes − 1] with zero bytes,
with j representing the next following absolute memory address that is a multiple of 2 or
4 on a 16-bit or 32-bit CVM, respectively. For performance reasons, integer numbers that
occur inside this byte array should be aligned properly in the CVM packet by padding zero
bytes. Note that the declaration codes bytesz3 and bytesz4 are only supported by a 32-bit
CVM.

eventtable = 9: EventTable
The binary packet format of EventTable is as follows:

3.8. CVM Packet 97

EventTable = { EventTableEntry [] entries ;
Nat1 0 }

EventTableEntry = { Nat1 eventCode, // eventCode > 0

Nat<cvmpAdrLen> memAdr }

An event table is a (possibly empty) list of event table entries, whereas each entry consists
of an event code (eventCode) and the absolute memory address (memAdr) of an instruction.
cvmpAdrLen is a part of the CVM packet item attributes and specifies the byte length
of each memory address. The end of the list is indicated by the value 0 for the event code.
Refer also to section 3.1.6.2 (48) for the binary format of the event table in CVM memory,
after it has been loaded by the CVM.

On a 16- or 32-bit CVM, each memAdr must be an unsigned integer number less than 216

or 231, respectively.

int<i> (1 ≤ i ≤ 4) = 10 + i− 1: { Int<i> val }
Declaration of an i -byte signed integer number (Int<i>) with the initial value val. On a
16-bit CVM, only the declaration codes int1 and int2 are supported and val is copied as
an Int2 value into memory. On a 32-bit CVM, val is copied as an Int4 value into memory.
These declaration codes are only supported, if the CVM is emulated in software, i.e., if the
CVM mode is 16BitEmu or 32BitEmu. Otherwise, all data items with initial values unequal
to zero must be combined by using the bytes<i> (1 ≤ i ≤ 4) declaration code.

intz = 14: -
Declaration of a signed integer number (Int<cvmIntLen>) with the initial value zero. The
CVM automatically fills the memory cells mem[j], ..., mem[j + cvmIntLen − 1] with zero
bytes, with j representing the next following absolute memory address which is a multiple
of 2 or 4 on a 16-bit or 32-bit CVM, respectively. This declaration code is only supported,
if the CVM is emulated in software, i.e., if the CVM mode is 16BitEmu or 32BitEmu.
Otherwise, all data items with initial values equal to zero must be grouped together by
using the bytesz declaration code.

nat<i> (1 ≤ i ≤ 3) = 15 + i− 1: { Nat<i> val }
Declaration of an i -byte unsigned integer number (Nat<i>) with the initial value val.
On a 16-bit CVM, only the declaration code nat1 is supported and val is then copied
as an Int2 value into memory. On a 32-bit CVM, val is copied as an Int4 value into
memory. An arithmetic overflow is not checked by the CVM. These declaration codes are
only supported, if the CVM is emulated in software, i.e., if the CVM mode is 16BitEmu or
32BitEmu. Otherwise, all data items with initial values unequal to zero must be combined
by using the bytes<i> (1 ≤ i ≤ 4) declaration code.

string = 18: (String val)
Declaration of the string val. This declaration code is only supported, if the CVM is
emulated in software, i.e., if the CVM mode is 16BitEmu or 32BitEmu. In addition, the
string val must not be modified, but must be treated as a constant during execution of
the CVM program.

98 3. Client Virtual Machine (CVM)

instructions instructions is a sequence of CVM instructions. Each instruction consists
of its operation code (opcode) and possibly some immediate operands (immOperands).
The opcode and — if existent — the immediate operands of each instruction are copied
into memory starting at the memory address codeSegmentAdr without alignment, except
for the opcode of the first instruction. Forgoing alignment makes CVM code in memory
more compact; however, possibly at the cost of a performance penalty in particular CVM
implementations. Refer to section 3.9.2 (page 100) for a complete reference of all CVM
instructions.

CVM Packet Verifier During loading of a CVM packet into memory the CVM packet
verifier checks the constraints that are mentioned in the description of the CVM packet
format. This prevents the CVM from executing malformed CVM packets. As a result, a
simple kind of low-level security is achieved.

Restrictions for an Emulated CVM If the CVM is emulated, i.e., cvmMode is 16Bit-
Emu or 32BitEmu, the data and code part of the CVM packet has to meet the following
conditions:

• During runtime, the instructions are not overwritten and no new instruction is created
to be executed.

• All jump target addresses of the control flow instructions call, jmp, ..., are known
before runtime and do not change during runtime.

• Every data item is declared in the CVM packet and properly accessed by the CVM
instructions according to the type of its declaration. Refer to section 3.8 (page 96)
for more information on data declarations within the CVM packet.

• Declared strings (string) remain constant in memory, i.e., they are not modified during
runtime.

As a result, the CVM can be implemented more efficiently in software, because certain
properties, e.g., the memory addresses of the data items and the jump targets, can be
evaluated once at the beginning of program execution and then reused all the time during
execution. In addition, similar to the Java HotSpot Virtual Machine [76], Just-In-Time
compilation techniques may be applied as well. Note that the implementation of such
optimizations is not mandatory and left to the implementors’ choice. Therefore, these
optimizations are not going to be discussed here in more detail.

3.9 Instruction Set

In order to keep the CVM architecture as simple as possible, the CVM instruction set
contains only the most essential operations that are needed for networked clients. In
addition to instructions for common processing, it covers mainly instructions for displaying
user interfaces. So far, there are 111 instructions altogether for the CVM modules Core,
Visual, Keyboard, Mouse, Network, and Libraries.

3.9. Instruction Set 99

However, a given CVM implementation does not need to support any instructions that
belong to a nonexistent module or functional unit. The modules Visual, Audio, Keyboard,
Mouse, and Libraries as well as the functional units for the management of the optional
Heap section and the optional interval timer within the Core module are optional.

Note that the instructions aload4, astore4, loadc3, loadc4, loadcu2, loadcu3, setcolor32, set-
bgcolor32, and setfont32 are only supported by a 32-bit CVM, but not by a 16-bit CVM.
Therefore, a very “thin” 16-bit CVM implementation with a screen and keyboard, but with-
out a Heap section, an interval timer, a mouse, and without any libraries has to support
only 94 instructions.

3.9.1 Overview

This section summarizes all CVM instructions and groups them according to the CVM
modules they belong to, and within a CVM module according to their purposes. Most
instructions are motivated and introduced in the respective CVM module descriptions in
the previous sections. A comprehensive description of each instruction is given in the
following reference section.

Core

• Load immediate integer value onto register stack: loadc<1|...|4>, loadcu<1|...|3>,
loadc 0, loadc 1, loadc m1

• Load integer value from memory onto register stack: loada, loadr

• Write integer value from register stack into memory: storea, storer

• Load integer value from array in memory onto register stack: aload<1|2|4>

• Write integer value from register stack into array in memory: astore<1|2|4>

• Load integer value from memory stack onto register stack and vice versa: pop, push

• Heap management: new, free, hload, hstore
Note that the Heap section is optional for a given CVM implementation.

• Bit test and set operations: testsetbits, unsetbits

• Register stack management: rdup, rempty, rskip, rswap

• Base Pointer (regBP): newstackframe, oldstackframe, getbp, setbp

• Stack Pointer (regSP): addsp, decsp, incsp

• Binary arithmetic operations: add, sub, mul, div, rem, and, or, xor, shl, shr, shrs

• Unary arithmetic operations: dec, inc, neg, not

• Control flow: halt, call, ret, jmp, je, jne, jl, jle, page

• Event handling: enableevents, disableevents, loadep<1|2|3>, seteventtableadr

• Interval timer: settimerinterval, settimerhandleadr
Note that the interval timer is optional for a given CVM implementation.

100 3. Client Virtual Machine (CVM)

Visual

• Graphics state: setbgcolor, setbgcolor32, setbgred, setbggreen, setbgblue, setcolor,
setcolor32, setred, setgreen, setblue, setfont, setfont32, setfontcode, setfontsize, seth-
textline, setxtextline, setclip, setlinewidth

• Lines: linehoriz, linevert

• Rectangles: rect, rectfill

• Circles: circle, circlefill

• Text: text, textm, textp, textpm, textbg, textmbg, textpbg, textpmbg

• Bitmaps: bitmap, bitmapbg

• Screen buffering: mem2screen, screen2mem,

Audio (Not covered in this thesis)

Keyboard (So far, no instructions)

Mouse, Network, Libraries

• Set mouse shape: setmousefont

• Receive and send data over network: rcv, sendrcv

• Set regSessionId to zero: sid

• Call library function: lib
Note that the lib instruction is always implemented, even if no libraries are available.
Then, a library call always results in the error UnknownLibraryFunction.

3.9.2 Reference

This section serves as a reference and describes all instructions. They are listed alphabet-
ically using the following description format:

mnemonic = opcode: immediate operands
register stack behavior
verbose description of semantics

opcode is the positive integer number that identifies the instruction in the binary code.

immediate operands represents a (possibly empty) list of immediate operands. Immediate
operands of an instruction appear in the binary code right after the instruction opcode.
Each immediate operand is shown in the form identtype . ident can be any identifier and is
usually chosen to characterize the use of the operand. type denotes the type of the operand
and may be one of the CVM data types Int, Nat, or String. For example, xNat might be

3.9. Instruction Set 101

used to identify an x coordinate value of the type Nat. If the instruction does not have any
immediate operands, immediate operands is omitted in the description of that instruction.
Only a few instructions have immediate operands.

register stack behavior illustrates how the instruction affects the register stack. It is shown
in the form preRegStack → postRegStack. preRegStack represents the register stack right
before the execution of the instruction. It has the form “..., value1 , value2 , ..., valuen” with
valuei = R[regRSP − n + i] (0 < i ≤ n ≤ cvmNumGeneralRegs). postRegStack represents
the register stack right after the execution of the instruction. It has the form “..., result1 ,
result2 , ..., resultm” with resultj = R[regRSP−m+ j] (0 < j ≤ m ≤ cvmNumGeneralRegs).
An instruction pops the values value1 , ..., valuen (0 ≤ n ≤ cvmNumGeneralRegs) as
operands from the register stack and pushes the results result1 , ..., resultm (0 ≤ m ≤
cvmNumGeneralRegs) onto it. The values of the numbers n and m depend on the partic-
ular instruction. valuei (0 < i ≤ n) and resultj (0 < j ≤ m) are shown in the form
identtype as well. Accordingly, if no underflow or overflow occurs, the Register Stack
Pointer regRSP is adjusted automatically during the execution of the instruction, i.e.,
regRSPpostRegStack = regRSPpreRegStack − n + m. Refer also to the error codes RegisterStack-
Overflow, RegisterStackStaticOverflow, and RegisterStackUnderflow.

The remainder of the register stack, i.e., the initial “...” in preRegStack and postRegStack,
remains unaffected by the instruction. Note that if the instruction is a final one, the
remainder is supposed to be empty and therefore omitted in the instruction description.
Then it holds: valuei = R[i] (0 < i ≤ n ≤ cvmNumGeneralRegs) in preRegStack and
resultj = R[j] (0 < j ≤ m ≤ cvmNumGeneralRegs) in postRegStack. An empty register
stack is indicated by the symbol ε. If the instruction does not affect the register stack at
all, register stack behavior is omitted in the instruction description.

verbose description of semantics provides a verbose description of the instruction seman-
tics.

The byte lengths of Int and Nat are given by cvmIntLen. Note that if cvmIntLen is 4, the
biggest Nat number is 231 − 1, but not 232 − 1.

Note that all CVM instructions are atomic, i.e., no instruction may be interrupted during
its execution. Interrupt handling may only take place between two subsequent instructions.

add = 1:
..., num1 Int, num2 Int → ..., result Int

Add the numbers num1 and num2. On a 16-bit CVM, result = (num1 + num2) & 0xFFFF.
On a 32-bit CVM, result = (num1 + num2) & 0xFFFFFFFF.

addsp = 2:
..., numStackCells Int → ...
Increment/Decrement stack pointer register regSP. On a 16-bit CVM, regSP := (regSP
+ ((numStackCells ∗ 2) & 0xFFFF)) & 0xFFFF. On a 32-bit CVM, regSP := (regSP +
((numStackCells ∗ 4) & 0xFFFFFFFF)) & 0xFFFFFFFF. If the new value of regSP is less
than regSS or greater than cvmMemMaxAdr + 1, start error handling with the error code
StackUnderflow (page 44) or StackOverflow (page 44), respectively.

102 3. Client Virtual Machine (CVM)

aload1 = 3:
..., arrayAdrNat, index Int → ..., arrayElemNat

Load Nat1 number from byte array in memory onto register stack with zero extension.
The number is an array element. On a 16-bit CVM, it starts in memory at the address
(arrayAdr + index) & 0xFFFF. On a 32-bit CVM, its memory address is (arrayAdr +
index) & 0xFFFFFFFF. Refer also to the error code IllegalMemoryAddress (page 43).

aload<2|4> = 4, 5:
..., arrayAdrNat, index Int → ..., arrayElem Int

Load Int<2|4> number from integer array in memory onto register stack with sign exten-
sion, respectively. The (big-endian) number is an array element. On a 16-bit CVM, it
starts in memory at the address (arrayAdr + ((index ∗ 2) & 0xFFFF)) & 0xFFFF. On a 32-
bit CVM, its memory address is (arrayAdr + ((index ∗ i) & 0xFFFFFFFF)) & 0xFFFFFFFF,
with i = 2 or 4, respectively. aload4 is only supported by a 32-bit CVM. Refer also to the
error code IllegalMemoryAddress (page 43).

and = 6:
..., num1 Int, num2 Int → ..., result Int

Bitwise AND conjunction with result = num1 & num2.

astore1 = 7:
..., value Int, arrayAdrNat, index Int → ...
Store the least significant byte of value, i.e., value & 0xFF, into the byte array in memory
at the address targetAdr. On a 16-bit CVM, targetAdr = (arrayAdr + index) & 0xFFFF.
On a 32-bit CVM, targetAdr = (arrayAdr + index) & 0xFFFFFFFF. Refer also to the error
code IllegalMemoryAddress (page 43).

astore<2|4> = 8, 9:
..., value Int, arrayAdrNat, index Int → ...
Store the least 2 or 4 significant bytes of value, i.e., value & 0xFFFF or value & 0xFFFFFFFF,
into the integer array in memory at the address targetAdr in big-endian order. On a 16-bit
CVM, targetAdr = (arrayAdr + ((index ∗ 2) & 0xFFFF)) & 0xFFFF. On a 32-bit CVM,
targetAdr = (arrayAdr + ((index ∗ i) & 0xFFFFFFFF)) & 0xFFFFFFFF, with i = 2 or 4,
respectively. astore4 is only supported by a 32-bit CVM. Refer also to the error code
IllegalMemoryAddress (page 43).

bitmap, bitmapbg = 10, 11:
xInt, yInt, widthNat, heightNat, memAdrAbsNat → ε
Draw bitmap image. The image data is located in memory and starts at the address
memAdrAbs. The rectangular area of the screen given by the corners (x, y) and (x +
width − 1, y + height − 1) is tiled with the bitmap image. The pixels that are set in the
bitmap image are drawn with the foreground color. The only difference between bitmap
and bitmapbg is that bitmap leaves the unset pixels untouched, whereas bitmapbg addition-
ally draws the unset pixels with the background color. The binary format of the image
data in memory, shown as a tuple structure, is as follows:
(Nat bitmapWidth, Nat bitmapHeight, Nat1[bitmapWidth∗bitmapHeight] dataBytes)

3.9. Instruction Set 103

On a 16-bit CVM, the byte length of Nat is 2. On a 32-bit CVM, it is 4. bitmapHeight

and bitmapWidth specify the width and height of the bitmap, respectively. The binary
format of dataBytes complies to the X BitMap format XBM [96]. Refer to the section
3.2.1 (page 76) for more information on foreground and background colors. Refer also to
the error code ImageLoadFailure (page 43).

call = 12:
..., memAdrRel Int → ...
Procedure call. Push the memory address of the immediately following instruction onto the
memory stack, i.e., store that memory address onto the top of the memory stack and in-
crement regSP by cvmIntLen. Then jump to the instruction at the relative memory address
memAdrRel and continue execution there, i.e., regIP := regIP + memAdrRel . Note that
the value of regIP on the right side equals the absolute memory address of the instruction
opcode. After execution of the procedure is finished, i.e., the instruction ret within that
procedure is encountered, resume execution with the immediately following instruction
from before. Refer also to the error codes StackOverflow (page 44) and IllegalMemoryAd-
dress (page 43), to the instruction ret (page 109), to the procedure stack frame (page 40),
and to section 3.1.2 (page 33) for more information on cvmIntLen.

circle, circlefill = 13, 14:
xInt, yInt, widthNat → ε
If width > 0, draw or fill circle that is delimited by the bounding square, respectively.
Otherwise, do nothing. The coordinates of the upper left corner and the width of the
bounding square are given by x, y, and width.

dec = 15:
..., num Int → ..., result Int

Decrement num. On a 16-bit CVM, result = (num − 1) & 0xFFFF. On a 32-bit CVM,
result = (num − 1) & 0xFFFFFFFF.

decsp = 16:
Decrement stack pointer register regSP. On a 16-bit CVM, regSP := (regSP − cvmIntLen) &
0xFFFF. On a 32-bit CVM, regSP := (regSP − cvmIntLen) & 0xFFFFFFFF. If the new value
of regSP is less than regSS or greater than cvmMaxMemAdr + 1, start error handling with
the error code StackUnderflow (page 44) or StackOverflow (page 44), respectively. Refer to
section 3.1.2 (page 33) for more information on cvmIntLen.

disableevents = 17:
Disable event handling, i.e., regEventEnable := 0. From now on, all events except for the
builtin events will be discarded until the instruction enableevents occurs.

div = 18:
..., num1 Int, num2 Int → ..., result Int

Integer division. If num2 6= 0, result = num1 / num2. Otherwise, start error handling
with error code DivisionByZero (page 43).

104 3. Client Virtual Machine (CVM)

enableevents = 19:
Enable event handling, i.e., regEventEnable := 1. From now on, all events will be processed
until the instruction disableevents occurs.

free = 20:
..., heapAdrNat → ...
Free the memory region in the Heap section that starts at the heap address heapAdr . Note
that this memory region must have been reserved before with the library function new.
The byte length of the memory region is known, because it is an operand of new. If the
specified memory region has not been reserved before or if it has already been freed before,
undefined behavior occurs. Refer to section 3.1.4.3 (page 41) for more information on the
Heap section.

getbp = 21:
... → ..., memAdrAbsNat

Load the value of the base pointer register onto the register stack, i.e., memAdrAbs :=
regBP.

halt = 0:
... → ε
Stop execution and wait.

hload = 22:
..., heapAdrNat → ..., value Int

Load integer number from the Heap section onto the register stack. The number resides in
the Heap section at the address heapAdr . The byte length of the integer number depends
on the CVM mode and is given by cvmIntLen. If the heap address heapAdr is not valid, the
CVM aborts execution and starts error handling with the error code IllegalMemoryAddress.
Refer to the sections 3.1.2 (page 33) and 3.1.4.3 (page 41) for more information on CVM
modes and cvmIntLen and on the Heap section, respectively.

hstore = 23:
..., value Int, heapAdrNat → ...
Store integer number value from register stack into the Heap section at the address
heapAdr . The byte length of the integer number depends on the CVM mode and is given
by cvmIntLen. If the heap address heapAdr is not valid, the CVM aborts execution and
starts error handling with the error code IllegalMemoryAddress. Refer to the sections 3.1.2
(page 33) and 3.1.4.3 (page 41) for more information on CVM modes and cvmIntLen and
on the Heap section, respectively.

inc = 24:
..., num Int → ..., result Int

Increment num. On a 16-bit CVM, result = (num + 1) & 0xFFFF. On a 32-bit CVM,
result = (num + 1) & 0xFFFFFFFF.

3.9. Instruction Set 105

incsp = 25:
Increment stack pointer register regSP. On a 16-bit CVM, regSP := (regSP + cvmIntLen) &
0xFFFF. On a 32-bit CVM, regSP := (regSP + cvmIntLen) & 0xFFFFFFFF. If the new value
of regSP is less than regSS or greater than cvmMaxMemAdr + 1, start error handling with
the error code StackUnderflow (page 44) or StackOverflow (page 44), respectively. Refer to
section 3.1.2 (page 33) for more information on cvmIntLen.

jmp = 26:
..., memAdrRel Int → ...
Unconditional jump to the instruction at the relative memory address memAdrRel. Proceed
execution there, i.e., regIP := regIP + memAdrRel. Note that the value of regIP on the
right side equals the absolute memory address of the instruction opcode. Refer also to the
error code IllegalMemoryAddress (page 43).

j<e |ne | l | le> = 27, 28, 29, 30:
..., num1 Int, num2 Int, memAdrRel Int → ...
Conditional jump. If the condition is true, jump to the instruction at the relative memory
address memAdrRel and proceed execution there, i.e., regIP := regIP + memAdrRel. Note
that the value of regIP on the right side equals the absolute memory address of the in-
struction opcode. The conditions are defined by: “e” ≡ “num1 = num2 ”, “ne” ≡ “num1
6= num2 ”, “l” ≡ “num1 < num2 ”, “le” ≡ “num1 ≤ num2 ”. Refer also to the error code
IllegalMemoryAddress (page 43).

lib = 31:
..., par1 Int, ..., parN Int, fctCodeNat → ...
Call library function with the libFctCode fctCode. par1, ..., parN (N ≥ 0) are the parame-
ters of the library function. Refer to section 3.5 (page 83) for a list of all currently available
library functions. Refer also to the error code UnknownLibraryFunction (page 45).

linehoriz = 32:
xInt, yInt, lenNat → ε
If len > 0, draw horizontal line from start point (x, y) to end point (x + len − 1, y).
Otherwise, do nothing.

linevert = 33:
xInt, yInt, lenNat → ε
If len > 0, draw vertical line from start point (x, y) to end point (x, y+ len−1). Otherwise,
do nothing.

loada = 34:
..., memAdrAbsNat → ..., num Int

Load integer number from memory onto register stack. The number resides in memory
at the address memAdrAbs in big-endian order. The byte length of the integer number
depends on the CVM mode and is given by cvmIntLen. Refer to section 3.1.2 (page 33) for
more information on CVM modes and cvmIntLen. Refer also to the error code IllegalMem-
oryAddress (page 43).

106 3. Client Virtual Machine (CVM)

loadc 0, loadc 1, loadc m1 = 35, 36, 37:
... → ..., num Int

Load the integer constants 0, 1, −1 onto the register stack, respectively.

loadc<i> (1 ≤ i ≤ 4) = 38, 39, 40, 41: num Int<i>

... → ..., num Int

Load the i-byte signed integer constant num in big-endian order onto the register stack
(with sign extension). loadc3 and loadc4 are only supported by a 32-bit CVM.

loadcu<i> (1 ≤ i ≤ 3) = 42, 43, 44: numNat<i>

... → ..., numNat

Load the i -byte unsigned integer constant num in big-endian order onto the register stack
(without sign extension). loadcu2 and loadcu3 are only supported by a 32-bit CVM.

loadep<i> (1 ≤ i ≤ 3) = 45, 46, 47:
... → ..., val Int

Load the value of the special event parameter register regEventPar<i> onto the register
stack, with val = regEventPar<i>.

loadr = 48:
..., memAdrRel Int → ..., num Int

Load integer number from memory onto register stack. The number resides in memory at
the address memAdrAbs in big-endian order. On a 16-bit CVM, memAdrAbs = (regBP
+ memAdrRel) & 0xFFFF. On a 32-bit CVM, memAdrAbs = (regBP + memAdrRel) &
0xFFFFFFFF. The byte length of the integer number depends on the CVM mode and is
given by cvmIntLen. Refer to section 3.1.2 (page 33) for more information on CVM modes
and cvmIntLen. Refer also to the error code IllegalMemoryAddress (page 43).

mem2screen = 49:
xInt, yInt, widthNat, heightNat, memAdrAbsNat → ε
Draw buffered screen section. The data of the buffered screen section resides in memory
and starts at the memory address memAdrAbs. The upper-left corner, the width, and
the height of the buffered screen section within the visual drawing area are given by (x,
y), width, and height, respectively. x, y, width, and height are always measured in pixels
— nevertheless of the value of the special register regMeasure. The format of the image
data in memory is internal for the CVM and thus implementation dependent. The use of
colormaps for storing the pixel values is also left to the implementors’ choice. However,
each pixel value may take at most 3 bytes. If the rectangle specified by the corners (x,
y) and (x + width − 1, y + height − 1) is not completely inside the visual drawing area
of the CVM, which is given by the rectangle with the corners (0, 0) and (cvmScreenWidth
− 1, cvmScreenHeight − 1), start error handling with the error code InvalidScreenSection
(page 43). Refer to section 3.7 (page 92) for more information on cvmScreenHeight and
cvmScreenWidth. Refer also to the error code IllegalMemoryAddress (page 43) and to the
instruction screen2mem (page 110).

3.9. Instruction Set 107

mul = 50:
..., num1 Int, num2 Int → ..., result Int

Multiply the numbers num1 and num2. On a 16-bit CVM, result = (num1 ∗ num2) &
0xFFFF. On a 32-bit CVM, result = (num1 ∗ num2) & 0xFFFFFFFF.

neg = 51:
..., num Int → ..., result Int

Negate integer number num, i.e., result = −num.

new = 52:
..., numBytesNat → ..., memAdrHeapNat

Allocate and reserve an unused block of numBytes bytes in the Heap section. If successful,
memAdrHeap is the starting heap address greater than zero of the found block in the Heap
section, otherwise zero. Refer to section 3.1.4.3 (page 41) for more information on the
Heap section.

newstackframe = 53:
..., numStackCellsNat → ...
First, push the value of the base pointer register regBP onto the memory stack, i.e., store
regBP onto the top of the memory stack and increment regSP by cvmIntLen. Then, store the
value (regSP − ((cvmIntLen ∗ ((2 + numStackCells) & bitMask)) & bitMask)) & bitMask
into the special register regBP, with bitMask = 0xFFFF on a 16-bit CVM and 0xFFFFFFFF

on a 32-bit CVM, respectively. This instruction usually occurs at the beginning of a
procedure that has parameters and/or local variables. It adjusts the new stack frame and
thus enables convenient access to the parameters and/or local variables with the loadr and
storer instructions. Refer also to the error code StackOverflow (page 44), to the instruction
oldstackframe, to the procedure stack frame (page 40), and to section 3.1.2 (page 33) for
more information on cvmIntLen.

not = 54:
..., num Int → ..., result Int

result is the bitwise complement of num.

oldstackframe = 55:
Pop the value, which is a memory address, from the top of the memory stack and store it
into the base pointer register regBP. If the memory address is not inside the address interval
[0; cvmMemMaxAdr], start error handling with the error code IllegalMemoryAddress. This
instruction usually occurs at the end of a procedure before returning to the caller to restore
the previous stack frame, i.e., the stack frame of the caller. Refer also to the error code
StackUnderflow (page 44), to the instruction newstackframe, and to the procedure stack
frame (page 40).

or = 56:
..., num1 Int, num2 Int → ..., result Int

Bitwise OR disjunction with result = num1 | num2.

108 3. Client Virtual Machine (CVM)

page = 57:
..., subpageNoNat, pageMemAdrRel Int → ...
Display CVMUI page with the page number subpageNo. A CVMUI page represents an
AUI subpage. pageMemAdrRel is the relative memory address where the instruction block
of the respective CVMUI page starts in CVM memory. The CVM jumps to that address
and continues execution there, i.e., regIP := regIP + pageMemAdrRel. Note that the value
of regIP on the right side equals the absolute memory address of the instruction opcode.
Refer also to the error code IllegalMemoryAddress (page 43). This instruction also creates
a new history buffer entry with the appropriate subpageNo and pageMemAdr fields. The
hostAdr, sessionId, serviceNo, pageNo, and cvmpNo fields of the new history buffer entry
are copied from the current history buffer entry.

Refer also to the CVM state transitions in section 3.1.10 (page 58), especially to the CVM
states Execute, EventExecute, and TimerExecute. For more information on the history
buffer, refer to section 3.1.7 (page 52). For more information on AUI and CVMUI pages,
refer to the sections 2.3 (page 27), 5.1 (page 135), and 5.5 (page 166).

Note that the CVM does not check whether the instruction block of the respective CVMUI
page really starts at the relative memory address pageMemAdrRel. This is left to the
responsibility of the CVM programmer or packet generator.

pop = 58:
... → ..., num Int

Pop the value — a signed integer number — from the top of the memory stack and push
it onto the register stack. The byte length of the integer number on the memory stack is
given by cvmIntLen. Refer to section 3.1.2 (page 33) for more information on cvmIntLen.
Refer also to the sections 3.1.4.2 (page 39) and 3.1.3 (page 35), and to the error code
StackUnderflow (page 44).

push = 59:
..., num Int → ...
Pop the value — a signed integer number — from the top of the register stack and push it
onto the top of the memory stack. The byte length of the integer number on the memory
stack is given by cvmIntLen. Refer to section 3.1.2 (page 33) for more information on
cvmIntLen. Refer also to the sections 3.1.3 (page 35) and 3.1.4.2 (page 38), and to the error
code StackOverflow (page 44).

rcv = 60:
..., hostAdrMemAdrNat, pageOrServiceNoNat, subpageNoNat → ...
Contact CVM packet server and request CVMUI page. A CVMUI page represents an
AUI subpage. hostAdrMemAdr contains the memory address where the host address of
the CVM packet server starts in CVM memory. The host address is a string (String) and
might be either an IP [62] address in standard dot notation or a DNS [45] name. Note that
if the host address is a DNS name, but the given CVM implementation does not support
automatic DNS lookup, the CVM aborts execution and starts error handling with the error
code NoDNSLookup (page 44). Refer also to the profile item cvmDNSLookup (page 90) and
to the error code IllegalMemoryAddress (page 43).

3.9. Instruction Set 109

If the value of the special register regSessionId is not zero, pageOrServiceNo contains the
AUI page number of the requested CVMUI page. Otherwise, pageOrServiceNo contains
the number of the interactive network service. Then, the AUI page number is zero by
definition and the CVM starts a new session with the respective CVM packet server.
subpageNo contains the number of the requested AUI subpage. Refer to section 3.4 (page
82) for more information on the special register regSessionId. If no error occurs, the CVM
packet server finally sends a CVM packet, which contains the requested CVMUI page, to
the CVM.

The communication with the CVM packet server is based on the application protocol
CPTP. The used protocol method for starting the request is GET. Refer to section 4 (page
127) for more information on the CPTP protocol and on the GET method (page 130).
Refer also to the error codes MalformedCPTPMessage (page 43), MalformedCVMProfile,
NetworkError, and UnexpectedCPTPMethodCode.

This instruction blocks until the respective CVM packet has been received completely or un-
til the user aborts the data transmission by raising an appropriate event, e.g., key pressed es-
cape. Refer to the CVM state transitions in section 3.1.10 (page 58), especially to the CVM
states Execute, EventExecute, TimerExecute, and CptpGET.

This instruction also creates a new history buffer entry with the appropriate hostAdr,
serviceNo, pageNo, and subpageNo fields. Refer to section 3.1.7 (page 52) for more
information on the history buffer.

For more information on AUI and CVMUI pages and CVM packets, refer to the sections
2.3 (page 27), 5.1 (page 135), and 5.5 (page 166), and 3.8 (page 93).

Note that the instructions that immediately succeed this instruction will never be executed
unless they are accessed from other parts of the CVM program with appropriate jump
instructions.

rdup = 61:
..., value Int → ..., value Int, value Int

Duplicate the top register stack value. Refer also to the error code RegisterStackOverflow
(page 44).

rect, rectfill = 62, 63:
xInt, yInt, widthNat, heightNat → ε
If width > 0 and height > 0, draw or fill rectangle with the upper-left corner at (x, y)
and the lower-right corner at (x + width − 1, y + height − 1), respectively. Otherwise, do
nothing.

rem = 64:
..., num1 Int, num2 Int → ..., result Int

Remainder integer division. If num2 6= 0, result = num1 − (num1 / num2) ∗ num2.
Otherwise, refer to the error code DivisionByZero (page 43).

ret = 65:
Return from procedure call. Pop the memory address from the top of the memory stack

110 3. Client Virtual Machine (CVM)

and store it into the instruction pointer register regIP. Execution continues there. If the
popped memory address is not inside the address interval [0; cvmMemMaxAdr], start error
handling with the error code IllegalMemoryAddress (page 43). Refer also to section 3.1.4.2
(39), to the error code StackUnderflow (page 44), to the instruction call (page 103), to the
procedure stack frame (page 40), and to section 3.1.2 (page 33) for more information on
cvmIntLen.

rempty = 66:
... → ε
Pop all values from the register stack and discard them.

rskip = 67:
..., dummy Int → ...
Pop the top register stack value and discard it. Refer also to the error code RegisterStack-
Underflow (page 44).

rswap = 68:
..., value1 Int, value2 Int → ..., value2 Int, value1 Int

Swap the top two register stack values. Refer also to the error code RegisterStackUnderflow
(page 44).

screen2mem = 69:
xInt, yInt, widthNat, heightNat, memAdrAbsNat → ε
Store specified screen section into memory at the address memAdrAbs. The screen section
is defined by the rectangle with the upper-left corner at (x, y) and the given width and
height. x, y, width, and height are always measured in pixels — nevertheless of the value
of the special register regMeasure. The format of the image data in memory is internal for
the CVM and therefore implementation dependent. However, each pixel value may take
at most 3 bytes. If the rectangle specified by the corners (x, y) and (x + width − 1, y +
height − 1) is not completely inside the visual drawing area of the CVM which is given
by the rectangle with the corners (0, 0) and (cvmScreenWidth − 1, cvmScreenHeight − 1),
start error handling with the error code InvalidScreenSection (page 43). Refer to section
3.7 (page 92) for more information on cvmScreenHeight and cvmScreenWidth. Refer also
to the error code IllegalMemoryAddress (page 43) and to the instruction mem2screen (page
106).

sendrcv = 70:
..., hostAdrMemAdrNat, pageOrServiceNoNat, subpageNoNat,
numBytesNat, dataBytesMemAdrNat

→ ...
Contact CVM packet server, send data to it, and request CVMUI page. A CVMUI page
represents an AUI subpage. hostAdrMemAdr contains the memory address where the host
address of the CVM packet server starts in CVM memory. The host address is a string
(String) and might be either an IP [62] address in standard dot notation or a DNS [45] name.
Note that if the host address is a DNS name, but the given CVM implementation does not
support automatic DNS lookup, the CVM aborts execution and starts error handling with

3.9. Instruction Set 111

the error code NoDNSLookup (page 44). Refer also to the profile item cvmDNSLookup (page
90) and to the error code IllegalMemoryAddress (page 43). dataBytesMemAdr contains the
memory address where the data bytes start in CVM memory. numBytes contains the
number of bytes. Therefore, the data bytes reside in a byte array that is limited by the
address interval [dataBytesMemAdr ; dataBytesMemAdr + numBytes − 1].

If the value of the special register regSessionId is not zero, pageOrServiceNo contains the
AUI page number of the requested CVMUI page. Otherwise, pageOrServiceNo contains
the number of the interactive network service. Then, the AUI page number is zero by
definition and the CVM starts a new session with the respective CVM packet server.
subpageNo contains the number of the requested AUI subpage. Refer to section 3.4 (page
82) for more information on the special register regSessionId. If no error occurs, the CVM
packet server finally sends a CVM packet, which contains the requested CVMUI page, to
the CVM.

The communication with the CVM packet server is based on the application protocol
CPTP. The used protocol method for starting the data transmission and request is GET.
Refer to section 4 (page 127) for more information on the CPTP protocol and on the
GET method (page 130). Refer also to the error codes MalformedCPTPMessage (page 43),
MalformedCVMProfile, NetworkError, and UnexpectedCPTPMethodCode.

This instruction blocks until all the data bytes have been sent and the requested CVMUI
page has been received or until the user aborts the data transmission by raising an ap-
propriate event, e.g., key pressed escape. Refer to the CVM state transitions in section
3.1.10 (page 58), especially to the CVM states Execute, EventExecute, TimerExecute, and
CptpGET.

This instruction also creates a new history buffer entry with the appropriate hostAdr,
serviceNo, pageNo, and subpageNo fields. Refer to section 3.1.7 (page 52) for more
information on the history buffer.

For more information on AUI and CVMUI pages and CVM packets, refer to the sections
2.3 (page 27), 5.1 (page 135), and 5.5 (page 166), and 3.8 (page 93).

Note that the instructions that immediately succeed this instruction will never be executed
unless they are accessed from other parts of the CVM program with appropriate jump
instructions.

setbgblue = 71:
..., blueNat → ...
Store the color component blue into the special background color register regBgColorBlue,
i.e., regBgColorBlue := blue & 0xFF.

setbgcolor = 72:
..., redNat, greenNat, blueNat, → ...
Store the red, green, and blue color components into the special background color regis-
ters, respectively, i.e., regBgColorRed := red & 0xFF, regBgColorGreen := green & 0xFF,
regBgColorBlue := blue & 0xFF.

setbgcolor32 = 73:
..., colorNat → ...

112 3. Client Virtual Machine (CVM)

Store color into the special background color registers, i.e., regBgColorRed := (color � 16)
& 0xFF, regBgColorGreen := (color � 8) & 0xFF, regBgColorBlue := color & 0xFF. This
instruction is only supported by a 32-bit CVM.

setbggreen = 74:
..., greenNat → ...
Store the color component green into the special background color register regBgColorGreen,
i.e., regBgColorGreen := green & 0xFF.

setbgred = 75:
..., redNat → ...
Store the color component red into the special background color register regBgColorRed,
i.e., regBgColorRed := red & 0xFF.

setblue = 76:
..., blueNat → ...
Store the color component blue into the special foreground color register regColorBlue, i.e.,
regColorBlue := blue & 0xFF.

setbp = 77:
..., memAdrAbsNat → ...
Store the memory address memAdrAbs into the base pointer register, i.e., regBP :=
memAdrAbs. If the new value of regBP is not inside the address interval [0; cvmMem-
MaxAdr], start error handling with the error code IllegalMemoryAddress (page 43).

setclip = 78:
..., xInt, yInt, widthNat, heightNat → ...
Store x, y, width, and height into the special registers regClipX, regClipY, regClipWidth,
and regClipHeight, respectively. Then set the clip-mask to the rectangle with the upper-left
corner at (x, y) and the lower-right corner at (x+ width − 1, y + height − 1), respectively.
Usually, this instruction is used to limit the effect of future graphic drawing operation to
a particular rectangular area inside the visual drawing area of the screen. This technique
is called clipping.

setcolor = 79:
..., redNat, greenNat, blueNat, → ...
Store the red, green, and blue color components into the special foreground color registers,
respectively, i.e., regColorRed := red & 0xFF, regColorGreen := green & 0xFF, regColorBlue
:= blue & 0xFF.

setcolor32 = 80:
..., color Int → ...
Store color into the special foreground color registers, i.e., regColorRed := (color � 16) &
0xFF, regColorGreen := (color � 8) & 0xFF, regColorBlue := color & 0xFF. This instruction
is only supported by a 32-bit CVM.

3.9. Instruction Set 113

seteventtableadr = 81:
..., memAdrAbsNat → ...
Store the memory address memAdrAbs into the special register regEventTableAdr, i.e.,
regEventTableAdr := memAdrAbs. Refer also to section 3.1.6 (page 45) for more information
on event handling. Refer also to the error code IllegalMemoryAddress (page 43).

setfont = 82:
..., fontcodeNat, fontsizeNat → ...
Store fontcode and fontsize into the special font registers regFontCode and regFontSize, i.e.,
regFontCode := fontcode & 0xFFFF, regFontSize := fontsize & 0xFFFF. Refer also to the
error code UnknownFont (page 44).

setfont32 = 83:
..., font Int → ...
Store font into the special font registers regFontCode and regFontSize, i.e., regFontCode :=
font & 0xFFFF, regFontSize := (font � 16) & 0xFFFF. This instruction is only supported
by a 32-bit CVM. Refer also to the error code UnknownFont (page 44).

setfontcode = 84:
..., fontcodeNat → ...
Store fontcode into the special font register regFontCode, i.e., regFontCode := fontcode &
0xFFFF. Refer also to the error code UnknownFont (page 44).

setfontsize = 85:
..., sizeNat → ...
Store size into the special font register regFontSize, i.e., regFontSize := size & 0xFFFF.
Refer also to the error code UnknownFont (page 44).

setgreen = 86:
..., greenNat → ...
Store the color component green into the special foreground color register regColorGreen,
i.e., regColorGreen := green & 0xFF.

sethtextline = 87:
..., heightNat → ...
Store height into the special register regHTextLine, i.e., regHTextLine := height.

setlinewidth = 88:
..., widthNat → ...
If width > 0, store width into the special register regLineWidth, i.e., regLineWidth := width.
Otherwise, do nothing.

114 3. Client Virtual Machine (CVM)

setmousefont = 89:
..., mouseFontCodeNat → ...
Store the mouse font code mouseFontCode into the special register regMouseFont, i.e.,
regMouseFont := mouseFontCode & 0xFF. Refer also to the error code UnknownMouseFont
(page 44).

setred = 90:
..., redNat → ...
Store the color component red into the special foreground color register regColorRed, i.e.,
regColorRed := red & 0xFF.

settimerhandleadr = 91:
..., memAdrAbsNat → ...
Store the memory address memAdrAbs into the special register regTimerHandleAdr, i.e.,
regTimerHandleAdr := memAdrAbs. The timer handle code block starts at this memory
address. Refer also to section 3.1.9 (page 57) for more information on the interval timer
and to the error code IllegalMemoryAddress (page 43).

settimerinterval = 92:
..., timerIntervalNat → ...
First store timerInterval into the special register regTimerInterval, i.e., regTimerInterval :=
timerInterval . timerInterval specifies the interval time period in milliseconds. Then acti-
vate the interval timer. Note that it is left to the responsibility of the CVM programmer or
packet generator to ensure that the interval timer is not activated before the memory ad-
dress of the timer handle code block has been declared by the instruction settimerhandleadr.
Refer also to the section 3.1.9 (page 57) for more information on the interval timer.

setxtextline = 93:
..., xInt → ...
Store x into the special register regXTextLine, i.e., regXTextLine := x.

shl = 94:
..., num1 Int, num2 Nat → ..., result Int

Bitwise shift left operation, i.e., result = (num1 � (num2 & 0x0F)) & 0xFFFF on a
16-bit CVM and result = (num1 � (num2 & 0x1F)) & 0xFFFFFFFF on a 32-bit CVM,
respectively.

shr = 95:
..., num1 Int, num2 Nat → ..., result Int

Bitwise logical shift right operation with zero extension, i.e., result = num1 >� (num2
& 0x0F) on a 16-bit CVM and result = num1 >� (num2 & 0x1F) on a 32-bit CVM,
respectively.

3.9. Instruction Set 115

shrs = 96:
..., num1 Int, num2 Nat → ..., result Int

Bitwise arithmetic shift right operation with sign extension. i.e., result = num1 � (num2
& 0x0F) on a 16-bit CVM and result = num1 � (num2 & 0x1F) on a 32-bit CVM,
respectively.

sidzero = 97:
... → ...
Set the value of the special register regSessionId to zero, i.e., regSessionId := 0. Usually, this
instruction is used right before a rcv instruction to start a new session with a particular
CVM packet server.

storea = 98:
..., value Int, memAdrAbsNat → ...
Store value into memory in big-endian order at the starting absolute memory address
memAdrAbs. The byte length of the integer number depends on the CVM mode and is
given by cvmIntLen. Refer also to the error code IllegalMemoryAddress (page 43) and to
section 3.1.2 (page 33) for more information on CVM modes and cvmIntLen.

storer = 99:
..., value Int, memAdrRel Int → ...
Store value into memory in big-endian order at the starting absolute memory address
memAdrAbs. On a 16-bit CVM, memAdrAbs = (regBP + memAdrRel) & 0xFFFF. On a
32-bit CVM, memAdrAbs = (regBP + memAdrRel) & 0xFFFFFFFF. The byte length of
the integer number depends on the CVM mode and is given by cvmIntLen. Refer also
to the error code IllegalMemoryAddress (page 43) and to section 3.1.2 (page 33) for more
information on CVM modes and cvmIntLen.

sub = 100:
..., num1 Int, num2 Int → ..., result Int

Subtract the numbers num1 and num2. If no overflow occurs, result = num1 − num2.
Otherwise, result = (num1 − num2) & 0xFFFF on a 16-bit CVM, and (num1 − num2)
& 0xFFFFFFFF on a 32-bit CVM.

testsetbits = 101:
..., memAdrAbsNat, bitMask Int → ..., val Int

Test and set the bits of the integer value val that resides in memory at the address
memAdrAbs. At first, val is loaded unchanged onto the register stack. Then, the new
value val | bitMask is stored into memory at the address memAdrAbs. Refer also to the
error code IllegalMemoryAddress (page 43). This instruction is used for access synchro-
nization of memory variables that are shared by different threads running concurrently.
Particularly, this instruction locks a mutex.

text, textbg = 102, 103: textString

xInt, yInt → ε

116 3. Client Virtual Machine (CVM)

Draw the glyphs of text in the current font and foreground color beginning at the coordinate
position (x, y). y refers to the baseline of text. The instruction textbg additionally fills the
background area of the bounding box of text with the current background color. Refer to
the section 3.2.1 (page 76) for more information on foreground and background colors.

textp, textpbg = 104, 105: textParagraphString

yInt → ε
Draw the glyphs of textParagraph in the current font and foreground color beginning at
the position (regXTextLine, y). y refers to the baseline of the first line of textParagraph.
textParagraph consists of several lines of text which are separated by the ’\n’ character.
The ’\n’ character is not drawn with a particular glyph. Instead, after each ’\n’ character,
the CVM continues drawing the glyphs of the following characters in the next line. The
y position of the next line is the y position of the previous line plus height. If the value
of the special register regHTextLine is greater than zero, then height equals the value of
regHTextLine. Otherwise, height equals the height of the current font. The height of a font
is the sum of its ascent and descent. The x position of each text line is given by the special
register regXTextLine. The instruction textpbg additionally fills the background area of the
bounding box of each text line with the current background color. Refer to the section
3.2.1 (page 76) for more information on foreground and background colors.

textpm, textpmbg = 106, 107:
yInt, memAdrAbsNat → ε
Same functionality as textp and textpbg. However, the string textParagraph is not given as
an immediate operand. Instead, it resides in memory and starts at the address memAdrAbs.
Refer also to the error code IllegalMemoryAddress (page 43).

textm, textmbg = 108, 109:
xInt, yInt, memAdrAbsNat → ε
Same functionality as text and textbg. However, the text string is not given as an immediate
operand. Instead, it resides in memory and starts at the address memAdrAbs. Refer also
to the error code IllegalMemoryAddress (page 43).

unsetbits = 110:
..., memAdrAbsNat, bitMask Int → ...
Unset the bits of the integer value num that resides in memory at the starting address
memAdrAbs. The new value num & bitMask is stored into memory at the same address.
Refer also to the error code IllegalMemoryAddress (page 43). This instruction is used for
access synchronization of memory variables that are shared by different threads running
concurrently. Particularly, this instruction releases a mutex.

xor = 111:
..., num1 Int, num2 Int → ..., result Int

Bitwise XOR operation with result = num1 ⊕ num2.

3.10. Implementation Notes 117

3.10 Implementation Notes

The CVM has been implemented in software with the C [20] programming language under
the Linux [43] operating system. The used C compiler is gcc [32] with the optimization
level -O1. The CVM implementation covers the modules Core, Visual, Keyboard, Mouse,
Network, and the so far specified Libraries.

Source Files The C source files for the CVM interpreter are in the subdirectories Imple-
mentation/Cvm/Src/ and Implementation/RghLib/Src/. The latter subdirectory con-
tains only source files whose names start with the prefix “rgh”.

• Core/: The source files in this subdirectory implement the CVM module Core.

• Visual/: The source files in this subdirectory implement the CVM module Mouse.
Note that the basic graphic output with X11 is handled in the source files rghX11.-
{h,c}.

• Keyboard/: The source files in this subdirectory implement the CVM module Key-
board. So far, this subdirectory is empty, because no CVM specific source files are
needed here. The basic control of the keyboard with X11 is handled in the source
files rghX11.{h,c}.

• Mouse/: The source files in this subdirectory implement the CVM module Mouse.
Note that the basic control of the mouse with X11 is handled in the source files
rghX11.{h,c}.

• Network/: The source files in this subdirectory implement the CVM module Network.

• Libraries/: The source files in this subdirectory implement the CVM module Li-
braries, as far as currently specified. Each implemented library starts with the prefix
“lib”.

• Profiles/: This subdirectory contains a collection of different CVM profiles. Each
CVM profile specifies the capabilities of the respective CVM to be generated and is
a C header file that starts with the prefix “cvm”. So far, the following CVM profiles
have been defined: cvm16.h, cvm16Emu.h, cvm16Thin.h, cvm32.h, cvm32Emu.h, and
cvm32Thin.h. Additional CVM profiles may be defined in the future.

The file profile.h is a link to one of these CVM profiles. During the compilation,
it is included by the other source files to build an appropriate CVM executable that
fits to the capabilities which are specified in the currently active CVM profile.

• cvmMain.c: This source file contains the main() function.

• RghLib/Src/: These source files contain general utility functions and definitions for
managing the heap and input/output on streams, for debugging, and for managing
strings, TCP/IP [69] network connections, and the graphic input/output with X11
[51], respectively.

For the implementation of the graphic input/output in X11 the Xlib [51, 52] pro-
gramming library has been used. Xlib is the low-level programming library of the
X11 [51] system.

118 3. Client Virtual Machine (CVM)

For the implementation of the TCP/IP [69] network communication the Linux socket
interface, which is compatible to the BSD [17] socket interface, has been used. How-
ever, this implementation supports only IPv4, but not IPv6.

Not Implemented Parts Except for the following restrictions, the CVM has been
implemented completely:

• Module Core:

– The UTF-8 [89] characters in strings (String) may contain only printable ASCII
[7] characters, including the space character (“ ”).

– 16BitEmu, 32BitEmu: These CVM modes have been implemented as well but
without specific optimizations that increase runtime performance for CVMs with
these emulation modes. Refer also to the sections 3.7 (page 89) and 3.8 (page
98) for more information on this topic. Note that the implementation of such
optimizations is not mandatory and left to the implementors’ choice.

• Module Visual: The measuring unit is always a pixel point and must not be a fraction
of a pt, i.e., the value of the special register regMeasure is always zero.

• Module Libraries:

– The library functions new, free, hload, and hstore are only implemented for a
32-bit CVM. If these functions are called on a 16-bit CVM, the CVM aborts
execution and starts error handling with the error code UnknownLibraryFunction.

– The library functions pixmapgz and png are not implemented so far.

As these parts are not necessarily needed for the demonstration purpose of this implemen-
tation, they can be added later.

Building The Makefile [34], which is in the subdirectory Implementation/Cvm/, man-
ages the compilation of the source files to build the executable CVM interpreter which is
located in the subdirectory Implementation/Cvm/Bin/. In the same subdirectory where
Makefile is located, the make [34] command must be invoked in a shell [31] with the
following options to start compilation:

make [TARGET] [CFLAGS="[-DDEBUG]"]

Optional parts are enclosed with [...].

The CFLAGS option -DDEBUG directs the CVM interpreter to produce debugging messages
onto the standard output. For example, the name of each called and executed C function
is printed each time at the beginning of its execution.

TARGET might be either empty or cvm, cvm16, cvm16Emu, cvm16Thin, cvm32, cvm32Emu,
cvm32Thin, cvmi16, cvmi16Emu, cvmi16Thin, cvmi32, cvmi32Emu, cvmi32Thin, or allCvms.
It specifies which CVM profile should be used to build the CVM. The respective CVM
profiles cvm16.h, cvm16Emu.h, cvm16Thin.h, cvm32.h, cvm32Emu.h, and cvm32Thin.h are
located in the subdirectory Implementation/Cvm/Src/Profiles/.

3.10. Implementation Notes 119

If TARGET is not allCvms, the name of the executable file is TARGET. However, if TARGET is
allCvms, then all the listed CVMs from cvm16 to cvmi32Thin are built.

The CVM executables starting with the prefix “cvmi” are based on the same CVM profile
as the respective “cvm...”. However, they additionally print informative messages about
the CVM activities during runtime to the standard output. These messages mainly consist
of the opcode and operands of the currently executed instruction, the current contents
of the special registers, the register stack, the history buffer, and the bookmarks list. In
addition, these messages also report the CVM state transitions and the exchanged CPTP
packets with the contacted CVM packet server over the network. All these messages are
useful for demonstration purposes and for debugging.

If TARGET is empty or cvm, then the recently used CVM profile is used again for the
compilation and the name of the executable CVM interpreter is cvm.

Invocation The invocation syntax of the CVM interpreter cvm... is as follows:

cvm... fileName

At the beginning, cvm... first reads the CVM packet with the name fileName and then
executes it. This CVM packet represents the HomeMenu. Examples of HomeMenu CVM
packets (*.cvmp) can be found in the subdirectory Implementation/Cvm/HomeMenu/.

Interval Timer Due to the Linux operating system, the precision of the interval timer
currently is not smaller than 10 ms. In a CVM program, therefore, it doesn’t make sense,
to set the value of the special timer register regTimerInterval to a smaller value.

Builtin Events As specified in section 3.1.6.3 (page 49), the type of user actions that
cause builtin events are implementation dependent. In this implementation, the builtin
events are raised by the following control (Ctrl) key combinations:

• cvm quit: Ctrl+C

• history back: Ctrl+B

• history forward: Ctrl+F

• history reload: Ctrl+R

• input hostAdr: Ctrl+I

• menu bookmarks: Ctrl+O

• menu home: Ctrl+H

120 3. Client Virtual Machine (CVM)

Bookmarks Menu (menu bookmarks) The size of the bookmarks list is specified in the
CVM profile. The bookmarks menu can be controlled by the user with the following events:

• Exit bookmarks menu:

– key pressed escape or

– mouse pressed with regEventPar3 = 3 (rightButton)

• Mark unmarked bookmark entry:

– Previous: key pressed with regEventPar1 = XK Up

– Next: key pressed with regEventPar1 = XK Down

– At mouse position: mouse pressed left

• Select already marked bookmark entry:

– key pressed enter

– At mouse position: mouse pressed left

• Scroll up bookmarks menu: mouse pressed with regEventPar3 = 4 (wheelUp)

• Scroll down bookmarks menu: mouse pressed with regEventPar3 = 5 (wheelDown)

• Delete marked bookmark entry:

– key pressed with regEventPar1 = XK d

– At mouse position: mouse pressed with regEventPar3 = 2 (middleButton)

• Add new bookmark entry that refers to the current CVMUI page: Mark and then
select first bookmark entry, which is labeled with “Add”

The bookmarks are stored in the file Implementation/Cvm/Src/bookmarks.dat.

Input Host Address (input hostAdr) The input syntax for the host address and service
number is as follows:

host address[’:’[serviceNo]]

Optional parts are enclosed with [...].

host address might be either an IP [62] address in standard dot notation or a DNS [45]
name.

serviceNo is a Nat2 number. If no serviceNo is given, the default value zero is assumed.

Examples are “131.159.58.35:132”, “131.159.58.35”, “rayhalle.in.tum.de:132”, or
“rayhalle.in.tum.de”.

History Buffer The size of the history buffer is specified in the CVM profile.

3.10. Implementation Notes 121

Byte Sizes of Different CVMs To give an idea about the complexity of different CVM
implementations, the byte sizes of the executable CVM interpreters that are created in the
Makefile are listed in the following:

cvm16: 74295 Bytes

cvm16Emu: 74295 Bytes

cvm16Thin: 64036 Bytes

cvm32: 72970 Bytes

cvm32Emu: 73418 Bytes

cvm32Thin: 62660 Bytes

Here, the executable files of a CVM interpreter requires only approximately 64 to 74
Kbytes†. The corresponding CVM profile cvm16.h is as follows:

#define cvmProfileId 0
#define cvmMode 0
#define cvmNumGeneralRegs 10
#define cvmMemMaxAdr 0xFFFF
#define cvmTimerAvailable
#define cvmBookmarksSize 30
#define cvmHistorySize 10
#define cvmMeasure 0
#define cvmFontsMaxFontCode 23
#define cvmScreenHeight 150
#define cvmScreenWidth 250
#define cvmKeyCodeSet 0
#define cvmMouseButtons 3
#define cvmNetworkAvailable
#define cvmDNSLookup
#define cvmLibrariesCoreMisc
#define cvmLibrariesVisualImage
#define cvmLibrariesVisualMisc

The corresponding CVM profile cvm16Thin.h is as follows:

#define cvmProfileId 0
#define cvmMode 0
#define cvmNumGeneralRegs 10
#define cvmMemMaxAdr 0x27FF // 10 Kbytes - 1
#define cvmBookmarksSize 10
#define cvmHistorySize 10
#define cvmMeasure 0
#define cvmFontsMaxFontCode 14
#define cvmScreenHeight 150
#define cvmScreenWidth 250
#define cvmKeyCodeSet 0
#define cvmNetworkAvailable

†Note that here the executables of the 16-bit CVMs are larger than the corresponding 32-bit CVMs,
because on a 32-bit platform it’s more laborious to implement an interpreter for a 16-bit CVM.

122 3. Client Virtual Machine (CVM)

The corresponding CVM profile cvm32.h is similar to cvm16.h. However, the values of
cvmMode and cvmMemMaxAdr are 2 and 0xFFFFFF, respectively.

The corresponding CVM profile cvm32Thin.h is similar to cvm16Thin.h. However, the
value of cvmMode is 2.

Example To demonstrate the CVM behavior especially during the state transitions be-
tween the CVM states Execute, EventExecute, and TimerExecute, the CVM assembler pro-
gram fibTimer in section B.6 (page 237) is executed by the CVM interpreter cvmi32.
Figure 3.8 (page 122) contains an exemplary screen shot. In the following, appropriate

Figure 3.8: CVM Screen Shot: fibTimer.cvm

extracts of the output that is produced by the interpreter cvmi32 during runtime are
shown:

...

regIP = 447, regRSP = 0, regSS = 476,
regSP = 700, regBP = 672

R[] = _

regState = Execute

/* 447*/ loadc1 -36 // -36
/* 449*/ call // _
/* 413*/ loadcu1 2 // 2
/* 415*/ newstackframe // _
/* 416*/ loadc_1 // 1

...

/* 437*/ loadc_m1 // -1
/* 438*/ addsp // _
/* 439*/ incsp // _
/* 440*/ loadcu1 4 // 4
/* 442*/ loadr // 6

regEventCode = 10 (key_released)

regEventPar1 = 32 (key code = space)
regEventPar2 = 0 (unused)
regEventPar3 = 0 (unused)

regState = EventProcess

regIP = 120, regRSP = 0, regSS = 476,
regSP = 644, regBP = 0

R[] = _

regState = EventExecute

/* 120*/ loadcu1 255 // 255
/* 122*/ loadcu1 255 // 255 255
/* 124*/ loadcu1 255 // 255 255 255
/* 126*/ setcolor

regTimerSignal = 1

// _

regTimerSignal = 0

3.11. Related Work 123

regIP = 459, regRSP = 0, regSS = 476,
regSP = 644, regBP = 0

R[] = _

regState = TimerExecute

/* 459*/ loadc_0 // 0
/* 460*/ loada // 207
/* 461*/ inc // 208
/* 462*/ loadc_0 // 208 0
/* 463*/ storea // _
/* 464*/ loadc_0 // 0
/* 465*/ loada // 208
/* 466*/ loadcu1 148 // 208 148
/* 468*/ loadcu1 116 // 208 148 116
/* 470*/ loadcu1 7 // 208 148 116 7
/* 472*/ lib /*printIntBg*/ // _
/* 473*/ halt // _

regIP = 127, regRSP = 0, regSS = 476,
regSP = 644, regBP = 0

R[] = _

regState = EventExecute

/* 127*/ loadcu1 4 // 4
/* 129*/ loadcu1 147 // 4 147
/* 131*/ textbg "Key Pressed !" //

_
/* 146*/ loadc_0 // 0
/* 147*/ loadc_0 // 0 0
/* 148*/ loadc_0 // 0 0 0
/* 149*/ setcolor // _
/* 150*/ halt // _

regIP = 443, regRSP = 1, regSS = 476,
regSP = 644, regBP = 620

R[] = 6

regState = Execute

/* 443*/ loadcu1 2 // 6 2
/* 445*/ sub // 4
/* 446*/ push // _
/* 447*/ loadc1 -36 // -36
/* 449*/ call // _

...

Note the state transitions ... → Execute → EventProcess → EventExecute → TimerExecute
→ EventExecute→ Execute→ ... in the output. They occur when a timer signal interrupts
execution of an event handling subroutine, whereas the corresponding event in turn has
previously interrupted normal execution of the CVM.

3.11 Related Work

JVM The main analogies and differences between the JVM [80] from Sun Microsystems
and the CVM are listed in the following table:

JVM CVM

Main Architecture:

object oriented not object oriented

only core functionality; anything else
via Java APIs

Core module provides core functional-
ity; additional modules for Visual, Au-
dio, Network, etc., each with appropri-
ate CVM instructions, e.g., basic draw-
ing instructions of the Visual module;
module Library contains CVM libraries
for more complex tasks.

Data Types:

byte Int1

124 3. Client Virtual Machine (CVM)

short Int2

int Int4

boolean Nat1

char Nat2

– Int3, Nat3, Nat4

long, float, double –

returnAddress Nat

reference –

Arithmetics:

integer and floating point only integer; for floating point arith-
metic additional CVM code or libraries
are needed

Stack:

JVM stack memory stack

General Purpose Registers:

– register stack
Note, the JVM loads the instruction operands onto the JVM stack, whereas the
CVM loads the instructions operands onto the register stack.

Heap:

always present optional

Garbage Collection:

supported automatically only via additional CVM code or CVM
libraries

Exception Handling:

can be defined by programmer –

Error Handling:

can be defined by programmer predefined by functional unit in the
Core module, cannot be changed by
programmer

Event Handling:

only via Java APIs supported directly by functional unit in
the Core module

History Buffer:

– supported directly by functional unit in
the Core module

Bookmarks Menu:

– supported directly by functional unit in
the Core module, however optional

Interval Timer:

only via Java APIs supported directly by functional unit in
the Core module, however optional

Synchronization:

3.11. Related Work 125

via monitors via test and set instructions (testsetbits,
unsetbits)

Binary Executable Format:

Java Class File CVM Packet; much simpler format

complex verification process simple verification process, checks
mainly whether a CVM packet com-
plies to the CVM packet format and
to the system properties given by the
CVM profile.

constant pool data section
Note, in addition to the numeric and string constants known at compile time, the
constant pool also contains method and field references that must be resolved
at run time by the JVM (dynamic linking). The constant pool is similar to a
symbol table for a conventional programming language.

Table 3.1: Comparison: JVM ↔ CVM

J2ME: CLDC, MIDP A J2ME [74] enabled, mobile low-end device has to implement
at least both CLDC [73] and MIDP [78]. The proposed CVM represents an alternative
to the CLDC/MIDP platform. The main differences of CLDC/MIDP and the CVM are
listed in the following:

The KVM executable from the CLDC Reference Implementation Version 1.1 for a Linux
platform requires about 280 Kbytes, whereas the CVM executable from this implementa-
tion requires only about 70 Kbytes.

The memory requirements of CLDC/MIDP are much higher than of the CVM. For example,
at least 128 Kbytes volatile memory for the Java runtime (e.g., Java heap) are required.
However, the CVM can work properly with even less than 1 Kbyte of volatile memory as
long as the CVM packet server generates such small CVM packets that do not need too
much additional memory for storing runtime data.

CLDC/MIDP is not as flexible as the CVM, because it can not be modularized like the
CVM. A CLDC/MIDP enabled device has to implement all parts of it. Besides, the system
requirements of CLDC/MIDP are higher than that of the CVM. The CVM, however has
a modular architecture with optional components and reports its system properties and
capabilities to the CVM packet server within a CVM profile.

WAP: WML, WMLScript, UAProf The client user interface language WML [56]
is descriptive and therefore more difficult to interpret than CVM code which is opera-
tional. Therefore, WML has to include WMLScript [58] for dynamic tasks, which ad-
ditionally requires a WMLScript interpreter that runs on the client device. The CVM
code format does not need any other client languages. It enables more scalability than
WML/WMLScript when desribing user interfaces. As it provides at least equal func-
tionality, WML/WMLScript documents might be translated with a given CVM profile
completely into appropriate CVM packets.

126 3. Client Virtual Machine (CVM)

UAProf [59] is the WAP counterpart of the CVM profile. Both formats are binary. UAProf
provides a rich vocabulary set to describe the client capabilities from the hardware level
up to the application level, whereas the CVM profile focuses mainly on the configuration
and special characteristics of the CVM and on the user preferences. The UAProf compo-
nent “HardwarePlatform” contains some attributes that are identical or similar to some
profile items in the CVM profile, e.g., Keyboard and ScreenSize. However, it does not
have attributes that describe the memory size and supported fonts of the client device as
precisely as the CVM profile item codes cvmMemMaxAdr and cvmFonts. All in all, the
CVM profile describes the hardware capabilities of the client device a little more detailed
and at a slightly lower level.

Nevertheless, some UAProf attributes might be adopted for the CVM profile in the future,
if required.

W3C: XHTML Basic, XML, CSS, XSL, XForms, CC/PP As XHTML Basic [8] is
a subset of HTML [65], it is still declarative with high-level markup elements and therefore
lacks of the same disadvantages as HTML in terms of scalability and functionality. These
disadvantages are discussed in detail in section 2.2 (page 13).

CSS [12] and XSL [2] are very powerful languages to describe the layout structure of an
XML [16] document. However, they are too complex to be interpreted by a resource-
constrained client device. CSS Mobile Profile [95] contains some simplifications, but still
the client device needs to perform the formatting task on its own by a rendering engine
that runs on the client device.

XForms [24] is a powerful language to describe user interfaces. However, as XForms is
a declarative and a quite high-level language, the task of interpreting and rendering an
XForms document might be too complex for a resource-constrained client device. Allevia-
tions for restricted client devices have not been defined, so far.

As the CC/PP Profile is based on XML [16] and RDF [44], it is more complex than the
CVM profile that is proposed in this thesis. The CC/PP Exchange Protocol [53] assumes an
underlying application protocol such as HTTP [10], whereas the proposed CPTP protocol
runs directly on top of the transport service. In addition, the CC/PP framework does
not define a new virtual machine that acts as the user agent. As the CC/PP attribute
vocabulary is similar to UAProf for the WAP Forum, refer also to the comments on UAProf
in section 3.11 (page 126).

To sum up, all the XML-based technologies such as XHTML Basic, XML, CSS, XSL, and
XForms provide less scalability when describing user interfaces and impose more system
requirements for the client device than the proposed CVM approach. However, they might
be used as user-friendly front ends to specify documents and user interfaces on the server
side. With a given CVM profile, the CVM packet generator might transform these front-
end specifications into appropriate CVM packets.

Chapter 4

CVM Packet Transfer Protocol
(CPTP)

The CVM packet transfer protocol (CPTP) is an application protocol that manages the
communication between the CVM and the CVM packet server. It runs on top of the
transport layer and is a very “thin” counterpart to the HTTP [10] application protocol in
the World Wide Web (WWW). HTTP was developed especially for the WWW and has a
lot of advanced and complex protocol aspects for caching, authorization, handling of server
response codes and error conditions, etc., which are quite hard to implement on a resource
limited client. With the request headers Accept, Accept-Charset, Accept-Encoding,
and Accept-Language, HTTP also covers some aspects of content negotiation — however
at a high level of abstraction, i.e., no detailed description of the hardware capabilities of
the client device, but a few directives on the preferred document formats, character sets,
content encodings, and language. The HTTP equivalent of the WAP protocol stack is
the Wireless Session Protocol [57] (WSP). However, this protocol provides full HTTP 1.1
functionality and additionally incorporates some other features.

In contrast, CPTP provides only a few basic protocol methods for requesting and delivering
CVM packets, for sending CVM profile data that is used for content negotiation, for sending
arbitrary data that is processed on the server side, and for reporting error messages. The
advanced and complex protocol aspects like the handling of all kinds of server response
codes and error conditions are not specified by the CPTP protocol. Instead, the CVM
packet server might send in such a situation an appropriate CVM packet to the CVM that
contains a user interface which informs the user and also provides a list of actions how
the user can react to that server response. As a result, these application-specific protocol
aspects are dealt with on the server side by the control logic of the network service. The
CVM is not required to interpret such server responses on its own, i.e., generate appropriate
user interfaces and perform appropriate actions on its own, as it is the case with the HTTP
protocol. An example of an error condition might be when the CVM requests a nonexistent
user interface page from a CVM packet server.

4.1 Message Format

Each CPTP message consists of a protocol method and possibly some operands, called
message items. Its binary format is presented here as a tuple data structure by using the

127

128 4. CVM Packet Transfer Protocol (CPTP)

generally understandable notation from section A.3 (page 208). Successive components
within a tuple or array structure are stored in a CPTP message sequentially, without
padding or alignment. Multibyte values are stored in big-endian order. Refer to section
3.1.1 (page 32) for more information on the CVM data types Nat<1|...|4>. The array type
Nat1[] is used for byte streams of any data. The general binary format of a CPTP message
is as follows:

CptpMessage = { Nat1 methodCode;
Nat1[4] sessionId;
Nat1 cvmIntLen;
Nat1[] messageItems }

methodCode is a unique integer number that identifies the protocol method and thus the
desired CPTP operation. In contrast to the HTTP [10] protocol, all CPTP protocol
methods are encoded as binary values, but not as a sequence of ASCII characters.

sessionId identifies the current client-server session. A CVM packet server might serve
more than one CVM at the same time and therefore needs this value to distinguish between
them when it receives a CPTP message from a CVM. (Note that the IP [62] address of the
CVM is not sufficient, because — as the case may be — several CVM processes may run on
the same client host, each having a session with the same CVM packet server.) Each time,
the CVM sends a CPTP message to a CVM packet server, it writes the current value of
regSessionId into this message item. Each time, the CVM receives a CPTP message from a
CVM packet server, it stores the value of sessionId into its special register regSessionId.
Refer to section 3.4 (page 82) for more information on regSessionId. At the beginning of a
new client-server session, the value of sessionId is zero in the GET message from a CVM
to the CVM packet server. The CVM packet server then assigns a value other than zero
to the new session and uses this value for the message item sessionId in its response
message. As a result, the CVM packet server can determine which CPTP message belongs
to which client-server session.

With a 4-byte value each CVM packet server can serve 232 − 1 clients at same time.
However, if necessary, a 6- or 8-byte value might be used in the future.

cvmIntLen reports to the CVM packet server the value of cvmIntLen, which depends on
the CVM mode of the CVM. Refer to section 3.1.2 (page 33) for more information on
cvmIntLen and on CVM modes.

messageItems is a possibly empty array of data values which depend on the protocol
method.

All protocol methods and their message items are listed in the next section.

4.2 Protocol Methods

In the following, the currently specified CPTP protocol methods are listed alphabetically
and described using the following description format:

method name = methodCode: messageItems

method name is the verbose name of the methodCode. messageItems is specified as a tuple

4.2. Protocol Methods 129

structure. Depending on the method code, however, it may also be empty.

The data type Nat is used as a shortcut for the data type Nat<cvmIntLen>.

Additional protocol methods may be defined in the future. A client-server session always
starts with a GET message which is sent from the CVM to a CVM packet server.

CVMP = 1: { Nat cvmpNo, pageMemAdr; CVMPacket cvmPacket }
This protocol method is used by the CVM packet server when it sends the CVM packet
cvmPacket to the CVM. Refer to section 3.8 (page 93) for more information on the CVM
packet format. cvmpNo contains the number of this CVM packet. A CVM packet contains
one or more CVMUI pages. Refer to sections 2.3 (page 27) and 5.5 (page 166) for more
information on CVM user interfaces. pageMemAdr contains the absolute memory address
of the CVM instruction, where the CVM should start execution, after it has loaded this
CVM packet into its memory. Generally, this memory address represents the beginning
of the instruction block of a particular CVMUI page. The CVM does not respond to a
received CVMP message.

ERROR = 2: { Nat1 errorCode; Nat memAdr } |
{ Nat1 errorCode }

This protocol method is used by the CVM and the CVM packet server to report errors. If
the CVM or the CVM packet server receives an ERROR message, it does not respond to it.
Two tuple structures for the message items are possible:

The first tuple structure is used only by the CVM. If the CVM encounters an error while
processing and executing a received CVM packet, it sends an ERROR message to the CVM
packet server from which the CVM packet comes from. Refer also to section 3.1.5.1 (page
41) and to the CVM state transitions in section 3.1.10 (page 58), especially to the state
Error. The message items errorCode and memAdr refer to the current values of the spe-
cial registers regErrorCode and regIP, respectively. They report which error has occurred
and where in the CVM program. However, if the value of the message item errorCode

is MalformedCPTPMessage or UnexpectedCPTPMethodCode, the value of the message item
memAdr is not relevant. Refer also to section 3.1.5.2 (page 43) for more information on the
error codes MalformedCPTPMessage and UnexpectedCPTPMethodCode. The CVM packet
server might collect the received ERROR messages to enable bug-fixes by the server admin-
istrators, afterwards.

The second tuple structure is used only by the CVM packet server. Then, the message
item errorCode might only have the value MalformedCPTPMessage, MalformedCVMProfile,
or UnexpectedCPTPMethodCode:

It has the value MalformedCPTPMessage, if the CVM packet server receives a malformed
CPTP message from the CVM. Refer also to section 3.1.5.2 (page 43) for more information
on the error code MalformedCPTPMessage.

It has the value MalformedCVMProfile, when the CVM packet server receives a malformed
CVM profile from the CVM. Refer to section 3.7 (page 89) for more information on the
CVM profile format. Note that a CVM profile may be malformed, even if the entire
CPTP message is well-formed. For example, the given profile item values might not fit
together. Refer also to section 3.1.5.2 (page 43) for more information on the error code
MalformedCVMProfile.

130 4. CVM Packet Transfer Protocol (CPTP)

It has the value UnexpectedCPTPMethodCode, if the CVM packet server receives a CPTP
message with an unexpected protocol method (methodCode). For example, if the CVM
packet does not receive a GET message from the CVM at the beginning of a client-server
session. Refer also to section 3.1.5.2 (page 44) for more information on the error code
UnexpectedCPTPMethodCode.

GET = 3: { Nat serviceNo, pageNo, subpageNo; CVMProfile cvmProfile;
Nat numBytes; Nat1[numBytes] dataBytes }

This protocol method is similar to the GET and POST methods of the HTTP [10] protocol.
It is used by the CVM to send the data in the data array dataBytes to the CVM packet
server and then request from it the CVMUI page that is addressed by the page number
pageNo and the subpage number subpageNo. serviceNo refers to the current value of the
special register regServiceNo. It contains the number of the interactive network service
that is requested by the CVM. pageNo and subpageNo each contain an unsigned integer
number. They refer to a particular CVMUI page that belongs to the interactive network
service with the number serviceNo. Refer to sections 2.3 (page 27) and 5.5 (page 166)
for more information on CVM user interfaces. cvmProfile reports to the CVM packet
server the capabilities of the CVM and also the currently active user preferences. The
CVM packet server then passes these informations to the CVM packet generator which
creates appropriate CVM packets for the CVM. Refer to section 3.7 (page 89) for more
information on the CVM profile format.

The CVM only sends a GET message to the CVM packet server, when it encounters the rcv
or sendrcv instruction, or when the user of the client device has successfully raised a builtin
event such as history back, history forward, history reload, menu bookmarks, or input hostAdr.
However, numBytes is always zero unless the CVM has encountered the sendrcv instruction.
Refer also to the CVM state transitions in section 3.1.10 (page 58), especially to the states
EventExecute, Execute, TimerExecute, EventProcessBuiltin, and CptpGET.

Depending on the situation, the CVM packet server might respond with a CVMP, PROFILE,
or an ERROR message: If everything goes well with CVM packet generation, it responds
with a CVMP message to send the CVM packet that contains the requested CVMUI page
to the CVM. If the CVM profile is not complete and the CVM packet generator needs
more information on the client capabilities and user preferences, the CVM packet server
responds with a PROFILE message that lists the required profile item values. After successful
content negotiation, the CVM packet server finally sends to the CVM a CVMP message
that contains the requested CVMUI page. However, if the CVM profile cvmProfile is
malformed, the CVM packet server responds with an ERROR message with the errorCode

MalformedCVMProfile.

Note that it is left to the implementors’ choice whether the CVM always sends a complete
CVM profile which contains all profile item values within the GET message. For example,
the CVM could instead send in the GET message only its cvmMode and profileId. If the
CVM packet server needs more information, it can ask the CVM for particular profile item
values by sending a PROFILE message to the CVM where it lists all the needed profile
item values. The CVM then responds with a PROFILE message that contains all requested
profile item values.

4.3. Implementation Notes 131

PROFILE = 4: { CVMProfile cvmProfile } |
{ Nat1[] profileItemCodes; Nat1 0 }

This protocol method is used by the CVM and the CVM packet server for content negotia-
tion. Two tuple structures for the message items are possible: The first one is used only by
the CVM whereas the second one is used only by CVM packet server. If during a request,
which is initiated by the CVM with a GET message, the CVM packet server needs some
particular profile item values of the CVM, it sends a PROFILE message to the CVM and lists
all desired profile item codes in the data array profileItemCodes. Refer to section 3.7
(page 90) for a list of all currently defined profile item codes. As all profile item codes are
greater than zero, the end of the list is marked by the value zero. If the CVM packet server
needs all profile item values, then profileItemCodes is empty. The CVM then responds
with a PROFILE message and sends a CVMProfile structure that contains the values for
all desired profile item codes. Refer to section 3.7 (page 89) for more information on the
CVM profile format.

Note that PROFILE messages are only sent during a request, i.e., between a GET message
from the CVM to the CVM packet server and a CVMP message from the CVM packet server
to the CVM, and only when it is necessary. In addition, the CVM only sends a PROFILE

message to the CVM packet server, after it has received a PROFILE message from the CVM
packet server.

4.3 Implementation Notes

The CPTP application protocol has been implemented on top of the TCP/IP [69] protocol
stack. The reserved port number is 60507.

The client part of the CPTP protocol belongs to the CVM module Network. The cor-
responding source files cptpClient.{h,c} are located in the subdirectory Implementa-

tion/Cvm/Src/Network/. Refer to section 3.10 (page 117) for more information on the
entire CVM implementation.

The server part of the CPTP protocol is implemented by the source files cptp.h and
cptpServer.{h,c} which are located in the subdirectory Implementation/CvmPacket-

Server/Src/. Refer to section 5.6 (page 198) for more information on the entire CVM
packet server implementation.

For the implementation of the TCP/IP [69] network communication the Linux socket
interface, which is compatible to the BSD [17] socket interface, has been used. However,
this implementation supports only IPv4, but not IPv6.

4.4 Example

The use of the protocol methods will be demonstrated by an example session that is
illustrated in figure 4.1 (page 132). Let there be a CVM client with the CVM profile

{ cvmMode = 16Bit;
profileId = 483721;
cvmNumGeneralRegs = 10;

132 4. CVM Packet Transfer Protocol (CPTP)

CVM CVM Packet Server

rcv hostAdr, 3, 0
GET 1

PROFILE 2

PROFILE 3

CVMP 4

ERROR 7

...

...

RegisterStackOverflow

sendrcv hostAdr, 8, 5, numBytes, memAdrAbs
GET 5

CVMP 6

TimeTime

Figure 4.1: CPTP Example Session

cvmMemMaxAdr = 2 Kbytes - 1;
cvmScreenWidth = 150;
cvmScreenWidthMM = 600;
cvmScreenHeight = 100;
cvmScreenHeightMM = 400;
cvmFonts = 14;
cvmKeyCodeSet = 173;
0 }

and a CVM packet server with the host address hostAdr.

Let’s assume that the value of the special register regSessionId is zero. When the CVM
encounters the instruction “rcv hostAdr, 3, 0”, it sends a GET message to the CVM packet
server with the following contents (step 1):

{ methodCode = GET;
sessionId = 0;
cvmIntLen = 2;
serviceNo = 3;
pageNo = 0;
subpageNo = 0;
cvmProfile = { cvmMode = 16Bit;

profileId = 483721;

4.4. Example 133

0 };
numBytes = 0;
dataBytes = [] }

As there is a new client request, which is indicated by the value of sessionId = 0, the
CVM packet server first assigns a new value to this session. Let the value be in this example
42. In addition, the CVM at first has not sent a complete CVM profile to the CVM packet
server where all profile item values are listed. However, here the CVM packet server does
not have the profile item values for a CVM with the profileId = 483721 available in its
database. Therefore, the CVM packet server has to ask the CVM for a detailed CVM
profile by sending a PROFILE message to it with the following contents (step 2):

{ methodCode = PROFILE;
sessionId = 42;
cvmIntLen = 2;
0 }

The CVM then responds with the following PROFILE message (step 3):

{ methodCode = PROFILE;
sessionId = 42;
cvmIntLen = 2;
cvmProfile = { cvmMode = 16Bit;

profileId = 483721;
cvmNumGeneralRegs = 10;
cvmMemMaxAdr = 2 Kbytes - 1;
cvmScreenWidth = 150;
cvmScreenWidthMM = 600;
cvmScreenHeight = 100;
cvmScreenHeightMM = 400;
cvmFonts = 14;
cvmKeyCodeSet = 173;
0 }}

After the CVM packet generator has generated the CVM packets, the CVM packet server
sends to the CVM the following CVMP message which contains the CVM packet with the
requested CVMUI page (step 4).

{ methodCode = CVMP;
sessionId = 42;
cvmIntLen = 2;
cvmpNo = 0;
pageMemAdr = 2370;
cvmPacket = ... }

When the CVM encounters the instruction “sendrcv hostAdr, 8, 5, numBytes, memAdrAbs”,
it sends a GET message to the CVM packet server with the following contents (step 5):

134 4. CVM Packet Transfer Protocol (CPTP)

{ methodCode = GET;
sessionId = 42;
cvmIntLen = 2;
serviceNo = 3;
pageNo = 8;
subpageNo = 5;
cvmProfile = { cvmMode = 16Bit;

profileId = 483721;
0 };

numBytes = numBytes ;
dataBytes = [...] }

The CVM packet server first processes the received data in the data array dataBytes.
Then it sends to the CVM the following CVMP message which contains the CVM packet
with the requested CVMUI page (step 7).

{ methodCode = CVMP;
sessionId = 42;
cvmIntLen = 2;
cvmpNo = 5;
pageMemAdr = 832;
cvmPacket = ... }

At the end, the error RegisterStackOverflow occurs during the CVM executes the recently
loaded CVM packet. The CVM then sends an ERROR message to the CVM packet server
to notify the CVM packet server. The ERROR message has the following contents (step 8):

{ methodCode = ERROR;
sessionId = 42;
cvmIntLen = 2;
errorCode = regErrorCode;
memAdr = regIP }

Note that in the normal case the CVM packet generator creates valid CVM packets, so
that no runtime errors should occur when the CVM executes the CVM packets.

Chapter 5

CVM Packet Server (CVMPS)

The CVM packet server processes the client requests and generates session instances and
CVM packets that are optimized for the individual client capabilities. The client-server
communication is determined by the CPTP protocol, which is specified in section 4 (page
127). The client capabilities are described in the CVM profile. The CVM packet format
and the CVM profile format are specified in the sections 3.8 (page 93) and 3.7 (page 89),
respectively.

Note that the service providers can freely choose the design and implementation of their
server-side architecture as far as it conforms to the specified CVM packet format, the
CVM profile format, and the CPTP communication protocol. As a proof of concept, a
CVM packet server has been developed and implemented in this thesis as well. Its main
components are as follows:

• Abstract User Interface Description (AUI): The abstract user interface description
language is used to specify interactive network services on the application layer.

• Session Manager: The session manager processes all incoming client messages and
stores the data that are involved during the client-server sessions.

• Service Generator: The service generator generates the client-specific service instance
from a given AUI description and CVM profile.

• CVM Packet Generator: The CVM packet generator generates customized CVM
packets from a given AUI description and CVM profile. These CVM packets are
called CVM user interfaces.

• CVM User Interface (CVMUI): A CVM user interface is a CVM packet that is
generated by the CVM packet generator from a given AUI description. It may contain
all parts of a given AUI page or only a smaller subset. Here an exemplary structure
of a CVMUI is specified.

5.1 Abstract User Interface Description (AUI)

In this thesis an exemplary abstract user interface description language, called AUI, has
been developed and implemented. It is used to specify interactive network services on the
application layer which consist of user interfaces for the CVM and state-dependent actions

135

136 5. CVM Packet Server (CVMPS)

that are executed on the client and server side. A given AUI description is used both by the
service generator and by the CVM packet generator when they generate the client-specific
service instance and the client-specific CVM packets, respectively.

An AUI description contains several pages that are displayed by the CVM, whereas each
page consists of several user interface components. AUI contains language constructs to
specify the structure and appearance of the pages and their user interface components.
However, AUI does not contain language constructs to specify directly the server-side and
client-side actions, which make up the operational semantics of the network service and
are state dependent. AUI rather provides language constructs where the service program-
mer can embed client-side and server-side code. Client-side actions are specified in CVM
assembler whereas server-side actions are specified in a common programming language.

The idea that a description language provides language constructs only for a special pur-
pose and leaves everything else, in particular state-dependent actions that make up the
operational semantics, to a native programming language can also be found in the gen-
eration tools flex† [33] and bison‡ [30]. While flex and bison focus on the specification of
regular expressions and context free grammars, respectively, AUI focuses on the structure
and appearance of user interfaces for interactive network services.

So far, AUI offers only a few and elementary types of user interfaces components. Addi-
tional and more complex user interface components may be defined in the future.

5.1.1 Concrete Syntax

AUIs are case sensitive. The grammar for the concrete syntax of the AUI is presented in a
generally understandable notation. Refer to section A.2 (page 207) for a short description
of the used notation. The grammar of the AUI can be split into a syntactic and a lexical
part. First, the grammar is listed, then additional explanations and context conditions are
provided for particular syntactic constructs in alphabetical order.

Syntactic Grammar The syntactic part of the grammar with the root Aui is as follows:

Aui ::= ServiceNo ’,’ ServiceId
’%%’ ServiceVar∗
’%%’ Page+
’%%’ ServerLng ServerActionCmd∗
’%%’ ServerActionPage+
(’%%’ ServerCodeMisc)?

ServiceNo ::= NatLiteral
ServiceId ::= Identifier

ServiceVar ::= VarType Identifier (’=’ Expr)?

Page ::= PageId ’{’ Attr∗ (GuiCmpt | CvmAs)∗ ’}’
PageId ::= Identifier

†Successor of lex
‡Successor of yacc

5.1. Abstract User Interface Description (AUI) 137

Attr ::= AttrName ’=’ Expr ’;’

GuiCmpt ::= GuiCmptType Identifier ’{’ Attr∗ Event∗ ’}’
Event ::= EventType ’{’ CvmAsEntity∗ ’}’
CvmAsEntity ::= ... // refer to section B.1 (page 216), “CvmAsEntity”

CvmAs ::= ’CvmAs’ ’{’ CvmAsEntity∗ ’}’

ServerActionCmd ::= ServiceCmdId ’:’ ’{’ ServerCode ’}’

ServiceCmdId ::= Identifier
ServerCode ::= ...

ServerActionPage ::= (StatePageId ’,’)? StatePageId ’:’ ’{’ ServerCode ’}’

StatePageId ::= PageId | ’*’ | ’^’

ServerCodeMisc ::= ServerCode

Expr ::= MulExpr | Expr (’+’ | ’-’) MulExpr
MulExpr ::= Factor | MulExpr (’*’ | ’/’ | ’%’) Factor
Factor ::= ’(’ Expr ’)’ | ’-’ Factor | NatLiteral | StringLiteral |

FontCode | ImgStyle | BuiltinFct ’(’ (Expr (’,’ Expr)∗)? ’)’ |
AttrName | ’.’ AttrName | Identifier ’.’ AttrName |
Identifier

Lexical Grammar The lexical part of the grammar is as follows:

GuiCmptType ::= ’Btn’ | ’Hlk’ | ’Ixt’ | ’Txp’ | ’Txt’
EventType ::= ’evDwn’ | ’evUp’
AttrName ::= ’x’ | ’y’ | ’w’ | ’h’ | ’fg’ | ’bg’ | ’fc’ | ’fs’ | ’str’ | ’yStr’ |

’strLenMax’ | ’hostAdr’ | ’serviceNo’ | ’img’ | ’imgStyle’ |
’svIdx’

ImgStyle ::= ’imgTile’ | ’imgScale’
VarType ::= ’Int’ | ’String’

ServerLng ::= ’C’ | ’C++’ | ’C#’ | ’Java’ | ...

BuiltinFct ::= ... // refer to section 5.1.3 (page 148), “builtin function name”
FontCode ::= ... // refer to section 3.2.3 (page 79), “font code name”

Identifier ::= Alpha (Alpha | Digit)∗

NatLiteral ::= Digit+
StringLiteral ::= ’"’ (ASCII \ ’"’)∗ (’\\"’ (ASCII \ ’"’)∗)∗ ’"’

Alpha ::= ’a’..’z’ | ’A’..’Z’ | ’_’
Digit ::= ’0’..’9’

WhiteSpace ::= ’ ’ | ’\f’ | ’\n’ | ’\r’ | ’\t’

138 5. CVM Packet Server (CVMPS)

Comment ::= ’/*’ ASCII∗ \ (ASCII∗ ’*/’ ASCII∗) ’*/’ |
’//’ ASCII∗ \ (ASCII∗ ’\n’ ASCII∗) ’\n’

To resolve ambiguities within the lexical part of the grammar, the longest possible character
sequence of the AUI that matches one of the productions in the lexical grammar is selected.
For example, the character sequence ’abc12’ is recognized as one Identifier, and not as
the Identifier ’abc’ followed by the NatLiteral ’12’. If the longest possible character
sequence matches more than one production, the production listed first is chosen.

White space characters (WhiteSpace) and comments (Comment) are discarded at lexical
level. They may appear at any place in the AUI between the syntactic units listed in the
syntactic part of the grammar.

Attr An attribute definition consists of an attribute name (AttrName) and an integer or
a string value that is specified by an expression (Expr).

• x, y, w, h: Expr must evaluate to an integer value that specifies the x, y coordinate
position or the width, height of a user interface component (GuiCmpt) in pixels,
respectively. x and y define the coordinate position of the upper left corner of the
user interface component within the page (Page). The origin of the coordinate system
lies in the upper left corner of the page.

• fg, bg: Expr must evaluate to an integer value that specifies the foreground (fg) or
background (bg) color of the page (Page) or user interface component (GuiCmpt).
Refer also to the builtin function rgb in section 5.1.3 (page 149). Note that a user
interface component inherits the fg or bg value from the respective page (Page), if it
does not specify its own fg or bg value, i.e., fg or bg does not appear in the attribute
list (Attr∗) of the user interface component (GuiCmpt).

• fc, fs: Expr must evaluate to an integer value that specifies the font code (fc) or
font size (fs) of the text str which is displayed by the user interface component
(GuiCmpt). Refer also to the font names in section 3.2.3 (page 79). Note that a user
interface component inherits the fc or fs value from the respective page (Page), if
it does not specify its own fc or bg value.

• str: Expr must evaluate to a string value that is displayed by the user interface
component (GuiCmpt). If strLenMax is also specified, then the string value may
only contain at most strLenMax characters. If str is not specified, then its default
value is an empty string ("").

• yStr: Expr must evaluate to an integer value that defines the y coordinate position of
the base line of the text str. Note that yStr may only be specified, if str is specified
in the attribute list (Attr∗) as well. In addition, if yStr is specified, y must not be
specified at the same time, because its value is then derived from yStr, i.e., yStr =
y + fontAscent(fc, fs) − 1 + dy . fontAscent is equivalent to the CVMA builtin
function in section B.4 (page 229) of the same name and dy is an integer number
(dy ≥ 0) that can be freely chosen by the CVM packet generator.

• strLenMax: Expr must evaluate to an integer value that specifies the maximum
number of characters in the text str. This attribute must only be specified, if the

5.1. Abstract User Interface Description (AUI) 139

user interface component (GuiCmpt) gets text input from the user, e.g., Ixt. If
strLenMax is specified, str must be specified in the attribute list (Attr∗) as well.

• hostAdr: Expr must evaluate to a string value that refers to the host address of a
CVM packet server. The host address might be a DNS [45] name or an IP address
[62] in standard dot notation.

• serviceNo: Expr must evaluate to an integer value that addresses the number of a
service that is offered by a particular CVM packet server. Refer also to ServiceNo
(page 145).

• img: Expr must evaluate to a string value that contains the path of an image file,
i.e., "Img/imgOK32x32.gif", or an empty string (""). If the string value is not an
empty string, then the addressed image is rendered into the background area of the
page (Page) or user interface component (GuiCmpt). Otherwise, no image is drawn.
If img is not specified, then its default value is "".

• imgStyle: Expr must evaluate to an integer value that specifies how the image img

is rendered into the background area of the respective page (Page) or user interface
component (GuiCmpt). So far, only the following values are valid:

• 0: The image is tiled. The constant imgTile might be used as an alias.

• 1: The image is scaled. The constant imgScale might be used as an alias.

• 2: The image is displayed in its original size. The upper left corner of the image
lies in the upper left corner of the background area. That part of the image that
does not fit inside the background area is clipped. That part of the background
area that is not covered by the image remains empty with the background color
of the area, which is specified by the attribute bg. The constant imgOrig might
be used as an alias.

If imgStyle is not specified, then its default value is imgTile.

• svIdx: Expr must be an identifier (Identifier) that refers to a service variable
(ServiceVar). This attribute applies only to interactive user interface components
(GuiCmpt) that contain user data, e.g., Ixt. svIdx associates the user data of an
interactive user interface component with a service variable. Different user interface
components of a page (Page) must not associate their user data with the same service
variable, i.e., their svIdx attribute values must be different. Refer also to GuiCmpt
(page 141) and ServiceVar (page 145).

The value of svIdx is the index number of the referenced service variable. If svIdx is
not specified, it must not be referenced in an expression (Expr). There is no default
value for it.

For each page (Page) and user interface component (GuiCmpt) an attribute with a particu-
lar name (AttrName) may be defined at least once. In addition, cyclic attribute definitions
are not allowed. Refer also to Page and GuiCmpt for attribute information that is specific
for Page and the different user interface components (GuiCmpt).

140 5. CVM Packet Server (CVMPS)

CvmAs CvmAs specifies CVM assembler code that is executed by the CVM. Usually,
it contains additional data declarations and CVM instructions that are needed when the
CVM executes the instructions (CvmAsEntity∗) specified in Event. Refer to section B
(page 216) for more information on the CVM assembler.

Event Event specifies the behavior of a user interface component after an event of a
particular type (EventType) has occurred. Usually, an event occurs after the user of the
CVM has performed some action, e.g., pressed a key or clicked a mouse button, etc.
CvmAsEntity∗ contains CVM instructions that are executed then by the CVM.

Note that the AUI event types are not identical to the CVM event types. One or a
combination of single CVM events may be mapped to a particular AUI event. It is left to
the CVM packet generator to determine which CVM events make up an AUI event. Refer
to section 3.1.6 (pages 45) for more information on CVM events.

So far, the AUI event types evDwn and evUp are defined. These events apply to the user
interface component Btn. The evDwn/evUp event occurs when the user presses/releases a
button with a mouse click or with a particular key stroke, e.g., the Blank or Return key, if
the button currently has mouse or keyboard focus, i.e.,

evDwn ≡ mouse pressed left ∨
key pressed enter ∨
key pressed ∧ keyCode = XK space

evUp ≡ mouse released left ∨
key released enter ∨
key released ∧ keyCode = XK space

Note that several CVM events are already processed implicitly by the AUI components.
For example the user interface component Hlk automatically starts a new request for the
network service that is specified by the attribute values hostAdr and serviceNo after an
evDwn event occurs. In addition, the user interface component Ixt processes all the key and
mouse events for text input and text editing implicitly. Moreover, the user might release
or change the focus of the current user interface component and navigate to another one
with the following events:

“Focus Next”: key pressed ∧ keyCode = XK Tab

“Focus Previous”: key pressed ∧ keyCode = XK ISO Left Tab // Shift+Tab
“Focus Release”: key pressed escape ∧ keyCode = XK ISO Left Tab // Shift+Tab

The CVM code for the implicit event processing is provided by the CVM packet generator
and also defined in the CVMUI libraries. Refer to section C (page 249) for more information
on CVMUI libraries. During event handling first the CVM instructions are executed that
are specified explicitly in the AUI description for a given user interface component and for
a given event. If no explicit event behavior is specified, then the the implicit actions — if
available — are processed. For each user interface component (GuiCmpt) an event with a
particular type (EventType) may be defined at least once.

Additional event types for any user interface component types (GuiCmptType) may be
defined in the future.

5.1. Abstract User Interface Description (AUI) 141

Expr The value of an expression (Expr) might be an integer number or a string and is
evaluated by the CVM packet generator during generation of CVMUIs.

If its value is a string, then the expression consists of a single string literal (StringLiteral),
or of a single builtin function call (BuiltinFct) that returns a string, or of a single attribute
reference (AttrName | ’.’ AttrName | Identifier ’.’ AttrName) that refers to a string
value, or of a single identifier (Identifier) that refers to a service variable with a string
value, or of a concatenation of two string expressions with the ’+’ operator.

AttrName refers to the attribute (Attr) which has the same name AttrName and is specified
in the attribute list (Attr∗) of the page (Page) or user interface component (GuiCmpt)
where this expression (Expr) occurs.

The syntactic construct ’.’ AttrName refers to the attribute (Attr) which has the same
name AttrName and is specified in the attribute list (Attr∗) of the page (Page).

The syntactic construct Identifier ’.’ AttrName refers to the attribute (Attr) which has
the same name AttrName and is specified in the attribute list (Attr∗) of the user interface
component (GuiCmpt) with the identifier Identifier.

A single identifier (Identifier) refers to a service variable (ServiceVar).

The values of BuiltinFct and FontCode are specified in the sections that are referred to in
the comments of the respective productions in the lexical grammar specification.

All arithmetic operations with integer numbers are based on integer but not floating point
arithmetic.

GuiCmpt GuiCmpt defines a user interface component. It consists of its type (GuiCmpt-
Type), identifier (Identifier), attributes (Attr∗), and event behavior (Event∗).
So far, there are the following different user interface component types:

• Txt: A Txt user interface component is used to display single-line text. The following
attributes apply to it: x, y, w, h, fg, bg, fc, fs, str, yStr.

Only the attributes that apply to the user interface component can be specified, i.e.,
can appear in the attribute list (Attr∗). In addition, the following restrictions must
be met:

– The attributes x, str, and either y or yStr must be specified, i.e., must appear
in the attribute list (Attr∗).

– The attributes w and h must not be specified, because their values are derived
from str, fc, and fs.

• Txp: A Txp user interface component is used to display a text paragraph which
usually consists of several lines. The following attributes apply to it: x, y, w, h, fg,
bg, fc, fs, str, yStr.

Only the attributes that apply to the user interface component can be specified, i.e.,
can appear in the attribute list (Attr∗). In addition, the following restrictions must
be met:

– The attributes x, w, str, and either y or yStr must be specified, i.e., must
appear in the attribute list (Attr∗). The attribute w specifies the width of the
text paragraph. The text is aligned and broken into several lines automatically.

142 5. CVM Packet Server (CVMPS)

– The attribute h must not be specified, because its value is derived from str, fc,
fs, and the number of the lines in the text paragraph.

• Hlk: A Hlk user interface component is used to display a hyperlink that is similar to
a hyperlink in HTML [65]. The following attributes apply to it: x, y, w, h, fg, bg,
fc, fs, str, yStr, hostAdr, serviceNo.

Only the attributes that apply to the user interface component can be specified, i.e.,
can appear in the attribute list (Attr∗). In addition, the following restrictions must
be met:

– The attributes x, str, hostAdr, serviceNo, and either y or yStr must be
specified, i.e., must appear in the attribute list (Attr∗).

– The attributes w and h must not be specified, because their values are derived
from str, fc, and fs.

• Ixt: An Ixt user interface component is used to display a text box where the user
can input some text. The following attributes apply to it: x, y, w, h, fg, bg, fc, fs,
str, yStr, strLenMax, svIdx.

Only the attributes that apply to the user interface component can be specified. In
addition, the following restrictions must be met:

– The attributes x, w, str, strLenMax, and either y or yStr must be specified.

– The attribute h must not be specified, because its value is derived from fc and
fs.

– The attribute svIdx is optional. If it is specified, the data type of the referenced
service variable (ServiceVar) must be String. Refer to section 3.1.1 (page 33)
for more information on the CVM data type String.

The text that the user types in is stored into the attribute str and displayed imme-
diately. At most strLenMax characters are stored, further characters are ignored. As
in any common text box the width of the text may be longer then w. The attribute
w defines the width of the text box and thus the clip area of the text that is visible
all at once.

svIdx associates the user data of this user interface component, which is stored in
the attribute str, with the given service variable. If svIdx is not specified, then the
user data of this user interface component is not associated with a service variable.
So far, Ixt is the only interactive user interface component type that contains user
data. Additional interactive user interface component types with user data may be
defined in the future.

• Btn: A Btn user interface component is used to display a button. The button must
contain text (str) or a background image (img) or both. The following attributes
apply to it: x, y, w, h, fg, bg, fc, fs, str, yStr, img, imgStyle.

Only the attributes that apply to the user interface component can be specified. In
addition, the following restrictions must be met:

– The attribute x must be specified always.

5.1. Abstract User Interface Description (AUI) 143

– If the button contains text, then the attributes str and either y or yStr must
be specified as well. However, the attributes w and h must not be specified then,
because their values are derived from str, fc, and fs.

– If the button does not contain text, i.e., the attribute str is not specified, then
the attributes y, w, and h must be specified as well.

– If the button contains an image, then the attributes img and imgStyle must be
specified as well.

Refer also to Attr for more information on attributes. Note that user interface components
of the type Btn, Hlk, or Ixt are interactive, as they receive user input. Refer also to
Event for more information on user interaction and event behavior of the user interface
components.

In the future, additional (non-)interactive user interface component types may be defined,
e.g., check boxes, combo boxes, list boxes, tables, etc.

Identifier Lexically, an identifier (Identifier) must not match GuiCmptType, EventType,
AttrName, ImgStyle, VarType, ServerLng, BuiltinFct, FontCode, and ’CvmAs’. An iden-
tifier is used to name the service (ServiceId), the service variables (ServiceVar), pages
(PageId), and user interface component (GuiCmpt) when they are declared. The service
identifiers must be unique only for a particular CVM packet server. An identifier of a
service variable or page must be unique only within the identifiers of the other declared
service variables or pages, respectively. An identifier of a user interface component must be
unique only within the identifiers of the other declared user interface components within
the same page.

NatLiteral If the positive integer number specified by NatLiteral exceeds the maximum
value 231 − 1, it is truncated automatically to that limit by the CVM packet generator.

Page Page defines a complete AUI page. PageId is a unique page identifier and is used
within the AUI to refer to a particular page. Note that the CVM packet generator assigns
to each page identifier a unique number greater than or equal to zero. This number is then
used by the CVM to address a particular page during a request. Refer also to the CVM
instructions rcv and sendrcv.

Attr contains an attribute definition. The following attributes apply to a page: x, y, w, h,
fg, bg, fc, fs, img, imgStyle.

Only the attributes that apply to a page can be specified, i.e., can appear in the attribute
list (Attr∗). However, the attributes x, y, w, and h must not be specified. Their values
cannot be changed and are by default always 0, 0, cvmScreenWidth, and cvmScreenHeight,
respectively.

If the attributes fg, bg, fc, fs, img, and imgStyle are not specified, they are provided
with default values. These are rgb(0, 0, 0), rgb(255, 255, 255), fcFixedStandard,
13, "", and imgTile, respectively.

GuiCmpt contains a graphical user interface component. CvmAs contains CVM assembler
instructions that are executed by the CVM.

144 5. CVM Packet Server (CVMPS)

ServerActionCmd ServerActionCmd (”Server Action Command”) specifies actions
that are executed on the server side, when the CVM requests a page. The CVM requests a
page with the instructions rcv and sendrcv. A ServerActionCmd is identified by its unique
ServiceCmdId. The service generator assigns to each ServiceCmdId a unique index number
greater than or equal to zero. During a client request the CVM packet server first checks
the dataBytes section of the GET request. The binary format of the dataBytes section is
specified in ServiceVar (page 146). When it encounters the index number (svcCmdIdx) of
a ServiceCmdId, it executes the actions (ServerCode) of the respective ServerActionCmd
right after the dataBytes section of the GET request has been processed completely.

Refer also to the example in section 5.1.4 (page 149), to processDataBytes in section 5.2.2
(page 157), and to svcInst actionsCmd in the sections 5.3.1 (page 160) and 5.3.2 (page
161).

ServerActionPage ServerActionPage also specifies actions that are executed on the
server side, when the CVM requests a page. However, these actions are always executed
after the actions of a possibly referenced ServerActionCmd. The server-side actions of
ServerActionPage are depending on the state of the client-server session which is given by
the following values:

• The number of the page that is currently executed by the CVM. This page is refer-
enced by the first StatePageId. If the CVM starts requesting a page in the beginning
of a client-server session, i.e., the CVM is currently not executing a page that belongs
to this network service, then the first StatePageId is omitted or given as ’*’.

• The number of the page that is requested by the CVM. This page is referenced by
the second StatePageId.

The CVM packet server always stores for each CVM it serves the number of the page that
the CVM is currently executing, i.e., the number of the previously sent page during the
client-server session. When the CVM requests a new page, the CVM packet server checks
the server actions (ServerActionPage+) from top to bottom to find the first rule whose first
StatePageId corresponds to the number of the page that the CVM is currently executing.
If there is such a rule, the CVM packet server executes the actions within ServerCode and
sends a new page to the CVM. Note that the number of the new page may be changed
within ServerCode and therefore may be different than the number of the requested page,
which is referred to by the second StatePageId.

In the very beginning of a client-server session, i.e., when the CVM makes a first request,
the CVM packet server looks for the first rule where the first StatePageId is omitted or
given as ’*’ which is a placeholder for any or no page. If StatePageId is specified by a
PageId, then a page with the same name (PageId) must be defined in Page+.

Within ServerCode the following variable identifiers have special meanings:

• pageNow refers to the number of the previously sent page during the client-server
session. If there is no such page, which is the case in the beginning of a client-server
session, the value of pageNow is −1.

• pageReq refers to the number of the requested page.

5.1. Abstract User Interface Description (AUI) 145

• pageNext refers to the number of the page that is sent by the CVM packet server
to the client after the server-side actions have been processed. In the beginning of
the server-side actions the value of pageNext is initialized each time with the value
of pageReq. Note that within ServerCode the value of pageNext may be changed.
In the end of the server-side actions the value of pageNext is always checked. If its
value refers to a non-existing page number then its value is set to −1 and the CVM
packet server does not send any page to the client.

The number of an existing page with the identifier PageId is referred to by the term
svcInst PageId.

Refer also to the example in section 5.1.4 (page 149), and to svcInst actionsPage in the
sections 5.3.1 (page 160) and 5.3.2 (page 161).

ServerCode ServerCode contains the instructions that are executed by the CVM packet
server. The used programming language for the server code is indicated by ServerLng.

ServerCodeMisc ServerCodeMisc contains additional declarations and definitions of
constants, variables, and functions that are referenced in the instructions (ServerCode)
of the server-side actions (ServerActionCmd, ServerActionPage). The used programming
language is indicated by ServerLng and is the same as the programming language that is
used in ServerActionCmd and ServerActionPage.

ServerLng ServerLng indicates the programming language that is used to specify the
server-side actions (ServerCode). Note that the service providers can choose the program-
ming language freely.

ServiceNo, ServiceId A CVM packet server might offer several network services. Each
service is addressed by a number (ServiceNo) that is unique for a particular CVM packet
server. The ServiceId is just an descriptive alias name for the respective ServiceNo.

Note that for every CVM packet server the service number zero is always reserved for the
service that lists and describes all available services that are offered by the CVM packet
server. The user interface of this service also contains a menu for the user to select and
start a particular service.

ServiceVar ServiceVar declares a variable that stores a value during the client-server
session. In the following, these variables are called service variables. The service variables
are mainly used to store the values of the user interface components that take input from
the user of the CVM, e.g., the input string of a text box control. Expr defines an initial
value for a service variable. If VarType is Int then Expr might only consist of a single
integer number. If VarType is String then Expr might only consist of a single string
literal. If no initial value is specified explicitly, then the default value of a service variable
is either 0 or “”.

The CVM packet generator assigns to each service variable a unique index number greater
than zero and allocates for each service variable enough memory to store two values: its
current and saved value. In the beginning of a client-server session both values are equal.

146 5. CVM Packet Server (CVMPS)

The dataBytes section of a GET request overwrites only the current value of a service
variable. Refer to section 4.2 (page 130) for more information on the CPTP protocol
method GET. The binary format of the dataBytes section in the GET request is:

({ Nat<svIdxLen> svIdx; VarType svVal } |
{ Nat<svIdxLen> 0; Nat2 svcCmdIdx })∗

svIdx contains the index number of a particular service variable. svIdxLen is determined
by the CVM packet generator and may have the value 1, 2, or 4. Depending on the
total number of service variables the smallest byte size, i.e., the smallest possible value for
svIdxLen, is used to specify the index numbers. If VarType is Int, then svVal represents
an integer number and its binary format complies to a CVM integer number (Int) with the
byte length cvmIntLen. If VarType is String, then svVal represents a string and its format
complies to a CVM string (String). Refer to section 3.1.1 (page 32) for more information
on the CVM data types.

svcCmdIdx contains the index number of a ServiceCmdId. Refer to page 144 for more
information on ServiceCmdId and ServerActionCmd.

The values of the service variables can be accessed on the server side within the ServerCode
of the server actions (ServerActionCmd, ServerActionPage) for further processing. Note
that the precise syntax for accessing the service variables within the server actions need
not be specified here. This depends on the programming language (ServerLng) that is
used for the server actions and is therefore left to the service providers. In the current
implementation the service variables are accessed as follows:

• svcVarInt_get(svcVarId) returns the current integer (Int) value of the service
variable with the Identifier svcVarId.

• svcVarInt_set(svcVarId, val) assigns the current integer value val to the service
variable svcVarId, e.g., svcVarInt_set(var1, 18).

• svcVarStr_get(svcVarId) returns the current string (String) value of the service
variable svcVarId.

• svcVarStr_set(svcVarId, val) assigns the current string value val to the service
variable svcVarId, e.g., svcVarStr_set(var2, "hello world!").

• svcVar_reset() resets the current values of all service variables with their saved
values.

• svcVar_save() saves the current values of all service variables, i.e., overwrites the
(old) saved values with their current values.

Refer to the example in section 5.1.4 (page 149) for a demonstration of these server-side
functions.

The current and the saved value for each service variable is needed because of the following
reason: When the user navigates through the AUI subpages, the values of the user interface
components that store user input are only saved as current values on the server-side. Then
the user has the ability to reset all values of these controls to the latest saved values. The
current values are only saved when the function svcVar save() is called on the server side
in ServerCode.

5.1. Abstract User Interface Description (AUI) 147

StatePageId StatePageId refers to a page. If it matches PageId, then it refers to a
particular page (Page) with the same identifier. If it matches ’*’, then it refers to any
page regardless of whether it has been defined in the AUI description. If it matches ’^’,
then it refers to any page that has not been defined in the AUI description.

StringLiteral Refer to “StringLiteral” in section B.1 (page 222).

5.1.2 Abstract Syntax

The abstract syntax of the AUI grammar is specified as a data type definition with the root
Aui. Refer to section A.3 (page 208) for a description of the used notation. The abstract
syntax is used in the following sections that describe the structure of the generated CVM
code from a given AUI description.

Aui = { Int serviceNo;
String serviceId ;
ServiceVar∗ serviceVars ;
Page+ pages ;
Int serverLng ;
ServerActionCmd∗ serverActionsCmd ;
ServerActionPage+ serverActionsPage;
String serverCodeMisc }

ServiceVar = { String id ;
Int varType;
(Int | String) valInit }

Page = { String id ;
Int pageNo, subpageNo;
PageItem∗ pageItems }

PageItem = Attr | GuiCmpt | CvmAs

ServerActionCmd = { String idServiceCmd, serverCode }

ServerActionPage = { String idPageCurrent, idPageNext, serverCode }

GuiCmpt = { String id ;
Int guiCmptType;
GuiCmptItem∗ guiCmptItems }

GuiCmptItem = Attr | Event

Attr = { Int attrName;
Expr expr }

Event = { Int eventType;
String cvmAs }

148 5. CVM Packet Server (CVMPS)

CvmAs = { String cvmAs }

Expr = Add | Sub | Mul | Div | Rem | UnMinus |
AttrRefLocal | AttrRefGuiCmpt | AttrRefPage |
Id |
BuiltinFct |
IntLit | StrLit

Add = { Expr expr1, expr2 }
Sub = { Expr expr1, expr2 }
Mul = { Expr expr1, expr2 }
Div = { Expr expr1, expr2 }
Rem = { Expr expr1, expr2 }
UnMinus = { Expr expr }
BuiltinFct = { Int fctCode;

Expr∗ pars }
AttrRefGuiCmpt = { Int attrName;

String idGuiCmpt }
AttrRefLocal = { Int attrName }
AttrRefPage = { Int attrName }
Id = { String id }
IntLit = { Int val }
StrLit = { String val }

Note that if aui represents the abstract syntax tree after a given AUI description has been
parsed, then aui .pages [q].pageNo := q ∧ aui .pages [q].subpageNo := 0 (q ≥ 0). The tuple
item subpageNo is needed later for the numbering of the generated subpages of a given
AUI page, because the data type Page is also used to formally refer to an AUI subpage.
Refer to section 5.2 (pages 154 ff.) for more information on AUI subpages.

5.1.3 Builtin Functions

For reasons of convenience, the AUI also provides some builtin functions to simplify spec-
ifying user interfaces with AUI. The CVM packet generator processes a builtin function
during it generates the corresponding CVMUI. In the following, the builtin functions are
listed alphabetically and described using the following description format:

builtin function name (parameters) : return type
verbose description

builtin function name serves as a one-word description of the purpose of the function. pa-
rameters is a (comma separated and possibly empty) list of function parameters. Each
parameter is shown in the form identtype . ident can be any identifier and is usually chosen
to characterize the meaning of the parameter. type determines the syntactic type of the
parameter according to the grammar specification in section 5.1.1 (page 136). The param-
eter must match the production for type. For example, valExpr might be used to specify
a value that matches the production for Expr. return type specifies the data type of the
result and is one of the CVM data types Int, Nat, String, or a tuple structure. Afterwards,
a verbose description of the builtin function is given.

5.1. Abstract User Interface Description (AUI) 149

So far, the following builtin functions are defined. Additional builtin functions may be
defined in the future:

rgb (redExpr , greenExpr , blueExpr) : Int4
The builtin function rgb encodes the given red, green, and blue color components into an
appropriate Int4 number according to the following format: (red � 16) | (green � 8) | blue.
The values of the expressions red, green, and blue must be unsigned integer numbers in the
range of [0; 255].

5.1.4 Example

The following description of a simple network service demonstrates the use of AUI. This
example can be found in the subdirectory Implementation/CvmPacketServer/Aui/.

registration.aui This service consists of two pages which are illustrated by the figures
5.1 (page 149) and 5.2 (page 150). The first page (p0) reads the name and email address
from the user. The user can navigate through the user interface components with the Tab
and Shift+Tab keys. When the user presses the ”Reset” button, the contents of the two
text boxes are reset to their initial values. When the user presses the ”Submit” button, the
contents of the two text boxes are send to the CVM packet server and saved. The CVM
packet server then sends the second page (p1) which confirms the data the user has input
in the previous page.

Figure 5.1: CVM Screen Shot: AUI Page p0 from registration.aui

Concrete Syntax The concrete syntax of registration.aui is as follows:

1, registration

%%

String name = "your name"
String email = "your email"

%%

150 5. CVM Packet Server (CVMPS)

Figure 5.2: CVM Screen Shot: AUI Page p1 from registration.aui

p0 {
fg = rgb(0, 0, 0); bg = rgb(222, 218, 210);
fc = fcHelvetica; fs = 12;

Txt txtTitle {
x = (.w - w) / 2; y = 5;
fc = fcHelveticaBold; fs = 14;
str = "Registration";

}

Txp txpIntro {
x = 10; y = txtTitle.y + txtTitle.h + 5; w = .w - 2 * x;
str = "Welcome to the registration form. " +

"Please enter your name and email address:";
}

Txt txtName {
x = 10; yStr = ixtName.yStr; str = "Name";

}

Ixt ixtName {
x = txtName.x + txtName.w + 10; y = txpIntro.y + txpIntro.h + 5; w = 150;
bg = rgb(255, 255, 255);
fc = fcCourier; str = name; strLenMax = 80;
svIdx = name;

}

Txt txtEmail {
x = txtName.x; yStr = ixtEmail.yStr; str = "Email";

}

Ixt ixtEmail {
x = ixtName.x; y = ixtName.y + ixtName.h + 5; w = 150;
bg = rgb(255, 255, 255);
fc = fcCourier; str = email; strLenMax = 80;
svIdx = email;

}

5.1. Abstract User Interface Description (AUI) 151

Btn btnReset {
x = txtName.x; y = ixtEmail.y + ixtEmail.h + 10;
fg = rgb(51, 51, 51); bg = rgb(210, 218, 230);
str = "Reset";

evDwn {
fcall _svBufIdx_reset
fcall_I _svBuf_svcCmd_write, svcCmd_Reset
sendrcvpage_a _pageNo, _subpageNo

}
}

Btn btnSubmit {
x = btnReset.x + btnReset.w + 5; y = btnReset.y;
fg = btnReset.fg; bg = btnReset.bg;
str = "Submit";

evDwn {
fcall _svBuf_write
fcall_I _svBuf_svcCmd_write, svcCmd_Submit
sendrcvpage _p1, 0

}
}

}

p1 {
fg = rgb(0, 0, 0); bg = rgb(222, 218, 210);
fc = fcHelvetica; fs = 12;

Txt txtTitle {
x = (.w - w) / 2; y = 5;
fc = fcHelveticaBold; fs = 14;
str = "Confirmation of Your Data";

}

Txt txtName {
x = 10; y = txtTitle.y + txtTitle.h + 10;
str = "Name:";

}

Txt txtNameVal {
x = txtName.x + txtName.w + 10; y = txtName.y;
str = name;

}

Txt txtEmail {
x = txtName.x; y = txtName.y + txtName.h + 5;
str = "Email:";

}

Txt txtEmailVal {

152 5. CVM Packet Server (CVMPS)

x = txtNameVal.x; y = txtEmail.y;
str = email;

}

Hlk hlkService {
x = txtEmail.x; y = txtEmail.y + txtEmail.h + 10;
str = "Exit and return to the Registration Form";
hostAdr = "127.0.0.1";
serviceNo = 1;

}
}

pNotExist {
fg = rgb(0, 0, 0); bg = rgb(222, 218, 210);

Txt txtErrMsg {
x = (.w - w) / 2; y = 5;
str = "Requested page does not exist";

}
}

pIllegal {
fg = rgb(0, 0, 0); bg = rgb(222, 218, 210);

Txt txtErrMsg {
x = (.w - w) / 2; y = 5;
str = "Illegal page request";

}
}

%% C

svcCmd_Reset:
{
printf("svcCmd_Reset\n");
svcVar_reset();
printf("name = \"%s\", email = \"%s\"\n",

svcVarStr_get("name"), svcVarStr_get("email"));
}

svcCmd_Submit:
{
printf ("svcCmd_Submit\n");
svcVar_save();
printf("name = \"%s\", email = \"%s\"\n",

svcVarStr_get("name"), svcVarStr_get("email"));
}

%%

5.1. Abstract User Interface Description (AUI) 153

p0: { printf("-> p0\n"); }
p0, p1: { printf("p0 -> p1\n"); }
*, ^: { pageNext = _svcInst_pNotExist; }
*, pNotExist: { pageNext = _svcInst_pIllegal; }
*, *: {}

Refer to section 5.5 (pages 166 ff.) for more information on svBufIdx reset, svBuf svc-

Cmd write, svcCmd_Reset, _pageNo, _subpageNo, _svBuf_write, svcCmd_Submit, and
_p1.

Abstract Syntax In the following, the data structure of its abstract syntax is pre-
sented in a generally understandable notation. For better readability, some tuple structures
are decorated with their type names. For example,

{ val = fcHelvetica }IntLit

denotes that the type of the specified tuple structure is IntLit.

aui = {
serviceNo = 1;
serviceId = “registration”;
serviceVars = serviceVars [];
pages = pages [];
serverLng = C;
serverActionsCmd = serverActionsCmd [];
serverActionsPage = serverActionsPage[];
serverCodeMisc = “” }

serviceVars [0] = { id = “name”; varType = String; valInit = “your name” }
serviceVars [1] = { id = “email”; varType = String; valInit = “your email” }

pages [0] = { id = “p0”;
pageNo = 0; subpageNo = 0;
pageItems = pages [0] pageItems [] }

pages [0] pageItems [0] = {
attrName = fg; expr = { val = (0� 16) + (0� 8) + 0 }IntLit }Attr

pages [0] pageItems [1] = {
attrName = bg; expr = { val = (217� 16) + (218� 8) + 202 }IntLit }Attr

pages [0] pageItems [2] = {
attrName = fc; expr = { val = fcHelvetica }IntLit }Attr

pages [0] pageItems [3] = {
attrName = fs; expr = { val = 12 }IntLit }Attr

pages [0] pageItems [4] = {
id = “txtTitle”; guiCmptType = Txt;
guiCmptItems = pages [0] pageItems [4] guiCmptItems [] }GuiCmpt

pages [0] pageItems [4] guiCmptItems [0] = {

154 5. CVM Packet Server (CVMPS)

attrName = x;
expr = { expr1 = { expr1 = { attrName = w }AttrRefPage ;

expr2 = { attrName = w }AttrRefLocal }Sub ;
expr2 = { val = 2 }IntLit }Div

}Attr

pages [0] pageItems [4] guiCmptItems [1] = {
attrName = y; expr = { val = 5 }IntLit }Attr

pages [0] pageItems [4] guiCmptItems [2] = {
attrName = fc; expr = { val = fcHelveticaBold }IntLit }Attr

pages [0] pageItems [4] guiCmptItems [3] = {
attrName = fs; expr = { val = 14 }IntLit }Attr

pages [0] pageItems [4] guiCmptItems [4] = {
attrName = str; expr = { val = “Registration” }StrLit }Attr

...
pages [0] pageItems [11] guiCmptItems [3] = {

attrName = bg;
expr = { attrName = bg; idGuiCmpt = “btnReset” }AttrRefGuiCmpt }Attr

...
pages [0] pageItems [11] guiCmptItems [5] = {

eventType = evDwn;
cvmAs = “fcall _svBuf_write

fcall_I _svBuf_svcCmd_write, svcCmd_Submit

sendrcvpage _p1, 0” }Event

pages [1] = ... // etc.

...

serverActionsCmd [0] = {
idServiceCmd = “svcCmd_Reset”;
serverCode = “printf("svcCmd_Reset\n");

svcVar_reset();

printf("name = \"%s\", email = \"%s\"\n",

svcVarStr_get("name"), svcVarStr_get("email"));” }

...

serverActionsPage[1] = {
idPageCurrent = “p0”;
idPageNext = “p1”;
serverCode = “printf("p0 -> p1\n");” }

5.2 Session Manager

The session manager processes all incoming client messages and stores the session data.
The abstract AUI syntax trees of the offered network services are stored in a list structure
and referred to by the variable auiDescrs :

5.2. Session Manager 155

Aui∗ auiDescrs

The abstract AUI syntax tree of the network service with the service number serviceNo is
referred to by the expression auiDescrs [serviceNo], i.e., auiDescrs [serviceNo].serviceNo =
serviceNo.

5.2.1 Session Data

The data that is involved in a client-server session is stored in a separate data structure
of the type CVMSession. All sessions are stored in a list structure and referred to by the
variable sessions :

CVMSession∗ sessions

CVMSession = { Nat1[4] sessionId ;
Int serviceNo, timestamp;
String cvmHostAdr ;
CVMProfile cvmProfile;
Aui [numCvmPackets] genAuis;
Int pageNo, pageNoGen, pageNoReq, subpageNoReq ;
ServiceVar [numSvcVars] serviceVars, serviceVarsSaved ;
Int svcCmdIdx }

ServiceVar = { Int idx ;
String id ;
Int type;
(Int | String) val }

Comments

• sessionId identifies the current client-server session. For each new client-server ses-
sion the CVM packet server assigns a unique value for sessionId. A client-server
session usually consists of several CPTP transactions whereas the time between two
GET messages depends on the user of the CVM and therefore may vary. All CPTP
messages that belong to the same client-server session share the same unique value
for the message item sessionId. Refer also to sessionId in section 4.1 (page 128).

• serviceNo contains the number of the service that is processed during the respec-
tive client-server session. Refer also to serviceNo in section 4.2 (page 130) and to
ServiceNo in section 5.1.1 (page 145).

• timestamp contains the time when the CVM packet server has received the most
recent message from the CVM. The session manager regularly checks the timestamp
values of all sessions in sessions. Those sessions whose timestamp value exceed a
predefined value will be treated as terminated. They will be removed from sessions
and their system resources will be cleaned up.

• cvmHostAdr contains the host address of the CVM. The host address might be a
DNS [45] name or an IP address [62] in standard dot notation.

156 5. CVM Packet Server (CVMPS)

• cvmProfile contains the CVM profile of the requesting CVM. Refer also to CvmProfile
in section 3.7 (page 89) and to cvmProfile in section 4.2 (page 130).

• genAuis is generated by the CVM packet generator and serves as an intermediate
presentation of the generated CVM packets that belong to the currently requested
AUI page. The CVM packet generator generates from a given AUI page one or more
AUI subpages which are grouped into CVM packets. numCvmPackets refers to the
number of generated CVM packets. genAuis [i] (0 ≤ i < numCvmPackets) refers to the
intermediate presentation of the ith CVM packet. It contains the AUI subpages of
the ith CVM packet. Refer to section 5.4 (page 163) for more information on the
generation process and the structure of genAuis.

The translation of genAuis [i] into a CVM packet is specified in section 5.5 (page
166). During the translation, each AUI subpage is translated into a CVMUI page.
Thus, a CVMUI page is addressed by the respective AUI page and subpage number.

• pageNo contains the AUI page number of the CVMUI page that has been sent by the
CVM packet server to the CVM most recently. In the beginning of a client-server
session pageNo contains a predefined negative integer number to indicate that no
CVMUI page has been sent to the CVM so far during the session. Here such a value
is expressed with the term pageNoNull. The value of pageNoNull, e.g., −1, is left to
the implementors’ choice.

• pageNoGen contains the AUI page number of the AUI page that has been customized
by the CVM packet generator most recently.

• pageNoReq and subpageNoReq contain the AUI page and subpage number of the
requested CVMUI page, respectively.

• serviceVars and serviceVarsSaved contain the values of the service variables that be-
long to the network service that is processed during the client-server session. service-
Vars contains the current values, serviceVarsSaved contains the saved values. Refer
to ServiceVar in section 5.1.1 (page 145) and to the procedure processDataBytes in
section 5.2.2 (page 157).

• numSvcVars = #(auiDescrs [serviceNo].serviceVars), with #(...) refers to the number
of elements in the given list structure.

• svcCmdIdx contains the index of a service command, if available. Refer to ServerAc-
tionCmd in section 5.1.1 (page 144), to ServiceVar in section 5.1.1 (page 145), and
to the procedure processDataBytes in section 5.2.2 (page 157).

• idx, id, type, and val contain the index number, the name, the type, and the current
value of a service variable, respectively. Refer also to ServiceVar in section 5.1.1
(page 145).

5.2.2 Main Loop

The behavior of the session manager is described in a generally understandable pseudo-code
notation and mainly consists of the following loop:

5.2. Session Manager 157

repeat forever {
CptpMessage cptpMsg := waitForClientMessage();
switch (cptpMsg .methodCode) {
ERROR:

processErrorMsg(sessions, cptpMsg .sessionId, cptpMsg .errorCode, cptpMsg .memAdr);
PROFILE:

if (∃k ≥ 0 : sessions[k].sessionId = cptpMsg .sessionId)
{ sessions[k].cvmProfile := cptpMsg .cvmProfile; }

GET:
if (@auiDescrs[cptpMsg .serviceNo])
{ processRequestForUnknownService(cptpMsg .serviceNo); }

else
if (@k ≥ 0 : sessions[k].sessionId = cptpMsg .sessionId) {

k := #(sessions);
sessions[k].sessionId := newSessionId();
sessions[k].serviceNo := cptpMsg .serviceNo;
sessions[k].pageNo := pageNoNull ;
sessions[k].pageNoGen := pageNoNull ;
sessions[k].cvmHostAdr := cvmHostAdr();
for (Int j := 0; j < #(auiDescrs[sessions[k].serviceNo].serviceVars); j++) {

sessions[k].serviceVars[j].idx := j + 1;
sessions[k].serviceVars[j].id :=

auiDescrs[cptpMsg .serviceNo].serviceVars[j].id ;
sessions[k].serviceVars[j].type :=

auiDescrs[cptpMsg .serviceNo].serviceVars[j].varType;
sessions[k].serviceVars[j].val :=

auiDescrs[cptpMsg .serviceNo].serviceVars[j].valInit ;
}

sessions[k].serviceVarsSaved := sessions[k].serviceVars;
}

// ∃k ≥ 0 : sessions[k].sessionId = cptpMsg .sessionId ∧
// sessions[k].serviceNo = cptpMsg .serviceNo
sessions[k].pageNoReq := cptpMsg .pageNo;
sessions[k].subpageNoReq := cptpMsg .subpageNo;
sessions[k].timestamp := timestampNow();
processDataBytes();
checkSndRcvCVMProfile(sessions[k].cvmProfile,

cptpMsg .serviceNo, cptpMsg .pageNo, cptpMsg .cvmProfile);
if (¬existServiceInstance()) {

generateServiceInstance(auiDescrs[sessions[k].serviceNo], sessions[k].cvmProfile);
}

execServiceInstance(sessions[k]);
}

}
}

The procedure processDataBytes() is defined as follows:

processDataBytes() {
sessions[k].svcCmdIdx := −1;
for (Int i := 0; i < cptpMsg .numBytes; i++) {

158 5. CVM Packet Server (CVMPS)

Int svcVarIdx := Nati ,svIdxLen
cptpMsg.dataBytes;

i := i + svIdxLen;
if (svcVarIdx = 0) {

sessions[k].svcCmdIdx := Nati,2cptpMsg.dataBytes;
i := i + 2;
}

else {
switch (sessions[k].serviceVarssvcVarIdx .type) {
Int: sessions[k].serviceVarssvcVarIdx .val := Inti ,cvmIntLen

cptpMsg.dataBytes;
i := i + cvmIntLen;

String: sessions[k].serviceVarssvcVarIdx .val := Stringi
cptpMsg.dataBytes;

i := i + byteLen(Stringi
cptpMsg.dataBytes);

}
}
}
}

Comments

• CptpMessage: Refer to section 4.1 (page 128) for more information on this data type.

• waitForClientMessage() makes the session manager wait until it receives a message
from a CVM. When it receives a message, waitForClientMessage() stores the incom-
ing message into a data structure of the type CptpMessage. Refer to section 4.1 (page
128) for more information on the data type CptpMessage.

• processErrorMsg(...): The server implementors can decide on their own how they
handle incoming error messages. Usually, error messages might be collected for de-
bugging purposes, particularly when they result from malformed CVM packets.

• ∃auiDescrs [cptpMsg .serviceNo] ⇔
∃i ≥ 0 : auiDescrs [i].serviceNo = cptpMsg .serviceNo

• processRequestForUnknownService(cptpMsg .serviceNo): The server implementors
can decide on their own how they handle incoming requests for network services
that are not offered by this CVM packet server.

• #(...) refers to the number of elements in the given list structure.

• newSessionId() returns a unique 4-byte number not equal to zero that is not al-
ready used by another session in the session list as a sessionId, i.e., ∀k ≥ 0 :
session[k].sessionId 6= newSessionId().

• cvmHostAdr refers to the host address of the CVM. The host address might be a
DNS [45] name or an IP address [62] in standard dot notation.

• timestampNow() returns an integer value that contains the current date and time.

• checkSndRcvCVMProfile(...) checks whether the CVM profile session.cvmProfile con-
tains all the essential CVM profile data that are needed for the generation of the

5.3. Service Generator 159

client-specific service instance and the CVM packets. If some profile items are miss-
ing the session manager sends a CPTP message to the CVM to request the missing
items. Refer also to the CPTP protocol method PROFILE in section 4.2 (page 130).

• existServiceInstance() returns true, if the executable file of the client-specific service
instance has already been generated previously during this client-server session. Oth-
erwise, it returns false. Here, the service instance is generated for each client-server
session only once and in the beginning of the session, i.e., when the first client request
with the CPTP method GET is being processed by the session manager.

• generateServiceInstance(...) generates from a given AUI description and a given CVM
profile an executable file that represents the client-specific service instance. Refer to
the sections 5.3.1 (page 160) and 5.3 (page 159) for more information on the service
instance and its generation.

• execServiceInstance(...) executes the previously generated service instance file. Whether
a separate and concurrent process is started for the service instance is left to the im-
plementors’ choice.

• Nati ,svIdxLen
cptpMsg.dataBytes refers to the Nat<svIdxLen> number that starts in the byte array

cptpMsg.dataBytes at the index position i.

Inti ,cvmIntLen
cptpMsg.dataBytes refers to the Int<cvmIntLen> number that starts in the byte array

cptpMsg.dataBytes at the index position i.

Stringi
cptpMsg.dataBytes refers to the CVM String that starts in the byte array cptpMsg.-

dataBytes at the index position i.

byteLen(Stringi
cptpMsg.dataBytes) refers to the byte length of the whole given CVM String

structure.

Refer to section 3.1.1 (page 32) for more information on the CVM data types. Refer
to section 5.1.1 (page 145) for more information on service variables.

• session.serviceVarssvcVarIdx refers to the service variable that meets the following con-
ditions:
∃j ≥ 0 : (session.serviceVars [j] = session.serviceVarssvcVarIdx ∧

session.serviceVars [j].idx = svcVarIdx)

• Note that the pseudo-code that decides which sessions in the session list are con-
sidered as terminated — according to their timestamp values — and that regularly
cleans up the session list is not shown here. This is left to the implementors’ choice
as well.

5.3 Service Generator

The service generator creates from the given Aui and CVMProfile data structures an
executable file that represents the service instance. The Aui and the CVMProfile data
types are specified in the sections 5.1.2 (page 147) and 3.7 (page 89), respectively. The
service instance consists of a fixed and a generated part. The fixed part of the service
instance does not depend on the given AUI description and CVM profile and therefore
is the same in every client-server session. The generated part, however, does depend on

160 5. CVM Packet Server (CVMPS)

the given AUI description and CVM profile and therefore might vary for each client-server
session.

5.3.1 Fixed Part of the Service Instance

The fixed part of the service instance contains the main procedure of the service instance
and is described in a generally understandable pseudo-code notation:

execServiceInstance (sessions[k]) {
Int pageNoNew ;
svcInst actionsCmd(sessions[k].svcCmdIdx);

pageNoNew := svcInst actionsPage(sessions[k].pageNo, sessions[k].pageNoReq);
if (pageNoNew 6= pageNoNull) {

if (sessions[k].pageNoReq 6= pageNoNew) {
sessions[k].pageNoReq := pageNoNew ;
sessions[k].subpageNoReq := 0;
}

if (sessions[k].pageNoReq 6= sessions[k].pageNoGen) {
sessions[k].genAuis := generateAuis(auiDescrs[sessions[k].serviceNo],

sessions[k].pageNoReq , sessions[k].cvmProfile,
sessions[k].serviceVars);

sessions[k].pageNoGen := sessions[k].pageNoReq ;
}

CVMPacket cvmp := aui2cvmui(sessions[k].genAuis[cvmpNosessions[k].subpageNoReq
sessions[k].genAuis],

sessions[k].cvmProfile,
sessions[k].pageNoReq , sessions[k].subpageNoReq ,
sessions[k].serviceVars);

if (sndCvmp(cvmp)) {
sessions[k].pageNo := sessions[k].pageNoReq ;
}
}
}

Comments

• svcInst actionsCmd(...) and svcInst actionsPage(...) are generated functions.
Refer to section 5.3.2 (page 161) for more information on the generated part of a
service instance.

• generateAuis(...) generates the intermediate presentations of the customized CVM
packets that belong to the currently processed AUI page. This generation is per-
formed by the CVM packet generator in the first step. Refer to the section 5.4 (page
163) for more information on the CVM packet generator.

• aui2cvmui(...) translates the given Aui structure into a CVM packet that contains
CVMUI pages. This translation is performed by the CVM packet generator in the
second step. Refer to section 5.5 (page 166) for the structure of a CVMUI.

5.3. Service Generator 161

• 0 ≤ cvmpNo
sessions[k].subpageNoReq
sessions[k].genAuis < numCvmPackets

∧
∃1u, v ≥ 0 : sessions [k].genAuis [u].pages [v].pageNo =

sessions [k].pageNoReq ∧
sessions [k].genAuis [u].pages [v].subpageNo =
sessions [k].subpageNoReq

∧
u = cvmpNo

sessions[k].subpageNoReq
sessions[k].genAuis

• sndCvmp(...) sends the generated CVM packet to the client-side CVM by using the
CPTP protocol method CVMP. If no error occurs, sndCvmp(...) returns true, otherwise
false. Refer to section 4.2 (page 129) for more information on CVMP.

5.3.2 Generated Part of the Service Instance

The generated output is a C [20] program that contains the declarations and initializa-
tions of the service variables (ServiceVar∗), the server actions (ServerActionCmd, Server-
ActionPage), and, if available, additional server-side code (ServerCodeMisc). For easier
readability the following definition is used:

Aui aui := auiDescrs [sessions [k].serviceNo]

The following code template specifies the generated output:

#include "_svcInst.h"

///////////////
// Page Numbers
///////////////

enum {
<∀page ∈ aui .pages>
svcInst<page.id> <if : isLastListElem(page)> , <end>

<end>
};

/////////////////
// ServerCodeMisc
/////////////////

<aui .serverCodeMisc>

///////////////////
// ServerActionsCmd
///////////////////

<∀i : 0 ≤ i < #(aui .serverActionsCmd)>
#define _svcInst_<aui .serverActionsCmd [i].idServiceCmd> <i>

<end>

162 5. CVM Packet Server (CVMPS)

int _svcInst_actionsCmd (int svcCmdIdx)
{ dprint {
<if : #(aui .serverActionsCmd) > 0>
switch (svcCmdIdx)

{
<∀serverActionCmd ∈ aui .serverActionsCmd>
case _svcInst_<serverActionCmd .idServiceCmd>:
{
<serverActionsCmd .serverCode>
}
break;

<end>
}

<end>
}}

////////////////////
// ServerActionsPage
////////////////////

int _svcInst_actionsPage (int pageNow, int pageReq)
{ dprint {
int pageNext = pageReq;
<∀serverActionPage ∈ aui .serverActionsPage>

<if : isFirstListElem(serverActionPage)>
if (

<else>
else if (

<end>
<call : statePageId2boolExpr(pageNow, serverActionPage.idPageCurrent)>
&&
<call : statePageId2boolExpr(pageReq, serverActionPage.idPageNext)>)

{
<serverActionPage.serverCode>
}

<end>
if (pageNext < _svcInst_<aui .pages[0].id> ||

pageNext > _svcInst_<lastListElem(aui .pages).id>)
{ pageNext = _svcInst_pageNoNull; }

return pageNext;
}}

<fct : statePageId2boolExpr(String pageId , String statePageId)>
<if : statePageId = ””>

<pageId> == _svcInst_pageNoNull
<elseif : statePageId = ”∗”>
true

<elseif : statePageId = ”^”>
<pageId> < _svcInst_<aui .pages[0].id> ||
<pageId> > _svcInst_<lastListElem(aui .pages).id>

<else>

5.4. CVM Packet Generator 163

<pageId> == _svcInst_<statePageId>
<end>

Comments

• isLastListElem(page) = true ⇔
page is the last element in the list structure aui .pages

• isFirstListElem(serverActionPage) = true ⇔
serverAction is the first element in the list structure aui .serverActions

• lastListElem(aui .pages) refers to the page that is the last element in the list structure
aui .pages .

• _svcInst_pageNoNull equals to pageNoNull. Refer to section 5.2.1 (page 155) for
more information on pageNoNull.

• Note that this (simple) code template does not depend on sessions [k].cvmProfile,
because its main purpose is only to demonstrate the proposed concepts. As already
mentioned, the service providers can freely choose the complexity of their server-side
architectures.

5.4 CVM Packet Generator

The CVM packet generator generates from a given AUI page one or more AUI subpages
which are grouped into CVM packets. Here the generation of the CVM packets takes place
in two steps:

First a tree transformation is performed where the input tree represents the AUI description
of the currently processed network service and the output tree contains the intermediate
presentations of the customized CVM packets. Note that for the intermediate presentation
of a generated CVM packet the data type Aui is used as well. In addition, an AUI subpage
is represented by the data type Page. These data types are defined in section 5.1.2 (page
147).

In the second step, the intermediate presentation of a customized CVM packet that contains
the requested AUI subpage is translated into a binary and executable CVM packet. During
the translation, each AUI subpage is translated into a CVMUI page. Thus, a CVMUI page
is addressed by the respective AUI page and subpage number. The structure of a CVMUI
is specified in section 5.5 (page 166).

The tree transformation (generateAuis) in the first step is described as follows:

generateAuis : Aui × Nat × CVMProfile × ServiceVar∗ 7−→ Aui∗

generateAuis must meet particular conditions. For the specification of these conditions,
first some definitions are made with respect to the previous sections:

164 5. CVM Packet Server (CVMPS)

Aui aui := auiDescrs [sessions [k].serviceNo]

Nat numPages := #(aui .pages), with #(...) refers to the number of elements in the given
list structure.

Without loss of generality: ∀q (0 ≤ q < numPages) : aui .pages [q].pageNo = q ∧
aui .pages [q].subpageNo = 0

Nat pageNoReq := sessions [k].pageNoReq

CVMProfile cvmProfile := sessions [k].cvmProfile

ServiceVar serviceVars := sessions [k].serviceVars

Aui [numCvmPackets] genAuis := generateAuis(aui , pageNoReq , cvmProfile,
serviceVars)

Then, genAuis must meet the following conditions:

(1) numCvmPackets > 0

(2) ∀p (0 ≤ p < numCvmPackets) :
genAuis [p].serviceNo = aui .serviceNo ∧
genAuis [p].serviceId = aui .serviceId ∧
genAuis [p].serviceVars = aui .serviceVars ∧
genAuis [p].serverLng = aui .serverLng ∧
genAuis [p].serverActionsCmd = aui .serverActionsCmd ∧
genAuis [p].serverActionsPage = aui .serverActionsPage ∧
genAuis [p].serverCodeMisc = aui .serverCodeMisc ∧

(3) ∃numSubpages > 0 ∧ ∃nump
Subpages > 0 (0 ≤ p < numCvmPackets) :

∀p (0 ≤ p < numCvmPackets) :∑
p

nump
Subpages = numSubpages ∧

#(genAuis [p].pages) = numPages + nump
Subpages − 1

(4) ∀p (0 ≤ p < numCvmPackets) ∧ ∀q (0 ≤ q < numPages) :

q < pageNoReq ⇒ genAuis [p].pages [q] = aui .pages [q] ∧
q > pageNoReq ⇒ genAuis [p].pages [q + nump

Subpages − 1] = aui .pages [q]

(5) ∀p (0 ≤ p < numCvmPackets) ∧ ∀r (0 ≤ r < nump
Subpages) :

genAuis [p].pages [pageNoReq + r].id = aui .pages [pageNoReq].id ∧
genAuis [p].pages [pageNoReq + r].pageNo = aui .pages [pageNoReq].pageNo ∧
0 ≤ genAuis [p].pages [pageNoReq + r].subpageNo < numSubpages

(6) ∀j (0 ≤ j < numSubpages) :
∃1p (0 ≤ p < numCvmPackets) ∧ ∃1q (0 ≤ q < #(genAuis [p].pages)) :

genAuis [p].pages [q].pageNo = pageNoReq ∧
genAuis [p].pages [q].subpageNo = j

(7) ∀p (0 ≤ p < numCvmPackets) ∧ ∀r (0 ≤ r < nump
Subpages) :

checkCvmPacket(aui2cvmui(genAuis [p], cvmProfile,
genAuis [p].pages [pageNoReq + r].pageNo,
genAuis [p].pages [pageNoReq + r].subpageNo,
serviceVars),

cvmProfile) = true

5.4. CVM Packet Generator 165

Figure 5.3 (page 165) illustrates the structure of the output tree genAuis. In this figure
subpagep

r (0 ≤ r < nump
Subpages) refers to genAuis [p].pages [pageNoReq + r].

genAuis

genAuis[0] genAuis[p] genAuis[num - 1]
CvmPackets

... ...

aui.serviceVars aui.serverActionsCmdpages

aui.pages[0] aui.pages[pageNoReq - 1] aui.pages[pageNoReq + 1]

...

aui.pages[num - 1]Pagessubpagep
pnum
Subpages

 - 1

aui.serverActionsPage

subpage
p
0

Figure 5.3: generateAuis: Structure of the output tree genAuis

checkCvmPacket(...) verifies a customized CVM packet and returns true if the capabilities
and restrictions of the requesting client device that are listed in the given CVM profile
are completely respected by the CVM packet. For example, the CVM packet must neither
exceed the memory size of the CVM nor use font codes or library functions that are not
supported by the CVM. Refer to section 3.7 (page 89) for more information on the CVM
profile.

aui2cvmui(Aui genAui, CVMProfile cvmProfile, Nat pageNoReq, Nat subpageNoReq, Ser-
viceVar∗ serviceVars) translates the given Aui tree genAui into a binary and executable
CVM packet, called CVMUI. genAui represents the intermediate presentation of a cus-
tomized CVM packet. Refer to section 5.5 (page 166) for more information on CVMUIs.

Note that the page items (pageItems) of the AUI subpages genAuis [p].pages [pageNoReq + r]
(0 ≤ p < numCvmPackets , 0 ≤ r < nump

Subpages) are not further specified. By designing the
contents of the AUI subpages layout-related and ergonomic decisions have to be made
which are left completely to the service providers. As far as the generated CVM packet
conforms to the constraints listed in the CVM profile no further restrictions are dictated by
the proposed client-server architecture. As a proof of concept, a very simple customization

166 5. CVM Packet Server (CVMPS)

algorithm has been implemented and is demonstrated in the example in section D.2.2 (page
295). The investigation of more complex customization algorithms is left for future work.

5.5 CVM User Interface (CVMUI)

A CVMUI is a CVMA program that contains a whole AUI page or only parts of it. This
section describes the structure of a CVMUI. The proposed structure particularly takes into
account the GUI functionality, because a CVMUI mostly contains graphical user interface
components. The abstraction level of such an operational user interface description appar-
ently is quite low, because a CVMUI consists of CVM instructions. The CVM assembler
translates a generated CVMUI into an executable CVM packet. Note that the CVMUI
structure that is presented in this thesis is only one exemplary structure of many other
possible structures to demonstrate the proposed concepts.

In this section, the structure of the CVMA program for a generated Aui tree is presented.
The following input values are used:

Aui genAui
CVMProfile cvmProfile
Int pageNoReq , subpageNoReq
ServiceVar∗ serviceVars

genAui represents the generated Aui tree for a customized CVM packet. cvmProfile refers
to the transmitted CVM profile. pageNoReq and subpageNoReq contain the AUI page and
subpage number of the requested CVMUI page, respectively. serviceVars contains the
current values of the service variables.

Refer to section A.4 (page 212) for a description of the used notation for the following
CVMA code templates. For easier readability, the additional definitions are used in the
following code templates:

Int numSvcVars := #(genAui .serviceVars),
numPages := genAui .pages [#(genAui .pages)− 1].pageNo + 1

numPages refers to the number of AUI pages of the original Aui tree from which genAui is
generated.

5.5.1 Global Structure

CVMA Code Template The CVMA code template for the global structure of a CVM-
UI is as follows:

.<cvmProfile.cvmMode>Bit

.code
loadcr <pagepageNoReq,subpageNoReq .id>_<subpageNoReq>_main
jmp

//////////
// Misc
//////////

5.5. CVM User Interface (CVMUI) 167

.const
_cil <cvmIntLen>
_cvmScreenWidth <cvmProfile.cvmScreenWidth>
_cvmScreenHeight <cvmProfile.cvmScreenHeight>

.data
String _hostAdrSrv "<hostAdrCvmPacketServer>"

//////////////////////
// Page Numbers
//////////////////////

.const
_pageNo <pageNoReq>

<∀i : 0 ≤ i < pageNoReq>
_<pagei ,0 .id> <i>

<end>

_<pagepageNoReq,subpageNoReq .id> <pageNoReq>

<∀i : pageNoReq < i < numPages>
_<pagei ,0 .id> <i>

<end>

.data
Int _subpageNo

////////////////////////////
// Service Commands
////////////////////////////

.const
<∀v : 0 ≤ v < #(genAui .serverActionsCmd)>

<genAui .serverActionsCmd [v].idServiceCmd> <v>
<end>

//////////////////////////
// Service Variables
//////////////////////////

.const
_svIdxLen <svIdxLen>
<∀v : 0 ≤ v < numSvcVars>
svIdx<genAui .serviceVars[v].id> <v + 1>

<end>

.data
Int _svBufIdx 0
Bytes _svBuf

168 5. CVM Packet Server (CVMPS)

<∀guiCmpt ∈ guiCmptsSvIdxpageNoReq,j , j ≥ 0>
svIdxLen + <pagepageNoReq,j .id><j>_<guiCmpt .id>_svBufLen +

<end>
_svIdxLen + 2

<if : Function _svBufIdx_reset() is referenced within this CVMUI>
.fct _svBufIdx_reset()
{
// _svBufIdx := 0
loadc_0
store _svBufIdx
return
}

<end>

<if : Function _svBuf_svcCmd_write is referenced within this CVMUI>
.fct _svBuf_svcCmd_write (Int svcCmdIdx)
{
// _svBuf [_svBufIdx] := 0#svIdxLen
loadc_0
loadc _svBuf
load _svBufIdx
astore<svIdxLen>
// _svBufIdx += _svIdxLen
load _svBufIdx
loadc _svIdxLen
add
store _svBufIdx
// _svBuf [_svBufIdx] := svcCmdIdx#2
load svcCmdIdx
loadc _svBuf
load _svBufIdx
astore2
// _svBufIdx += 2
load _svBufIdx
loadc 2
add
store _svBufIdx
return
}

<end>

<if : Function _svBuf_write() is referenced within this CVMUI>
.fct _svBuf_write()
{
fcall _svBufIdx_reset
<∀j ≥ 0 : guiCmptsSvIdxpageNoReq,j 6= ∅>
fcall <pagepageNoReq,j .id>_<j>_svBuf_write

<end>
return
}

5.5. CVM User Interface (CVMUI) 169

<end>

///////////////////////
// CVMUI Pages
///////////////////////

<∀j ≥ 0 : ∃pagepageNoReq,j >
<import : CVMUI code for pagepageNoReq,j > // Refer to section 5.5.2 (page 170)

<end>

///////////////////
// CVMUI Lib
///////////////////

<import : CVMUI code for all referenced CVMUI Lib items>
// Refer to section C (page 249)

Comments

• pagei ,j with i, j ≥ 0 refers to an AUI subpage that meets the following conditions:
∃q ≥ 0 : (genAui .pages [q] = pagei ,j ∧

genAui .pages [q].pageNo = i ∧
genAui .pages [q].subpageNo = j)

• cvmIntLen depends on cvmProfile.cvmMode and refers to the byte length of an integer
number the client CVM operates on. Refer to section 3.1.2 (page 33) for more
information on cvmIntLen.

• cvmProfile.cvmScreenWidth ≡
cvmProfile.profileItems [j].num, with j ≥ 0 and cvmProfile.profileItems [j].profile-
ItemCode = cvmScreenWidth

The access to the other CVM profile item values is likewise.

• hostAdrCvmPacketServer refers to the IP [62] address or DNS [45] name of the CVM
packet server that serves the client.

• guiCmptsSvIdxpageNoReq,j :=
{guiCmpt ∈ pagepageNoReq,j .pageItems : svIdx ∈ guiCmpt .guiCmptItems}

• guiCmpt ∈ pagei ,j .pageItems ⇔
∃k ≥ 0 : pagei ,j .pageItems [k]GuiCmpt ∧ pagei ,j .pageItems [k] = guiCmpt ,
with pagei ,j .pageItems [k]GuiCmpt ≡
The data type of pagei ,j .pageItems [k] is GuiCmpt.

• svIdx ∈ guiCmpt .guiCmptItems ⇔
∃l ≥ 0 : guiCmpt .guiCmptItems [l]Attr ∧

guiCmpt .guiCmptItems [l].attrName = svIdx ,
with guiCmpt .guiCmptItems [l]Attr ≡
The data type of guiCmpt .guiCmptItems [l] is Attr.

• svIdxLen: Refer to ServiceVar in section 5.1.1 (page 146).

170 5. CVM Packet Server (CVMPS)

5.5.2 Page

CVMA Code Template The CVMA code template for the CVMUI page that repre-
sents the AUI subpage pagepageNoReq,j (j ≥ 0) is as follows:

////////////////
// Attributes
////////////////

.const
<pagepageNoReq,j .id>_<j>_x 0
<pagepageNoReq,j .id>_<j>_y 0
<pagepageNoReq,j .id>_<j>_w _cvmScreenWidth
<pagepageNoReq,j .id>_<j>_h _cvmScreenHeight

<if : fg ∈ pagepageNoReq,j .pageItems>
<pagepageNoReq,j .id>_<j>_fgr <(attr(pagepageNoReq,j , fg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_fgg <(attr(pagepageNoReq,j , fg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_fgb <attr(pagepageNoReq,j , fg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_fgr 0
<pagepageNoReq,j .id>_<j>_fgg 0
<pagepageNoReq,j .id>_<j>_fgb 0

<end>

<if : bg ∈ pagepageNoReq,j .pageItems>
<pagepageNoReq,j .id>_<j>_bgr <(attr(pagepageNoReq,j , bg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_bgg <(attr(pagepageNoReq,j , bg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_bgb <attr(pagepageNoReq,j , bg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_bgr 255
<pagepageNoReq,j .id>_<j>_bgg 255
<pagepageNoReq,j .id>_<j>_bgb 255

<end>

<pagepageNoReq,j .id>_<j>_fc <if : fc ∈ pagepageNoReq,j .pageItems>
<attr(pagepageNoReq,j , fc)>

<else>
fcFixedStandard

<end>
<pagepageNoReq,j .id>_<j>_fs <if : fs ∈ pagepageNoReq,j .pageItems>

<attr(pagepageNoReq,j , fs)>
<else>

13
<end>

<pagepageNoReq,j .id>_<j>_img <if : img ∈ pagepageNoReq,j .pageItems>
<attr(pagepageNoReq,j , img)>

<else>
""

<end>

5.5. CVM User Interface (CVMUI) 171

<pagepageNoReq,j .id>_<j>_imgStyle <if : imgStyle ∈ pagepageNoReq,j .pageItems>
<attr(pagepageNoReq,j , imgStyle)>

<else>
0 // imgTile

<end>

.data
Bytes <pagepageNoReq,j .id>_<j>_prp [<pagepageNoReq,j .id>_<j>_et]
Int <pagepageNoReq,j .id>_<j>_bInit 0

//////////
// Misc
//////////

.code

.fct <pagepageNoReq,j .id>_<j>_main()
{
loadc <j>
store _subpageNo
fcall <pagepageNoReq,j .id>_<j>_init
fcall <pagepageNoReq,j .id>_<j>_drw
<if : idxGuiCmptsInteractivepageNoReq,j 6= ∅>
loadc <pagepageNoReq,j .id>_<j>_<guiCmpta0 .id>_prp push
loadc libGui<libGuiAbbr(guiCmpta0 .guiCmptType)><libGuiStyle>_drwFcs push

<else>
loadc <pagepageNoReq,j .id>_<j>_prp push
loadc libMisc_emptyProc push

<end>
fcall libGui_setFcs
enableevents
halt
}

.fct <pagepageNoReq,j .id>_<j>_init()
{
load <pagepageNoReq,j .id>_<j>_bInit
loadc_0
loadcr <pagepageNoReq,j .id>_<j>_init_<lblCntr1 >
jne
<∀guiCmpt ∈ pagepageNoReq,j .pageItems>

<if : guiCmpt .guiCmptType = Ixt>
fcall <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_init

<end>
<end>
loadc_1
store <pagepageNoReq,j >_<j>_bInit

<pagepageNoReq,j >_<j>_init_<lblCntr1 >:
return
}

.fct <pagepageNoReq,j .id>_<j>_drw()

172 5. CVM Packet Server (CVMPS)

{
loadc <pagepageNoReq,j .id>_<j>_bgr
loadc <pagepageNoReq,j .id>_<j>_bgg
loadc <pagepageNoReq,j .id>_<j>_bgb
setcolor
loadc <pagepageNoReq,j .id>_<j>_x
loadc <pagepageNoReq,j .id>_<j>_y
loadc <pagepageNoReq,j .id>_<j>_w
loadc <pagepageNoReq,j .id>_<j>_h
rectfill
<∀guiCmpt ∈ pagepageNoReq,j .pageItems>

<if : guiCmpt .guiCmptType = Txt ∨ guiCmpt .guiCmptType = Txp>
fcall <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_drw

<elseif : guiCmpt .guiCmptType = Btn ∨ guiCmpt .guiCmptType = Hlk ∨
guiCmpt .guiCmptType = Ixt>

loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_prp push
fcall libGui<libGuiAbbr(guiCmpt .guiCmptType)><libGuiStyle>_drw

<end>
<end>
return
}

<if : ∃pagep,pageNoReq,j−1 >
<pagepageNoReq,j .id>_<j>_prevPage:

<if : ∃pagepageNoReq,j−1 >
loadc <j − 1>
loadcr<pagepageNoReq,j−1 .id>_<j − 1>_main
page

<else>
<if : ∃l ≥ 0 : guiCmptsSvIdxpageNoReq,l 6= ∅>
fcall _svBuf_write

<else>
fcall _svBufIdx_reset

<end>
sendrcvpage _pageNo, <j − 1>

<end>
<end>

<if : ∃pagep,pageNoReq,j+1 >
<pagepageNoReq,j .id>_<j>_nextPage:

<if : ∃pagepageNoReq,j+1 >
loadc <j + 1>
loadcr<pagepageNoReq,j+1 .id>_<j + 1>_main
page

<else>
<if : ∃l ≥ 0 : guiCmptsSvIdxpageNoReq,l 6= ∅>
fcall _svBuf_write

<else>
fcall _svBufIdx_reset

<end>
sendrcvpage _pageNo, <j + 1>

5.5. CVM User Interface (CVMUI) 173

<end>
<end>

//////////////////////////
// Service Variables
//////////////////////////

<if : guiCmptsSvIdxpageNoReq,j 6= ∅>
.fct <pagepageNoReq,j .id>_<j>_svBuf_write()
{
load <pagepageNoReq,j .id>_<j>_bInit
loadc_0
loadcr <pagepageNoReq,j .id>_<j>_svBuf_write_<lblCntr1 >
je
<∀guiCmpt ∈ guiCmptsSvIdxpageNoReq,j >

fcall <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_svBuf_write
<end>
<pagepageNoReq,j .id>_<j>_svBuf_write_<lblCntr1 >:
return
}

<end>

////////////
// Events
////////////

.data
EventTable <pagepageNoReq,j .id>_<j>_et [

<if : idxGuiCmptsInteractivepageNoReq,j 6= ∅ ∨ ∃pagep,pageNoReq,j−1 ∨ ∃pagep,pageNoReq,j+1 >
<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
key_pressed, <pagepageNoReq,j .id>_<j>_kp
<if : cvmMouseButtons ∈ cvmProfile.profileItems> , <end>

<end>
<if : cvmMouseButtons ∈ cvmProfile.profileItems>

mouse_pressed_left, <pagepageNoReq,j .id>_<j>_mpl
<end>

<end>
]

<if : idxGuiCmptsInteractivepageNoReq,j 6= ∅ ∨ ∃pagep,pageNoReq,j−1 ∨ ∃pagep,pageNoReq,j+1 >
<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_kp:

<if : idxGuiCmptsInteractivepageNoReq,j 6= ∅>
loadep1
loadc XK_Tab
loadcr <pagepageNoReq,j .id>_<j>_kp_tab
je

<end>
<if : ∃pagep,pageNoReq,j−1 >
loadep1

174 5. CVM Packet Server (CVMPS)

loadc XK_Left
loadcr <pagepageNoReq,j .id>_<j>_kp_left
je

<end>
<if : ∃pagep,pageNoReq,j+1 >
loadep1
loadc XK_Right
loadcr <pagepageNoReq,j .id>_<j>_kp_right
je

<end>
halt

<if : idxGuiCmptsInteractivepageNoReq,j 6= ∅>
<pagepageNoReq,j .id>_<j>_kp_tab:
loadc <pagepageNoReq,j .id>_<j>_prp push
loadc <pagepageNoReq,j .id>_<j>_<guiCmpta0 .id>_prp push
loadc libMisc_emptyProc push
loadc libGui<libGuiAbbr(guiCmpta0 .guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

<end>
<if : ∃pagep,pageNoReq,j−1 >

<pagepageNoReq,j .id>_<j>_kp_left:
loadcr <pagepageNoReq,j .id>_<j>_prevPage
jmp

<end>
<if : ∃pagep,pageNoReq,j+1 >

<pagepageNoReq,j .id>_<j>_kp_right:
loadcr <pagepageNoReq,j .id>_<j>_nextPage
jmp

<end>
<end>

<if : cvmMouseButtons ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_mpl:

loadep1 push
loadep2 push
loadc <pagepageNoReq,j .id>_<j>_prp push
loadc libMisc_emptyProc push
fcall <pagepageNoReq,j .id>_<j>_mplFcs
halt

.fct <pagepageNoReq,j .id>_<j>_mplFcs (Int x, Int y,
Int adrPrpSrc, Int adrUnDrwFcsSrc)

{
<∀guiCmpt ∈ pagepageNoReq,j .pageItems : guiCmpt is interactive.>

incsp
load x push
load y push
loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_x push
loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_y push

5.5. CVM User Interface (CVMUI) 175

loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_w push
loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_h push
fcall libGui_rectIn
pop loadc_0 loadcr <pagepageNoReq,j .id>_<j>_mplFcs_<lblCntr2 > je
load adrPrpSrc push
loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_prp push
load adrUnDrwFcsSrc push
loadc libGui<libGuiAbbr(guiCmpt .guiCmptType)>

<libGuiStyle>_drwFcs push
fcall libGui_mvFcs
<if : guiCmpt .guiCmptType = Btn>
fcall <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_evDwn

<elseif : guiCmpt .guiCmptType = Hlk>
loadc <pagepageNoReq,j .id>_<j>_<guiCmpt .id>_prp push
fcall libGuiHlk_dwn

<end>
return

<pagepageNoReq,j .id>_<j>_mplFcs_<lblCntr2 >:
<end>
<if : ∃pagep,pageNoReq,j−1 >
load x
loadc _cvmScreenWidth loadc 2 div
loadcr <pagepageNoReq,j .id>_<j>_prevPage
jl
<if : ∃pagep,pageNoReq,j+1 >

loadcr <pagepageNoReq,j .id>_<j>_nextPage
jmp

<end>
<elseif : ∃pagep,pageNoReq,j+1 >
loadc _cvmScreenWidth loadc 2 div
load x
loadcr <pagepageNoReq,j .id>_<j>_nextPage
jl

<end>
return
}

<end>
<end>

//////////////////
// Page Items
//////////////////

<∀k ≥ 0 : ∃pageItemi ,j ,k>
<if : pageItemi ,j ,k GuiCmpt>

<import : CVMA code for pageItem> // Refer to sections 5.5.3 – 5.5.7 (pages 177 ff.)
<elseif : pageItemi ,j ,k CvmAs>

<pageItem.cvmAs>
<end>

176 5. CVM Packet Server (CVMPS)

Comments

• attrName ∈ pagepageNoReq,j .pageItems ≡
∃k ≥ 0 : pagepageNoReq,j .pageItems [k]Attr ∧ pagepageNoReq,j .pageItems [k].attrName =
attrName

• attr(pagepageNoReq,j , attrName) returns the value of the attribute with the name at-
trName that is defined in pagepageNoReq,j . The data type of an attribute is Attr
and is specified in section 5.1.2 (page 147). The value of an attribute is defined
by its expression expr. Note that the value of a referenced service variable in
expr is determined by using the data structure sessions [k].serviceVars instead of
sessions [k].serviceVarsSaved . Refer to sections 5.1.1 (page 138) and 5.1.1 (page 145)
for more information on attributes and service variables.

• idxGuiCmptsInteractivepageNoReq,j := {k ≥ 0 : pagepageNoReq,j .pageItems [k]GuiCmpt ∧
pagepageNoReq,j .pageItems [k] is interactive}
So far, interactive user interface components are of the type Btn, Hlk, or Ixt, i.e.,
pagepageNoReq,j .pageItems [k].guiCmptType ∈ {Btn, Hlk, Ixt}. Additional interactive
user interface component types may be defined in the future.

• idxGuiCmptsInteractivemin
pageNoReq,j ∈ idxGuiCmptsInteractivepageNoReq,j ∧

∀k ∈ idxGuiCmptsInteractivepageNoReq,j : idxGuiCmptsInteractivemin
pageNoReq,j ≤ k

• guiCmpta0 := pagepageNoReq,j .pageItems [idxGuiCmptsInteractivemin
pageNoReq,j]

• libGuiAbbr(guiCmptType) returns the short name of the given user interface compo-
nent type (guiCmptType):

libGuiAbbr(Btn) = Btn

libGuiAbbr(Ixt) = Ixt

libGuiAbbr(Txp) = Txp

libGuiAbbr(Txt) = Txt

This abbreviation is used in the CVMUI libraries. Refer to section C (page 249) for
more information on the CVMUI libraries.

• libGuiStyle defines the appearance of the user interface components. So far, two
styles are defined in the CVMUI libraries: Smp and 3D.

• libGui..., libMisc..., e.g., libGuiBtnSmp drw, libGuiIxt3D drwFcs, libGuiHlk-

dwn, libGui setFcs, libGui rectIn, libMisc emptyProc, etc.
These functions are defined in the CVMUI libraries. Refer to section C (pages 249
ff.) for more information on the CVMUI libraries.

• lblCntrc (c ≥ 0) is a unique positive integer number that is used within label names
so that the labels are unique in the whole CVMA program.

• pagep,i ,j with p, i, j ≥ 0 refers to an Aui subpage that meets the following conditions:
∃p, q ≥ 0 : (genAuis [p].pages [q] = pagep,i ,j ∧

genAuis [p].pages [q].pageNo = i ∧
genAuis [p].pages [q].subpageNo = j)

5.5. CVM User Interface (CVMUI) 177

• cvmKeyCodeSet ∈ cvmProfile.profileItems ≡
∃r ≥ 0 : cvmProfile.profileItems [r].profileItemCode = cvmKeyCodeSet

• cvmMouseButtons ∈ cvmProfile.profileItems ≡
∃r ≥ 0 : cvmProfile.profileItems [r].profileItemCode = cvmMouseButtons

• XK_Tab, XK_Right: Refer to section 3.3 (page 81), <X11/keysymdef.h>.

• pageItemi ,j ,k := pagei ,j .pageItems [k]

• pageItemi ,j ,k GuiCmpt ≡
The data type of pageItemi ,j ,k is GuiCmpt.

• pageItemi ,j ,k CvmAs ≡
The data type of pageItemi ,j ,k is CvmAs.

5.5.3 (Single-Line) Text

The following definition is used in the next CVMA code template:

GuiCmpt txt := pageItempageNoReq,j ,k , with k ≥ 0 and txt .guiCmptType = Txt

CVMA Code Template The CVMA code template for the AUI text component txt is
follows:

////////////////
// Attributes
////////////////

.const
<pagepageNoReq,j .id>_<j>_<txt .id>_x <attr(txt , x)>
<pagepageNoReq,j .id>_<j>_<txt .id>_y <if : y ∈ txt .guiCmptItems>

<attr(txt , y)>
<else>

<pagepageNoReq,j .id>_<j>_<txt .id>_yStr -
<pagepageNoReq,j .id>_<j>_<txt .id>_fa + 1 -
<pagepageNoReq,j .id>_<j>_<txt .id>_dy

<end>
<pagepageNoReq,j .id>_<j>_<txt .id>_w <pagepageNoReq,j .id>_<j>_<txt .id>_wStr +

<pagepageNoReq,j .id>_<j>_<txt .id>_dw
<pagepageNoReq,j .id>_<j>_<txt .id>_h <pagepageNoReq,j .id>_<j>_<txt .id>_hStr +

<pagepageNoReq,j .id>_<j>_<txt .id>_dh

<if : fg ∈ txt .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<txt .id>_fgr <(attr(txt , fg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txt .id>_fgg <(attr(txt , fg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txt .id>_fgb <attr(txt , fg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<txt .id>_fgr <pagepageNoReq,j .id>_<j>_fgr
<pagepageNoReq,j .id>_<j>_<txt .id>_fgg <pagepageNoReq,j .id>_<j>_fgg
<pagepageNoReq,j .id>_<j>_<txt .id>_fgb <pagepageNoReq,j .id>_<j>_fgb

178 5. CVM Packet Server (CVMPS)

<end>

<if : bg ∈ txt .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<txt .id>_bgr <(attr(txt , bg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txt .id>_bgg <(attr(txt , bg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txt .id>_bgb <attr(txt , bg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<txt .id>_bgr <pagepageNoReq,j .id>_<j>_bgr
<pagepageNoReq,j .id>_<j>_<txt .id>_bgg <pagepageNoReq,j .id>_<j>_bgg
<pagepageNoReq,j .id>_<j>_<txt .id>_bgb <pagepageNoReq,j .id>_<j>_bgb

<end>

<pagepageNoReq,j .id>_<j>_<txt .id>_fc <if : fc ∈ txt .guiCmptItems>
<attr(txt , fc)>

<else>
<pagepageNoReq,j .id>_<j>_fc

<end>
<pagepageNoReq,j .id>_<j>_<txt .id>_fs <if : fs ∈ txt .guiCmptItems>

<attr(txt , fs)>
<else>

<pagepageNoReq,j .id>_<j>_fs
<end>

<pagepageNoReq,j .id>_<j>_<txt .id>_str "<attr(txt , str)>"
<pagepageNoReq,j .id>_<j>_<txt .id>_yStr <if : yStr ∈ txt .guiCmptItems>

<attr(txt , yStr)>
<else>

<pagepageNoReq,j .id>_<j>_<txt .id>_y +
<pagepageNoReq,j .id>_<j>_<txt .id>_fa - 1 +
<pagepageNoReq,j .id>_<j>_<txt .id>_dy

<end>

<pagepageNoReq,j .id>_<j>_<txt .id>_xStr <pagepageNoReq,j .id>_<j>_<txt .id>_x +
<pagepageNoReq,j .id>_<j>_<txt .id>_dx

<pagepageNoReq,j .id>_<j>_<txt .id>_wStr textWidth (
<pagepageNoReq,j .id>_<j>_<txt .id>_str,
<pagepageNoReq,j .id>_<j>_<txt .id>_fc,
<pagepageNoReq,j .id>_<j>_<txt .id>_fs)

<pagepageNoReq,j .id>_<j>_<txt .id>_hStr textHeight (
<pagepageNoReq,j .id>_<j>_<txt .id>_str,
<pagepageNoReq,j .id>_<j>_<txt .id>_fc,
<pagepageNoReq,j .id>_<j>_<txt .id>_fs,
0)

<pagepageNoReq,j .id>_<j>_<txt .id>_fa fontAscent (
<pagepageNoReq,j .id>_<j>_<txt .id>_fc,
<pagepageNoReq,j .id>_<j>_<txt .id>_fs)

<pagepageNoReq,j .id>_<j>_<txt .id>_dx libGuiTxt<libGuiStyle>_dx
<pagepageNoReq,j .id>_<j>_<txt .id>_dy libGuiTxt<libGuiStyle>_dy
<pagepageNoReq,j .id>_<j>_<txt .id>_dw libGuiTxt<libGuiStyle>_dw

5.5. CVM User Interface (CVMUI) 179

<pagepageNoReq,j .id>_<j>_<txt .id>_dh libGuiTxt<libGuiStyle>_dh

//////////
// Misc
//////////

.code

.fct <pagepageNoReq,j .id>_<j>_<txt .id>_drw()
{
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_fgr
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_fgg
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_fgb
setcolor
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_bgr
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_bgg
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_bgb
setbgcolor
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_fc
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_fs
setfont
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_xStr
loadc <pagepageNoReq,j .id>_<j>_<txt .id>_yStr
textbg <pagepageNoReq,j .id>_<j>_<txt .id>_str
return
}

Comments

• attr(txt , attrName) returns the value of the attribute with the name attrName that
is defined in txt . The data type of the attribute is Attr and is defined in section 5.1.2
(page 147). Refer to section 5.1.1 (page 138) for more information on attributes.

• fontAscent(), textWidth(), textHeight(): Refer to section B.4 (page 227) for
more information on these CVMA builtin functions.

5.5.4 Text Paragraph

The following definition is used in the next CVMA code template:

GuiCmpt txp := pageItempageNoReq,j ,k , with k ≥ 0 and txp.guiCmptType = Txp

CVMA Code Template The CVMA code template for the AUI text component txp is
follows:

////////////////
// Attributes
////////////////

.const

180 5. CVM Packet Server (CVMPS)

<pagepageNoReq,j .id>_<j>_<txp.id>_x <attr(txp, x)>
<pagepageNoReq,j .id>_<j>_<txp.id>_y <if : y ∈ txp.guiCmptItems>

<attr(txp, y)>
<else>

<pagepageNoReq,j .id>_<j>_<txp.id>_yStr -
<pagepageNoReq,j .id>_<j>_<txp.id>_fa + 1 -
<pagepageNoReq,j .id>_<j>_<txp.id>_dy

<end>
<pagepageNoReq,j .id>_<j>_<txp.id>_w <attr(txp, w)>
<pagepageNoReq,j .id>_<j>_<txp.id>_h <pagepageNoReq,j .id>_<j>_<txp.id>_hStr +

<pagepageNoReq,j .id>_<j>_<txp.id>_dh

<if : fg ∈ txp.guiCmptItems>
<pagepageNoReq,j .id>_<j>_<txp.id>_fgr <(attr(txp, fg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txp.id>_fgg <(attr(txp, fg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txp.id>_fgb <attr(txp, fg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<txp.id>_fgr <pagepageNoReq,j .id>_<j>_fgr
<pagepageNoReq,j .id>_<j>_<txp.id>_fgg <pagepageNoReq,j .id>_<j>_fgg
<pagepageNoReq,j .id>_<j>_<txp.id>_fgb <pagepageNoReq,j .id>_<j>_fgb

<end>

<if : bg ∈ txp.guiCmptItems>
<pagepageNoReq,j .id>_<j>_<txp.id>_bgr <(attr(txp, bg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txp.id>_bgg <(attr(txp, bg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<txp.id>_bgb <attr(txp, bg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<txp.id>_bgr <pagepageNoReq,j .id>_<j>_bgr
<pagepageNoReq,j .id>_<j>_<txp.id>_bgg <pagepageNoReq,j .id>_<j>_bgg
<pagepageNoReq,j .id>_<j>_<txp.id>_bgb <pagepageNoReq,j .id>_<j>_bgb

<end>

<pagepageNoReq,j .id>_<j>_<txp.id>_fc <if : fc ∈ txp.guiCmptItems>
<attr(txp, fc)>

<else>
<pagepageNoReq,j .id>_<j>_fc

<end>
<pagepageNoReq,j .id>_<j>_<txp.id>_fs <if : fs ∈ txp.guiCmptItems>

<attr(txp, fs)>
<else>

<pagepageNoReq,j .id>_<j>_fs
<end>

<pagepageNoReq,j .id>_<j>_<txp.id>_strInit "<attr(txp, str)>"
<pagepageNoReq,j .id>_<j>_<txp.id>_str textBreakLines (

<pagepageNoReq,j .id>_<j>_<txp.id>_strInit,
<pagepageNoReq,j .id>_<j>_<txp.id>_fc,
<pagepageNoReq,j .id>_<j>_<txp.id>_fs,
<pagepageNoReq,j .id>_<j>_<txp.id>_w)

<pagepageNoReq,j .id>_<j>_<txp.id>_yStr <if : yStr ∈ txp.guiCmptItems>
<attr(txp, yStr)>

5.5. CVM User Interface (CVMUI) 181

<else>
<pagepageNoReq,j .id>_<j>_<txp.id>_y +
<pagepageNoReq,j .id>_<j>_<txp.id>_fa - 1 +
<pagepageNoReq,j .id>_<j>_<txp.id>_dy

<end>

<pagepageNoReq,j .id>_<j>_<txp.id>_xStr <pagepageNoReq,j .id>_<j>_<txp.id>_x +
<pagepageNoReq,j .id>_<j>_<txp.id>_dx

<pagepageNoReq,j .id>_<j>_<txp.id>_wStr <pagepageNoReq,j .id>_<j>_<txp.id>_w -
<pagepageNoReq,j .id>_<j>_<txp.id>_dw

<pagepageNoReq,j .id>_<j>_<txp.id>_hStr textHeight (
<pagepageNoReq,j .id>_<j>_<txp.id>_str,
<pagepageNoReq,j .id>_<j>_<txp.id>_fc,
<pagepageNoReq,j .id>_<j>_<txp.id>_fs,
0)

<pagepageNoReq,j .id>_<j>_<txp.id>_fa fontAscent (
<pagepageNoReq,j .id>_<j>_<txp.id>_fc,
<pagepageNoReq,j .id>_<j>_<txp.id>_fs)

<pagepageNoReq,j .id>_<j>_<txp.id>_dx libGuiTxp<libGuiStyle>_dx
<pagepageNoReq,j .id>_<j>_<txp.id>_dy libGuiTxp<libGuiStyle>_dy
<pagepageNoReq,j .id>_<j>_<txp.id>_dw libGuiTxp<libGuiStyle>_dw
<pagepageNoReq,j .id>_<j>_<txp.id>_dh libGuiTxp<libGuiStyle>_dh

//////////
// Misc
//////////

.code

.fct <pagepageNoReq,j .id>_<j>_<txp.id>_drw()
{
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_fgr
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_fgg
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_fgb
setcolor
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_bgr
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_bgg
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_bgb
setbgcolor
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_fc
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_fs
setfont
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_xStr
setxtextline
loadc <pagepageNoReq,j .id>_<j>_<txp.id>_yStr
textpbg <pagepageNoReq,j .id>_<j>_<txp.id>_str
return
}

Comments

182 5. CVM Packet Server (CVMPS)

• attr(txp, attrName) returns the value of the attribute with the name attrName that
is defined in txp. The data type of the attribute is Attr and is defined in section 5.1.2
(page 147). Refer to section 5.1.1 (page 138) for more information on attributes.

• fontAscent(), textBreakLines(), textHeight(): Refer to section B.4 (page 227)
for more information on these CVMA builtin functions.

5.5.5 Text Box

The following definition is used in the next CVMA code template:

GuiCmpt ixt := pageItempageNoReq,j ,k , with k ≥ 0 and ixt .guiCmptType = Ixt

CVMA Code Template The CVMA code template for the AUI text box ixt is as
follows:

////////////////
// Attributes
////////////////

.const
<pagepageNoReq,j .id>_<j>_<ixt .id>_x <attr(ixt , x)>
<pagepageNoReq,j .id>_<j>_<ixt .id>_y <if : y ∈ ixt .guiCmptItems>

<attr(ixt , y)>
<else>

<pagepageNoReq,j .id>_<j>_<ixt .id>_yStr -
<pagepageNoReq,j .id>_<j>_<ixt .id>_fa + 1 -
<pagepageNoReq,j .id>_<j>_<ixt .id>_dy

<end>
<pagepageNoReq,j .id>_<j>_<ixt .id>_w <attr(ixt , w)>
<pagepageNoReq,j .id>_<j>_<ixt .id>_h <pagepageNoReq,j .id>_<j>_<ixt .id>_hStr +

<pagepageNoReq,j .id>_<j>_<ixt .id>_dh

<if : fg ∈ ixt .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgr <(attr(ixt , fg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgg <(attr(ixt , fg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgb <attr(ixt , fg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgr <pagepageNoReq,j .id>_<j>_fgr
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgg <pagepageNoReq,j .id>_<j>_fgg
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgb <pagepageNoReq,j .id>_<j>_fgb

<end>

<if : bg ∈ ixt .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgr <(attr(ixt , bg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgg <(attr(ixt , bg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgb <attr(ixt , bg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgr <pagepageNoReq,j .id>_<j>_bgr
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgg <pagepageNoReq,j .id>_<j>_bgg

5.5. CVM User Interface (CVMUI) 183

<pagepageNoReq,j .id>_<j>_<ixt .id>_bgb <pagepageNoReq,j .id>_<j>_bgb
<end>

<pagepageNoReq,j .id>_<j>_<ixt .id>_fc <if : fc ∈ ixt .guiCmptItems>
<attr(ixt , fc)>

<else>
<pagepageNoReq,j .id>_<j>_fc

<end>
<pagepageNoReq,j .id>_<j>_<ixt .id>_fs <if : fs ∈ ixt .guiCmptItems>

<attr(ixt , fs)>
<else>

<pagepageNoReq,j .id>_<j>_fs
<end>

.data
Bytes <pagepageNoReq,j .id>_<j>_<ixt .id>_str

<pagepageNoReq,j .id>_<j>_<ixt .id>_strLenMax + 3

.const
<pagepageNoReq,j .id>_<j>_<ixt .id>_yStr <if : yStr ∈ ixt .guiCmptItems>

<attr(ixt , yStr)>
<else>

<pagepageNoReq,j .id>_<j>_<ixt .id>_y +
<pagepageNoReq,j .id>_<j>_<ixt .id>_fa - 1 +
<pagepageNoReq,j .id>_<j>_<ixt .id>_dy

<end>
<pagepageNoReq,j .id>_<j>_<ixt .id>_strLenMax <attr(ixt , strLenMax)>

<if : svIdx ∈ ixt .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<ixt .id>_svIdx

svIdx<genAui .serviceVars[attr(ixt , svIdx)].id>
<pagepageNoReq,j .id>_<j>_<ixt .id>_svBufLen

<pagepageNoReq,j .id>_<j>_<ixt .id>_strLenMax + 3
<end>

<pagepageNoReq,j .id>_<j>_<ixt .id>_xStr <pagepageNoReq,j .id>_<j>_<ixt .id>_x +
<pagepageNoReq,j .id>_<j>_<ixt .id>_dx

<pagepageNoReq,j .id>_<j>_<ixt .id>_wStr <pagepageNoReq,j .id>_<j>_<ixt .id>_w -
<pagepageNoReq,j .id>_<j>_<ixt .id>_dw

<pagepageNoReq,j .id>_<j>_<ixt .id>_hStr <pagepageNoReq,j .id>_<j>_<ixt .id>_fh
<pagepageNoReq,j .id>_<j>_<ixt .id>_yaStr <pagepageNoReq,j .id>_<j>_<ixt .id>_y +

<pagepageNoReq,j .id>_<j>_<ixt .id>_dy

.data
String <pagepageNoReq,j .id>_<j>_<ixt .id>_strIni

"<strPraefix (attr(ixt , str), attr(ixt , strLenMax))>"

.const
<pagepageNoReq,j .id>_<j>_<ixt .id>_wChar textWidth (

" ",
<pagepageNoReq,j .id>_<j>_<ixt .id>_fc,

184 5. CVM Packet Server (CVMPS)

<pagepageNoReq,j .id>_<j>_<ixt .id>_fs)
<pagepageNoReq,j .id>_<j>_<ixt .id>_strPos <strPosInit>

<pagepageNoReq,j .id>_<j>_<ixt .id>_fa fontAscent (
<pagepageNoReq,j .id>_<j>_<ixt .id>_fc,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fs)

<pagepageNoReq,j .id>_<j>_<ixt .id>_fh fontHeight (
<pagepageNoReq,j .id>_<j>_<ixt .id>_fc,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fs)

<pagepageNoReq,j .id>_<j>_<ixt .id>_dx libGuiIxt<libGuiStyle>_dx
<pagepageNoReq,j .id>_<j>_<ixt .id>_dy libGuiIxt<libGuiStyle>_dy
<pagepageNoReq,j .id>_<j>_<ixt .id>_dw libGuiIxt<libGuiStyle>_dw
<pagepageNoReq,j .id>_<j>_<ixt .id>_dh libGuiIxt<libGuiStyle>_dh

.data
Bytes <pagepageNoReq,j .id>_<j>_<ixt .id>_prp [

<pagepageNoReq,j .id>_<j>_<ixt .id>_et,
<pagepageNoReq,j .id>_<j>_<ixt .id>_x,
<pagepageNoReq,j .id>_<j>_<ixt .id>_y,
<pagepageNoReq,j .id>_<j>_<ixt .id>_w,
<pagepageNoReq,j .id>_<j>_<ixt .id>_h,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgg,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fgb,
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgg,
<pagepageNoReq,j .id>_<j>_<ixt .id>_bgb,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fc,
<pagepageNoReq,j .id>_<j>_<ixt .id>_fs,
<pagepageNoReq,j .id>_<j>_<ixt .id>_str,
<pagepageNoReq,j .id>_<j>_<ixt .id>_xStr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_yStr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_wStr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_hStr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_yaStr,
<pagepageNoReq,j .id>_<j>_<ixt .id>_strLenMax,
<pagepageNoReq,j .id>_<j>_<ixt .id>_wChar,
<pagepageNoReq,j .id>_<j>_<ixt .id>_strPos
]

/////////
// Init
/////////

.code

.fct <pagepageNoReq,j .id>_<j>_<ixt .id>_init()
{
// Reset string cursor position
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_strPos
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_prp

5.5. CVM User Interface (CVMUI) 185

loadc libGui_strPosOfs
add
storea
// Reset string value
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_str push
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_strIni push
fcall libMisc_strCp
return
}

////////////
// Events
////////////

.data
EventTable <pagepageNoReq,j .id>_<j>_<ixt .id>_et [

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
key_pressed, <pagepageNoReq,j .id>_<j>_<ixt .id>_kp,
key_pressed_escape, <pagepageNoReq,j .id>_<j>_<ixt .id>_kpes,

<end>
<if : cvmMouseButtons ∈ cvmProfile.profileItems>
mouse_pressed_left, <pagepageNoReq,j .id>_<j>_<ixt .id>_mpl,

<end>
1, <pagepageNoReq,j .id>_<j>_et
]

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_<ixt .id>_kp:

<if : |idxGuiCmptsInteractivepageNoReq,j | > 1>
loadep1
loadc XK_Tab
loadcr <pagepageNoReq,j .id>_<j>_<ixt .id>_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr <pagepageNoReq,j .id>_<j>_<ixt .id>_kp_leftTab
je

<end>
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_prp push
fcall libGuiIxt_kp
halt

<if : |idxGuiCmptsInteractivepageNoReq,j | > 1>
<pagepageNoReq,j .id>_<j>_<ixt .id>_kp_tab:
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_prp push
loadc <pagepageNoReq,j .id>_<j>_<ixta�.id>_prp push
loadc libGuiIxt<libGuiStyle>_unDrwFcs push
loadc libGui<libGuiAbbr(ixta�.guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

186 5. CVM Packet Server (CVMPS)

<pagepageNoReq,j .id>_<j>_<ixt .id>_kp_leftTab:
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_prp push
loadc <pagepageNoReq,j .id>_<j>_<ixta�.id>_prp push
loadc libGuiIxt<libGuiStyle>_unDrwFcs push
loadc libGui<libGuiAbbr(ixta�.guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

<end>

<pagepageNoReq,j .id>_<j>_<ixt .id>_kpes:
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_prp push
loadc <pagepageNoReq,j .id>_<j>_prp push
loadc libGuiIxt<libGuiStyle>_unDrwFcs push
loadc libMisc_emptyProc push
fcall libGui_mvFcs
halt

<end>

<if : cvmMouseButtons ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_<ixt .id>_mpl:
loadep1 push
loadep2 push
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_prp push
loadc libGuiIxt<libGuiStyle>_unDrwFcs push
fcall <pagepageNoReq,j .id>_<j>_mplFcs
halt

<end>

//////////////////////////
// Service Variables
//////////////////////////

<if : svIdx ∈ ixt .guiCmptItems>
.code
.fct <pagepageNoReq,j .id>_<j>_<ixt .id>_svBuf_write()
{
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_svIdx
loadc _svBuf
load _svBufIdx
astore<svIdxLen>
load _svBufIdx loadc <svIdxLen> add store _svBufIdx
loadc _svBuf load _svBufIdx add push
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_str push
fcall libMisc_strCp
load _svBufIdx
incsp
loadc <pagepageNoReq,j .id>_<j>_<ixt .id>_str push
fcall libMisc_strLen
pop
add

5.5. CVM User Interface (CVMUI) 187

loadc 3 add
store _svBufIdx
return
}

<end>

Comments

• attr(ixt , attrName) returns the value of the attribute with the name attrName that
is defined in ixt . The data type of the attribute is Attr and is defined in section 5.1.2
(page 147). Refer to section 5.1.1 (page 138) for more information on attributes.

• Bytes ..._<ixt .id>_str ..._<ixt .id>_strLenMax + 3

The longer binary string format is chosen. Refer to section 3.1.1 (page 33) for more
information on the CVM string formats.

• strPraefix (String str , Nat maxChars) returns only the available first maxChars char-
acters of the string str. The rest of str is ignored.

• ..._<ixt .id>_wChar textWidth(" ", ..._<ixt .id>_fc, ..._<ixt .id>_fs)
Note that ..._<ixt .id>_fc must refer to a monospaced font, because the Ixt user
interface component requires an equal width for all characters. This width is used
by the cursor to move back and forth in the input field of the text box.

• fontAscent(), fontHeight(): Refer to section B.4 (page 227) for more information
on these CVMA builtin functions.

• strPosInit = −s ∗ wChar , with
s = { t ≥ 0 | t ∗ wChar > strLen ∗ wChar − wStr }min ,
wChar = <pagepageNoReq,j .id>_<j>_<ixt .id>_wChar,
wStr = <pagepageNoReq,j .id>_<j>_<ixt .id>_wStr,
strLen = { number of characters in <pagepageNoReq,j .id>_<j>_<ixt .id>_strIni,

<pagepageNoReq,j .id>_<j>_<ixt .id>_strLenMax }min

• XK_Tab, XK_ISO_Left_Tab: Refer to section 3.3 (page 81), <X11/keysymdef.h>.

• ixta� and ixta� each return the next and previous interactive user interface compo-
nent of ixt in the list data structure pagepageNoReq,j .pageItems [k], respectively. For the
successor of the last element the first element is used. For the predecessor of the first
element the last element is used. The data type of ixta� and ixta� is GuiCmpt. It
is specified in section 5.1.2 (page 147). So far, interactive user interface components
are of the type Btn, Hlk, or Ixt. Additional interactive user interface component
types may be defined in the future.

5.5.6 Hyperlink

The following definition is used in the next CVMA code template:

GuiCmpt hlk := pageItempageNoReq,j ,k , with k ≥ 0 and hlk .guiCmptType = Hlk

188 5. CVM Packet Server (CVMPS)

CVMA Code Template The CVMA code template for the AUI hyperlink hlk is as
follows:

////////////////
// Attributes
////////////////

.const
<pagepageNoReq,j .id>_<j>_<hlk .id>_x <attr(hlk , x)>
<pagepageNoReq,j .id>_<j>_<hlk .id>_y <if : y ∈ hlk .guiCmptItems>

<attr(hlk , y)>
<else>

<pagepageNoReq,j .id>_<j>_<hlk .id>_yStr -
<pagepageNoReq,j .id>_<j>_<hlk .id>_fa + 1 -
<pagepageNoReq,j .id>_<j>_<hlk .id>_dy

<end>
<pagepageNoReq,j .id>_<j>_<hlk .id>_w <if : str ∈ hlk .guiCmptItems>

<pagepageNoReq,j .id>_<j>_<hlk .id>_wStr +
<pagepageNoReq,j .id>_<j>_<hlk .id>_dw

<else>
<attr(hlk , w)>

<end>
<pagepageNoReq,j .id>_<j>_<hlk .id>_h <if : str ∈ hlk .guiCmptItems>

<pagepageNoReq,j .id>_<j>_<hlk .id>_hStr +
<pagepageNoReq,j .id>_<j>_<hlk .id>_dh

<else>
<attr(hlk , h)>

<end>

<if : fg ∈ hlk .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgr <(attr(hlk , fg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgg <(attr(hlk , fg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgb <attr(hlk , fg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgr <pagepageNoReq,j .id>_<j>_fgr
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgg <pagepageNoReq,j .id>_<j>_fgg
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgb <pagepageNoReq,j .id>_<j>_fgb

<end>

<if : bg ∈ hlk .guiCmptItems>
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgr <(attr(hlk , bg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgg <(attr(hlk , bg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgb <attr(hlk , bg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgr <pagepageNoReq,j .id>_<j>_bgr
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgg <pagepageNoReq,j .id>_<j>_bgg
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgb <pagepageNoReq,j .id>_<j>_bgb

<end>

<pagepageNoReq,j .id>_<j>_<hlk .id>_fc <if : fc ∈ hlk .guiCmptItems>
<attr(hlk , fc)>

5.5. CVM User Interface (CVMUI) 189

<else>
<pagepageNoReq,j .id>_<j>_fc

<end>
<pagepageNoReq,j .id>_<j>_<hlk .id>_fs <if : fs ∈ hlk .guiCmptItems>

<attr(hlk , fs)>
<else>

<pagepageNoReq,j .id>_<j>_fs
<end>

<pagepageNoReq,j .id>_<j>_<hlk .id>_str <if : str ∈ hlk .guiCmptItems>
"<attr(hlk , img)>"

<else>
""

<end>
<pagepageNoReq,j .id>_<j>_<hlk .id>_yStr <if : yStr ∈ hlk .guiCmptItems>

<attr(hlk , yStr)>
<else>

<pagepageNoReq,j .id>_<j>_<hlk .id>_y +
<pagepageNoReq,j .id>_<j>_<hlk .id>_fa - 1 +
<pagepageNoReq,j .id>_<j>_<hlk .id>_dy

<end>

<pagepageNoReq,j .id>_<j>_<hlk .id>_hostAdr "<attr(hlk , hostAdr)>"
<pagepageNoReq,j .id>_<j>_<hlk .id>_serviceNo <attr(hlk , serviceNo)>

<pagepageNoReq,j .id>_<j>_<hlk .id>_xStr <pagepageNoReq,j .id>_<j>_<hlk .id>_x +
<pagepageNoReq,j .id>_<j>_<hlk .id>_dx

<pagepageNoReq,j .id>_<j>_<hlk .id>_wStr <if : str ∈ hlk .guiCmptItems>
textWidth (

<pagepageNoReq,j .id>_<j>_<hlk .id>_str,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fc,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fs)

<else>
<pagepageNoReq,j .id>_<j>_<hlk .id>_w -
<pagepageNoReq,j .id>_<j>_<hlk .id>_dw

<end>
<pagepageNoReq,j .id>_<j>_<hlk .id>_hStr <if : str ∈ hlk .guiCmptItems>

textHeight (
<pagepageNoReq,j .id>_<j>_<hlk .id>_str,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fc,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fs,
0)

<else>
<pagepageNoReq,j .id>_<j>_<hlk .id>_fh

<end>

<pagepageNoReq,j .id>_<j>_<hlk .id>_fa fontAscent (
<pagepageNoReq,j .id>_<j>_<hlk .id>_fc,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fs)

<pagepageNoReq,j .id>_<j>_<hlk .id>_fh fontHeight (
<pagepageNoReq,j .id>_<j>_<hlk .id>_fc,

190 5. CVM Packet Server (CVMPS)

<pagepageNoReq,j .id>_<j>_<hlk .id>_fs)

<pagepageNoReq,j .id>_<j>_<hlk .id>_dx libGuiHlk<libGuiStyle>_dx
<pagepageNoReq,j .id>_<j>_<hlk .id>_dy libGuiHlk<libGuiStyle>_dy
<pagepageNoReq,j .id>_<j>_<hlk .id>_dw libGuiHlk<libGuiStyle>_dw
<pagepageNoReq,j .id>_<j>_<hlk .id>_dh libGuiHlk<libGuiStyle>_dh

.data
String <pagepageNoReq,j .id>_<j>_<hlk .id>_str_

<pagepageNoReq,j .id>_<j>_<hlk .id>_str
String <pagepageNoReq,j .id>_<j>_<hlk .id>_hostAdr_

<pagepageNoReq,j .id>_<j>_<hlk .id>_hostAdr

Bytes <pagepageNoReq,j .id>_<j>_<hlk .id>_prp [
<pagepageNoReq,j .id>_<j>_<hlk .id>_et,
<pagepageNoReq,j .id>_<j>_<hlk .id>_x,
<pagepageNoReq,j .id>_<j>_<hlk .id>_y,
<pagepageNoReq,j .id>_<j>_<hlk .id>_w,
<pagepageNoReq,j .id>_<j>_<hlk .id>_h,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgr,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgg,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fgb,
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgr,
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgg,
<pagepageNoReq,j .id>_<j>_<hlk .id>_bgb,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fc,
<pagepageNoReq,j .id>_<j>_<hlk .id>_fs,
<pagepageNoReq,j .id>_<j>_<hlk .id>_str_,
<pagepageNoReq,j .id>_<j>_<hlk .id>_xStr,
<pagepageNoReq,j .id>_<j>_<hlk .id>_yStr,
<pagepageNoReq,j .id>_<j>_<hlk .id>_hostAdr_,
<pagepageNoReq,j .id>_<j>_<hlk .id>_serviceNo
]

////////////
// Events
////////////

.data
EventTable <pagepageNoReq,j .id>_<j>_<hlk .id>_et [

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
key_pressed, <pagepageNoReq,j .id>_<j>_<hlk .id>_kp,
key_pressed_escape, <pagepageNoReq,j .id>_<j>_<hlk .id>_kpes,
key_pressed_enter, <pagepageNoReq,j .id>_<j>_<hlk .id>_kpe,

<end>
<if : cvmMouseButtons ∈ cvmProfile.profileItems>
mouse_pressed_left, <pagepageNoReq,j .id>_<j>_<hlk .id>_mpl,

<end>
1, <pagepageNoReq,j .id>_<j>_et
]

5.5. CVM User Interface (CVMUI) 191

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_<hlk .id>_kp:

<if : |idxGuiCmptsInteractivepageNoReq,j | > 1>
loadep1
loadc XK_Tab
loadcr <pagepageNoReq,j .id>_<j>_<hlk .id>_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr <pagepageNoReq,j .id>_<j>_<hlk .id>_kp_leftTab
je

<end>
loadc <pagepageNoReq,j .id>_<j>_<hlk .id>_prp
push
fcall libGuiHlk_kp
halt

<if : |idxGuiCmptsInteractivepageNoReq,j | > 1>
<pagepageNoReq,j .id>_<j>_<hlk .id>_kp_tab:

loadc <pagepageNoReq,j .id>_<j>_<hlk .id>_prp push
loadc <pagepageNoReq,j .id>_<j>_<hlka�.id>_prp push
loadc libGuiHlk<libGuiStyle>_unDrwFcs push
loadc libGui<libGuiAbbr(ixta�.guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

<pagepageNoReq,j .id>_<j>_<hlk .id>_kp_leftTab:
loadc <pagepageNoReq,j .id>_<j>_<hlk .id>_prp push
loadc <pagepageNoReq,j .id>_<j>_<ixta�.id>_prp push
loadc libGuiHlk<libGuiStyle>_unDrwFcs push
loadc libGui<libGuiAbbr(ixta�.guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

<end>

<pagepageNoReq,j .id>_<j>_<hlk .id>_kpes:
loadc <pagepageNoReq,j .id>_<j>_<hlk .id>_prp push
loadc <pagepageNoReq,j .id>_<j>_prp push
loadc libGuiHlk<libGuiStyle>_unDrwFcs push
loadc libMisc_emptyProc push
fcall libGui_mvFcs
halt

<pagepageNoReq,j .id>_<j>_<hlk .id>_kpe:
loadc <pagepageNoReq,j .id>_<j>_<hlk .id>_prp push
fcall libGuiHlk_dwn
halt

<if : cvmMouseButtons ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_<hlk .id>_mpl:

192 5. CVM Packet Server (CVMPS)

loadep1 push
loadep2 push
loadc <pagepageNoReq,j .id>_<j>_<hlk .id>_prp push
loadc libGuiHlk<libGuiStyle>_unDrwFcs push
fcall <pagepageNoReq,j .id>_<j>_mplFcs
halt

<end>

Comment

• attr(hlk , attrName) returns the value of the attribute with the name attrName that
is defined in hlk . The data type of the attribute is Attr and is defined in section 5.1.2
(page 147). Refer to section 5.1.1 (page 138) for more information on attributes.

• hlka� and hlka� each return the next and previous interactive user interface compo-
nent of hlk in the list data structure pagepageNoReq,j .pageItems [k]. For the successor of
the last element the first element is used. For the predecessor of the first element the
last element is used. The data type of hlka� and hlka� is GuiCmpt. It is specified
in section 5.1.2 (page 147). So far, interactive user interface components are of the
type Btn, Hlk, or Ixt. Additional interactive user interface component types may be
defined in the future.

5.5.7 Button

The following definition is used in the next CVMA code template:

GuiCmpt btn := pageItempageNoReq,j ,k , with k ≥ 0 and btn.guiCmptType = Btn

CVMA Code Template The CVMA code template for the AUI button btn is as follows:

////////////////
// Attributes
////////////////

.const
<pagepageNoReq,j .id>_<j>_<btn.id>_x <attr(btn, x)>
<pagepageNoReq,j .id>_<j>_<btn.id>_y <if : y ∈ btn.guiCmptItems>

<attr(btn, y)>
<else>

<pagepageNoReq,j .id>_<j>_<btn.id>_yStr -
<pagepageNoReq,j .id>_<j>_<btn.id>_fa + 1 -
<pagepageNoReq,j .id>_<j>_<btn.id>_dy

<end>
<pagepageNoReq,j .id>_<j>_<btn.id>_w <if : str ∈ btn.guiCmptItems>

<pagepageNoReq,j .id>_<j>_<btn.id>_wStr +
<pagepageNoReq,j .id>_<j>_<btn.id>_dw

<else>
<attr(btn, w)>

<end>

5.5. CVM User Interface (CVMUI) 193

<pagepageNoReq,j .id>_<j>_<btn.id>_h <if : str ∈ btn.guiCmptItems>
<pagepageNoReq,j .id>_<j>_<btn.id>_hStr +
<pagepageNoReq,j .id>_<j>_<btn.id>_dh

<else>
<attr(btn, h)>

<end>

<if : fg ∈ btn.guiCmptItems>
<pagepageNoReq,j .id>_<j>_<btn.id>_fgr <(attr(btn, fg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<btn.id>_fgg <(attr(btn, fg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<btn.id>_fgb <attr(btn, fg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<btn.id>_fgr <pagepageNoReq,j .id>_<j>_fgr
<pagepageNoReq,j .id>_<j>_<btn.id>_fgg <pagepageNoReq,j .id>_<j>_fgg
<pagepageNoReq,j .id>_<j>_<btn.id>_fgb <pagepageNoReq,j .id>_<j>_fgb

<end>

<if : bg ∈ btn.guiCmptItems>
<pagepageNoReq,j .id>_<j>_<btn.id>_bgr <(attr(btn, bg)� 16) & 0xFF>
<pagepageNoReq,j .id>_<j>_<btn.id>_bgg <(attr(btn, bg)� 8) & 0xFF>
<pagepageNoReq,j .id>_<j>_<btn.id>_bgb <attr(btn, bg) & 0xFF>

<else>
<pagepageNoReq,j .id>_<j>_<btn.id>_bgr <pagepageNoReq,j .id>_<j>_bgr
<pagepageNoReq,j .id>_<j>_<btn.id>_bgg <pagepageNoReq,j .id>_<j>_bgg
<pagepageNoReq,j .id>_<j>_<btn.id>_bgb <pagepageNoReq,j .id>_<j>_bgb

<end>

<pagepageNoReq,j .id>_<j>_<btn.id>_fc <if : fc ∈ btn.guiCmptItems>
<attr(btn, fc)>

<else>
<pagepageNoReq,j .id>_<j>_fc

<end>
<pagepageNoReq,j .id>_<j>_<btn.id>_fs <if : fs ∈ btn.guiCmptItems>

<attr(btn, fs)>
<else>

<pagepageNoReq,j .id>_<j>_fs
<end>

<pagepageNoReq,j .id>_<j>_<btn.id>_str <if : str ∈ btn.guiCmptItems>
"<attr(btn, img)>"

<else>
""

<end>
<pagepageNoReq,j .id>_<j>_<btn.id>_yStr <if : yStr ∈ btn.guiCmptItems>

<attr(btn, yStr)>
<else>

<pagepageNoReq,j .id>_<j>_<btn.id>_y +
<pagepageNoReq,j .id>_<j>_<btn.id>_fa - 1
+ <pagepageNoReq,j .id>_<j>_<btn.id>_dy

<end>

194 5. CVM Packet Server (CVMPS)

<pagepageNoReq,j .id>_<j>_<btn.id>_img <if : img ∈ btn.guiCmptItems>
"<attr(btn, img)>"

<else>
""

<end>
<pagepageNoReq,j .id>_<j>_<btn.id>_imgStyle <attr(btn, imgStyle)>

<pagepageNoReq,j .id>_<j>_<btn.id>_xStr <pagepageNoReq,j .id>_<j>_<btn.id>_x +
<pagepageNoReq,j .id>_<j>_<btn.id>_dx

<pagepageNoReq,j .id>_<j>_<btn.id>_wStr <if : str ∈ btn.guiCmptItems>
textWidth (

<pagepageNoReq,j .id>_<j>_<btn.id>_str,
<pagepageNoReq,j .id>_<j>_<btn.id>_fc,
<pagepageNoReq,j .id>_<j>_<btn.id>_fs)

<else>
<pagepageNoReq,j .id>_<j>_<btn.id>_w -
<pagepageNoReq,j .id>_<j>_<btn.id>_dw

<end>
<pagepageNoReq,j .id>_<j>_<btn.id>_hStr <if : str ∈ btn.guiCmptItems>

textHeight (
<pagepageNoReq,j .id>_<j>_<btn.id>_str,
<pagepageNoReq,j .id>_<j>_<btn.id>_fc,
<pagepageNoReq,j .id>_<j>_<btn.id>_fs,
0)

<else>
<pagepageNoReq,j .id>_<j>_<btn.id>_fh

<end>

<pagepageNoReq,j .id>_<j>_<btn.id>_fa fontAscent (
<pagepageNoReq,j .id>_<j>_<btn.id>_fc,
<pagepageNoReq,j .id>_<j>_<btn.id>_fs)

<pagepageNoReq,j .id>_<j>_<btn.id>_fh fontHeight (
<pagepageNoReq,j .id>_<j>_<btn.id>_fc,
<pagepageNoReq,j .id>_<j>_<btn.id>_fs)

<pagepageNoReq,j .id>_<j>_<btn.id>_dx libGuiBtn<libGuiStyle>_dx
<pagepageNoReq,j .id>_<j>_<btn.id>_dy libGuiBtn<libGuiStyle>_dy
<pagepageNoReq,j .id>_<j>_<btn.id>_dw libGuiBtn<libGuiStyle>_dw
<pagepageNoReq,j .id>_<j>_<btn.id>_dh libGuiBtn<libGuiStyle>_dh

.data
String <pagepageNoReq,j .id>_<j>_<btn.id>_str_ <pagepageNoReq,j .id>_<j>_<btn.id>_str
String <pagepageNoReq,j .id>_<j>_<btn.id>_img_ <pagepageNoReq,j .id>_<j>_<btn.id>_img

Bytes <pagepageNoReq,j .id>_<j>_<btn.id>_prp [
<pagepageNoReq,j .id>_<j>_<btn.id>_et,
<pagepageNoReq,j .id>_<j>_<btn.id>_x,
<pagepageNoReq,j .id>_<j>_<btn.id>_y,
<pagepageNoReq,j .id>_<j>_<btn.id>_w,
<pagepageNoReq,j .id>_<j>_<btn.id>_h,
<pagepageNoReq,j .id>_<j>_<btn.id>_fgr,

5.5. CVM User Interface (CVMUI) 195

<pagepageNoReq,j .id>_<j>_<btn.id>_fgg,
<pagepageNoReq,j .id>_<j>_<btn.id>_fgb,
<pagepageNoReq,j .id>_<j>_<btn.id>_bgr,
<pagepageNoReq,j .id>_<j>_<btn.id>_bgg,
<pagepageNoReq,j .id>_<j>_<btn.id>_bgb,
<pagepageNoReq,j .id>_<j>_<btn.id>_fc,
<pagepageNoReq,j .id>_<j>_<btn.id>_fs,
<pagepageNoReq,j .id>_<j>_<btn.id>_str_,
<pagepageNoReq,j .id>_<j>_<btn.id>_xStr,
<pagepageNoReq,j .id>_<j>_<btn.id>_yStr,
<pagepageNoReq,j .id>_<j>_<btn.id>_img_,
<pagepageNoReq,j .id>_<j>_<btn.id>_imgStyle
]

////////////
// Events
////////////

.data
EventTable <pagepageNoReq,j .id>_<j>_<btn.id>_et [

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
key_pressed, <pagepageNoReq,j .id>_<j>_<btn.id>_kp,
key_pressed_escape, <pagepageNoReq,j .id>_<j>_<btn.id>_kpes,
key_pressed_enter, <pagepageNoReq,j .id>_<j>_<btn.id>_kpe,
key_released, <pagepageNoReq,j .id>_<j>_<btn.id>_kr,
key_released_enter, <pagepageNoReq,j .id>_<j>_<btn.id>_kre,

<end>
<if : cvmMouseButtons ∈ cvmProfile.profileItems>
mouse_pressed_left, <pagepageNoReq,j .id>_<j>_<btn.id>_mpl,
mouse_released_left, <pagepageNoReq,j .id>_<j>_<btn.id>_mrl,

<end>
1, <pagepageNoReq,j .id>_<j>_et
]

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_<btn.id>_kp:

<if : |idxGuiCmptsInteractivepageNoReq,j | > 1>
loadep1
loadc XK_Tab
loadcr <pagepageNoReq,j .id>_<j>_<btn.id>_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr <pagepageNoReq,j .id>_<j>_<btn.id>_kp_leftTab
je

<end>
loadep1
loadc XK_space
loadcr <pagepageNoReq,j .id>_<j>_<btn.id>_kp_space
je

196 5. CVM Packet Server (CVMPS)

halt

<if : |idxGuiCmptsInteractivepageNoReq,j | > 1>
<pagepageNoReq,j .id>_<j>_<btn.id>_kp_tab:
loadc <pagepageNoReq,j .id>_<j>_<btn.id>_prp push
loadc <pagepageNoReq,j .id>_<j>_<btna�.id>_prp push
loadc libGuiBtn<libGuiStyle>_unDrwFcs push
loadc libGui<libGuiAbbr(btna�.guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_kp_leftTab:
loadc <pagepageNoReq,j .id>_<j>_<btn.id>_prp push
loadc <pagepageNoReq,j .id>_<j>_<btna�.id>_prp push
loadc libGuiBtn<libGuiStyle>_unDrwFcs push
loadc libGui<libGuiAbbr(btna�.guiCmptType)><libGuiStyle>_drwFcs push
fcall libGui_mvFcs
halt

<end>

<pagepageNoReq,j .id>_<j>_<btn.id>_kp_space:
fcall <pagepageNoReq,j .id>_<j>_<btn.id>_evDwn
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_kpes:
loadc <pagepageNoReq,j .id>_<j>_<btn.id>_prp push
loadc <pagepageNoReq,j .id>_<j>_prp push
loadc libGuiBtn<libGuiStyle>_unDrwFcs push
loadc libMisc_emptyProc push
fcall libGui_mvFcs
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_kpe:
fcall <pagepageNoReq,j .id>_<j>_<btn.id>_evDwn
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_kr:
loadep1
loadc XK_space
loadcr <pagepageNoReq,j .id>_<j>_<btn.id>_kr_space
je
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_kr_space:
fcall <pagepageNoReq,j .id>_<j>_<btn.id>_evUp
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_kre:
fcall <pagepageNoReq,j .id>_<j>_<btn.id>_evUp
halt

<end>

5.5. CVM User Interface (CVMUI) 197

<if : cvmMouseButtons ∈ cvmProfile.profileItems>
.code
<pagepageNoReq,j .id>_<j>_<btn.id>_mpl:
loadep1 push
loadep2 push
loadc <pagepageNoReq,j .id>_<j>_<btn.id>_prp push
loadc libGuiBtn<libGuiStyle>_unDrwFcs push
fcall <pagepageNoReq,j .id>_<j>_mplFcs
halt

<pagepageNoReq,j .id>_<j>_<btn.id>_mrl:
fcall <pagepageNoReq,j .id>_<j>_<btn.id>_evUp
halt

<end>

<if : cvmKeyCodeSet ∈ cvmProfile.profileItems ∨
cvmMouseButtons ∈ cvmProfile.profileItems>

.code

.fct <pagepageNoReq,j .id>_<j>_<btn.id>_evDwn()
{
loadc <pagepageNoReq,j .id>_<j>_<btn.id>_prp
push
fcall libGuiBtn<libGuiStyle>_dwn
<if : ∃l ≥ 0 : btn.guiCmptItems[l]Event ∧ btn.guiCmptItems[l].type = evDwn

<btn.guiCmptItems[l].cvmAs>
<end>
return
}

.fct <pagepageNoReq,j .id>_<j>_<btn.id>_evUp()
{
loadc <pagepageNoReq,j .id>_<j>_<btn.id>_prp
push
fcall libGuiBtn<libGuiStyle>_up
<if : ∃l ≥ 0 : btn.guiCmptItems[l]Event ∧ btn.guiCmptItems[l].type = evUp

<btn.guiCmptItems[l].cvmAs>
<end>
return
}

<end>

Comments

• attr(btn, attrName) returns the value of the attribute with the name attrName that
is defined in btn. The data type of the attribute is Attr and is defined in section 5.1.2
(page 147). Refer to section 5.1.1 (page 138) for more information on attributes.

• btna� and btna� each return the next and previous interactive user interface compo-
nent of btn in the list data structure pagepageNoReq,j .pageItems [k]. For the successor of
the last element the first element is used. For the predecessor of the first element the

198 5. CVM Packet Server (CVMPS)

last element is used. The data type of btna� and btna� is GuiCmpt. It is specified
in section 5.1.2 (page 147). So far, interactive user interface components are of the
type Btn, Hlk, or Ixt. Additional interactive user interface component types may be
defined in the future.

• btn.guiCmptItems [l]Event ≡
The data type of btn.guiCmptItems [l] is Event.

5.6 Implementation Notes

The CVM packet server has been implemented with the C [20] programming language
under the Linux [43] operating system.

Source Files The C source files for the session manager, the service generator, and the
fixed part of the service instance are in the subdirectories Implementation/CvmPacket-

Server/Src/ and Implementation/RghLib/Src/. The latter subdirectory contains only
source files whose names start with the prefix “rgh”.

• cvmps.{h,c}: These source files implement the session manager module of the CVM
packet server. The main() function is implemented here as well.

• cvmpsSd.{h,c}, session.{h,c}: These source files implement that part of the ses-
sion manager module which manages the session data of all sessions.

• svcVar.{h,c}: These source files contain elementary definitions for accessing the
service variables of a session.

• cptp.h, cptpSrv.{h,c}: These source files implement the server part of the CPTP
protocol. Refer to section 4 (page 127) for more information on the CPTP protocol.

For the implementation of the TCP/IP [69] network communication the Linux socket
interface, which is compatible to the BSD [17] socket interface, has been used. How-
ever, this implementation supports only IPv4, but not IPv6.

• svcInstGen.{h,c}: These source files implement the service generator module of
the CVM packet server. Here is the function auiTree generateServiceInstance()

defined. The name of the generated C file is “sessionId_serviceId.c”. Refer to section
4.1 (page 128) for more information on sessionId and to section 5.1.1 (page 145) for
more information on serviceId. The generated C file is located in the subdirectory
Implementation/CvmPacketServer/SvcInst/Gen/.

The Makefile [34] in the subdirectory Implementation/CvmPacketServer/Svc-

Inst/ manages the compilation of the source files to build the executable file of
the generated service instance. After the missing C source file of the service instance
has been generated, the CVM packet server automatically invokes the make command
with the following command: make sessionId_serviceId sessionId=sessionId

The name of the built executable file, which represents the service instance, is “ses-
sionId_serviceId”. This file is located in the subdirectory Implementation/Cvm-

PacketServer/SvcInst/Gen/, as well.

5.6. Implementation Notes 199

• svcInst.{h,c}, svcInst.h: These source files belong to the fixed part of the service
instance and contain definitions that are used by all service instances. Note that the
missing service-specific parts are generated by the service generator from the given
AUI description during the client-server session.

• rgh*.{h,c}: These source files contain general utility functions and definitions for
managing the heap, list and tree structures, for debugging, and for managing strings
and scanner tokens, respectively.

The C source files for the CVM packet generator are in the subdirectories Implementa-

tion/CvmPacketGenerator/Src/ and Implementation/RghLib/Src/. The latter subdi-
rectory contains only source files whose names start with the prefix “rgh”.

• auiAttrName.h, auiBuiltinFct.h, auiEventType.h, auiImgStyle.h, auiServer-
Lng.h, auiVarType.h: These source files contain general definitions that refer to
attribute names, builtin functions, event types, etc.

• cvmui.{h,c}: These source files contain definitions that refer to CVMUIs.

• auiNode.{h,c}: These source files contain node-specific definitions and constructors
to build the abstract syntax tree. An AUI description is dealt as an Aui tree structure.
The Aui data type is defined in section 5.1.2 (page 147).

• auiTree.{h,c}: These source files contain the core parts of the CVM packet gen-
erator. This includes the definitions to perform the semantic check of the con-
text conditions and the generation of the CVM packet. Here are the functions
auiTree generateAuis() and auiTree 2cvmui() defined.

• auiParse.y: This source file contains the syntactic grammar specification for the
parser generator bison. The parser transforms the AUI description into a syntax
tree for further processing.

• auiScan.l: This source file contains the lexical grammar specification for the scanner
generator flex.

• cvmpg.{h,c}: These source files contain the function cvmpg aui2cvmui() and other
definitions and functions that are needed by the CVM packet generator.

• test generateAuis.c: This source file contains the main() function of the test
program test generateAuis.

• test generateServiceInstance.c: This source file contains the main() function of
the test program test generateServiceInstance.

• test aui2cvmui.c: This source file contains the main() function of the test program
test aui2cvmui.

• rgh*.{h,c}: These source files contain general utility functions and definitions for
managing the heap, list and tree structures, for debugging, and for managing strings
and scanner tokens, respectively.

200 5. CVM Packet Server (CVMPS)

Building

• cvmps: The Makefile [34] in the subdirectory Implementation/CvmPacketServer/

manages the compilation of the source files to build the executable file cvmps which
represents the CVM packet server. The executable is located in the subdirectory Im-

plementation/CvmPacketServer/Bin/. In the same subdirectory where Makefile

is located, the make [34] command must be invoked in a shell [31].

• test generateAuis, test generateServiceInstance, test aui2cvmui: The Make-
file [34] in the subdirectory Implementation/CvmPacketGenerator/ manages the
compilation of the source files to build the executable files test generateAuis,
test generateServiceInstance, and test aui2cvmui. In the same subdirectory
where Makefile is located, the make [34] command must be invoked in a shell [31].

test generateAuis is a test program that generates from a particular page of a
given AUI description the customized intermediate and CVMUI representations. For
this, a predefined CVM profile, default initial values for the service variables, and
the localhost IP [62] address “127.0.0.1” for the CVM packet server are used.

test generateServiceInstance is a test program that translates a given AUI de-
scription into a readable C [20]-program that contains the generated part of the
service instance.

test aui2cvmui is a test program that translates a particular page of a given AUI
description into a readable CVM assembler program that conforms to the CVMUI
structure. For this, a predefined CVM profile, default initial values for the service
variables, and the localhost IP [62] address “127.0.0.1” for the CVM packet server
are used.

test generateAuis, test generateServiceInstance, and test aui2cvmui are lo-
cated in the subdirectory Implementation/CvmPacketGenerator/Bin/.

Invocation

• cvmps: The CVM packet server is started with the command cvmps.

• test generateAuis: The invocation syntax of test generateAuis is as follows:

test generateAuis [-p auiPageNo] [-t] [-i] < fileNameAUI

test generateAuis reads the AUI description file with the name fileNameAUI from
the standard input and generates from a particular page of a given AUI description
the customized intermediate and CVMUI representations. The output is written in
a readable format to the standard output.

Optional parts are enclosed with [...]. The three options [-p], [-t] and [-i] can
appear in any order. [-p auiPageNo] specifies the number of the AUI page that
will be customized. auiPageNo must be an integer number greater than or equal to
zero. Its default value is zero. [-t] and [-i] direct test aui2cvmui to produce
informative messages onto the standard output. [-t] prints each matched lexical
token during the lexical analysis. [-i] prints the completely parsed tree structure of
the AUI description in a well-readable and formatted way, after it has been checked.

5.6. Implementation Notes 201

• test generateServiceInstance: The invocation syntax of test generateService-

Instance is as follows:

test generateServiceInstance [-t] [-i] < fileNameAUI

test generateServiceInstance reads the AUI description file with the name file-
NameAUI from the standard input and generates a readable C [20]-program that
contains the generated part of the service instance. The output is written to the
standard output. Optional parts are enclosed with [...]. The two options [-t] and
[-i] can appear in any order. [-t] and [-i] direct test aui2cvmui to produce
informative messages onto the standard output. [-t] prints each matched lexical
token during the lexical analysis. [-i] prints the completely parsed tree structure of
the AUI description in a well-readable and formatted way, after it has been checked.

• test aui2cvmui: The invocation syntax of test aui2cvmui is as follows:

test aui2cvmui [-p auiPageNo] [-t] [-i] < fileNameAUI

test aui2cvmui reads the AUI description file with the name fileNameAUI from
the standard input and translates a particular page of a given AUI description into
a readable CVM assembler program that conforms to the CVMUI structure. The
output is written to the standard output.

Optional parts are enclosed with [...]. The three options [-p], [-t] and [-i] can
appear in any order. [-p auiPageNo] specifies the number of the AUI page that
will be translated. auiPageNo must be an integer number greater than or equal to
zero. Its default value is zero. [-t] and [-i] direct test aui2cvmui to produce
informative messages onto the standard output. [-t] prints each matched lexical
token during the lexical analysis. [-i] prints the completely parsed tree structure of
the AUI description in a well-readable and formatted way, after it has been checked.

Chapter 6

Conclusions

This thesis presents a client-server architecture where customized graphical user interfaces
are generated for networked clients with different capabilities. Particularly, it addresses
restricted client devices that are mainly characterized by severe limitations in terms of
processing power, available memory, and input/output interface. Very low-end and cheap
client devices, i.e., devices with very low manufacturing costs per unit, are widely used in
the consumer and embedded mass market. For example, typical “thin” clients might be
in-car computers in the automotive industry, networked home appliances such as fridges,
or wearables like wristwatches.

In addition, by trying to save hardware resources on the client side as much as possible
the proposed client-server architecture contributes to the emerging initiative called Green
Computing [37].

The generation of graphical user interfaces for networked clients with restricted capabilities
imposes technical as well as ergonomic challenges. This thesis focuses on the technical
aspects.

6.1 Summary

The main components of the proposed client-server architecture are summarized as follows:

• The Client Virtual Machine (CVM) is a new virtual machine that runs on the
client device. The main tasks of the CVM are to communicate with the CVM packet
server and to interpret the received CVM packets, which contain the user interface
descriptions. The main design goal of the CVM is a simple and modular architecture
to make it suitable for a variety of cheap low-end devices on the mass market.

• The CVM packet format is a new user interface description format and represents
the binary executable format for the CVM. CVM packets are generated by the CVM
packet generator and sent by the CVM packet server to the requesting CVM to be
executed there. Mainly, the CVM packet format contains CVM instructions that
encode user interfaces operationally at a low level of abstraction.

• The CVM profile format is a binary format that describes the client capabilities
of a given CVM at a low level that reflects the configuration parameters of the given
CVM implementation, e.g., the CVM’s screen dimensions in pixels, its memory size

202

6.1. Summary 203

in bytes, etc. The CVM sends its CVM profile to the CVM packet server during
a request. The CVM packet generator then uses the CVM’s profile data to create
CVM packets that are tailored to the capabilities of the client device.

• The CVM packet transfer protocol (CPTP) is a very simple application protocol
that manages the communication between the CVM and the CVM packet server. It
runs on top of the transport layer and is a very “thin” counterpart to the HTTP
protocol, which is used in the World Wide Web. The main design idea of CPTP is to
shift all application-specific protocol mechanisms, e.g., complex error handling with
a variety of different and application-specific error codes, into the control-logic of the
network service.

• The CVM packet server (CVMPS) performs the customization process and de-
livers the requesting client with the adapted user interfaces. Note that the proposed
client-server architecture does not specify the internal architecture of the CVMPS and
its internally used content format. The proposed client-server architecture rather rep-
resents a technical platform that leaves the service providers as much flexibility and
responsibility in layout-related and other ergonomic issues as possible. Any CVMPS
implementation is valid as far as it conforms to the CVM packet format, the CVM
profile format, and the CPTP communication protocol. As a proof of concept, an
exemplary CVM packet server has been developed and implemented in this thesis.
Its main components are summarized as follows:

– The Abstract User Interface Description Language (AUI) is an exem-
plary language that is designed for specifying interactive network services on the
application layer. It provides language constructs to specify the client-side user
interface components as well as language constructs to embed code for state-
dependent actions that are executed on the client and server side. Client-side
actions are specified in CVM assembler whereas server-side actions can be spec-
ified in any common programming language. The CVM packet server keeps a
collection of AUI descriptions for each offered network service. A given AUI
description is used both by the service generator and by the CVM packet gener-
ator to generate the client-specific service instance and the client-specific CVM
packets, respectively. Instead of AUI, any other description language might be
used as well. For example, refer to BOSS [67], EmuGen [14] [15], XForms [24],
UIML [86], WSDL [21], HTML [65], etc.

– A CVM User Interface (CVMUI) is a CVM program that is generated by
the CVM packet generator from a given AUI description. It contains a whole
AUI page or only parts of it. An exemplary structure for a CVMUI is presented.
The proposed structure particularly takes the GUI functionality into account,
because a CVMUI mostly contains graphical user interface components.

– The session manager processes all incoming client requests and stores the data
that is involved during a client-server session.

– The service generator generates from a given AUI description and CVM pro-
file a client-specific service instance that meets the client capabilities and user
preferences. For simplification, the CVM profile can be ignored during the gen-
eration of the service instance. The generated service instance contains the
state machine that implements the control logic of the network service which

204 6. Conclusions

is specified in the AUI description. As already mentioned, the server-side ac-
tions are specified in the AUI description in a common programming language.
The client-specific service instance runs as a separate process and its lifetime is
limited by the time span of the respective client-server session.

– The CVM packet generator generates from a given AUI description and
CVM profile CVM packets that meet the client capabilities and user preferences.
These CVM packets are called CVMUIs and sent to the requesting client. A
customization method for the generation of the CVMUIs has been implemented
in this thesis to prove the concept. It is particularly applicable to very small
client devices like wrist watches.

6.2 Results

The main results of this thesis are summarized as follows:

• The CVM is very suitable for a variety of cheap low-end devices on the mass market
because of its simple and modular architecture. Its architecture is simpler than the
architecture of the KVM [79] from J2ME. The KVM executable from the CLDC
[73] Reference Implementation Version 1.1 for a Linux platform requires about 280
Kbytes, whereas the CVM executable from this implementation requires only about
70 Kbytes, including already the client-side part of the CPTP protocol. In addition,
the CVM is applicable to client devices with sufficient system resources such as PCs
and high-end workstations as well.

• The CVM packet format can be executed immediately by the CVM without large
efforts in contrast to XML-based formats such as HTML [65] and WML [56], which
are declarative and quite abstract. In addition, it does not predefine any particular
layout design and thus allows user interface descriptions of different complexities,
which enables scalability. The CVM packet format provides as much functionality
as HTML, WML, CSS [12], or Java(Script) [27], which are currently mainly used
for describing Web user interfaces. Therefore, using the CVM packet format as the
only client-side format relieves the client device from handling a variety of different
and complex data formats as well. All in all, the CVM packet format takes into
account from scratch the different capabilities of the possibly restricted client devices,
and it is a compromise that fulfills the requirements of scalability, compactness,
and functionality. Therefore, the CVM packet format is suitable for describing user
interfaces for a variety of different and possibly resource-limited client devices.

• The CVM profile format allows precise descriptions of the client-side hardware con-
figuration, which is mandatory for the generation of customized CVM packets for the
client on the server side.

• The CVM packet transfer protocol (CPTP) is suitable for very low-end devices as
well as for PCs and high-end workstations. In contrast to HTTP, it contains only
a few elementary protocol methods for requesting and delivering CVM packets, for
requesting and sending profile information about the client, and for very basic error
handling.

6.3. Future Work 205

• The proposed client-server architecture enables the generation of very small-sized
content for the requesting client device. The customization method that has been
implemented in this thesis groups two user interface components into a single CVMUI
page. As a result, the sizes of the generated CVM packets are about 1.3 Kbytes and
less. By using another customization method, where each CVMUI page contains only
one single user interface component, even smaller packet sizes can be achieved.

• The proposed client-server architecture leaves the service providers as much flexibility
and responsibility in layout-related and ergonomic issues as possible.

• The proposed concepts do not depend on Java [36]-, XML [16]-, or WAP [54]-based
technologies and combine ideas from the areas of client-server architectures, user
interfaces, virtual machines, and compiler technology. In addition, the proposed con-
cepts have been implemented in the C [20] programming language and are demon-
strated by several examples.

6.3 Future Work

The main perspectives for future work are summarized as follows:

• This thesis covers the specification of the CVM modules Core, Visual, Keyboard,
Mouse, Network, Libraries, and Home Menu. The modules Core, Visual, Keyboard,
Mouse, and Network have been specified thoroughly. Only particular details might
be added such as the definition of additional shortcut events for the input devices or
the definition of additional history buffer entries that save the state of a CVMUI page
when it was last visited, etc. The modules Libraries and Home Menu, however, have
only been been discussed exemplarily and are left for future work. The specification
of the Audio module is not covered in this thesis, either, and therefore left for future
work. In addition, other CVM modules may be defined in the future as well.

• The exemplarily developed AUI is a full-featured language to specify interactive net-
work services on the application layer which consist of user interfaces for the CVM
and state-dependent actions that are executed on the client and server side. Cur-
rently, AUI supports several elementary types of user interfaces components, e.g.,
text fields, buttons, and hyperlinks. More user interface components might be added
in the future, e.g., check boxes, combo boxes, list boxes, tables, etc. Note that the
CVMUI then has to be extended, accordingly.

• The exemplary generation method that is presented in this thesis for the generation
of the service instance does not consider the CVM profile. The investigation of more
general and complex methods for the service generator to generate client-specific
service instances is left for future work.

• The exemplary generation method that is presented in this thesis for the generation
of the CVM packets only considers a particular CVM profile that is typical for very
small client devices like wrist watches. The investigation of more general and com-
plex customization methods for the CVM packet generator to generate client-specific
CVMUIs is left for future work.

Appendix A

Notations

The following notations are used in this thesis:

A.1 Miscellaneous

Hexadecimal Numbers 0x(0|...|9|a|...|f|A|...|F)+

For example, the hexadecimal numbers 0xFF and 0x12FE32 equal to the decimal numbers
255 and 1244722, respectively.

Bitwise Operators

& Bitwise AND (conjunction). For example, 0xA63 & 0xC85 = 0x801.

| Bitwise OR (disjunction). For example, 0xA63 | 0xC85 = 0xEE7.

⊕ Bitwise XOR. For example, 0xA63 ⊕ 0xC85 = 0x6E6.

� Bitwise arithmetic shift right, i.e., with sign extension. For example, 0xF61A � 4 =
0xFF61.

>� Bitwise logical shift right, i.e., with zero extension. For example, 0xF61A >� 4 =
0x0F61.

� Bitwise shift left. For example, 0xF61A � 4 = 0xF61A0.

Logical Operators

¬ Logical NOT (negation). For example, ¬true = false.

∧ Logical AND (conjunction). For example, true ∧ false = false.

∨ Logical OR (disjunction). For example, true ∨ false = true.

Concatenation Operator The concatenation operator “◦” is used to concatenate se-
quences, e.g., character strings, or single sequence elements. The result is always a se-
quence. If the sequence is a character string, then a sequence element is a single character.
An empty sequence is denoted by the symbol ”ε”.

206

A.2. Context Free Grammars 207

Comments Comments may appear in pseudo-code, data structure definitions, and gram-
mar definitions. Similar to the common programming languages C(++) [20] [71] and Java
[36], the common delimiters // and /∗...∗/ are used for end of line and block comments,
respectively.

Data Type and Instruction Grouping Often, similar CVM data types and instruc-
tions are grouped together. The alternative parts are delimited by using the notation
“<...|...|...>”. For example, Int<1|...|4> refers to the data types Int1, Int2, ..., and Int4.
loadc<1|...|4> refers to the instructions loadc1, loadc2, ..., and loadc4. loadc<ε|u><1|...|3>
refers to the instructions loadc1, loadc2, ..., loadc3, loadcu1, loadcu2, ..., and loadcu3. There
might also be only one item in the alternative part listed. For example, Int<i> represents
the data type Int3, if the value of the integer variable i equals to 3 in a given context.

A.2 Context Free Grammars

The used notation for defining context free grammars should be generally understandable.
Complete examples can be found in the sections B.1 (page 216) and 5.1.1 (page 136).
A grammar definition consists of a list of productions, whereas each production consists
of a left side, the symbol “::=”, and a right side. The left side contains the name of
a nonterminal symbol. Nonterminal symbols appear in italic fonts. The right side is
an expression that defines a word set for the nonterminal symbol on the left side. The
expression consists of terminal characters and character sequences, nonterminal symbols,
and the following meta symbols:

• “’”: Terminal characters and character sequences appear in teletype font and are
enclosed with “’”, e.g., ’a’, ’.16Bit’.

• “(”, “)”: The opening and closing parentheses are used for grouping syntactical items
together, e.g., (’,’ DeclVar).

• “?”: An optional syntactical item is marked with a succeeding “?”, e.g., ’a’?, Mode?.

• “∗”: n (n ≥ 0) times repetition of a syntactical item is marked with a succeeding ∗,
e.g., (’,’ DeclVar)∗.

• “+”: n (n > 0) times repetition of a syntactical item is marked with a succeeding
“+”, e.g., Digit+.

• “|”: Alternative syntactical items are specified with “|”, e.g., (DeclConstInt | Decl-
ConstString)∗.

• “..”: Ranges of single terminal characters are specified with “..”, e.g., ’a’..’z’.

• “\”: The “\” symbol represents the set operator minus. For example, ASCII \ ’"’
represents all ASCII characters without the “"” character, and ASCII∗ \ (ASCII∗
’*/’ ASCII∗) represents all ASCII strings that do not contain “*/” as a substring.
However, when used within a terminal character sequence, e.g., ’\n’, ’\\"’, etc.,
“\” serves as an escape character as it is used in the C [20] programming language.
Therefore, ’\n’ represents the new line character, ’\f’ the form feed character, ’\r’

208 A. Notations

the carriage return character, ’\t’ the horizontal tab character, and ’\\’ produces
the terminal character “\”.

A.3 Data Types

Data types are used to specify complex data structures, e.g., the abstract syntax of a given
context free grammar as well as binary formats.

A.3.1 Syntax of Data Type Definitions

The used notation for data type and binary format definitions should be generally under-
standable. Examples can be found throughout the thesis, e.g., in 3.1.1 (page 33), 5.1.2
(page 147), etc. The concrete syntax of a data type definition (DataTypeDef) is specified
as a context free grammar:

DataTypeDef ::= DataTypeProduction+
DataTypeProduction ::= DataTypeIdComplex ’=’ DataType

DataType ::= Variant | List | Tuple

Variant ::= DataTypeId (’|’ DataTypeId)∗

List ::= DataTypeId (’*’ | // non-empty or empty list
’+’ | // non-empty list
’[’ NumElems? ’]’) // array

Tuple ::= ’{’ TupleItem (’;’ TupleItem)∗ ’}’
TupleItem ::= DataTypeId TupleItemIdDef
TupleItemIdDef ::= TupleItemId |

TupleItemId ’=’ ConstVal |
ConstVal

DataTypeId ::= DataTypeIdBase | DataTypeIdComplex
DataTypeIdBase ::= ’Int’ | ’Nat’ | ’String’ | ...
DataTypeIdComplex ::= Identifier
TupleItemId ::= Identifier

ConstVal ::= Expr // integer or string expression
NumElems ::= Expr // integer expression

Identifier ::= ...
Expr ::= ...

DataTypeIdBase DataTypeIdBase refers to an elementary data type. Elementary data
types are well-known and “simple” data types such as integer, boolean, char, string, or
similar types. The identifier of an elementary data type never appears on the left side of
a data type definition (DataTypeDef).

A.3. Data Types 209

DataTypeIdComplex DataTypeIdComplex refers to a complex data type. Each com-
plex data type may be defined only once, i.e., it may appear on the left side of a data
type production (DataTypeProduction) at least once. For each DataTypeIdComplex that
appears on the right side of a production there must exist a DataTypeProduction with an
equal DataTypeIdComplex. For better readability and easier distinction from elementary
data types, the identifiers of complex data types appear in data type definitions often in
italic fonts.

List A list structure that may be empty, i.e., that may contain no elements, is denoted
with the symbol ’*’. A list structure that may not be empty is denoted with the symbol
’+’. An array is a list that contains exactly NumElems elements. If NumElems is omitted
in an array definition, then the array boundary is dynamic and the array structure equals
to a list structure that may be empty (’*’). The index position of the first list element
is zero. Arrays are often used in this thesis for specifying binary formats. In addition, list
definitions must not contain cycles.

Tuple Tuple definitions must not contain cycles.

TupleItemIdDef The TupleItemId is used to access a particular item value. A Tu-
pleItemId must be unique only within the respective tuple (Tuple). If a constant value
(ConstVal) is given, then the value of this item is predefined and always equal to this
constant value in every instance of the specified data type. If the value of a particular item
is never accessed explicitly, then the respective TupleItemId might be omitted.

Constant values (ConstVal) can be specified only for elementary data types (DataTypeId).
In addition, constant values (ConstVal) and missing item ids (TupleItemId) are often used
in binary format definitions.

Variant Each DataTypeId in a Variant definition may appear at least once. In addition,
Variant definitions must not contain cycles.

Syntax Extensions For reasons of convenience, the presented syntax is extended with
the following notations in this thesis:

• Variant definitions may also contain List and Tuple definitions in addition to Data-
TypeId, i.e.:

Variant ::= VariantElem (’|’ VariantElem)∗
VariantElem ::= DataTypeId | List | Tuple

• The data type of a TupleItem may also be a List, Tuple, or Variant definition in
addition to DataTypeId. In addition, more than one TupleItemIdDef may appear in
a comma separated list in a TupleItem definition. Then, several TupleItemIdDef s of
the same data type can be grouped together into one TupleItem declaration.

TupleItem ::= TupleItemDataType
TupleItemIdDef (’,’ TupleItemIdDef)∗

TupleItemDataType ::= DataTypeId | List | Tuple | Variant

210 A. Notations

• The data type of a list element may also be a Variant or Tuple definition in addition
to DataTypeId, i.e.:

List ::= ListElemDataType (’*’ | ’+’ | ’[’ NumElems? ’]’)
ListElemDataType ::= DataTypeId | ’(’ Variant ’)’ | Tuple

Variant must be enclosed in left and right parentheses to avoid ambiguous data type
definitions.

• The brackets ’{’ and ’}’ in a Tuple definition may be omitted, if the Tuple definition
consists only of one TupleItem.

Note that these extensions do not provide additional semantics. They are just “shortcuts”
that can be easily replaced with appropriate definitions using the regular syntax. For
example, the first extension implies for each occurring List and Tuple structure a separate
definition that can be referenced then by the respective DataTypeIdComplex.

A.3.2 Data Access

Let DTDefDT be the data type definition of a given (complex) data type DT. The access
to the components of DT is accomplished by appropriate path expressions.

Syntax A data access path expression has the following syntax:

PathExpr ::= PathExprElem∗
PathExprElem ::= PathExprElemVariant | PathExprElemList |

PathExprElemTuple
PathExprElemVariant ::= ’.’ DataTypeIdComplex
PathExprElemList ::= ’[’ NatLit ’]’

PathExprElemTuple ::= ’.’ TupleItemId

If a variable of the type DT is defined, then each component of the variable can be accessed
by appending the appropriate path expression to the identifier of the variable.

Data Access Path Expression In the following, a data access path expression is for-
mally treated as a sequence of path expression entities.

Let PathExprElemDT be the set of all possible path expression entities of a given data type
DT, i.e., PathExprElemDT = DataTypeIdComplex ∪ NatLit ∪ TupleItemId .

Let PathExprDT be the set of all possible path expressions of a given data type DT, i.e.,
PathExprDT = (PathExprElemDT)∗

In addition, the following notations are used:

• ∃prodVariantDTDefDT
(T,w) ≡

DTDefDT contains a Variant definition of the form: “T = ... | w | ...”

A.3. Data Types 211

• ∃prodListDTDefDT
(T,A,w) ≡

DTDefDT contains a List definition of the form:
“T = A*”, “T = A+”, “T = A[]”, or “T = A[N]” and w is a valid index
position. Valid index positions are integer numbers greater than or equal to zero.
If the List definition is of the form “T = A[N]”, then the valid index positions
additionally must be smaller then N .

• ∃prodTupleDTDefDT
(T,A,w) ≡

DTDefDT contains a Tuple definition of the form: “T = { ...; A w; ... }”

Type Let p, v ∈ PathExprDT ∧ w ∈ PathExprElemDT . TDT (p) is the type of the path
expression p and defined as follows:

TDT (p) = DT , if p = ε
w, if p = v ◦ w ∧ ∃prodVariantDTDefDT

(T (v), w)
A, if p = v ◦ w ∧ ∃prodListDTDefDT

(T (v), A, w)
A, if p = v ◦ w ∧ ∃prodTupleDTDefDT

(T (v), A, w)
⊥, else

Valid Data Access Path Expressions PDT is the set of all possible and valid path
expressions of DT. PDT is defined as follows:

p ∈ PDT ⇔def p = ε
∨
p = v ◦ w ∧ p ∈ PathExprDT ∧ w ∈ PathExprElemDT ∧ v ∈ PDT ∧
(∃prodVariantDTDefDT

(T (v),w) ∨ ∃prodListDTDefDT
(T (v),A,w) ∨

∃prodTupleDTDefDT
(T (v),A,w))

Data Structure Trees All valid path expressions can be grouped into data structure
trees. All tree nodes are path expression entities. A data structure tree is a subset of PDT

where for each variant node exactly one possibility is chosen, i.e., all path expressions in
the tree that contain this variant node have the save variant type for this variant node.
TRDT is the set of all possible data structure trees of a given data type DT and defined
as follows:

t ∈ TRDT ⇔def ε ∈ t
∧
v ◦ w ∈ t⇒ v ∈ t
∧
(v ∈ t ∧ ∃prodVariantDTDefDT

(T (v),w1)⇒
(∃prodVariantDTDefDT

(T (v),w2) : v ◦ w2 ∈ t)
∧
(∀w3 ∈ PathExprElemDT : v ◦ w3 ∈ t⇒ w3 = w2))
∧
(v ∈ t ∧ ∃prodTupleDTDefDT

(T (v), A, w1)⇒
(∀w2 ∈ PathExprElem : ∃prodTupleDTDef DT (T (v),w2)⇒ v ◦ w2 ∈ t)
∧

212 A. Notations

(v ∈ t ∧ ∃prodListDTDefDT
(T (v), A, w1)⇒

(∀w2 ∈ PathExprElem : ∃prodListDTDef DT (T (v),w2)⇒ v ◦ w2 ∈ t)

A.3.3 Example

The following example contains a data type definition for T0 :

T0 = { T1 s1; T2 s2 }
T1 = Int2 | T3

T2 = T4[2]
T3 = { String s1; Nat1 s2 }
T4 = { Int4 s1; String s2}

Then:

PT0 = { ε,
s1, s1.Int2, s1.T3, s1.T3.s1, s1.T3.s2,
s2, s2[0], s2[0].s1, s2[0].s2, s2[1], s2[1].s1, s2[1].s2 }

TRT0 = { t1, t2 }
t1 = { ε, s1, s1.Int2, s2, s2[0], s2[0].s1, s2[0].s2, s2[1], s2[1].s1, s2[1].s2 }
t2 = { ε, s1, s1.T3, s1.T3.s1; s1.T3.s2; s2, s2[0], s2[0].s1, s2[0].s2, s2[1], s2[1].s1, s2[1].s2 }

For easier readability, a simple dot (”.”) is used here instead of the sequence operator (”◦”).

A.4 Code Templates

Code templates are used to specify generated code. Examples can be found in the sections
5.5 (page 166) and 5.3.2 (page 161).

Fixed Parts Fixed parts of the generated code do not depend on any values that have
to be evaluated by the code generator and therefore remain always the same for each code
generation process. Fixed parts are expressed in teletype font, e.g.,

.data
Int _svBufIdx 0

.code
M1:
loadc_0 loadc_m1 add rempty
halt

A.4. Code Templates 213

Variable Parts Variable parts of the generated code depend on context values that have
to be first evaluated by the code generator and therefore might be different after each code
generation process. Variable parts are enclosed with “<Variable Part>”. The description
of Variable Part is not bound to a particular format, but must be comprehensible from the
context.

For example,

.<cvmProfile.cvmMode>Bit

results in the generated code

.16Bit

if the value of the term cvmProfile.cvmMode, which depends on the requesting client, is
evaluated to 16 during the generation process.

Conditional Parts Conditional parts are expressed with

<if : Condition1 >

... // code template
<elseif : Condition2 >

... // code template
...
<elseif : Conditionn> // n ≥ 1

... // code template
<else>

... // code template
<end>

The code template for Conditioni (1 ≥ i ≥ n), i.e., the ith condition, is only inserted, if
the ith condition is met. The description of the ith condition is not bound to a particular
format, but must be comprehensible from the context. Note that the <elseif : ...> parts
and the <else> part are optional.

For example,

printf ("

<if : cvmProfile.cvmMode = 16>

16

<elseif : cvmProfile.cvmMode = 32>

32

<else>

not 16 and not 32

<end>

");

results in the generated code

printf ("16");

or
printf ("32");

or
printf ("not 16 and not 32");

if the term cvmProfile.cvmMode evaluates to 16, 32, or any other value, respectively.

214 A. Notations

Iterative Parts Iterative parts are expressed with

<∀ Expression>

... // code template
<end>

Expression must evaluate to an expression, where an element is selected from a set of
elements. The set of elements is defined in Expression as well. The inner part of the code
template specifies the generated code for each element of the set, whereby the element may
appear as a variable. Note that the set is processed in an ascending order.

For example,

<∀ i : 0 ≤ i ≤ 2>

printf ("<i>");

<end>

results in the generated code

printf ("0");

printf ("1");

printf ("2");

Imported Parts Imported parts are expressed with

<import : Verbal Description >

Verbal Description contains the information which code template is inserted here.

For example,

<import : Code of the example in the previous subsection “Variable Parts”>

results in the generated code

.16Bit

Functions A function definition is expressed with

<fct : id(parDeclarations)>
... // code template

<end>

id contains the (unique) name of the function. parDefinitions contains an optional list of
parameter declarations. A formal syntax for the declaration of the parameter list is not
specified here.

A function call is expressed with

<call : id(parValues)>

id refers to the defined function with the same id. parValues defines values for the function
parameters, if available.

For example,

<fct : max (Int i1 , Int i2)>
<if : i1 > i2>

<i1>

A.4. Code Templates 215

<else>

<i2>

<end>

<end>

printf ("<call : max (2 , 5)>");

results in the generated code

printf ("5");

Verbal Description of Instruction Blocks A block of CVM instructions that per-
forms a certain task might be described verbally, i.e., without listing the particular CVM
instructions in detail, by using the notation “<Verbal Description>”. Verbal descriptions
of instruction blocks are used in code templates for reasons of brevity and clearness, even
if the instruction block contains only fixed parts of the generated code.

For example, the CVM assembler code fragment in section 3.1.4.2 (page 39) contains verbal
descriptions of instruction blocks. Refer to section B (page 216) for more information on
the CVM assembler.

Appendix B

CVM Assembler (CVMA)

In this thesis an assembler for writing CVM programs, called the CVM assembler, has been
developed and implemented. The CVM assembler translates readable CVM programs into
binary CVM packets that are executed by the CVM. The CVM assembler can be used
as a low-level language to write user interfaces or other programs for the CVM. It is also
used in the code templates to describe the code that is generated by the CVM packet
generator. This section specifies in detail its use. At the end, some example programs and
their disassembled binaries are listed.

B.1 Syntax

CVM assembler programs are case sensitive. The grammar for the concrete syntax of
the CVM assembler is presented in a generally understandable notation. Refer to section
A.2 (page 207) for a short description of the used notation. The grammar of the CVM
assembler can be split into a syntactic and a lexical part. First, the grammar is listed,
then additional explanations and context conditions are provided for particular syntactic
constructs in alphabetical order.

Syntactic Grammar The syntactic part of the grammar with the root CvmAsProg is
as follows:

CvmAsProg ::= Mode? (CvmAsEntity)∗
CvmAsEntity ::= Const | Data | Code

Mode ::= ’.16Bit’ | ’.16BitEmu’ | ’.32Bit’ | ’.32BitEmu’

Const ::= ’.const’ (Identifier Expr)∗

Data ::= ’.data’ (DeclVar Expr?)∗
DeclVar ::= DataType Identifier

Code ::= ’.code’ (DeclFct | Label | Instruction)∗
DeclFct ::= ’.fct’ Identifier ’(’ DeclPars ’)’ DataType? Block
DeclPars ::= (DeclVar (’,’ DeclVar)∗)?

216

B.1. Syntax 217

Block ::= ’{’ (Block | DeclVar | Label | Instruction)∗ ’}’
Instruction ::= Mnemonic (Expr (’,’ Expr)∗)?

Expr ::= MulExpr | Expr (’+’ | ’-’) MulExpr
MulExpr ::= Factor | MulExpr (’*’ | ’/’ | ’%’) Factor
Factor ::= ’(’ Expr ’)’ | ’-’ Factor | NatLiteral | StringLiteral |

Identifier | EventCode | FontCode | KeyCode | MouseFontCode |
LibFctCode | BuiltinFct ’(’ (Expr (’,’ Expr)∗)? ’)’ |
ArrayInit

ArrayInit ::= ’[’ (ArrayElem (’,’ ArrayElem)∗)? ’]’

ArrayElem ::= Expr (’#’ Expr)?

Lexical Grammar The lexical part of the grammar is as follows:

BuiltinFct ::= ... // refer to section B.4 (page 227), “builtin function name”
DataType ::= ... // refer to section B.2 (page 222), “DataType”
EventCode ::= ... // refer to section 3.1.6.4 (page 49), “event code name”
FontCode ::= ... // refer to section 3.2.3 (page 79), “font code name”
KeyCode ::= ... // refer to section 3.3 (page 81), <X11/keysymdef.h>
MouseFontCode ::= ... // refer to section 3.5 (page 81), <X11/cursorFont.h>
LibFctCode ::= ... // refer to section 3.5 (page 83), “library function name”

Mnemonic ::= CvmMnemonic | MacroMnemonic
CvmMnemonic ::= ... // refer to section 3.9.2 (page 100), “mnemonic”
MacroMnemonic ::= ... // refer to section B.3 (page 224), “macro mnemonic”

Identifier ::= Alpha (Alpha | Digit)∗
Label ::= Identifier ’:’

NatLiteral ::= Digit+
StringLiteral ::= ’"’ (ASCII \ ’"’)∗ (’\\"’ (ASCII \ ’"’)∗)∗ ’"’

Alpha ::= ’a’..’z’ | ’A’..’Z’ | ’_’
Digit ::= ’0’..’9’

WhiteSpace ::= ’ ’ | ’\f’ | ’\n’ | ’\r’ | ’\t’
Comment ::= ’/*’ ASCII∗ \ (ASCII∗ ’*/’ ASCII∗) ’*/’ |

’//’ ASCII∗ \ (ASCII∗ ’\n’ ASCII∗) ’\n’

To resolve ambiguities within the lexical part of the grammar, the longest possible character
sequence of the input program that matches one of the productions in the lexical grammar is
selected. For example, the character sequence ’abc12’ is recognized as one Identifier, and
not as the Identifier ’abc’ followed by the NatLiteral ’12’. In addition, the character
sequence ’abc12:’ is recognized as a Label. If the longest possible character sequence
matches more than one production, the production listed first is chosen.

White space characters (WhiteSpace) and comments (Comment) are discarded at lexical
level. They may appear at any place in the CVM program between the syntactic units

218 B. CVM Assembler (CVMA)

listed in the syntactic part of the grammar.

ArrayInit This syntactic construct initializes a data array. The value of each array
element (ArrayElem) might be either an integer number, a string, or the result of the
builtin function stringBytes(). Nested ArrayInits are not allowed.

If the value of an array element is a string, it consists only of one expression (Expr) which
might be a single string literal (StringLiteral), or a single identifier (Identifier) that refer-
ences a string constant declaration (DeclConst), or a single builtin function (BuiltinFct)
call that returns a string, or a concatenation of two string expressions with the ’+’ oper-
ator.

If the value of an array element is an integer number, the first expression (Expr) defines
the value whereas the optional second expression (Expr) sets the number of bytes that
should be reserved for the value of the array element. However, the second expression is
not allowed, if the type and length of the array element is already known from the context.
For example, this is the case, if ArrayInit is used to declare an event table. Refer to
EventTable in section B.2 (page 223) for more information on declaring event tables. If
the second expression is allowed, but not explicitly given, then the default byte length of
the array element is defined by the CVM mode (Mode). If the CVM mode is ’.16Bit’ or
’.16BitEmu’, the byte length is 2. If the CVM mode is ’.32Bit’ or ’.32BitEmu’, the
byte length is 4. The value of an existent second expression may only be 1 or 2, if the
CVM mode is ’.16Bit’ or ’.16BitEmu’, and 1, 2, 3, or 4, if the CVM mode is ’.32Bit’
or ’.32BitEmu’. The identifiers (Identifier) that appear inside the second expression must
not refer to labels (Label), functions (DeclFct), function parameters, and local or global
variables (DeclVar). Neither, the byte length of the array element — no matter whether
specified explicitly or implicitly — may be less than the minimum number of bytes that
are required for the value of the array element, with using one’s-complement format for
positive integer values and two’s-compliment format for negative integer values.

If the value of an array element is the result of the builtin function stringBytes(), then
it consists only of one expression which contains only the respective builtin function call
(BuiltinFct). Refer to section B.4 (page 230) for more information on the builtin function
stringBytes().

Const This syntactic construct contains integer and string constant declarations. Array
constant declarations are not allowed. A declaration of an integer or string constant assigns
the integer or string value of the given expression (Expr) to the identifier (Identifier).
The integer or string value is evaluated by the CVM assembler during assembling. A
declared constant can be used within the whole CVM assembler program. As in any
other programming language, the use of self-defined constants makes programming more
convenient and programs more readable.

If the value of the expression (Expr) is an integer number, the identifiers that appear
inside that expression may only refer to labels (Label), functions (DeclFct), global variables
(DeclVar), and other integer constants (DeclConst).

If the value of the expression (Expr) is a string, the expression may only consist of a single
string literal (StringLiteral), or of a single identifier that references another string constant
declaration (DeclConst), or of a single builtin function (BuiltinFct) call that returns a
string, or of a concatenation of two string expressions with the ’+’ operator.

B.1. Syntax 219

Cyclic definitions of integer or string constants are not allowed, either.

Data This syntactic construct contains global variable declarations. Section B.2 (page
222) describes for each CVM assembler data type the purpose of Expr, which might repre-
sent an initial value or specify the data type further. Variables with an initial value appear
in CVM memory in the Declared Data section. Variables with no initial value appear in
CVM memory in the Undeclared Data section.

If the CVM mode (Mode) is ’.16Bit’ or ’.32Bit’, the CVM assembler sorts the declared
data automatically in the following order before assembling them into the CVM packet:

1. Uninitialized byte array declarations (Bytes)

2. Uninitialized integer declarations (Int)

3. Zero-initialized byte array declarations (Bytesz)

4. Zero-initialized integer declarations (Int)

5. Non-zero initialized byte array declarations (Bytesz)

6. Non-zero initialized integer declarations (Int)

7. String declarations (String)

8. Event table declarations (EventTable)

Note that there may be several event table declarations, but at most one event table is
active at a moment during execution.

If the initial value of an integer declaration depends on a memory address, i.e., there is
an identifier inside the expression (Expr) of the initial value that refers to a label (Label),
function (DeclFct), or global variable (DeclVar), then this declaration appears in the non-
zero initialized integer declaration section. Otherwise, the CVM assembler cannot perform
the address resolution correctly.

If the CVM mode (Mode) is ’.16Bit’ or ’.32Bit’, the CVM assembler does not assemble
the uninitialized data items into the CVM packet, which reduces packet size and thus net-
work bandwidth requirements. In addition, the CVM assembler groups the zero-initialized
data items into one byte array using one of the bytesz<1|...|4> declaration codes and the
non-zero initialized data items except for the event table into another byte array using one
of the bytes<1|...|4> declaration codes. For the event table it uses the eventtable declara-
tion code. Refer to section 3.8 (page 96) for a complete list of all CVM data declaration
codes.

If the CVM mode (Mode) is ’.16BitEmu’ or ’.32BitEmu’, the CVM assembler encodes
each data item into the CVM packet separately using the appropriate declaration code.
Uninitialized data is then declared as zero initialized data in the CVM packet.

220 B. CVM Assembler (CVMA)

DeclFct A function declaration (or equally called procedure declaration) consists mainly
of the following parts: the name (Identifier) of the function, possibly the declaration of its
parameters (DeclPars) and return type (DataType), and finally the function body (Block).
As specified in the grammar, nested declarations of functions are not possible. The data
type of an existing return value may only be Int. If the function does not have a return
value, the return type is Void or may be omitted. Variables (DeclVar) declared within a
Block are local variables. They are located on the CVM’s memory stack during execution
of the CVM program. The CVM assembler inserts automatically CVM instructions to
reserve space for them on the stack. The data type of a parameter or local variable may
only be Int. The scope of a parameter is the whole function body. The scope of a local
variable is the rest of the block where it is declared, including all nested sub-blocks. A
parameter or local variable must not be redeclared within its scope to overwrite or hide its
first declaration. The CVM assembler inserts automatically the following CVM instructions
at the beginning of the function body to set the new stack frame:

loadc ((byteLen(result) +
∑n

i=1 byteLen(pari)) / cvmIntLen)
newstackframe

(loadc numLocalVariables
addsp)?

byteLen(result) +
∑n

i=1 byteLen(pari) represents the total amount of bytes for the return
value and the function parameters and cvmIntLen is 2 on a 16-bit CVM and 4 on a 32-bit
CVM. numLocalVariables represents the total number of stack cells that are reserved for
the local variables of the function on the memory stack. If it is zero, than no space is
reserved for them with the loadc and addsp instructions. Note that because of the limited
scopes of the local variables within the nested block structure, different local variables with
different scopes might be mapped to the same memory stack cell.

The instruction ret is not allowed within the function body, whereas the macro return must
occur at least once. Refer to section B.3 (page 226) for more information on return.

Function declarations provide a higher means for writing functions (or procedures) in CVM
assembler. However, they are not essential because the common low level way of writing
functions in assembler is also possible. But used together with appropriate macros the
access of parameters, local variables, and the return value gets more convenient to the
CVM assembler programmer. This is illustrated by the example program in section B.6
(page 237).

DeclVar DeclVar is used for declaring global variables within the Data section and
local variables and parameters within a function declaration (DeclFct). In a variable or
parameter declaration first comes the data type (DataType) of the variable, then its name
(Identifier).

Expr The value of an expression (Expr) might be an integer number, a string, or a data
array and is evaluated by the CVM assembler during assembling.

If its value is a string, then the expression consists of a single string literal (StringLiteral), or
of a single identifier (Identifier) that references a string constant declaration (DeclConst),
or of a single builtin function (BuiltinFct) call that returns a string, or of a concatenation
of two string expressions with the ’+’ operator.

B.1. Syntax 221

If its value is a data array, then the expression consists only of a single array initialization
(ArrayInit) or of a single builtin function (BuiltinFct) call that returns a data array. Refer
to Identifier for more information on the values of identifiers that appear as factors (Fac-
tor) within expressions. The values of BuiltinFct, EventCode, FontCode, MouseFontCode,
KeyCode, and LibFctCode are specified in the sections that are referred to in the comments
of the respective productions in the lexical grammar specification.

All arithmetic operations with integer numbers are based on integer but not floating point
arithmetic.

Identifier Lexically, an identifier (Identifier) must not match a BuiltinFct, DataType,
EventCode, FontCode, MouseFontCode, KeyCode, LibFctCode, and a Mnemonic. An iden-
tifier is used for declaring constants (DeclConst), labels (Label), functions (DeclFct), global
and local variables (DeclVar), and function parameters (DeclVar). Each identifier of a con-
stant, label, function, and global variable may be used in a declaration only once and must
be unique in the whole CVM assembler program. Either it must not be reused to declare
a parameter or local variable of a function.

An identifier (Identifier) might appear as a factor (Factor) within an expression (Expr)
and refer either to an integer or string constant (DeclConst), a label (Label), a function
(DeclFct), a function parameter (DeclVar), a global variable (DeclVar), or a local variable
(DeclVar) that is valid where the identifier appears. If it refers to a string constant its
value is the declared string. Otherwise, the value of the identifier is an integer value —
that will be called in the following valId — and is calculated depending on the type of its
appropriate declaration:

• DeclConst
valId is the value of the expression (Expr) within the integer constant declaration
DeclConst.

• DeclFct
This declaration type is treated like a Label. Refer to Label.

• DeclVar
If the variable is global, valId is the absolute memory address of the variable in the
Declared or Undeclared Data section in CVM memory. If the variable is a parameter
or local variable, then valId is the relative memory address of the parameter or local
variable on the current stack frame starting from the address given by the special
register regBP. Refer also to section 3.1.4.2 (page 39). Note that because of the
limited scopes of the local variables within the nested block structure, different local
variables with different scopes might be mapped to the same memory stack cell.

• Label :
valId is the memory address of the next following instruction. If there is no instruc-
tion following this label, then valId is the memory address of the previous instruc-
tion plus its byte length. If there is no previous instruction, either, then valId is
equal to codeSegmentAdr. Refer to section 3.8 (page 95) for more information on
codeSegmentAdr.

222 B. CVM Assembler (CVMA)

Instruction The grammar for Instruction defines the general syntax of an instruction.
Instructions can be classified into CVM instructions and macros which act as pseudo in-
structions. The operands and additional context conditions of the CVM instructions are
explained in section 3.9.2 (page 100), of the macros in section B.3 (page 224).

Label As usual, a label declares symbolically the memory address of its next following
instruction.

Mode This syntactic construct specifies the CVM mode. If it is not explicitly specified,
’.32BitEmu’ is used as default. Refer to section 3.1.2 (page 33) for more information
on CVM modes. In the following, the term “16-bit CVM” is used to refer that Mode
is ’.16Bit’ or ’.16BitEmu’, and the term “32-bit CVM” is used to refer that Mode is
’.32Bit’ or ’.32BitEmu’.

NatLiteral If the positive integer number specified by NatLiteral exceeds the maximum
value 231 − 1, it is truncated automatically to that limit by the CVM assembler.

StringLiteral A string literal is a sequence of ASCII [7] characters. The number of
ASCII characters in the ASCII sequence need not equal to the number of characters in
the produced string. For example, the escape characters for line feed, carriage return,
and horizontal tab are represented by the ASCII character sequences “\n”, “\r”, and
“\t”, respectively. The “"” character is represented by the ASCII character sequence
“\"”. In addition, each character in a string literal may also be represented by its Unicode
[88] number in the form \U{hexadecimal unicode number}. For example, the string literal
"K\U{F6}nig" produces the string “König”. Note that the binary UTF-8 representation
of the produced string must not exceed 65535 bytes.

B.2 Data Types

The CVM assembler provides the following data types: Bytes, Bytesz, EventTable, Int,
and Void. In the following, the purpose of the syntactic unit Expr from the grammar
specification to declare and possibly initialize variables within the Data section will be
described by using the following description format:

data type value
verbose description

value is shown in the form identtype . ident can be any identifier and is chosen to characterize
the usage of value. type specifies the syntactic type of value and must be a syntactic subtype
of Expr, i.e., it can be derived from Expr according to the grammar specification in section
B.1 (page 216). value must match the production for type. For example, numExpr might
be used to specify a number that matches the production for Expr. Afterwards, some
additional explanations are given.

Note that for some data types several different kinds of values are possible. Each possibility
is listed separately.

B.2. Data Types 223

Bytes numBytesExpr

The data type Bytes declares a byte array without initializing it. The value of the ex-
pression numBytes specifies the byte length of the array. It must be an unsigned integer
number in the range of [1; 216−1] on a 16-bit CVM or [1; 232 − 1] on a 32-bit CVM, respec-
tively, and must not depend on labels (Label), functions (DeclFct), function parameters,
and local or global variables (DeclVar).

Bytes textExpr

The data type Bytes declares an UTF-8 string and initializes it with the string expression
textExpr .

Bytes arrayArrayInit

The data type Bytes declares a byte array and initializes it with array.

Bytes builtinFctNameBuiltinFct

The data type Bytes declares a byte array and initializes it with the byte array that is
returned by the builtin function with the name builtinFct. Refer to section B.4 (page 227
for more information on builtin functions.

Bytesz numBytesExpr

The data type Bytesz declares a byte array and initializes all elements with zero. The
integer value of the expression numBytes specifies the byte length of the array. It must be
an unsigned integer number in the range of [1; 216−1] on a 16-bit CVM or [1; 232 − 1] on
a 32-bit CVM, respectively, and must not depend on labels (Label), functions (DeclFct),
function parameters, and local or global variables (DeclVar).

EventTable arrayArrayInit

The data type EventTable declares an event table. Here, the syntactic structure of ar-
ray is a special form of an initialized byte array and must be ’[’ (eventCodeExpr ’,’

memAdrExpr)∗ ’]’. The value of eventCode must be an integer number greater than zero.
If the value of eventCode is 1, then eventCode must be the second last element in the array.
The value of memAdr must be an integer number greater than zero. Refer to sections 3.8
(page 96) and 3.1.6.2 (page 48) for more information on event tables.

Int numExpr?
The data type Int declares a signed (two’s complement) 2-byte integer number on a 16-bit
CVM or a 4-byte integer number on a 32-bit CVM, respectively, with the optional initial
value num. The value of num must be a signed (two’s complement) integer number in the
range of [−215; 215 − 1] on a 16-bit CVM or [−231; 231 − 1] on a 32-bit CVM, respectively,

String textExpr

The data type String declares an UTF-8 string and initializes it with the string expression
textExpr . If the CVM mode (Mode) is ’.16Bit’ or ’.32Bit’, this declaration equals to the
“Bytes textExpr” declaration. Otherwise, the CVM assembler uses the CVM declaration
code string when assembling this data item into the CVM packet.

224 B. CVM Assembler (CVMA)

B.3 Macros

For reasons of convenience, the CVM assembler provides some predefined macros to simplify
programming in CVM assembler. A predefined macro contains several successive CVM
instructions and is used as a pseudo instruction. However, the predefined macros are
still quite low-level. The CVM assembler expands them into CVM instructions before it
generates the binary code. In the following, the predefined macros are listed alphabetically
and described using the following description format:

macro mnemonic operands −→ target instructions
verbose description

The left side contains the mnemonic of the macro and its (possibly empty) operand list.
Each operand is shown in the form identtype . ident can be any identifier and is chosen to
characterize the usage of the operand. type determines the syntactic type of the operand
according to the grammar specification in section B.1 (page 216). The operand must
match the production for type. For example, varIdentifier might be used to specify a variable
whose name matches the production for Identifier. The right side contains the instruction
sequence into which the macro is expanded. Afterwards, some additional explanations are
given.

fcall fctIdIdentifier −→ loadcr fctIdIdentifier

call
(loadc −numPars
addsp)?

The macro fcall first calls a declared function and then pops the function parameters — if
available — from the memory stack and discards them. Therefore, it assumes a function
declaration with fctId being the name of the function. numPars represents the total
number of stack cells occupied by the parameters on the memory stack. Each stack cell
occupies cvmIntLen number of bytes. Refer to sections B.3 (page 225) and 3.1.2 (page 33)
for more information on loadcr and cvmIntLen, respectively.

fcall I fctIdIdentifier , numExpr −→ loadc numExpr

push
fcall fctIdIdentifier

The macro fcall I calls a declared function with an integer parameter. The value of num
must be an integer number.

load varIdentifier −→ loadc adr(var)
load<a|r>

The macro load loads the value of the signed 2- or 4-byte integer (Int) variable var onto the
register stack, depending on whether the CVM mode (Mode) is set to 16-bit (’.16Bit’,
’.16BitEmu’) or 32-bit (’.32Bit’, ’.32BitEmu’). var must be a declared function pa-
rameter, local variable, or global variable. adr(var) represents the memory address of var,
which is absolute, if var is a global variable, otherwise relative. Section B.1 (page 221)
explains how the correct memory address of the identifier var is determined. If var is a

B.3. Macros 225

global variable, the instruction loada is used, otherwise loadr. The benefit of this macro
is that the CVM assembler programmer does not need to hardcode explicitly the load
instruction, the memory address of the variable var, and the byte length of the memory
address of the variable var when retrieving its value from memory. All these informations
are included automatically by the CVM assembler into the resulting instructions.

loadc numExpr −→ loadc<ε|u><byteLen(val(num))> val(num)
| loadc 0 | loadc 1 | loadc m1

The macro loadc loads the immediate integer number val(num) onto the register stack with
val(num) representing the integer value of the expression num and byteLen(val(num)) ∈
{1, 2, 3, 4} representing the minimum byte length that is required for val(num). If val(num)
is negative, val(num) is encoded as a two’s-complement integer number, otherwise as a
one’s-complement integer number. Depending on the algebraic sign of val(num) and its
byte length, the CVM assembler expands this macro into one of the appropriate load
instructions. byteLen(val(num)) must not exceed 2 on a 16-bit CVM or 4 on a 32-bit
CVM, respectively. The benefit of this macro is that the CVM assembler programmer
does not need to hardcode explicitly the algebraic sign and the required byte length of
val(num) into the load instruction. Note that this macro must not be the last instruction
in a CVM assembler program, which simplifies address resolution for the CVM assembler
and does not cause any considerable restriction.

loadcr numExpr −→ loadc<ε|u><byteLen(relAdr)> relAdr
| loadc 0 | loadc 1 | loadc m1

The macro loadcr loads the immediate integer number relAdr onto the register stack with
relAdr = val(num) − memAdr(nextInst). val(num) represents the integer value of the
expression num, memAdr(nextInst) represents the absolute memory address of the next
instruction, and byteLen(relAdr) ∈ {1, 2, 3, 4} represents the minimum byte length that is
required for relAdr . If relAdr is negative, relAdr is encoded as a two’s-complement integer
number, otherwise as a one’s-complement integer number. Depending on the algebraic
sign of relAdr and its byte length, the CVM assembler expands this macro into one of
the appropriate load instructions. byteLen(relAdr) must not exceed 2 on a 16-bit CVM
or 4 on a 32-bit CVM, respectively. The benefit of this macro is that the CVM assembler
programmer does not need to hardcode explicitly the algebraic sign and the required byte
length of relAdr into the load instruction. This macro is used right before a jump or call
instruction to load the relative memory address of the jump target. Note that this macro
must not be the last instruction in a CVM assembler program.

rcvpage pageNoExpr , subpageNoExpr −→ loadc hostAdrSrv

loadc pageNo
loadc subpageNo
rcv

The macro rcvpage contacts the CVM packet server that serves the client and requests
from it the CVMUI page with the AUI page number pageNo and the AUI subpage number
subpageNo. The values of pageNo and subpageNo must be integer numbers. Refer also to
section 5.5.1 (page 166) for more information on hostAdrSrv.

226 B. CVM Assembler (CVMA)

rcvpage a pageNoExpr , subpageNoMemAdrExpr −→ loadc hostAdrSrv

loadc pageNo
loadc subpageNoMemAdr
loada
rcv

The macro rcvpage a is similar to the macro rcvpage. However, subpageNoMemAdr repre-
sents the absolute memory address of subpageNo.

rcvsvc hostAdrMemAdrExpr , serviceNoExpr −→ sidzero
loadc hostAdrMemAdr
loadc serviceNo
loadc 0
rcv

The macro rcvsvc starts a new client-server session with the addressed CVM packet server
and requests a CVMUI page that belongs to the interactive network service with the service
number serviceNoExpr . The AUI page and subpage numbers of the requested CVMUI page
are zero, each. The values of hostAdrMemAdr and serviceNo must be integer numbers.

retload −→ loadc 0
loadr

The macro retload loads the current return value of the function from the memory stack
onto the register stack for further processing. Therefore, it can only appear within the
body of a function declaration that has a return value. The benefit of this macro is that
the CVM assembler programmer does not need to hardcode explicitly the relative memory
address of the return value.

retstore −→ loadc 0
storer

The macro retstore pops the top-most value from the register stack and assigns it to the
return value of the function in the memory stack. Therefore, it can only appear within the
body of a function declaration that has a return value. The benefit of this macro is that
the CVM assembler programmer does not need to hardcode explicitly the relative memory
address of the return value.

return −→ (loadc −numLocVars
addsp)?
oldstackframe
ret

The macro return first pops the current available local variables from the memory stack
and discards them. Then it sets back the previous stack frame and returns to the caller of
this function. Therefore, it can only appear within the body of a function declaration. In
addition, there must be at least one return instruction in each function body. numLocVars
represents the total number of stack cells that are occupied by the local variables on the
memory stack. The benefit of this macro is that the CVM assembler programmer can
return with one instruction conveniently back to the caller of the function.

B.4. Builtin Functions 227

sendrcvpage pageNoExpr , subpageNoExpr −→ loadc hostAdrSrv

loadc pageNo
loadc subpageNo
load svBufIdx

loadc svBuf

sendrcv
The macro sendrcvpage contacts the CVM packet server that serves the client, sends data to
it and requests the CVMUI page with the AUI page number pageNo and the AUI subpage
number subpageNo. The values of pageNo and subpageNo must be integer numbers. Refer
also to section 5.5.1 (page 166) for more information on hostAdrSrv, svBufIdx, and
svBuf.

sendrcvpage a pageNoExpr , subpageNoMemAdrExpr −→ loadc hostAdrSrv

loadc pageNo
loadc subpageNoMemAdr
loada
load svBufIdx

loadc svBuf

sendrcv
The macro sendrcvpage a is similar to the macro sendrcvpage. However, subpageNoMemAdr
represents the absolute memory address of subpageNo.

store varIdentifier −→ loadc adr(var)
store<a|r>

The macro store stores the value on the top of the register stack into the integer (Int)
variable var. var must be a declared function parameter, local variable, or global variable.
adr(var) represents the memory address of var, which is absolute, if var is a global variable,
or relative, if var is a parameter or local variable. Section B.1 (page 221) explains how the
correct memory address of var (Identifier) is determined. Depending on the specified CVM
mode (Mode), the byte length of the variable var is 2 on a 16-bit CVM and 4 on a 32-bit
CVM. If var is a global variable, the instruction storea is used, otherwise storer. The benefit
of this macro is that the CVM assembler programmer does not need to hardcode explicitly
the store instruction, the memory address of the variable var, and the byte length of the
memory address of the variable var when storing a value into it. All these informations
are included automatically by the CVM assembler into the resulting instructions.

B.4 Builtin Functions

For reasons of convenience, the CVM assembler also provides some builtin functions to
simplify programming in CVM assembler. The CVM assembler processes a builtin function
during assembling and writes the result into the binary code. In the following, the builtin
functions are listed alphabetically and described using the following description format:

builtin function name (parameters) : return type

228 B. CVM Assembler (CVMA)

verbose description

builtin function name serves as a one-word description of the purpose of the function.
parameters is a (comma separated and possibly empty) list of function parameters. Each
parameter is shown in the form identtype . ident can be any identifier and is usually chosen
to characterize the meaning of the parameter. type determines the syntactic type of the
parameter according to the grammar specification in section B.1 (page 216). The parameter
must match the production for type. For example, valExpr might be used to specify a value
that matches the production for Expr. return type specifies the data type of the result and
is one of the CVM data types Int, Nat, String, or a tuple structure. Afterwards, a verbose
description of the builtin function is given.

bitmapFile (fileNameExpr) : { Nat<2|4> width, height;
Nat1[width ∗ height] data }

The builtin function bitmapFile reads a bitmap image file that complies to the X11
BitMap format XBM [96]. The name of the bitmap file is the value of the string expression
fileName. This builtin function returns the width and height of the bitmap image and
the image data as a byte array. If the CVM mode is set to a 32-bit CVM, i.e., Mode =
’.32Bit’ or ’.32BitEmu’, the data types of width and height are each Nat4 and the
width and height of the bitmap image must fit into the Nat4 data type. If the CVM mode
is set to a 16-bit CVM, i.e., Mode = ’.16Bit’ or ’.16BitEmu’, the data types of width

and height are each Nat2 and the width and height of the bitmap image must fit into the
Nat2 data type. width and height are specified in pixels.

bitmapHeight (fileNameExpr) : Int
bitmapWidth (fileNameExpr) : Int
The builtin functions bitmapHeight and bitmapWidth read a bitmap image file and return
its height and width in pixels, respectively. The bitmap image complies to the X11 BitMap
format XBM [96]. The name of the bitmap file is the value of the string expression fileName.

font (fontCodeExpr , fontSizeExpr) : Int4
The builtin function font encodes the given font components into an appropriate Int4
number according to the following format: (fontSize � 16) | fontCode. This builtin
function can only be used, if the specified CVM mode is set to a 32-bit CVM, i.e., Mode
= ’.32Bit’ or ’.32BitEmu’. The values of the expressions fontCode and fontSize must
be unsigned integer numbers in the range of [0; 65535] and each of them must not depend
on labels (Label), functions (DeclFct), function parameters, and local or global variables
(DeclVar). fontSize is specified in pixels. Refer to section 3.2.3 (page 79) for a list of the
currently supported font codes and their respective valid font sizes. Refer also to the CVM
instruction setfont32 (page 113).

fontPt (fontCodeExpr , fontSizeExpr) : Int4
Same functionality as font(). However, fontSize is specified in tenths of a Point (pt), but
not in pixels.

B.4. Builtin Functions 229

fontAscent (fontCodeExpr , fontSizeExpr) : Int
fontDescent (fontCodeExpr , fontSizeExpr) : Int
fontHeight (fontCodeExpr , fontSizeExpr) : Int
The builtin functions fontAscent, fontDescent, and fontHeight return the ascent, de-
scent, and height of a font in pixels. The height is the sum of its ascent and descent. The
font is specified by fontCode and fontSize. The values of the expressions fontCode and
fontSize must be unsigned integer numbers in the range of [0; 65535] and each of them
must not depend on labels (Label), functions (DeclFct), function parameters, and local or
global variables (DeclVar). fontSize is specified in pixels. Refer to section 3.2.3 (page 79)
for a list of the currently supported font codes and their respective valid font sizes.

fontAscentPt (fontCodeExpr , fontSizeExpr) : Int
fontDescentPt (fontCodeExpr , fontSizeExpr) : Int
fontHeightPt (fontCodeExpr , fontSizeExpr) : Int
Same functionality as fontAscent(), fontDescent(), and fontHeight(), respectively.
However, fontSize and the return value are specified in tenths of a Point (pt), but not in
pixels.

MAX (num1Expr , num2Expr) : Int
MIN (num1Expr , num2Expr) : Int
The builtin functions MAX and MIN return the maximum and the minimum of the two
integer values num1 and num2, respectively.

pixmapFile (fileNameExpr) : Nat1[] data

The builtin function pixmapFile reads a pixmap image file that complies to the X11
PixMap format XPM [38]. The name of the pixmap file is the value of the string expression
fileName. This builtin function returns an ASCII [7] character string as a byte array that
represents an exact copy of the X PixMap (XPM) [38] file in memory. Note that the byte
array data does not contain the terminating null character.

pixmapHeight (fileNameExpr) : Int
pixmapWidth (fileNameExpr) : Int
The builtin functions pixmapHeight and pixmapWidth read a pixmap image file and return
its height and width in pixels, respectively. The pixmap image complies to the X11 PixMap
format XPM [38]. The name of the pixmap file is the value of the string expression fileName.

rgb (redExpr , greenExpr , blueExpr) : Int4
The builtin function rgb encodes the given red, green, and blue color components into an
appropriate Int4 number according to the following format: (red � 16) | (green � 8) | blue.
This builtin function can only be used, if the specified CVM mode is set to a 32-bit CVM,
i.e., Mode = ’.32Bit’ or ’.32BitEmu’. The values of the expressions red, green, and
blue must be unsigned integer numbers in the range of [0; 255] and each of them must
not depend on labels (Label), functions (DeclFct), function parameters, and local or global
variables (DeclVar). Refer also to the CVM instruction setcolor32 (page 112).

230 B. CVM Assembler (CVMA)

sizeof (valExpr) : Int
The builtin function sizeof returns the byte length of the value of the expression val. It
is similar to the sizeof operator of the C [20] programming language. If val is an integer
expression, then the builtin function returns 2 on a 16-bit CVM and 4 on a 32-bit CVM,
respectively. If val is a string expression, then the builtin function returns the byte length
of the corresponding String structure. Refer to section 3.1.1 (page 33) for more information
on the CVM type String. If val is an array expression, then the builtin function returns
the number of bytes of the corresponding byte array. However, if val consists only of an
identifier (Identifier) that directly or indirectly refers to a variable declaration (DeclVar),
then the builtin function returns the byte length of the declared data.

For example, in the following CVM assembler code fragment

.32Bit

.data
String d1 "123456789"

.const
c1 d1
c2 sizeof (c1)
c3 sizeof ([32, 165, "Hello", 5321, sizeof ([9294, 12431, "World!", 4325]),

stringBytes ("Hello World!")])

the values of the integer constants c2 and c3 are 10 and 34, respectively.

stringBytes (textExpr) : Nat1[] data

The builtin function stringBytes returns the value of the string expression text as a byte
array of UTF-8 characters. Compared to the CVM type String, the returned byte array
data equals to the bytes field of the corresponding String structure, but not to the whole
String structure. Refer to section 3.1.1 (page 33) for more information on the CVM type
String. For example, stringBytes("Hello World!\n") returns the byte array [72, 101,
108, 108, 111, 32, 87, 111, 114, 108, 100, 33, 10], with each byte value represented here in
decimal notation and separated by a comma. The whole corresponding String structure,
however, equals to the byte array [13, 72, 101, 108, 108, 111, 32, 87, 111, 114, 108, 100,
33, 10], again with each byte value represented here in decimal notation and separated by
a comma. The first byte with the value 13 indicates the number of the following bytes
within the String structure.

textBreakLines (textExpr , fontCodeExpr , fontSizeExpr , maxWidthExpr) : String
The builtin function textBreakLines formats the text paragraph text, which is a string
expression, by inserting single line break characters (“\n”), so that the maximum width
of the resulting text paragraph, which is also a string, does not exceed the value of the
integer expression maxWidth. A text paragraph consists of one or more text lines that are
separated by the “\n” character. The width of a text paragraph is the maximum width
of all its text lines. A “\n” character can only be inserted right before a space character
(“ ”), i.e., the words within text are not truncated. Note that no “\n” characters that
are already contained in text are removed in the resulting text paragraph. In addition,
textBreakLines also truncates successive “ ” characters within text to one “ ” character

B.4. Builtin Functions 231

and ignores all “ ” characters right at the beginning and at the end of a text line in text.
The used font is specified by fontCode and fontSize. The values of the expressions fontCode
and fontSize must be unsigned integer numbers in the range of [0; 65535] and each of them
must not depend on labels (Label), functions (DeclFct), function parameters, and local or
global variables (DeclVar). fontSize and maxWidth are specified in pixels. Refer to section
3.2.3 (page 79) for a list of the currently supported font codes and their respective valid
font sizes.

For example, in the following CVM assembler code fragment

.const
str1 textBreakLines (

" This CVM program computes the nth Fibonacci number. \n " +
" During the computation it counts the elapsed time. \n ",
fontCourier, 12, 242)

the value of the string constant str1 is “This CVM program computes the nth\nFibonacci
number.\nDuring the computation it counts\nthe elapsed time.\n”. When drawn on the
CVM display with the instruction textp (page 116), this string corresponds to the following
text paragraph:

This CVM program computes the nth

Fibonacci number.

During the computation it counts

the elapsed time.

textBreakLinesPt (textExpr , fontCodeExpr , fontSizeExpr , maxWidthPtExpr) : String
Same functionality as textBreakLines(). However, fontSize and maxWidthPt are speci-
fied in tenths of a Point (pt), but not in pixels.

textHeight (textExpr , fontCodeExpr , fontSizeExpr , lineHeightExpr) : Int
The builtin function textHeight returns the height of the text paragraph text which
consists of one or more text lines that are separated by the “\n” character. The height
of the text paragraph is the number of its text lines multiplied by height. If the value of
lineHeight is less than or equal to zero, then height equals to the height of the used font.
Otherwise, height equals to the value of lineHeight. The font is specified by fontCode and
fontSize. The height of the font is the sum of its ascent and descent. text must be a string
expression. The values of the expressions fontCode and fontSize must be unsigned integer
numbers in the range of [0; 65535] and each of them must not depend on labels (Label),
functions (DeclFct), function parameters, and local or global variables (DeclVar). fontSize,
lineHeight, and the return value are specified in pixels. Refer to section 3.2.3 (page 79) for
a list of the currently supported font codes and their respective valid font sizes.

textHeightPt (textExpr , fontCodeExpr , fontSizeExpr , lineHeightExpr) : Int
Same functionality as textHeight(). However, fontSize, lineHeight, and the return value
are specified in tenths of a Point (pt), but not in pixels.

232 B. CVM Assembler (CVMA)

textWidth (textExpr , fontCodeExpr , fontSizeExpr) : Int
The builtin function textWidth returns the width of the text paragraph text which consists
of one or more text lines that are separated by the “\n” character. The width of the text
paragraph is the maximum width of all its text lines. The used font is specified by fontCode
and fontSize. text must be a string expression. The values of the expressions fontCode
and fontSize must be unsigned integer numbers in the range of [0; 65535] and each of them
must not depend on labels (Label), functions (DeclFct), function parameters, and local or
global variables (DeclVar). fontSize and the return value are specified in pixels. Refer to
section 3.2.3 (page 79) for a list of the currently supported font codes and their respective
valid font sizes.

textWidthPt (textExpr , fontCodeExpr , fontSizeExpr) : Int
Same functionality as textWidth(). However, fontSize and the return value are specified
in tenths of a Point (pt), but not in pixels.

B.5 Implementation Notes

The CVM assembler has been implemented with the C [20] programming language under
the Linux [43] operating system. The used C compiler is gcc [32]. For the lexical and
syntactic analysis the scanner generator flex [33] and the parser generator bison [30]
have been used, respectively. In addition to the CVM assembler, a CVM disassembler has
been implemented, as well. The implemented CVM assembler checks an input program
thoroughly and produces a meaningful message for each detected error.

Source Files The C source files for the CVM assembler and disassembler are in the
subdirectories Implementation/CvmAssembler/Src/ and Implementation/RghLib/Src/.
The latter subdirectory contains only source files whose names start with the prefix “rgh”.

• cvmAs.{h,c}: These source files contain the function cvmAs ascii2cvmp() and other
definitions and functions that are needed by the CVM assembler.

• cvmAsDisAs.{h,c}: These source files contain definitions and functions that are
needed both by the CVM assembler and by the CVM disassembler.

• cvmAsMain.c: This source file contains the main() function of the CVM assembler.
It invokes the cvmAs ascii2cvmp() function.

• cvmAsNode.{h,c}: These source files contain the core parts of the CVM assembler.
This includes the tree node constructors to build the syntax tree, the semantic check
of the context conditions, and the generation of the CVM packet, which contains the
CVM binary code. The CVM program is dealt as a tree structure.

• cvmAsParse.y: This source file contains the syntactic grammar specification for the
parser generator bison. The parser transforms the CVM assembler program into a
syntax tree for further processing.

• cvmAsScan.l: This source file contains the lexical grammar specification for the
scanner generator flex.

B.5. Implementation Notes 233

• cvmDisAs.{h,c}: These source files contain the function cvmDisAs cvmp2ascii()

and other functions that are needed by the CVM disassembler.

• cvmDisAsMain.c: This source file contains the main() function of the CVM disas-
sembler. It invokes the cvmDisAs cvmp2ascii() function.

• rghHeap.{h,c}, rghList.{h,c}, rghNode.{h,c}, rghStd.{h,c}, rghString.{h,c},
rghToken.h: These source files contain general utility functions and definitions for
managing the heap, list and tree structures, for debugging, and for managing strings
and scanner tokens, respectively.

Building The Makefile [34] file, which is in the subdirectory Implementation/Cvm-

Assembler/, manages the compilation of the source files to build the executable files
cvmAs2cvmp and cvmp2ascii. cvmAs2cvmp (”cvm Assembler to cvm packet”) represents the
CVM assembler and cvmp2ascii (”cvm packet to ascii”) represents the CVM disassem-
bler. Both executables are located in the subdirectory Implementation/CvmAssembler/-

Bin/. In the same subdirectory where Makefile is located, the make [34] command must
be invoked in a shell [31] with the following options to start successful compilation:

make [CFLAGS="[-DDEBUG]"]

Optional parts are enclosed with [...]. The CFLAGS option -DDEBUG directs the CVM
assembler cvmAs2cvmp and the disassembler cvmp2ascii to produce debugging messages
onto the standard output. For example, the name of each called and executed C function
is printed each time at the beginning of its execution.

Invocation The invocation syntax of cvmAs2cvmp is as follows:

cvmAs2cvmp [-t] [-i] < fileName

cvmAs2cvmp reads the CVM assembler program file with the name fileName from the
standard input and translates it into the output file cvmp.bin, which represents the corre-
sponding binary CVM packet. Note that the file cvmp.bin is created, if it does not exist,
or overwritten, if it already exists. Optional parts are enclosed with [...]. The two options
[-t] and [-i] can appear in any order. They direct the CVM assembler cvmAs2cvmp to
produce informative messages onto the standard output. [-t] prints each matched lexical
token during the lexical analysis. [-i] prints the completely parsed tree structure of the
input CVM assembler program in a well-readable and formatted way, after it has been
checked, restructured, and after all symbolic references have been resolved.

The invocation syntax of cvmp2ascii is as follows:

cvmp2ascii < fileName

cvmp2ascii disassembles the binary CVM packet file with the name fileName and writes
the readable output in a formatted way to the standard output.

234 B. CVM Assembler (CVMA)

Not Implemented Parts Except for some restrictions concerning string literals (String-
Literal) the CVM assembler has been implemented completely. String literals may only
contain ASCII [7] characters. Unicode numbers are not supported within string literals,
either. As these parts are not necessarily needed for the demonstration purpose of this
implementation, they can be added later.

B.6 Examples

The following example programs illustrate the use of the CVM assembler. More examples
can be found in the subdirectory Implementation/CvmAssembler/Examples/.

testAs.cvm Useless, but syntactically well-formed CVM assembler program. The only
purpose is to demonstrate the syntax of the CVM assembler. However, if you run this
program with the CVM, it will result in a runtime error.

.32BitEmu

.const
c1 -128
c2 12345678901234567890 // will be

// trunciated by the CVM Assembler
c3 c1 + c2 / 4

c4 "A multiline example string
with \, \n, \r, \t, \" inside."

c5 rgb (1, 2+4, -c1 + 2*16)
c6 font (fcHelveticaBold, 12)

c7 f1
c8 d1

.data
Int d1
Int d2 c1 + c3
EventTable d99 [5, 2, 6, 13]
Int d3 0
Int d4 label1 - d4
Bytes d5 15 - c1
Bytes d6 c4
Bytes d7 [4, 255#1, -32768#2, c1#1,

"Hello", c2/c3#4, c4, d5#4]
Bytesz d8 5
EventTable d9 [3, 1, 2, c2 / c3]
Int d10 d10 - 320 + d5

String d11 "Hello World!"
Bytes d12 ""
Bytesz d13 9

.code
loadc 15
push
loadc -2
push
fcall f1
halt

.fct f1 (Int p1, Int p2) Int
{
load p1
loadc p2
Int loc1
{ Int loc2 Int loc3

load loc2 load loc3 }
Int loc2
load loc1
load loc2
load d3

label1:
retload
retstore
return

hallo:
{}
}

The invocation of cvmAs2cvmp -i produces besides the binary CVM packet cvmp.bin the
following readable and informative output during assembling:

B.6. Examples 235

.32BitEmu

.const
c1 -128
c2 2147483647
c3 c1 /*-128*/ + c2 /*2147483647*/ /

4
c4 "A multiline \texample string

\nwith \, \n, \r, \t, \"
inside."

c5 rgb(1, 2 + 4, -c1 /*-128*/ + 2 *
16) /*67232*/

c6 font(12, 12) /*786444*/
c7 f1 /*393*/
c8 d1 /*0*/

.data
/* 0*/ Int d1
/* 4*/ Int d2 c1 /*-128*/ + c3

/*536870783*/
/* 8*/ EventTable d99 [
/* 8*/ 5, 2,
/* 16*/ 6, 13]
/* 28*/ Int d3 0
/* 32*/ Int d4 label1 /*419*/ - d4

/*32*/
/* 36*/ Bytes d5 15 - c1 /*-128*/
/*180*/ Bytes d6 c4 /*"A multiline

\texample string \nwith \,
\n, \r, \t, \" inside."*/

/*236*/ Bytes d7 [4, 255#1,
-32768#2, c1 /*-128*/#1,
"Hello", c2 /*2147483647*/ /
c3 /*536870783*/#4, c4 /*"A
multiline \texample string
\nwith \, \n, \r, \t, \"
inside."*/, d5 /*36*/#4]

/*316*/ Bytesz d8 5
/*324*/ EventTable d9 [
/*324*/ 3, 1,
/*332*/ 2, c2 /*2147483647*/ / c3

/*536870783*/]
/*344*/ Int d10 d10 /*344*/ - 320

+ d5 /*36*/
/*348*/ String d11 "Hello World!"
/*364*/ Bytes d12 ""
/*368*/ Bytesz d13 9

.code
/*380*/ loadcu1 15
/*382*/ push
/*383*/ loadc1 -2
/*385*/ push
/*386*/ loadcu1 5
/*388*/ call
/*389*/ loadc1 -2
/*391*/ addsp
/*392*/ halt
/*393*/ .fct f1 (Int p1, Int p2) Int

{
/*393*/ loadcu1 3
/*395*/ newstackframe
/*396*/ loadcu1 3
/*398*/ addsp
/*399*/ loadcu1 4
/*401*/ loadr
/*402*/ loadcu1 8

Int loc1
{
Int loc2
Int loc3

/*404*/ loadcu1 24
/*406*/ loadr
/*407*/ loadcu1 28
/*409*/ loadr

}
Int loc2

/*410*/ loadcu1 20
/*412*/ loadr
/*413*/ loadcu1 24
/*415*/ loadr
/*416*/ loadcu1 28
/*418*/ loada
/*419*/ label1:
/*419*/ loadc_0
/*420*/ loadr
/*421*/ loadc_0
/*422*/ storer
/*423*/ loadc1 -3
/*425*/ addsp
/*426*/ oldstackframe
/*427*/ ret
/*428*/ hallo:

{}
}

The numbers that are embedded within comments at the beginning of the relevant lines in
the .data and .code sections represent absolute memory addresses where the respective
data or code items are located in CVM memory, respectively.

236 B. CVM Assembler (CVMA)

The byte size of the generated CVM packet cvmp.bin is 254. During disassembling of
cvmp.bin, the disassembler cvmp2ascii produces the following output:

magic = 0x63766D70
attrs = 19 // cvmDisAs_cvmMode =

32BitEmu, cvmDisAs_cvmpAdrLen = 2
dataDeclSegmentAdr = 0
codeSegmentAdr = 380
stackSegmentAdr = 428
lenData = 380
lenInsts = 48

data declarations:
/* 0*/ intz
/* 4*/ int4 = 536870655
/* 8*/ eventTable = {

history_reload, 2,
input_hostAdr, 13,
0 }

/* 28*/ intz
/* 32*/ nat2 = 387
/* 36*/ bytesz1 = 143
/*180*/ bytes1 = 56, [55, 65, 32,

109, 117, 108, 116, 105, 108, 105,
110, 101, 32, 9, 101, 120, 97, 109,
112, 108, 101, 32, 115, 116, 114,
105, 110, 103, 32, 10, 119, 105,
116, 104, 32, 92, 44, 32, 10, 44,
32, 13, 44, 32, 9, 44, 32, 34, 32,
105, 110, 115, 105, 100, 101, 46]

/*236*/ bytes1 = 78, [0, 0, 0, 4,
255, 128, 0, 128, 5, 72, 101, 108,
108, 111, 0, 0, 0, 4, 55, 65, 32,
109, 117, 108, 116, 105, 108, 105,
110, 101, 32, 9, 101, 120, 97, 109,
112, 108, 101, 32, 115, 116, 114,
105, 110, 103, 32, 10, 119, 105,
116, 104, 32, 92, 44, 32, 10, 44,
32, 13, 44, 32, 9, 44, 32, 34, 32,
105, 110, 115, 105, 100, 101, 46, 0,
0, 0, 36]

/*316*/ bytesz1 = 5
/*324*/ eventTable = {

history_back, 1,
cvm_quit, 4,

0 }
/*344*/ nat1 = 60
/*348*/ string = "Hello World!"
/*364*/ bytes1 = 3, [0, 0, 0]
/*368*/ bytesz1 = 9

instructions:
/*380*/ loadcu1 15
/*382*/ push
/*383*/ loadc1 -2
/*385*/ push
/*386*/ loadcu1 5
/*388*/ call
/*389*/ loadc1 -2
/*391*/ addsp
/*392*/ halt
/*393*/ loadcu1 3
/*395*/ newstackframe
/*396*/ loadcu1 3
/*398*/ addsp
/*399*/ loadcu1 4
/*401*/ loadr
/*402*/ loadcu1 8
/*404*/ loadcu1 24
/*406*/ loadr
/*407*/ loadcu1 28
/*409*/ loadr
/*410*/ loadcu1 20
/*412*/ loadr
/*413*/ loadcu1 24
/*415*/ loadr
/*416*/ loadcu1 28
/*418*/ loada
/*419*/ loadc_0
/*420*/ loadr
/*421*/ loadc_0
/*422*/ storer
/*423*/ loadc1 -3
/*425*/ addsp
/*426*/ oldstackframe
/*427*/ ret

If the first line of testAs.cvm is replaced with “.32Bit” to set the CVM mode to a not
emulated 32-bit CVM, then the byte size of the corresponding CVM packet cvmp.bin is
248 and cvmp.bin has the following structure:

B.6. Examples 237

magic = 0x63766D70
attrs = 18 // cvmDisAs_cvmMode =

32Bit, cvmDisAs_cvmpAdrLen = 2
dataDeclSegmentAdr = 148
codeSegmentAdr = 380
stackSegmentAdr = 428
lenData = 232
lenInsts = 48

data declarations:
/*148*/ bytesz1 = 24
/*172*/ bytes1 = 165, [55, 65, 32,

109, 117, 108, 116, 105, 108, 105,
110, 101, 32, 9, 101, 120, 97, 109,
112, 108, 101, 32, 115, 116, 114,
105, 110, 103, 32, 10, 119, 105,
116, 104, 32, 92, 44, 32, 10, 44,
32, 13, 44, 32, 9, 44, 32, 34, 32,
105, 110, 115, 105, 100, 101, 46, 0,
0, 0, 4, 255, 128, 0, 128, 5, 72,
101, 108, 108, 111, 0, 0, 0, 4, 55,
65, 32, 109, 117, 108, 116, 105,
108, 105, 110, 101, 32, 9, 101, 120,
97, 109, 112, 108, 101, 32, 115,
116, 114, 105, 110, 103, 32, 10,
119, 105, 116, 104, 32, 92, 44, 32,
10, 44, 32, 13, 44, 32, 9, 44, 32,
34, 32, 105, 110, 115, 105, 100,
101, 46, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 31, 255, 254, 255, 0, 0, 0, 103,
0, 0, 0, 0, 12, 72, 101, 108, 108,
111, 32, 87, 111, 114, 108, 100, 33
]

/*340*/ eventTable = {
history_reload, 2,
input_hostAdr, 13,
0 }

/*360*/ eventTable = {
history_back, 1,

cvm_quit, 4,
0 }

instructions:
/*380*/ loadcu1 15
/*382*/ push
/*383*/ loadc1 -2
/*385*/ push
/*386*/ loadcu1 5
/*388*/ call
/*389*/ loadc1 -2
/*391*/ addsp
/*392*/ halt
/*393*/ loadcu1 3
/*395*/ newstackframe
/*396*/ loadcu1 3
/*398*/ addsp
/*399*/ loadcu1 4
/*401*/ loadr
/*402*/ loadcu1 8
/*404*/ loadcu1 24
/*406*/ loadr
/*407*/ loadcu1 28
/*409*/ loadr
/*410*/ loadcu1 20
/*412*/ loadr
/*413*/ loadcu1 24
/*415*/ loadr
/*416*/ loadcu1 168
/*418*/ loada
/*419*/ loadc_0
/*420*/ loadr
/*421*/ loadc_0
/*422*/ storer
/*423*/ loadc1 -3
/*425*/ addsp
/*426*/ oldstackframe
/*427*/ ret

fibTimer.cvm Fibonacci Numbers. This example program computes recursively the Nth
(N ≥ 0) Fibonacci number and displays the result on the screen. During the computation it
also counts and displays the elapsed time. In addition, if the user presses a key, it displays
a short message on the screen. Figure 3.8 (page 122) contains a screen shot of this program
when it is executed with the CVM interpreter.

.32Bit

///////
// Main

///////

.code
main:

238 B. CVM Assembler (CVMA)

// Draw Root Window
fcall drawRt

// Enable Event Handling
loadc eventTable seteventtableadr
enableevents

// Set Interval Timer
loadc timerHandle settimerhandleadr
loadc 10 settimerinterval

// Compute Fib(N)
incsp
loadc N push
fcall Fib
pop

// Display Result
loadc xFib + wFib loadc yFib
loadc printInt lib

// Stop Interval Timer
loadc 0 settimerinterval
halt

//////////////
// Event Table
//////////////

.data
EventTable eventTable [

key_pressed, eventMessageOn,
key_pressed_enter, eventMessageOn,
key_pressed_escape, eventMessageOn,
key_released, eventMessageOff,
key_released_enter, eventMessageOff,
key_released_escape, eventMessageOff
]

.const
strEvMessage "Key Pressed !"

.code
eventMessageOn:

loadc 255 loadc 0 loadc 0
setcolor

loadc xiRt loadc hRt - fdRt
textbg strEvMessage

loadc 0 loadc 0 loadc 0 setcolor
halt

eventMessageOff:
loadc 255 loadc 255 loadc 255
setcolor

loadc xiRt loadc hRt - fdRt
textbg strEvMessage

loadc 0 loadc 0 loadc 0 setcolor
halt

///////
// Root {Window}
///////

.const
// Screen Dimensions: Width, Height
wRt 250
hRt 150

// Font
fcRt fcHelvetica // Code
fsRt 12 // Size
fdRt fontDescent (fcRt, fsRt)

// Indent: Horizontal x, Vertical y
xiRt (5 * fsRt) / sF
yiRt 0

// Colors: Foreground, Background
fgRedRt 0
fgGreenRt 0
fgBlueRt 0
bgRedRt 255
bgGreenRt 255
bgBlueRt 255

// Scale Factor
sF 14

.code

.fct drawRt () Void
{
loadc bgRedRt loadc bgGreenRt
loadc bgBlueRt setcolor

loadc 0 loadc 0 loadc wRt
loadc hRt rectfill

loadc fgRedRt loadc fgGreenRt
loadc fgBlueRt setcolor

fcall drawHeadLine
loadc xiRt setxtextline
fcall drawIntro
fcall drawPar

B.6. Examples 239

fcall drawFib
fcall drawElapse
return
}

///////////
// HeadLine {Text}
///////////

.const
strHeadLine "Fibonacci"
fcHeadLine fcHelveticaBoldItalic
fsHeadLine 18
fhHeadLine fontHeight (fcHeadLine,

fsHeadLine)
xHeadLine xiRt +

(wIntro - wHeadLine) / 2
yHeadLine yiRt + fhHeadLine
wHeadLine textWidth (strHeadLine,

fcHeadLine, fsHeadLine)
hHeadLine textHeight (strHeadLine,

fcHeadLine, fsHeadLine, 0)

.code

.fct drawHeadLine () Void
{
loadc fcHeadLine loadc fsHeadLine
setfont

loadc xHeadLine loadc yHeadLine
text strHeadLine

return
}

////////
// Intro {Text}
////////

.const
strIntro textBreakLines (

"This CVM program computes "
+ "recursively the Nth Fibonacci "
+ "number. During the computation "
+ "it counts the elapsed time.",
fcRt, fsRt, wRt - 2 * xiRt)

xIntro xiRt
yIntro yHeadLine + hHeadLine
wIntro textWidth (strIntro, fcRt,

fsRt)
hIntro textHeight (strIntro, fcRt,

fsRt, 0)

.code

.fct drawIntro () Void
{
loadc fcRt loadc fsRt setfont
loadc yIntro textp strIntro
return
}

//////
// Par {Text}
//////

.const
strPar "N = "
xPar xiRt
yPar yIntro + hIntro +

(3 * fsRt) / sF
wPar textWidth (strPar, fcRt,

fsRt)
hPar textHeight (strPar, fcRt,

fsRt, 0)

.code

.fct drawPar () Void
{
loadc yPar textp strPar
loadc N loadc xPar + wPar
loadc yPar loadc printInt lib

return
}

//////
// Fib {Text}
//////

.const
strFib "Fib(N) = "
xFib xiRt
yFib yPar + hPar
wFib textWidth (strFib, fcRt, fsRt)
hFib textHeight (strFib, fcRt, fsRt,

0)

N 18

.code

.fct drawFib () Void

240 B. CVM Assembler (CVMA)

{
loadc yFib textp strFib
return
}

/////////
// Elapse {Text}
/////////

.const
strElapse "Elapsed Time (1/100 s) = "
xElapse xiRt
yElapse yFib + hFib +

(3 * fsRt) / sF
wElapse textWidth (strElapse, fcRt,

fsRt)
hElapse textHeight (strElapse, fcRt,

fsRt, 0)

.code

.fct drawElapse () Void
{
loadc yElapse textp strElapse
return
}

/////////////////////
// Fibonacci Function
/////////////////////

.code

.fct Fib (Int n) Int
{
loadc 1 load n loadcr Fib_1 jl
loadc 1 retstore
return

Fib_1:
incsp
load n dec push
fcall Fib
incsp
load n loadc 2 sub push
fcall Fib
pop pop add retstore
return
}

////////
// Timer
////////

.data
Int elapsedTime 0

.code
timerHandle:
load elapsedTime inc
store elapsedTime

load elapsedTime
loadc xElapse + wElapse
loadc yElapse loadc printIntBg
lib

halt

During disassembling of the generated CVM packet file cvmp.bin, the disassembler cvmp2ascii
produces the following output:

magic = 0x63766D70
attrs = 18 // cvmDisAs_cvmMode =

32Bit, cvmDisAs_cvmpAdrLen = 2
dataDeclSegmentAdr = 0
codeSegmentAdr = 56
stackSegmentAdr = 476
lenData = 56
lenInsts = 418

data declarations:
/* 0*/ bytesz1 = 4
/* 4*/ eventTable = {

key_pressed, 91,
key_pressed_enter, 91,

key_pressed_escape, 91,
key_released, 120,
key_released_enter, 120,
key_released_escape, 120,
0 }

instructions:
/* 56*/ loadcu1 93
/* 58*/ call
/* 59*/ loadcu1 4
/* 61*/ seteventtableadr
/* 62*/ enableevents
/* 63*/ loadcu2 459
/* 66*/ settimerhandleadr

B.6. Examples 241

/* 67*/ loadcu1 10
/* 69*/ settimerinterval
/* 70*/ incsp
/* 71*/ loadcu1 18
/* 73*/ push
/* 74*/ loadcu2 336
/* 77*/ call
/* 78*/ loadc_m1
/* 79*/ addsp
/* 80*/ pop
/* 81*/ loadcu1 54
/* 83*/ loadcu1 100
/* 85*/ loadcu1 6
/* 87*/ lib
/* 88*/ loadc_0
/* 89*/ settimerinterval
/* 90*/ halt
/* 91*/ loadcu1 255
/* 93*/ loadc_0
/* 94*/ loadc_0
/* 95*/ setcolor
/* 96*/ loadcu1 4
/* 98*/ loadcu1 147
/*100*/ textbg "Key Pressed !"
/*115*/ loadc_0
/*116*/ loadc_0
/*117*/ loadc_0
/*118*/ setcolor
/*119*/ halt
/*120*/ loadcu1 255
/*122*/ loadcu1 255
/*124*/ loadcu1 255
/*126*/ setcolor
/*127*/ loadcu1 4
/*129*/ loadcu1 147
/*131*/ textbg "Key Pressed !"
/*146*/ loadc_0
/*147*/ loadc_0
/*148*/ loadc_0
/*149*/ setcolor
/*150*/ halt
/*151*/ loadc_0
/*152*/ newstackframe
/*153*/ loadcu1 255
/*155*/ loadcu1 255
/*157*/ loadcu1 255
/*159*/ setcolor
/*160*/ loadc_0
/*161*/ loadc_0
/*162*/ loadcu1 250
/*164*/ loadcu1 150

/*166*/ rectfill
/*167*/ loadc_0
/*168*/ loadc_0
/*169*/ loadc_0
/*170*/ setcolor
/*171*/ loadcu1 18
/*173*/ call
/*174*/ loadcu1 4
/*176*/ setxtextline
/*177*/ loadcu1 36
/*179*/ call
/*180*/ loadcu1 160
/*182*/ call
/*183*/ loadcu1 178
/*185*/ call
/*186*/ loadcu1 192
/*188*/ call
/*189*/ oldstackframe
/*190*/ ret
/*191*/ loadc_0
/*192*/ newstackframe
/*193*/ loadcu1 14
/*195*/ loadcu1 18
/*197*/ setfont
/*198*/ loadcu1 76
/*200*/ loadcu1 21
/*202*/ text "Fibonacci"
/*213*/ oldstackframe
/*214*/ ret
/*215*/ loadc_0
/*216*/ newstackframe
/*217*/ loadcu1 11
/*219*/ loadcu1 12
/*221*/ setfont
/*222*/ loadcu1 42
/*224*/ textp "This CVM program

computes recursively\nthe Nth
Fibonacci number. During
the\ncomputation it counts the
elapsed time."

/*340*/ oldstackframe
/*341*/ ret
/*342*/ loadc_0
/*343*/ newstackframe
/*344*/ loadcu1 86
/*346*/ textp "N = "
/*352*/ loadcu1 18
/*354*/ loadcu1 28
/*356*/ loadcu1 86
/*358*/ loadcu1 6
/*360*/ lib

242 B. CVM Assembler (CVMA)

/*361*/ oldstackframe
/*362*/ ret
/*363*/ loadc_0
/*364*/ newstackframe
/*365*/ loadcu1 100
/*367*/ textp "Fib(N) = "
/*378*/ oldstackframe
/*379*/ ret
/*380*/ loadc_0
/*381*/ newstackframe
/*382*/ loadcu1 116
/*384*/ textp "Elapsed Time (1/100

s) = "
/*411*/ oldstackframe
/*412*/ ret
/*413*/ loadcu1 2
/*415*/ newstackframe
/*416*/ loadc_1
/*417*/ loadcu1 4
/*419*/ loadr
/*420*/ loadcu1 6
/*422*/ jl
/*423*/ loadc_1
/*424*/ loadc_0
/*425*/ storer
/*426*/ oldstackframe
/*427*/ ret
/*428*/ incsp
/*429*/ loadcu1 4
/*431*/ loadr
/*432*/ dec
/*433*/ push
/*434*/ loadc1 -23

/*436*/ call
/*437*/ loadc_m1
/*438*/ addsp
/*439*/ incsp
/*440*/ loadcu1 4
/*442*/ loadr
/*443*/ loadcu1 2
/*445*/ sub
/*446*/ push
/*447*/ loadc1 -36
/*449*/ call
/*450*/ loadc_m1
/*451*/ addsp
/*452*/ pop
/*453*/ pop
/*454*/ add
/*455*/ loadc_0
/*456*/ storer
/*457*/ oldstackframe
/*458*/ ret
/*459*/ loadc_0
/*460*/ loada
/*461*/ inc
/*462*/ loadc_0
/*463*/ storea
/*464*/ loadc_0
/*465*/ loada
/*466*/ loadcu1 148
/*468*/ loadcu1 116
/*470*/ loadcu1 7
/*472*/ lib
/*473*/ halt

Note that the CVM instructions of the recursive Fib() function start at the memory
address /*413*/ and end at the address /*458*/.

simpleGui.cvm A simple graphical user interface. This example program represents
the small user interface program from section 2.2.1.2 (page 21).

.16Bit

.const
xMax 249
yMax 149

lenCursor textWidth ("_", fc2, fs2)
delta 1

str1 "An example user interface"
fc1 fcHelveticaBoldItalic
fs1 18
fh1 fontHeight (fc1, fs1)
xStr1 (5 * fs2) / 14
yStr1 fh1

str2 "Here a list with 2 items:"
fc2 fcHelvetica
fs2 14

B.6. Examples 243

fa2 fontAscent (fc2, fs2)
fd2 fontDescent (fc2, fs2)
fh2 fontHeight (fc2, fs2)
yStr2 yStr1 + fh1

xDot xStr1 + (5 * fs2) / 14
yDot yStr3 - (fontAscent (fc2, fs2)

+ dDot) / 2 + 1
dDot (4 * fs2) / 14

str3 "First item"
xStr3 xDot + (10 * fs2) / 14
yStr3 yStr2 + fh2 + (3 * fs2) / 14

str4 "Second item"
yStr4 yStr3 + fh2

str5 "A hyperlink:"
yStr5 yStr4 + fh2 + (8 * fs2) / 14

str6 "http://www.w3c.org"
xStr6 xStr1 + textWidth (str5, fc2,

fs2) + (15 * fs2) / 14

str7 "Finally a button:"
yStr7 yStr5 + fh2 + (13 * fs2) / 14

str8 "Click me"
xStr8 xStr1 + textWidth (str7, fc2,

fs2) + (15 * fs2) / 14

wHyperlink textWidth (str6, fc2, fs2)

xButton xStr8 - (4 * fs2) / 14
yButton yStr7 - fontAscent (fc2, fs2)

+ 1 - (4 * fs2) / 14
wButton textWidth (str8, fc2, fs2) +

(9 * fs2) / 14
hButton fontAscent (fc2, fs2) + (9 *

fs2) / 14

.data
Bytes cursorBgPixmap lenCursor * 4

// x-y position of cursor
Int xPos (150 * fs2) / 14
Int yPos (70 * fs2) / 14

// state of the hyperlink
Int visited 0

// state of the button
Int currentlyPressed 0

// mixed
Int x2 0

EventTable eventTable [
key_pressed, keyPressed,
key_pressed_enter, keyPressedEnter,
key_released_enter, keyReleasedEnter]

.code
main:
loadcr paintUserInterface call
loadcr paintCursor call
loadc eventTable seteventtableadr
enableevents
halt

// paint procedures

paintUserInterface:
loadc fc1 loadc fs1 setfont
loadc xStr1 loadc yStr1 text str1
loadc fc2 loadc fs2 setfont
loadc xStr1 loadc yStr2 text str2
loadc xDot loadc yDot loadc dDot
circlefill

loadc xStr3 loadc yStr3 text str3
loadc xDot loadc yDot + fh2
loadc dDot circlefill

loadc xStr3 loadc yStr4 text str4
loadc xStr1 loadc yStr5 text str5
loadcr paintHyperlink call
loadc xStr1 loadc yStr7 text str7
loadcr paintButton call
ret

paintHyperlink:
load visited loadc 0 loadcr isVisited
jne

loadc 0 loadc 0 loadc 255 setcolor
loadcr paintHyperlink_1 jmp

isVisited:
loadc 255 loadc 0 loadc 0 setcolor

paintHyperlink_1:
loadc xStr6 loadc yStr5 text str6
loadc xStr6 loadc yStr5 + 2
loadc wHyperlink linehoriz

loadc 0 loadc 0 loadc 0 setcolor
ret

244 B. CVM Assembler (CVMA)

paintButton:
load currentlyPressed loadc 0
loadcr isCurrentlyPressed jne

loadc 0 loadc 255 loadc 0 setcolor
loadcr paintButton_1 jmp

isCurrentlyPressed:
loadc 255 loadc 0 loadc 0 setcolor

paintButton_1:
loadc xButton loadc yButton
loadc wButton loadc hButton
rectfill

loadc 0 loadc 0 loadc 0 setcolor
loadc xButton loadc yButton
loadc wButton loadc hButton rect

loadc xStr8 loadc yStr7 text str8
ret

paintCursor:
load xPos load yPos loadc lenCursor
loadc 1
loadc cursorBgPixmap
screen2mem

load xPos load yPos loadc lenCursor
linehoriz

ret

// event handling

keyPressed:
loadep1 loadc XK_Left
loadcr keyPressedLeft je

loadep1 loadc XK_Up
loadcr keyPressedUp je

loadep1 loadc XK_Down
loadcr keyPressedDown je

loadep1 loadc XK_Right
loadcr keyPressedRight je

keyPressedIgnore:
halt

keyPressedLeft:
load xPos loadc delta sub loadc 0
loadcr keyPressedIgnore jl

load xPos load yPos loadc lenCursor
loadc 1 loadc cursorBgPixmap
mem2screen

load xPos loadc delta sub
store xPos

loadcr paintCursor call
halt

keyPressedRight:
loadc xMax load xPos

loadc lenCursor add dec
loadc delta add
loadcr keyPressedIgnore jl

load xPos load yPos loadc lenCursor
loadc 1 loadc cursorBgPixmap
mem2screen

load xPos loadc delta add
store xPos

loadcr paintCursor call
halt

keyPressedUp:
load yPos loadc delta sub loadc 0
loadcr keyPressedIgnore jl

load xPos load yPos loadc lenCursor
loadc 1
loadc cursorBgPixmap
mem2screen

load yPos loadc delta sub
store yPos

loadcr paintCursor call
halt

keyPressedDown:
loadc yMax load yPos loadc delta
add loadcr keyPressedIgnore jl

load xPos load yPos loadc lenCursor
loadc 1
loadc cursorBgPixmap
mem2screen

loadc delta load yPos add
store yPos

loadcr paintCursor call
halt

keyPressedEnter:
keyPressedEnterIfHyperlink:
load xPos loadc xStr6
loadcr keyPressedEnterIfButton jl

loadc xStr6 + wHyperlink - lenCursor
load xPos
loadcr keyPressedEnterIfButton jl

load yPos loadc yStr5 - fa2
loadcr keyPressedEnterIfButton jl

loadc yStr5 + fd2 load yPos
loadcr keyPressedEnterIfButton jl

keyPressedEnterHyperlink:
loadc 1 store visited
load xPos load yPos loadc lenCursor
loadc 1

loadc cursorBgPixmap
mem2screen

loadcr paintHyperlink call

B.6. Examples 245

loadcr paintCursor call
halt

keyPressedEnterIfButton:
load xPos loadc xButton
loadcr keyPressedIgnore jl

loadc xButton + wButton - lenCursor
load xPos loadc keyPressedIgnore
jl

load yPos loadc yButton
loadcr keyPressedIgnore jl

loadc yButton + hButton load yPos
loadcr keyPressedIgnore jl

keyPressedEnterButton:
loadc 1 store currentlyPressed
loadcr paintButton call
loadcr paintCursor call
halt

keyReleasedEnter:
keyReleasedEnterIfButton:
load xPos loadc xButton
loadcr keyReleasedEnterIgnore jl

loadc xButton + wButton - lenCursor
load xPos loadc keyReleasedEnterIgnore
jl

load yPos loadc yButton
loadcr keyReleasedEnterIgnore jl

loadc yButton + hButton load yPos
loadcr keyReleasedEnterIgnore jl

keyReleasedEnterButton:
loadc 0 store currentlyPressed
loadcr paintButton call
loadcr paintCursor call

keyReleasedEnterIgnore:
halt

The byte size of the generated CVM packet cvmp.bin is 663. During disassembling of
cvmp.bin, the disassembler cvmp2ascii produces the following output:

magic = 0x63766D70
attrs = 16 // cvmDisAs_cvmMode =

16Bit, cvmDisAs_cvmpAdrLen = 2
dataDeclSegmentAdr = 32
codeSegmentAdr = 56
stackSegmentAdr = 686
lenData = 24
lenInsts = 629

data declarations:
/* 32*/ bytesz1 = 6
/* 38*/ bytes1 = 4, [0, 150, 0, 70

]
/* 42*/ eventTable = {

key_pressed, 369,
key_pressed_enter, 534,
key_released_enter, 639,
0 }

instructions:
/* 56*/ loadcu1 10
/* 58*/ call
/* 59*/ loadc2 286
/* 62*/ call
/* 63*/ loadcu1 42
/* 65*/ seteventtableadr
/* 66*/ enableevents
/* 67*/ halt
/* 68*/ loadcu1 14

/* 70*/ loadcu1 18
/* 72*/ setfont
/* 73*/ loadcu1 5
/* 75*/ loadcu1 21
/* 77*/ text "An example user

interface"
/*104*/ loadcu1 11
/*106*/ loadcu1 14
/*108*/ setfont
/*109*/ loadcu1 5
/*111*/ loadcu1 42
/*113*/ text "Here a list with 2

items:"
/*140*/ loadcu1 10
/*142*/ loadcu1 54
/*144*/ loadcu1 4
/*146*/ circlefill
/*147*/ loadcu1 20
/*149*/ loadcu1 61
/*151*/ text "First item"
/*163*/ loadcu1 10
/*165*/ loadcu1 70
/*167*/ loadcu1 4
/*169*/ circlefill
/*170*/ loadcu1 20
/*172*/ loadcu1 77
/*174*/ text "Second item"
/*187*/ loadcu1 5
/*189*/ loadcu1 101

246 B. CVM Assembler (CVMA)

/*191*/ text "A hyperlink:"
/*205*/ loadcu1 28
/*207*/ call
/*208*/ loadcu1 5
/*210*/ loadcu1 130
/*212*/ text "Finally a button:"
/*231*/ loadcu1 58
/*233*/ call
/*234*/ ret
/*235*/ loadcu1 32
/*237*/ loada
/*238*/ loadc_0
/*239*/ loadcu1 9
/*241*/ jne
/*242*/ loadc_0
/*243*/ loadc_0
/*244*/ loadcu1 255
/*246*/ setcolor
/*247*/ loadcu1 6
/*249*/ jmp
/*250*/ loadcu1 255
/*252*/ loadc_0
/*253*/ loadc_0
/*254*/ setcolor
/*255*/ loadcu1 95
/*257*/ loadcu1 101
/*259*/ text "http://www.w3c.org"
/*279*/ loadcu1 95
/*281*/ loadcu1 103
/*283*/ loadcu1 118
/*285*/ linehoriz
/*286*/ loadc_0
/*287*/ loadc_0
/*288*/ loadc_0
/*289*/ setcolor
/*290*/ ret
/*291*/ loadcu1 34
/*293*/ loada
/*294*/ loadc_0
/*295*/ loadcu1 9
/*297*/ jne
/*298*/ loadc_0
/*299*/ loadcu1 255
/*301*/ loadc_0
/*302*/ setcolor
/*303*/ loadcu1 6
/*305*/ jmp
/*306*/ loadcu1 255
/*308*/ loadc_0
/*309*/ loadc_0
/*310*/ setcolor

/*311*/ loadcu1 116
/*313*/ loadcu1 114
/*315*/ loadcu1 63
/*317*/ loadcu1 22
/*319*/ rectfill
/*320*/ loadc_0
/*321*/ loadc_0
/*322*/ loadc_0
/*323*/ setcolor
/*324*/ loadcu1 116
/*326*/ loadcu1 114
/*328*/ loadcu1 63
/*330*/ loadcu1 22
/*332*/ rect
/*333*/ loadcu1 120
/*335*/ loadcu1 130
/*337*/ text "Click me"
/*347*/ ret
/*348*/ loadcu1 38
/*350*/ loada
/*351*/ loadcu1 40
/*353*/ loada
/*354*/ loadcu1 8
/*356*/ loadc_1
/*357*/ loadc_0
/*358*/ screen2mem
/*359*/ loadcu1 38
/*361*/ loada
/*362*/ loadcu1 40
/*364*/ loada
/*365*/ loadcu1 8
/*367*/ linehoriz
/*368*/ ret
/*369*/ loadep1
/*370*/ loadc2 -175
/*373*/ loadcu1 23
/*375*/ je
/*376*/ loadep1
/*377*/ loadc2 -174
/*380*/ loadcu1 85
/*382*/ je
/*383*/ loadep1
/*384*/ loadc2 -172
/*387*/ loadcu1 111
/*389*/ je
/*390*/ loadep1
/*391*/ loadc2 -173
/*394*/ loadcu1 34
/*396*/ je
/*397*/ halt
/*398*/ loadcu1 38

B.6. Examples 247

/*400*/ loada
/*401*/ loadc_1
/*402*/ sub
/*403*/ loadc_0
/*404*/ loadc1 -9
/*406*/ jl
/*407*/ loadcu1 38
/*409*/ loada
/*410*/ loadcu1 40
/*412*/ loada
/*413*/ loadcu1 8
/*415*/ loadc_1
/*416*/ loadc_0
/*417*/ mem2screen
/*418*/ loadcu1 38
/*420*/ loada
/*421*/ loadc_1
/*422*/ sub
/*423*/ loadcu1 38
/*425*/ storea
/*426*/ loadc1 -80
/*428*/ call
/*429*/ halt
/*430*/ loadcu1 249
/*432*/ loadcu1 38
/*434*/ loada
/*435*/ loadcu1 8
/*437*/ add
/*438*/ dec
/*439*/ loadc_1
/*440*/ add
/*441*/ loadc1 -46
/*443*/ jl
/*444*/ loadcu1 38
/*446*/ loada
/*447*/ loadcu1 40
/*449*/ loada
/*450*/ loadcu1 8
/*452*/ loadc_1
/*453*/ loadc_0
/*454*/ mem2screen
/*455*/ loadcu1 38
/*457*/ loada
/*458*/ loadc_1
/*459*/ add
/*460*/ loadcu1 38
/*462*/ storea
/*463*/ loadc1 -117
/*465*/ call
/*466*/ halt
/*467*/ loadcu1 40

/*469*/ loada
/*470*/ loadc_1
/*471*/ sub
/*472*/ loadc_0
/*473*/ loadc1 -78
/*475*/ jl
/*476*/ loadcu1 38
/*478*/ loada
/*479*/ loadcu1 40
/*481*/ loada
/*482*/ loadcu1 8
/*484*/ loadc_1
/*485*/ loadc_0
/*486*/ mem2screen
/*487*/ loadcu1 40
/*489*/ loada
/*490*/ loadc_1
/*491*/ sub
/*492*/ loadcu1 40
/*494*/ storea
/*495*/ loadc2 -150
/*498*/ call
/*499*/ halt
/*500*/ loadcu1 149
/*502*/ loadcu1 40
/*504*/ loada
/*505*/ loadc_1
/*506*/ add
/*507*/ loadc1 -112
/*509*/ jl
/*510*/ loadcu1 38
/*512*/ loada
/*513*/ loadcu1 40
/*515*/ loada
/*516*/ loadcu1 8
/*518*/ loadc_1
/*519*/ loadc_0
/*520*/ mem2screen
/*521*/ loadc_1
/*522*/ loadcu1 40
/*524*/ loada
/*525*/ add
/*526*/ loadcu1 40
/*528*/ storea
/*529*/ loadc2 -184
/*532*/ call
/*533*/ halt
/*534*/ loadcu1 38
/*536*/ loada
/*537*/ loadcu1 95
/*539*/ loadcu1 49

248 B. CVM Assembler (CVMA)

/*541*/ jl
/*542*/ loadcu1 205
/*544*/ loadcu1 38
/*546*/ loada
/*547*/ loadcu1 41
/*549*/ jl
/*550*/ loadcu1 40
/*552*/ loada
/*553*/ loadcu1 88
/*555*/ loadcu1 33
/*557*/ jl
/*558*/ loadcu1 104
/*560*/ loadcu1 40
/*562*/ loada
/*563*/ loadcu1 25
/*565*/ jl
/*566*/ loadc_1
/*567*/ loadcu1 32
/*569*/ storea
/*570*/ loadcu1 38
/*572*/ loada
/*573*/ loadcu1 40
/*575*/ loada
/*576*/ loadcu1 8
/*578*/ loadc_1
/*579*/ loadc_0
/*580*/ mem2screen
/*581*/ loadc2 -349
/*584*/ call
/*585*/ loadc2 -240
/*588*/ call
/*589*/ halt
/*590*/ loadcu1 38
/*592*/ loada
/*593*/ loadcu1 116
/*595*/ loadc2 -201
/*598*/ jl
/*599*/ loadcu1 171
/*601*/ loadcu1 38
/*603*/ loada
/*604*/ loadc2 397
/*607*/ jl
/*608*/ loadcu1 40
/*610*/ loada

/*611*/ loadcu1 114
/*613*/ loadc2 -219
/*616*/ jl
/*617*/ loadcu1 136
/*619*/ loadcu1 40
/*621*/ loada
/*622*/ loadc2 -228
/*625*/ jl
/*626*/ loadc_1
/*627*/ loadcu1 34
/*629*/ storea
/*630*/ loadc2 -342
/*633*/ call
/*634*/ loadc2 -289
/*637*/ call
/*638*/ halt
/*639*/ loadcu1 38
/*641*/ loada
/*642*/ loadcu1 116
/*644*/ loadcu1 38
/*646*/ jl
/*647*/ loadcu1 171
/*649*/ loadcu1 38
/*651*/ loada
/*652*/ loadc2 684
/*655*/ jl
/*656*/ loadcu1 40
/*658*/ loada
/*659*/ loadcu1 114
/*661*/ loadcu1 21
/*663*/ jl
/*664*/ loadcu1 136
/*666*/ loadcu1 40
/*668*/ loada
/*669*/ loadcu1 13
/*671*/ jl
/*672*/ loadc_0
/*673*/ loadcu1 34
/*675*/ storea
/*676*/ loadc2 -388
/*679*/ call
/*680*/ loadc2 -335
/*683*/ call
/*684*/ halt

Appendix C

CVMUI Library (CVMUI Lib)

The CVMUI library contains constant and function definitions that are imported by CVM-
UI programs. Note that the CVMUI libraries that are presented in this thesis serve only as
an example to demonstrate the concept. Additional libraries may be defined in the future.

C.1 libMisc.cvm

This CVMUI library contains basic definitions about strings, etc.

libMisc emptyProc This “trivial” procedure does nothing, but returns immediately.

.code
libMisc_emptyProc:

ret

libMisc bytesCp This function copies len bytes from the memory address adrSrc to
adrTgt.

.code

.fct libMisc_bytesCp
(Int adrTgt, Int adrSrc, Int len)
{

libMisc_bytesCp_1:
load len
loadc 0
loadcr libMisc_bytesCp_
jle

load adrSrc

load len dec
rdup store len
aload1
load adrTgt
load len
astore1

loadcr libMisc_bytesCp_1 jmp
libMisc_bytesCp_:
return
}

libMisc strCp This function copies the CVM string at the memory address adrSrc to
the memory address adrTgt. Note that for the target string always the longer String format
is chosen. Refer to section 3.1.1 (page 33) for more information on the CVM string formats.

249

250 C. CVMUI Library (CVMUI Lib)

.code
// strTgt = [0#1, len#2, ...]

.fct libMisc_strCp
(Int adrTgt, Int adrSrc)
{
loadc 0
load adrTgt
loadc 0
astore1

load adrTgt inc store adrTgt
load adrSrc loadc 0 aload1
rdup
load adrSrc inc store adrSrc
loadc 0
loadcr libMisc_strCp_le255

jne
libMisc_strCp_g255:
rskip
load adrSrc loadc 0 aload2
load adrSrc loadc 2 add
store adrSrc

libMisc_strCp_le255:
rdup
load adrTgt loadc 0 astore2
load adrTgt loadc 2 add push
load adrSrc push
push
fcall libMisc_bytesCp

return
}

libMisc strAppChar This function appends the character char to the CVM string
at the memory address adrStr, if the string has less then maxLen characters before the
operation. Note that the String format of the string must be the longer one. Refer to
section 3.1.1 (page 33) for more information on the CVM string formats.

.code
// adrStr = [0#1, len#2, ...]

.fct libMisc_strAppChar
(Int adrStr, Int maxLen, Int char)
{
Int strLen
incsp load adrStr push
fcall libMisc_strLen
pop store strLen

load maxLen
load strLen
loadcr libMisc_strAppChar_1

jle
load char
load adrStr
loadc 3 add
load strLen add
loadc 0 astore1

load adrStr push
load strLen inc push
fcall libMisc_strLenSet

libMisc_strAppChar_1:
return
}

libMisc strLen This function returns the length of the CVM string at the memory
address adrStr, which is the value of the length item in the tuple structure String, but
not the byte length of the whole tuple structure. Refer to section 3.1.1 (page 33) for more
information on the CVM string formats.

.code

.fct libMisc_strLen (Int adrStr) Int
{
load adrStr loadc 0 aload1 rdup
loadc 0 loadcr libMisc_strLen_1 jne

libMisc_strLen_g255:

rskip
load adrStr inc loadc 0 aload2

libMisc_strLen_1:
retstore
return
}

libMisc strLenSet This function writes the value of strLen into the length item of
the CVM string at the memory address adrStr. Note that the String format of the string

C.2. libGui.cvm 251

must be the longer one. Refer to section 3.1.1 (page 33) for more information on the CVM
string formats.

.code
// [0, strLen#2, ...]

.fct libMisc_strLenSet
(Int adrStr, Int strLen)
{
loadc 0
load adrStr
loadc 0

astore1
load strLen
load adrStr inc
loadc 0
astore2

return
}

C.2 libGui.cvm

This CVMUI library contains definitions for all user interface components.

Property Offsets of User Interface Components The property values of the user
interface components are stored in memory in appropriate tuple structures. The following
constants are used to address these property values relatively within the respective tuple
structure:

.const

//////
// Btn {Button}, Hlk {Hyperlink},
// Ixt {Text Box}
//////

libGui_etOfs 0
libGui_xOfs 1 * _cil
libGui_yOfs 2 * _cil
libGui_wOfs 3 * _cil
libGui_hOfs 4 * _cil
libGui_fgRedOfs 5 * _cil
libGui_fgGreenOfs 6 * _cil
libGui_fgBlueOfs 7 * _cil
libGui_bgRedOfs 8 * _cil
libGui_bgGreenOfs 9 * _cil
libGui_bgBlueOfs 10 * _cil

libGui_fcOfs 11 * _cil
libGui_fsOfs 12 * _cil
libGui_adrStrOfs 13 * _cil
libGui_xStrOfs 14 * _cil
libGui_yStrOfs 15 * _cil

//////
// Btn {Button}
//////

libGui_img 16 * _cil
libGui_imgStyle 17 * _cil

//////
// Hlk {Hyperlink}
//////

libGui_hostAdrOfs 16 * _cil
libGui_serviceNoOfs 17 * _cil

//////
// Ixt {Text Box}
//////

libGui_wStrOfs 16 * _cil
libGui_hStrOfs 17 * _cil
libGui_yaStrOfs 18 * _cil
libGui_strLenMaxOfs 19 * _cil
libGui_wCharOfs 20 * _cil
libGui_strPosOfs 21 * _cil

cil (“CVM integer length”) is an integer constant and must be defined in the main CVM-
As program that imports these constant definitions. It is equal to the value of cvmIntLen.

252 C. CVMUI Library (CVMUI Lib)

Refer to section 3.1.2 (page 33) for more information on cvmIntLen.

The tuple structures for the different user interface component types are defined as follows:

• Page: { Int et; }
Refer to section 3.1.1 (page 33) for the CVM data type Int. Refer to <pagepageNoReq,j

.id>_<j>_prp in the CVMA code template in section 5.5.2 (pages 170 ff.) for the
property value et.

• Button (Btn):

{ Int et,
x, y, w, h,
fgr, fgb, fgg,
bgr, bgb, bgg,
fc, fs,
str, xStr, yStr,
img, imgStyle; }

Refer to <pagepageNoReq,j .id>_<j>_<btn.id>_prp in the CVMA code template in
section 5.5.7 (pages 192 ff.) for the property values.

• Hyperlink (Hlk):

{ Int et,
x, y, w, h,
fgr, fgb, fgg,
bgr, bgb, bgg,
fc, fs,
str, xStr, yStr,
hostAdr, serviceNo; }

Refer to <hlk .id>_prp in the CVMA code template in section 5.5.6 (pages 187 ff.)
for the property values.

• Text Box (Ixt):

{ Int et,
x, y, w, h,
fgr, fgb, fgg,
bgr, bgb, bgg,
fc, fs,
str, xStr, yStr,
wStr, hStr, yaStr,
strLenMax, wChar, strPos; }

Refer to <ixt .id>_prp in the CVMA code template in section 5.5.5 (page 182) for
the property values.

• Text (Txt): So far, Txt user interface components have no property values.

libGui linehorizDash This function draws a horizontal dashed line from start point (x,
y) to end point (x + w − 1, y).

C.2. libGui.cvm 253

.code

.fct libGui_linehorizDash
(Int x, Int y, Int w)
{

libGui_linehorizDash_1:
load w loadc 0
loadcr libGui_linehorizDash_2 jle

load x load y loadc 1

linehoriz
load x inc inc store x
load w dec dec store w
loadcr libGui_linehorizDash_1 jmp

libGui_linehorizDash_2:
return
}

libGui linevertDash This function draws a vertical dashed line from start point (x, y)
to end point (x, y + h − 1).

.code

.fct libGui_linevertDash
(Int x, Int y, Int h)
{

libGui_linevertDash_1:
load h loadc 0
loadcr libGui_linevertDash_2 jle

load x load y loadc 1

linevert
load y inc inc store y
load h dec dec store h
loadcr libGui_linevertDash_1 jmp

libGui_linevertDash_2:
return
}

libGui rectDash This function draws a dashed rectangle with the upper-left corner at
(x, y) and the lower-right corner at (x + w − 1, y + h − 1).

.const
libGui_rectCornerDash 1

.code

.fct libGui_rectDash
(Int x, Int y, Int w, Int h)
{
Int x1
Int y1
Int w1
Int h1
load x
loadc libGui_rectCornerDash add
store x1

load y
loadc libGui_rectCornerDash add
store y1

load w
loadc 2 * libGui_rectCornerDash
sub store w1

load h
loadc 2 * libGui_rectCornerDash
sub store h1

load x1 push
load y push
load w1 push
fcall libGui_linehorizDash

load x push
load y1 push
load h1 push
fcall libGui_linevertDash

load x1 push
load y
load h
add dec push

load w1 push
fcall libGui_linehorizDash

load x
load w
add dec push

load y1 push
load h1 push
fcall libGui_linevertDash

return
}

254 C. CVMUI Library (CVMUI Lib)

libGui rectIn This function checks whether the xy coordinate position (x, y) is inside
the rectangular area with the upper-left corner at (xr, yr) and the lower-right corner at
(xr + wr − 1, yr + hr − 1). If yes, then the function returns 1, otherwise 0.

.code

.fct libGui_rectIn
(Int x, Int y, Int xr, Int yr,
Int wr, Int hr) Int
{
load x load xr
loadcr libGui_rectIn_0 jl

load xr load wr add load x
loadcr libGui_rectIn_0 jle

load y load yr
loadcr libGui_rectIn_0 jl

load yr load hr add load y
loadcr libGui_rectIn_0 jle

libGui_rectIn_1:
loadc_1
loadcr libGui_rectIn_ jmp

libGui_rectIn_0:
loadc_0

libGui_rectIn_:
retstore
return
}

libGui mvFcs This function moves the input focus from the current user interface com-
ponent to the specified next one. adrPrpSrc contains the memory address of the properties
of the current user interface component. adrPrpTgt contains the memory address of the
properties of the next user interface component. adrUnDrwFcsSrc contains the memory ad-
dress of the undraw-focus function of the current user interface component. adrDrwFcsTgt
contains the memory address of the draw-focus function of the next user interface compo-
nent.

.code

.fct libGui_mvFcs
(Int adrPrpSrc, Int adrPrpTgt,
Int adrUnDrwFcsSrc,
Int adrDrwFcsTgt)
{
getbp push
load adrPrpTgt setbp
loadc libGui_etOfs loadr
seteventtableadr

pop setbp
load adrPrpSrc push
load adrUnDrwFcsSrc
loadc libGui_mvFcs_1

sub
libGui_mvFcs_1:

call
pop rskip

load adrPrpTgt push
load adrDrwFcsTgt
loadc libGui_mvFcs_2
sub

libGui_mvFcs_2:
call
pop rskip

return
}

libGui setFcs This function sets the input focus to the specified user interface com-
ponent. adrPrp contains the memory address of the properties of that user interface
component. adrDrwFcs contains the memory address of the draw-focus function of that
user interface component.

.code

.fct libGui_setFcs
(Int adrPrp, Int adrDrwFcs)
{

getbp push
load adrPrp setbp
loadc libGui_etOfs loadr
seteventtableadr

C.3. libGui3D.cvm 255

pop setbp
load adrPrp push
load adrDrwFcs
loadc libGui_setFcs_1
sub

libGui_setFcs_1:
call
pop rskip

return
}

C.3 libGui3D.cvm

This CVMUI library contains definitions for all user interface components with a 3D look.

Constants

.const
libGui3D_shadeDark 40

libGui3D_shadeBright 50
libGui3D_shadeNorm 100

libGui3D colorShadeDark This function returns on the register stack the RGB values
of the darker shadow color from the color that is given by the RGB values red, green, and
blue. The darker shadow color is used together with the brighter shadow color to provide
a 3D look for the user interface components.

.code

.fct libGui3D_colorShadeDark
(Int red, Int green, Int blue)
{
load red
loadc libGui3D_shadeNorm -

libGui3D_shadeDark
mul loadc libGui3D_shadeNorm div

load green

loadc libGui3D_shadeNorm -
libGui3D_shadeDark

mul loadc libGui3D_shadeNorm div
load blue
loadc libGui3D_shadeNorm -

libGui3D_shadeDark
mul loadc libGui3D_shadeNorm div

return
}

libGui3D colorShadeBright This function returns on the register stack the RGB val-
ues of the brighter shadow color from the color that is given by the RGB values red,
green, and blue. The brighter shadow color is used together with the darker shadow color
to provide a 3D look for the user interface components.

.code

.fct libGui3D_colorShadeBright
(Int red, Int green, Int blue)
{
load red
loadc 255 load red sub
loadc libGui3D_shadeBright mul
loadc libGui3D_shadeNorm div
add

load green
loadc 255 load green sub

loadc libGui3D_shadeBright mul
loadc libGui3D_shadeNorm div
add

load blue
loadc 255 load blue sub
loadc libGui3D_shadeBright mul
loadc libGui3D_shadeNorm div
add

return
}

256 C. CVMUI Library (CVMUI Lib)

C.4 libGuiTxtSmp.cvm

This CVMUI library contains definitions for all Txt user interface components with a
“simple” (Smp) look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiTxtSmp_dx 0
libGuiTxtSmp_dy 0

libGuiTxtSmp_dw 2 * libGuiTxtSmp_dx
libGuiTxtSmp_dh 2 * libGuiTxtSmp_dy

C.5 libGuiTxt3D.cvm

This CVMUI library contains definitions for all Txt user interface components with a 3D

look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiTxt3D_dx 0
libGuiTxt3D_dy 0

libGuiTxt3D_dw 2 * libGuiTxt3D_dx
libGuiTxt3D_dh 2 * libGuiTxt3D_dy

C.6 libGuiTxpSmp.cvm

This CVMUI library contains definitions for all Txp user interface components with a
“simple” (Smp) look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiTxpSmp_dx 0
libGuiTxpSmp_dy 0

libGuiTxpSmp_dw 2 * libGuiTxpSmp_dx
libGuiTxpSmp_dh 2 * libGuiTxpSmp_dy

C.7 libGuiTxp3D.cvm

This CVMUI library contains definitions for all Txp user interface components with a 3D

look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

C.8. libGuiHlk.cvm 257

.const
libGuiTxp3D_dx 0
libGuiTxp3D_dy 0

libGuiTxp3D_dw 2 * libGuiTxp3D_dx
libGuiTxp3D_dh 2 * libGuiTxp3D_dy

C.8 libGuiHlk.cvm

This CVMUI library contains definitions for all Hlk user interface components.

libGuiHlk kp This function defines the implicit event behavior of an Hlk user interface
component when a key pressed event occurs. adrPrp contains the memory address of the
properties of that user interface component. Refer to the sections 3.1.6 (pages 45 ff.) and
5.1.1 (page 140) for more information on CVM events and AUI events.

.code

.fct libGuiHlk_kp (Int adrPrp)
{
loadep1
loadc XK_space
loadcr libGuiHlk_kp_dwn
je

return
libGuiHlk_kp_dwn:
load adrPrp push
fcall libGuiHlk_dwn
return
}

libGuiHlk dwn This function defines the implicit event behavior of an Hlk user interface
component after it has been activated by the user of the CVM. adrPrp contains the memory
address of the properties of that user interface component.

.code

.fct libGuiHlk_dwn (Int adrPrp)
{
load adrPrp setbp
sidzero
loadc libGui_hostAdrOfs loadr

loadc libGui_serviceNoOfs loadr
loadc 0
rcv

return
}

C.9 libGuiHlkSmp.cvm

This CVMUI library contains definitions for all Hlk user interface components with a
“simple” (Smp) look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiHlkSmp_dx 0
libGuiHlkSmp_dy 0

libGuiHlkSmp_dw 2 * libGuiHlkSmp_dx
libGuiHlkSmp_dh 2 * libGuiHlkSmp_dy

258 C. CVMUI Library (CVMUI Lib)

libGuiHlkSmp drw This function draws an Hlk user interface component. adrPrp

contains the memory address of the properties of that user interface component.

.code

.fct libGuiHlkSmp_drw (Int adrPrp)
{
load adrPrp setbp

/////////////
// Background
/////////////

loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rectfill

///////
// Text
///////
loadc libGui_fgRedOfs loadr

loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_xStrOfs loadr
loadc libGui_yStrOfs loadr
loadc libGui_adrStrOfs loadr
textm

////////////
// Underline
////////////
loadc libGui_xOfs loadr
loadc libGui_yStrOfs loadr inc
loadc libGui_wOfs loadr
linehoriz

return
}

libGuiHlkSmp drwFcs This function performs on the given Hlk user interface compo-
nent some drawing operations that indicate to the user that this user interface component
currently has input focus. adrPrp contains the memory address of the properties of that
user interface component.

.code

.fct libGuiHlkSmp_drwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr

setcolor
loadc libGui_xOfs loadr
loadc libGui_yStrOfs loadr inc inc
loadc libGui_wOfs loadr
linehoriz

return
}

libGuiHlkSmp unDrwFcs This function performs on the given Hlk user interface com-
ponent some drawing operations that indicate to the user that this user interface compo-
nent currently has not input focus any more. adrPrp contains the memory address of the
properties of that user interface component.

.code

.fct libGuiHlkSmp_unDrwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr

setcolor
loadc libGui_xOfs loadr
loadc libGui_yStrOfs loadr inc inc
loadc libGui_wOfs loadr
linehoriz

return
}

C.10. libGuiHlk3D.cvm 259

C.10 libGuiHlk3D.cvm

This CVMUI library contains definitions for all Hlk user interface components with a 3D

look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiHlk3D_dx 0
libGuiHlk3D_dy 0

libGuiHlk3D_dw 2 * libGuiHlk3D_dx
libGuiHlk3D_dh 2 * libGuiHlk3D_dy

libGuiHlk3D drw This function draws an Hlk user interface component. adrPrp con-
tains the memory address of the properties of that user interface component.

.code

.fct libGuiHlk3D_drwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xStrOfs loadr
dec dec push

loadc libGui_yOfs loadr
dec dec push

loadc libGui_wOfs loadr
loadc 4 add push

loadc libGui_hOfs loadr
loadc 4 add push
fcall libGui_rectDash

return
}

libGuiHlk3D drwFcs This function performs on the given Hlk user interface compo-
nent some drawing operations that indicate to the user that this user interface component
currently has input focus. adrPrp contains the memory address of the properties of that
user interface component.

.code

.fct libGuiHlk3D_drwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xStrOfs loadr
dec dec push

loadc libGui_yOfs loadr
dec dec push

loadc libGui_wOfs loadr
loadc 4 add push

loadc libGui_hOfs loadr
loadc 4 add push
fcall libGui_rectDash

return
}

libGuiHlk3D unDrwFcs This function performs on the given Hlk user interface com-
ponent some drawing operations that indicate to the user that this user interface compo-
nent currently has not input focus any more. adrPrp contains the memory address of the
properties of that user interface component.

260 C. CVMUI Library (CVMUI Lib)

.code

.fct libGuiHlk3D_unDrwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xStrOfs loadr
dec dec push

loadc libGui_yOfs loadr
dec dec push

loadc libGui_wOfs loadr
loadc 4 add push

loadc libGui_hOfs loadr
loadc 4 add push
fcall libGui_rectDash

return
}

C.11 libGuiIxt.cvm

This CVMUI library contains definitions for all Ixt user interface components.

libGuiIxt drwTxt This function draws the text of an Ixt user interface component.
adrPrp contains the memory address of the properties of that user interface component.
The str property contains the memory address of the text.

.code

.fct libGuiIxt_drwTxt (Int adrPrp)
{
load adrPrp setbp
loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setbgcolor

loadc libGui_xStrOfs loadr
loadc libGui_yaStrOfs loadr

loadc libGui_wStrOfs loadr
loadc libGui_hStrOfs loadr
setclip

loadc libGui_xStrOfs loadr
loadc libGui_strPosOfs loadr
add

loadc libGui_yStrOfs loadr
loadc libGui_adrStrOfs loadr
textmbg

loadc 0
loadc 0
loadc _cvmScreenWidth
loadc _cvmScreenHeight
setclip

return
}

libGuiIxt drwCr This function draws the text cursor of an Ixt user interface compo-
nent with its foreground color. adrPrp contains the memory address of the properties of
that user interface component.

.code

.fct libGuiIxt_drwCr (Int adrPrp)
{
getbp push
load adrPrp setbp
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr

loadc libGui_fgBlueOfs loadr
setcolor

pop setbp
load adrPrp push
fcall libGuiIxt_drwCr_1

return
}

C.11. libGuiIxt.cvm 261

libGuiIxt unDrwCr This function draws the text cursor of an Ixt user interface com-
ponent with its background color, i.e., it erases it. adrPrp contains the memory address
of the properties of that user interface component.

.code

.fct libGuiIxt_unDrwCr (Int adrPrp)
{
getbp push
load adrPrp setbp
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr

loadc libGui_bgBlueOfs loadr
setcolor

pop setbp
load adrPrp push
fcall libGuiIxt_drwCr_1

return
}

libGuiIxt drwCr 1 This auxiliary function is called by the functions libGuiIxt_drwCr
and libGuiIxt_unDrwCr. adrPrp contains the memory address of the properties of that
user interface component.

.code

.fct libGuiIxt_drwCr_1 (Int adrPrp)
{
load adrPrp setbp
incsp

loadc libGui_adrStrOfs loadr
push

fcall libMisc_strLen pop
loadc libGui_wCharOfs loadr

mul
loadc libGui_xStrOfs loadr add
loadc libGui_strPosOfs loadr
add

loadc libGui_yaStrOfs loadr
loadc libGui_hStrOfs loadr
linevert

return
}

libGuiIxt kp This function defines the implicit event behavior of an Ixt user interface
component when a key pressed event occurs. adrPrp contains the memory address of the
properties of that user interface component. Refer to the sections 3.1.6 (pages 45 ff.) and
5.1.1 (page 140) for more information on CVM events and AUI events.

.code

.fct libGuiIxt_kp (Int adrPrp)
{
loadep1
loadc XK_BackSpace
loadcr libGuiIxt_kp_backSpace
je

loadep1
loadc XK_space
loadcr libGuiIxt_kp_notPrintable
jl

loadc XK_asciitilde
loadep1
loadcr libGuiIxt_kp_notPrintable
jl

libGuiIxt_kp_printable:
getbp push

load adrPrp setbp
incsp
loadc libGui_adrStrOfs loadr
push

fcall libMisc_strLen
pop
loadc libGui_strLenMaxOfs loadr
loadcr libGuiIxt_kp_lMaxStrLen
jl

pop return
libGuiIxt_kp_lMaxStrLen:
pop setbp
load adrPrp push
fcall libGuiIxt_unDrwCr

getbp push
load adrPrp setbp
loadc libGui_adrStrOfs loadr push

262 C. CVMUI Library (CVMUI Lib)

loadc libGui_strLenMaxOfs loadr
push

loadep1 push
fcall libMisc_strAppChar

incsp
loadc libGui_adrStrOfs loadr
push

fcall libMisc_strLen
pop
loadc libGui_wCharOfs loadr
mul
loadc libGui_wStrOfs loadr
loadcr libGuiIxt_kp_leWidth
jle

loadc libGui_strPosOfs loadr
loadc libGui_wCharOfs loadr sub
loadc libGui_strPosOfs storer

libGuiIxt_kp_leWidth:
pop setbp
load adrPrp push
fcall libGuiIxt_drwTxt

load adrPrp push
fcall libGuiIxt_drwCr

return
libGuiIxt_kp_backSpace:

getbp push
load adrPrp setbp
incsp
loadc libGui_adrStrOfs loadr
push

fcall libMisc_strLen
pop

rdup
loadc 0
loadcr libGuiIxt_kp_le0
jle

pop setbp
push
load adrPrp push

fcall libGuiIxt_unDrwCr
pop
getbp push
load adrPrp setbp
dec rdup
loadc libGui_adrStrOfs loadr
push

push
fcall libMisc_strLenSet

loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_wCharOfs loadr mul
loadc libGui_xStrOfs loadr add
loadc libGui_strPosOfs loadr add
loadc libGui_yStrOfs loadr
textbg " "

loadc 0
loadc libGui_strPosOfs loadr
loadcr libGuiIxt_kp_ge0
jle

loadc libGui_strPosOfs loadr
loadc libGui_wCharOfs loadr add
loadc libGui_strPosOfs storer

libGuiIxt_kp_ge0:
pop setbp
load adrPrp push
fcall libGuiIxt_drwTxt

load adrPrp push
fcall libGuiIxt_drwCr

return
libGuiIxt_kp_le0:
rskip
pop setbp
return

libGuiIxt_kp_notPrintable:
return
}

C.12 libGuiIxtSmp.cvm

This CVMUI library contains definitions for all Ixt user interface components with a
“simple” (Smp) look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

C.12. libGuiIxtSmp.cvm 263

.const
libGuiIxtSmp_dx 2
libGuiIxtSmp_dy 2

libGuiIxtSmp_dw 2 * libGuiIxtSmp_dx
libGuiIxtSmp_dh 2 * libGuiIxtSmp_dy

libGuiIxtSmp drw This function draws an Ixt user interface component. adrPrp con-
tains the memory address of the properties of that user interface component.

.code

.fct libGuiIxtSmp_drw (Int adrPrp)
{
getbp push
load adrPrp setbp

/////////////
// Background
/////////////
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr inc
loadc libGui_wOfs loadr dec dec
loadc libGui_hOfs loadr dec dec
rectfill

//////////
// Borders

//////////
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rect

///////////////
// Caption Text
///////////////
pop setbp
load adrPrp push
fcall libGuiIxt_drwTxt

return
}

libGuiIxtSmp drwFcs This function performs on the given Ixt user interface compo-
nent some drawing operations that indicate to the user that this user interface component
currently has input focus. adrPrp contains the memory address of the properties of that
user interface component.

.code

.fct libGuiIxtSmp_drwFcs (Int adrPrp)
{
load adrPrp push

fcall libGuiIxt_drwCr
return
}

libGuiIxtSmp unDrwFcs This function performs on the given Ixt user interface com-
ponent some drawing operations that indicate to the user that this user interface component
currently has not input focus. adrPrp contains the memory address of the properties of
that user interface component.

.code

.fct libGuiIxtSmp_unDrwFcs (Int adrPrp)
{
load adrPrp push

fcall libGuiIxt_unDrwCr
return
}

264 C. CVMUI Library (CVMUI Lib)

C.13 libGuiIxt3D.cvm

This CVMUI library contains definitions for all Ixt user interface components with a 3D

look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiIxt3D_dx 4
libGuiIxt3D_dy 4

libGuiIxt3D_dw 2 * libGuiIxt3D_dx
libGuiIxt3D_dh 2 * libGuiIxt3D_dy

libGuiIxt3D drw This function draws an Ixt user interface component. adrPrp con-
tains the memory address of the properties of that user interface component.

.code

.fct libGuiIxt3D_drwFcs (Int adrPrp)
{
load adrPrp push
fcall libGuiIxt_drwCr

load adrPrp store libGuiIxt3D_adrPrp

loadc 1 store libGuiIxt3D_crIsVisible
loadc libGuiIxt3D_crTimer
settimerhandleadr

loadc 500 settimerinterval
return
}

libGuiIxt3D drwFcs This function performs on the given Ixt user interface component
some drawing operations that indicate to the user that this user interface component
currently has input focus. adrPrp contains the memory address of the properties of that
user interface component.

.code

.fct libGuiIxt3D_drwFcs (Int adrPrp)
{
load adrPrp push
fcall libGuiIxt_drwCr

load adrPrp store libGuiIxt3D_adrPrp

loadc 1 store libGuiIxt3D_crIsVisible
loadc libGuiIxt3D_crTimer
settimerhandleadr

loadc 500 settimerinterval
return
}

libGuiIxt3D unDrwFcs This function performs on the given Ixt user interface compo-
nent some drawing operations that indicate to the user that this user interface component
currently has not input focus. adrPrp contains the memory address of the properties of
that user interface component.

.code

.fct libGuiIxt3D_unDrwFcs (Int adrPrp)
{
loadc 0 settimerinterval

load adrPrp push
fcall libGuiIxt_unDrwCr

return
}

C.14. libGuiBtnSmp.cvm 265

libGuiIxt3D crTimer This function is called on a timer interrupt. Ixt user interface
components with a 3D look are supplied with a blinking cursor. An interval timer is used
to make the text cursor blink. Refer to section 3.1.9 (page 57) for more information on the
CVM interval timer.

.data
Int libGuiIxt3D_adrPrp
Int libGuiIxt3D_crIsVisible

.code
libGuiIxt3D_crTimer:
load libGuiIxt3D_crIsVisible
loadc 0
loadcr libGuiIxt3D_crTimer_isVisible
jne

libGuiIxt3D_crTimer_notVisible:
loadc 1 store libGuiIxt3D_crIsVisible
load libGuiIxt3D_adrPrp push
fcall libGuiIxt_drwCr

halt
libGuiIxt3D_crTimer_isVisible:
loadc 0 store libGuiIxt3D_crIsVisible
load libGuiIxt3D_adrPrp push
fcall libGuiIxt_unDrwCr

halt

C.14 libGuiBtnSmp.cvm

This CVMUI library contains definitions for all Btn user interface components with a
“simple” (Smp) look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiBtnSmp_dx 3
libGuiBtnSmp_dy 2

libGuiBtnSmp_dw 2 * libGuiBtnSmp_dx
libGuiBtnSmp_dh 2 * libGuiBtnSmp_dy

libGuiBtnSmp drw This function draws a Btn user interface component in the normal,
i.e., unpressed, state. adrPrp contains the memory address of the properties of that user
interface component.

.code

.fct libGuiBtnSmp_drw (Int adrPrp)
{
load adrPrp setbp

/////////////
// Background
/////////////
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr

rectfill
//////////
// Borders
//////////
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rect

///////////////
// Caption Text

266 C. CVMUI Library (CVMUI Lib)

///////////////
loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_xStrOfs loadr

loadc libGui_yStrOfs loadr
loadc libGui_adrStrOfs loadr
textm

return
}

libGuiBtnSmp drwDwn This function draws a Btn user interface component in the
pressed state. adrPrp contains the memory address of the properties of that user interface
component.

.code

.fct libGuiBtnSmp_drwDwn (Int adrPrp)
{
load adrPrp setbp

/////////////
// Background
/////////////

loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rectfill

//////////
// Borders
//////////
loadc libGui_bgRedOfs loadr

loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rect

///////////////
// Caption Text
///////////////
loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_xStrOfs loadr
loadc libGui_yStrOfs loadr
loadc libGui_adrStrOfs loadr
textm

return
}

libGuiBtnSmp drwFcs This function performs on the given Btn user interface compo-
nent some drawing operations that indicate to the user that this user interface component
currently has input focus. adrPrp contains the memory address of the properties of that
user interface component.

.code

.fct libGuiBtnSmp_drwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr inc
loadc libGui_wOfs loadr dec dec
loadc libGui_hOfs loadr dec dec
rect

return
}

libGuiBtnSmp unDrwFcs This function performs on the given Btn user interface com-
ponent some drawing operations that indicate to the user that this user interface component
currently has not input focus. adrPrp contains the memory address of the properties of
that user interface component.

C.15. libGuiBtn3D.cvm 267

.code

.fct libGuiBtnSmp_unDrwFcs (Int adrPrp)
{
load adrPrp setbp
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr inc
loadc libGui_wOfs loadr dec dec
loadc libGui_hOfs loadr dec dec
rect

return
}

libGuiBtnSmp dwn This function defines the implicit event behavior of a Btn user
interface component when an evDwn event occurs. adrPrp contains the memory address of
the properties of that user interface component. Refer to section 5.1.1 (page 140) for more
information on AUI events.

.code

.fct libGuiBtnSmp_dwn (Int adrPrp)
{
load adrPrp push
fcall libGuiBtnSmp_drwDwn

load adrPrp push
fcall libGuiBtnSmp_drwFcs

return
}

libGuiBtnSmp up This function defines the implicit event behavior of a Btn user in-
terface component when an evUp event occurs. adrPrp contains the memory address of
the properties of that user interface component. Refer to section 5.1.1 (page 140) for more
information on AUI events.

.code

.fct libGuiBtnSmp_up (Int adrPrp)
{
load adrPrp push
fcall libGuiBtnSmp_drw

load adrPrp push
fcall libGuiBtnSmp_drwFcs

return
}

C.15 libGuiBtn3D.cvm

This CVMUI library contains definitions for all Btn user interface components with a 3D

look.

Constants The ..._dx and ..._dy constants define the horizontal and vertical space be-
tween the borders of the user interface component and its containing text.

.const
libGuiBtn3D_dx 4
libGuiBtn3D_dy 4

libGuiBtn3D_dw 2 * libGuiBtn3D_dx

libGuiBtn3D_dh 2 * libGuiBtn3D_dy

libGuiBtn3D_dxFcs 3
libGuiBtn3D_dyFcs 3

268 C. CVMUI Library (CVMUI Lib)

libGuiBtn3D drw This function draws a Btn user interface component in the normal,
i.e., unpressed, state. adrPrp contains the memory address of the properties of that user
interface component.

.code

.fct libGuiBtn3D_drw (Int adrPrp)
{
load adrPrp setbp

/////////////
// Background
/////////////

loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rectfill

//////////
// Borders
//////////
loadc libGui_bgRedOfs loadr push
loadc libGui_bgGreenOfs loadr push
loadc libGui_bgBlueOfs loadr push
fcall libGui3D_colorShadeDark
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
add dec
loadc libGui_wOfs loadr
linehoriz

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
add dec dec
loadc libGui_wOfs loadr dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_wOfs loadr
add dec
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
linevert

loadc libGui_xOfs loadr

loadc libGui_wOfs loadr
add dec dec
loadc libGui_yOfs loadr inc
loadc libGui_hOfs loadr dec
linevert

loadc libGui_bgRedOfs loadr push
loadc libGui_bgGreenOfs loadr push
loadc libGui_bgBlueOfs loadr push
fcall libGui3D_colorShadeBright
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr inc
loadc libGui_wOfs loadr dec dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr dec
linevert

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr dec dec
linevert

///////////////
// Caption Text
///////////////
loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xStrOfs loadr
loadc libGui_yStrOfs loadr
loadc libGui_adrStrOfs loadr
textm

return
}

libGuiBtn3D drwDwn This function draws a Btn user interface component in the
pressed state. adrPrp contains the memory address of the properties of that user interface

C.15. libGuiBtn3D.cvm 269

component.

.code

.fct libGuiBtn3D_drwDwn (Int adrPrp)
{
load adrPrp setbp

/////////////
// Background
/////////////
loadc libGui_bgRedOfs loadr
loadc libGui_bgGreenOfs loadr
loadc libGui_bgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rectfill

//////////
// Borders
//////////
loadc libGui_bgRedOfs loadr push
loadc libGui_bgGreenOfs loadr push
loadc libGui_bgBlueOfs loadr push
fcall libGui3D_colorShadeBright
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
add dec
loadc libGui_wOfs loadr
linehoriz

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
add dec dec
loadc libGui_wOfs loadr dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_wOfs loadr
add dec
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
linevert

loadc libGui_xOfs loadr

loadc libGui_wOfs loadr
add dec dec
loadc libGui_yOfs loadr inc
loadc libGui_hOfs loadr dec
linevert

loadc libGui_bgRedOfs loadr push
loadc libGui_bgGreenOfs loadr push
loadc libGui_bgBlueOfs loadr push
fcall libGui3D_colorShadeDark
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr inc
loadc libGui_wOfs loadr dec dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr dec
linevert

loadc libGui_xOfs loadr inc
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr dec dec
linevert

///////////////
// Caption Text
///////////////
loadc libGui_fcOfs loadr
loadc libGui_fsOfs loadr
setfont

loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xStrOfs loadr inc
loadc libGui_yStrOfs loadr inc
loadc libGui_adrStrOfs loadr
textm

return
}

libGuiBtn3D drwFcs This function performs on the given Btn user interface compo-
nent some drawing operations that indicate to the user that this user interface component
currently has input focus. adrPrp contains the memory address of the properties of that
user interface component.

270 C. CVMUI Library (CVMUI Lib)

.code

.fct libGuiBtn3D_drwFcs (Int adrPrp)
{
load adrPrp setbp

//////////
// Borders
//////////

loadc libGui_fgRedOfs loadr
loadc libGui_fgGreenOfs loadr
loadc libGui_fgBlueOfs loadr
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr
loadc libGui_hOfs loadr
rect

///////////////

// Caption Text
///////////////
loadc libGui_xOfs loadr
loadc libGuiBtn3D_dxFcs
add push

loadc libGui_yOfs loadr
loadc libGuiBtn3D_dyFcs
add push

loadc libGui_wOfs loadr
loadc libGuiBtn3D_dxFcs
loadc 2 mul sub push

loadc libGui_hOfs loadr
loadc libGuiBtn3D_dyFcs
loadc 2 mul sub push
fcall libGui_rectDash

return
}

libGuiBtn3D unDrwFcs This function performs on the given Btn user interface com-
ponent some drawing operations that indicate to the user that this user interface component
currently has not input focus. adrPrp contains the memory address of the properties of
that user interface component.

.code

.fct libGuiBtn3D_unDrwFcs (Int adrPrp)
{
load adrPrp setbp

//////////
// Borders
//////////

loadc libGui_bgRedOfs loadr push
loadc libGui_bgGreenOfs loadr push
loadc libGui_bgBlueOfs loadr push
fcall libGui3D_colorShadeDark
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr add dec

loadc libGui_wOfs loadr
linehoriz

loadc libGui_xOfs loadr
loadc libGui_wOfs loadr add dec

loadc libGui_yOfs loadr
loadc libGui_hOfs loadr
linevert

loadc libGui_bgRedOfs loadr push
loadc libGui_bgGreenOfs loadr push
loadc libGui_bgBlueOfs loadr push
fcall libGui3D_colorShadeBright
setcolor

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_wOfs loadr dec
linehoriz

loadc libGui_xOfs loadr
loadc libGui_yOfs loadr
loadc libGui_hOfs loadr dec
linevert

///////////////
// Caption Text
///////////////
loadc libGui_xOfs loadr
loadc libGuiBtn3D_dxFcs
add push

loadc libGui_yOfs loadr
loadc libGuiBtn3D_dyFcs
add push

loadc libGui_wOfs loadr
loadc libGuiBtn3D_dxFcs
loadc 2 mul sub push

loadc libGui_hOfs loadr
loadc libGuiBtn3D_dyFcs
loadc 2 mul sub push
fcall libGui_rectDash

return
}

C.15. libGuiBtn3D.cvm 271

libGuiBtn3D dwn This function defines the implicit event behavior of a Btn user in-
terface component when an evDwn event occurs. adrPrp contains the memory address of
the properties of that user interface component. Refer to section 5.1.1 (page 140) for more
information on AUI events.

.code

.fct libGuiBtn3D_dwn (Int adrPrp)
{
load adrPrp push
fcall libGuiBtn3D_drwDwn

load adrPrp push
fcall libGuiBtn3D_drwFcs

return
}

libGuiBtn3D up This function defines the implicit event behavior of a Btn user inter-
face component when an evUp event occurs. adrPrp contains the memory address of the
properties of that user interface component. Refer to section 5.1.1 (page 140) for more
information on AUI events.

.code

.fct libGuiBtn3D_up (Int adrPrp)
{
load adrPrp push
fcall libGuiBtn3D_drw

load adrPrp push
fcall libGuiBtn3D_drwFcs

return
}

Appendix D

CVM Packet Server: Example

The following code listings and screen shots refer to the example in section 5.1.4 (page
149).

D.1 Generated Part of the Service Instance

The generated part of the service instance is as follows:

#include "_svcInst.h"

///////////////
// Page Numbers
///////////////

enum { _svcInst_p0,
_svcInst_p1,
_svcInst_pNotExist,
_svcInst_pIllegal };

/////////////////
// ServerCodeMisc
/////////////////

///////////////////
// ServerActionsCmd
///////////////////

#define _svcInst_svcCmd_Reset 0
#define _svcInst_svcCmd_Submit 1

int _svcInst_actionsCmd (int svcCmdIdx)
{ dprint {
switch (svcCmdIdx)
{
case _svcInst_svcCmd_Reset:

{

272

D.1. Generated Part of the Service Instance 273

printf("svcCmd_Reset\n");
svcVar_reset();
printf("name = \"%s\", email = \"%s\"\n",

svcVarStr_get("name"), svcVarStr_get("email"));
}

break;

case _svcInst_svcCmd_Submit:
{
printf ("svcCmd_Submit\n");
svcVar_save();
printf("name = \"%s\", email = \"%s\"\n",

svcVarStr_get("name"), svcVarStr_get("email"));
}

break;
}

}}

////////////////////
// ServerActionsPage
////////////////////

int _svcInst_actionsPage (int pageNow, int pageReq)
{ dprint {
int pageNext = pageReq;
if (pageNow == _svcInst_pageNoNull &&

pageReq == _svcInst_p0)
{
printf("-> p0\n");
}

else if (pageNow == _svcInst_p0 &&
pageReq == _svcInst_p1)

{
printf("p0 -> p1\n");
}

else if (true &&
pageReq < _svcInst_p0 || pageReq > _svcInst_pIllegal)

{
pageNext = _svcInst_pNotExist;
}

else if (true &&
pageReq == _svcInst_pNotExist)

{
pageNext = _svcInst_pIllegal;
}

else if (true &&
true)

{
}

if (pageNext < _svcInst_p0 || pageNext > _svcInst_pIllegal)
{ pageNext = _svcInst_pageNoNull; }

274 D. CVM Packet Server: Example

return pageNext;
}}

D.2 Generated CVM Packets

It depends on the client capabilities whether the AUI pages are customized during the
generation of the CVM packets, or not. In the following, both cases are illustrated:

D.2.1 Without Customization

Without customization, for each AUI page only one subpage is generated which is identical
to the respective AUI page. Each generated subpage is translated into a CVMUI page using
the 3D look. CVM screenshots of the two AUI pages can be found in section 5.1 (pages
149 ff.).

AUI page p0: CVMUI page p0 0 The generated CVM packet for the AUI page p0

contains 3792 bytes and is as follows:

.16Bit

.code
loadcr p0_0_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 250
_cvmScreenHeight 150

.data
String _hostAdrSrv "127.0.0.1"

////////////////////
// Page Numbers
/////

.const
_pageNo 0
_p0 0
_p1 1
_pNotExist 2
_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const
svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0
Bytes _svBuf _svIdxLen +

p0_0_ixtName_svBufLen + _svIdxLen
+ p0_0_ixtEmail_svBufLen +
_svIdxLen + 2

.code

.fct _svBufIdx_reset ()

D.2. Generated CVM Packets 275

{
loadc_0
store _svBufIdx
return
}

.code

.fct _svBuf_svcCmd_write (Int
svcCmdIdx)

{
loadc_0
loadc _svBuf
load _svBufIdx
astore1
load _svBufIdx
loadc _svIdxLen
add
store _svBufIdx
load svcCmdIdx
loadc _svBuf
load _svBufIdx
astore2
load _svBufIdx
loadc 2
add
store _svBufIdx
return
}

.code

.fct _svBuf_write ()
{
fcall _svBufIdx_reset
fcall p0_0_svBuf_write
return
}

////////////////////
// p0_0: Attributes
/////

.const
p0_0_x 0
p0_0_y 0
p0_0_w _cvmScreenWidth
p0_0_h _cvmScreenHeight
p0_0_fgr 0
p0_0_fgg 0
p0_0_fgb 0
p0_0_bgr 222
p0_0_bgg 218

p0_0_bgb 210
p0_0_fc fcHelvetica
p0_0_fs 12
p0_0_img ""
p0_0_imgStyle 0

.data
Bytes p0_0_prp [p0_0_et]
Int p0_0_bInit 0

////////////////////
// p0_0: Misc
/////

.code
p0_0_main:
loadc_0
store _subpageNo
fcall p0_0_init
fcall p0_0_drw
loadc p0_0_ixtName_prp
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_0_init ()
{
load p0_0_bInit
loadc_0
loadcr p0_0_init_1
jne
fcall p0_0_ixtName_init
fcall p0_0_ixtEmail_init
loadc_1
store p0_0_bInit

p0_0_init_1:
return
}

.code

.fct p0_0_drw ()
{
loadc p0_0_bgr
loadc p0_0_bgg
loadc p0_0_bgb
setcolor
loadc p0_0_x

276 D. CVM Packet Server: Example

loadc p0_0_y
loadc p0_0_w
loadc p0_0_h
rectfill
fcall p0_0_txtTitle_drw
fcall p0_0_txpIntro_drw
fcall p0_0_txtName_drw
loadc p0_0_ixtName_prp
push
fcall libGuiIxt3D_drw
fcall p0_0_txtEmail_drw
loadc p0_0_ixtEmail_prp
push
fcall libGuiIxt3D_drw
loadc p0_0_btnReset_prp
push
fcall libGuiBtn3D_drw
loadc p0_0_btnSubmit_prp
push
fcall libGuiBtn3D_drw
return
}

////////////////////
// p0_0: Service Variables
/////

.code

.fct p0_0_svBuf_write ()
{
fcall p0_0_ixtName_svBuf_write
fcall p0_0_ixtEmail_svBuf_write
return
}

////////////////////
// p0_0: Events
/////

.data
EventTable p0_0_et [

key_pressed, p0_0_kp,
mouse_pressed_left, p0_0_mpl]

.code
p0_0_kp:

loadep1
loadc XK_Tab
loadcr p0_0_kp_tab
je
halt

p0_0_kp_tab:
loadc p0_0_prp
push
loadc p0_0_ixtName_prp
push
loadc libMisc_emptyProc
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
halt

.code
p0_0_mpl:
loadep1
push
loadep2
push
loadc p0_0_prp
push
loadc libMisc_emptyProc
push
fcall p0_0_mplFcs
halt

.code

.fct p0_0_mplFcs (Int x, Int y, Int
adrPrpSrc, Int adrUnDrwFcsSrc)

{
incsp
load x
push
load y
push
loadc p0_0_ixtName_x
push
loadc p0_0_ixtName_y
push
loadc p0_0_ixtName_w
push
loadc p0_0_ixtName_h
push
fcall libGui_rectIn
pop
loadc_0
loadcr p0_0_mplFcs_35
je
load adrPrpSrc
push
loadc p0_0_ixtName_prp
push

D.2. Generated CVM Packets 277

load adrUnDrwFcsSrc
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
return

p0_0_mplFcs_35:
incsp
load x
push
load y
push
loadc p0_0_ixtEmail_x
push
loadc p0_0_ixtEmail_y
push
loadc p0_0_ixtEmail_w
push
loadc p0_0_ixtEmail_h
push
fcall libGui_rectIn
pop
loadc_0
loadcr p0_0_mplFcs_36
je
load adrPrpSrc
push
loadc p0_0_ixtEmail_prp
push
load adrUnDrwFcsSrc
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
return

p0_0_mplFcs_36:
incsp
load x
push
load y
push
loadc p0_0_btnReset_x
push
loadc p0_0_btnReset_y
push
loadc p0_0_btnReset_w
push
loadc p0_0_btnReset_h
push
fcall libGui_rectIn
pop

loadc_0
loadcr p0_0_mplFcs_37
je
load adrPrpSrc
push
loadc p0_0_btnReset_prp
push
load adrUnDrwFcsSrc
push
loadc libGuiBtn3D_drwFcs
push
fcall libGui_mvFcs
fcall p0_0_btnReset_evDwn
return

p0_0_mplFcs_37:
incsp
load x
push
load y
push
loadc p0_0_btnSubmit_x
push
loadc p0_0_btnSubmit_y
push
loadc p0_0_btnSubmit_w
push
loadc p0_0_btnSubmit_h
push
fcall libGui_rectIn
pop
loadc_0
loadcr p0_0_mplFcs_38
je
load adrPrpSrc
push
loadc p0_0_btnSubmit_prp
push
load adrUnDrwFcsSrc
push
loadc libGuiBtn3D_drwFcs
push
fcall libGui_mvFcs
fcall p0_0_btnSubmit_evDwn
return

p0_0_mplFcs_38:
return
}

////////////////////
// p0_0_txtTitle: Attributes
/////

278 D. CVM Packet Server: Example

.const
p0_0_txtTitle_x 82
p0_0_txtTitle_y 5
p0_0_txtTitle_w p0_0_txtTitle_wStr +

p0_0_txtTitle_dw
p0_0_txtTitle_h p0_0_txtTitle_hStr +

p0_0_txtTitle_dh
p0_0_txtTitle_fgr p0_0_fgr
p0_0_txtTitle_fgg p0_0_fgg
p0_0_txtTitle_fgb p0_0_fgb
p0_0_txtTitle_bgr p0_0_bgr
p0_0_txtTitle_bgg p0_0_bgg
p0_0_txtTitle_bgb p0_0_bgb
p0_0_txtTitle_fc fcHelveticaBold
p0_0_txtTitle_fs 14
p0_0_txtTitle_str "Registration"
p0_0_txtTitle_yStr p0_0_txtTitle_y +

p0_0_txtTitle_fa - 1 +
p0_0_txtTitle_dy

p0_0_txtTitle_xStr p0_0_txtTitle_x +
p0_0_txtTitle_dx

p0_0_txtTitle_wStr
textWidth(p0_0_txtTitle_str,
p0_0_txtTitle_fc,
p0_0_txtTitle_fs)

p0_0_txtTitle_hStr
textHeight(p0_0_txtTitle_str,
p0_0_txtTitle_fc,
p0_0_txtTitle_fs, 0)

p0_0_txtTitle_fa
fontAscent(p0_0_txtTitle_fc,
p0_0_txtTitle_fs)

p0_0_txtTitle_dx libGuiTxt3D_dx
p0_0_txtTitle_dy libGuiTxt3D_dy
p0_0_txtTitle_dw libGuiTxt3D_dw
p0_0_txtTitle_dh libGuiTxt3D_dh

////////////////////
// p0_0_txtTitle: Misc
/////

.code

.fct p0_0_txtTitle_drw ()
{
loadc p0_0_txtTitle_fgr
loadc p0_0_txtTitle_fgg
loadc p0_0_txtTitle_fgb
setcolor
loadc p0_0_txtTitle_bgr
loadc p0_0_txtTitle_bgg
loadc p0_0_txtTitle_bgb

setbgcolor
loadc p0_0_txtTitle_fc
loadc p0_0_txtTitle_fs
setfont
loadc p0_0_txtTitle_xStr
loadc p0_0_txtTitle_yStr
textbg p0_0_txtTitle_str
return
}

////////////////////
// p0_0_txpIntro: Attributes
/////

.const
p0_0_txpIntro_x 10
p0_0_txpIntro_y 26
p0_0_txpIntro_w 230
p0_0_txpIntro_h p0_0_txpIntro_hStr +

p0_0_txpIntro_dh
p0_0_txpIntro_fgr p0_0_fgr
p0_0_txpIntro_fgg p0_0_fgg
p0_0_txpIntro_fgb p0_0_fgb
p0_0_txpIntro_bgr p0_0_bgr
p0_0_txpIntro_bgg p0_0_bgg
p0_0_txpIntro_bgb p0_0_bgb
p0_0_txpIntro_fc p0_0_fc
p0_0_txpIntro_fs p0_0_fs
p0_0_txpIntro_strInit "Welcome to

the registration form. Please
enter your name and email
address:"

p0_0_txpIntro_str
textBreakLines(p0_0_txpIntro_strInit,
p0_0_txpIntro_fc,
p0_0_txpIntro_fs,
p0_0_txpIntro_w)

p0_0_txpIntro_yStr p0_0_txpIntro_y +
p0_0_txpIntro_fa - 1 +
p0_0_txpIntro_dy

p0_0_txpIntro_xStr p0_0_txpIntro_x +
p0_0_txpIntro_dx

p0_0_txpIntro_wStr p0_0_txpIntro_w -
p0_0_txpIntro_dw

p0_0_txpIntro_hStr
textHeight(p0_0_txpIntro_str,
p0_0_txpIntro_fc,
p0_0_txpIntro_fs, 0)

p0_0_txpIntro_fa
fontAscent(p0_0_txpIntro_fc,
p0_0_txpIntro_fs)

D.2. Generated CVM Packets 279

p0_0_txpIntro_dx libGuiTxp3D_dx
p0_0_txpIntro_dy libGuiTxp3D_dy
p0_0_txpIntro_dw libGuiTxp3D_dw
p0_0_txpIntro_dh libGuiTxp3D_dh

////////////////////
// p0_0_txpIntro: Misc
/////

.code

.fct p0_0_txpIntro_drw ()
{
loadc p0_0_txpIntro_fgr
loadc p0_0_txpIntro_fgg
loadc p0_0_txpIntro_fgb
setcolor
loadc p0_0_txpIntro_bgr
loadc p0_0_txpIntro_bgg
loadc p0_0_txpIntro_bgb
setbgcolor
loadc p0_0_txpIntro_fc
loadc p0_0_txpIntro_fs
setfont
loadc p0_0_txpIntro_xStr
setxtextline
loadc p0_0_txpIntro_yStr
textpbg p0_0_txpIntro_str
return
}

////////////////////
// p0_0_txtName: Attributes
/////

.const
p0_0_txtName_x 10
p0_0_txtName_y p0_0_txtName_yStr -

p0_0_txtName_fa + 1 -
p0_0_txtName_dy

p0_0_txtName_w p0_0_txtName_wStr +
p0_0_txtName_dw

p0_0_txtName_h p0_0_txtName_hStr +
p0_0_txtName_dh

p0_0_txtName_fgr p0_0_fgr
p0_0_txtName_fgg p0_0_fgg
p0_0_txtName_fgb p0_0_fgb
p0_0_txtName_bgr p0_0_bgr
p0_0_txtName_bgg p0_0_bgg
p0_0_txtName_bgb p0_0_bgb
p0_0_txtName_fc p0_0_fc
p0_0_txtName_fs p0_0_fs

p0_0_txtName_str "Name"
p0_0_txtName_yStr 72
p0_0_txtName_xStr p0_0_txtName_x +

p0_0_txtName_dx
p0_0_txtName_wStr

textWidth(p0_0_txtName_str,
p0_0_txtName_fc, p0_0_txtName_fs)

p0_0_txtName_hStr
textHeight(p0_0_txtName_str,
p0_0_txtName_fc, p0_0_txtName_fs,
0)

p0_0_txtName_fa
fontAscent(p0_0_txtName_fc,
p0_0_txtName_fs)

p0_0_txtName_dx libGuiTxt3D_dx
p0_0_txtName_dy libGuiTxt3D_dy
p0_0_txtName_dw libGuiTxt3D_dw
p0_0_txtName_dh libGuiTxt3D_dh

////////////////////
// p0_0_txtName: Misc
/////

.code

.fct p0_0_txtName_drw ()
{
loadc p0_0_txtName_fgr
loadc p0_0_txtName_fgg
loadc p0_0_txtName_fgb
setcolor
loadc p0_0_txtName_bgr
loadc p0_0_txtName_bgg
loadc p0_0_txtName_bgb
setbgcolor
loadc p0_0_txtName_fc
loadc p0_0_txtName_fs
setfont
loadc p0_0_txtName_xStr
loadc p0_0_txtName_yStr
textbg p0_0_txtName_str
return
}

////////////////////
// p0_0_ixtName: Attributes
/////

.const
p0_0_ixtName_x 52
p0_0_ixtName_y 59
p0_0_ixtName_w 150

280 D. CVM Packet Server: Example

p0_0_ixtName_h p0_0_ixtName_hStr +
p0_0_ixtName_dh

p0_0_ixtName_fgr p0_0_fgr
p0_0_ixtName_fgg p0_0_fgg
p0_0_ixtName_fgb p0_0_fgb
p0_0_ixtName_bgr 255
p0_0_ixtName_bgg 255
p0_0_ixtName_bgb 255
p0_0_ixtName_fc fcCourier
p0_0_ixtName_fs p0_0_fs

.data
Bytes p0_0_ixtName_str

p0_0_ixtName_strLenMax + 3

.const
p0_0_ixtName_yStr p0_0_ixtName_y +

p0_0_ixtName_fa - 1 +
p0_0_ixtName_dy

p0_0_ixtName_strLenMax 80
p0_0_ixtName_svIdx _svIdx_name
p0_0_ixtName_svBufLen

p0_0_ixtName_strLenMax + 3
p0_0_ixtName_xStr p0_0_ixtName_x +

p0_0_ixtName_dx
p0_0_ixtName_wStr p0_0_ixtName_w -

p0_0_ixtName_dw
p0_0_ixtName_hStr p0_0_ixtName_fh
p0_0_ixtName_yaStr p0_0_ixtName_y +

p0_0_ixtName_dy

.data
String p0_0_ixtName_strInit "your

name"

.const
p0_0_ixtName_wChar textWidth(" ",

p0_0_ixtName_fc, p0_0_ixtName_fs)
p0_0_ixtName_strPos 0
p0_0_ixtName_fa

fontAscent(p0_0_ixtName_fc,
p0_0_ixtName_fs)

p0_0_ixtName_fh
fontHeight(p0_0_ixtName_fc,
p0_0_ixtName_fs)

p0_0_ixtName_dx libGuiIxt3D_dx
p0_0_ixtName_dy libGuiIxt3D_dy
p0_0_ixtName_dw libGuiIxt3D_dw
p0_0_ixtName_dh libGuiIxt3D_dh

.data

Bytes p0_0_ixtName_prp [
p0_0_ixtName_et, p0_0_ixtName_x,
p0_0_ixtName_y, p0_0_ixtName_w,
p0_0_ixtName_h, p0_0_ixtName_fgr,
p0_0_ixtName_fgg,
p0_0_ixtName_fgb,
p0_0_ixtName_bgr,
p0_0_ixtName_bgg,
p0_0_ixtName_bgb,
p0_0_ixtName_fc, p0_0_ixtName_fs,
p0_0_ixtName_str,
p0_0_ixtName_xStr,
p0_0_ixtName_yStr,
p0_0_ixtName_wStr,
p0_0_ixtName_hStr,
p0_0_ixtName_yaStr,
p0_0_ixtName_strLenMax,
p0_0_ixtName_wChar,
p0_0_ixtName_strPos]

////////////////////
// p0_0_ixtName: Init
/////

.code

.fct p0_0_ixtName_init ()
{
loadc p0_0_ixtName_strPos
loadc p0_0_ixtName_prp
loadc libGui_strPosOfs
add
storea
loadc p0_0_ixtName_str
push
loadc p0_0_ixtName_strInit
push
fcall libMisc_strCp
return
}

////////////////////
// p0_0_ixtName: Events
/////

.data
EventTable p0_0_ixtName_et [
key_pressed, p0_0_ixtName_kp,
key_pressed_escape,

p0_0_ixtName_kpes,
mouse_pressed_left,

p0_0_ixtName_mpl,

D.2. Generated CVM Packets 281

1, p0_0_et]

.code
p0_0_ixtName_kp:
loadep1
loadc XK_Tab
loadcr p0_0_ixtName_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr p0_0_ixtName_kp_leftTab
je
loadc p0_0_ixtName_prp
push
fcall libGuiIxt_kp
halt

p0_0_ixtName_kp_tab:
loadc p0_0_ixtName_prp
push
loadc p0_0_ixtEmail_prp
push
loadc libGuiIxt3D_unDrwFcs
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_ixtName_kp_leftTab:
loadc p0_0_ixtName_prp
push
loadc p0_0_btnSubmit_prp
push
loadc libGuiIxt3D_unDrwFcs
push
loadc libGuiBtn3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_ixtName_kpes:
loadc p0_0_ixtName_prp
push
loadc p0_0_prp
push
loadc libGuiIxt3D_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

.code
p0_0_ixtName_mpl:
loadep1
push
loadep2
push
loadc p0_0_ixtName_prp
push
loadc libGuiIxt3D_unDrwFcs
push
fcall p0_0_mplFcs
halt

////////////////////
// p0_0_ixtName: Service Variables
/////

.code

.fct p0_0_ixtName_svBuf_write ()
{
loadc p0_0_ixtName_svIdx
loadc _svBuf
load _svBufIdx
astore1
load _svBufIdx
loadc 1
add
store _svBufIdx
loadc _svBuf
load _svBufIdx
add
push
loadc p0_0_ixtName_str
push
fcall libMisc_strCp
load _svBufIdx
incsp
loadc p0_0_ixtName_str
push
fcall libMisc_strLen
pop
add
loadc 3
add
store _svBufIdx
return
}

////////////////////
// p0_0_txtEmail: Attributes
/////

282 D. CVM Packet Server: Example

.const
p0_0_txtEmail_x 10
p0_0_txtEmail_y p0_0_txtEmail_yStr -

p0_0_txtEmail_fa + 1 -
p0_0_txtEmail_dy

p0_0_txtEmail_w p0_0_txtEmail_wStr +
p0_0_txtEmail_dw

p0_0_txtEmail_h p0_0_txtEmail_hStr +
p0_0_txtEmail_dh

p0_0_txtEmail_fgr p0_0_fgr
p0_0_txtEmail_fgg p0_0_fgg
p0_0_txtEmail_fgb p0_0_fgb
p0_0_txtEmail_bgr p0_0_bgr
p0_0_txtEmail_bgg p0_0_bgg
p0_0_txtEmail_bgb p0_0_bgb
p0_0_txtEmail_fc p0_0_fc
p0_0_txtEmail_fs p0_0_fs
p0_0_txtEmail_str "Email"
p0_0_txtEmail_yStr 98
p0_0_txtEmail_xStr p0_0_txtEmail_x +

p0_0_txtEmail_dx
p0_0_txtEmail_wStr

textWidth(p0_0_txtEmail_str,
p0_0_txtEmail_fc,
p0_0_txtEmail_fs)

p0_0_txtEmail_hStr
textHeight(p0_0_txtEmail_str,
p0_0_txtEmail_fc,
p0_0_txtEmail_fs, 0)

p0_0_txtEmail_fa
fontAscent(p0_0_txtEmail_fc,
p0_0_txtEmail_fs)

p0_0_txtEmail_dx libGuiTxt3D_dx
p0_0_txtEmail_dy libGuiTxt3D_dy
p0_0_txtEmail_dw libGuiTxt3D_dw
p0_0_txtEmail_dh libGuiTxt3D_dh

////////////////////
// p0_0_txtEmail: Misc
/////

.code

.fct p0_0_txtEmail_drw ()
{
loadc p0_0_txtEmail_fgr
loadc p0_0_txtEmail_fgg
loadc p0_0_txtEmail_fgb
setcolor
loadc p0_0_txtEmail_bgr
loadc p0_0_txtEmail_bgg
loadc p0_0_txtEmail_bgb

setbgcolor
loadc p0_0_txtEmail_fc
loadc p0_0_txtEmail_fs
setfont
loadc p0_0_txtEmail_xStr
loadc p0_0_txtEmail_yStr
textbg p0_0_txtEmail_str
return
}

////////////////////
// p0_0_ixtEmail: Attributes
/////

.const
p0_0_ixtEmail_x 52
p0_0_ixtEmail_y 85
p0_0_ixtEmail_w 150
p0_0_ixtEmail_h p0_0_ixtEmail_hStr +

p0_0_ixtEmail_dh
p0_0_ixtEmail_fgr p0_0_fgr
p0_0_ixtEmail_fgg p0_0_fgg
p0_0_ixtEmail_fgb p0_0_fgb
p0_0_ixtEmail_bgr 255
p0_0_ixtEmail_bgg 255
p0_0_ixtEmail_bgb 255
p0_0_ixtEmail_fc fcCourier
p0_0_ixtEmail_fs p0_0_fs

.data
Bytes p0_0_ixtEmail_str

p0_0_ixtEmail_strLenMax + 3

.const
p0_0_ixtEmail_yStr p0_0_ixtEmail_y +

p0_0_ixtEmail_fa - 1 +
p0_0_ixtEmail_dy

p0_0_ixtEmail_strLenMax 80
p0_0_ixtEmail_svIdx _svIdx_email
p0_0_ixtEmail_svBufLen

p0_0_ixtEmail_strLenMax + 3
p0_0_ixtEmail_xStr p0_0_ixtEmail_x +

p0_0_ixtEmail_dx
p0_0_ixtEmail_wStr p0_0_ixtEmail_w -

p0_0_ixtEmail_dw
p0_0_ixtEmail_hStr p0_0_ixtEmail_fh
p0_0_ixtEmail_yaStr p0_0_ixtEmail_y

+ p0_0_ixtEmail_dy

.data
String p0_0_ixtEmail_strInit "your

D.2. Generated CVM Packets 283

email"

.const
p0_0_ixtEmail_wChar textWidth(" ",

p0_0_ixtEmail_fc,
p0_0_ixtEmail_fs)

p0_0_ixtEmail_strPos 0
p0_0_ixtEmail_fa

fontAscent(p0_0_ixtEmail_fc,
p0_0_ixtEmail_fs)

p0_0_ixtEmail_fh
fontHeight(p0_0_ixtEmail_fc,
p0_0_ixtEmail_fs)

p0_0_ixtEmail_dx libGuiIxt3D_dx
p0_0_ixtEmail_dy libGuiIxt3D_dy
p0_0_ixtEmail_dw libGuiIxt3D_dw
p0_0_ixtEmail_dh libGuiIxt3D_dh

.data
Bytes p0_0_ixtEmail_prp [

p0_0_ixtEmail_et,
p0_0_ixtEmail_x, p0_0_ixtEmail_y,
p0_0_ixtEmail_w, p0_0_ixtEmail_h,
p0_0_ixtEmail_fgr,
p0_0_ixtEmail_fgg,
p0_0_ixtEmail_fgb,
p0_0_ixtEmail_bgr,
p0_0_ixtEmail_bgg,
p0_0_ixtEmail_bgb,
p0_0_ixtEmail_fc,
p0_0_ixtEmail_fs,
p0_0_ixtEmail_str,
p0_0_ixtEmail_xStr,
p0_0_ixtEmail_yStr,
p0_0_ixtEmail_wStr,
p0_0_ixtEmail_hStr,
p0_0_ixtEmail_yaStr,
p0_0_ixtEmail_strLenMax,
p0_0_ixtEmail_wChar,
p0_0_ixtEmail_strPos]

////////////////////
// p0_0_ixtEmail: Init
/////

.code

.fct p0_0_ixtEmail_init ()
{
loadc p0_0_ixtEmail_strPos
loadc p0_0_ixtEmail_prp
loadc libGui_strPosOfs

add
storea
loadc p0_0_ixtEmail_str
push
loadc p0_0_ixtEmail_strInit
push
fcall libMisc_strCp
return
}

////////////////////
// p0_0_ixtEmail: Events
/////

.data
EventTable p0_0_ixtEmail_et [
key_pressed, p0_0_ixtEmail_kp,
key_pressed_escape,

p0_0_ixtEmail_kpes,
mouse_pressed_left,

p0_0_ixtEmail_mpl,
1, p0_0_et]

.code
p0_0_ixtEmail_kp:
loadep1
loadc XK_Tab
loadcr p0_0_ixtEmail_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr p0_0_ixtEmail_kp_leftTab
je
loadc p0_0_ixtEmail_prp
push
fcall libGuiIxt_kp
halt

p0_0_ixtEmail_kp_tab:
loadc p0_0_ixtEmail_prp
push
loadc p0_0_btnReset_prp
push
loadc libGuiIxt3D_unDrwFcs
push
loadc libGuiBtn3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_ixtEmail_kp_leftTab:
loadc p0_0_ixtEmail_prp

284 D. CVM Packet Server: Example

push
loadc p0_0_ixtName_prp
push
loadc libGuiIxt3D_unDrwFcs
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_ixtEmail_kpes:
loadc p0_0_ixtEmail_prp
push
loadc p0_0_prp
push
loadc libGuiIxt3D_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

.code
p0_0_ixtEmail_mpl:

loadep1
push
loadep2
push
loadc p0_0_ixtEmail_prp
push
loadc libGuiIxt3D_unDrwFcs
push
fcall p0_0_mplFcs
halt

////////////////////
// p0_0_ixtEmail: Service Variables
/////

.code

.fct p0_0_ixtEmail_svBuf_write ()
{
loadc p0_0_ixtEmail_svIdx
loadc _svBuf
load _svBufIdx
astore1
load _svBufIdx
loadc 1
add
store _svBufIdx
loadc _svBuf

load _svBufIdx
add
push
loadc p0_0_ixtEmail_str
push
fcall libMisc_strCp
load _svBufIdx
incsp
loadc p0_0_ixtEmail_str
push
fcall libMisc_strLen
pop
add
loadc 3
add
store _svBufIdx
return
}

////////////////////
// p0_0_btnReset: Attributes
/////

.const
p0_0_btnReset_x 10
p0_0_btnReset_y 116
p0_0_btnReset_w p0_0_btnReset_wStr +

p0_0_btnReset_dw
p0_0_btnReset_h p0_0_btnReset_hStr +

p0_0_btnReset_dh
p0_0_btnReset_fgr 51
p0_0_btnReset_fgg 51
p0_0_btnReset_fgb 51
p0_0_btnReset_bgr 210
p0_0_btnReset_bgg 218
p0_0_btnReset_bgb 230
p0_0_btnReset_fc p0_0_fc
p0_0_btnReset_fs p0_0_fs
p0_0_btnReset_str "Reset"
p0_0_btnReset_yStr p0_0_btnReset_y +

p0_0_btnReset_fa - 1 +
p0_0_btnReset_dy

p0_0_btnReset_img ""
p0_0_btnReset_imgStyle 0
p0_0_btnReset_xStr p0_0_btnReset_x +

p0_0_btnReset_dx
p0_0_btnReset_wStr

textWidth(p0_0_btnReset_str,
p0_0_btnReset_fc,
p0_0_btnReset_fs)

p0_0_btnReset_hStr p0_0_btnReset_fh

D.2. Generated CVM Packets 285

p0_0_btnReset_fa
fontAscent(p0_0_btnReset_fc,
p0_0_btnReset_fs)

p0_0_btnReset_fh
fontHeight(p0_0_btnReset_fc,
p0_0_btnReset_fs)

p0_0_btnReset_dx libGuiBtn3D_dx
p0_0_btnReset_dy libGuiBtn3D_dy
p0_0_btnReset_dw libGuiBtn3D_dw
p0_0_btnReset_dh libGuiBtn3D_dh

.data
String p0_0_btnReset_str_

p0_0_btnReset_str
String p0_0_btnReset_img_

p0_0_btnReset_img
Bytes p0_0_btnReset_prp [

p0_0_btnReset_et,
p0_0_btnReset_x, p0_0_btnReset_y,
p0_0_btnReset_w, p0_0_btnReset_h,
p0_0_btnReset_fgr,
p0_0_btnReset_fgg,
p0_0_btnReset_fgb,
p0_0_btnReset_bgr,
p0_0_btnReset_bgg,
p0_0_btnReset_bgb,
p0_0_btnReset_fc,
p0_0_btnReset_fs,
p0_0_btnReset_str_,
p0_0_btnReset_xStr,
p0_0_btnReset_yStr,
p0_0_btnReset_img_,
p0_0_btnReset_imgStyle]

////////////////////
// p0_0_btnReset: Events
/////

.data
EventTable p0_0_btnReset_et [
key_pressed, p0_0_btnReset_kp,
key_pressed_escape,

p0_0_btnReset_kpes,
key_pressed_enter,

p0_0_btnReset_kpe,
key_released, p0_0_btnReset_kr,
key_released_enter,

p0_0_btnReset_kre,
mouse_pressed_left,

p0_0_btnReset_mpl,
mouse_released_left,

p0_0_btnReset_mrl,
1, p0_0_et]

.code
p0_0_btnReset_kp:
loadep1
loadc XK_Tab
loadcr p0_0_btnReset_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr p0_0_btnReset_kp_leftTab
je
loadep1
loadc XK_space
loadcr p0_0_btnReset_kp_space
je
halt

p0_0_btnReset_kp_tab:
loadc p0_0_btnReset_prp
push
loadc p0_0_btnSubmit_prp
push
loadc libGuiBtn3D_unDrwFcs
push
loadc libGuiBtn3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_btnReset_kp_leftTab:
loadc p0_0_btnReset_prp
push
loadc p0_0_ixtEmail_prp
push
loadc libGuiBtn3D_unDrwFcs
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_btnReset_kp_space:
fcall p0_0_btnReset_evDwn
halt

p0_0_btnReset_kpes:
loadc p0_0_btnReset_prp
push
loadc p0_0_prp
push

286 D. CVM Packet Server: Example

loadc libGuiBtn3D_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

p0_0_btnReset_kpe:
fcall p0_0_btnReset_evDwn
halt

p0_0_btnReset_kr:
loadep1
loadc XK_space
loadcr p0_0_btnReset_kr_space
je
halt

p0_0_btnReset_kr_space:
fcall p0_0_btnReset_evUp
halt

p0_0_btnReset_kre:
fcall p0_0_btnReset_evUp
halt

.code
p0_0_btnReset_mpl:

loadep1
push
loadep2
push
loadc p0_0_btnReset_prp
push
loadc libGuiBtn3D_unDrwFcs
push
fcall p0_0_mplFcs
halt

p0_0_btnReset_mrl:
fcall p0_0_btnReset_evUp
halt

.code

.fct p0_0_btnReset_evDwn ()
{
loadc p0_0_btnReset_prp
push
fcall libGuiBtn3D_dwn

fcall _svBufIdx_reset
fcall_I _svBuf_svcCmd_write,

svcCmd_Reset
sendrcvpage_a _pageNo,
_subpageNo

return
}

.fct p0_0_btnReset_evUp ()
{
loadc p0_0_btnReset_prp
push
fcall libGuiBtn3D_up
return
}

////////////////////
// p0_0_btnSubmit: Attributes
/////

.const
p0_0_btnSubmit_x 54
p0_0_btnSubmit_y 116
p0_0_btnSubmit_w p0_0_btnSubmit_wStr

+ p0_0_btnSubmit_dw
p0_0_btnSubmit_h p0_0_btnSubmit_hStr

+ p0_0_btnSubmit_dh
p0_0_btnSubmit_fgr 51
p0_0_btnSubmit_fgg 51
p0_0_btnSubmit_fgb 51
p0_0_btnSubmit_bgr 210
p0_0_btnSubmit_bgg 218
p0_0_btnSubmit_bgb 230
p0_0_btnSubmit_fc p0_0_fc
p0_0_btnSubmit_fs p0_0_fs
p0_0_btnSubmit_str "Submit"
p0_0_btnSubmit_yStr p0_0_btnSubmit_y

+ p0_0_btnSubmit_fa - 1 +
p0_0_btnSubmit_dy

p0_0_btnSubmit_img ""
p0_0_btnSubmit_imgStyle 0
p0_0_btnSubmit_xStr p0_0_btnSubmit_x

+ p0_0_btnSubmit_dx
p0_0_btnSubmit_wStr

textWidth(p0_0_btnSubmit_str,
p0_0_btnSubmit_fc,
p0_0_btnSubmit_fs)

p0_0_btnSubmit_hStr
p0_0_btnSubmit_fh

p0_0_btnSubmit_fa
fontAscent(p0_0_btnSubmit_fc,
p0_0_btnSubmit_fs)

p0_0_btnSubmit_fh

D.2. Generated CVM Packets 287

fontHeight(p0_0_btnSubmit_fc,
p0_0_btnSubmit_fs)

p0_0_btnSubmit_dx libGuiBtn3D_dx
p0_0_btnSubmit_dy libGuiBtn3D_dy
p0_0_btnSubmit_dw libGuiBtn3D_dw
p0_0_btnSubmit_dh libGuiBtn3D_dh

.data
String p0_0_btnSubmit_str_

p0_0_btnSubmit_str
String p0_0_btnSubmit_img_

p0_0_btnSubmit_img
Bytes p0_0_btnSubmit_prp [

p0_0_btnSubmit_et,
p0_0_btnSubmit_x,
p0_0_btnSubmit_y,
p0_0_btnSubmit_w,
p0_0_btnSubmit_h,
p0_0_btnSubmit_fgr,
p0_0_btnSubmit_fgg,
p0_0_btnSubmit_fgb,
p0_0_btnSubmit_bgr,
p0_0_btnSubmit_bgg,
p0_0_btnSubmit_bgb,
p0_0_btnSubmit_fc,
p0_0_btnSubmit_fs,
p0_0_btnSubmit_str_,
p0_0_btnSubmit_xStr,
p0_0_btnSubmit_yStr,
p0_0_btnSubmit_img_,
p0_0_btnSubmit_imgStyle]

////////////////////
// p0_0_btnSubmit: Events
/////

.data
EventTable p0_0_btnSubmit_et [
key_pressed, p0_0_btnSubmit_kp,
key_pressed_escape,

p0_0_btnSubmit_kpes,
key_pressed_enter,

p0_0_btnSubmit_kpe,
key_released, p0_0_btnSubmit_kr,
key_released_enter,

p0_0_btnSubmit_kre,
mouse_pressed_left,

p0_0_btnSubmit_mpl,
mouse_released_left,

p0_0_btnSubmit_mrl,
1, p0_0_et]

.code
p0_0_btnSubmit_kp:
loadep1
loadc XK_Tab
loadcr p0_0_btnSubmit_kp_tab
je
loadep1
loadc XK_ISO_Left_Tab
loadcr p0_0_btnSubmit_kp_leftTab
je
loadep1
loadc XK_space
loadcr p0_0_btnSubmit_kp_space
je
halt

p0_0_btnSubmit_kp_tab:
loadc p0_0_btnSubmit_prp
push
loadc p0_0_ixtName_prp
push
loadc libGuiBtn3D_unDrwFcs
push
loadc libGuiIxt3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_btnSubmit_kp_leftTab:
loadc p0_0_btnSubmit_prp
push
loadc p0_0_btnReset_prp
push
loadc libGuiBtn3D_unDrwFcs
push
loadc libGuiBtn3D_drwFcs
push
fcall libGui_mvFcs
halt

p0_0_btnSubmit_kp_space:
fcall p0_0_btnSubmit_evDwn
halt

p0_0_btnSubmit_kpes:
loadc p0_0_btnSubmit_prp
push
loadc p0_0_prp
push
loadc libGuiBtn3D_unDrwFcs
push
loadc libMisc_emptyProc

288 D. CVM Packet Server: Example

push
fcall libGui_mvFcs
halt

p0_0_btnSubmit_kpe:
fcall p0_0_btnSubmit_evDwn
halt

p0_0_btnSubmit_kr:
loadep1
loadc XK_space
loadcr p0_0_btnSubmit_kr_space
je
halt

p0_0_btnSubmit_kr_space:
fcall p0_0_btnSubmit_evUp
halt

p0_0_btnSubmit_kre:
fcall p0_0_btnSubmit_evUp
halt

.code
p0_0_btnSubmit_mpl:

loadep1
push
loadep2
push
loadc p0_0_btnSubmit_prp
push
loadc libGuiBtn3D_unDrwFcs
push

fcall p0_0_mplFcs
halt

p0_0_btnSubmit_mrl:
fcall p0_0_btnSubmit_evUp
halt

.code

.fct p0_0_btnSubmit_evDwn ()
{
loadc p0_0_btnSubmit_prp
push
fcall libGuiBtn3D_dwn

fcall _svBuf_write
fcall_I _svBuf_svcCmd_write,
svcCmd_Submit
sendrcvpage _p1, 0

return
}

.fct p0_0_btnSubmit_evUp ()
{
loadc p0_0_btnSubmit_prp
push
fcall libGuiBtn3D_up
return
}

////////////////////
// CVMUI Lib
/////

...

AUI page p1: CVMUI page p1 0 The generated CVM packet for the AUI page p1

contains 1138 bytes and is as follows:

.16Bit

.code
loadcr p1_0_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 250

_cvmScreenHeight 150

.data
String _hostAdrSrv "127.0.0.1"

////////////////////
// Page Numbers
/////

.const
_pageNo 1
_p0 0
_pNotExist 2

D.2. Generated CVM Packets 289

_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const
svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0
Bytes _svBuf _svIdxLen + 2

////////////////////
// p1_0: Attributes
/////

.const
p1_0_x 0
p1_0_y 0
p1_0_w _cvmScreenWidth
p1_0_h _cvmScreenHeight
p1_0_fgr 0
p1_0_fgg 0
p1_0_fgb 0
p1_0_bgr 222
p1_0_bgg 218
p1_0_bgb 210
p1_0_fc fcHelvetica
p1_0_fs 12
p1_0_img ""
p1_0_imgStyle 0

.data
Bytes p1_0_prp [p1_0_et]
Int p1_0_bInit 0

////////////////////

// p1_0: Misc
/////

.code
p1_0_main:
loadc_0
store _subpageNo
fcall p1_0_init
fcall p1_0_drw
loadc p1_0_hlkService_prp
push
loadc libGuiHlk3D_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p1_0_init ()
{
load p1_0_bInit
loadc_0
loadcr p1_0_init_1
jne
loadc_1
store p1_0_bInit

p1_0_init_1:
return
}

.code

.fct p1_0_drw ()
{
loadc p1_0_bgr
loadc p1_0_bgg
loadc p1_0_bgb
setcolor
loadc p1_0_x
loadc p1_0_y
loadc p1_0_w
loadc p1_0_h
rectfill
fcall p1_0_txtTitle_drw
fcall p1_0_txtName_drw
fcall p1_0_txtNameVal_drw
fcall p1_0_txtEmail_drw
fcall p1_0_txtEmailVal_drw
loadc p1_0_hlkService_prp
push
fcall libGuiHlk3D_drw
return

290 D. CVM Packet Server: Example

}

////////////////////
// p1_0: Service Variables
/////

////////////////////
// p1_0: Events
/////

.data
EventTable p1_0_et [

key_pressed, p1_0_kp,
mouse_pressed_left, p1_0_mpl]

.code
p1_0_kp:

loadep1
loadc XK_Tab
loadcr p1_0_kp_tab
je
halt

p1_0_kp_tab:
loadc p1_0_prp
push
loadc p1_0_hlkService_prp
push
loadc libMisc_emptyProc
push
loadc libGuiHlk3D_drwFcs
push
fcall libGui_mvFcs
halt

.code
p1_0_mpl:

loadep1
push
loadep2
push
loadc p1_0_prp
push
loadc libMisc_emptyProc
push
fcall p1_0_mplFcs
halt

.code

.fct p1_0_mplFcs (Int x, Int y, Int
adrPrpSrc, Int adrUnDrwFcsSrc)

{

incsp
load x
push
load y
push
loadc p1_0_hlkService_x
push
loadc p1_0_hlkService_y
push
loadc p1_0_hlkService_w
push
loadc p1_0_hlkService_h
push
fcall libGui_rectIn
pop
loadc_0
loadcr p1_0_mplFcs_39
je
load adrPrpSrc
push
loadc p1_0_hlkService_prp
push
load adrUnDrwFcsSrc
push
loadc libGuiHlk3D_drwFcs
push
fcall libGui_mvFcs
loadc p1_0_hlkService_prp
push
fcall libGuiHlk_dwn
return

p1_0_mplFcs_39:
return
}

////////////////////
// p1_0_txtTitle: Attributes
/////

.const
p1_0_txtTitle_x 34
p1_0_txtTitle_y 5
p1_0_txtTitle_w p1_0_txtTitle_wStr +

p1_0_txtTitle_dw
p1_0_txtTitle_h p1_0_txtTitle_hStr +

p1_0_txtTitle_dh
p1_0_txtTitle_fgr p1_0_fgr
p1_0_txtTitle_fgg p1_0_fgg
p1_0_txtTitle_fgb p1_0_fgb
p1_0_txtTitle_bgr p1_0_bgr
p1_0_txtTitle_bgg p1_0_bgg

D.2. Generated CVM Packets 291

p1_0_txtTitle_bgb p1_0_bgb
p1_0_txtTitle_fc fcHelveticaBold
p1_0_txtTitle_fs 14
p1_0_txtTitle_str "Confirmation of

Your Data"
p1_0_txtTitle_yStr p1_0_txtTitle_y +

p1_0_txtTitle_fa - 1 +
p1_0_txtTitle_dy

p1_0_txtTitle_xStr p1_0_txtTitle_x +
p1_0_txtTitle_dx

p1_0_txtTitle_wStr
textWidth(p1_0_txtTitle_str,
p1_0_txtTitle_fc,
p1_0_txtTitle_fs)

p1_0_txtTitle_hStr
textHeight(p1_0_txtTitle_str,
p1_0_txtTitle_fc,
p1_0_txtTitle_fs, 0)

p1_0_txtTitle_fa
fontAscent(p1_0_txtTitle_fc,
p1_0_txtTitle_fs)

p1_0_txtTitle_dx libGuiTxt3D_dx
p1_0_txtTitle_dy libGuiTxt3D_dy
p1_0_txtTitle_dw libGuiTxt3D_dw
p1_0_txtTitle_dh libGuiTxt3D_dh

////////////////////
// p1_0_txtTitle: Misc
/////

.code

.fct p1_0_txtTitle_drw ()
{
loadc p1_0_txtTitle_fgr
loadc p1_0_txtTitle_fgg
loadc p1_0_txtTitle_fgb
setcolor
loadc p1_0_txtTitle_bgr
loadc p1_0_txtTitle_bgg
loadc p1_0_txtTitle_bgb
setbgcolor
loadc p1_0_txtTitle_fc
loadc p1_0_txtTitle_fs
setfont
loadc p1_0_txtTitle_xStr
loadc p1_0_txtTitle_yStr
textbg p1_0_txtTitle_str
return
}

////////////////////

// p1_0_txtName: Attributes
/////

.const
p1_0_txtName_x 10
p1_0_txtName_y 31
p1_0_txtName_w p1_0_txtName_wStr +

p1_0_txtName_dw
p1_0_txtName_h p1_0_txtName_hStr +

p1_0_txtName_dh
p1_0_txtName_fgr p1_0_fgr
p1_0_txtName_fgg p1_0_fgg
p1_0_txtName_fgb p1_0_fgb
p1_0_txtName_bgr p1_0_bgr
p1_0_txtName_bgg p1_0_bgg
p1_0_txtName_bgb p1_0_bgb
p1_0_txtName_fc p1_0_fc
p1_0_txtName_fs p1_0_fs
p1_0_txtName_str "Name:"
p1_0_txtName_yStr p1_0_txtName_y +

p1_0_txtName_fa - 1 +
p1_0_txtName_dy

p1_0_txtName_xStr p1_0_txtName_x +
p1_0_txtName_dx

p1_0_txtName_wStr
textWidth(p1_0_txtName_str,
p1_0_txtName_fc, p1_0_txtName_fs)

p1_0_txtName_hStr
textHeight(p1_0_txtName_str,
p1_0_txtName_fc, p1_0_txtName_fs,
0)

p1_0_txtName_fa
fontAscent(p1_0_txtName_fc,
p1_0_txtName_fs)

p1_0_txtName_dx libGuiTxt3D_dx
p1_0_txtName_dy libGuiTxt3D_dy
p1_0_txtName_dw libGuiTxt3D_dw
p1_0_txtName_dh libGuiTxt3D_dh

////////////////////
// p1_0_txtName: Misc
/////

.code

.fct p1_0_txtName_drw ()
{
loadc p1_0_txtName_fgr
loadc p1_0_txtName_fgg
loadc p1_0_txtName_fgb
setcolor
loadc p1_0_txtName_bgr

292 D. CVM Packet Server: Example

loadc p1_0_txtName_bgg
loadc p1_0_txtName_bgb
setbgcolor
loadc p1_0_txtName_fc
loadc p1_0_txtName_fs
setfont
loadc p1_0_txtName_xStr
loadc p1_0_txtName_yStr
textbg p1_0_txtName_str
return
}

////////////////////
// p1_0_txtNameVal: Attributes
/////

.const
p1_0_txtNameVal_x 55
p1_0_txtNameVal_y 31
p1_0_txtNameVal_w

p1_0_txtNameVal_wStr +
p1_0_txtNameVal_dw

p1_0_txtNameVal_h
p1_0_txtNameVal_hStr +
p1_0_txtNameVal_dh

p1_0_txtNameVal_fgr p1_0_fgr
p1_0_txtNameVal_fgg p1_0_fgg
p1_0_txtNameVal_fgb p1_0_fgb
p1_0_txtNameVal_bgr p1_0_bgr
p1_0_txtNameVal_bgg p1_0_bgg
p1_0_txtNameVal_bgb p1_0_bgb
p1_0_txtNameVal_fc p1_0_fc
p1_0_txtNameVal_fs p1_0_fs
p1_0_txtNameVal_str "Max Mustermann"
p1_0_txtNameVal_yStr

p1_0_txtNameVal_y +
p1_0_txtNameVal_fa - 1 +
p1_0_txtNameVal_dy

p1_0_txtNameVal_xStr
p1_0_txtNameVal_x +
p1_0_txtNameVal_dx

p1_0_txtNameVal_wStr
textWidth(p1_0_txtNameVal_str,
p1_0_txtNameVal_fc,
p1_0_txtNameVal_fs)

p1_0_txtNameVal_hStr
textHeight(p1_0_txtNameVal_str,
p1_0_txtNameVal_fc,
p1_0_txtNameVal_fs, 0)

p1_0_txtNameVal_fa
fontAscent(p1_0_txtNameVal_fc,

p1_0_txtNameVal_fs)
p1_0_txtNameVal_dx libGuiTxt3D_dx
p1_0_txtNameVal_dy libGuiTxt3D_dy
p1_0_txtNameVal_dw libGuiTxt3D_dw
p1_0_txtNameVal_dh libGuiTxt3D_dh

////////////////////
// p1_0_txtNameVal: Misc
/////

.code

.fct p1_0_txtNameVal_drw ()
{
loadc p1_0_txtNameVal_fgr
loadc p1_0_txtNameVal_fgg
loadc p1_0_txtNameVal_fgb
setcolor
loadc p1_0_txtNameVal_bgr
loadc p1_0_txtNameVal_bgg
loadc p1_0_txtNameVal_bgb
setbgcolor
loadc p1_0_txtNameVal_fc
loadc p1_0_txtNameVal_fs
setfont
loadc p1_0_txtNameVal_xStr
loadc p1_0_txtNameVal_yStr
textbg p1_0_txtNameVal_str
return
}

////////////////////
// p1_0_txtEmail: Attributes
/////

.const
p1_0_txtEmail_x 10
p1_0_txtEmail_y 50
p1_0_txtEmail_w p1_0_txtEmail_wStr +

p1_0_txtEmail_dw
p1_0_txtEmail_h p1_0_txtEmail_hStr +

p1_0_txtEmail_dh
p1_0_txtEmail_fgr p1_0_fgr
p1_0_txtEmail_fgg p1_0_fgg
p1_0_txtEmail_fgb p1_0_fgb
p1_0_txtEmail_bgr p1_0_bgr
p1_0_txtEmail_bgg p1_0_bgg
p1_0_txtEmail_bgb p1_0_bgb
p1_0_txtEmail_fc p1_0_fc
p1_0_txtEmail_fs p1_0_fs
p1_0_txtEmail_str "Email:"
p1_0_txtEmail_yStr p1_0_txtEmail_y +

D.2. Generated CVM Packets 293

p1_0_txtEmail_fa - 1 +
p1_0_txtEmail_dy

p1_0_txtEmail_xStr p1_0_txtEmail_x +
p1_0_txtEmail_dx

p1_0_txtEmail_wStr
textWidth(p1_0_txtEmail_str,
p1_0_txtEmail_fc,
p1_0_txtEmail_fs)

p1_0_txtEmail_hStr
textHeight(p1_0_txtEmail_str,
p1_0_txtEmail_fc,
p1_0_txtEmail_fs, 0)

p1_0_txtEmail_fa
fontAscent(p1_0_txtEmail_fc,
p1_0_txtEmail_fs)

p1_0_txtEmail_dx libGuiTxt3D_dx
p1_0_txtEmail_dy libGuiTxt3D_dy
p1_0_txtEmail_dw libGuiTxt3D_dw
p1_0_txtEmail_dh libGuiTxt3D_dh

////////////////////
// p1_0_txtEmail: Misc
/////

.code

.fct p1_0_txtEmail_drw ()
{
loadc p1_0_txtEmail_fgr
loadc p1_0_txtEmail_fgg
loadc p1_0_txtEmail_fgb
setcolor
loadc p1_0_txtEmail_bgr
loadc p1_0_txtEmail_bgg
loadc p1_0_txtEmail_bgb
setbgcolor
loadc p1_0_txtEmail_fc
loadc p1_0_txtEmail_fs
setfont
loadc p1_0_txtEmail_xStr
loadc p1_0_txtEmail_yStr
textbg p1_0_txtEmail_str
return
}

////////////////////
// p1_0_txtEmailVal: Attributes
/////

.const
p1_0_txtEmailVal_x 55
p1_0_txtEmailVal_y 50

p1_0_txtEmailVal_w
p1_0_txtEmailVal_wStr +
p1_0_txtEmailVal_dw

p1_0_txtEmailVal_h
p1_0_txtEmailVal_hStr +
p1_0_txtEmailVal_dh

p1_0_txtEmailVal_fgr p1_0_fgr
p1_0_txtEmailVal_fgg p1_0_fgg
p1_0_txtEmailVal_fgb p1_0_fgb
p1_0_txtEmailVal_bgr p1_0_bgr
p1_0_txtEmailVal_bgg p1_0_bgg
p1_0_txtEmailVal_bgb p1_0_bgb
p1_0_txtEmailVal_fc p1_0_fc
p1_0_txtEmailVal_fs p1_0_fs
p1_0_txtEmailVal_str

"MaxMustermann@xyz.de"
p1_0_txtEmailVal_yStr

p1_0_txtEmailVal_y +
p1_0_txtEmailVal_fa - 1 +
p1_0_txtEmailVal_dy

p1_0_txtEmailVal_xStr
p1_0_txtEmailVal_x +
p1_0_txtEmailVal_dx

p1_0_txtEmailVal_wStr
textWidth(p1_0_txtEmailVal_str,
p1_0_txtEmailVal_fc,
p1_0_txtEmailVal_fs)

p1_0_txtEmailVal_hStr
textHeight(p1_0_txtEmailVal_str,
p1_0_txtEmailVal_fc,
p1_0_txtEmailVal_fs, 0)

p1_0_txtEmailVal_fa
fontAscent(p1_0_txtEmailVal_fc,
p1_0_txtEmailVal_fs)

p1_0_txtEmailVal_dx libGuiTxt3D_dx
p1_0_txtEmailVal_dy libGuiTxt3D_dy
p1_0_txtEmailVal_dw libGuiTxt3D_dw
p1_0_txtEmailVal_dh libGuiTxt3D_dh

////////////////////
// p1_0_txtEmailVal: Misc
/////

.code

.fct p1_0_txtEmailVal_drw ()
{
loadc p1_0_txtEmailVal_fgr
loadc p1_0_txtEmailVal_fgg
loadc p1_0_txtEmailVal_fgb
setcolor
loadc p1_0_txtEmailVal_bgr

294 D. CVM Packet Server: Example

loadc p1_0_txtEmailVal_bgg
loadc p1_0_txtEmailVal_bgb
setbgcolor
loadc p1_0_txtEmailVal_fc
loadc p1_0_txtEmailVal_fs
setfont
loadc p1_0_txtEmailVal_xStr
loadc p1_0_txtEmailVal_yStr
textbg p1_0_txtEmailVal_str
return
}

////////////////////
// p1_0_hlkService: Attributes
/////

.const
p1_0_hlkService_x 10
p1_0_hlkService_y 74
p1_0_hlkService_w

p1_0_hlkService_wStr +
p1_0_hlkService_dw

p1_0_hlkService_h
p1_0_hlkService_hStr +
p1_0_hlkService_dh

p1_0_hlkService_fgr p1_0_fgr
p1_0_hlkService_fgg p1_0_fgg
p1_0_hlkService_fgb p1_0_fgb
p1_0_hlkService_bgr p1_0_bgr
p1_0_hlkService_bgg p1_0_bgg
p1_0_hlkService_bgb p1_0_bgb
p1_0_hlkService_fc p1_0_fc
p1_0_hlkService_fs p1_0_fs
p1_0_hlkService_str "Exit and return

to the Registration Form"
p1_0_hlkService_yStr

p1_0_hlkService_y +
p1_0_hlkService_fa - 1 +
p1_0_hlkService_dy

p1_0_hlkService_hostAdr "127.0.0.1"
p1_0_hlkService_serviceNo 1
p1_0_hlkService_xStr

p1_0_hlkService_x +
p1_0_hlkService_dx

p1_0_hlkService_wStr
textWidth(p1_0_hlkService_str,
p1_0_hlkService_fc,
p1_0_hlkService_fs)

p1_0_hlkService_hStr
p1_0_hlkService_fh

p1_0_hlkService_fa

fontAscent(p1_0_hlkService_fc,
p1_0_hlkService_fs)

p1_0_hlkService_fh
fontHeight(p1_0_hlkService_fc,
p1_0_hlkService_fs)

p1_0_hlkService_dx libGuiHlk3D_dx
p1_0_hlkService_dy libGuiHlk3D_dy
p1_0_hlkService_dw libGuiHlk3D_dw
p1_0_hlkService_dh libGuiHlk3D_dh

.data
String p1_0_hlkService_str_

p1_0_hlkService_str
String p1_0_hlkService_hostAdr_

p1_0_hlkService_hostAdr
Bytes p1_0_hlkService_prp [

p1_0_hlkService_et,
p1_0_hlkService_x,
p1_0_hlkService_y,
p1_0_hlkService_w,
p1_0_hlkService_h,
p1_0_hlkService_fgr,
p1_0_hlkService_fgg,
p1_0_hlkService_fgb,
p1_0_hlkService_bgr,
p1_0_hlkService_bgg,
p1_0_hlkService_bgb,
p1_0_hlkService_fc,
p1_0_hlkService_fs,
p1_0_hlkService_str_,
p1_0_hlkService_xStr,
p1_0_hlkService_yStr,
p1_0_hlkService_hostAdr_,
p1_0_hlkService_serviceNo]

////////////////////
// p1_0_hlkService: Events
/////

.data
EventTable p1_0_hlkService_et [
key_pressed, p1_0_hlkService_kp,
key_pressed_escape,

p1_0_hlkService_kpes,
key_pressed_enter,

p1_0_hlkService_kpe,
mouse_pressed_left,

p1_0_hlkService_mpl,
1, p1_0_et]

.code

D.2. Generated CVM Packets 295

p1_0_hlkService_kp:
loadc p1_0_hlkService_prp
push
fcall libGuiHlk_kp
halt

p1_0_hlkService_kpes:
loadc p1_0_hlkService_prp
push
loadc p1_0_prp
push
loadc libGuiHlk3D_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

p1_0_hlkService_kpe:
loadc p1_0_hlkService_prp
push

fcall libGuiHlk_dwn
halt

.code
p1_0_hlkService_mpl:
loadep1
push
loadep2
push
loadc p1_0_hlkService_prp
push
loadc libGuiHlk3D_unDrwFcs
push
fcall p1_0_mplFcs
halt

////////////////////
// CVMUI Lib
/////

...

D.2.2 With Customization

The implemented customization method is only for demonstration purpose and therefore
will not be specified in detail. Instead, CVM screenshots and some selected CVMA code
samples of the generated CVM packets will be presented. The implemented customization
method is particularly applicable to very small client devices like wrist watches that may
have the following exemplary CVM profile:

{ cvmMode = 16Bit;
profileId = 483721;
cvmNumGeneralRegs = 10;
cvmMemMaxAdr = 2 Kbytes - 1;
cvmScreenWidth = 50;
cvmScreenHeight = 19;
cvmFonts = 1;
cvmKeyCodeSet = 0;
0 }}

During the generation of the CVMUIs the “simple” (Smp) look is used. The tables D.1
(page 296) and D.2 (page 297) give an overview of the generated CVM packets for the AUI
pages p0 and p1 and also contain CVM screenshots, respectively.

AUI page p0: CVMUI pages p0 0 and p0 1 The CVM packet for the CVMUI pages
p0 0 and p0 1 is as follows:

296 D. CVM Packet Server: Example

CVM packet CVM packet size [Bytes] CVMUI page CVM Screenshot

0 320 p0 0

p0 1

1 348 p0 2

p0 3

2 349 p0 4

p0 5

3 349 p0 6

p0 7

4 349 p0 8

p0 9

5 344 p0 10

p0 11

6 1291 p0 12

p0 13

7 1293 p0 14

p0 15

8 999 p0 16

p0 17

Table D.1: Customized CVM Packets: registration.aui, CVMUI pages for AUI
page p0

D.2. Generated CVM Packets 297

CVM packet CVM packet size [Bytes] CVMUI page CVM Screenshot

0 324 p1 0

p1 1

1 341 p1 2

p1 3

2 346 p1 4

p1 5

3 345 p1 6

p1 7

4 349 p1 8

p1 9

5 661 p1 10

p1 11

6 780 p1 12

p1 13

7 756 p1 14

p1 15

Table D.2: Customized CVM Packets: registration.aui, CVMUI pages for AUI
page p1

298 D. CVM Packet Server: Example

.16Bit

.code
loadcr p0_0_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 50
_cvmScreenHeight 19

.data
String _hostAdrSrv "127.0.0.1"

////////////////////
// Page Numbers
/////

.const
_pageNo 0
_p0 0
_p1 1
_pNotExist 2
_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const
svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0

Bytes _svBuf _svIdxLen + 2

.code

.fct _svBufIdx_reset ()
{
loadc_0
store _svBufIdx
return
}

////////////////////
// p0_0: Attributes
/////

.const
p0_0_x 0
p0_0_y 0
p0_0_w _cvmScreenWidth
p0_0_h _cvmScreenHeight
p0_0_fgr 0
p0_0_fgg 0
p0_0_fgb 0
p0_0_bgr 255
p0_0_bgg 255
p0_0_bgb 255
p0_0_fc fcFixedStandard
p0_0_fs 13
p0_0_img ""
p0_0_imgStyle 0

.data
Bytes p0_0_prp [p0_0_et]
Int p0_0_bInit 0

////////////////////
// p0_0: Misc
/////

.code
p0_0_main:
loadc_0
store _subpageNo
fcall p0_0_init
fcall p0_0_drw
loadc p0_0_prp
push
loadc libMisc_emptyProc
push
fcall libGui_setFcs
enableevents
halt

D.2. Generated CVM Packets 299

.code

.fct p0_0_init ()
{
load p0_0_bInit
loadc_0
loadcr p0_0_init_1
jne
loadc_1
store p0_0_bInit

p0_0_init_1:
return
}

.code

.fct p0_0_drw ()
{
loadc p0_0_bgr
loadc p0_0_bgg
loadc p0_0_bgb
setcolor
loadc p0_0_x
loadc p0_0_y
loadc p0_0_w
loadc p0_0_h
rectfill
fcall p0_0_txtTitle_drw
return
}

.code
p0_0_nextPage:
loadc 1
loadcr p0_1_main
page

////////////////////
// p0_0: Service Variables
/////

////////////////////
// p0_0: Events
/////

.data
EventTable p0_0_et [
key_pressed, p0_0_kp]

.code
p0_0_kp:
loadep1
loadc XK_Right

loadcr p0_0_kp_right
je
halt

p0_0_kp_right:
loadcr p0_0_nextPage
jmp

////////////////////
// p0_0_txtTitle: Attributes
/////

.const
p0_0_txtTitle_x 1
p0_0_txtTitle_y 1
p0_0_txtTitle_w p0_0_txtTitle_wStr +

p0_0_txtTitle_dw
p0_0_txtTitle_h p0_0_txtTitle_hStr +

p0_0_txtTitle_dh
p0_0_txtTitle_fgr p0_0_fgr
p0_0_txtTitle_fgg p0_0_fgg
p0_0_txtTitle_fgb p0_0_fgb
p0_0_txtTitle_bgr p0_0_bgr
p0_0_txtTitle_bgg p0_0_bgg
p0_0_txtTitle_bgb p0_0_bgb
p0_0_txtTitle_fc p0_0_fc
p0_0_txtTitle_fs p0_0_fs
p0_0_txtTitle_str "Registra"
p0_0_txtTitle_yStr p0_0_txtTitle_y +

p0_0_txtTitle_fa - 1 +
p0_0_txtTitle_dy

p0_0_txtTitle_xStr p0_0_txtTitle_x +
p0_0_txtTitle_dx

p0_0_txtTitle_wStr
textWidth(p0_0_txtTitle_str,
p0_0_txtTitle_fc,
p0_0_txtTitle_fs)

p0_0_txtTitle_hStr
textHeight(p0_0_txtTitle_str,
p0_0_txtTitle_fc,
p0_0_txtTitle_fs, 0)

p0_0_txtTitle_fa
fontAscent(p0_0_txtTitle_fc,
p0_0_txtTitle_fs)

p0_0_txtTitle_dx libGuiTxtSmp_dx
p0_0_txtTitle_dy libGuiTxtSmp_dy
p0_0_txtTitle_dw libGuiTxtSmp_dw
p0_0_txtTitle_dh libGuiTxtSmp_dh

////////////////////
// p0_0_txtTitle: Misc
/////

300 D. CVM Packet Server: Example

.code

.fct p0_0_txtTitle_drw ()
{
loadc p0_0_txtTitle_fgr
loadc p0_0_txtTitle_fgg
loadc p0_0_txtTitle_fgb
setcolor
loadc p0_0_txtTitle_bgr
loadc p0_0_txtTitle_bgg
loadc p0_0_txtTitle_bgb
setbgcolor
loadc p0_0_txtTitle_fc
loadc p0_0_txtTitle_fs
setfont
loadc p0_0_txtTitle_xStr
loadc p0_0_txtTitle_yStr
textbg p0_0_txtTitle_str
return
}

////////////////////
// p0_1: Attributes
/////

.const
p0_1_x 0
p0_1_y 0
p0_1_w _cvmScreenWidth
p0_1_h _cvmScreenHeight
p0_1_fgr 0
p0_1_fgg 0
p0_1_fgb 0
p0_1_bgr 255
p0_1_bgg 255
p0_1_bgb 255
p0_1_fc fcFixedStandard
p0_1_fs 13
p0_1_img ""
p0_1_imgStyle 0

.data
Bytes p0_1_prp [p0_1_et]
Int p0_1_bInit 0

////////////////////
// p0_1: Misc
/////

.code
p0_1_main:

loadc_0

store _subpageNo
fcall p0_1_init
fcall p0_1_drw
loadc p0_1_prp
push
loadc libMisc_emptyProc
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_1_init ()
{
load p0_1_bInit
loadc_0
loadcr p0_1_init_1
jne
loadc_1
store p0_1_bInit

p0_1_init_1:
return
}

.code

.fct p0_1_drw ()
{
loadc p0_1_bgr
loadc p0_1_bgg
loadc p0_1_bgb
setcolor
loadc p0_1_x
loadc p0_1_y
loadc p0_1_w
loadc p0_1_h
rectfill
fcall p0_1_txtTitle_drw
return
}

.code
p0_1_prevPage:
loadc 0
loadcr p0_0_main
page

.code
p0_1_nextPage:
fcall _svBufIdx_reset
sendrcvpage _pageNo, 2

D.2. Generated CVM Packets 301

////////////////////
// p0_1: Service Variables
/////

////////////////////
// p0_1: Events
/////

.data
EventTable p0_1_et [
key_pressed, p0_1_kp]

.code
p0_1_kp:
loadep1
loadc XK_Left
loadcr p0_1_kp_left
je
loadep1
loadc XK_Right
loadcr p0_1_kp_right
je
halt

p0_1_kp_left:
loadcr p0_1_prevPage
jmp

p0_1_kp_right:
loadcr p0_1_nextPage
jmp

////////////////////
// p0_1_txtTitle: Attributes
/////

.const
p0_1_txtTitle_x 1
p0_1_txtTitle_y 1
p0_1_txtTitle_w p0_1_txtTitle_wStr +

p0_1_txtTitle_dw
p0_1_txtTitle_h p0_1_txtTitle_hStr +

p0_1_txtTitle_dh
p0_1_txtTitle_fgr p0_1_fgr
p0_1_txtTitle_fgg p0_1_fgg
p0_1_txtTitle_fgb p0_1_fgb
p0_1_txtTitle_bgr p0_1_bgr
p0_1_txtTitle_bgg p0_1_bgg
p0_1_txtTitle_bgb p0_1_bgb
p0_1_txtTitle_fc p0_1_fc
p0_1_txtTitle_fs p0_1_fs
p0_1_txtTitle_str "tion"

p0_1_txtTitle_yStr p0_1_txtTitle_y +
p0_1_txtTitle_fa - 1 +
p0_1_txtTitle_dy

p0_1_txtTitle_xStr p0_1_txtTitle_x +
p0_1_txtTitle_dx

p0_1_txtTitle_wStr
textWidth(p0_1_txtTitle_str,
p0_1_txtTitle_fc,
p0_1_txtTitle_fs)

p0_1_txtTitle_hStr
textHeight(p0_1_txtTitle_str,
p0_1_txtTitle_fc,
p0_1_txtTitle_fs, 0)

p0_1_txtTitle_fa
fontAscent(p0_1_txtTitle_fc,
p0_1_txtTitle_fs)

p0_1_txtTitle_dx libGuiTxtSmp_dx
p0_1_txtTitle_dy libGuiTxtSmp_dy
p0_1_txtTitle_dw libGuiTxtSmp_dw
p0_1_txtTitle_dh libGuiTxtSmp_dh

////////////////////
// p0_1_txtTitle: Misc
/////

.code

.fct p0_1_txtTitle_drw ()
{
loadc p0_1_txtTitle_fgr
loadc p0_1_txtTitle_fgg
loadc p0_1_txtTitle_fgb
setcolor
loadc p0_1_txtTitle_bgr
loadc p0_1_txtTitle_bgg
loadc p0_1_txtTitle_bgb
setbgcolor
loadc p0_1_txtTitle_fc
loadc p0_1_txtTitle_fs
setfont
loadc p0_1_txtTitle_xStr
loadc p0_1_txtTitle_yStr
textbg p0_1_txtTitle_str
return
}

////////////////////
// CVMUI Lib
/////

...

302 D. CVM Packet Server: Example

AUI page p0: CVMUI pages p0 2 and p0 3 The CVM packet for the CVMUI pages
p0 2 and p0 3 is as follows:

.16Bit

.code
loadcr p0_2_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 50
_cvmScreenHeight 19

.data
String _hostAdrSrv "127.0.0.1"

////////////////////
// Page Numbers
/////

.const
_pageNo 0
_p0 0
_p1 1
_pNotExist 2
_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const
svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0
Bytes _svBuf _svIdxLen + 2

.code

.fct _svBufIdx_reset ()
{
loadc_0
store _svBufIdx
return
}

////////////////////
// p0_2: Attributes
/////

.const
p0_2_x 0
p0_2_y 0
p0_2_w _cvmScreenWidth
p0_2_h _cvmScreenHeight
p0_2_fgr 0
p0_2_fgg 0
p0_2_fgb 0
p0_2_bgr 255
p0_2_bgg 255
p0_2_bgb 255
p0_2_fc fcFixedStandard
p0_2_fs 13
p0_2_img ""
p0_2_imgStyle 0

.data
Bytes p0_2_prp [p0_2_et]
Int p0_2_bInit 0

////////////////////
// p0_2: Misc
/////

.code
p0_2_main:
loadc_0
store _subpageNo
fcall p0_2_init
fcall p0_2_drw
loadc p0_2_prp

D.2. Generated CVM Packets 303

push
loadc libMisc_emptyProc
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_2_init ()
{
load p0_2_bInit
loadc_0
loadcr p0_2_init_1
jne
loadc_1
store p0_2_bInit

p0_2_init_1:
return
}

.code

.fct p0_2_drw ()
{
loadc p0_2_bgr
loadc p0_2_bgg
loadc p0_2_bgb
setcolor
loadc p0_2_x
loadc p0_2_y
loadc p0_2_w
loadc p0_2_h
rectfill
fcall p0_2_txpIntro_drw
return
}

.code
p0_2_prevPage:
fcall _svBufIdx_reset
sendrcvpage _pageNo, 1

.code
p0_2_nextPage:
loadc 3
loadcr p0_3_main
page

////////////////////
// p0_2: Service Variables
/////

////////////////////
// p0_2: Events
/////

.data
EventTable p0_2_et [
key_pressed, p0_2_kp]

.code
p0_2_kp:
loadep1
loadc XK_Left
loadcr p0_2_kp_left
je
loadep1
loadc XK_Right
loadcr p0_2_kp_right
je
halt

p0_2_kp_left:
loadcr p0_2_prevPage
jmp

p0_2_kp_right:
loadcr p0_2_nextPage
jmp

////////////////////
// p0_2_txpIntro: Attributes
/////

.const
p0_2_txpIntro_x 1
p0_2_txpIntro_y 1
p0_2_txpIntro_w p0_2_txpIntro_wStr +

p0_2_txpIntro_dw
p0_2_txpIntro_h p0_2_txpIntro_hStr +

p0_2_txpIntro_dh
p0_2_txpIntro_fgr p0_2_fgr
p0_2_txpIntro_fgg p0_2_fgg
p0_2_txpIntro_fgb p0_2_fgb
p0_2_txpIntro_bgr p0_2_bgr
p0_2_txpIntro_bgg p0_2_bgg
p0_2_txpIntro_bgb p0_2_bgb
p0_2_txpIntro_fc p0_2_fc
p0_2_txpIntro_fs p0_2_fs
p0_2_txpIntro_str "Welcome "
p0_2_txpIntro_yStr p0_2_txpIntro_y +

p0_2_txpIntro_fa - 1 +
p0_2_txpIntro_dy

p0_2_txpIntro_xStr p0_2_txpIntro_x +
p0_2_txpIntro_dx

304 D. CVM Packet Server: Example

p0_2_txpIntro_wStr
textWidth(p0_2_txpIntro_str,
p0_2_txpIntro_fc,
p0_2_txpIntro_fs)

p0_2_txpIntro_hStr
textHeight(p0_2_txpIntro_str,
p0_2_txpIntro_fc,
p0_2_txpIntro_fs, 0)

p0_2_txpIntro_fa
fontAscent(p0_2_txpIntro_fc,
p0_2_txpIntro_fs)

p0_2_txpIntro_dx libGuiTxtSmp_dx
p0_2_txpIntro_dy libGuiTxtSmp_dy
p0_2_txpIntro_dw libGuiTxtSmp_dw
p0_2_txpIntro_dh libGuiTxtSmp_dh

////////////////////
// p0_2_txpIntro: Misc
/////

.code

.fct p0_2_txpIntro_drw ()
{
loadc p0_2_txpIntro_fgr
loadc p0_2_txpIntro_fgg
loadc p0_2_txpIntro_fgb
setcolor
loadc p0_2_txpIntro_bgr
loadc p0_2_txpIntro_bgg
loadc p0_2_txpIntro_bgb
setbgcolor
loadc p0_2_txpIntro_fc
loadc p0_2_txpIntro_fs
setfont
loadc p0_2_txpIntro_xStr
loadc p0_2_txpIntro_yStr
textbg p0_2_txpIntro_str
return
}

////////////////////
// p0_3: Attributes
/////

.const
p0_3_x 0
p0_3_y 0
p0_3_w _cvmScreenWidth
p0_3_h _cvmScreenHeight
p0_3_fgr 0
p0_3_fgg 0

p0_3_fgb 0
p0_3_bgr 255
p0_3_bgg 255
p0_3_bgb 255
p0_3_fc fcFixedStandard
p0_3_fs 13
p0_3_img ""
p0_3_imgStyle 0

.data
Bytes p0_3_prp [p0_3_et]
Int p0_3_bInit 0

////////////////////
// p0_3: Misc
/////

.code
p0_3_main:
loadc_0
store _subpageNo
fcall p0_3_init
fcall p0_3_drw
loadc p0_3_prp
push
loadc libMisc_emptyProc
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_3_init ()
{
load p0_3_bInit
loadc_0
loadcr p0_3_init_1
jne
loadc_1
store p0_3_bInit

p0_3_init_1:
return
}

.code

.fct p0_3_drw ()
{
loadc p0_3_bgr
loadc p0_3_bgg
loadc p0_3_bgb
setcolor

D.2. Generated CVM Packets 305

loadc p0_3_x
loadc p0_3_y
loadc p0_3_w
loadc p0_3_h
rectfill
fcall p0_3_txpIntro_drw
return
}

.code
p0_3_prevPage:
loadc 2
loadcr p0_2_main
page

.code
p0_3_nextPage:
fcall _svBufIdx_reset
sendrcvpage _pageNo, 4

////////////////////
// p0_3: Service Variables
/////

////////////////////
// p0_3: Events
/////

.data
EventTable p0_3_et [
key_pressed, p0_3_kp]

.code
p0_3_kp:
loadep1
loadc XK_Left
loadcr p0_3_kp_left
je
loadep1
loadc XK_Right
loadcr p0_3_kp_right
je
halt

p0_3_kp_left:
loadcr p0_3_prevPage
jmp

p0_3_kp_right:
loadcr p0_3_nextPage
jmp

////////////////////

// p0_3_txpIntro: Attributes
/////

.const
p0_3_txpIntro_x 1
p0_3_txpIntro_y 1
p0_3_txpIntro_w p0_3_txpIntro_wStr +

p0_3_txpIntro_dw
p0_3_txpIntro_h p0_3_txpIntro_hStr +

p0_3_txpIntro_dh
p0_3_txpIntro_fgr p0_3_fgr
p0_3_txpIntro_fgg p0_3_fgg
p0_3_txpIntro_fgb p0_3_fgb
p0_3_txpIntro_bgr p0_3_bgr
p0_3_txpIntro_bgg p0_3_bgg
p0_3_txpIntro_bgb p0_3_bgb
p0_3_txpIntro_fc p0_3_fc
p0_3_txpIntro_fs p0_3_fs
p0_3_txpIntro_str "to the r"
p0_3_txpIntro_yStr p0_3_txpIntro_y +

p0_3_txpIntro_fa - 1 +
p0_3_txpIntro_dy

p0_3_txpIntro_xStr p0_3_txpIntro_x +
p0_3_txpIntro_dx

p0_3_txpIntro_wStr
textWidth(p0_3_txpIntro_str,
p0_3_txpIntro_fc,
p0_3_txpIntro_fs)

p0_3_txpIntro_hStr
textHeight(p0_3_txpIntro_str,
p0_3_txpIntro_fc,
p0_3_txpIntro_fs, 0)

p0_3_txpIntro_fa
fontAscent(p0_3_txpIntro_fc,
p0_3_txpIntro_fs)

p0_3_txpIntro_dx libGuiTxtSmp_dx
p0_3_txpIntro_dy libGuiTxtSmp_dy
p0_3_txpIntro_dw libGuiTxtSmp_dw
p0_3_txpIntro_dh libGuiTxtSmp_dh

////////////////////
// p0_3_txpIntro: Misc
/////

.code

.fct p0_3_txpIntro_drw ()
{
loadc p0_3_txpIntro_fgr
loadc p0_3_txpIntro_fgg
loadc p0_3_txpIntro_fgb
setcolor

306 D. CVM Packet Server: Example

loadc p0_3_txpIntro_bgr
loadc p0_3_txpIntro_bgg
loadc p0_3_txpIntro_bgb
setbgcolor
loadc p0_3_txpIntro_fc
loadc p0_3_txpIntro_fs
setfont
loadc p0_3_txpIntro_xStr
loadc p0_3_txpIntro_yStr

textbg p0_3_txpIntro_str
return
}

////////////////////
// CVMUI Lib
/////

...

AUI page p0: CVMUI pages p0 12 and p0 13 The CVM packet for the CVMUI
pages p0 12 and p0 13 is as follows:

.16Bit

.code
loadcr p0_12_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 50
_cvmScreenHeight 19

.data
String _hostAdrSrv "127.0.0.1"

////////////////////
// Page Numbers
/////

.const
_pageNo 0
_p0 0
_p1 1
_pNotExist 2
_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const

svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0
Bytes _svBuf _svIdxLen +

p0_13_ixtName_svBufLen +
_svIdxLen + 2

.code

.fct _svBufIdx_reset ()
{
loadc_0
store _svBufIdx
return
}

.code

.fct _svBuf_write ()
{
fcall _svBufIdx_reset
fcall p0_13_svBuf_write
return
}

////////////////////
// p0_12: Attributes
/////

D.2. Generated CVM Packets 307

.const
p0_12_x 0
p0_12_y 0
p0_12_w _cvmScreenWidth
p0_12_h _cvmScreenHeight
p0_12_fgr 0
p0_12_fgg 0
p0_12_fgb 0
p0_12_bgr 255
p0_12_bgg 255
p0_12_bgb 255
p0_12_fc fcFixedStandard
p0_12_fs 13
p0_12_img ""
p0_12_imgStyle 0

.data
Bytes p0_12_prp [p0_12_et]
Int p0_12_bInit 0

////////////////////
// p0_12: Misc
/////

.code
p0_12_main:
loadc_0
store _subpageNo
fcall p0_12_init
fcall p0_12_drw
loadc p0_12_prp
push
loadc libMisc_emptyProc
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_12_init ()
{
load p0_12_bInit
loadc_0
loadcr p0_12_init_1
jne
loadc_1
store p0_12_bInit

p0_12_init_1:
return
}

.code

.fct p0_12_drw ()
{
loadc p0_12_bgr
loadc p0_12_bgg
loadc p0_12_bgb
setcolor
loadc p0_12_x
loadc p0_12_y
loadc p0_12_w
loadc p0_12_h
rectfill
fcall p0_12_txtName_drw
return
}

.code
p0_12_prevPage:
fcall _svBuf_write
sendrcvpage _pageNo, 11

.code
p0_12_nextPage:
loadc 13
loadcr p0_13_main
page

////////////////////
// p0_12: Service Variables
/////

////////////////////
// p0_12: Events
/////

.data
EventTable p0_12_et [
key_pressed, p0_12_kp]

.code
p0_12_kp:
loadep1
loadc XK_Left
loadcr p0_12_kp_left
je
loadep1
loadc XK_Right
loadcr p0_12_kp_right
je
halt

p0_12_kp_left:

308 D. CVM Packet Server: Example

loadcr p0_12_prevPage
jmp

p0_12_kp_right:
loadcr p0_12_nextPage
jmp

////////////////////
// p0_12_txtName: Attributes
/////

.const
p0_12_txtName_x 1
p0_12_txtName_y 1
p0_12_txtName_w p0_12_txtName_wStr +

p0_12_txtName_dw
p0_12_txtName_h p0_12_txtName_hStr +

p0_12_txtName_dh
p0_12_txtName_fgr p0_12_fgr
p0_12_txtName_fgg p0_12_fgg
p0_12_txtName_fgb p0_12_fgb
p0_12_txtName_bgr p0_12_bgr
p0_12_txtName_bgg p0_12_bgg
p0_12_txtName_bgb p0_12_bgb
p0_12_txtName_fc p0_12_fc
p0_12_txtName_fs p0_12_fs
p0_12_txtName_str "Name"
p0_12_txtName_yStr p0_12_txtName_y +

p0_12_txtName_fa - 1 +
p0_12_txtName_dy

p0_12_txtName_xStr p0_12_txtName_x +
p0_12_txtName_dx

p0_12_txtName_wStr
textWidth(p0_12_txtName_str,
p0_12_txtName_fc,
p0_12_txtName_fs)

p0_12_txtName_hStr
textHeight(p0_12_txtName_str,
p0_12_txtName_fc,
p0_12_txtName_fs, 0)

p0_12_txtName_fa
fontAscent(p0_12_txtName_fc,
p0_12_txtName_fs)

p0_12_txtName_dx libGuiTxtSmp_dx
p0_12_txtName_dy libGuiTxtSmp_dy
p0_12_txtName_dw libGuiTxtSmp_dw
p0_12_txtName_dh libGuiTxtSmp_dh

////////////////////
// p0_12_txtName: Misc
/////

.code

.fct p0_12_txtName_drw ()
{
loadc p0_12_txtName_fgr
loadc p0_12_txtName_fgg
loadc p0_12_txtName_fgb
setcolor
loadc p0_12_txtName_bgr
loadc p0_12_txtName_bgg
loadc p0_12_txtName_bgb
setbgcolor
loadc p0_12_txtName_fc
loadc p0_12_txtName_fs
setfont
loadc p0_12_txtName_xStr
loadc p0_12_txtName_yStr
textbg p0_12_txtName_str
return
}

////////////////////
// p0_13: Attributes
/////

.const
p0_13_x 0
p0_13_y 0
p0_13_w _cvmScreenWidth
p0_13_h _cvmScreenHeight
p0_13_fgr 0
p0_13_fgg 0
p0_13_fgb 0
p0_13_bgr 255
p0_13_bgg 255
p0_13_bgb 255
p0_13_fc fcFixedStandard
p0_13_fs 13
p0_13_img ""
p0_13_imgStyle 0

.data
Bytes p0_13_prp [p0_13_et]
Int p0_13_bInit 0

////////////////////
// p0_13: Misc
/////

.code
p0_13_main:
loadc_0

D.2. Generated CVM Packets 309

store _subpageNo
fcall p0_13_init
fcall p0_13_drw
loadc p0_13_ixtName_prp
push
loadc libGuiIxtSmp_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_13_init ()
{
load p0_13_bInit
loadc_0
loadcr p0_13_init_1
jne
fcall p0_13_ixtName_init
loadc_1
store p0_13_bInit

p0_13_init_1:
return
}

.code

.fct p0_13_drw ()
{
loadc p0_13_bgr
loadc p0_13_bgg
loadc p0_13_bgb
setcolor
loadc p0_13_x
loadc p0_13_y
loadc p0_13_w
loadc p0_13_h
rectfill
loadc p0_13_ixtName_prp
push
fcall libGuiIxtSmp_drw
return
}

.code
p0_13_prevPage:
loadc 12
loadcr p0_12_main
page

.code
p0_13_nextPage:

fcall _svBuf_write
sendrcvpage _pageNo, 14

////////////////////
// p0_13: Service Variables
/////

.code

.fct p0_13_svBuf_write ()
{
fcall p0_13_ixtName_svBuf_write
return
}

////////////////////
// p0_13: Events
/////

.data
EventTable p0_13_et [
key_pressed, p0_13_kp]

.code
p0_13_kp:
loadep1
loadc XK_Tab
loadcr p0_13_kp_tab
je
loadep1
loadc XK_Left
loadcr p0_13_kp_left
je
loadep1
loadc XK_Right
loadcr p0_13_kp_right
je
halt

p0_13_kp_tab:
loadc p0_13_prp
push
loadc p0_13_ixtName_prp
push
loadc libMisc_emptyProc
push
loadc libGuiIxtSmp_drwFcs
push
fcall libGui_mvFcs
halt

p0_13_kp_left:
loadcr p0_13_prevPage
jmp

310 D. CVM Packet Server: Example

p0_13_kp_right:
loadcr p0_13_nextPage
jmp

////////////////////
// p0_13_ixtName: Attributes
/////

.const
p0_13_ixtName_x 1
p0_13_ixtName_y 1
p0_13_ixtName_w 48
p0_13_ixtName_h p0_13_ixtName_hStr +

p0_13_ixtName_dh
p0_13_ixtName_fgr p0_13_fgr
p0_13_ixtName_fgg p0_13_fgg
p0_13_ixtName_fgb p0_13_fgb
p0_13_ixtName_bgr p0_13_bgr
p0_13_ixtName_bgg p0_13_bgg
p0_13_ixtName_bgb p0_13_bgb
p0_13_ixtName_fc p0_13_fc
p0_13_ixtName_fs p0_13_fs

.data
Bytes p0_13_ixtName_str

p0_13_ixtName_strLenMax + 3

.const
p0_13_ixtName_yStr p0_13_ixtName_y +

p0_13_ixtName_fa - 1 +
p0_13_ixtName_dy

p0_13_ixtName_strLenMax 80
p0_13_ixtName_svIdx _svIdx_name
p0_13_ixtName_svBufLen

p0_13_ixtName_strLenMax + 3
p0_13_ixtName_xStr p0_13_ixtName_x +

p0_13_ixtName_dx
p0_13_ixtName_wStr p0_13_ixtName_w -

p0_13_ixtName_dw
p0_13_ixtName_hStr p0_13_ixtName_fh
p0_13_ixtName_yaStr p0_13_ixtName_y

+ p0_13_ixtName_dy

.data
String p0_13_ixtName_strInit "your

name"

.const
p0_13_ixtName_wChar textWidth(" ",

p0_13_ixtName_fc,
p0_13_ixtName_fs)

p0_13_ixtName_strPos -12
p0_13_ixtName_fa

fontAscent(p0_13_ixtName_fc,
p0_13_ixtName_fs)

p0_13_ixtName_fh
fontHeight(p0_13_ixtName_fc,
p0_13_ixtName_fs)

p0_13_ixtName_dx libGuiIxtSmp_dx
p0_13_ixtName_dy libGuiIxtSmp_dy
p0_13_ixtName_dw libGuiIxtSmp_dw
p0_13_ixtName_dh libGuiIxtSmp_dh

.data
Bytes p0_13_ixtName_prp [

p0_13_ixtName_et,
p0_13_ixtName_x, p0_13_ixtName_y,
p0_13_ixtName_w, p0_13_ixtName_h,
p0_13_ixtName_fgr,
p0_13_ixtName_fgg,
p0_13_ixtName_fgb,
p0_13_ixtName_bgr,
p0_13_ixtName_bgg,
p0_13_ixtName_bgb,
p0_13_ixtName_fc,
p0_13_ixtName_fs,
p0_13_ixtName_str,
p0_13_ixtName_xStr,
p0_13_ixtName_yStr,
p0_13_ixtName_wStr,
p0_13_ixtName_hStr,
p0_13_ixtName_yaStr,
p0_13_ixtName_strLenMax,
p0_13_ixtName_wChar,
p0_13_ixtName_strPos]

////////////////////
// p0_13_ixtName: Init
/////

.code

.fct p0_13_ixtName_init ()
{
loadc p0_13_ixtName_strPos
loadc p0_13_ixtName_prp
loadc libGui_strPosOfs
add
storea
loadc p0_13_ixtName_str
push
loadc p0_13_ixtName_strInit
push

D.2. Generated CVM Packets 311

fcall libMisc_strCp
return
}

////////////////////
// p0_13_ixtName: Events
/////

.data
EventTable p0_13_ixtName_et [
key_pressed, p0_13_ixtName_kp,
key_pressed_escape,

p0_13_ixtName_kpes,
1, p0_13_et]

.code
p0_13_ixtName_kp:
loadc p0_13_ixtName_prp
push
fcall libGuiIxt_kp
halt

p0_13_ixtName_kpes:
loadc p0_13_ixtName_prp
push
loadc p0_13_prp
push
loadc libGuiIxtSmp_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

////////////////////
// p0_13_ixtName: Service Variables
/////

.code

.fct p0_13_ixtName_svBuf_write ()
{
loadc p0_13_ixtName_svIdx
loadc _svBuf
load _svBufIdx
astore1
load _svBufIdx
loadc 1
add
store _svBufIdx
loadc _svBuf
load _svBufIdx
add
push
loadc p0_13_ixtName_str
push
fcall libMisc_strCp
load _svBufIdx
incsp
loadc p0_13_ixtName_str
push
fcall libMisc_strLen
pop
add
loadc 3
add
store _svBufIdx
return
}

////////////////////
// CVMUI Lib
/////

...

AUI page p0: CVMUI pages p0 16 and p0 17 The CVM packet for the CVMUI
pages p0 16 and p0 17 is as follows:

.16Bit

.code
loadcr p0_16_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 50
_cvmScreenHeight 19

.data
String _hostAdrSrv "127.0.0.1"

////////////////////

312 D. CVM Packet Server: Example

// Page Numbers
/////

.const
_pageNo 0
_p0 0
_p1 1
_pNotExist 2
_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const
svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0
Bytes _svBuf _svIdxLen + 2

.code

.fct _svBufIdx_reset ()
{
loadc_0
store _svBufIdx
return
}

.code

.fct _svBuf_svcCmd_write (Int
svcCmdIdx)

{
loadc_0
loadc _svBuf
load _svBufIdx
astore1
load _svBufIdx

loadc _svIdxLen
add
store _svBufIdx
load svcCmdIdx
loadc _svBuf
load _svBufIdx
astore2
load _svBufIdx
loadc 2
add
store _svBufIdx
return
}

.code

.fct _svBuf_write ()
{
fcall _svBufIdx_reset
return
}

////////////////////
// p0_16: Attributes
/////

.const
p0_16_x 0
p0_16_y 0
p0_16_w _cvmScreenWidth
p0_16_h _cvmScreenHeight
p0_16_fgr 0
p0_16_fgg 0
p0_16_fgb 0
p0_16_bgr 255
p0_16_bgg 255
p0_16_bgb 255
p0_16_fc fcFixedStandard
p0_16_fs 13
p0_16_img ""
p0_16_imgStyle 0

.data
Bytes p0_16_prp [p0_16_et]
Int p0_16_bInit 0

////////////////////
// p0_16: Misc
/////

.code
p0_16_main:

D.2. Generated CVM Packets 313

loadc_0
store _subpageNo
fcall p0_16_init
fcall p0_16_drw
loadc p0_16_btnReset_prp
push
loadc libGuiBtnSmp_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_16_init ()
{
load p0_16_bInit
loadc_0
loadcr p0_16_init_1
jne
loadc_1
store p0_16_bInit

p0_16_init_1:
return
}

.code

.fct p0_16_drw ()
{
loadc p0_16_bgr
loadc p0_16_bgg
loadc p0_16_bgb
setcolor
loadc p0_16_x
loadc p0_16_y
loadc p0_16_w
loadc p0_16_h
rectfill
loadc p0_16_btnReset_prp
push
fcall libGuiBtnSmp_drw
return
}

.code
p0_16_prevPage:
fcall _svBufIdx_reset
sendrcvpage _pageNo, 15

.code
p0_16_nextPage:
loadc 17

loadcr p0_17_main
page

////////////////////
// p0_16: Service Variables
/////

////////////////////
// p0_16: Events
/////

.data
EventTable p0_16_et [
key_pressed, p0_16_kp]

.code
p0_16_kp:
loadep1
loadc XK_Tab
loadcr p0_16_kp_tab
je
loadep1
loadc XK_Left
loadcr p0_16_kp_left
je
loadep1
loadc XK_Right
loadcr p0_16_kp_right
je
halt

p0_16_kp_tab:
loadc p0_16_prp
push
loadc p0_16_btnReset_prp
push
loadc libMisc_emptyProc
push
loadc libGuiBtnSmp_drwFcs
push
fcall libGui_mvFcs
halt

p0_16_kp_left:
loadcr p0_16_prevPage
jmp

p0_16_kp_right:
loadcr p0_16_nextPage
jmp

////////////////////
// p0_16_btnReset: Attributes
/////

314 D. CVM Packet Server: Example

.const
p0_16_btnReset_x 1
p0_16_btnReset_y 1
p0_16_btnReset_w p0_16_btnReset_wStr

+ p0_16_btnReset_dw
p0_16_btnReset_h p0_16_btnReset_hStr

+ p0_16_btnReset_dh
p0_16_btnReset_fgr p0_16_fgr
p0_16_btnReset_fgg p0_16_fgg
p0_16_btnReset_fgb p0_16_fgb
p0_16_btnReset_bgr p0_16_bgr
p0_16_btnReset_bgg p0_16_bgg
p0_16_btnReset_bgb p0_16_bgb
p0_16_btnReset_fc p0_16_fc
p0_16_btnReset_fs p0_16_fs
p0_16_btnReset_str "Reset"
p0_16_btnReset_yStr p0_16_btnReset_y

+ p0_16_btnReset_fa - 1 +
p0_16_btnReset_dy

p0_16_btnReset_img ""
p0_16_btnReset_imgStyle 0
p0_16_btnReset_xStr p0_16_btnReset_x

+ p0_16_btnReset_dx
p0_16_btnReset_wStr

textWidth(p0_16_btnReset_str,
p0_16_btnReset_fc,
p0_16_btnReset_fs)

p0_16_btnReset_hStr
p0_16_btnReset_fh

p0_16_btnReset_fa
fontAscent(p0_16_btnReset_fc,
p0_16_btnReset_fs)

p0_16_btnReset_fh
fontHeight(p0_16_btnReset_fc,
p0_16_btnReset_fs)

p0_16_btnReset_dx libGuiBtnSmp_dx
p0_16_btnReset_dy libGuiBtnSmp_dy
p0_16_btnReset_dw libGuiBtnSmp_dw
p0_16_btnReset_dh libGuiBtnSmp_dh

.data
String p0_16_btnReset_str_

p0_16_btnReset_str
String p0_16_btnReset_img_

p0_16_btnReset_img
Bytes p0_16_btnReset_prp [

p0_16_btnReset_et,
p0_16_btnReset_x,
p0_16_btnReset_y,
p0_16_btnReset_w,
p0_16_btnReset_h,

p0_16_btnReset_fgr,
p0_16_btnReset_fgg,
p0_16_btnReset_fgb,
p0_16_btnReset_bgr,
p0_16_btnReset_bgg,
p0_16_btnReset_bgb,
p0_16_btnReset_fc,
p0_16_btnReset_fs,
p0_16_btnReset_str_,
p0_16_btnReset_xStr,
p0_16_btnReset_yStr,
p0_16_btnReset_img_,
p0_16_btnReset_imgStyle]

////////////////////
// p0_16_btnReset: Events
/////

.data
EventTable p0_16_btnReset_et [
key_pressed, p0_16_btnReset_kp,
key_pressed_escape,

p0_16_btnReset_kpes,
key_pressed_enter,

p0_16_btnReset_kpe,
key_released, p0_16_btnReset_kr,
key_released_enter,

p0_16_btnReset_kre,
1, p0_16_et]

.code
p0_16_btnReset_kp:
loadep1
loadc XK_space
loadcr p0_16_btnReset_kp_space
je
halt

p0_16_btnReset_kp_space:
fcall p0_16_btnReset_evDwn
halt

p0_16_btnReset_kpes:
loadc p0_16_btnReset_prp
push
loadc p0_16_prp
push
loadc libGuiBtnSmp_unDrwFcs
push
loadc libMisc_emptyProc
push

D.2. Generated CVM Packets 315

fcall libGui_mvFcs
halt

p0_16_btnReset_kpe:
fcall p0_16_btnReset_evDwn
halt

p0_16_btnReset_kr:
loadep1
loadc XK_space
loadcr p0_16_btnReset_kr_space
je
halt

p0_16_btnReset_kr_space:
fcall p0_16_btnReset_evUp
halt

p0_16_btnReset_kre:
fcall p0_16_btnReset_evUp
halt

.code

.fct p0_16_btnReset_evDwn ()
{
loadc p0_16_btnReset_prp
push
fcall libGuiBtnSmp_dwn

fcall _svBufIdx_reset
fcall_I _svBuf_svcCmd_write,
svcCmd_Reset
sendrcvpage_a _pageNo,
_subpageNo

return
}

.fct p0_16_btnReset_evUp ()
{
loadc p0_16_btnReset_prp
push
fcall libGuiBtnSmp_up
return
}

////////////////////
// p0_17: Attributes
/////

.const
p0_17_x 0
p0_17_y 0

p0_17_w _cvmScreenWidth
p0_17_h _cvmScreenHeight
p0_17_fgr 0
p0_17_fgg 0
p0_17_fgb 0
p0_17_bgr 255
p0_17_bgg 255
p0_17_bgb 255
p0_17_fc fcFixedStandard
p0_17_fs 13
p0_17_img ""
p0_17_imgStyle 0

.data
Bytes p0_17_prp [p0_17_et]
Int p0_17_bInit 0

////////////////////
// p0_17: Misc
/////

.code
p0_17_main:
loadc_0
store _subpageNo
fcall p0_17_init
fcall p0_17_drw
loadc p0_17_btnSubmit_prp
push
loadc libGuiBtnSmp_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p0_17_init ()
{
load p0_17_bInit
loadc_0
loadcr p0_17_init_1
jne
loadc_1
store p0_17_bInit

p0_17_init_1:
return
}

.code

.fct p0_17_drw ()
{

316 D. CVM Packet Server: Example

loadc p0_17_bgr
loadc p0_17_bgg
loadc p0_17_bgb
setcolor
loadc p0_17_x
loadc p0_17_y
loadc p0_17_w
loadc p0_17_h
rectfill
loadc p0_17_btnSubmit_prp
push
fcall libGuiBtnSmp_drw
return
}

.code
p0_17_prevPage:

loadc 16
loadcr p0_16_main
page

////////////////////
// p0_17: Service Variables
/////

////////////////////
// p0_17: Events
/////

.data
EventTable p0_17_et [

key_pressed, p0_17_kp]

.code
p0_17_kp:

loadep1
loadc XK_Tab
loadcr p0_17_kp_tab
je
loadep1
loadc XK_Left
loadcr p0_17_kp_left
je
halt

p0_17_kp_tab:
loadc p0_17_prp
push
loadc p0_17_btnSubmit_prp
push
loadc libMisc_emptyProc
push

loadc libGuiBtnSmp_drwFcs
push
fcall libGui_mvFcs
halt

p0_17_kp_left:
loadcr p0_17_prevPage
jmp

////////////////////
// p0_17_btnSubmit: Attributes
/////

.const
p0_17_btnSubmit_x 1
p0_17_btnSubmit_y 1
p0_17_btnSubmit_w

p0_17_btnSubmit_wStr +
p0_17_btnSubmit_dw

p0_17_btnSubmit_h
p0_17_btnSubmit_hStr +
p0_17_btnSubmit_dh

p0_17_btnSubmit_fgr p0_17_fgr
p0_17_btnSubmit_fgg p0_17_fgg
p0_17_btnSubmit_fgb p0_17_fgb
p0_17_btnSubmit_bgr p0_17_bgr
p0_17_btnSubmit_bgg p0_17_bgg
p0_17_btnSubmit_bgb p0_17_bgb
p0_17_btnSubmit_fc p0_17_fc
p0_17_btnSubmit_fs p0_17_fs
p0_17_btnSubmit_str "Submit"
p0_17_btnSubmit_yStr

p0_17_btnSubmit_y +
p0_17_btnSubmit_fa - 1 +
p0_17_btnSubmit_dy

p0_17_btnSubmit_img ""
p0_17_btnSubmit_imgStyle 0
p0_17_btnSubmit_xStr

p0_17_btnSubmit_x +
p0_17_btnSubmit_dx

p0_17_btnSubmit_wStr
textWidth(p0_17_btnSubmit_str,
p0_17_btnSubmit_fc,
p0_17_btnSubmit_fs)

p0_17_btnSubmit_hStr
p0_17_btnSubmit_fh

p0_17_btnSubmit_fa
fontAscent(p0_17_btnSubmit_fc,
p0_17_btnSubmit_fs)

p0_17_btnSubmit_fh
fontHeight(p0_17_btnSubmit_fc,
p0_17_btnSubmit_fs)

D.2. Generated CVM Packets 317

p0_17_btnSubmit_dx libGuiBtnSmp_dx
p0_17_btnSubmit_dy libGuiBtnSmp_dy
p0_17_btnSubmit_dw libGuiBtnSmp_dw
p0_17_btnSubmit_dh libGuiBtnSmp_dh

.data
String p0_17_btnSubmit_str_

p0_17_btnSubmit_str
String p0_17_btnSubmit_img_

p0_17_btnSubmit_img
Bytes p0_17_btnSubmit_prp [

p0_17_btnSubmit_et,
p0_17_btnSubmit_x,
p0_17_btnSubmit_y,
p0_17_btnSubmit_w,
p0_17_btnSubmit_h,
p0_17_btnSubmit_fgr,
p0_17_btnSubmit_fgg,
p0_17_btnSubmit_fgb,
p0_17_btnSubmit_bgr,
p0_17_btnSubmit_bgg,
p0_17_btnSubmit_bgb,
p0_17_btnSubmit_fc,
p0_17_btnSubmit_fs,
p0_17_btnSubmit_str_,
p0_17_btnSubmit_xStr,
p0_17_btnSubmit_yStr,
p0_17_btnSubmit_img_,
p0_17_btnSubmit_imgStyle]

////////////////////
// p0_17_btnSubmit: Events
/////

.data
EventTable p0_17_btnSubmit_et [
key_pressed, p0_17_btnSubmit_kp,
key_pressed_escape,

p0_17_btnSubmit_kpes,
key_pressed_enter,

p0_17_btnSubmit_kpe,
key_released, p0_17_btnSubmit_kr,
key_released_enter,

p0_17_btnSubmit_kre,
1, p0_17_et]

.code
p0_17_btnSubmit_kp:
loadep1
loadc XK_space
loadcr p0_17_btnSubmit_kp_space

je
halt

p0_17_btnSubmit_kp_space:
fcall p0_17_btnSubmit_evDwn
halt

p0_17_btnSubmit_kpes:
loadc p0_17_btnSubmit_prp
push
loadc p0_17_prp
push
loadc libGuiBtnSmp_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

p0_17_btnSubmit_kpe:
fcall p0_17_btnSubmit_evDwn
halt

p0_17_btnSubmit_kr:
loadep1
loadc XK_space
loadcr p0_17_btnSubmit_kr_space
je
halt

p0_17_btnSubmit_kr_space:
fcall p0_17_btnSubmit_evUp
halt

p0_17_btnSubmit_kre:
fcall p0_17_btnSubmit_evUp
halt

.code

.fct p0_17_btnSubmit_evDwn ()
{
loadc p0_17_btnSubmit_prp
push
fcall libGuiBtnSmp_dwn

fcall _svBuf_write
fcall_I _svBuf_svcCmd_write,
svcCmd_Submit
sendrcvpage _p1, 0

return
}

318 D. CVM Packet Server: Example

.fct p0_17_btnSubmit_evUp ()
{
loadc p0_17_btnSubmit_prp
push
fcall libGuiBtnSmp_up
return
}

////////////////////
// CVMUI Lib
/////

...

AUI page p1: CVMUI pages p1 12 and p1 13 The CVM packet for the CVMUI
pages p1 12 and p1 13 is as follows:

.16Bit

.code
loadcr p1_12_main
jmp

////////////////////
// Misc
/////

.const
_cil 2
_cvmScreenWidth 50
_cvmScreenHeight 19

.data
String _hostAdrSrv "127.0.0.1"

////////////////////
// Page Numbers
/////

.const
_pageNo 1
_p0 0
_pNotExist 2
_pIllegal 3

.data
Int _subpageNo

////////////////////
// Service Commands
/////

.const
svcCmd_Reset 0
svcCmd_Submit 1

////////////////////
// Service Variables
/////

.const
_svIdxLen 1
_svIdx_name 1
_svIdx_email 2

.data
Int _svBufIdx 0
Bytes _svBuf _svIdxLen + 2

.code

.fct _svBufIdx_reset ()
{
loadc_0
store _svBufIdx
return
}

////////////////////
// p1_12: Attributes
/////

.const
p1_12_x 0
p1_12_y 0
p1_12_w _cvmScreenWidth
p1_12_h _cvmScreenHeight
p1_12_fgr 0
p1_12_fgg 0
p1_12_fgb 0
p1_12_bgr 255
p1_12_bgg 255
p1_12_bgb 255
p1_12_fc fcFixedStandard
p1_12_fs 13
p1_12_img ""

D.2. Generated CVM Packets 319

p1_12_imgStyle 0

.data
Bytes p1_12_prp [p1_12_et]
Int p1_12_bInit 0

////////////////////
// p1_12: Misc
/////

.code
p1_12_main:
loadc_0
store _subpageNo
fcall p1_12_init
fcall p1_12_drw
loadc p1_12_hlkService_prp
push
loadc libGuiHlkSmp_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p1_12_init ()
{
load p1_12_bInit
loadc_0
loadcr p1_12_init_1
jne
loadc_1
store p1_12_bInit

p1_12_init_1:
return
}

.code

.fct p1_12_drw ()
{
loadc p1_12_bgr
loadc p1_12_bgg
loadc p1_12_bgb
setcolor
loadc p1_12_x
loadc p1_12_y
loadc p1_12_w
loadc p1_12_h
rectfill
loadc p1_12_hlkService_prp
push

fcall libGuiHlkSmp_drw
return
}

.code
p1_12_prevPage:
fcall _svBufIdx_reset
sendrcvpage _pageNo, 11

.code
p1_12_nextPage:
loadc 13
loadcr p1_13_main
page

////////////////////
// p1_12: Service Variables
/////

////////////////////
// p1_12: Events
/////

.data
EventTable p1_12_et [
key_pressed, p1_12_kp]

.code
p1_12_kp:
loadep1
loadc XK_Tab
loadcr p1_12_kp_tab
je
loadep1
loadc XK_Left
loadcr p1_12_kp_left
je
loadep1
loadc XK_Right
loadcr p1_12_kp_right
je
halt

p1_12_kp_tab:
loadc p1_12_prp
push
loadc p1_12_hlkService_prp
push
loadc libMisc_emptyProc
push
loadc libGuiHlkSmp_drwFcs
push

320 D. CVM Packet Server: Example

fcall libGui_mvFcs
halt

p1_12_kp_left:
loadcr p1_12_prevPage
jmp

p1_12_kp_right:
loadcr p1_12_nextPage
jmp

////////////////////
// p1_12_hlkService: Attributes
/////

.const
p1_12_hlkService_x 1
p1_12_hlkService_y 1
p1_12_hlkService_w

p1_12_hlkService_wStr +
p1_12_hlkService_dw

p1_12_hlkService_h
p1_12_hlkService_hStr +
p1_12_hlkService_dh

p1_12_hlkService_fgr p1_12_fgr
p1_12_hlkService_fgg p1_12_fgg
p1_12_hlkService_fgb p1_12_fgb
p1_12_hlkService_bgr p1_12_bgr
p1_12_hlkService_bgg p1_12_bgg
p1_12_hlkService_bgb p1_12_bgb
p1_12_hlkService_fc p1_12_fc
p1_12_hlkService_fs p1_12_fs
p1_12_hlkService_str " return "
p1_12_hlkService_yStr

p1_12_hlkService_y +
p1_12_hlkService_fa - 1 +
p1_12_hlkService_dy

p1_12_hlkService_hostAdr "127.0.0.1"
p1_12_hlkService_serviceNo 1
p1_12_hlkService_xStr

p1_12_hlkService_x +
p1_12_hlkService_dx

p1_12_hlkService_wStr
textWidth(p1_12_hlkService_str,
p1_12_hlkService_fc,
p1_12_hlkService_fs)

p1_12_hlkService_hStr
p1_12_hlkService_fh

p1_12_hlkService_fa
fontAscent(p1_12_hlkService_fc,
p1_12_hlkService_fs)

p1_12_hlkService_fh
fontHeight(p1_12_hlkService_fc,

p1_12_hlkService_fs)
p1_12_hlkService_dx libGuiHlkSmp_dx
p1_12_hlkService_dy libGuiHlkSmp_dy
p1_12_hlkService_dw libGuiHlkSmp_dw
p1_12_hlkService_dh libGuiHlkSmp_dh

.data
String p1_12_hlkService_str_

p1_12_hlkService_str
String p1_12_hlkService_hostAdr_

p1_12_hlkService_hostAdr
Bytes p1_12_hlkService_prp [

p1_12_hlkService_et,
p1_12_hlkService_x,
p1_12_hlkService_y,
p1_12_hlkService_w,
p1_12_hlkService_h,
p1_12_hlkService_fgr,
p1_12_hlkService_fgg,
p1_12_hlkService_fgb,
p1_12_hlkService_bgr,
p1_12_hlkService_bgg,
p1_12_hlkService_bgb,
p1_12_hlkService_fc,
p1_12_hlkService_fs,
p1_12_hlkService_str_,
p1_12_hlkService_xStr,
p1_12_hlkService_yStr,
p1_12_hlkService_hostAdr_,
p1_12_hlkService_serviceNo]

////////////////////
// p1_12_hlkService: Events
/////

.data
EventTable p1_12_hlkService_et [
key_pressed, p1_12_hlkService_kp,
key_pressed_escape,

p1_12_hlkService_kpes,
key_pressed_enter,

p1_12_hlkService_kpe,
1, p1_12_et]

.code
p1_12_hlkService_kp:
loadc p1_12_hlkService_prp
push
fcall libGuiHlk_kp
halt

D.2. Generated CVM Packets 321

p1_12_hlkService_kpes:
loadc p1_12_hlkService_prp
push
loadc p1_12_prp
push
loadc libGuiHlkSmp_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

p1_12_hlkService_kpe:
loadc p1_12_hlkService_prp
push
fcall libGuiHlk_dwn
halt

////////////////////
// p1_13: Attributes
/////

.const
p1_13_x 0
p1_13_y 0
p1_13_w _cvmScreenWidth
p1_13_h _cvmScreenHeight
p1_13_fgr 0
p1_13_fgg 0
p1_13_fgb 0
p1_13_bgr 255
p1_13_bgg 255
p1_13_bgb 255
p1_13_fc fcFixedStandard
p1_13_fs 13
p1_13_img ""
p1_13_imgStyle 0

.data
Bytes p1_13_prp [p1_13_et]
Int p1_13_bInit 0

////////////////////
// p1_13: Misc
/////

.code
p1_13_main:
loadc_0
store _subpageNo
fcall p1_13_init

fcall p1_13_drw
loadc p1_13_hlkService_prp
push
loadc libGuiHlkSmp_drwFcs
push
fcall libGui_setFcs
enableevents
halt

.code

.fct p1_13_init ()
{
load p1_13_bInit
loadc_0
loadcr p1_13_init_1
jne
loadc_1
store p1_13_bInit

p1_13_init_1:
return
}

.code

.fct p1_13_drw ()
{
loadc p1_13_bgr
loadc p1_13_bgg
loadc p1_13_bgb
setcolor
loadc p1_13_x
loadc p1_13_y
loadc p1_13_w
loadc p1_13_h
rectfill
loadc p1_13_hlkService_prp
push
fcall libGuiHlkSmp_drw
return
}

.code
p1_13_prevPage:
loadc 12
loadcr p1_12_main
page

.code
p1_13_nextPage:
fcall _svBufIdx_reset
sendrcvpage _pageNo, 14

322 D. CVM Packet Server: Example

////////////////////
// p1_13: Service Variables
/////

////////////////////
// p1_13: Events
/////

.data
EventTable p1_13_et [
key_pressed, p1_13_kp]

.code
p1_13_kp:

loadep1
loadc XK_Tab
loadcr p1_13_kp_tab
je
loadep1
loadc XK_Left
loadcr p1_13_kp_left
je
loadep1
loadc XK_Right
loadcr p1_13_kp_right
je
halt

p1_13_kp_tab:
loadc p1_13_prp
push
loadc p1_13_hlkService_prp
push
loadc libMisc_emptyProc
push
loadc libGuiHlkSmp_drwFcs
push
fcall libGui_mvFcs
halt

p1_13_kp_left:
loadcr p1_13_prevPage
jmp

p1_13_kp_right:
loadcr p1_13_nextPage
jmp

////////////////////
// p1_13_hlkService: Attributes
/////

.const
p1_13_hlkService_x 1

p1_13_hlkService_y 1
p1_13_hlkService_w

p1_13_hlkService_wStr +
p1_13_hlkService_dw

p1_13_hlkService_h
p1_13_hlkService_hStr +
p1_13_hlkService_dh

p1_13_hlkService_fgr p1_13_fgr
p1_13_hlkService_fgg p1_13_fgg
p1_13_hlkService_fgb p1_13_fgb
p1_13_hlkService_bgr p1_13_bgr
p1_13_hlkService_bgg p1_13_bgg
p1_13_hlkService_bgb p1_13_bgb
p1_13_hlkService_fc p1_13_fc
p1_13_hlkService_fs p1_13_fs
p1_13_hlkService_str "to the R"
p1_13_hlkService_yStr

p1_13_hlkService_y +
p1_13_hlkService_fa - 1 +
p1_13_hlkService_dy

p1_13_hlkService_hostAdr "127.0.0.1"
p1_13_hlkService_serviceNo 1
p1_13_hlkService_xStr

p1_13_hlkService_x +
p1_13_hlkService_dx

p1_13_hlkService_wStr
textWidth(p1_13_hlkService_str,
p1_13_hlkService_fc,
p1_13_hlkService_fs)

p1_13_hlkService_hStr
p1_13_hlkService_fh

p1_13_hlkService_fa
fontAscent(p1_13_hlkService_fc,
p1_13_hlkService_fs)

p1_13_hlkService_fh
fontHeight(p1_13_hlkService_fc,
p1_13_hlkService_fs)

p1_13_hlkService_dx libGuiHlkSmp_dx
p1_13_hlkService_dy libGuiHlkSmp_dy
p1_13_hlkService_dw libGuiHlkSmp_dw
p1_13_hlkService_dh libGuiHlkSmp_dh

.data
String p1_13_hlkService_str_

p1_13_hlkService_str
String p1_13_hlkService_hostAdr_

p1_13_hlkService_hostAdr
Bytes p1_13_hlkService_prp [

p1_13_hlkService_et,
p1_13_hlkService_x,
p1_13_hlkService_y,

D.2. Generated CVM Packets 323

p1_13_hlkService_w,
p1_13_hlkService_h,
p1_13_hlkService_fgr,
p1_13_hlkService_fgg,
p1_13_hlkService_fgb,
p1_13_hlkService_bgr,
p1_13_hlkService_bgg,
p1_13_hlkService_bgb,
p1_13_hlkService_fc,
p1_13_hlkService_fs,
p1_13_hlkService_str_,
p1_13_hlkService_xStr,
p1_13_hlkService_yStr,
p1_13_hlkService_hostAdr_,
p1_13_hlkService_serviceNo]

////////////////////
// p1_13_hlkService: Events
/////

.data
EventTable p1_13_hlkService_et [
key_pressed, p1_13_hlkService_kp,
key_pressed_escape,

p1_13_hlkService_kpes,
key_pressed_enter,

p1_13_hlkService_kpe,
1, p1_13_et]

.code

p1_13_hlkService_kp:
loadc p1_13_hlkService_prp
push
fcall libGuiHlk_kp
halt

p1_13_hlkService_kpes:
loadc p1_13_hlkService_prp
push
loadc p1_13_prp
push
loadc libGuiHlkSmp_unDrwFcs
push
loadc libMisc_emptyProc
push
fcall libGui_mvFcs
halt

p1_13_hlkService_kpe:
loadc p1_13_hlkService_prp
push
fcall libGuiHlk_dwn
halt

////////////////////
// CVMUI Lib
/////

...

Bibliography

[1] M. Adler et al. Portable Network Graphics (PNG) Specification. W3C, 2nd edition,
2003. http://www.w3.org/Graphics/PNG. 3, 86

[2] S. Adler et al. Extensible Stylesheet Language (XSL). W3C, 2001.
http://www.w3.org/TR/xsl. 6, 126

[3] Adobe Systems Incorporated. http://www.adobe.com. 79

[4] Adobe Systems Incorporated. PostScript Language Reference, 3rd edition, 1999.
http://partners.adobe.com/asn/tech/ps/specifications.jsp. 24

[5] Adobe Systems Incorporated. PDF Reference, 4th edition, 2001.
http://partners.adobe.com/asn/tech/pdf/specifications.jsp. 3

[6] M. Altheim et al. XHTML 1.1 - Module-based XHTML. W3C, 2001.
http://www.w3.org/TR/xhtml11. 6

[7] American Standard Code for Information Interchange (ASCII).
http://www.asciitable.com. 118, 222, 229, 234

[8] M. Baker et al. XHTML Basic. W3C, 2000. http://www.w3.org/TR/xhtml-basic. 6,
126

[9] A. Berger. Embedded Systems Design. CMP Books, 1st edition, 2001. 2

[10] T. Berners-Lee et al. Hypertext Transfer Protocol – HTTP/1.1. IETF, 1999. RFC
2616. 3, 4, 13, 29, 82, 126, 127, 128, 130

[11] S. Björk et al. WEST: A Web Browser for Small Terminals. In Proceedings of UIST,
ACM Press, 1999. 9

[12] B. Bos et al. Cascading Style Sheets, level 2 revision 1, CSS 2.1 Specification. W3C,
2004. http://www.w3.org/TR/CSS21. 3, 6, 126, 204

[13] L. Bouillon et al. Flexible Re-engineering of Web Sites. In Proceedings of IUI, ACM
Press, 2004. 9

[14] A. Brandl. EmuGen: A Generator for Multiple-User Interfaces. In Proceedings of
HCI International, 2001. 28, 203

[15] A. Brandl. Generierung interaktiver Informationssysteme und ihrer Benutzungsober-
flächen für mehrere Benutzer. PhD thesis, Technische Universität München, 2002.
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/brandl.html. 28, 203

324

[16] T. Bray et al. Extensible Markup Language (XML) 1.0. W3C, 3rd edition, 2004.
http://www.w3.org/TR/REC-xml. 3, 4, 6, 7, 18, 126, 205

[17] Berkeley Software Design (BSD). http://www.bsd.org. 118, 131, 198

[18] D.R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1st edition,
1997. 83

[19] O. Buyukkokten et al. Power Browser: Efficient Web Browsing for PDAs. In Pro-
ceedings of CHI, ACM Press, 2000. 9

[20] B.W. Kernighan, D.M. Ritchie. The C Programming Language. Prentice Hall, 2nd
edition, 1988. 16, 117, 161, 198, 200, 201, 205, 207, 230, 232

[21] R. Chinnici et al. Web Services Description Language (WSDL) Version 2.0 Part 1:
Core Language. W3C, 2004. http://www.w3.org/TR/wsdl20/. 28, 203

[22] J. Clark et al. XSL Transformations (XSLT). W3C, 1999.
http://www.w3.org/TR/xslt. 4, 6

[23] W. Dees. Handling Device Diversity through Multi-Level Stylesheets. In Proceedings
of IUI, ACM Press, 2004. 9

[24] M. Dubinko et al. XForms 1.0. W3C, 2003. http://www.w3.org/TR/xforms. 6, 28,
126, 203

[25] J. Eisenstein et al. Applying Model-Based Techniques to the Development of UIs for
Mobile Computers. In Proceedings of IUI, ACM Press, 2001. 9

[26] R. Fielding. Relative Uniform Resource Locators. IETF, 1995. RFC 1808. 14

[27] D. Flanagan. JavaScript: The Definitive Guide. O’Reilly, 4th edition, 2001. 3, 13, 15,
21, 204

[28] Flash and Shockwave. http://www.macromedia.com. 3

[29] Graphics Interchange Format (GIF), Version 89a. CompuServe Incorporated, 1990.
3, 17, 75, 78

[30] GNU Bison. http://www.gnu.org/software/bison/manual. 136, 232

[31] GNU Bourne-Again Shell (bash). http://www.gnu.org/software/bash/manual. 118,
200, 233

[32] GNU Compiler Collection (GCC). http://gcc.gnu.org. 117, 232

[33] GNU Flex — A Scanner Generator. http://www.gnu.org/software/flex/manual. 136,
232

[34] GNU make. http://www.gnu.org/software/make/manual/make.html. 118, 198, 200,
233

[35] GNU zip (gzip). http://www.gzip.org. 85

325

[36] J. Gosling et al. The Java Language Specification. Addison-Wesley, 2nd edition, 2000.
http://java.sun.com/docs/books/jls/index.html. 13, 205, 207

[37] Green Computing.
http://en.wikipedia.org/wiki/Green computing. 2, 202

[38] A. Le Hors. X PixMap Format (XPM), 1994.
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d-hi.html. 78, 85, 229

[39] Joint Photographic Experts Group (JPEG). http://www.jpeg.org. 3, 17, 75, 78

[40] G. Klyne et al. Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0. W3C, 2004. http://www.w3.org/TR/CCPP-struct-vocab. 7

[41] D.E. Knuth. TEX: The Program, chapter 31. Addison Wesley, 1986. 24

[42] T. Lindholm et al. The Java Virtual Machine Specification. Addison-Wesley, 2nd
edition, 1999.
http://java.sun.com/docs/books/jvms/second edition/html/VMSpecTOC.doc.html. 3

[43] Linux. http://www.linux.org. 117, 198, 232

[44] F. Manola et al. RDF Primer. W3C, 2004. http://www.w3.org/TR/rdf-primer. 7,
126

[45] P. Mockapetris. Domain Names — Concepts and Facilities. IETF, 1987. RFC 1034.
44, 51, 53, 56, 71, 72, 74, 90, 108, 110, 120, 139, 155, 158, 169

[46] MPEG Layer III (MP3). http://www.mpeg.org. 3, 4

[47] Moving Picture Experts Group (MPEG). http://www.mpeg.org. 3, 4, 75, 78

[48] H. Nielsen et al. HTTP Extension Framework. IETF, 2000. RFC 2774. 7

[49] M. Nilsson et al. Composite Capability/Preference Profiles: Requirements and Archi-
tecture. W3C, 2000. http://www.w3.org/TR/CCPP-ra. 7

[50] A. Nye. Volume 0: XProtocol Reference Manual. O’Reilly, 3rd edition, 1992. 79, 81

[51] A. Nye. Volume 1: Xlib Programming Manual. O’Reilly, 3rd edition, 1992. 79, 81, 85,
117

[52] A. Nye. Volume 2: Xlib Reference Manual. O’Reilly, 3rd edition, 1992. 75, 81, 85,
117

[53] H. Ohto et al. CC/PP exchange protocol based on HTTP Extension Framework. W3C,
1999. http://www.w3.org/TR/NOTE-CCPPexchange. 7, 126

[54] Wireless Application Protocol Forum (WAP). http://www.wapforum.org. 3, 5, 7, 205

[55] Open Mobile Alliance (OMA). http://www.openmobilealliance.org. 7

[56] Open Mobile Alliance. Wireless Markup Language (WML), 2001.
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html. 3, 5, 7,
9, 125, 204

326

[57] Open Mobile Alliance. Wireless Session Protocol (WSP), 2001.
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html. 4, 7, 127

[58] Open Mobile Alliance. WMLScript, 2001.
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html. 7, 125

[59] Open Mobile Alliance. User Agent Profile, 2003.
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html. 7, 126

[60] S. Pemberton et al. XHTML 1.0: The Extensible HyperText Markup Language. W3C,
2002. http://www.w3.org/TR/xhtml1. 6

[61] Ch. Perkins. Ad Hoc Networking. Addison-Wesley, 1st edition, 2000. 2, 82

[62] J. Postel. Internet Protocol (IP). IETF, 1981. RFC 791. 51, 53, 56, 71, 72, 74, 90,
108, 110, 120, 128, 139, 155, 158, 169, 200

[63] J. Postel et al. Telnet Protocol Specification. IETF, 1983. RFC 854. 1

[64] J. Postel et al. File Transfer Protocol (FTP). IETF, 1985. RFC 959. 1

[65] D. Raggett et al. HTML 4.01 Specification. W3C, 1999.
http://www.w3.org/TR/html4. 3, 6, 9, 13, 15, 126, 142, 203, 204

[66] F. Reynolds et al. Composite Capability/Preference Profiles (CC/PP): A user side
framework for content negotiation. W3C, 1999. http://www.w3.org/TR/NOTE-CCPP. 7

[67] S. Schreiber. Spezifikationstechniken und Generierungswerkzeuge für graphische Be-
nutzungsoberflächen. PhD thesis, Technische Universität München, 1997. Herber Utz
Verlag Wissenschaft (in German). 28, 203

[68] W. Stallings. Wireless Communications & Networks. Prentice Hall, 1st edition, 2001.
2

[69] W.R. Stevens. TCP/IP Illustrated. Addison-Wesley, 1st edition, 1994. 1, 5, 82, 117,
118, 131, 198

[70] M. Stokes et al. A Standard Default Color Space for the Internet - sRGB, 1996.
http://www.w3.org/Graphics/Color/sRGB. 17, 76

[71] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd edition, 1997.
207

[72] Sun Microsystems. Connected Device Configuration (CDC).
http://java.sun.com/products/cdc. 7

[73] Sun Microsystems. Connected, Limited Device Configuration (CLDC).
http://java.sun.com/products/cldc. 7, 8, 125, 204

[74] Sun Microsystems. Java 2 Platform, Micro Edition (J2ME).
http://java.sun.com/j2me. 7, 125

[75] Sun Microsystems. Java API Specifications.
http://java.sun.com/reference/api/index.html. 24

327

[76] Sun Microsystems. Java HotSpot Technology.
http://java.sun.com/products/hotspot. 98

[77] Sun Microsystems. Java Technologies. http://java.sun.com. 7

[78] Sun Microsystems. Mobile Information Device Profile (MIDP).
http://java.sun.com/products/midp. 8, 125

[79] Sun Microsystems. J2ME Building Blocks for Mobile Devices, 2000.
http://java.sun.com/products/kvm/wp/KVMwp.pdf. 8, 24, 204

[80] F. Yellin T. Lindholm. Java Virtual Machine. Addison-Wesley, 2nd edition, 1999.
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html.
24, 123

[81] A.S. Tannenbaum. Computer Networks. Prentice Hall, 4th edition, 2002. 3, 5

[82] Th. Rappaport Th.S. Rappaport. Wireless Communications: Principles and Practice.
Prentice Hall, 2nd edition, 2001. 2

[83] C.-K. Toh. Ad Hoc Mobile Wireless Networks: Protocols and Systems. Addison-Wes-
ley, 1st edition, 2001. 2

[84] J. Trevor et al. From Desktop to Phonetop: A UI For Web Interaction On Very Small
Devices. In Proceedings of UIST, ACM Press, 2001. 9

[85] TrueType. http://www.truetype.com. 79

[86] User Interface Markup Language (UIML). http://www.uiml.org/. 28, 203

[87] Universal Mobile Telecommunications System (UMTS). http://www.umtsworld.com.
17

[88] Unicode. www.unicode.org. 92, 222

[89] UTF-8, a transformation format of ISO 10646. IETF, 2003. RFC 3629. 33, 36, 118

[90] CC/PP Working Group. W3C. http://www.w3.org/Mobile/CCPP. 7

[91] Device Independence Working Group. W3C. http://www.w3.org/2001/di. 7

[92] World Wide Web Consortium (W3C). http://www.w3.org. 1, 3, 6

[93] Windows Media Audio. http://www.microsoft.com. 3, 4

[94] J.O. Wobbrock et al. WebThumb: Interaction Techniques for Small-Screen Browsers.
In Proceedings of UIST, ACM Press, 2002. 9

[95] T. Wugofski et al. CSS Mobile Profile 1.0. W3C, 2002.
http://www.w3.org/TR/css-mobile. 6, 126

[96] X BitMap Format (XBM). http://www.dcs.ed.ac.uk/home/mxr/gfx/2d-hi.html. 78,
103, 228

328

Index

0-address code, 34
16-bit CVM, 34
16Bit, 89
16BitEmu, 89
32-bit CVM, 34
32Bit, 89
32BitEmu, 89

absolute memory address, 36
Abstract User Interface Description (AUI),

135
add, 101
addsp, 101
aload1, 102
aload2, aload4, 102
and, 102
astore1, 102
astore2, astore4, 102
attributes, 94

background color, 76
Base Pointer, 37
Big Point, 20, 77
bitmap, bitmapbg, 102
bitmapFile, 228
bitmapHeight, 228
bitmapWidth, 228
bookmarks menu, 56
builtin events, 49
builtin events (device specific), 49
builtin functions, 148, 227
Bytes, 223
bytes, 96
Bytesz, 223
bytesz, 96

call, 103
circle, circlefill, 103
Client Virtual Machine (CVM), 31
Code section, 37
codeSegmentAdr, 95
Core module, 32

CoreMisc, 84
CPTP, 127
CptpGET, 58
current history buffer position, 53
CVM, 31
CVM memory, 36
CVM mode, 34
CVM packet, 93
CVM packet generator, 27
CVM packet transfer protocol (CPTP), 127
CVM packet verifier, 98
CVM profile, 89
CVM program, 93
CVM runtime behavior, 58
CVM state machine, 58
CVM state transitions, 58
CVM states, 58
CVM user interface, 27
cvm quit, 50
cvmAudioAvailable, 90
cvmDNSLookup, 90
cvmFonts, 90
cvmHeapAvailable, 91
cvmIntLen, 33
cvmKeyCodeSet, 91
cvmLibraries, 91
cvmMeasure, 91
cvmMemMaxAdr, 34, 36, 91
cvmMode, 89, 94
cvmMouseButtons, 92
cvmNumGeneralRegs, 34, 92
cvmOutputCharSet, 92
CVMP, 129
cvmpAdrLen, 94
cvmpNo, 53, 129
cvmScreenHeight, 92
cvmScreenHeightMM, 92
cvmScreenWidth, 93
cvmScreenWidthMM, 93
cvmTimerAvailable, 93
CVMUI Lib Misc, 249

329

cvmUPLanguage, 92

data, 96
Data section, 37
dataBytes, 96
dataDeclSegmentAdr, 94
dec, 103
Declared Data Section, 37
declCode, 96
decsp, 103
disableevents, 103
div, 103
DivisionByZero, 42
Dynamic Popping, 35

elementary graphic shapes, 78
emulation mode, 89
enableevents, 104
ERROR, 129
Error, 58
error handling, 41
event code, 45
event codes, 49
event data, 45
event handling, 45
event parameters, 45
event queue, event buffer, 46
event registers, 47
event table, 48
event table structure, 48
event types, 49
event enter, 51
EventExecute, 58
EventProcess, 58
EventProcessBuiltin, 58
EventTable, 223
eventtable, 96
Execute, 58

fcall, 224
fcall I, 224
final instruction, 36
font, 228
fontAscent, 228
fontAscentPt, 229
fcCourier, 80
fcCourierBold, 80
fcCourierBoldItalic, 80
fcCourierItalic, 80

fontDescent, 228
fontDescentPt, 229
fcFixedItalic, 80
fcFixed, 80
fcFixedBold, 80
fcFixedStandard, 79
fcFixedStandardBold, 79
fcFixedStandardItalic, 79
fontHeight, 228
fontHeightPt, 229
fcHelvetica, 80
fcHelveticaBold, 80
fcHelveticaBoldItalic, 80
fcHelveticaItalic, 80
fcNewCenturySchoolbook, 80
fcNewCenturySchoolbookBold, 80
fcNewCenturySchoolbookBoldItalic, 80
fcNewCenturySchoolbookItalic, 80
fontPt, 228
fcSymbol, 81
fcTimesItalic, 81
fcTimes, 80
fcTimesBold, 80
fcTimesBoldItalic, 81
foreground color, 76
free, 104

GET, 130
getbp, 104
getDate, 84
getTime, 84
graphics primitives, 78
graphics state, 76

halt, 104
Heap section, 41
history buffer, 52
history buffer entry, 53
history back, 50
history forward, 50
history reload, 50
hload, 104
Home Menu, 86
HomeMenu, 71, 86
hostAdr, 53, 56
hstore, 104

IllegalMemoryAddress, 43
ImageLoadFailure, 43

330

imgOrig, 139
imgScale, 139
imgTile, 139
immOperands, 98
in-between instruction, 35
inc, 104
incsp, 105
Init, 58
input hostAdr, 50
Instruction Pointer, 37
Int, 33, 34
Int, 223
int1, int2, ..., 97
Int1, Int2, ..., 33
interval timer, 57
interval timer registers, 57
intz, 97
InvalidScreenSection, 43

je, jne, jl, jle, 105
jmp, 105

key pressed, 51
key pressed enter, 51
key pressed escape, 51
key released, 51
key released escape, 51
Keyboard module, 81

lenDataDecl, 96
lenInstructions, 96
lib, 105
libCode, 83
libFctCode, 83
line, 84
linehoriz, 105
linevert, 105
load, 224
loada, 105
loadc, 225
loadc1, loadc2, loadc3, loadc4, 106
loadc 0, loadc 1, loadc m1, 106
loadcr, 225
loadcu1, loadcu2, loadcu3, 106
LoadCvmPacket, 58
loadep1, loadep2, loadep3, 106
loadr, 106
local variables, 39
low-level security, 98

macros, 224
magic, 94
MalformedCPTPMessage, 43
MalformedCVMPacket, 43
MalformedCVMProfile, 43
MalformedHomeMenu, 43
MAX, 229
measuring unit, 77
mem2screen, 106
mem[...], 36
menu bookmarks, 51
menu home, 52
message item, 127
MIN, 229
mouse double click, 52
Mouse module, 81
mouse wheel down, 52
mouse wheel up, 52
mouse moved, 52
mouse pressed, 52
mouse pressed left, 52
mouse released, 52
mouse released left, 52
mul, 107

Nat, 33, 34
nat1, nat2, ..., 97
Nat1, Nat2, ..., 33
neg, 107
Network module, 81
NetworkError, 43
new, 107
newstackframe, 107
NoDNSLookup, 44
not, 107

oldstackframe, 107
opcode, 98
operand stack, 34
operation mode, 33
or, 107

page, 108
pageMemAdr, 53, 129
pageNo, 53, 56
pixmap, 85
pixmapFile, 229
pixmapgz, 85
pixmapHeight, 229

331

pixmapWidth, 229
png, 86
Point, 20, 77
pop, 108
printInt, 84
printIntBg, 85
printKeyName, 85
procedure parameters, 39
procedure stack frame, 40
PROFILE, 130
profileId, 89
profileItemCode, 89
profileItemValue, 89
pt, 20, 77
push, 108

R[...], 35
rcv, 108
rcvpage a, 226
rcvpage, 225
rcvsvc, 226
rdup, 109
rect, rectfill, 109
rectRound, rectRoundFill, 85
regBgColorBlue, 76
regBgColorGreen, 76
regBgColorRed, 76
regBP, 37
regClipHeight, 76
regClipWidth, 76
regClipX, 76
regClipY, 76
regColorBlue, 76
regColorGreen, 76
regColorRed, 76
regErrorCode, 41
regEventCode, 47
regEventEnable, 47
regEventPar1, regEventPar2, regEventPar3, 47
regEventTableAdr, 48
regFontCode, 76
regFontSize, 77
regHTextLine, 77
regIP, 37
register stack, 34
Register Stack Pointer, 35
RegisterStackOverflow, 44
RegisterStackStaticOverflow, 44

RegisterStackUnderflow, 44
regLineWidth, 77
regMeasure, 77
regMouseFont, 82
regRSP, 35
regServiceNo, 83
regSessionId, 82
regSP, 38
regSS, 38
regState, 58
regTimerHandleAdr, 57
regTimerInterval, 57
regTimerSignal, 57
regXTextLine, 77
relative memory address, 36
rem, 109
rempty, 110
ret, 109
retload, 226
retstore, 226
return, 226
rgb, 149, 229
rskip, 110
rswap, 110

screen2mem, 110
sendrcv, 110
sendrcvpage a, 227
sendrcvpage, 227
service number, 27
service variables, 145
serviceNo, 53, 56
sessionId, 53
setbgblue, 111
setbgcolor, 111
setbgcolor32, 111
setbggreen, 112
setbgred, 112
setblue, 112
setbp, 112
setclip, 112
setcolor, 112
setcolor32, 112
setDate, 84
seteventtableadr, 113
setfont, 113
setfont32, 113
setfontcode, 113

332

setfontsize, 113
setgreen, 113
sethtextline, 113
setlinewidth, 113
setmousefont, 114
setred, 114
setTime, 84
settimerhandleadr, 114
settimerinterval, 114
setxtextline, 114
shl, 114
shortcut events, 48
shr, 114
shrs, 115
sidzero, 115
sizeof, 229
special events, 48
stack frame, 40
stack machine code, 34
Stack Pointer, 38
Stack section, 38
Stack Segment, 38
StackOverflow, 44
stackSegmentAdr, 95
StackUnderflow, 44
State Register, 58
Static Popping, 35
store, 227
storea, 115
storer, 115
String, 33
String, 223
string, 97
stringBytes, 230
sub, 115

testsetbits, 115
text, textbg, 115
textBreakLines, 230
textBreakLinesPt, 231
textHeight, 231
textHeightPt, 231
textm, textmbg, 116
textp, textpbg, 116
textpm, textpmbg, 116
textWidth, 231
textWidthPt, 232
TimerExecute, 58

triangle, trianglefill, 85

Undeclared Data section, 37
UnexpectedCPTPMethodCode, 44
UnknownLibraryFunction, 45
UnknownFont, 44
UnknownMouseFont, 44
UnknownOpcode, 45
unsetbits, 116

Visual module, 75
VisualImage, 85
VisualMisc, 84
Void, 222

Wait, 58

xor, 116

333

	1 Introduction
	1.1 Problem
	1.2 Client-Specific Service and Content Adaptation
	1.3 Thesis Scope --- Client-Specific Graphical User Interfaces
	1.4 Related Work --- Overview
	1.5 Summary of the Chapters

	2 Proposed Client-Server Architecture --- Overview
	2.1 Main Components of Interactive Network Services
	2.2 Client Side
	2.2.1 User Interface Description Format
	2.2.1.1 Compactness vs. Scalability
	2.2.1.2 Declarative vs. Operational

	2.2.2 Client Virtual Machine (CVM)

	2.3 Server Side
	2.4 Communication Protocol

	3 Client Virtual Machine (CVM)
	3.1 Core
	3.1.1 Data Types
	3.1.2 Operation Modes
	3.1.3 Register Stack
	3.1.4 Memory
	3.1.4.1 Data and Code
	3.1.4.2 Stack
	3.1.4.3 Heap

	3.1.5 Error Handling
	3.1.5.1 Error Processing
	3.1.5.2 Error Codes

	3.1.6 Event Handling
	3.1.6.1 Event Processing
	3.1.6.2 Event Registers
	3.1.6.3 Special Events
	3.1.6.4 Event Codes

	3.1.7 History Buffer
	3.1.8 Bookmarks Menu
	3.1.9 Interval Timer
	3.1.10 Runtime Behavior

	3.2 Visual
	3.2.1 Graphics State
	3.2.2 Graphics Primitives
	3.2.3 Fonts

	3.3 Keyboard, Mouse
	3.4 Network
	3.5 Libraries
	3.6 Home Menu
	3.7 CVM Profile
	3.8 CVM Packet
	3.9 Instruction Set
	3.9.1 Overview
	3.9.2 Reference

	3.10 Implementation Notes
	3.11 Related Work

	4 CVM Packet Transfer Protocol (CPTP)
	4.1 Message Format
	4.2 Protocol Methods
	4.3 Implementation Notes
	4.4 Example

	5 CVM Packet Server (CVMPS)
	5.1 Abstract User Interface Description (AUI)
	5.1.1 Concrete Syntax
	5.1.2 Abstract Syntax
	5.1.3 Builtin Functions
	5.1.4 Example

	5.2 Session Manager
	5.2.1 Session Data
	5.2.2 Main Loop

	5.3 Service Generator
	5.3.1 Fixed Part of the Service Instance
	5.3.2 Generated Part of the Service Instance

	5.4 CVM Packet Generator
	5.5 CVM User Interface (CVMUI)
	5.5.1 Global Structure
	5.5.2 Page
	5.5.3 (Single-Line) Text
	5.5.4 Text Paragraph
	5.5.5 Text Box
	5.5.6 Hyperlink
	5.5.7 Button

	5.6 Implementation Notes

	6 Conclusions
	6.1 Summary
	6.2 Results
	6.3 Future Work

	A Notations
	A.1 Miscellaneous
	A.2 Context Free Grammars
	A.3 Data Types
	A.3.1 Syntax of Data Type Definitions
	A.3.2 Data Access
	A.3.3 Example

	A.4 Code Templates

	B CVM Assembler (CVMA)
	B.1 Syntax
	B.2 Data Types
	B.3 Macros
	B.4 Builtin Functions
	B.5 Implementation Notes
	B.6 Examples

	C CVMUI Library (CVMUI Lib)
	C.1 libMisc.cvm
	C.2 libGui.cvm
	C.3 libGui3D.cvm
	C.4 libGuiTxtSmp.cvm
	C.5 libGuiTxt3D.cvm
	C.6 libGuiTxpSmp.cvm
	C.7 libGuiTxp3D.cvm
	C.8 libGuiHlk.cvm
	C.9 libGuiHlkSmp.cvm
	C.10 libGuiHlk3D.cvm
	C.11 libGuiIxt.cvm
	C.12 libGuiIxtSmp.cvm
	C.13 libGuiIxt3D.cvm
	C.14 libGuiBtnSmp.cvm
	C.15 libGuiBtn3D.cvm

	D CVM Packet Server: Example
	D.1 Generated Part of the Service Instance
	D.2 Generated CVM Packets
	D.2.1 Without Customization
	D.2.2 With Customization

	Bibliography
	Index

