
Continuous Quality Control of Long-Lived Software Systems

Florian Deißenböck

Institut für Informatik
der Technischen Universität München

Continuous Quality Control
of Long-Lived Software Systems

Florian Deißenböck

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaen (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Arndt Bode

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Dr. h.c. H. Dieter Rombach

Technische Universität Kaiserslautern

Die Dissertation wurde am 11.05.2009 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 08.10.2009 angenommen.

Abstract

Virtually any soware dependent organization has a vital interest in reducing its spending for so-
waremaintenance activities. In addition to financial savings, formany organizations, the timeneeded
to complete a soware maintenance task largely determines their ability to adapt their business pro-
cesses to changing market situations or to implement innovative products and services. With the
present yet increasing dependency on large scale soware systems, the ability to change existing so-
ware in a timely and economical manner hence becomes critical for numerous enterprises of diverse
branches.

e ability of a soware system to be changed and extended in an efficient manner is commonly re-
ferred to with the term maintainability. Despite its widely acknowledged importance, many soware
developing organizations today do not explicitly define processes nor apply specialized techniques
to ensure maintainability. is is especially precarious as the quality of soware systems typically
undergoes a gradual decay in the process of their evolution and therefore needs to be controlled
continuously. We claim that a major obstacle to a mature discipline of maintainability engineering
is posed by the unsatisfyingly vague definitions of maintainability used today. Various approaches,
usually in the form of quality models, have been proposed over the last four decades to remedy this
problem. However, no comprehensive basis for controlling the maintainability of large soware sys-
tems in a continuous manner has been established so far.

is thesis proposes a novel approach for modeling maintainability that explicitly associates sys-
tem properties with the activities carried out during maintenance and thereby facilitates a structured
decomposition of maintainability. e separation of activities and properties supports the identifi-
cation of sound quality criteria and allows to reason about their interdependencies. As the activities
are the main cost factor in soware maintenance, we consider this separation a crucial step towards
the ultimate goal of a truly economically justified practice of maintainability engineering. e ap-
proach is based on a quality metamodel that supports a systematic construction of maintainability
models and fosters preciseness as well as completeness.

Furthermore, we describe how maintainability models defined by the presented metamodel can be
operationalized in the maintenance processes to support continuous quality control. is includes
the definition a maintainability assurance process based on the presented concepts and a set of sup-
porting tools. ese tools enable the design of quality models based on our metamodel as well as
the automatic generation of guideline documents to communicate quality requirements to the de-
velopers. To support quality assurance activities, the tools allow the generation of review checklists
and provide an integration of a defined maintainability model with quality assessment tools used for
automated analyses.

We demonstrate the applicability of our maintainability modeling approach, the generation of de-
veloper guidelines and review checklists as well as the integrated use of quality assessment tools in
multiple case studies carried out in academical and industrial contexts.

Acknowledgements

I’d like to express my gratitude to all people who helped me making this project a success. First, I
want to thank Prof. Manfred Broy for his support and for providing a truly open-minded research
environment that was, and still is, a fertile ground for my ideas. Also, I want to thank Prof. Dieter
Rombach for co-supervising this thesis.

Important parts of my work could not have been realized without the continuous support of our in-
dustrial partners. I’d like to use this opportunity to thank everybody I worked with at ABB, Interasco,
MAN, Munich Re and Siemens. I particularly enjoyed ABB’s warm hospitality during our visits to
Finland and Poland.

Furthermore, my thanks go to all the people of Prof. Broy’s research group I had the pleasure to work
with during the last years. In particular, I want to thank Markus Pizka for initiating me in the world
of scientific research and, most importantly, for teaching me to question everybody and everything.
My colleagues and friends Elmar Jürgens, BenjaminHummel and StefanWagnerwere not only tough
sparring partners in our frequent discussions but also a tremendous support. Not a single request for
helping me out when things got over my head was ever turned out. My deepest thanks for this! Ad-
ditionally, I want to thank Martin Feilkas, Judith Hartmann, Markus Herrmannsdörfer, Silke Müller,
Birgit Penzenstadler, Christian Pfaller, Daniel Ratiu, Sabine Rittmann, Wolfang Schwitzer, Tilman
Seifert and Sebastian Winter for their assistance.

I’d like to thankmy friends Eckart Foos, LorenzHerdeis, LucienHoogendoorn andFabianNagelmüller
for the distraction that was vital to be able to complete this work. Beyond this, I thank Lorenz for
inspiring scientific discussions outside the world of soware engineering.

e completion of this thesis concludes a 25 year period of education. During all these years my par-
ents and grandparents never ceased to support me morally and materially. What I achieved would
not have been possible without them. I want to thank them not only for their assistance but, partic-
ularly, for the unconditional and trusting way they gave it. My brother I simply thank for the way he
is. His thinking oen puts mine back into perspective.

Above all, I want to thank my wife for her enduring support, patience and for giving me the greatest
joy of my life, our daughters Johanna and Sophia. I have to thank Johanna for the countless nights
of carrying her around. ese vain attempts to get her to sleep gave rise to some of the best ideas in
this thesis. I am grateful to Sophia for postponing her birth until this thesis was (almost) completed.
Tini, Johanna and Sophia, you are doubtlessly the most important factor of success for this work and
for all the happiness in my life!

Contents

Abstract 3

Acknowledgments 5

1 Introduction 11
1.1 Problem Statement . 11
1.2 Contribution . 12
1.3 Contents . 14

2 SoftwareMaintenance & Software Product Quality 15
2.1 Soware Maintenance & Evolution . 15

2.1.1 Terms & Definitions . 16
2.1.2 Characteristics of Soware Maintenance . 18
2.1.3 Soware Maintenance Process . 19
2.1.4 Soware Maintenance Productivity . 21

2.2 Soware Quality . 23
2.2.1 Process Quality vs Product Quality . 23
2.2.2 Product Quality . 24
2.2.3 Quality Attributes . 26
2.2.4 Cost of Quality . 26

2.3 Product Quality in Long-lived Systems . 27
2.4 Summary . 30

3 State of the Art 33
3.1 Maintainability Engineering . 33
3.2 Definitional Approaches . 34

3.2.1 Concrete Quality Models . 35
3.2.2 Quality Modeling Frameworks . 38

3.3 Constructive Approaches . 44
3.4 Analytic Approaches . 47

3.4.1 Soware Metrics . 47
3.4.2 Metric Methodologies . 53
3.4.3 Reviews & Inspections . 55
3.4.4 Quality Analysis Tools . 56

3.5 Summary . 60

4 Defining & ControllingMaintainability 63
4.1 Maintainability Management . 63

7

Contents

4.2 An Activity-Based Model for Maintainability . 66
4.2.1 Modeling Rationale . 67
4.2.2 Overview . 71
4.2.3 e Quality Metamodel QMM . 76
4.2.4 Example . 83

4.3 Operationalization . 86
4.3.1 Manual Reviews . 88
4.3.2 Automated Assessments . 89
4.3.3 Guidelines . 92

4.4 Summary . 95

5 Tool Support 97
5.1 Quality Model Editor QMM.editor . 97

5.1.1 Metamodel Implementation . 97
5.1.2 Overview . 99
5.1.3 Model Design & Maintenance . 101
5.1.4 Checklist & Guideline Generation . 102
5.1.5 Implementation & Architecture . 103
5.1.6 Summary . 104

5.2 Quality Control Toolkit ConQAT . 105
5.2.1 Requirements . 105
5.2.2 Design Considerations . 108
5.2.3 Architecture . 109
5.2.4 Configuration . 111
5.2.5 Modularization & Feature Overview . 114
5.2.6 Documentation . 120
5.2.7 Configuration Editor cq.edit . 121
5.2.8 Integration with the QMM . 122
5.2.9 Summary . 124

5.3 Summary . 125

6 Case Studies 127
6.1 Model-Based Development of Embedded Systems (MAN) 127

6.1.1 Environment . 127
6.1.2 Goals . 128
6.1.3 Study Description . 128
6.1.4 Results . 131
6.1.5 Discussion . 135

6.2 Web User Interface Frameworks (Interasco GmbH) 136
6.2.1 Environment . 136
6.2.2 Goals . 136
6.2.3 Study Description . 136
6.2.4 Results . 140
6.2.5 Discussion . 141

6.3 Mainframe Development Infrastructure (BMW) . 143
6.3.1 Environment . 143

8

Contents

6.3.2 Goals . 144
6.3.3 Study Description . 144
6.3.4 Results . 148
6.3.5 Discussion . 151

6.4 Quality Dashboards (ABB & Munich Re) . 152
6.4.1 Environment . 152
6.4.2 Goals . 152
6.4.3 Study Description . 152
6.4.4 Results . 156
6.4.5 Discussion . 162

6.5 Integrating Manual and Automatic Quality Analysis 163
6.5.1 Environment . 163
6.5.2 Goals . 164
6.5.3 Study Description . 164
6.5.4 Results . 169
6.5.5 Discussion . 171

6.6 Summary . 172

7 BeyondMaintainability 173
7.1 Modeling Usability . 173

7.1.1 State of the Art . 173
7.1.2 Activity-Based Modeling of Usability . 176
7.1.3 A Quality Model for Usability . 177
7.1.4 Modeling the ISO 15005 . 181
7.1.5 Discussion . 183

7.2 An Integrated Approach for Quality Modeling . 185
7.3 Summary . 187

8 Summary and Outlook 189
8.1 Summary . 189
8.2 Outlook . 191

Bibliography 197

9

»Because software maintenance adds functionality,
it’s a solution, not a problem.«

Robert L. Glass

1 Introduction

Between 60% and 80% of the total life-cycle cost of long-lived systems are spent during their mainte-
nance phase rather than the initial development phase [37,99,119,190,215]. Importantly, half of these
efforts are not devoted to fixing defects or to adapt the systems to a changing technical environment.
Instead, they are expended to change existing functionality and to implement new requirements that
enable organizations to adapt their business processes to changing market situations or to imple-
ment innovative products and services. Due to the high dynamics of requirements in most domains,
the ability to implement new requirements in a cost-effective and timely manner is therefore a key
factor for the commercial success of today’s soware systems. With a focus on the soware systems
themselves, this ability is commonly referred to as maintainability.

1.1 Problem Statement

Although the crucial importance of efficient and effective sowaremaintenance is generally acknowl-
edged, soware developing organizations rarely apply specialized processes and techniques to as-
sure maintainability. As the quality of long-lived soware systems typically undergoes a gradual
decay [25,97,224] and, hence, needs to be controlled continuously, this gives cause for concern. e
situation is fundamentally different from the area of reliability where constructive approaches to pre-
vent defects as well as analytic approaches to detect defects have been used for several decades. It
is oen assumed, that the reluctance to actively control maintainability is due to the fact that main-
tainability issues typically have long-term and therefore less obvious consequences than reliability
issues. While this is certainly true, we claim that another major obstacle to a mature way of assuring
maintainability is posed by the unsatisfyingly vague definitions of maintainability used today.

Currently, most soware developing organizations strive to define maintainability with guidelines
that state what developers should do and what they should not do in order to improve the main-
tainability of soware artifacts. To assess conformance to these guidelines, organizations typically
use a combination of manual reviews activities and automated checks with static analysis tools. In
most cases the guidelines are based on quality models like the well-known ISO standard 9126 for
soware product quality [152]. However, as such models specify only high level quality goals like
changeability or testability, organizations are required to augment them with more detailed defini-
tions that can be operationalized in the context of a specific soware development project. Due to a
lack of accepted techniques for the definition and assessment of maintainability, this is usually done
in an ad-hoc manner; i. e. guideline and review checklist authors as well as analysis tool operators
individually define their notions of maintainability. Inevitably, this leads to multiple definitions of
maintainability that are neither complete nor consistent.

Various approaches, usually in the form of quality models, have been proposed over the last four
decades to remedy this problem. However, no comprehensive basis for assessing and improving

11

1 Introduction

the maintainability of large soware systems has been established so far. Typically, existing models
exhibit at least one of the following problems:

First, they do not define criteria for maintainability at a level that is suitable for an actual assessment.
Hence, it is not possible to evaluate if a system complies to stated quality requirements or not. Second,
the models tend to omit the rationale behind the required properties of the system. is makes it
difficult to describe impacts precisely and therefore to convince developers of the importance of the
proposed quality criteria. ird, existing models oen use ambiguous decomposition dimensions
which leads to inconsistent models and hampers the revelation of omissions and inconsistencies in
these models. Fourth, most approaches do not provide details on the operationalization of quality
models for analytic and constructive quality assurance activities. is makes it difficult to use quality
models as a basis for a continuous quality control practice that counters quality decay that soware
systems are known to undergo during their evolution.

It can be concluded, that today we lack a discipline of »maintainability engineering« that includes
a structured approach for defining what constitutes maintainability plus the required methods for
achieving the desired maintainability as well as techniques for the continuous assessment of main-
tainability to prevent decay.

1.2 Contribution

For a long time, soware engineers have recognized that complete and precise specifications are re-
quired to build correct and reliable soware systems. is thesis proposes to transfer this insight to
the area of soware maintainability. Concretely, it suggests to base all constructive and analytic ap-
proaches to improve and assess quality with appropriate definitional approaches that unambiguously
define what constitutes maintainability (Fig. 1.1).

Maintainability
Engineering

De�nitional
Approaches

Constructive
Approaches

Analytic
Approaches

Figure 1.1: The 3 Dimensions of Maintainability Engineering

12

1.2 Contribution

To achieve this, this thesis introduces a novel approach for modeling maintainability that explicitly
associates systemproperties with the activities carried out duringmaintenance and thereby facilitates
a structured decomposition of maintainability. e separation of activities and properties supports
the identification of sound quality criteria and allows to reason about their interdependencies. As the
activities are the main cost factor in soware maintenance, we consider this separation a crucial step
towards the ultimate goal of a truly economically justified practice of maintainability engineering.
e approach is based on a quality metamodel that supports a systematic construction of maintain-
ability models and fosters preciseness as well as completeness.

Furthermore, we describe how maintainability models defined by the presented metamodel can be
operationalized in the maintenance processes to support continuous quality control. is includes
the definition of a maintainability assurance process based on the presented concepts and a set of
supporting tools. ese tools enable the design of quality models based on our metamodel as well
as the automatic generation of guideline documents to communicate quality requirements to the
developers. To support quality assurance activities, the tools allow the generation of review checklists
and provide an integration of a defined maintainability model with quality assessment tools used for
automated analyses.

e latter point is of paramount importance since many quality criteria are subject to gradual decay
and, hence, need to be controlled in a continuous and timelymanner. As these assessments are known
to be cost-intensive, the soware maintenance research community and industry created a plethora
of analysis tools to automate them. However, these tools are rarely used in a coordinatedmanner and
almost never integrated with a comprehensive quality definition given by a quality model. Hence,
we present a flexible quality assessment framework that enables the rapid construction of quality
dashboard applications that integrate multiple assessment tools. ese applications generate highly
aggregated, concise quality reports that are backed by a defined maintainability model. ey aid in
making project decisions as they provide an integrated view on the project’s current quality status.

We demonstrate the applicability of our maintainability modeling and analysis approach with mul-
tiple case studies carried out in academical and industrial contexts:

MANTUMa. e largest case study describes the application of the maintainability modeling
approach, the generation of developer guidelines and the use of quality assessment tools in the
context of model-based development in the automotive domain. e case study was carried out
with MAN Nutzfahrzeuge Group.

EcoCAP. e third case study focuses on a quantitative evaluation of the impact that variations
in the project infrastructure have on differentmaintenance activities. e case studywas carried
out with the BMW Group in the context of mainframe soware development.

GUI. In this case study we show how the quality metamodel can be used to compare the ex-
pected maintenance efforts of web applications developed with different user interface frame-
works. e case study was carried out with INTERASCO GmbH.

Dashboards. Two case studies describe the application of quality dashboards for continuous
quality control in industrial contexts. e case studies were carried out with Munich Re and
ABB.

13

1 Introduction

cq.edit. e last case study describes the tight integration of manual and automated quality
assessment techniques for source code developed by 14 students in a university lab course.

1.3 Contents

e remainder of this thesis is organized as follow: In Chap. 2 we review the basics that are needed
for the following chapters. In particular, we describe the field of soware maintenance, how it is
influenced by soware product quality and how quality assurance with focus on maintainability is
carried out today. In Chap. 3 we discuss the current state-of-the-art in defining, assessing and im-
proving maintainability. is chapter highlights previous work in the areas of development guide-
lines, quality modeling, soware metrics and quality analysis tools. e main contribution of this
thesis is presented in Chap. 4. Here we explain the requirements for operationalizable maintain-
ability models, illustrate the basic principles of our proposed approach and present examples for
maintainability models. Finally, we give a formalization of the underlying quality metamodel and
explain how models based on it can be operationalized in the soware maintenance process. Chap. 5
presents the tools that are required to operationalize the maintainability model. is includes tools
for the design of quality models, the generation of guidelines and review checklists, the quality as-
sessment toolkit ConQAT as well as more specialized tools for the detection of duplication in soware
artifacts. Chap. 6 presents four case studies that were used to demonstrate the feasibility of our ap-
proach. e case studies describe applications of our approach for the definition of maintainability
and its assessments for business information systems as well as embedded systems in the automotive
domain. Chap. 7 broadens the scope of this thesis by explaining how the presented approach can
be used for quality goals different from maintainability. We present how the proposed concepts can
be used to model usability and explain how the metamodel can be used as a basis for an integrated
quality assurance that takes multiple quality aspects into account. We close with final conclusions
and an outlook on further research in Chap. 8.

Previously PublishedMaterial e material covered in this thesis is based, in part, on our con-
tributions in [42, 43, 74, 75, 77–82, 84, 85, 291, 293–295, 304].

14

». . .maintaining software, although costly,
is very worthwhile.«

GioWiederhold

2 SoftwareMaintenance & Software Product Quality

is chapter introduces the basic terms and concepts relevant for the remainder of this thesis. Sec. 2.1
discusses the relevance of soware maintenance today, gives definitions of important terms, de-
tails on its characteristics and illustrates important factors for productivity in soware maintenance.
Background on soware quality in general and the costs associated with assuring and improving
quality is given in Sec. 2.2. Sec. 2.3 illustrates reasons and remedies for rapid quality in long-lived
soware systems before Sec. 2.4 summarizes the chapter.

Previous work cited here serves as basis for this thesis but is not at the core of its contribution. Hence,
no discussion of advance on this work is given here. Work directly related to the contributions of this
thesis is discussed in the next chapter.

2.1 SoftwareMaintenance & Evolution

e soware inventory owned by a company represents a significant share of their property [300].
is is true not only for soware companies but for all companies involved with computing. Today,
this includes most major companies from industries as diverse as manufacturing or banking. Hence,
companies have a vital interest in preserving or extending the value of their soware repositories. To
achieve this, companies need to counter the gradual decay that a soware system’s value is known to
undergo [186, 224] by continuously adapting the system to changing requirements. is process is
usually referred to as soware maintenance or soware evolution.

Fig. 2.1 illustrates soware maintenance by presenting the soware system as a mediator between
the problem and the solution domain: e soware system realizes the requirements posed by the
problem domain with help of the solution domain that provides hardware, programming languages,
libraries and other base soware like operating systems. e problem domain and the solution do-
main are known to change over time, e. g. by new or updated requirements or new versions of base
soware such as libraries. To adapt a soware system to implement new requirements of the problem
domain with help of a solution domain that is also changing, it needs to be maintained.

With respect to the total life cycle cost of a soware system, soware maintenance is known to ac-
count for more than 70% [37, 99, 119, 190, 215]. e growing importance of soware maintenance
is illustrated by Fig. 2.2 that shows how maintenance costs have developed over the last 35 years
with respect to development and hardware costs. In contrast to popular belief, these findings are
not limited to business soware systems but likewise affect embedded systems soware [192]. In
fact, some researchers even report that maintenance of embedded systems is one order of magnitude
more expensive than maintenance of business soware [59].

15

2 Software Maintenance & Software Product Quality

Software Maintenance

Problem Domain: Business Processes, Embedded Functions, …

Solution Domain: Hardware, OS, Languages, Libraries, Tools, DBs, …

Software System

XBuilder
builderMap : HashMap

addBuildlet
 (in buildlet:Buildlet)

createComponent
 (in element : DOMElement,
 in parent : Component) :
 Component

Buildlet

setBuilder()

responsibleFor() : String

createComponent()

#builder

VisualBuildlet

setBuilder()

responsibleFor() : 'visual'

createComponent()

#builder

LabelBuildlet

setBuilder()

responsibleFor() : 'label'

createComponent()

#builder

1

throttle sensor

throttle
command

speed sensor

throttle

engine speed

EGO

MAP

fuel rate

fuel rate
controller

engine speed

throttle angle

fuel

o2_out

MAP

air/fuel ratio

engine
gas

dynamics

engine
speed

air/fuel
mixture ratio

300

Nominal
Speed

Metered FuelMAP sensor

700
High

Speed
(rad./Sec.)

EGO sensor

0

0

12

0

<!-- Compile sources in source folder to build folder.
Compilation
 is logged in ${compile.log.file} -->
 <target name=“compile“
 depends=“mkdirs, init“
 description=“STD-ENV: Compile Java sources.“>
 <javac srcdir=“${src.dir}“>
 <compilerarg value=“-Xlint:all“ />
 <compilerarg value=“-Xlint:-serial“ />
 <classpath refid=“classpath“ />
 </javac>
 </target>

private boolean testAndSplit(int refWordEnd, Object
nextCharacter) {
 if (currentNode < 0) {
 // trap state is always end state
 return true;
 }

 if (refWordEnd <= refWordBegin) {
 if (nextNode.get(currentNode, nextCharacter) < 0) {
 explicitNode = currentNode;
 return false;
 }
 return true;

Oxygen_Sensor_Mode

O2_normal
entry: fail_state[O2] = 0;

O2_warmup
entry: fail_state[O2] = 1;

O2_fail
entry: fail_state[O2] = 1;

[Ego < max_ego] /
Sens_Failure_Counter.DEC

[Ego > max_ego]/
Sens_Failure_Counter.INC

[t > o2_t_thresh]

Figure 2.1: Software as Mediator between Problem and Solution Domain [232]

2.1.1 Terms & Definitions

ere are numerous definitions of soware maintenance, e. g. in [143, 144], that typically define
soware maintenance as the process of modifying soware aer its initial delivery. None of the
available definitions fully matches our understanding of soware maintenance as they either

state not clearly enough that maintenance concerns all artifacts of soware systems including
its specifications, documentation, models, configuration files, build scripts and many others, or

do not include preventivemaintenance, i. e. maintenance carried out to prepare a soware prod-
uct for future changes, or

focus on the soware process perspective and define maintenance as the part of the soware
process that starts aer delivery, whereas we understand soware maintenance as an activity
that is not exclusively bound to a specific phase of the soware process.

is thesis uses the following definition of soware maintenance, that clarifies that soware mainte-
nance is an activity that affects all artifacts of a soware system, possibly at all times. It is important,
not to limit the definition of the soware maintenance activity to the time aer the first delivery of
a soware system as important maintenance activities like debugging and program comprehension
are in fact carried out at all stages of the soware process; including initial development.

Definition 1 (Soware Maintenance) e activity of modifying a soware system’s artifacts to adapt
the system to changed requirements, a changed environment, to correct faults or to prepare it for future
changes.

16

2.1 Software Maintenance & Evolution

0%

20%

40%

60%

80%

100% Hardware

Development

Maintenance

1970 1985 2000

Figure 2.2: Maintenance Efforts

To distinguish the activity of maintaining soware from the role of soware maintenance within the
soware process, the following definition of the soware maintenance phase is used. Please note that,
for recent development methodologies that are based on small iteratively developed increments, e. g.
eXtreme programming, the event of »first delivery« is ill-suited to distinguish the initial development
from the maintenance phase. In this cases, the two phases overlap and it is not possible (or sensible)
to clearly distinguish between them. However, the given definition ofmaintenance is not endangered
by this problem as it exclusively focuses on the activity of maintaining a system.

Definition 2 (Soware Maintenance Phase) e part of the soware development process that starts
aer the first delivery of the system and ends with the system’s phase-out.

e activities carried out when maintaining a soware system are structured by the soware main-
tenance process. Please note, that this definition of the maintenance process does not require main-
tenance to be carried out in a designated maintenance phase.

Definition 3 (Soware Maintenance Process) e process that defines the steps and their ordering
carried out when soware is maintained.

ere is no standard definition for the term soware evolution. Some researchers and practitioners
use it synonymously to soware maintenance [27] while others use it to refer to particular phases of
the soware life cycle [240]. However, this thesis uses the term to refer to the evolution process that
spans the entire soware life cycle.

Definition 4 (Soware Evolution) Soware evolution describes the process of developing soware
initially and then repeatedly updating it. Soware evolution comprises the development as well as the
maintenance phase.

17

2 Software Maintenance & Software Product Quality

Fig. 2.3 illustrates the terms defined above for the case of clearly separated development and main-
tenance phases within the soware process.

Software Evolution

Modi�cation

Development
Phase

Maintenance Phase

1.0 1.1 2.0 2.12.0.9 2.1a 3.0 t2.2

Steps in the Maintenance Process

Figure 2.3: SoftwareMaintenance & Evolution [232]

2.1.2 Characteristics of SoftwareMaintenance

Soware maintenance is oen viewed as a »dirty« type of work that is mainly concerned with fixing
bugs in legacy systems written in legacy programming languages like COBOL or PL/1 [120]. In
contrast to popular belief, however, soware maintenance is mainly concerned with extending the
functionality of a soware system and not with fixing defects. It thereby increases a soware system’s
value and hence is, as Robert Glass put it in [119], »a solution, not a problem«.

To appropriately capture the diversity of maintenance tasks, previous work usually discusses them
with respect to the following categories [143, 190, 215, 231, 274]. Please note, that not all references
fully agree on all categories and that the naming of the categories is sometimes inconsistent. More-
over, some researchers [47, 54, 181] propose different, more detailed categorizations. However, for
the purpose of this thesis the »classic« categorization proves to be adequate.

Perfective Maintenance. Soware maintenance activities that change existing functionality or
add new functionality to a soware system. is type of maintenance is triggered from the
problem domain, e. g. by changes to business processes or new user requests. With respect to
the total maintenance costs this type of maintenance typically accounts for about 60% of the
maintenance efforts [190, 215].

Adaptive Maintenance. Soware maintenance activities that adapt a system to a changing
environment. is type of maintenance is triggered from the solution domain, e. g. by changes
to base technology like operating systems or changes to third party soware systems the system
under maintenance interfaces with. is type of maintenance is usually reported to account for
about 20% of the maintenance efforts [190, 215].

Corrective Maintenance. Soware maintenance activities that correct faults in a soware sys-
tem. is type of maintenance is triggered neither from the problem nor the solution domain
but by defects in the system itself. is type of maintenance is usually reported to account for
about 17% of themaintenance efforts [190,215]. While efforts for adaptive and correctivemain-
tenance are both close to 20% , most studies agree that more effort is spent on adaptive than on
corrective maintenance.

18

2.1 Software Maintenance & Evolution

Preventive Maintenance. Soware maintenance activities that prepare a system for prospective
changes. is type of maintenance has no explicit trigger but is performed to enhance the effi-
ciency of future maintenance tasks. Examples are restructuring (refactoring), consolidation or
redocumentation. Currently, most organizations perform hardly any preventive maintenance.
So, the efforts for this type of maintenance are oen not reported. If they are, they typically
account for about 4% [171].

Fig. 2.4 illustrates the four maintenance types and their share of the maintenance efforts with respect
to the entities that trigger them.

Problem Domain

Solution Domain

Software System

XBuilder
builderMap : HashMap

addBuildlet
 (in buildlet:Buildlet)

createComponent
 (in element : DOMElement,
 in parent : Component) :
 Component

Buildlet

setBuilder()

responsibleFor() : String

createComponent()

#builder

VisualBuildlet

setBuilder()

responsibleFor() : 'visual'

createComponent()

#builder

LabelBuildlet

setBuilder()

responsibleFor() : 'label'

createComponent()

#builder

1

throttle sensor

throttle
command

speed sensor

throttle

engine speed

EGO

MAP

fuel rate

fuel rate

engine speed

throttle angle

fuel

o2_out

MAP

air/fuel ratio

engine
gas

dynamics

engine
speed

air/fuel

300

Nominal
Speed

Metered FuelMAP sensor

700
High

Speed
(rad./Sec.)

EGO sensor

0

0

12

0

<!-- Compile sources in source folder to build folder.
Compilation
 is logged in ${compile.log.� le} -->
 <target name=“compile“
 depends=“mkdirs, init“
 description=“STD-ENV: Compile Java sources.“>
 <javac srcdir=“${src.dir}“>
 <compilerarg value=“-Xlint:all“ />
 <compilerarg value=“-Xlint:-serial“ />
 <classpath re� d=“classpath“ />
 </javac>
 </target> </target>

private boolean testAndSplit(int refWordEnd, Object
nextCharacter) {
 if (currentNode < 0) {
 // trap state is always end state

 if (refWordEnd <= refWordBegin) {
 if (nextNode.get(currentNode, nextCharacter) < 0) {
 explicitNode = currentNode;

 return true; return true;

Oxygen_Sensor_Mode

O2_normal
entry: fail_state[O2] = 0;

O2_warmup
entry: fail_state[O2] = 1;

O2_fail
entry: fail_state[O2] = 1;

[Ego < max_ego] /
Sens_Failure_Counter.DEC

[Ego > max_ego]/
Sens_Failure_Counter.INC

[t > o2_t_thresh]

Perfective Maintenance (60%)

Corrective Maintenance (17%)

Adaptive Maintenance (20%)

Preventive Maintenance (3%)

Figure 2.4: Types of SoftwareMaintenance

2.1.3 SoftwareMaintenance Process

For the remainder of this dissertation, it is important to have a thorough understanding of the nature
of the soware maintenance process. is section gives an introduction of the soware maintenance
processes and presents the process that is used in this thesis. Most of the maintenance processes pro-
posed in the literature [53,144,145] are change-request driven and hence define the required process
steps with respect to a single modification request (MR) or change request (CR). e proposed steps
are essentially based on the classic waterfall model [252] consisting of an analysis, a design, an im-
plementation and a testing phase. is thesis uses the following process that is modeled on the IEEE
standard 1219 [145].

1. Modification classification. In this phase, a modification request (MR) or change request (CR)
is classified and prioritized. e classification is done based on the previously introducedmain-
tenance types: perfective, adaptive, corrective and preventive. e prioritization is part of the

19

2 Software Maintenance & Software Product Quality

release planning and is usually based on a company-specific approach that respects various fac-
tors, e. g. user-relevance, available resources and dependencies to other CRs [16, 254].

2. Analysis. e analysis phase studies the feasibility and scope of the modification to devise a
preliminary plan for design, implementation, test, and delivery. It usually consists of a feasibility
analysis and a detailed analysis component:

a) Feasibility analysis. e feasibility analysis investigates, among others, the impact of the
modification, alternate solutions, safety and security implications, short-term and long-
term costs as well as the value of the benefit of making the modification.

b) Detailed analysis. e detailed analysis is carried out to define firm requirements for the
modification, identify the elements of modification, devise a test strategy and to develop
an implementation plan.

3. Design. e design phase uses the output of the analysis phase as well as the existing soware
and its documentation to design the modification to the system.

4. Implementation. In the implementation phase, the proposed changes are implemented and all
affected artifacts, including the documentation, are updated accordingly.

5. System test. In this phase system tests are carried out. is usually includes regression tests to
ensure that themodified code did not introduce faults that did not exist prior to themaintenance
activity.

6. Acceptance test. e acceptance test is usually performed by the customer to ensure that the
products of the modification are satisfactory to him.

7. Delivery. Depending on the type of soware system being maintained, the delivery phase
may include installation at the customer facility, notification of the user community and the
development of an archival version of the system for backup. When a system modification
affects user interfaces or represents a significant modification of the system’s functionality, user
training may be necessary.

While there is a relatively good understanding of the total maintenance cost and their distribu-
tion with respect to the maintenance types introduced above, the research community still lacks
a thorough understanding of how these costs are distributed over the phases of the maintenance
process [271].

Gaining this understanding from previous studies is still difficult as most of them use differing pro-
cess models and are therefore hard to compare. Moreover, the comparison is complicated by the
large number of factors that influence the effort distribution [213] and oen lead to drastic differ-
ences across projects [176]. Nevertheless, Table 2.1 aims to give an impression of the distribution by
presenting the results from three studies.

1Although the paper discusses isolation (or analysis) as a distinctive maintenance phase, it does not report on the effort
spent on it. However, it is not assumed that the authors claim that the analysis phase requires zero effort. In another
context [246], Rombach reports on a case where isolation effort is, in fact, higher than the implementation effort.

2e paper compares efforts in separated and joint maintenance environments. Table 2.1 refers to the joint alternative.

20

2.1 Software Maintenance & Evolution

Phase Rombach et al. 1992 [248]1 Basili et al. 1996 [16] Yeh & Jeng 2002 [305]2

Analysis – 13% 26%
Design 30% 16% 19%
Implementation 22% 29% 26%
Test 22% 24% 17%
Other 26% 18% 12%

Table 2.1: Distribution of Maintenance Efforts

Interestingly, some of these figures contradict the reverse engineering community’s claim that under-
standing the existing program accounts for half of the soware maintenance efforts [65, 106, 120,
222]3.

Nevertheless it can be safely stated, that the major differences between initial development of so-
ware and soware maintenance can be found in the analysis phase [13]. Soware maintenance is
never carried out on the »green field« but needs to take the existing system into account. is does
not only limit the space of possible solutions, but foremost requires the existing system to be un-
derstood. Consequently, this task, commonly referred to as program comprehension or program un-
derstanding, is a topic of highly active research [60, 288]. A problem that appears to be central to
program comprehension is the establishment of a mapping between the program (solution domain)
and the real-word (problem domain) [243, 244]. Establishing this mapping is usually referred to as
concept location, feature location or concept assignment [32,55,239]. Generally, it is assumed that the
source code of the system under maintenance does not store all information required by the soware
maintainer [31,83]. As additional maintenance documentation is rarely available [215,221] complex
reverse engineering activities need to be carried out to regain this information [57, 58, 264].

2.1.4 SoftwareMaintenance Productivity

As pointed out in the introduction, productivity in soware maintenance is crucial for virtually any
soware-developing organization. Consequently, a significant amount of research work has been
and is still devoted to gaining a better understanding of the factors that influencemaintenance efforts
and, hence, productivity in soware maintenance. is includes work on maintenance productivity
in general, empirical studies [52,162], productivity models [12,133], and productivity measurement
techniques [7, 273, 276], as well as on the specific productivity factors discussed in the following
sections.

Whilemost of the previous research differs in its focus as well as in its conclusions, there appears to be
a general agreement that the factors for productivity can be categorized as process-related, personal-
related, environment-related and product-related. In his work on cost drivers for soware mainte-
nance [270], Sneed summarized this with the illustration shown in Fig. 2.5.

e following sections give an overview of factors in the four categories and highlight important
previous work dedicated to a better understanding of soware maintenance productivity. It has to be
noted, that there is relatively little research on maintenance productivity that includes all of the four

3Even more interestingly, it appears that this claim is mainly based on single study that is more than 25 years old [106].

21

2 Software Maintenance & Software Product Quality

Costs of
Software
Maintenance

Environment

PersonnelProcess

Product

Figure 2.5: Cost Drivers in SoftwareMaintenance [270]

categories [133, 242] . Hence, little is known today about the significance of the various factors with
respect to the totality of factors.

Maintenance Personnel Since the early days of soware engineering research it is well-known
that people are a key factor for the success of soware development projects [46]. Hence, numerous
publications on productivity show that productivity in soware engineering is strongly influenced
by the people who carry it out [37, 86, 220]. In fact, various studies found that good developers
can be multiple orders of magnitude more productive than average or bad programmers [70, 255].
Recently, agile development methods try to honor these findings by emphasizing the human factor
in productivity [136,237]. While there are relatively few studies dedicated to the factor of personnel
in soware maintenance productivity [11,191,193], there is no reason to believe that this factor may
be less significant for soware maintenance than for initial soware development.

Maintenance Process Likewise, maintenance efforts are influenced by the processes used by the
maintaining organization. is applies to special maintenance activities like the changemanagement
or version management as well as to standard soware development processes used during soware
maintenance. Again, there is relatively little research dedicated to maintenance processes [81, 236,
240] but there is no reason to believe that this factor may be less significant for soware maintenance
than initial soware development. On the contrary, it is expected that complexmaintenance activities
like change, release, build and soware configuration management are strongly influenced by their
underlying processes [14].

Maintenance Environment Another important factor is the environment in which the main-
tenance activities take place, as appropriate tool support and infrastructure, e. g. debuggers, ver-

22

2.2 Software Quality

sionmanagement systems, and communication systems are known to influencemaintenance efforts.
ere are multiple studies on the productivity gains to be obtained by using tools in soware engi-
neering in general [44, 131] and soware maintenance in particular [89, 187]. Next to this, there are
countless papers on specific maintenance tools like program slicers [72], program visualizers [10],
clone detectors [26], maintenance documentation tools [216] and refactoring tools [206] as well as
a plethora of similar tools offered by commercial vendors. However, most of these publications lack
an evaluation of the tools’ contribution to productivity enhancements.

Maintained Product Arguably, the greatest share of research efforts was and still is devoted to
the investigation of characteristics of soware systems that support or hamper their maintenance.
Obviously, this kind of research is completely maintenance-specific as initial development does not
need to consider an existing product for development productivity. Previous research concludes that
system characteristics as different as system structure [13, 98, 115, 246], module complexity [118],
source code format [219], identifier naming [79, 242], comments [112, 126, 133] or combinations of
these characteristics [29] influence soware maintenance productivity [27]. More work on product
characteristics that influence soware maintenance is discussed in detail in Sec. 3.4.1.

2.2 Software Quality

e characteristics of soware systems that influence soware maintenance are oen subsumed un-
der the quality attribute maintainability. To prepare the discussion of maintainability in the remain-
der of this thesis, this section first gives an introduction to soware quality in general.

In his seminal paper on product quality, Garvin concludes that »Quality is a complex and multi-
faceted concept« and states that is »also the source of great confusion [. . .]«. Similarly, [245] finds
that »Regardless of the time period or context in which quality is examined, the concept has had
multiple and oen muddled definitions and has been used to describe a wide variety of phenome-
na«. While these quotations refer to quality in general, it is well-known that they apply to soware
quality [178], too. e following sections provide background information to clarify the notion of
quality and introduce concepts that are central to the quality modeling approach presented in this
thesis.

2.2.1 Process Quality vs Product Quality

For the discussion of soware quality it is important to distinguish between process quality and prod-
uct quality. Process quality describes quality attributes of the soware development process whereas
product quality describes the quality of the developed product. Based on the experience with tra-
ditional disciplines, particularly with manufacturing, it is oen assumed that high quality processes
automatically lead to high quality products [274]. is process-oriented view was the basis for the
development of widely-used process quality (maturity) models like CMM [225] and SPICE (ISO
15504) [158]. In some areas, this process orientation, in fact, lead to »quality assessment that is
virtually independent of the product itself.« [178].

23

2 Software Maintenance & Software Product Quality

However, while there is clear link between process and product quality for manufacturing processes,
the link is not as well established for development processes in general and soware development pro-
cesses in particular [178,287]. is is illustrated by studies carried out by Capers Jones in 2000 [164].
While researching the correlation between a company’s CMM level and the number of shipped de-
fects per function point in their products, he found that, on average, the number of defects decreases
with raising CMM level. However, he also found that the best companies at CMM level 1 produce
soware with less defects than the worst companies at level 5 (Table 2.2).

It is important to remember, that process quality is no end in itself but only a step to product quality.
Jones’ findings emphasize that, independent from the quality of the applied processes, it is necessary
to closely monitor the quality of the outcome of the process (the product).

CMM Level Minimum Average Maximum
1 0.150 0.750 4.500
2 0.120 0.624 3.600
3 0.075 0.473 2.250
4 0.023 0.228 1.200
5 0.002 0.105 0.500

Table 2.2: Delivered Defects per Function Point at CMM Levels [164]

2.2.2 Product Quality

Different disciplines, at different times used, different definitions of product quality [245]. is pro-
vides for a rich but sometimes bewildering variety of views on product quality. To clarify this, the
following section discusses the categorization presented by Garvin in [114] and puts the categories in
context with well-known approaches to soware quality (Garvin’s five views have also been discussed
in the context of soware quality in [178]):

Transcendental view. e transcendental view is based on Plato’s discussion of beauty and
defines quality as »innate excellence«. As such it cannot be defined precisely but only be recog-
nized through experience. Nevertheless, it serves as the ideal towards which a product should
strive.

Manufacturing view. e manufacturing view focuses on the production process of a product
and states »getting it right the first time« as its main goal. It exclusively defines quality by »con-
formance to requirements« and aims at the reduction of cost by avoiding costly rework caused
by quality deficiencies. Hence, themanufacturing view’s focus is internal and does not take into
account the users/customers quality needs. Process quality models like CMM and SPICE (ISO
15504) are typically founded on the manufacturing view.

User view. While the manufacturing view has an internal focus, the user view is purely exter-
nal. It is assumed that quality »lies in the eye of the beholder«. Consequently, definitions of
quality that are based on the user view are usually highly subjective. While a user-based defini-
tion raises the practical problem of identifying the user’s quality expectation, its relevance has
been recognized in soware engineering. For example, the ISO 9126 [152] standard defines the

24

2.2 Software Quality

concept of quality in use. Obviously, quality aspects related to usability are usually discussed
from the user’s perspective [30].

Product view. e product view assumes that »differences in quality reflect differences in the
quantity of some ingredient or attribute possessed by the product« [114]. Hence, quality can
be precisely defined and measured by specifying and assessing product attributes. is view
serves as basis for various metrics-based approaches to soware quality that measure product
characteristics like source code nesting depth to assess the quality of a product.

Value-based view. From the value-based view, quality needs to be defined with respect to cost
and benefit. According to this view »a quality product is one that provides performance for an
acceptable price or conformance at acceptable cost« [114]. is view extends the previous four
with the cost/price aspect and can, hence, be seen as orthogonal to the other views. For soware
quality, value-based based approaches gained more attention relatively recently [138, 267].

It is important to understand that the different views on quality originate from different contexts
and that each of them suits that context well. For example, the manufacturing view was born of the
necessities of mass-production that started in the middle of 19th century. Mass-production is in-
herently based on interchangeable parts and can only work if each part unconditionally conforms
to its specification. Hence, »conformance to specification« was the dominant quality requirement
that shaped the manufacturing view. From the middle of the 20th century until today, most west-
ern societies experienced a significant shi from a production economy to a service economy. e
quality definition based on »conformance to specification« that was well-suited for manufacturing
turned out to be ill-suited for most services, as they lack a manufacturing process. Consequently, the
prevalent view on quality moved from a manufacturing view to a user view that put the satisfaction
of the user above everything else [245]. Moreover, it is not only the views on quality that change over
time but also the perceived importance of quality attributes. An example is durability which today
is considered an important element of quality for most products. Before the Industrial Revolution
in the early 19th century, durable goods were usually purchased by the poor, as wealthy individuals
could afford to buy products that required frequent repair. is resulted in a persistent association
of durability with goods of low quality [114].

is excursus on the different notions of quality used by different disciplines at different times is
meant to convey that, while the five views on quality can help a substantiated discussion of quality,
none of them is used exclusively in any given context, let alone in soware engineering. In fact, to do
justice to the complex nature of soware products, multiple views on quality are required. Not least,
this is caused by themultitude of stakeholders typically involvedwith a soware product: While users
obviously take a user view, system integrators are concerned with conformance to specification and
hence take a manufacturing view. Operators on the other hand study specific product characteristics
like memory consumption to ensure smooth operation and thereby adopt a product view. Managers
of the producer or purchasers of the customer, however, need to maximize profit or minimize cost
and, hence, take a value-based view. Additional evidence for the need of multiple views on quality to
describe soware quality can be found in the IEEE’s twofold definition of soware quality [143]:

quality. (1) e degree to which a system, component, or process meets specified requirements.
(2) e degree to which a system, component, or process meets customer or user needs or
expectations.

25

2 Software Maintenance & Software Product Quality

2.2.3 Quality Attributes

emultitude of views on quality already indicates that finding an unambiguous definition of quality
in a given context is challenging. is is aggravated by another dimension of quality usually referred
to as quality attributes. An example of a quality attribute, durability, was given in the previous section.
According to the IEEE [143], a quality attribute is »a feature or characteristic that affects an item’s
quality«. ere is no generally accepted set of quality attributes and, hence, different researcher from
different communities advocate different attributes using different terms. Examples are performance,
reliability, conformance, serviceability [114] or maintainability, portability and usability [152]. It is
important to note, that different terms, e. g. serviceability and maintainability, may refer to the same
(or similar) attributes. Vice versa, the same term can refer to different attributes in different commu-
nities. For example Garvin uses performance to describe the »primary operating characteristics« of a
product [114] while for soware system performance typically refers to execution time and memory
characteristics. Even within the soware engineering community, the terminology is ambiguous.
For example, the IEEE uses the term performance for an attribute that the ISO calls efficiency while
IEEE’s efficiency appears to refer to ISO’s resource utilization [143, 152].

Even more problematic is the fact, that it is currently hard to resolve this terminological inconsisten-
cies, as the definition of the attributes is too vague to allow a substantiated discussion. For example,
the ISO defines changeability as »the capability of the soware product to enable a specified modifi-
cation to be implemented« [152]. While this definition is intuitively understandable, it is difficult to
understand its differences or commonalties to IEEE’s definition of extensibility: »e ease with which
a system or component can be modified to increase its storage or functional capacity« [143]. ese
examples are specifically selected for this thesis and, hence, relate to maintainability, the attribute
considered important for soware maintenance. Nevertheless, similar examples can be found for
other attributes like usability.

ese examples are presented here to illustrate the current confusion regarding the definition of
soware product quality. An in-depth discussion of quality attributes used in context with soware
maintenance is given in Chap. 3.

2.2.4 Cost of Quality

Independently from a precise definition of quality or a particular view on it, a thorough understand-
ing of the cost associated with quality and, even more important, a lack thereof is required. Conse-
quently, cost of quality (COQ) was introduced in the 1950ies [102] as a potent tool for the discussion
of product quality and meanwhile became widely used in manufacturing [129,141] and other indus-
tries like construction [1]. More recently, cost of quality approaches are also employed in knowledge
work-disciplines [160]. A survey of previous work on cost of quality can be found in [302].

Quality costs are perceived as a powerful tool to discuss quality as »money is the basic language of
uppermanagement« [129]. Hence, quality related issues can be conveyed to uppermanagementmore
easily in terms of cost than in terms of technical details. Moreover, costs are an appropriate means
for the discussion of quality as they provide a unifying view on the diverse aspects of quality. Quality
aspects that are highly different in nature, can be interrelated using monetary units. For example,
the outdatedness of system documentation and the number of defects caused by memory leaks, two

26

2.3 Product Quality in Long-lived Systems

quality defects measured on totally different scales, can be compared easily by the costs they incur.
is, of course, requires these costs to be known.

Traditionally, cost of quality is expressed in the prevention, appraisal, fault or PAF-model [129] that
distinguishes the cost types shown in Fig. 2.6.

Quality Costs

Appraisal CostsPrevention Costs Internal Failure Costs External Failure Costs

Conformance Costs Non-Conformance Costs

Figure 2.6: Types of Quality Costs

Conformance Costs. e conformance costs comprise all costs that need to be spent to ensure
that the soware conforms to the quality requirements. is can be further broken down into
prevention and appraisal costs. Prevention costs are costs formeans that prevent quality defects.
Examples are costs for development tools or costs for the preparation of quality guidelines. e
appraisal costs are caused by all means that assess product quality. Examples are cost for reviews
or license costs for quality analysis tools.

Non-Conformance Costs. Non-conformance costs are costs caused by the soware or parts
thereof that do not conform to the quality requirements. Typically, these costs are divided in
internal and external failure costs. Internal costs are costs that occur in-house, during develop-
ment and external costs result from failures at the client’s site. For soware, non-conformance
costs do not only include costs caused by the classic bugs but also costs that are caused by less
evident failures, e. g. by a lack of usability. Non-conformance costs are also referred to as price
of non-conformance (PONC) [67] or as Resultant Poor Quality Costs (Resultant PQC) [132].

Only relatively recently COQ came into the focus of research and practice in soware product qual-
ity [182,184,269]. To illustrate how COQ is applied to soware, Table 2.3 lists types of conformance
and non-conformance costs discussed in [197]. It is to be noted that, up to now, quality costs are
considered mostly in the context of dependability [36, 138, 197, 289] and not with respect to main-
tainability.

2.3 Product Quality in Long-lived Systems

Assuring the quality of a newly developed soware system before its initial release, is challenging
already. However, as this section will show, it proves to be evenmore difficult to continuously control
the quality of a soware system that is under active maintenance.

27

2 Software Maintenance & Software Product Quality

Conformance Costs Non-Conformance Costs
Prevention Costs Appraisal Costs
training review of req. spec. error-fixing
tools review of design spec. re-review of document
methods review of module spec. retest of procedure
standards, policies, and procedures review, inspection re-review of module of code
consulting testing process computer usage for tests
quality planning beta test, field trial lab allocations
team prevention meetings product audits fixing problems with
fast prototyping released systems
quality data gathering expediting fixes (FAX, overnight
root cause analysis mail, e-mail, overtime, etc.)

Table 2.3: Examples of Quality Costs in Software Engineering [197]

Being immaterial in nature, soware systems do not actually wear out like their material counter-
parts. In the absence of change to its environment, soware could function essentially forever as
it was originally designed4. However, the environment of a soware system is never static since the
problem domain as well as the solution domain undergo continuous changes. is fact is epitomized
by Lehman’s first law of soware evolution [25]:

I. Law of continuing change. A system that is used undergoes continuing change until it is
judged more cost effective to freeze and recreate it.

Changes in both, the problem and the solution domain, inevitably lead to a decline in product quality,
if the soware is not adapted appropriately:

Problem Domain Changes. If the system is not adapted to meet changing requirements, its
effectiveness is reduced. Particularly, the system must implement new requirements to ensure
customer satisfaction.

Solution Domain Changes. Certain changes in the problem domain, e. g. modified operating
system or API interfaces, can prevent a soware system from running if it is not adapted to the
changes. More subtly, also changes in the problem domain that do not necessarily demand a
system to be adapted to make it work, may lead to a decline in quality. A prominent example is
the continuous improvement of user interface (UI) technology. While a program that still uses
UI technology from the 1980ies may still work, it will not satisfy users anymore as they are used
to modern UIs and, hence, perceive the program as outdated.

In his illustrative analogy between quality decay during soware evolution and the aging of the hu-
man body, Parnas refers to this reason of quality decay as »lack of movement« [224]. e other main
cause for quality decay identified by Parnas is »ignorant surgery«, i. e. changes to the system that
are inconsistent with the concepts the designers of the system originally had in mind. is effect is
described by Lehman’s second law of soware evolution [25]:

4Provided the soware is 100% free of bugs.

28

2.3 Product Quality in Long-lived Systems

II. Law of increasing entropy. e entropy of a system (its unstructuredness) increases with
time, unless specific work is executed to maintain or reduce it.

Besides Lehman’s work [25, 186], several other studies found that soware systems’ structures dis-
integrate over time when continually changed [97, 170, 285]. Furthermore, it was found that quality
decay is not limited to system structure but also concerns aspects as diverse as code cloning [185]
and quality of identifier naming [79].

e underlying reason for the decay is our inherent inability to predict the future when developing a
soware system [224]. Even if a system is designed for change, the future will, with high probability,
bring changes that the system was not prepared for [241]. Examples for such unanticipated changes
are changes caused by new laws or regulations that are decided outside the organization’s sphere of
influence. Unanticipated changes potentially disrupt the original design of the soware system since
fundamental assumptions, made when the system was initially designed, may no longer be valid.
Consequently, implementing the changes can be costly and time-consuming because the systemmust
undergo a radical change.

However, due to high cost and schedule pressure [120] a thorough implementation of the changes is
oen skipped in favor of a work-around that is quicker to implement. While the work-around may
be initially quicker and cheaper to implement, it constitutes precisely the »ignorant surgery« that
leads to quality decay. e situation is worsened as documentation of the changes is oen neglected
due to the same reasons of high cost and schedule pressure. Furthermore, due to high personnel
turnover changes are oen performed by people other than the initial developers. is leads to sit-
uations where »[. . .] the original designers no longer understand the product. ose who made
the changes, never did. In other words, nobody understands the modified product« [224]. As un-
derstanding the existing product is one of the essential activities of soware maintenance this finally
leads to an increase in maintenance costs.

e quality decay of soware systems is aggravated by a psychological effect described by the Bro-
ken Windows theory [175, 303]. is theory is originally based on an experiment carried out by
Philip Zimbardo in the field of crime prevention but is known to apply to soware product quality
as well [139]. e experiment showed that a car that already has one window smashed is far more
prone to be vandalized than an intact car. Similarly, parts of a soware system that already exhibit
signals of poor quality, are prone to be handled with less care than appropriate. For crime prevention
the effect is successfully countered with a Zero-Tolerance policy that prevents Broken Windows by
not tolerating »little« crimes. Accordingly, »little« quality problems in soware systems need to be
addressed immediately to prevent serious problems from creeping into the system [140].

Depending on the type and seriousness of the quality defects, one or more of the following meth-
ods are used to remedy the quality problems during soware evolution. e Soware Reengineering
Assessment Handbook [284] describes a structured decision process that supports the selection of an
appropriate strategy.

Refactoring. One approach to correct quality problems during soware evolution is refactor-
ing, i. e. »[. . .] the process of changing a soware system in such a way that it does not alter
the external behavior of the code yet improves its internal structure« [108]. Refactoring re-
cently became a powerful tool as many oen-used refactorings like Extract Method or Rename

29

2 Software Maintenance & Software Product Quality

Variable are now well-supported by development environments like Eclipse 5. e automation
of such refactorings increases the efficiency of the refactoring process, helps to avoid mistakes
and, above all, reduces developers’ reluctance to improve existing code due to its convenience.
However, studies have shown that there are limits to refactoring’s capability to clean up chaotic
code [233].

Restructuring. While refactoring is usually concerned with correcting quality defects on the
level of methods, classes or packages, restructuring can be applied to resolve defects on an ar-
chitectural level, i. e. related to larger entities like components.

Retargeting. In many cases quality defects are not caused by a system itself but by technol-
ogy used by the system. Examples are libraries, frameworks, databases or even the operating
system. Retargeting describes the process of changing a system to work with a substitute of
defect-causing technology. An example is the substitution of Web technology like JSP6 that
oen leads to hard-to-maintain mix of different programming languages within one file, with
a new technology, e. g. GWT7, that does not suffer from this problem.

Translation. Legacy applications, in particular, suffer from quality defects that are caused by
the programming language itself, e. g. COBOL or PL/1 that are considered hard to read in com-
parison to more recent languages. In such cases quality problems can be resolved by translating
the existing system to a better suited implementation language.

Redevelopment. In certain situations, quality defects can be so severe, that developing or rewrit-
ing a system from scratchmay be themost worthwhile approach to resolve the quality problems.

Redocumentation. Potentially, quality defects can be addressed not by changing the system
itself but by providing better documentation to assist maintenance programmers [224, 250].

Please note that none of these measures entails a modification of the functionality of the system.
However, in practice quality improvements and changes to functionality oen go hand in hand, es-
pecially for elaborate processes like retargeting and redevelopment.

2.4 Summary

Due to the prevalent importance of soware in virtually all industries today, the soware inventory
owned by a company represents a significant share of their property. Hence, maintaining this existing
soware is vital to implement new requirements that enable organizations to adapt their business
processes to changingmarket situations or to implement innovative products and services. However,
long-term maintenance of soware systems poses a major challenge as it leads to declining quality if
no countermeasures are taken. On the long run, this quality decay reduces maintenance efficiency,
increases its cost and thereby limits an organization’s ability to cope with changing requirements and
a changing technical environment.

5http://www.eclipse.org
6Java Server Pages – http://java.sun.com/products/jsp
7Google Web Toolkit – http://code.google.com/webtoolkit/

30

2.4 Summary

Industry and academia appear to be well aware of this danger of quality decay in long-lived systems.
Nevertheless, most development and maintenance processes do not explicitly address this problem
with dedicated activities for continuous quality assessment and improvement. An exception are agile
development methods like eXtreme Programming [24] that explicitly include phases of refactoring
that do not add functionality but exclusively serve to improve product quality.

We claim that this precarious situation is caused by the lack of an established discipline of main-
tainability engineering and the unsatisfactorily vague definition of soware quality in general and
maintainability in particular. In order to further illustrate this point, the following chapters provide
an in-depth discussion of strengths and weaknesses of means currently used to define and assure
maintainability.

31

»It is not enough to do your best; you must
know what to do, and then do your best.«

W. Edwards Deming

3 State of the Art

is chapter describes the state of the art in defining, achieving and assessing maintainability. To
structure the chapter, we first outline the different dimensions of maintainability engineering and
then discuss individual definitional, constructive and analytic approaches. e chapter concludes
with a summary of open issues.

3.1 Maintainability Engineering

Currently, neither the state of the art nor the state of the practice has an established discipline of
maintainability engineering for soware products. For the state of the practice, the lack of an es-
tablished discipline is illustrated by the results of a survey carried out in Germany in 2003 [174].
In this survey 47 soware developing companies from various industries were asked about multi-
ple maintenance-related topics. Interestingly, only 20% of the responding companies analyze their
systems for maintainability although 60% of the responding companies spend 40% or more of their
total development efforts on soware maintenance.

While it is hard to show the non-existence of maintainability engineering for the state of the art,
it can be exemplified by opening any introductory book on soware engineering. In most cases,
such books offer elaborate advice on assuring the reliability of soware systems and contain detailed
descriptions for the definition of requirements and their verification. However, the same books do
rarely offer any advice on the specification of maintainability and its assessment in a given project
context. Another hint is given by the number of search results returned by ACM’s Digital Library
for the search term »soware maintainability engineering«: Zero results are returned, whereas the
search for the term »soware reliability engineering« returns over thousand documents (at the time
of writing this thesis).

Although there is no clearly defined discipline ofmaintainability engineering, various approaches for
defining and assuringmaintainability were proposed by academia and are nowadays applied bymany
soware developing organizations. As indicated in the introduction (Fig. 1.1), these approaches can
be categorized as

Definitional Approaches. For program correctness and reliability, quality is straightforwardly
defined as »minimal deviation from requirements«. In maintainability engineering, however,
nowadays there usually is no explicit formulation of requirements. Definitional approaches are
used to remedy this problem and specify how maintainability is defined. Examples are quality
standards like the ISO 9126.

Constructive Approaches. Constructive approaches aim at the prevention of quality defects. Ex-
amples are guidelines that support developers in creatingmaintainable systems or the definition
of processes that are expected to ensure product quality.

33

3 State of the Art

Analytic Approaches. Analytic approaches aim at the detection of quality defects in the product.
Examples are soware metrics, reviews and inspections as well as quality analysis tools.

Obviously, the boundaries between these categories are not clear-cut, e. g. the commonly used cod-
ing conventions have a definitional as well as a constructive nature as they usually define how main-
tainable code should look like but also support developer in achieving this goal. In some cases the
distinction between the categories is mainly defined by the background and intentions of the original
authors that proposed an approach. is is especially true for metric-based approaches where some
authors clearly focus on the definitional aspects while others highlight the application in an analytic
context. Based on the most prominent features of each approach they are classified either as a quality
model or a metric approach and discussed in the respective section. Although the classification of
approaches is bound to be ambiguous and, hence, expected to be a matter of debate, we are con-
vinced that it facilitates a structured discussion of the numerous approaches brought forward by the
different research communities.

e following sections discuss the state of the art. For each category the most important results are
summarized and its strengths and weaknesses are identified. If appropriate, the discussion includes
previous work that is not specifically geared towards maintainability but to soware quality in gen-
eral.

3.2 Definitional Approaches

Today, the most important approach to define maintainability are quality models that were first in-
troduced in the 1970ies to define soware quality in general. As quality itself, the term quality model
is currently not defined as rigidly as it would be desirable. A central problem is that the term qual-
ity model is oen used for concrete models as well as for quality modeling frameworks that enable
users to build customized quality models. For the latter, the term quality model typically describes
the underlying metamodel of the concrete model instances but oen also covers a methodology for
developing and using the concrete instances.

For clarity’s sake the terms are used in the following way in this thesis:

Definition 5 (Quality Model) A structured collection of criteria for the systematic assessment of an
entity’s quality.1.

Definition 6 (Quality Metamodel) Amodel of the constructs and rules needed to build specific quality
models.2.

Definition 7 (Quality Modeling Framework) A framework to define, evaluate and improve quality.
is usually includes a quality metamodel as well as a methodology that describes how to instantiate
the metamodel and use the model instances for defining, evaluating and improving quality.

1Based on the definition given by http://www.software-kompetenz.de/?11134
2Based on the definition of metamodel given by http://www.metamodel.com/article.php?story=20030115211223271

34

3.2 Definitional Approaches

Please note that the following discussion includes only quality models that are either specifically
designed in the context of soware maintenance or include maintenance-related aspects. Not con-
sidered are quality models for specific quality attributes like usability, e. g. [260], reliability, e. g. [121]
or dependability, e. g. [17]. Furthermore, non-soware-related models for product quality like [278]
are excluded from the discussion.

3.2.1 Concrete Quality Models

e first soware quality models were presented in the late 1970ies by McCall et al. [51, 205] and
Boehm [38]. ese models aim at describing complex quality criteria by breaking them down into
moremanageable subcriteria. ey are designed in a tree-like fashion with abstract quality attributes
like maintainability or reliability at the top and more concrete ones like analyzability or changeability
on lower levels. e leaf factors are ideally detailed enough to be assessed with soware metrics. As
an example Fig. 3.1 shows the part of Boehm’s Soware Quality Characteristics Tree that describes
maintainability [38]. is and similar approaches are called hierarchical or Factor-Criteria-Metric
(FCM) approaches, since McCall et al. called the top-most nodes factors.

Maintainability

Modi�ability

Testability

Understandability

Augmentability

Structuredness

Communicativeness

Accessibility

Self-Descriptivness

Conciseness

Legibility

Figure 3.1: Extract of Boehm’s Software Quality Characteristics Tree [38]

Based on these early works, in 1991 the ISO published the standard 9126 that describes a hierarchi-
cal quality model for soware. e current version of the standard was defined in 2001 [151]. e
model defines the six top-level quality characteristics and 27 subcharacteristics shown in Fig. 3.2. It
differs from earlier models as it is strictly hierarchical, i. e. each subcharacteristic is associated with
exactly one characteristic. e quality model itself does not define metrics for assessing the charac-
teristics but extensions to the standard [154–156] do. Within the scope of the SQuaRE initiative the
ISO currently reworks the standard 9126 and combines it with several other standards to form the
new ISO standard 25000. is standard will contain an updated quality model (ISO 25010) and a
specific data quality model (ISO 25012). While these models have not been made publicly available,
descriptions in early publications by members of the ISO [2,34] suggest, that the new model will not
significantly differ from the old one3.

Since the introduction of hierarchical quality models, several researchers proposed variations of the
approach, e. g. the FURPS [125] and the SATC model [142]. However, these approaches are not
discussed in detail here, as they do not fundamentally differ from the initial models. One notable

3Personal communication with a member of the group that develops the ISO 25000 has confirmed this impression.

35

3 State of the Art

Functionality Reliability Usability E�ciency

Internal & External Quality

Maintainability Portability

Suitability
Accuracy
Interoperability
Security

Functionality
compliance

Maturity
Fault tolerance
Recoverability

Reliability
compliance

Understandability
Learnability
Operability
Attractiveness

Usability
compliance

Time behaviour

Resource
utilisation

E�ciency
compliance

Analysability
Changeability
Stability
Testability

Maintainability
compliance

Adaptability
Installability
Co-existence
Replaceability

Portability
compliance

Figure 3.2: ISO 9126 Quality Model [151]

exception is the model presented by Oman & Hagemeister in 1992 [218]. is model goes beyond
the classic models as it uses criteria that are notedly more concrete than the typically used »-ilities«
like maintainability and portability. For example, it contains criteria that describe specific properties
of the program control and data flow as well as the format of the program source code. Consequently,
the model, which defines more than 90 nodes, is significantly larger than the initial models. is
model also served as basis for amaintainabilitymodel specifically geared toweb applications [194].

Discussion e hierarchical models outlined above made a significant contribution to structur-
ing the complex concept of quality. However, none of the existing approaches was able to define a
comprehensive basis for assessing and improving the maintainability of soware systems. e fol-
lowing section discusses prevalent shortcomings of the approaches. Most of these shortcomings have
previously been identified by Kitchenham and other authors [5, 66, 134, 177, 178, 180].

1. Customizability. e models discussed above are concrete quality models that are not designed
to be adapted to a specific situation. As noted in [177], it is unrealistic to expect that one quality
model would fit the great diversity of soware systems developed today. Consequently, such
models are ill-fitted for most systems as they either lack important criteria or define irrelevant
ones.

2. Assessability. Most quality models contain criteria that are too coarse-grained to be assessed di-
rectly [15]. An example is the changeability criterion defined by the ISO 9126 as »the capability
of the soware product to enable a specified modification to be implemented«. While this def-
inition conveys an intuitive understanding of changeability, it is far from being precise enough
to be actually assessed. e lack of assessability seriously reduces the usefulness of a quality
model, since defining expected quality without being able to assess whether this definition is
adhered to is of questionable use.

e extensions to the ISO 9126 standard [154–156] definemetrics to evaluate quality character-
istics but these were identified to be insufficient: Firstly, they are rather based on observations
of interactions between the product and its environment than on observations of the product
itself [134]. Secondly, some of the metrics are defined ambiguously [5]. irdly, the validity of

36

3.2 Definitional Approaches

the metrics must be seriously doubted. For example, the sole metric the ISO 9126 defines for
the subcharacteristic changeability is change recordability which is defined as the ratio between
»number of changes in functions/modules having change comments confirmed in review« and
»total number of functions/modules changed from original code«. It is unclear how this metric
relates to the definition of changeability given above.

3. Rationale. Independently of this extreme example found in the ISO 9126, most existing qual-
ity models fail to give a detailed account of the impact that specific criteria (or metrics) have
on soware maintenance. Hence, they do not explain why a specific criterion is relevant. In
particular, they do not describe how satisfying or violating a quality requirement affects the
maintenance activities carried out on the soware system. is does not only complicate rea-
soning about soware quality but also makes it very difficult, in practice, to motivate engineers
to comply to quality criteria when their rationale is unclear. In particular, the lack of rationale
hampers reasoning about the quality model’s completeness [178] and inhibits the identification
of underlying causes of quality problems [201].

4. Structuredness. As Kitchenham et al. noted, hierarchical models typically suffer from a »some-
what arbitrary selection of characteristics and subcharacteristics« [177]. For example, they
found that »it is not clear why portability is a top-level characteristic of IS0 9126 but interop-
erability is a subcharacteristic of functionality« [178]. Al-Kilidar et al. also found overlapping
definitions of concepts in the ISO 9126. [5]. Another example is the instrumentation criterion
used in McCall’s model depicted in Fig. 3.3: While consistency, conciseness, . . . are attributes of
a system or its entities, instrumentation is a technique used to monitor runtime properties of a
system. It remains unclear why this (and only this) technique has been included in the model
at this location.

Testability

Maintainability

Consistency

Simplicity

Conciseness

Instrumentation

Self-Descriptiveness

Modularity

Figure 3.3: Extract of McCall’s Quality Model [177,205]

We consider this lack of structure to be an effect of two fundamental problems:

a) As already discussed in 2.2.3, the definitions of quality attributes like portability and func-
tionality are highly ambiguous. us, a hierarchical decomposition of these attributesmust
be expected to be ambiguous as well and is, hence, bound to be perceived as arbitrary.
While it is sometimes claimed that the quality characteristics defined by the ISO 9126 fa-
cilitate communication concerning soware quality [134], we agree with [5] that the com-
mon language proposed by the ISO 9126 is far from practical and, in fact, oen complicates
communication. e underlying problem is that the hierarchical models aim at defining
complex terms like portability through terms like adaptability and replaceability which in
itself are highly complex and call for precise definition.

37

3 State of the Art

b) is underspecification cannot be overcome by simply adding more levels to the hierar-
chical decomposition. Rather, it is our experience (see [43]), that a further hierarchical
decomposition does not help to clarify the model, but in contrast, leads to a highly entan-
gled model that is even more disputable. We claim that the underlying problem is the lack
of a clearly defined decomposition criterion that unambiguously defines how a complex
term like adaptability is further decomposed. e problem is illustrated by the fact that
even for the top level attributes various similar but distinctive hierarchical models exist.

In general it must be noted, that none of the existing hierarchical approaches explicitly defines
a metamodel that would clarify the exact nature of the model elements and, foremost, the se-
mantics of their interdependencies. Interestingly, the older models made at least some attempt
to define the semantics of the edges in their model diagrams. For example Boehm et al. state
that »the direction of the arrow [see Fig. 3.1] represents a logical implication: if a program is
Maintainable it must necessarily be Understandable and Testable« [38]. e ISO 9126, on the
other hand, leaves the interpretation of its model diagram completely to the reader. e lack of
a precisely definedmodel semantics not onlymakes it difficult to interpret amodel but hampers
the aggregation of metric values along the hierarchical levels. Consistently, the ISO 9126 does
not even discuss the topic of metric aggregation [5].

5. Operationalization. Most times, quality models are expressed in prose and graphics only. ey
accompany the development process in the form of documents but are not made an integral
artifact that is tightly coupled with quality assurance activities. While most approaches de-
fine metrics that are supposedly used to assess a system’s quality, they do not define how the
approach can be integrated with other analytic quality assurance methods. One problem is
that the models do not clearly separate criteria that can be assessed automatically from criteria
that require manual assessments. is separation would support planning the required analytic
quality assurance activities, i. e. application of tools andmanual reviews. In particular, most ap-
proaches leave unclear how the models should be used for constructive quality assurance. ey
do not explain how the required quality criteria can be communicated to the developers and
how they support achieving them. We doubt that asking developers to design soware systems
to be changeable achieves the desired effect.

Summary Hierarchical quality models may provide a superficial overview on the multifaceted
nature of soware quality. Due the to their inflexibility and unstructuredness as well as their lack
of operationalizability, however, they do not suffice as definitional basis for a mature discipline of
maintainability engineering.

3.2.2 Quality Modeling Frameworks

Several researchers proposed quality modeling frameworks that enable users to build customized
quality models. ese frameworks foremost alleviate shortcoming 1, the lack of customizability, but
also address other problems discussed above.

e Squid approach [35, 177] is a method to plan and control product quality during development.
It uses hierarchical quality models, similar to the approaches discussed above, for defining quality.

38

3.2 Definitional Approaches

Users can either define their own quality models, use the ISO 9126 quality model as-is or customize
an existingmodel like ISO 9126. e approach advances on ISO 9126 as it focuses on the assessability
of the defined models. erefore, it explicitly distinguishes between abstract quality characteristics
and quality attributes that are defined as measurable properties. For such attributes (metrics) the
quality model designer must specify target values that enable the actual assessment. Furthermore,
the approach provides a tool to identify anomalous components based on the measurements.

e EMISQ [234, 235] method is based on the ISO standard 14598 for product evaluation [150]. It
defines an approach for the assessment of internal quality attributes likemaintainability and explicitly
takes into account the expertise of a human assessor. e method can be used as-is with a reference
model that is a slight variation of the ISO 9126 model or customizations thereof. Consequently, the
method’s quality model is very similar to the ISO 9126. It defines quality characteristics and exactly
one level of subcharacteristics that are mapped to quality metrics whereas one subcharacteristic can
bemap tomultiple metrics and vice versa. emetrics are defined by well-known quality assessment
tools like PC-Lint4 and PMD5. Hence, they include not only classic numeric metrics but also metrics
that detect certain coding anomalies. A notable property of the EMISQ method is that its reference
model includes about 1.500 differentmetrics that aremapped to the respective quality characteristics.
e approach also provides tool-support for building customized quality models and for supporting
the assessments.

e authors of the FS (Factor-Strategy) approach also found that the classic hierarchical models ex-
hibit an »obscure mapping of quality criteria onto metrics« and have a »poor capacity to map quality
problems to causes« [201]. e FS approach aims to alleviate these shortcomings by mapping quality
characteristics to so-called detection strategies instead of mapping them to raw metric values. ese
detection strategies are combinations of multiple metric values that are evaluated on the basis of ab-
solute and relative thresholds. For example, the following detection strategy defines classes as being
poorly encapsulated if their number of public attributes (NOPA) is higher than 3 and belongs to the
top 10% of the values measured for this metric. Alternatively, a poorly encapsulated class is defined
by a number of accessor methods (NOAM) greater than 5 if this value belongs to the top 10% of the
values measured for this metric [201]:

PoorEncapsulatedClasses :=
(NOPA, HigherThan(3) and NOPA, TopValues(10%))

or (NOAM, HigherThan(5) and NOAM, TopValues(10%))

e FS approach supports using a pre-defined quality model, like the ISO 9126, to map the detection
strategies to, or building a custom quality model in a similar hierarchical fashion. It provides a set of
pre-defined detection strategies to be mapped to the quality model but also describes how detection
strategies can be deduced from informal descriptions of design flaws [200].

e NFR Method (Non-Functional Requirements Method) [91] is an approach for the specification
of quality requirements early in the development process. e central idea of the approach is to
use experience-based quality models that are customized for each project. If suitable project-specific

4http://www.gimpel.com
5http://pmd.sourceforge.net

39

3 State of the Art

customizations are reflected back to the experience base, they can be reused in future projects. e
quality models itself are of hierarchical nature and, although this is not fully clarified in [91], are
apparently based on a goal-graphnotation similar to the one used in [210] and [280]. e goal-graphs’
nodes describe goals like high source code quality or high code naming and commenting quality and the
edges express the goal interdependencies, e. g. contributes positively or is required for [280]. Hence,
goal graphs are structured similar to the classic quality model but express a goal-oriented perspective
typically used in requirements engineering. e NFR method uses multiple workshops to carry out
the customization (or tailoring) of the quality models and to derive metrics as well as appropriate
threshold values to quantify quality attributes.

In contrast to the NFR method, that clearly has a top-down perspective on quality, the model pre-
sented byDromey addresses qualitymodeling in a bottom-upmanner [92,93]. In his models, system
entities (called components) like classes, variables or loops are first-class citizens that are associated
with so-called quality-carrying properties. To describe the quality impact, quality carrying prop-
erties are classified as correctness, internal, contextual or descriptive where each of the categories is
associated with a general quality attribute as found the ISO 9126. An example that describes quality
criteria for the entity variable is shown in Fig. 3.4. e entity variable is associated with the quality
carrying property assigned as usage of unassigned variables may lead to unpredicted results at run-
time. In Dromey’s model »assignedness« belongs to category correctness which is defined to have an
impact on functionality and reliability. Similarly, the example expresses that variables should have
self-descriptive names as this property has an impact on maintainability and soware reuse. In addi-
tion to the example model for the quality of source code, Dromey describes how the same approach
can be used to specify the quality of requirements documents and, also, outlines a process for devel-
oping quality models.

Assigned

Variable

Component

Quality-carrying
properties

Precise
Single-purpose
Encapsulated

Utilized
Self-descriptive

Documented

Property
classi�cation Quality impact

Functionality, reliability
Functionality, reliability
Functionality, reliability
Maintainability, reuse
Maintainability, reuse
Maintainability, reuse
Maintainability, reuse

Correctness
Correctness
Correctness
Contextual
Contextual
Descriptive
Descriptive

Figure 3.4: Extract of Dromey’s Quality Model [93]

e QMOOD quality modeling approach [15] is based on Dromey’s model and can be used to de-
velop quality models to assess the quality of object-oriented designs. It extends on Dromey’s work
by identifying quality carrying properties for object-oriented design and associating them with a set
of well-known as well as innovative metrics for object-oriented design. Based on these metrics, the
approach provides a quantification of the quality carrying properties and describes how individual
measurements can be aggregated to also quantify high-level quality attributes.

40

3.2 Definitional Approaches

Discussion e quality modeling frameworks discussed above address a number of shortcomings
identified for the classic quality models. However, the following discussion illustrates that none of
the approaches remedies all deficiencies:

1. Customizability. All of the approaches are designed to support building customized quality
models and, hence, satisfy the requirement of customizability.

2. Assessability. e author of the quality modeling approaches recognized that the non-assess-
ability of previous models is a serious shortcoming and, hence, made assessability one of their
central goals. e goal-graphs are an exception as they were explicitly not designed for evaluat-
ing existing systems but to »rationalize the development process in terms of nonfunctional re-
quirements« [210]. For the other approaches, assessment is usually done on the basis of metrics
used in conjunction with thresholds. Some approaches, e. g. EMISQ, FS, QMOOD, exclusively
use product metrics like the cyclomatic complexity (see Sec. 3.4.1) while other approaches, e. g.
NFR, focus on process metrics like »average number of hours required for system recovery«
and Squid uses both types of metrics. Although, many quality properties, like naming quality,
cannot be analyzed automatically, the FS and QMOOD approaches only take into account au-
tomatically assessable properties of a system. e EMISQ method is also based on automatic
measurements but acknowledges that measurement results need to be thoroughly evaluated by
a human expert.

3. Rationale. e approaches do a differently good job at providing rationales for the specified
quality criteria, i. e. for explainingwhat impact a specific criterion has on sowaremaintenance.
Most approaches capture this only implicitly by explaining how a specific criterion relates to
maintainability. While this provides an intuitive understanding, it makes not explicit how a
criterion positively or negatively influences specific maintenance activities. For example, a typ-
ically construct modeled with Dromey’s approach associates the self-descriptiveness of a variable
with the quality attribute maintainability. While their might be an intuitive understanding for
the impact of variables with self-descriptive names on soware maintenance, the model does
not capture this explicitly, let alone attempts to quantify the impact.

e EMISQ method is an exception as it supports the explicit documentation of the rationale
for each metric included in the model. However, this is achieved by a prose description rather
than in a structure manner.

4. Structuredness. For the concrete hierarchical quality models, the lack of a clearly defined de-
composition criterion was identified as a major shortcoming. Unfortunately, the quality mod-
eling frameworks hardly remedy this problem as they use a similar hierarchical structure as the
classic models. is can be illustrated with a quality model for efficiency built with the NFR
method [91]6 (see Fig. 3.5): Although the decomposition marked with a can also be found in
ISO 9126, its semantics is unclear. What is the exact nature of the relation between efficiency
and usage time? Decomposition b is even harder to understand, especially because it appears to
be nonuniform. While capacity can be understood as a quality-carrying property in Dromey’s
sense, type and position of devices is hard to classify. Consequently, the meaning of the rela-
tions expressed by b1 and b2 are dubious. Decomposition c, however, appears to have a clearer

6NFR method publications do not provide examples for maintainability.

41

3 State of the Art

meaning. It describes the capacities of the different entities of the system and, hence, follows
the structural decomposition of the system.

However, the central problem again is that the decomposition criterion for decompositions
a, b, c is undefined and apparently nonuniform. Consequently, the semantics of the decompo-
sition are unclear. Note, that the logical implication used in Boehm’s model does not work here,
either, as the edges are undirected and it is also not obvious how resource utilization would im-
ply type and position of devices. Overall, it appears that the semantics of the relations between
the model elements is not stronger than »has something to do with«.

E�ciency

Time to perform one ore more task

Resource Utilization

Usage Time

Capacity

Capacity of database

Capacity of network

Capacity of PDA

a

a b1

b2

c

c

c
Type and position of devices

Figure 3.5: Extract of NFRMethodModel for Efficiency [91]

While this example may represent an extreme case, the other approaches discussed above ex-
hibit similar problems. Squid, EMISQ and FS use the same undefined decomposition as the
ISO 9126. Dromey’s approach is not directly affected by the problem as his models are, in fact,
collections of unconnected fragments where each fragment has an comprehensible meaning.
However, a hypothetical union of these fragments base on the quality attributes would exhibit
the same shortcomings.

Like the classic qualitymodels, these approaches do not explicitly definemetamodels that would
specify the syntax and semantics of the quality models. e Squid approach is one step ahead
as it at least provides a semi-formally described metamodel [177]. An exception are goal-graph
based approaches as syntax and semantics of goal-graphs are precisely defined. However, with
their goal orientation these approaches have a strong focus on early development phases and
do not define assessable models that could be operationalized for soware maintenance. e
lack of a clearly defined structure is especially problematic for customizable quality models. It
makes extending a model very difficult, as it is unclear where a new quality criterion must be
located in an existing model.

5. Operationalization. Similar to the classic quality model, the quality modeling frameworks do
not provide ways for using the quality models for constructive quality assurance. It is le un-
clear how the quality models should be communicated to project participants, in particular to
developers. is is all the more curious as e. g. Dromey states that the ability to provide »sys-
tematic guidance for building quality into soware« is one of the central requirements for a
quality model [92].

Due to their improved assessability, the quality modeling frameworks provide better means for
being operationalized for analytic quality assurance. However, most of them do not explicitly
explain how this can be done in practice. A central problem lies in the way the approaches deal
with the collected metric values. To illustrate this one needs to be aware of the size of today’s

42

3.2 Definitional Approaches

soware systems. Many soware systems today have several thousand modules (classes) with
a multitude of functions (methods) each. e quality modeling approaches define between a
dozen andmore than thousandmetrics. Even if onlymodule levelmetrics are take into account,
an assessment of a whole system, hence, generates a collection of thousands or even millions of
metric values. Clearly, a condensation of thesemasses is required tomake them of practical use.
is is usually achieved by aggregating metric values to higher levels. To achieve this, different
strategies can be pursued: aggregation w.r.t. quality decomposition and aggregation w.r.t. system
decomposition.

e problems current approaches exhibit regarding the first strategy are best exemplified by the
extract of a Squid quality model shown in 3.6. For each leaf quality characteristic, the model
defines one or more metrics for quantification. However, it remains unclear if and how the
individual metric values should be combined, e. g. can simplicity be quantified by combining
the measured values for average module size, number of modules and cyclomatic complexity?
Furthermore, canmodularity be quantified by combining cohesion, coupling and simplicity? It is
to be noted, that it is not only unclear which aggregation operator would be appropriate but that
themetrics value are on different scales and even of different scale type. is further complicates
a sensible aggregation of data (see Sec. 3.4.1 for further discussion).

Maintainability

Cohesion

Simplicity

Average number of modules changed per
fault corrected during integration testing

Modules calling a module (fan-in)

Modules called by a module (fan-out)
Average common data access

Average module size

Number of modules

Cyclomatic complexity

Modularity

Analyzabilty

Coupling

Figure 3.6: Extract of SquidModel [35]

Consequently, Squid and other approaches do not discuss aggregation at all. Hence, for assess-
ments the hierarchical structure on top of the metrics serves only explanatory purposes. In
contrast to his, the QMOOD method uses weighted sums to aggregate values. For example, it
defines extendibility as:

Extendibility := 0.5 · Abstraction - 0.5 · Coupling +
0.5 · Inheritance + 0.5 · Polymorphism

where the properties are measured as shown in Table 3.1. Firstly, the rationale behind this ag-
gregation is unclear. Why are exactly these metrics used, why are they summated and how
are the factors defined? Secondly, the technical soundness must be seriously doubted. Metrics
Abstraction and Coupling count classes whereas Polymorphism counts methods and Inheritance
defines a ratio. It is unclear how a sum of these different entities should be interpreted. More-
over, the different metrics work at different ranges. e normalization approach described

43

3 State of the Art

in [15] to deal with this difference is incomprehensible. Furthermore, normalization does not
remedy the fundamental problem that the rationale of the aggregation itself is dubious.

Property Metric Description Range
Abstraction Average Number of

Ancestors (ANA)
Average number of classes from which a class
inherits information

{0, 1, . . . }

Coupling Direct Class Coupling
(DCC)

Number of classes a class is related to by
attribute declarations or message passing

{0, 1, . . . }

Inheritance Measure of Functional
Abstraction (MFA)

Ratio between number of methods inherited by
a class and total number of methods accessible
by member methods of the class

[0 . . . 1]

Polymorphism Number of
Polymorphic Methods
(NOP)

Number of methods that can exhibit
polymorphic behavior

{0, 1, . . . }

Table 3.1: Metric Definitions for the QMOODMethod [15]

A more sound approach is proposed by the EMISQ method. It translates metric values or rule
violations to an ordinal scale with values ok, critical and very critical and uses the median to
aggregate these ratings to higher levels.

e situation is equally bleak concerning the aggregation w.r.t system structure as none of the
approaches details on this problem although some authors published such aggregated values.
For example, the authors of the QMOOD method present a table of system-level metric values
although they donot explain how their class-levelmetrics have been aggregated [15]. Obviously,
one can used the arithmetic mean to deduce such values. However, this is not only doubtful
w.r.t. to the scale type of the base metrics (see Sec. 3.4.1) but also of questionable utility as it
does not help to identify quality defects.

Summary Quality modeling frameworks alleviate the inflexibility of the classic quality models
and, to some extent, address their inassesability. However, the fundamental flaws concerning their
structure and the ability to aggregate metric values still hamper their application as well-founded
basis for maintainability engineering.

3.3 Constructive Approaches

ere is multitude of approaches for constructive quality assurance geared towards soware main-
tenance. ey range from personnel aspects like developer trainings over the usage of tools like
configuration or change management systems to process models that define high-quality mainte-
nance processes. e benefit of these measures is widely-acknowledged although there is an ongoing
discussion about the relationship between process and product quality [178, 287]. However, none
of these approaches entails an explicit specification of quality criteria. Rather, it is assumed that the
usage of a certain tool or the application of a specific process aids soware maintenance activities in
general.

Concerning constructive approaches, this thesis focuses on methods that serve the purpose of com-
municating an explicit specification of quality to soware engineers to support them in building

44

3.3 Constructive Approaches

high-quality systems. Consequently, the following discussion of the state of the art focuses on exist-
ing methods for this purpose:

Guideline documents. Guideline documents describe quality requirements and explicitly ex-
plain what developers should do or should not do to satisfy them.

Developer trainings. In developer trainings an experienced trainer communicates quality re-
quirements and ways to achieve them to the developers.

Language-characteristics. Some quality requirements are so fundamental that they were re-
spected by the designers of programming and modeling languages. For example, the Java lan-
guage does not support unconditional branches (GOTO) as they support writing unstructured
code [88]7. Hence, developers are constructively supported to avoid such pitfalls.

Tool-integrations. Additionally, developers are supported by warnings that compilers gener-
ate for dubious use of language constructs. Nowadays, modern integrated development envi-
ronments (IDEs) advance on this by integrating numerous checks for quality aspects that are
reported to the developer in real-time.

Although doubtlessly important, developer trainings and programming language characteristics are
beyond the scope of this thesis. Quality checks integrated in development tools reside on the bor-
derline between constructive and analytic measures. While they can be perceived as a constructive
measure, they are, in fact, more of analytic nature since they analyze already existing artifacts; al-
though the time between artifact creation and analysis is infinitesimal small. Hence, the following
sections focus on quality guidelines.

Today, most companies use guidelines to define quality criteria and to communicate them to the
project participants [272]. As their focus is mostly on code, they are also called coding standards
or coding conventions. ey are introduced in nearly all standard soware engineering literature
and their usage is recommended by several international process standards, e. g. the IEEE as well
as the ISO standard on soware maintenance [145, 159] and the IEEE standard for soware quality
assurance plans (SQAPs) [146]. Some development methodologies like eXtreme Programming even
made them one of their central principles [259].

Guidelines have been published for nearly all existing programming andmodeling languages. Exam-
ples are standards for C [209, 275], C++ [135], Java [208], Fortran [207], ADA [249] and Matlab/Si-
mulink [95, 196]. In addition, there are countless company-specific guidelines that are either devel-
oped individually or on the basis of publicly available ones. In some domains there exist guidelines
that function as quasi-standards, e. g. the MISRA C guidelines in the automotive domain [209].

ese standards vary in size and scope. For example, the Fortran standard [207] has 6 pages and
exclusively focuses on source code whereas the C++ standard [135] has 88 pages and also includes
documentation aspects. But foremost, the guidelines differ in their intent. While simple coding con-
ventions mainly aim at consistency of code artifacts, more advanced guidelines aim at improving the
quality of all development artifacts. Moreover, the guidelines emphasize different quality attributes.
e MISRA guidelines for C have a clear focus on reliability, the guidelines discussed in [217] are
meant to improve security and other guidelines stress portability [207, 275]. In general, however,

7In fact, the Java keywords break and continue support a constrained version of the GOTO jump [124].

45

3 State of the Art

the main concern of coding standards is readability and, hence, maintainability. For most program-
ming and modeling languages this is foremost done by constraining the ways developers can use the
language, e. g. by prohibiting the use of unconditional branches, and by presenting best-practices.

Interestingly, there is very little contribution from the research community to the topic of guidelines
or coding standards as they are used in industry. While their existence and wide usage is recognized
in most publications, there is hardly any work that deals with the characteristics, development and
application of quality guidelines. Exceptions are [217] that describes how guidelines can be specif-
ically developed for security issues and [189] that surveys the application of coding standards in
programming courses.

Discussion For the purpose of this thesis, the discussion of guidelines distinguishes between defi-
nitional and constructive aspects, i. e. the quality criteria defined by the guidelines and the way they
are communicated. Concerning the definitional aspects, the issues discussed for quality models also
provide a well-suited framework for a structured discussion of the advantages and shortcomings of
quality guidelines.

Customizability. Guidelines are of a less rigid nature than (standardized) quality models and
have been customized by soware developing organizations ever since. However, this is usually
done in an ad-hoc manner as there are no tailoring concepts defined for the guidelines.

Assessability. Like quality models, guidelines sometimes define rules whose adherence is hard
to assess. An example is the rule that require program entity names to be self-descriptive. While
desirable, this rule is not concrete enough to be assessed [79]. However, due to their explanatory
nature, guidelines in general are considerablymore concrete than the classic qualitymodels and,
hence, better suited for assessments.

Rationale. Guidelines oen fail to motivate the required practices at all or provide only very
generic explanations. For example, the Java Coding Conventions correctly demand that every
switch statement should include a default statement but do not explain why [208]. emodeling
guidelines published by the MAAB only annotate each guideline rule with one or more generic
term like readability or simulation [196]. Well established and widely acknowledged guidelines,
e. g. [135,209], clearly advance on this by providing detailed explanations for nearly all presented
rules.

Structure. e structure of guidelines is usually defined by classic document entities like chap-
ters and sections only, although more advanced guidelines use templates to improve consis-
tency [196]. Regarding the decomposition (chapter structure) most guidelines do not respect a
clear decomposition criterion. Rather, they arbitrarily mix a decomposition based on language
constructs (variables, functions, classes,. . .) with a decomposition based on quality attributes
or some other method of decomposition based on arbitrary topics of interest.

Operationalization. Next to the constructive aspects discussed below, guidelines are oen not
followed simply because it is not checked if they are followed or not [188]. is is all the more
unfortunate as for some guideline rules compliance could be assessed automatically. However,
there rarely is an explicitly defined connection between the quality guidelines that define quality
and the analytic approaches that assess quality. An exception are the MISRA C guidelines as

46

3.4 Analytic Approaches

multiple vendors offer tools that explicitly analyze »MISRA conformance« and cover a majority
of the rules defined in the standard.

Concerning the constructive aspect of quality guidelines, it must be said that guideline documents
are a well-suitedmethod to communicate quality criteria to developers as their document form is the
form developers are most familiar with. However, guidelines oen do not achieve the desired effect
as developers read themonce, tuck themaway at the bottomof a drawer and follow them in a sporadic
manner only. Our experiences is that this is caused not only by the lack of rationale present in the
guidelines but also by an insufficient tailoring of the guidelines for different target groups (see 6.1).
For example, expert developers do not want to use guidelines that explain beginners’ issues and re-
quire less additional explanations. Beginners or new project participants, however, cannot work
efficiently with a guideline that is too condense. Moreover, guidelines oen contain many rules on
certain subsets of a language or framework that a developer or team does not use. Hence, these parts
of the guideline are considered irrelevant and disturbing.

As guidelines do not have a properly defined tailoring mechanisms, they are either rejected due to
these reasons or customized in an ad-hoc per-project or even per-developer manner. Because guide-
lines change or extensions are hard to distribute in such a situation, this inevitable leads to a number
of inconsistent guideline documents. Since guidelines are oen the only specification of quality crite-
ria in the context of maintainability, the consequence is, in fact, different quality requirements within
the same company or project.

Summary Quality guidelines are an integral part ofmaintainability engineering as they are needed
to convey quality criteria to developers. However, as a definitional device they suffer from similar
shortcomings as hierarchical quality models and as constructive device they are too inflexible in
their current form. ese deficiencies need to be addressed to make them work as an effective tool
in constructive quality assurance.

3.4 Analytic Approaches

Even if successfully applied, constructive approaches are typically not restrictive enough to categori-
cally rule out violations. Hence, analytic approaches still need to be used to ensure that the specified
quality criteria are satisfied. e following sections discuss the state of the art of different analytic
approaches.

3.4.1 SoftwareMetrics

For several decades, soware metrics have been used, amongst others, to measure system size, their
quality and developer productivity. Aer the first sowaremetric, lines of code (LOC), was introduced
in the 1960ies, more than 1,000 soware metrics were proposed and discussed in more than 5,000
research papers [306]. is thesis does not propose any new soware metrics and, hence, does not
directly contribute to the field. However, soware metrics are discussed here as they are the main
mechanism for the definition ofmeasurable quality attributes. ey thereby provide the link between

47

3 State of the Art

the definition of quality and its assessment. Moreover, this discussion is required as it is sometimes
difficult to distinguish advanced metric approaches from the quality models discussed above.

e following sections give a short introduction on measurement basics and then discuss soware
metrics in general as well as metrics that are specifically designed for soware maintenance. e
discussion has a focus on product metrics (as opposed to process metrics) as these are central for the
contribution of this thesis. For a discussion of soware metrics in general, see e. g. [63, 105, 116].

Measurement Basics As an exhaustive discussion of measurement theory is beyond the scope of
this thesis, the following introduction to measurement basics is limited to the terms required for the
discussion of the presented soware metrics.

e IEEE defines a soware metric as a »quantitative measure of the degree to which a system, com-
ponent, or process possesses a given attribute« « [143]. More formally, ametric ormeasure8 is amap-
ping M from an empirical relation system E = (E, RE) to a formal relation system F = (F, RF)
where E are the entities of the real world, RE their relations and F are formal entities and RF their
relations. For example, the LOC metric can be seen as mapping from the empirical relation system
ELOC = (set of all programs, {is longer than}) to the formal relation system FLOC = (N0, {>}).
e quality of a metric is judged by three criteria:

Objectivity. Objectivity ensures that measurement is not influenced by the measurement envi-
ronment.

Reliability. Reliability ensures that measurement is not subject to measurement errors and is
repeatable.

Validity. Validity is themost complex criterion and is concerned with the question if themetric
reallymeasures what it intends tomeasure, e. g. are lines of code really ameasure of system size?
Measurement validity is a research discipline in itself and provides more detailed definitions for
metric validity that go far beyond this informal description [50,282]. However, for the purpose
of this thesis, it is sufficient to restrict the discussion to the two following aspects of validity9:

Content Validity. Content validity describes the degree to which a metric accurately repre-
sents all aspects of the construct it attempts to measure. Hence, »content validity requires
an inclusive definition of the domain of interest« [69]. For example, a metric LOCA that
measures the size of soware systems by counting only the lines of code that include the let-
ter ›a‹ would not be considered content valid asmajor parts of the system are not taken into
account. Content validity is the most important requirement for soware metrics used in
the context of quality assessments. Only if a metric accurately and completely captures the
construct it attempts to measure, it can be reliably used to asses it. A metric that, without
a detailed analysis, »appears« to be content valid, is oen called face valid [282].

8In soware engineering the term metric is commonly used for what other disciplines call a measure. Hence, this thesis
uses the two terms synonymously.

9Different sources use inconsistent classifications of the types of validity. For example, some sources view content validity
as an aspect of construct validity [282] while others regard them to be separate concepts [50, 69]. Hence, this thesis
discusses the relevant types of validity without an attempt for a classification.

48

3.4 Analytic Approaches

Predictive Validity. Predictive validity is a subaspect of criterion-related validity and, hence,
is defined with respect to an external criterion, i. e. the question is how well a metric pre-
dicts another aspect of the same entity. For example, the LOC metric is known to be a
good predictor for the number of changes a component undergoes as larger components
are typically changedmore frequently. Note, that a metric does not have to be content valid
to be predictive valid, e. g. the content invalid metric LOCA from above can still be a good
predictor for change frequency.

Another important aspect of measurement is the level of measurement or scale type of a metric. e
level of measurement is a classification that is used to describe the nature of information contained
within formal entities assigned to real-world entities. In 1946 Stevens identified four different types
of scales [277]: nominal scale, ordinal scale, interval scale and ratio scale. e scales are ordered with
respect to their expressiveness and allow differently powerful relations and operations to be used. For
example, the nominal scale only allows to check values for equality, the ordinal scale allows to order
values, the interval scale allows to sum values and the ratio scale allowsmultiplication. Consequently,
the different scale types support different statistical operations, e. g. the nominal scale supports the
mode, the ordinal scale the median and the interval scale the arithmetic mean. For soware metrics,
the level of measurement is important since »unless we are aware of the scale types we use, we are
likely to misuse the data we collect« [229].

General Metrics A good part of the widely-known soware metrics are used to measure the size
of a soware system. Examples are the LOC, number of statements, number of methods, number of
classes or the Halstead Volume [130]. Next to this, a number of different metrics to measure source
code complexity were proposed. Examples are Halstead Difficulty [130], McCabe’s Cyclomatic Com-
plexity10 [204] and the family of complexity metrics presented by Basili [21]. Moreover, numer-
ous authors presented metrics designed for specific paradigms, e. g. the metrics suite for object ori-
ented design proposed by Chidamber & Kemerer [56]. While many authors claim that their metrics
can be used to measure soware quality, most of them do actually focus on the more specific topic
of fault-proneness. Concretely, they advocate metrics as predictors to identify fault-prone compo-
nents [41, 211, 238].

Discussion While the utility of metrics in general is without doubt, there has been fierce criticism
regarding a number of different issues:

Validity. Many soware metrics were not properly validated before publication. Hence, their
content and predictive validity has been questioned by multiple researchers [19, 69, 104, 173,
179, 229, 258, 262]. For the purpose of this thesis, it is sufficient to highlight the shortcomings
in content validity as it is central for a metric’s capability to define and assess quality:

Many metrics attempt to quantify constructs that are intuitively recognizable but poorly un-
derstood. e prime example for this is soware complexity for which countless metrics have
been proposed although there is an ongoing discussion on what actually constitutes soware

10Some authors even consider cyclomatic complexity a size metric as it essentially counts the number of program
branches [21].

49

3 State of the Art

complexity [71, 123]. We share Fenton’s believe that this attempt to circumvent a lack of un-
derstanding by providing a quantitative measurement is »one of the most common failings in
soware metrics work« [104]11.

One underlying problem is that measurement objectives are not always clearly defined. In par-
ticular, it is le unclear if measurement activities aim at an assessment of a property or at a
prediction [104]. As these objectives require different validity properties, it is hard to judge the
quality of a proposed metric if the objective has not been clearly stated. With its vague defi-
nition of measurement objectives, Chidamber & Kemerer’s suite of metrics for object oriented
design is only one example [56]. A counter example is [246] that uses structural metrics to
predict maintenance efforts and demonstrates how such a metric can be thoroughly validated.

e lack of content validity and clearly defined measurement objectives can be seen as a symp-
tom of the broader phenomenon of »indiscriminate measurement« where metrics are designed
and applied in a bottom-up manner, i. e. their rationale and intent is explained only aer the
measurement was carried out. Due to the lack of rationale it is unclear in which way system
properties influence sowaremaintenance. ismakes it hard to conveymeasurement findings
to developers.

Another consequence of »indiscriminate measurement« is the excessive focus on aspects that
can be easilymeasured instead of aspects that are important tomeasure. As automaticmeasure-
ments are significantly easier than manual measurement, this lead to a strong focus on things
that can be measured automatically. Since many important quality factors of a soware sys-
tem, e. g. the naming of its identifiers or the appropriate use of data structures and algorithms,
cannot be analyzed automatically, many important quality aspects are not covered by metrics.

Measurement eory. Multiple authors found that applications of metrics oen do not re-
spect the fundamental rules of measurement theory. In particular, it has been criticized that
the metrics’ level of measurement is not respected when applying transformations or other op-
erations [104, 179]. One prominent example, is the application of the arithmetic mean for or-
dinally scaled values that is widely used but invalid according to measurement theory. While it
has been argued that this critique is at least partly based on a too strict interpretation of mea-
surement theory in the context of soware engineering [40], it remains true that a well- founded
application of soware metrics requires a more thorough observance of measurement theory.

Scope. Another shortcoming of today’s productmetrics is their limited scope. While it has long
been noted [247] that measurements should take into account pre-implementation artifacts
like design documents, the majority of metrics is still dedicated to source code only. In theory,
there are a number of metrics for design, in particular for object-orientation. However, they are
oen applied only in the implementation phase as the majority of metric tools works on code
artifacts (see Sec. 3.4.4). Next to the neglected artifacts from early development phases, there
is a number of implementation artifacts that are covered by metrics rather poorly. Examples

11Other disciplines suffer from similar problems. For example, psychologists have developed measures for intelligence for
more than 100 years although no commonly agreed on definition of intelligence exists. In 1923 E. Boring proposed
to define intelligence as »intelligence is what the tests test« [39]. He thereby narrowed the concept of intelligence,
but did so deliberately to support a substantiated discussion of intelligence tests. In soware engineering, however, it
appears that some researchers blindly accept soware complexity being defined as »complexity is what the cyclomatic
complexity measures«.

50

3.4 Analytic Approaches

are, code written in domain-specific languages, configuration files, build scripts and, foremost,
documentation.

Maintainability Metrics In addition to the general soware metrics discussed above, a number
of researchers presented metrics that were specifically designed to support soware maintenance or
proposed ways of applying general metrics for this purpose.

e earliest work on metric known to us that explicitly discusses maintainability aspects is Rubey
& Hartwick’s paper from 1968 [253]. is is one of the papers that is at the borderline between
the quality models as discussed above and soware metrics. For different quality characteristics it
defines criteria and associates them with source code metrics whose values are between 0 and 100.
For example, it defines criterion »the program logic is as simple as possible (M6.2)« as one factor of
modifiability and proposes the following metric to measure it:

M6.2 =
100
n

N∑
i=1

Fi

R

where n is the number of instructions in a program, Fi is the number of programmer-accessible reg-
isters free aer the i-th instruction and R is the total number of programmer-accessible registers.

In 1984 Berns presented a method for measuring the maintainability of Fortran programs [29]. As
he assumes that maintainability can be equated with program difficulty the metric could be actually
considered a complexity metric. However, it is specifically designed to aid soware maintenance
and is not meant to predict fault-prone components or steer testing efforts. e approach essentially
assigns different Fortran language constructs with different weights and calculates the difficulty of
a program by adding these weights. e approach considers interaction between program instruc-
tions that are believed to increase program difficulty. For example, the weight of assignment A=B+C
depends on the variable types and the scope of the variables defined earlier in the program. Further-
more, Bern’s approach adds additional weights for »poor usages of Fortran«, e. g. the definition of a
variable that is never used. His approach can be seen as an early predecessor to the violation checkers
discussed in Sec. 3.4.4.

e best-known maintainability metric is the maintainability index proposed by a number of au-
thors around Paul Oman in multiple publications [8, 61, 62, 226]12. e maintainability index (MI)
is defined as13:

Maintainability = 171 − 3.42 · ln avgEff
− 0.23 · avgECC
− 16.2 · ln avgLOC

+ 50 · sin
√

2.46 · perCM

12On the website of the Soware Engineering Institute that previously advocated the maintainability index, it has recently
been flagged as »legacy«.

13ere are a number slight various of the MI. is version is cited from [62]

51

3 State of the Art

where avgEff the average Halstead effort per module [130], avgECC is the average extended cyclo-
matic complexity per module14, avgLOC is the average lines of code per module, and perCM is the
average percent of lines of comments permodule. is formula was derived using regression analysis
where the dependent variable was the maintainability index and the independent variable a subjec-
tive assessment of maintainability that is not described in detail in the paper. It was later on adjusted
to counter certain unwanted effects. For example the sine is used to provide a ceiling for the effects
that comment lines have on the index. e authors do not specify concrete thresholds to interpret
the index but give the following »rule of thumb«: »Components above the 85 maintainability index
are considered highly maintainable, components between 85 and 65 are moderately maintainable,
and the components below 65 are ›difficult to maintain‹. « [62].

In [298] classic and object oriented metrics are used as predictors for change-proneness of compo-
nents in order to support maintenance activities. Using Pareto analysis they found that a number
of metrics, e. g. coupling between objects (CBO), are good predictors for the number of changes a
component undergoes where others like depth of inheritance tree (DIT) are not. However, none of
the metrics was able to identify components with a high change density, i. e. number of changes with
respect to component size. Consequently, the metrics under investigations were mainly identified
as good »predictors« for component size.

Recently, Buse & Weimer presented a new metric for measuring the readability of source code which
is generally considered important for soware maintenance [48]. ey performed a study where
120 participants subjectively rated the readability of 100 code snippets. ey found that there is a
»significant but not overwhelming« agreement onwhat readability is. eyderive a readabilitymetric
based on a set of simple metrics, e. g. line length, identifier length, number of spaces. is is done
using a machine learning approach as simple methods for establishing correlations are considered
insufficient due to strong interactions between the basicmetrics. ey found that this metric is better
in judging readability than the average human judge and that the metric is strongly correlated with
change frequency and fault-proneness. As an additional result, they report that lengths of program
identifiers does not influence the readability of a program.

Discussion e same criteria discussed for general metrics also apply for themaintenance-specific
metrics:

Validity. As attempts to define a content valid metric for program complexity failed so far, it is
not surprising that metrics for maintainability, that is usually considered to subsume complex-
ity, are not content valid either. In fact, most of the proposed metrics are not even face valid
since even superficial analysis reveals that important aspects are not considered. For example,
themaintainability index considers comment lines but does take into account the content of the
comments itself. Similarly, the readability metric proposed in [48] integrates program identi-
fiers but only analyze their length rather than desired properties like self-descriptiveness. In both
cases, the desire for automatically measurable properties is believed to be the reason for these
shortcomings. Another example for a metric that obviously captures only part of the construct
it aims to measure, is Rubey & Hartwick’s simplicity measure described above.

14It is unclear towhich variation ofMcCabe’s cyclomatic complexity the authors refer to. Presumably they use to a variation
that takes into account Boolean operators like and, or that occur within branching conditions.

52

3.4 Analytic Approaches

Measurement eory. As with the general metrics, work on maintainability metrics is oen
sloppy with respect to measurement theory. For example, it is not clear in how far the different
scale types of the metrics used for the maintainability index have been considered and, partic-
ularly, it is unclear what the scale type of the maintainability index is. Berns does not explicitly
discuss this problembut hismaintainability assessmentmethod actsmore careful as it only adds
weights [29].

Scope. Most maintainability metrics focus exclusively on source code and, hence, do neither
take into account artifacts of early development phases nor non-code artifacts of the implemen-
tation phase, e. g. documentation.

Summary Soware metrics are an integral part of maintainability engineering as they serve the
quantification of quality criteria and, hence, aid the unambiguous definition as well as the assessment
of quality requirements. However, the above discussion shows that, to be applied effectively, met-
rics need to be supported by well-founded definitional measures in order to prevent indiscriminate
measurement.

3.4.2 Metric Methodologies

In response to the indiscriminate application of soware metrics, several researchers proposed met-
rics methodologies or measurement methodologies that support a substantiated application of metrics.
Examples are the metrics program described by Grady & Caswell [125], the measurement approach
defined by the SEI [223], the ami program [73] and, most notably, the Goal-Question-Metric (GQM)
approach defined by Basili & Rombach [18]. As GQM is by far the most widely-used approach and
the other approaches do not significantly advance on it, the following discussion focuses on GQM.

GQM is a »systematic approach for setting project goals [. . .] and defining them in an operational and
tractable way« [18]. To applyGQMone needs to define project goals and refine them into quantifiable
questions. For quantification, these questions are associated with one or more metrics. e approach
supports the clear specification of goals by providing additional structure through the following four
goal dimensions:

Object — What is being examined?

Purpose — Why object is being examined?

Issue — Which attribute of the object is being examined?

Viewpoint — From which perspective is the object being examined?

An example concerning the processing of change requests is given in Fig. 3.7. e example defines
one goal refined into two questions that are associated with three and two metrics, respectively.

GQM has been used in various academic and commercial contexts to define goal-oriented measure-
ment programs. With respect to soware maintenance the following applications of GQM deserve
particular attention:

53

3 State of the Art

Goal Purpose Improve
Issue the timeliness of
Object change request processing
Viewpoint from the project manager’s viewpoint

Question 1 What is the current change request processing speed?
Metrics Average cycle time

Standard deviation
% cases outside of upper limit

Question 2 Is the performance of the process improving?

Metrics Current average cycle time
Baseline average cycle time · 100
Subjective rating of manager’s satisfaction

Figure 3.7: GQM Example [20]

Rombach et al. report on the application of GQM to characterize soware maintenance at the So-
ware Engineering Laboratory (SEL) [248]. ey used a set of seven goals and twelve questions to
investigate different aspects of the soware maintenance phase, e. g. the distribution of change re-
quests with respect to maintenance types, the variations between different projects and the impact of
specific product properties on the maintenance activities. ey do not report on the applied metrics
in detail. Next to an improved understanding of maintenance at the SEL a central result was, that
the definition of a measurement program is an iterative process that requires continuous revision
due to changes in the measurement environment and an improved understanding of the examined
object.

A related study was carried out by Basili et al. [16]. e goals were to develop a better understanding
of soware maintenance releases and to derive a model that predicts effort of future maintenance re-
leases. To achieve this, they developed a GQM model with three goals; two directed at analyzing the
current process for maintenance releases and one directed at the effort prediction model for main-
tenance releases. e central result of the study is that a structured measurement of the status quo,
considerably helped to develop the predictive model.

Recently, Goldschmidt et al. used GQM two compare different data persistency frameworks with
respect to performance and maintainability [122]. ey defined one goal for maintainability that
is refined by five questions where each question is associated two to four metrics. ey used typi-
cally scenarios like »getting accustomed to the framework« or »add an additional persistent class« to
define their questions. For example, one questions is »How big is the effort to conduct all changes
within the scenario?«. Two metrics associated with this question are »time to conduct the change
in minutes»and »amount of files and/or models that need to be touched«. Using GQM the authors
were able to perform a thorough and plausible comparison of the persistency frameworks, although
they themselves do not draw any conclusions on the suitability of GQM for their study.

Discussion & Summary GQM is a major advancement on the »indiscriminate measurement«
criticized above as it defines a top-down measurement approach that calls for clearly defined mea-
surement objectives, explicitly includes manual metrics and does not require complex concepts like
maintainability to be condensed to a single value [18]. Hence, a GQM-based measurement is likely
to include relevant measures and not only measures that are easy to collect.

54

3.4 Analytic Approaches

However, GQM-basedmeasurements usually have a strong focus on the process and seldom explicitly
take the product characteristics into account. is is also true for applications of GQM that are
directed at product attributes. For example, maintainability related goals are usually quantified with
respect to the effort needed to perform a specific task [16,122,248]. Note, that this is fundamentally
different from the approach proposed by the quality models discussed above. ese models purely
describe product characteristic but do not clarify how these influence the maintenance effort.

As effort reduction can be seen as final goal of maintenance related measurements, focusing on it is a
sensible and promising approach. For a practice of integrated maintainability engineering, however,
this strong focus on analysis makes GQM a suboptimal candidate since it does not directly support
constructive approaches. Obviously, the GQM approach could also be (miss-)used to build mea-
surement models that include the various product characteristics included in the classic hierarchical
models. However, due to the fixed number of levels (goals, questions,metrics) and the lack of a clearly
defined decomposition criterion that would inevitable lead to models that are subject to the same
criticism as the ones discussed above. Instead, it appears to be sensible to combine the goal-driven
approach of GQM with a refined quality modeling method to avoid »indiscriminate measurement«
while still providing the fine-granular information required for constructive approaches.

3.4.3 Reviews & Inspections

Reviews and inspections have long been recognized as an effective technique for finding soware
quality problems [4, 22, 100, 101, 109, 117]. While inspections are usually associated with finding
soware defects, they have also been applied to identify issues that are relevant for soware mainte-
nance but do not directly affect the functionality or reliability of the system [45,203,227,268,283].

ere are no clear-cut definitions for inspections, reviews, walk-throughs and audits although most
authors attribute different levels of formality and rigor to these techniques. For the purpose of this
thesis the terms review and inspection are used synonymously to describe all manual verification
techniques that are based on reading system artifacts. Fig. 3.8 illustrates the inspection process. In
this process an inspector or team of inspectors analyses a product document, e. g. a code file. To do
so, he checks if the product document satisfies the specification given by the source document and if
a given set of rules is respected. is process is supported by checklists and finally leads to an issue log
that lists the identified quality defects. e underlying idea is that the product document was created
on the basis of the source document and the creation process respected a set of rules. For example,
program code is written based on a prose specification and the rules are given by coding conventions.
Checklists support the inspection process by formulating the rules in amanner suitable for a step-by-
step inspection process. It is important, that they »must ultimately be derived from the rules [. . .]«
[117]. In practice, however, there sometimes is a less clear distinction between rules and checklists
and rules aremade explicit only through the checklists. Consequently, these checklists serve not only
analytic purposes but, in fact, define quality. Although Gilb advices against this practice [117], there
is a rich body of checklists for different kind of artifacts in different languages that get reused across
organizations and even domains [45].

Discussion ere is relatively little work on the application of inspections for the particular pur-
pose of identifying maintainability issues. However, previous work suggests that it may be worth-

55

3 State of the Art

Product
Issue Log

Inspection
Process

Rules Checklists

Source

Figure 3.8: Software Inspection Process Inputs and Outputs [117]

while to not only include maintainability issues in »normal« inspections but specifically conduct
inspections for this purpose [268]. Independently from the question if inspections focus solely on
maintainability issues or consider them asminor defects, there is a number of shortcomings regarding
the application of rules and checklists:

Definitional Aspects. As rules and checklists are essentially definitions of quality, it is no sur-
prise that they are affected by the similar shortcomings as the quality models discussed above.
It particular, it has been noted that »checklist items should not be too general« [45] as this
complicates analysis of conformance.

Consistency. Another problem is that rules as well as checklists are usually stored as unstruc-
tured prose documents only. Hence, it is difficult to ensure completeness and consistency of
checklists with respect to the rules. Furthermore, it is challenging to keep multiple checklists
for different aspects consistent.

Automation. In [45] Brykczynski states that »checklist items should not be used for conven-
tions better enforced through other means (e.g., by the use of automated tools [. . .])«. is
practice helps to reduce inspection efforts and reduce inspection omissions. However, this re-
quires a structured approach that does only clearly distinguish between automatically andman-
ually inspected checklists but also ensures that each item is check eventually. e unstructured
format of today’s rules and checklists does not facilitate such an approach.

Summary Inspections have been shown to be a very effective tool for the identification of quality
defects and it appears promising to further increase their application for analytic purposes of main-
tainability engineering. However, the current practice of rules and checklists for defining quality
criteria requires a more structured approach to be integrated in maintainability engineering.

3.4.4 Quality Analysis Tools

It has long been recognized that the high costs of manual inspections can and should be significantly
reduced by using quality analysis tools [45]. Moreover, it was found that the enormous amounts of
data generated during analysis can only be handled with appropriate tool support [247].

Consequently, commercial vendors as well as academia offer a plethora of quality analysis tools that
credit themselves with the ability to accomplish this. e range goes from metric tools over violation

56

3.4 Analytic Approaches

checkers and architecture assessors to application intelligence platforms and soware quality dash-
boards. is thesis does notmake a contribution to each individual tool category but focuses on tools
that provide an integrated view of all collected quality data to support continuous quality control.
Such tools are oen called quality dashboards or soware cockpits. However, due to the multitude
and diversity of available tools, there is some confusion regarding the different types of quality anal-
ysis tools. To avoid a comparison of apples and oranges, Table 3.2 presents a categorization of the
broad and heterogeneous tool landscape to support a structured discussion of their strengths and
weaknesses. e table categorizes tools Sensors, System Analysis Workbenches, Project Intelligence
Platforms and Dashboard Toolkits. Obviously, the boundaries of these categories are blurred. If one
of the example tools can be argued to belong to more than one category, it is classified according to
its primary use case.

Sensors System Analysis
Workbenches

Project Intelligence
Platforms

Dashboard Toolkits

Scope quality analysis quality analysis project control &
quality analysis

quality analysis &
project control

Interaction
Paradigm

autonomous interactive autonomous autonomous

Usage
Scenario

nightly-build, IDE
integration

demand-driven demand-driven &
nightly-build

nightly-build

Analysis
Object

development artifacts code, architecture metrics project & process
artifacts

Analysis
Question

hard-wired queries on system
snapshot

queries on metric
data

configuration of
analysis topology

Result
Represent.

lists artifact-specific
visualizations

lists, charts list, charts &
artifact-spec. visual.

Examples JDepend, PMD, FxCop,
NDepend, PC-Lint,
Klocwork, JUnit

Sotograph, iPlasma Hackystat, Team
Foundation Server

ConQAT, XRadar,
QALab, Sonar

Table 3.2: Categorization of Quality Analysis Tools

Sensors Sensors comprise anomaly detectors and metric calculators that perform fully automated
analyses of development artifacts w.r.t. specific quality criteria. Due to their autonomous interaction
paradigm that requires no user input, a commonusage scenario is their application during automated
nightly builds or as compile-time checkers in modern IDEs. e type of analysis question they an-
swer is typically hard-wired. Analysis results are presented as tables or lists or as markers within an
IDE. Examples15 include JDepend16, PMD17 and FindBugs [137] that perform guideline checks and
bug pattern search for Java programs. NDepend18 and FxCop19 are representatives of comparable
tools for the .NET platform. PC-lint20 or Klocwork21 perform, amongst others, guideline checks and
inspections of security vulnerabilities for C/C++. Another sensor example are clone detection tools
that search source code for copy&pasted fragments of code [23, 172].
15If available, the publication that presented the tool is cited, otherwise the tool’s homepage is referenced.
16http://clarkware.com/software/JDepend.html
17http://pmd.sourceforge.net
18http://www.ndepend.com
19http://www.gotdotnet.com/Team/FxCop
20http://www.gimpel.com
21http://www.klocwork.com

57

3 State of the Art

System analysis workbenches System analysis workbenches support experts in the analysis of
various development artifacts, including source code or architecture specifications, in order to an-
swer analysis questions about specific quality aspects of a system, such as its architecture confor-
mance or component structure. In contrast to sensors, they are interactive tools that are used on
demand, during system inspection or review. ey support interactive analysis by offering flexible
systemquery languages and present results using specialized artifact- and task-specific visualizations,
including graphs, charts and tree maps. Sotoarc/Sotograph [33], iPlasma [199] and Moose [96] are
commercial respectively open source products for comprehension and reverse engineering of so-
ware systems. ey provide analysis middle-ware in the form of a repository with a fixed metamodel
into which systems under inspection are loaded for convenient access. Sotoarc supports modeling
of a system’s intended architecture and evaluation of the architecture conformance of its implemen-
tation. Furthermore, it can simulate restructurings to evaluate effects of architecture modifications.
iPlasma offers, beside architecture analyses, a suite of object-oriented metrics and duplication de-
tection. Furthermore, it provides a language to specify static analyses and a visualization framework
and can thus be used as a basis for the development of further interactive analyses.

Project intelligence platforms Project intelligence platforms collect and store product and pro-
cess related metrics of multiple sources to perform trend or comparative analyses. ey are deeply
integrated into a soware development environment and collect metric data as it originates during
development. Flexible query mechanisms oen support generation of reports that show charts de-
picting the evolution of selected metric values over time. If these reports are generated in a frequent
manner, they can serve as a project dashboard. Even though query creation has an interactive nature,
project intelligence platforms operate autonomously and collect metric data without developer inter-
action. Project intelligence platforms are usually limited to metric values and allow ad-hoc queries
on data from the project’s past.

Hackystat [161] is an open source framework for collection and analysis of soware development
process and product data. It offers sensors that gather data during soware development and transmit
it to a central server for analysis, aggregation and visualization. Via a custom query language, reports
can be specified to visualize, correlate or compare measured data. is way, hypotheses about the
development process can be tested and impact of process changes on project performance can be
evaluated. Although Hackystat offers several sensors that interface with static analysis tools that
perform product quality analyses, its emphasis is on process measurement.

Microso Team Foundation Server22 is a commercial soware product that aims to support collab-
orative soware engineering. Besides source control and issue tracking functionality, it provides
data collection and reporting services. Collected source control, issue tracking, build results, static
analysis and test execution data is stored in a relational database system from which a report engine
generates reports that monitor process metrics and visualize trends. e emphasis of the services is
on process related data collection and reporting.

Dashboard toolkits Dashboard toolkits provide libraries of building blocks from which custom-
made analysis dashboards, that collect, relate, aggregate and visualize sensor data, can be assem-
bled by configuration. Building block libraries offer sensors for analysis of both product (e. g. code,
22http://msdn2.microsoft.com/en-us/teamsystem/aa718934.aspx

58

3.4 Analytic Approaches

architecture) and process (e. g. source control or issue management information) related artifacts.
Additionally, blocks for presentation allow analysis results to be represented in a variety of formats,
including general purpose lists or tables and specialized visualizations such as trees, graphs, charts
or tree maps. In contrast to system analysis workbenches that are geared towards an interactive,
on-demand explorative analysis of a system snapshot, dashboard toolkits are used for continuous
quality analysis and monitoring of a project-specific set of questions. eir scope thus comprises
both quality analysis and project control. In contrast to project intelligence platforms, that focus on
operations on numerical metric values, dashboard toolkits can access sensor information on the level
of development artifacts. ey can thus exert greater control over sensor operations, which facilitates
customization of analyses to project specific settings.

Dashboard toolkits can be differentiated by the degree of customizability they provide. BothQALab23

and Sonar24 offer pre-configured dashboards that present output from various sensors but offer very
limited customization capabilities. QALab creates trend analysis charts displaying the evolution of
the number of anomalies of a project. Sonar provides additional visualizations displaying aggregated
single-project or cross-project quality information. Customization capabilities of both tools are lim-
ited to the choice of applied sensors. XRadar25 is an open source code report tool for Java-based
systems, which integrates XML reports calculated by different sensors via XSLT transformations.
e results can be aggregated along the package hierarchy and also stored in the file system for plot-
ting trend graphs of variousmetrics. Due to the expressiveness of XSLT transformations, aggregation
and visualization of the imported analysis results can be configured more flexibly, than with QALab
or Sonar.

Discussion While each tool is a valuable contribution to quality analysis, there still is a number
of shortcomings that prevent a structured application of analysis tools to support maintainability
engineering. e most critical shortcomings can be categorized as follows:

Integration. Currently, the majority of tools operates virtually independently from defini-
tional, constructive and other analytic quality assurance measures. Hence, assuring that the
quality analysis tools measure what is defined by a quality model or quality guideline is tedious.
Moreover, it is difficult to check if criteria that have not been evaluated by tools are duly taken
care off in inspections.

e qualitymodeling approaches Squid [177], QMOOD [15], EMISQ [234], FS [201] discussed
above provide partial tool-support to link analytic and definitional measures. Similarly, the
soware cockpit architecture presented in [28] discusses an explicit link to hierarchical quality
models. However, the quality models used by the tools suffer from the shortcomings discussed
above. Neither approach directly supports the integration of automatic and manual analyses
although the EMISQ method allows for a human expert to evaluate automatic measurements.

Diversity. e factors influencing product quality are diverse. erefore a quality analysis tool
should not be limited to a certain type of factors or artifacts it analyses. It must not only be
able to analyze source code but should provide measures for other artifacts like documenta-
tion, models, build scripts or information stored in a change management system. As quality

23http://qalab.sourceforge.net
24http://sonar.hortis.ch
25http://xradar.sourceforge.net

59

3 State of the Art

attributes can be discussed on many different levels, the tool should make no restrictions on the
level of detail, the level of granularity, nor the type of analysis. It must, for example, be possible
to analyze a source code artifact on representation levels as different as character stream, token
stream, syntax tree or call graph.

However, most analysis tools today are limited to analyzing source code artifacts. Moreover,
approaches that use a fixed metamodel to describe the analyzed objects, e. g. [33, 96, 199] are
also limited to a specific level of abstraction.

Customizability. Quality requirements are highly project-specific as the analyzed systems, the
applied tools and processes, the involved technologies and the acting people differ. Even more
so, these requirements are not constant but evolve over the course of a project. Hence, quality
analysis tools must be highly customizable to support a project-specific tailoring of the analyses
carried out and the way they are presented. Besides this, false positives generated by analysis
tools are known to be a severe obstacle to the acceptance of quality analysis as they cause frus-
tration among users. Here, customization is required to configure analysis tools to reduce the
number of false positives [292]. For example, defects that impact code readability are not in-
teresting for developers if they occur in generated code that is never read by humans. In such
cases, analyses must be tailored to be aware of generated code.

Most tools offered today clearly lack the required customizability to adapt to project-specific
settings and limit the number of false positives. For example, none of the tools known to us
offers a mechanism for excluding generated source code from analysis if the code is mixed with
manual code within the same file.

Autonomous Operation. Tool supported assessments need to be carried out regularly (e. g.
hourly or daily) to provide timely results and thereby prevent quality decay. To achieve this in
a cost-efficient manner, analysis tools need to be able to work in a completely automated, non-
interactive way. However, some of the most powerful analysis tools, e. g. Sotograph [33] or the
Insider frontend for iPlasma [199], are designed as system analysis workbenches and as such
require manual interaction.

Summary Due to the size of today’s soware systems quality analysis tools are a vital part of the
analytic approaches applied in maintainability engineering. However, to make them work more ef-
fectively, they need to be better integrated with other analytic approaches and, foremost, with the
definitional approaches that define what constitutes maintainability.

3.5 Summary

Today, the biggest obstacle towards a mature discipline of maintainability engineering are the ap-
proaches used to define maintainability and their integration with constructive and analytic quality
assurance approaches.

e current approaches for specifying maintainability pale in comparison with the methods used for
the specification of the functionality of a system. Requiring a system to have a high maintainabil-
ity is comparable to specifying a CRM system by stating nothing more than that it »should support

60

3.5 Summary

customer relationship management«. Refining the requirement to a high changeability can be seen
as analog to stating that the CRM system »should support CRM processes and store customer in-
formation«. To handle the growing complexity of soware systems, model-based techniques have
become more and more common to specify system functionality. In the same manner, model-based
approaches should be used to specify maintainability. However, the current quality modeling ap-
proaches suffer from a number of shortcomings:

Assessability. ey do not define criteria for maintainability at a level that is suitable for an
actual assessment. Hence, it is not possible to evaluate if a system complies to stated quality
requirements or not.

Rationale. ey tend to omit the rationale behind the required properties of the system. is
makes it difficult to describe impacts precisely and therefore to convince developers of the im-
portance of the proposed quality criteria.

Structuredness. ey oen use ambiguous decomposition dimensions which leads to incon-
sistent models and hampers the revelation of omissions and inconsistencies in these models.

Moreover, existing approaches are not firmly integrated in the soware maintenance and quality as-
surance process. Due to this they cannot be directly used as basis for analytic and constructive quality
assurance activities. On the one hand, it is unclear for existing approaches how their definitions of
maintainability can be conveyed to all project participants so they can prevent maintainability de-
fects from the beginning on. On the other hand, the role of the proposed approaches with respect
to analytic quality assurance remains unclear. is is a precarious situation as it makes it difficult to
use quality models as basis for a continuous quality control practice that counters the quality decay
that soware systems are known to undergo during their evolution.

To remedy these shortcomings, the following chapter presents a novel quality modeling approach
that addresses the deficiencies identified for current modeling approaches and can also be tightly
integrated with the soware maintenance process.

61

»The measurement of quality is the price
of non-conformance, not indexes.«

Philip B. Crosby

4 Defining & ControllingMaintainability

is chapter presents the main contribution of this thesis: A novel framework for defining, evalu-
ation and improving maintainability. is framework includes a precisely defined metamodel for
quality models as well as methods and tools to instantiate and operationalize the quality models for
continuous quality control of long-lived soware systems. To introduce this new framework, we de-
scribe the relevant processes for managing maintainability and explain the role of quality models in
this context. We then formulate a set of requirements for quality modeling approaches that are based
on the intended integration into the quality management processes as well as on the shortcomings
of existing approaches discussed in the last chapter. We explain the underlying rationale of our ap-
proach, exemplify it withmultiple examples and illustrate how it satisfies the stated requirements and
thereby advances on previous approaches. Aer thiswe give a formalization of the qualitymetamodel
(QMM) that constitutes the foundation of our modeling approach and explain how models based on
it are operationalized for continuous quality control. e chapter concludes with a discussion of the
benefits and drawbacks of the presented approach.

4.1 Maintainability Management

In Chap. 3 we argued that a major shortcoming of previous quality models is that they are not oper-
ationalized. ey are expressed in prose and graphics only and accompany the development process
in the form of documents but are not made an integral artifact that is tightly coupled with the quality
assurance activities. To explain how this shortcoming can be overcome, a thorough understanding of
the quality management process and its integration with the soware maintenance process is neces-
sary. Unfortunately, literature on quality management in soware engineering and other disciplines
uses a bewildering variety of different, oen inconsistent, terms for different quality management
activities. To avoid confusion, Fig. 4.1 illustrates the notion of quality management that underlies
this thesis and clarifies the related terminology1. e processes as well as the definitions of terms are
based on international standards and recommendations [3,143,144,147,148] but also influenced by
the quality management approaches developed by Juran [169], Crosby [67] and Deming [87].

Following the IEEE Standard 12207 [144] quality management is viewed as a supporting life cycle
process for the primary life cycle process soware maintenance that subsumes all coordinated activ-
ities to direct and control an organization with regard to quality. e quality management process
is essentially based on the concept of conformity, i. e. the fulfillment of quality requirements. Hence,
it is assumed that all quality requirements can be made explicit and that conformity can be assessed
by comparing the actual quality characteristics of a product with the quality requirements. e core
processes of quality management are:

1To be consistent with existing terminology, the discussion of the processes generally uses the term »quality« although
our considerations are limited to quality aspects relevant for soware maintenance.

63

4 Defining & Controlling Maintainability

Quality Assessment

Quality Control

Software Product

Quality Planning Quality Assurance

Quality Management

Software Maintenance

Quality Improvement

de�nes quality
requirements

improves
de�nes processes

analyzes

corrects modi�es

triggers

improves

improves

Correction

Figure 4.1: Quality Management Process & Terminology

Quality Planning. e quality requirements of a product are defined by the quality planning
process. Additionally, quality planning defines the quality assurance processes needed to con-
trol product quality and to enhance the primary life cycle process’ ability to meet quality re-
quirements.

Quality Assessment2. Quality assessment compares quality characteristics with quality require-
ments in order to evaluate conformity. Note that, according to Garvin [114], this quality man-
agement essentially adopts a product view as it assumes that conformity can be assessed by
comparing product characteristics to requirements.

Quality Control. Quality control is a process that consists of analyzing the actual quality of
a product, comparing it to quality requirements, and taking necessary actions to correct the
difference.

Quality Assurance. If quality requirements are not communicated to the developers, the so-
ware maintenance process is very unlikely to generate conforming products. It is the respon-
sibility of quality assurance to communicate quality requirements to the development process
in order to enhance its ability to meet them. Quality assurance can additionally enhance this
ability by improving themaintenance process itself, e. g. by providing appropriate tools. Hence,
it is to be noted, that in contrast to frequently found definitions, quality assurance subsumes
quality control but goes far beyond it as it helps to perform quality management in an efficient
manner.

Quality Improvement. Quality improvement is responsible for improving the quality assurance
process and the quality planning process. It does not, however, improve the product itself.

2e ISO 9000 refers to this process as »inspection«. However, we use the term »assessment« to avoid confusion with the
classic inspections discussed in the last chapter.

64

4.1 Maintainability Management

With respect to this processes, it can be clarified that the focus of this thesis is on quality control
and the quality assurance activities that communicate the quality requirements to the developers in
order to prevent quality defects. However, if appropriate, we also indicate how our quality modeling
approach is integrated with other processes like quality planning.

Having established a precise definition of quality management for soware maintenance, we can
now explain how we envision a quality model to support the different processes. e interplay of the
quality model, the main actors and their respective activities is shown in Fig. 4.2. For clarity’s sake
the relation to the above processes is not included in the figure but explained below.

Quality Engineer

Developer

Guidelines
& Review
Checklists

Quality
Reports

Analysis ToolSoftware System

creates/modi�es

interprets

con�gures

educates

analzyes

res
pe

cts

de
sig

ns

ge
ne

ra
tes

de
�n

es
ge

ne
ra

tes

rev
iew

s

Quality Model

uses

Figure 4.2: Operationalized Quality Model as Basis for Maintainability Management

A teamor person responsible for themaintainability of soware systems, the quality engineer, designs
the quality model that explicitly captures the quality requirements used to determine conformity.
Quality assurance is responsible for improving themaintenance process to enhance its ability tomeet
quality requirements. is is supported by guidelines that define what developers should do and what
they should not do in order to improve the maintainability of the soware product. Such guidelines
are automatically generated from the quality model. e quality control process is based on manual
reviews and the application of quality analysis tools. Manual reviews are supported by the automatic
generation of review checklists from themodel. e quality analysis tools generate quality reports that
are tightly bound to the quality model and directly illustrate model conformity or non-conformity.
Based on the review results and quality reports the quality engineer orders the developers to correct
maintainability issues. Furthermore, he aids quality assurance by educating developers to improve
maintainability in the long-term. As part of quality planning, the quality engineer adapts the quality
model to match changing maintainability requirements.

65

4 Defining & Controlling Maintainability

In the proposed constellation the quality model assumes the role of a project- or company-wide
quality knowledge base that centrally stores the definition of quality in a given context. As there is
only a single instance of the model it guarantees a consistent definition of maintainability regardless
of the number of quality engineers who work on it. As it presents a unifying, integrated view on
the definition of maintainability it helps to identify missing criteria and thereby fosters complete-
ness. Furthermore, the quality engineer is relieved from the tedious and inconsistency-prone work
of writing quality guidelines and review checklists as they can be generated automatically from the
quality model. Likewise, configurations for quality analysis tools can be derived from the model to
ensure that analysis results reflect the criteria defined by the model.

4.2 An Activity-BasedModel for Maintainability

e following sections give a detailed account on our quality modeling approach that supports the
precise and unambiguous definition ofmaintainability which is a key requirement formaintainability
management as outlined above. e design of the approach is based on the following list of require-
ments for quality models which in turn is based on the described way of operationalization and on
the shortcomings of the existing approaches discussed in Chap. 3.

1. Assessability. e quality criteria defined by a quality model must be detailed enough to be
assessable. Only quality criteria that are defined on a concrete, tangible level can be assessed
during reviews and by analysis tools. High-level criteria like changeability are valid quality goals
but do not offer means of assessment. In this context, assessment does not generally imply au-
tomated assessments since many important quality criteria inherently elude automatic analysis.
An example is the quality of program identifiers, that needs to be assessed through manual
reviews [79].

2. Rationale. Aqualitymodelmust provide justifications for the quality criteria it defines, i. e. give
a detailed account of the impact that specific quality characteristics have on soware mainte-
nance. In order to be respected by developers, a quality model must not only explain the what
but also the why. Only quality criteria that are reasonably justified will be respected by devel-
opers whereas criteria ordered by decree are prone to be ignored [299]. is is also important
if developers need to override certain conventions to solve an urgent problem. Only if they
understand the consequences they can make informed the decision on the appropriateness of
such a transgression.

3. Structuredness. Aqualitymodel describes a decomposition of the complex concept quality or, in
this instance, maintainability. As the review of existing approaches in the last chapter showed,
the factors influencing soware maintenance are numerous and diverse. Since a quality model
for a realistic system can easily contain several hundred individual factors, a quality modeling
approach must provide a structure that allows to manage the plenitude of factors by defining
the position of quality factor within the decomposition as unambiguously as possible. is not
only supports the effective and efficient creation of qualitymodels but also helps to reason about
consistency and completeness of quality models.

Designing an approach that satisfies the requirements stated above comprises the following chal-
lenges: Firstly, it requires finding a metamodel that defines the legal model instances. e major

66

4.2 An Activity-Based Model for Maintainability

challenge in designing such a metamodel is to find a decomposition mechanism that is defined
strictly enough to avoid ambiguities in model instances but still lightweight enough to be applied
in practice. Our metamodel achieves this by clearly separating aspects that are typically intermin-
gled in previous approaches and defining a decomposition that is exclusively based on the is-a and
part-of relations that are well-known from various modeling techniques used in other contexts. Fur-
thermore, the metamodel inherently ensures that the rationale of requirements described by quality
models ismade explicit and requires a definition of conformity to support quality assessments. More-
over, the metamodel is designed to not limit the scope of model instances, i. e. quality criteria may
be expressed for soware as well as infrastructure or other artifacts. By providing a formal definition
of legal model instances, the metamodel serves as necessary basis for quality modeling tool support,
e. g. quality model editors and guideline generators. e metamodel and its underlying rationale are
presented in this chapter.

Secondly, to be of any worth such a metamodel needs to be instantiated to define maintainability in
a specific project or company context. We present multiple instances of the model used in contexts
as different as web application frameworks and model-based development with Matlab Simulink in
the chapter on case studies (Chap. 6). Extracts of these models are used in this chapter to exemplify
our quality modeling approach.

irdly, as maintainability needs be controlled in a continuous manner, the operationalization of
the models is of paramount importance. In this chapter we propose different concepts for the op-
erationalization of the quality models to generate quality guidelines and review checklists as well as
to automate assessments of adherence to quality criteria. Specific applications of these concepts are
discussed in the chapter on case studies (Chap. 6).

4.2.1 Modeling Rationale

is section describes the rationale that underlies the quality modeling approach presented in this
thesis. While this rationale is based on economic considerations of soware quality, we do not in-
tend to describe a full-blown cost/benefit model for maintainability here. e reason for this is not
only the limited scope of this thesis but also the current lack of understanding of how different qual-
ity factors do influence maintenance costs. Today, no one really knows the quantitative effect of a
quality problem like code cloning for soware maintenance. However, we detail on the economic
considerations to motivate our modeling approach and, also, to pave the way for possible extensions
of the model.

To satisfy the requirements stated above, a quality model needs to describe maintainability in a pre-
cise and unambiguous manner. But what is maintainability? How can it be defined, assessed and
improved? As discussed in Chap. 3, there a numerous approaches to define maintainability in an
extensional manner, i. e. by listing product attributes that contribute to maintainability. Due to the
reasons discussed before, none of the approaches could eventually be established and none of them
can be directly used as basis for an operationalized qualitymodel. To build such amodel we therefore
chose to start from frequently cited definitions, that define maintainability in an intensional manner,
i. e. by focusing on the effect maintainable systems have on the maintenance process. Examples
are:

67

4 Defining & Controlling Maintainability

Maintainability: e effort needed to make specified modifications to a component implementa-
tion3.

Maintainability is characterized by the average effort in staff-hours per system and maintenance
task. [246]

ese definitions nicely illustrate that the desire for high maintainability is actually a desire for low
maintenance efforts and thereby open up an economic perspective or, more precisely, a cost per-
spective. ey define a system A to be more maintainable than another system B, if A’s aver-
age effort per maintenance task is lower than the B’s. A similar notion is also used in previous
works that adapted GQM approaches to soware maintenance related issues. In these works, main-
tainability related goals are also quantified with respect to the effort needed to perform a specific
task [16, 122, 246, 248].

e direct applicability of these intensional definitions is limited as they can only be used to compare
existing systems with similar maintenance tasks and known maintenance efforts. However, we will
show that maintenance efforts are an ideal means to form the basis of a comprehensive quality model
for soware maintenance.

The Price of Non-Conformance To use this economic perspective for quality modeling we break
down maintenance costs Cm as

Cm = Cd +

Quality Costs Cq︷ ︸︸ ︷
Cc + Cnc

where Cc are the conformance costs, Cnc are the non-conformance costs as discussed in Sec. 2.2.4
and Cd are direct costs, i. e. costs not related to quality, e. g. understanding of the change requests
themselves. Following Philip Crosby’s central insight that the »measurement of quality is the price
of non-conformance« [67] we now define a system to be highly maintainable if its non-conformance
costs are low and vice versa.

To illustrate this, we assume the following fictitious situation. Two soware systems A and B imple-
ment exactly the same functionality but are not verbatim copies of each other; both were developed
independently. e two systems are maintained by two organizations OA and OB which are 100%
clones of each other (including staff, processes, tool, . . .) and both systems undergo the exact same
change requests. In this case, the direct costs Cd as well as the conformance costs Cc for both system
are equal. Hence, a difference of the maintenance efforts for systems A and B is caused by differ-
ing non-conformance costs that are due to a difference in the maintainability of systems A and B
(Fig. 4.3)4.

3SEI Open Systems Glossary (http://www.sei.cmu.edu/opensystems/glossary.html)
4In the PAF model the conformance and non-conformance costs are oen viewed as being independent from each other.

In reality, they are not. It is to expect that a high quality systemhas lower conformance costs and vice versa, e. g. because
reviews can be performed quicker. However, for the sake of the above explanation we also subscribe to the indepen-
dence of the two costs types and assume that differences in conformance costs that are caused by non-conformance
are part of the non-conformance costs.

68

4.2 An Activity-Based Model for Maintainability

System A

System B

Maintenance Costs

Direct
costs Cd

Conformance
costs Cc

Non-conformance
costs Cnc

Direct
costs Cd

Conformance
costs Cc

Non-conformance
costs Cnc

Figure 4.3: Lower Non-Conformance-Costs, Higher Maintainability

In the context of maintenance, we therefore propose to use quality costs as basis for the definition of
quality. As a consequence, the model presented in this work does not strive for a definition of the
abstract concept of maintainability, but describes the influence of the various contributing factors
(cost drivers) on the maintenance efforts, or, more precisely, on the non-conformance costs. While
this distinction may not look important at first sight, we will show that it is crucial in overcoming the
vagueness of the term maintainability as well as its limitations in scope.

With respect to Garvin’s five views on quality, one is tempted to categorize this way of addressing
quality as the value-based view. However, there is a subtle but important difference. e value-based
view, as defined by Garvin, considers the trade-off between quality and the cost (or price) required to
build (or buy) quality products. e view proposed here does not take into account such a trade-off
but simply defines quality throughnon-conformance costs, i. e. a productwith lownon-conformance
costs has a high quality and vice versa. is is not to say that the trade-off highlighted by the value-
based view would be irrelevant. Contrariwise, we are convinced that a thorough analysis of this
trade-off is of paramount importance for economical soware engineering. However, this requires a
well-founded definition of quality, or maintainability in this case, first.

Focus on Activities We not only want to compare identical systems whose maintenance costs
are known but build a model that defines maintainability by specifying concrete product proper-
ties. Hence, we need to find a structuring mechanism that allows the construction of quality models
that are capable of describing all relevant criteria and their influence on the non-conformance costs.
In Chapters 2 and 3, however, we saw that the there is a large number of very diverse factors that
influence maintenance costs. We hence need an appropriate means for untangling these factors.

Our solution to this problem is inspired by a technique called Activity-Based Costing (ABC) that was
developed in themanufacturing industry during the 1980ies to remedy a serious accounting problem
recognized at that time. e problem was that manufacturing companies that produced multiple
products were unable to determine the cost of a single product as product line approaches, support
operations, marketing activities and other overhead functions made it virtually impossible to trace
expenses to specific products. To capture these non-product-specific costs, companies simply added
the same amount of overhead cost to each product and thereby failed to notice that some products
were highly profitable while others were actually disprofitable.

69

4 Defining & Controlling Maintainability

To solve this problem, Cooper and Kaplan [64] proposed the Activity-Based Costing (ABC) tech-
nique that is nowadays widely used in the manufacturing industry. e general idea behind ABC is
to trace the costs for each product by determining the costs drivers instead of arbitrarily allocating
costs to products. To achieve this, ABC proposes to use the activities that are carried out to find
the actual cost drivers. Concretely, ABC advises accountants to identify all activities that contribute
to the development, production, distribution and support of a product and then determine the cost
drivers for each activity.

We are convinced that the same approach can be used to determine the drivers of maintenance non-
conformance costs. erefore, we propose to use maintenance activities as the major structuring
mechanisms for quality models. Consequently, our quality metamodel treats maintenance activities
as first-class citizen and defines models that explicitly relate cost drivers to activities. Activity-based
methods have been discussed in the context of soware quality before, e. g. by Jones [163] or Man-
deville who postulated that »the costs of quality must be measured at an activity level« in a paper
that unfortunately received little attention [197]. Similarly, previous work on soware maintenance
recognized the important role of maintenance activities [181,271,273]. For example, Granja-Alvarez
& Barranco-Garcia use activities as basis for their soware maintenance cost model and define the
total maintenance cost as the sum of the costs for understanding, modifying and testing [126].

Nevertheless, maintenance activities were never explicitly used for modeling quality. Interestingly,
many previous approaches, however, implicitly take them into account. For example, the well-known
hierarchical quality models discuss maintenance activities in a somewhat disguised form. An exam-
ple is given in Fig. 4.4 which shows the maintainability branch of Boehm’s Soware Quality Char-
acteristics Tree [38]. e nodes in the gray boxes refer to activities whereas the uncolored nodes
describe system characteristics (albeit very general ones). So the model could also be read as: When
we maintain a system we need to modify it and this activity of modification is (in some way) influ-
enced by the structuredness of the system. While this difference may not look important at first sight,
we claim that the mixture of activities and characteristics is, at least partially, responsible for the
unsatisfactory structure of existing models as this inhomogeneity inhibits the definition of a clearly
defined decomposition criterion.

Maintainability

Modi�ability

Testability

Understandability

Augmentability

Structuredness

Communicativeness

Accessibility

Self-Descriptiveness

Conciseness

Legibility

Figure 4.4: Software Quality Tree (cf. Fig 3.1)

As the actualmaintenance efforts strongly depend on both, the type of system and the kind ofmainte-
nance activity, it should be obvious that the need to distinguish between activities and characteristics
becomes not only clear but imperative. is can be illustrated by the example of two development
organizations, where company A is responsible for adding functionality to a system while company

70

4.2 An Activity-Based Model for Maintainability

B’s task is merely to fix bugs of the same system just before its phase-out. One can imagine that the
success of company A depends on different quality criteria (e. g. architectural characteristics) than
company B’s (e. g. a well-kept bug-tracking system). While both organizations will pay attention to
some common attributes such as documentation, A andB would and should rate themaintainability
of S in quite different ways because they are involved in fundamentally different activities.

4.2.2 Overview

is section gives a high-level overview of our activity-based approach to explain its basic concepts.
To facilitate the introduction of the novel modeling approach, we start from the well-known hierar-
chical model shown in Fig. 4.4 and explain how our approach advances on it by means of suitable
examples. Aer that, we will give a formal definition of the underlying metamodel.

A consequent separation of maintenance activities and system characteristics leads to a 2-dimen-
sional structure as shown in Fig. 4.5. e figure represents a restructuring of Boehm’s soware quality
tree where themaintenance activities are shown on top and the system characteristics on the le. e
activities form a tree based on a part-of relation. Hence, modification can be considered a subactivity
of maintenance. Activities augmentation, access and reading5 are depicted in braces only as Boehm’s
model does not describe characteristics that influence them. e matrix is used to illustrate the
relation between the elements of the two dimensions. In this case, the relation is unweighted and
does not explain how a characteristic influences an activity. We will later see how this can be refined
to describe the actual nature of the influence.

Maintenance

Modi�cation
(Augmentation)

Test
(Access)

Understanding
(Reading)

Structuredness

Communicativeness

Self-Descriptiveness

Conciseness

Figure 4.5: Separation of Activities and Characteristics

e separation of activities and characteristics addresses the lack of structuredness identified for pre-
vious quality modeling approaches as the relationship between themodel elements is clearly defined:
activities form a sub-/super-activity relation and characteristics are related to activities through their
impact on them. is impact relation also addresses the lack of rationale exhibited by other qual-
ity modeling approaches as the explicit relation to a maintenance activity inherently explains why
a certain characteristic is relevant for soware maintenance. e structural separation aids reason-
ing about the completeness of the quality model as it can be matched to the existing maintenance
process to ensure that all relevant activities are included. However, the same cannot be said for the

5We assume that Boehm uses the term legibility synonymously to readability although legibility is usually stronger con-
noted with presentational aspects of reading, e. g. typefaces, while readability refers to documents’ content.

71

4 Defining & Controlling Maintainability

characteristics on the le. It still cannot be verified if all relevant characteristics are included or not.
Moreover, the most important requirement postulated for quality models, their assessability, is still
not satisfied as it remains unclear how e. g. structuredness or conciseness can be assessed.

We claim that the central problem is thatmost previousmodels attempt to describe these characteris-
tics on the level of thewhole system. However, real soware systems are usually of significant size and
consist of several thousand artifacts as diverse as programs, documents andmodels inmany different
languages. On a finer granular level this further extends to elements like classes, methods and vari-
ables. Obviously, characteristics like structuredness apply to many of them but mean different things
for each of them. For example, the structuredness of a method is surely defined differently from the
structuredness of an UML class diagram. Hence, it is inconceivable how a quality model that does
not take into account these different types of artifacts can be used to comprehensively capture the
relevant quality requirements.

Facts To overcome this problem we propose to include the various system artifact types in the
quality model and make explicit their relation to characteristics and maintenance activities. is
allows to decompose characteristics like structuredness that are hard to assess for the whole sys-
tem into separate constructs that describe e. g. the structuredness of a method or of an identifier:
[Method | STRUCTUREDNESS] or [Identifier | STRUCTUREDNESS]. We call these constructs facts. e part of a
fact that describes the artifact type is referred to as entity and the characteristic is called attribute6.
is separation allows to explicitly describe attributes of different artifacts types on a level fine-
granular enough to achieve assessability. For example, we can define that a method is structured
if it has only a single exit point and an identifier is structured if it matches a certain format. e
separation of entities and attributes is similar to the one used in Dromey’s quality model [92] which
separates components from quality-carrying properties. However, the separation alone provides no
means to reason about completeness of a quality model. On the contrary, due to the large number
of different artifact types, relevant ones can be easily missed.

To remedy this problem we not only include the different system artifact types (entities) but also
explicitly capture their decomposition by including the part-of relationship between them in the
model, e. g. a Method is part of a Class which is part of a Package which is part of a System. It needs
to be stressed that this decomposition does not describe the actual decomposition of the system
artifacts but a decomposition of the artifact types (entities). Hence, the quality model contains the
entities Class and System but no entities Class X and System Y. Put differently, the entities and their
relations describe a rough approximation of the metamodel of the system. We chose the part-of
relation as the main mode of decomposition for the entities as it is well-known by soware engineers
and furthermore has the beneficial nature of defining a tree (or forest) on the set of entities. is
tree-like decomposition allows to reason about the completeness of the model by traversing it in a
top-down manner for the identification of missing entities. Fig. 4.6 shows a simple example quality
model consisting of 7 activities, 8 entities and 4 attributes. is example does not build on Boehm’s
quality tree as this was obviously not designed with our modeling approach in mind and, hence,
is suboptimal for illustrating it. e entities of the example are taken from one of the case studies
discussed in Chap. 6. e activities tree is loosely modeled on the IEEE 1219 standard maintenance
process [145].

6e choice of terms is based on a well-known paper by Kitchenham [179] that states that entities »are the objects we
observe in the real world« and attributes are »the properties that an entity possesses«.

72

4.2 An Activity-Based Model for Maintainability

Maintenance

Modi�-
cationCodingConcept

Location
Impact

Analysis

ImplementationAnalysis

Identi�er
Variable
Method
Glossary
Comment

Fact

Entity
Activity

Attribute

Impact

So
ftw

ar
e

Do
cu

m
en

ta
tio

n

Pr
od

uc
t

REDUNDANCY

SUPERFLUOUSNESS

CONSISTENCY

COMPLETENESS

CONCISENESS

Figure 4.6: Maintainability Matrix Example

Due to the large number of entities, we found it beneficial to additionally use a second mode of
decomposition based on a generalization (is-a) relation next to the (part-of) relation. is decom-
position enables serves as basis for an inheritance mechanism for attributes and thereby greatly helps
to build concise quality models. For example, we can define the entity Local Variable to be part of en-
tity Method and also to be a specialization of entity Variable. An attribute defined for entity Variable is
then automatically inherited to the subordinate entity Local Variable, e. g. the fact [Variable | LOCALITY]
that expresses the desire for variables with a minimal scope is inherited to [Local Variable | LOCALITY].
When extending the quality model with an entity that specializes an existing one, it is ensured that
important attributes are not overlooked. Hence, the inheritance mechanism does not only avoid re-
dundancies in the quality models but also fosters model completeness. For clarity’s sake, this second
mode of decomposition is not shown in the examples above.

Impacts In contrast to Fig 4.5 the example above does not express a Boolean relation between
facts an activities but uses a two-valued scale to express if an impact is positive or negative. As the
formalization of the metamodel will show, more elaborate scales can be used to express different
strengths of the relations. Using the notation introduced for facts we can elegantly express the impact
a fact has on an activity:

[Entity e | ATTRIBUTE A]
+/−−→ [Activity a]

Examples are [Identifiers | CONSISTENCY] +−→ [Concept Location] describes that consistently used identi-
fier names have a positive impact on the concept location activity and [Variable | SUPERFLUOUSNESS] −−→
[Code Reading] that describes that unused variables hamper the reading of the code. To overcome the
problem of unjustified quality guidelines each impact is additionally equipped with a detailed plain
text description.

73

4 Defining & Controlling Maintainability

Assessment To assess the conformity of a given system to a quality model, it needs to be analyzed
how the actual system characteristics relate to facts defined in the model. To allow this, each fact is
equipped with a description that explains how conformity is assessed. Depending on the fact and
the available means of analysis this can e. g. be a plain text description of conformity or a definition
of metric thresholds. We deliberately chose not to make the definition of conformity explicit in the
model as experience has shown that the assessment techniques used in practice are so various that
a uniform description of the common denominator would not bring any benefit. To counter a lack
of precision in the textual conformity descriptions, the metamodel furthermore requires each fact to
be annotated with its assessment type. We distinguish three assessment types:

1. Facts that can be assessed or measured with a tool. An example is an automated check for
switch-statements without a default-case ([Switch Statement | COMPLETENESS]).

2. Facts that can be automatically assessed to a limited extent but require additional manual in-
spection. An example is redundancy analysis where cloned source code can be foundwith a tool
but other kinds of redundancy must be le to manual inspection ([Source Code | REDUNDANCY]).

3. Facts that require manual activities; e. g. reviews. An example is a review activity that identifies
the improper use of data structures ([Data Structures | APPROPRIATENESS]).

Experiences have shown, that the explicit definition of the assessment type aids reasoning about the
assessment descriptions and thereby helps to identify ambiguous descriptions. e categorization of
the facts depends on the given context. For example, a general purpose quality model would base it
on the current state of the art while a company-specific model would base it on the actual availability
of tools.

Assessing a system of significant size can produce an overwhelming amount of data as each fact needs
to be assessed not only once but for all artifacts it applies to. If the quality model contains facts that
apply to artifacts that the system contains a plenitude of, e. g. methods, the number of individual
assessments can go up to a hundred thousand or more. is is can be best explained by Fig. 4.7:
Although the minimalist quality model defines only three facts, the assessment of the system results
in 8 individual assessment results, 2 for fact [Class | STRUCTUREDNESS] that prescribes the order of fields
and attributes within the class, 2 for the fact [Field | LOCALITY] that requires fields to be defined private
and 4 for fact [Method | LOCALITY] that requires the method’s visibility to be defined as minimal as
possible.

Modi�-
cation Reading

Maintenance

Sy
ste

m Field
Method LOCALITY

LOCALITY

a) Quality Model b) Part-of Decompositon of the System

System

Method 1 Field 1 Field 2Method 2 Method 3 Method 4

Class 2Class 1

STRUCTUREDNESS

Cla
ss

Figure 4.7: Assessment Data Aggregation

74

4.2 An Activity-Based Model for Maintainability

How this amount of data needs to be handled depends on the goal and mode of the assessment.
If the assessment, for example, is carried out as part of a tight quality control process to identify
the relatively few non-conforming artifacts that need to be corrected, a simple filter can be used. If
the assessment, on the other hand, is used to create a quality profile of a previously unknown sys-
tem, techniques to aggregate the assessment results are imperative to condense the amount of data.
Aggregation is basically a mapping Agg : Mn → M that fuses several input values from one set
to one output value of the same set [49]. Obviously, this requires the different facts to be mea-
sured on the same scale (the same set M). Only provided a uniformity of scales, aggregation can
be carried out in a sensible manner, i. e. without succumbing to the same pitfalls as the maintain-
ability metrics discussed in the last chapter. is is challenging due to the diverse nature of facts
that need to be set off against each other. For example, one needs to integrate the assessment re-
sults for the facts defined above with others like [Program | REDUNDANCY] that relates to code cloning
and [Variable | SUPERFLUOUSNESS] that prohibits variables that are defined but never used. One possible
solution to this is to rate each fact an ordinal scale like {1, . . . , 6}.

However, uniformity of scales alone does not solve the aggregation problem as the application of
standard aggregation operators [49] to all measured fact-artifact combinations condenses the as-
sessment data too much. For example, when the ordinal scale suggested above is used, applying the
arithmetic mean to all assessed facts on all artifacts will return something close to 3 for almost all
systems whereas the max operator will usually return 6. is problem can be addressed by not flatly
aggregating all fact-artifact combinations but bymaking use of a clearly defined decomposition. is
allows a stepwise aggregation of data until a level is reached that is concise enough to be interpreted
but still not too condensed to be meaningless.

An obvious choice for an aggregation dimension is the actual decomposition of the system as this
allows to determine the state of quality of different parts of the system (Fig. 4.7b). A benefit of the
stepwise aggregation along a defined decomposition can be illustrated here: It allows to use differ-
ent scales and different aggregation operators for different levels of the hierarchy. For example, the
assessment for the facts [Field | LOCALITY] and [Method | LOCALITY] could use a Boolean scale that only
indicates if a field or method violates the quality requirement expressed by the fact or not. On the
class level, however, this information could be converted to a ratio between the number of offending
fields and methods and the total number of fields and methods. However, this requires a sophisti-
cated definition of scales and aggregation operators for different levels and even artifact types.

From an economic perspective, one would ideally want to aggregate assessment data along the ac-
tivities tree of the quality model to determine which additional effort is caused by non-conformity.
eoretically this could be done by first condensing the artifact-based assessment data to the entities
of the quality model and then relating them to the activities’ effort or by directly defining a relation
between artifact assessments and activities. However, as we currently lack a thorough understanding
of how different quality factors influence maintenance costs, this cannot be achieved in its entirety.
Nevertheless, the case study in Sec. 6.3 demonstrates that such quantitative considerations can be
carried out for particular cases with a limited scope.

Due to the variety of different artifact types included in quality models but also due to the different
goals of aggregation, the requirements for aggregation are too diverse to be satisfiedwith a generic ag-
gregation mechanism. Hence, we decided not to include such a mechanism in our quality modeling
approach. Instead, our quality control framework ConQAT (Sec. 5.2) provides a variety of aggregation

75

4 Defining & Controlling Maintainability

mechanisms, including the ones discussed above, and allows to apply them in a customized way to
match the context-specific requirements.

Quality Planning While the process of quality planning, i. e. the derivation of quality require-
ments and the according design of a quality model, is not at the focus of this thesis, we still give an
idea how our quality modeling approach supports it. Obviously, already existing quality require-
ments for maintainability, e. g. in the form of guidelines, can be transferred to an activity-based
quality model. is process is outlined in the example in Sec. 4.2.4. Beyond this, the activities as
well as the entities tree of the quality model aid the effective and efficient creation of quality models.
e activities tree can be used if an organization identifies an unsatisfactory execution of certain ac-
tivities, e. g. debugging. It can then break further down this activity and reason about the facts that
influence the relevant activities in a structured way. is can be viewed as top-down or goal-oriented
approach to quality. rough the entities tree our model also supports a bottom-up approach. To
explain this, one should recall that the entities tree describes the different artifact types of a system
and, hence, a rough approximation of the system’s metamodel. is circumstance allows the design
of new quality models, e. g. for particular programming or modeling languages, to be guided by the
metamodel or grammar of the language. In fact, the entities tree of the quality model can be directly
modeled on the metamodel of the considered language. Starting from the entities tree, one can then
reason about the relevant attributes and affected activities. An example for this design approach is
discussed in Sec. 6.1 where we describe the design of a quality model for the Matlab Simulink mod-
eling language.

Scope As discussed in Sec. 2.1.4, the factors influencing maintenance costs are not only product-
related but include organizational as well as personnel factors. ey are determined by a plethora of
other factors which include the skills of the engineers, the presence of appropriate soware processes
and the availability of proper tools like debuggers. By puttingmaintenance effort instead ofmaintain-
ability in the focus of the quality modeling efforts, we inevitably raise the question for the appropriate
scope of a quality model. As these factors are expected to have as much of an influence as product-
related factors, we consider it reasonable to include them, too. Since the impact of such factors can
also be structured on the basis of activities, our quality modeling approach provides the opportunity
to include them if needed. Examples are [Debugger | EXISTENCE] +−→ [Fault Diagnostics], that describes
that the existence of a debugger has a positive influence on the activity fault diagnostics.

4.2.3 The Quality Metamodel QMM

Although most quality models conform to an implicitly defined metamodel they usually lack an
explicitly specified metamodel that precisely defines the set of legal model instances. In contrast to
this, ourmodel is based on the explicit qualitymetamodelQMM.e benefit of an explicit metamodel
is twofold: First, it ensures a consistent structure of quality models. Second, it is a necessary basis
for tool support as described in the next chapter. e metamodel consists of the elements discussed
above: entities, attributes, facts, activities and impacts. An overview of themetamodel is presented as
an UML class diagram in Fig. 4.8. e following sections give a formal definition of the metamodel
based on sets, functions and predicates. e creation and maintenance of models that conform to
this metamodel is supported by the quality model editor QMM.editor presented in Sec. 5.1.

76

4.2 An Activity-Based Model for Maintainability

Activity

Attribute

Entity

Fact

Impact

parts

subactivity
superactivity

composite
subordinates
superordinate

Figure 4.8: The Quality Metamodel QMM

Entities e entities of a quality model are defined by a set E. To support the development of
comprehensive quality models, the metamodel uses two relations to impose a structure on the set of
entities: the composition function C and the generalization function G. ese functions are required
as the entity set of realistic models usually consists of more than 500 elements and, hence, are hard
to handle without a clearly defined structure. For example, a quality model for systems implemented
in Java needs to express quality criteria for the various entities present in Java systems, e. g. Class,
Method, Constructor, Package, Variable, Statement.

For the given example, the composition functionC is used to express that classes are parts of packages:
C(Class) = Package. e generalization relation G is used to express that a constructor is a special
kind of method: G(Constructor) = Method. e quality metamodel uses the (partial) composition
function C as the primary mode of decomposition and defines it in a manner that ensures that the
structure imposed on the entities set is a forest. We do not require the function to define a tree with a
single root entity to support the bottom-up construction of quality model. Function C be is defined
as:

(Composite) C : E E

C(e) = composite element of entity e.

where E E denotes a partial function from E to E. e domain of the function is referred to as
dom.C7. e preimage of C describes the parts of an entity and is defined as:

(Parts) C−1(e) = {x ∈ dom.C | C(x) = e}

Based on the part function C−1 we define the constituents function C−1
∞ that returns the parts of an

entity and recursively the parts of all its parts:

7e term »domain« is ambiguously used in the context of partial functions. We consider the domain of C to include all
elements e ∈ E for which C is defined.

77

4 Defining & Controlling Maintainability

(Constituents) C−1
∞ : E P(E)

C−1
∞ (e) =

∪
i∈N

(C−1)i(e)

where (C−1)i(e) describes the i-times repeated functional composition and N does not include
0. Furthermore, we assume that function C can be extended to sets. Hence, C({e1, . . . , en} =
{C(e1), . . . , C(e2)} for e1, . . . , en ∈ E. Likewise, C−1 is also defined for sets.

To ensure, that the graph defined by the function c is acyclic, we require the following condition to
hold:

(Acyclicity) ∀e ∈ E : e ̸∈ C−1
∞ (e)

e generalization function G : E E defines a secondary mode of decomposition that serves as
basis for the inheritancemechanismdescribed below. e generalization functionG and its preimage
G−1 is defined in analogy to the decomposition function C. For G(e) the value of the function is
referred to as the superordinate of e and for G−1(x) the values are referred to as subordinates of x.
We also define a function G−1

∞ in analogy to C−1
∞ and refer to its values as descendants. Also, for G

acyclicity must hold.

Attributes Attributes are properties that entities possess. Attributes are defined by a set A. Exam-
ple attributes are CONSISTENCY, REDUNDANCY and COMPLETENESS. e quality metamodel does not define
additional relations to structure attributes for two reasons. Firstly, with the case studies described
in Chap. 6 we made the experience that quality models rarely have more than 25 attributes. A set of
this size can be comfortably managed without the need for a decomposition. Secondly, We are not
aware of a criterion that would allow an unambiguous decomposition of fundamental attributes like
CONSISTENCY.

Facts Entities describe the relevant artifact types of the system and attributes define properties.
eir combinations, the facts, describe quality characteristics and have been identified to play an
important role in the design of quality models as they are the items typically used in the discussion
of quality. Moreover, facts describe the characteristic that need to be assessed in order evaluate a
given system (or situation). Hence, the metamodel treats them as first class citizens and calls them
attributed entities or facts (Fig. 4.8). e set of facts F is a subset of all possible combinations of
entities and attributes:

(Facts) F ⊆ E × A

Facts are usually written as [Entity | ATTRIBUTE]. Example facts are [Class | SUPERFLUOUSNESS] that describes
unused classes and [Goto Statement | EXISTENCE] that describes the existence of Goto statements in a
program. For the set of facts F the following condition must hold:

78

4.2 An Activity-Based Model for Maintainability

(Inheritance) ∀e ∈ E, ∀a ∈ A : (e, a) ∈ F → (∀x ∈ G−1(e) : (x, a) ∈ F) (4.1)

is condition ensures that each entity adopts the attributes of its superordinate and is similar to the
inheritance mechanism used in object orientation. It is, hence, referred to as attribute inheritance.
e conditions helps to avoid repetitive attribute definitions in quality models and fosters the com-
pleteness of quality models. e rationale behind this is the following: If a quality model designer,
includes, e. g. the fact [Program Element | SUPERFLUOUSNESS] in the quality model, it is likely that subor-
dinates of the entity, e. g. G(Class) = Program Element or G(Variable) = Program Element should be
equipped with the same attribute. If (e, a) ∈ F , we refer to (G(e), a) as the super fact (if e ∈ dom.G).
Vice versa (x, a), x ∈ G−1(e) is referred to as a subfact of (e, a).

Facts fundamentally define the quality requirements expressed by the quality model. To ensure that
facts are actually assessable, each fact is equipped with an assessment description via functionDFA

(Assessment Description) DFA
: F → P

DFA
(f) = {assessment description of fact f}

where P is the set of all textual descriptions. is description does not only contain the required
steps for analyzing quality characteristics but also the definition of conformity. Depending on the
quality characteristic and the available means of analysis this can e. g. be a plain text description of
conformity or a definition of metric thresholds. We deliberately chose not to include a formalization
of the conformity definition in the metamodel as experience has shown that the assessment tech-
niques used in practice are very diverse. A formal description of the common denominator would,
hence, be either of low expressiveness or highly complex. According to our experience, the potential
gains of the formalization do not warrant such an increase in model complexity. As discussed in
Chap. 8 it may, however, be beneficial to extend the model with a formalization of the conformity
definition for specific applications like certification.

To counter a lack of precision in the textual conformity descriptions, the metamodel furthermore
requires each fact to be annotated with its assessment type. e assessment type describes if a fact
can be assessed in a fully automatic manner, is supported by tools but requires manual aid or must be
assessed completely manually. is categorization helps to reason about the assessment descriptions
and is, furthermore, used by tools like guideline generators. e assessment type is expressed by
assessment type function T that associates each fact with an assessment type:

(Assessment Type) T : F → {,
-,

}

79

4 Defining & Controlling Maintainability

Activities Activities describe maintenance activities. ey are defined by a set T and the super-
activity function A : T T that defines a part-of relation between activities. In contrast to the
entities, the activities set rarely contains more than 50 elements in realistic quality models. Hence,
case studies have shown that the secondmode of decomposition defined for the entities is not needed
here as the single function provides sufficient structuring for the set of activities.

e superactivity functionA and its preimageA−1 is defined in analogy to the decomposition func-
tion C. For A(t) the value of the function is referred to as the superactivity of t and for A−1(x) the
values are referred to as subactivities of x. We also define a function A−1

∞ in analogy to C−1
∞ . Also,

for A acyclicity must hold.

Impacts A quality model is fundamentally defined through the (partial) impact function I , that
maps tuples of facts and activities (f, t) to an impact value and thereby describes which impact a fact
has on an activity. e function is defined as:

(Impacts) I : (F × T) I

I(f, t) = i

where I is a set that characterizes the impact. Obviously, this is a partial function as an impact is not
defined for all tuples of facts and activities. However, we require each fact to have at least one defined
activity. Hence, the following condition must hold:

(Dangling Facts) ∀f ∈ F : ∃t ∈ T : (f, t) ∈ dom.I (4.2)

As introduced earlier, impacts are usually written as:

[Entity e ∈ E | Attribute a ∈ A]
I((e,a),t)−−−−−−→ [Activity t ∈ T]

e exact nature of the impact set I is deliberately underspecified as a suitable choice depends on the
mode of operationalization of the quality models. Possible choices for I are {−, +} that expresses a
positive or negative impact or a one element set like {} that is used to indicate the presence of an
impact without specifying its nature. More elaborate choices are e. g. sets like Z3 or Z5 to express an
ordinal scale and the set [0..1] to express a percental impact on the effort associated with an activity.
We elaborate on the choice of the impact set in the chapter on case studies (Chap. 6) where we use
different examples for different purposes.

Note, that condition 4.2 is of relevance for the inheritance mechanism induced by condition 4.1. As
each fact must have an impact on at least one activity, it is obviously required that subfacts of a fact
have at least one impact, too. However, it is not required that a subfacts must have an impact on
the same activities as the super fact. Note, that by choosing an impact set that explicitly models a
neutral impact, e. g. I = {−, ◦, +}, a model designer can be enabled to effectively override impact
definitions of super facts with the non-impact.

80

4.2 An Activity-Based Model for Maintainability

Activity Inference Next to the attribute inheritance, the qualitymetamodel also defines an activity
inference mechanism that was established to support the efficient design of quality models. is
mechanism ensures that impacts that are defined for activities are also defined for their subactivities.
For example, a quality model expresses that all program elements that are defined but never used,
have a negative impact on the activity ProgramComprehension as superfluous program elements may
confuse the reader:

[Program Element | SUPERFLUOUSNESS] −−→ [Program Comprehension]

is relation also implies that subactivities of Program comprehension, e. g. Concept Location and
Code Reading are affect by the attributed entity:

((Program Element, SUPERFLUOUSNESS), Concept Location) ∈ dom.I , and
((Program Element, SUPERFLUOUSNESS), Code Reading) ∈ dom.I

Again, this is a weak form of inference that only requires that subactivities are impacted by the same
attributed entities as their superactivities but does not require that the impacts are the same. e
activity inference mechanism is formally defined as an implication:

(Inference) ∀f ∈ F,∀t ∈ T : (f, t) ∈ dom.I → (∀y ∈ A−1(t) : (f, y) ∈ dom.I (4.3)

Working Sets When working with large quality models, a mechanism to define views on selected
parts of a quality model is of paramount importance. e metamodel supports this with so called
working sets. A working set w is a tuple (E′, A′, T ′) where E′ ⊆ E, A′ ⊆ A and T ′ ⊆ T . e fol-
lowing conditions must hold for E′ and T ′ to ensure that working sets always contain whole subtrees
of the entities and activity forests:

∀e ∈ E′ : C−1(e) ⊆ E′

∀t ∈ T ′ : A−1(e) ⊆ T ′

A working set w is used to restrict the impact function

I|w : (F ′ × T ′) I

I|w(f, t) = I(f, t).

where I|w denotes the restriction of I to w and F ′ = {(e, a)|e ∈ E′ ∧ a ∈ A′ ∧ (e, a) ∈ F} . For
example, one can define a working set that includes only the model elements that express impacts on
the activity Program Comprehension

81

4 Defining & Controlling Maintainability

wProgram Comprehension = (E, A, {Program Comprehension})

or only impacts that relate to the entity Variable

wVariable = ({Variable}, A, T)

is definition of working sets allows to combine working sets by using set operations on the entity,
attribute and activity sets. For example, two working sets

wVariable = ({Variable}, A, T)
wClass = ({Class}, A, T)

can be combined to

wVariable ∪ Class = ({Variable, Class}, A, T)

Summary Based on the ingredients introduced above a quality model M can finally be defined as
a 4-tuple

M = (F, A, I, I)

where F is a tuple (E, C,G, A, F) that describes the models facts through the set of entities E, the
composition function C, the generalization function G, the attributes set A, and the facts set F . A is
a tuple (T,A) that consists of the activities set T and the super activity function A. I is the impact
function and I is the impact set.

While the 4-tuple defined above describes the basic structure of a quality model, the modes of oper-
ationalization presented later in the chapter require the following extensions to the metamodel. For
clarity’s sake they are not formally included in the metamodel. Most modes of operationalization re-
quire all model elements to be equipped with human readable names and detailed descriptions. e
association of model elements and descriptions are defined by multiple functions that map model
elements to descriptions. For example function DE below maps entities to descriptions and func-
tionNE maps entities to their name. Name and description functions are defined for all other model
elements in analogy.

(Entity Description) DE : E → P

DE(e) = {description of entity E},

(Entity Name) NE : E → P

NE(e) = {name of entity E},

82

4.2 An Activity-Based Model for Maintainability

4.2.4 Example

To summarize the description of the quality metamodel and to illustrate how the modeling approach
addresses the shortcomings of previous approaches, this section gives a comprehensive example. is
example demonstrates how the approach can be used tomodel quality criteria for a FOR loop in the C
programming language. e quality criteria to be integrated are taken from well-known and widely-
used MISRA [209] and Ellemtel [135] guidelines for C:

1. »e statements forming the body of FOR statement shall always be enclosed in braces.« [209]

2. »Floating point variables shall not be used as loop counters.« [209]

3. »Only expressions concerned with loop control should appear within a FOR statement.« [209]

4. »Numeric variables being usedwithin a FOR loop for iteration counting should not bemodified
in the body of the loop.« [209]

5. »e choice of loop construct (FOR, WHILE or DO-WHILE) should depend on the specific
use of the loop.« [135]

From these requirements we infer that a FOR loop obviously has a head, a body and a counter vari-
able. Hence, we define: C−1(FOR Loop) = {Head, Body, Counter Variable}. We model the relation
between the entities with the composition function C as head, body and counter variable are parts
of the FOR loop. Note, that this decomposition roughly matches the grammar of the C language
but is, of course, highly simplified. For simplicity’s sake, we assume that the relevant activities for
modeling the quality criteria are program comprehension and modification which are both subac-
tivities of maintenance: A−1(Maintenance) = {Program Comprehension,Modification}. Based on
these preliminaries, we can model the criteria as follows:

1. e MISRA standard requires the body of a FOR loop to be enclosed in braces as this »avoids
the danger of adding code which is intended to be part of the conditional block but is actually
not« [209]. As this expresses a positive impact on the modification activity, it can be mod-
eled as [Body |WELL-FORMEDNESS] +−→ [Modification]where the attributewell-formednesswas intro-
duced to capture the requirement. Other guidelines consider the complete bracing also relevant
for program comprehension. Hence, another impact can be added to the model: [Body |WELL-

FORMEDNESS] +−→ [Program comprehension]. e fact [Body |WELL-FORMEDNESS] can be checked au-
tomatically (and even corrected) by tools, hence T ((Body, WELL-FORMEDNESS)) = .

2. e MISRA guidelines furthermore require that no floating-point variables are used as count-
er variables. Interestingly, the reason for this is not directly related to maintenance but rather
to reliability. Rounding and truncation errors may lead to inaccuracies and, in fact, to unex-
pected results if the number of iterations varies from one implementation to another. With
respect to soware maintenance this can be a problem for portability, i. e. porting the soware
to another platform can produce unexpected errors8. Hence, we add the activity Porting and
use the attribute APPROPRIATENESS to describe [Counter Variable | APPROPRIATENESS] +−→ [Porting]. is

8e use of floating point variables for loop counters can have other ramifications beyond the porting problem. For
brevity’s sake, these are not discussed here. See https://www.securecoding.cert.org for details.

83

4 Defining & Controlling Maintainability

fact can be analyzed automatically, too. erefore T ((Counter Variable, APPROPRIATENESS)) =
.

3. According to theMISRA guidelines the head of a for loop serves the only purpose of initializing,
incrementing and testing the loop counter. While the guidelines lack a clear description of
the rationale behind this rule, we assume that additional statements in the loop head distract
the reader and define [Head | PURPOSIVENESS] +−→ [Program Comprehension]. is fact cannot be
assessed fully automatically but appropriate tools can identify heads that possibly violate the
criterion, hence T ((Head, PURPOSIVENESS)) = -.

4. Furthermore, the MISRA guidelines recommend not to modify the counter variable within the
body of the loop. Again, we assume that this has negative consequences for program compre-
hension and define [Body | INTRICACY] −−→ [ProgramComprehension]. We used a construction with
a negative attribute here as we describe a single known anomaly with this impact. Write access
to the counter variable can be analyzed automatically in some cases but is hard to do for all
cases, hence T ((Body, INTRICACY)) = -.

5. eEllemtel guidelines require that the choice of loop construct (FOR,WHILE orDO-WHILE)
should depend on the specific use of the loop. It, hence, asks for the appropriate loop con-
struct to be used for a specific task. We assume that the appropriateness of the loop construct
eases program comprehension and supports modification as well as porting and define: [FOR
Loop | APPROPRIATENESS] +−→ [Maintenance]. e appropriateness of the loop construct cannot be
analyzed automatically. Hence, T ((FOR Loop, APPROPRIATENESS)) = .

For demonstration purposes, this example uses 4 different attributes for 5 facts. Experience shows,
that in realistic models the size of the attribute set A is usually no greater than about 25 elements and,
hence, significantly smaller than the entities set which typically contains several hundred elements.
Fig. 4.9 summarizes the impacts defined by the example quality model. e example demonstrates
how the qualitymetamodelQMM allows to express quality criteria in a concise and consistentmanner.
e following sections explain how themodeling approach addresses the shortcomings identified for
previous approaches in Chap. 3:

Maintenance

Program
Comprehension Modi�cation Porting

APPROPRIATENESS

Counter Variable APPROPRIATENESS

PURPOSIVENESSHead

WELL-FORMEDNESS

INTRICACY
Body

FO
R L

oo
p

Figure 4.9: Example Model for the FOR Loop

84

4.2 An Activity-Based Model for Maintainability

Assessability. e facts formulated above, e. g. [Body |WELL-FORMEDNESS] or [FOR Loop | APPROP.],
are fine-granular enough to be assessed although this cannot necessarily be done automatically
in all cases. At first sight, the metamodel does not prevent the definition of facts that are not
assessable. For example, one could define a fact [System | SIMPLICITY] that is no more precise than
criteria defined by the classic hierarchical models. However, our quality modeling approach
counters this in two ways. First, it requires each fact f ∈ F to be equipped with an assessment
and conformity description via functionDFA

and to be categorized w.r.t. to the assessment type
via functionT . As these can hardly be provided for the fact [System | SIMPLICITY], amodel contain-
ing this fact would be invalid. Second, the well-defined structuringmechanism provided by the
metamodel allows a straightforward decomposition of such a fact, e. g. in [Subsystem | SIMPLICITY]
or [Class | SIMPLICITY] and, hence, helps to break it down into assessable facts.

Rationale. e quality model enforces the clarification of the rationale behind the quality cri-
teria by making explicit the impact on maintenance activities. Hence, it prohibits the definition
of criteria that like some of the examples above lack a description of the rationale or express it
only vaguely.

Structuredness. Finally, the quality metamodel provides a clearly defined decomposition and
thereby fosters consistency and completeness of the quality models:

Consistency. Consistency is an issue, in particular, if multiple definitions of quality, e. g.
multiple guidelines, are used. is can be exemplified with the following rules taken from
the same guidelines as the examples above: »the break statement shall not be used (except
to terminate the cases of a switch statement)« [209] and »use break to exit a loop if this
avoids the use of flags« [135]. Obviously, these criteria contradict each other. Expressing
them with our quality modeling approach, can reveal the contradiction if both criteria are
expressed as facts of the entity Break Statement. Clearly, other ways of modeling the two
rules can be thought of that would conceal this contradiction. However, experience shows
the facts tree’s decomposition that follows the decomposition of the artifact types is well-
suited to reveal such issues. Next to this, the example makes a strong case for having one
integrated definition of quality instead of multiple parallel ones.

Beyond the consistency regarding the content, the quality modeling approach also fosters
the uniformity of the terminology. For example, it is quickly discovered that the MISRA
guidelines call the counter variable loop counter whereas the Ellemtel guidelines use loop
variable and iteration variable. Particularly, the fact that different terms are used within
one guideline document, highlights the practical relevance of the consistency issue.

Completeness. To illustrate how theQMM aids qualitymodel completeness, we assume that
the quality model that describes the FOR loop is integrated with a larger quality model.
is larger model defines an entity Program Element that we declare a superordinate of
the FOR loop: G(FOR Loop) = Program Element. As unneeded program elements confuse
the reader, the model defines the impact [Program Element | SUPERFLOUSNESS] −−→ [Program
Comprehension]. Being a subordinate of the program element, the FOR loop automatically
inherits the fact [FOR loop | SUPERFLOUSNESS], a criterion that is captured only implicitly by the
guideline documents above. Although this is certainly valid, the model should be refined
to express a particular form of superfluousness only exhibited by loops: loops that are iter-
ated only once. is refinement is achieved by overriding the description of the respective

85

4 Defining & Controlling Maintainability

factD([FOR loop | SUPERFLOUSNESS]). is is a criterion contained in neither of the guidelines
above. Discovering it is supported by the inheritance mechanism of the quality model. As
this criterion is true for all loops, the model can be further generalized by defining this
criterion for a newly introduced entity Loop that is a subordinate of Program Element and
the superordinate of FOR Loop. Having defined this new fact, the model designer must
also add the missing facts to ensure that condition 4.2 is met. In this case, the impacts are
simply copied from the superfact: [Loop | SUPERFLOUSNESS] −−→ [ProgramComprehension] and
[FOR loop | SUPERFLOUSNESS] −−→ [Program Comprehension].

e example demonstrates how the quality modeling approach supports the construction of well-
structured and assessable quality models that clearly capture the rationale behind the individual
quality criteria. However, such a model only is of real value if it is operationalized in the quality
assurance process.

4.3 Operationalization

e following sections demonstrate how QMM-based models can serve as basis to quality control and
the quality assurance activities that communicate the quality requirements to the developers in order
to prevent quality defects.

Quality Control Lehman and other authors showed that soware systems undergo a quality de-
cay if no countermeasures are taken (see Chap. 2 for details). Without exception, this affects all of
the commonly known quality attributes like reliability, functionality, efficiency, portability, usabil-
ity and maintainability. However, maintainability is oen affected most seriously as a decline in
maintainability is not immediately visible to customers and, hence, oen perceived as less critical.
To counter this problem, a quality control process is required to analyze and pro-actively improve
maintainability in a continuous and timely manner.

Quality control in non-soware disciplines has been described by leading quality experts with the
analogy of a feedback loop as oen found in control systems [87, 169, 263]. e central idea is that
quality cannot be evaluated only once but needs to be monitored continuously. Deviations from
quality requirements are addressed by correcting the product. e feedback loop in its most basic
form is oen referred to as Plan-Do-Check-Act-Cycle (PDCA)9.

We propose to use the same analogy to describe the quality control process for soware maintain-
ability. Fig. 4.10 describes the feedback loop by using the terms of classic control theory: e system
under control is the soware system and the system’s output is its maintainability. e system’s main-
tainability is disturbed by modifications of the system that are caused by changes in the problem as
well as the solution domain. e desired maintainability of the system is specified by a quality model.
Each time the control loop is processed, the quality analysis determines the current state of maintain-
ability. Based on the deviation between the current maintainability and the desired maintainability,

9Other frequently used terms are Shewart- and Deming-cycle, named aer its inventor or its most prominent champion
respectively.

86

4.3 Operationalization

the quality engineer triggers correction by asking the soware developers for remedial actions. e
developers improve the system, thereby change its maintainability and the process starts again.

An important question concerns the cycle time of the feedback loop. Here it is important, to find
an equilibrium of timeliness and effort that ensures that quality decay is avoided without devoting
all resources to quality control. While an actual continuous control, e. g. aer every check-in to
the version management system, may be realizable for automatically assessed facts, it’s infeasible for
manual reviews. erefore, in practice, usually multiple cycles are used to assess different facts at
different rates.

maintainability

analysis results
(feedback)

deviation corrections

disturbance (modi�cations)

desired
maintainability

Q-Engineer Developer

Analysis Tool

Quality Analysis

Review

System

Quality
Model

Figure 4.10: Quality Control Loop

QualityAssurance If the quality control process is strictly performed as described above, it is very
unlikely that the system will ever reach a satisfying maintainability. e reason is that developers are
asked to perform corrections of specific quality defects but the actual target quality requirements are
never communicated to them. Hence, the quality engineer should not only ask for specific correc-
tions but additionally educate developers to help prevent future quality defects. e main means for
achieving this are quality guidelines that capture the quality requirements in a form developers are
familiar with.

Continuous quality control enables the early identification of quality problems, when their removal
is still inexpensive, and aids in making adequate decisions as it provides an overview on the cur-
rent status of a soware system. As a side effect, continuous and timely feedback enables developers
and maintainers to improve their skills and thereby helps to avoid future quality defects. However,
quality control for soware maintainability is hardly applied in practice. We claim that this caused
by shortcomings of existing definitional approaches to specify quality requirements and their in-
sufficient integration with constructive and analytic approaches. e central problem is that most
definitional approaches define quality requirements whose conformity cannot actually be assessed.
Moreover, the approaches are not well-structured enough to provide explicit relations to construc-

87

4 Defining & Controlling Maintainability

tive approaches and between different analytic approaches. In summary, this makes it tedious and
costly to enact quality control and to ensure that it covers all relevant aspects.

e following sections illustrate howqualitymodels as they are introduced in this thesis address these
shortcomings and can, hence, be used as a basis for quality control and for the communication of
quality requirements to the developers. is is achieved by automatically generating quality guide-
lines as well as review checklists from quality models by a tight coupling of quality analysis tools with
the quality model.

4.3.1 Manual Reviews

Manual reviews are a powerful means for analyzing soware artifacts’ conformance to quality re-
quirements. e checklists that are used to carry out the reviews, however, frequently suffer from a
number of shortcomings regarding definitional aspects and also regarding the consistency between
multiple checklists. Moreover, review activities are typically not well integrated with other, possibly
automated, analytic approaches. e following sections show how generating review checklists from
quality models based on the presented metamodel helps to overcome these deficiencies.

Entity Description Assessment
FOR Loop
(…)

A FOR loop is used only when the loop
variable is increased by a constant
amount for each iteration and when
the termination of the loop is
determined by a constant expression.

MANUAL
Check if . . .

A FOR loop is super�uous if its body is
not executed at all or only once.

MANUAL
Check if . . .

Counter Variable
(FOR Loop)

Floating point variables shall not be
used as loop variables as rounding
and truncation errors may make the
number of iterations unpredictable.

AUTOMATIC
Done by PC-Lint

Body
(FOR Loop)

The counter variable should not be
modi�ed in the body of the loop.

SEMI-AUTOMATIC
MockAnalyzer
detects simple
cases. Other . . .

The statements within the body of a
FOR loop shall always be in a block
(enclosed within braces), even if they
are a single statement.

AUTOMATIC
Done by PC-Lint

Entity name:
NE(For Loop)

Assessment Type:
T((For Loop, SUPERFLUOUSNESS))

Fact description:
DF((Body, WELL-FORMEDNESS))

Assessment description:
DFA

((Body, INTRICACY))

Composite entity name:
NE(C(Counter Variable))

Figure 4.11: Generated Review Checklist

Fig. 4.11 shows an excerpt from a review checklist that has been generated from the example quality
model for FOR loops. e checklist lists all model entities alongside the facts defined for the entities.
For each fact (table row) it shows the assessment type and the assessment description. While this is
only one example how checklist generation can be implemented, it demonstrates how the resulting
document addresses the shortcomings discussed in Sec. 3.4.3:

88

4.3 Operationalization

Definitional Aspects Gilb requires, that checklists »must ultimately be derived from the [review]
rules [. . .]« [117]. While this is hard to ensure for classic, hand-written checklists, it is automati-
cally guaranteed when checklists are generated from a quality model. is ensures consistency and
completeness of checklists w.r.t. the quality requirements stated by the quality model. Furthermore,
it has been noted, that »checklist items should not be too general« [45] as this complicates analysis
of conformance. Checklists generated from our quality model address this as each fact is annotated
with an assessment description that explains how the checklist item needs to be evaluated.

Consistency It is considered good practice to keep review checklists as short as possible, ideally a
single page [45]. As all relevant criteria can hardly be expressed on a single page this usually leads
to multiple checklists that cover different aspects. While this facilitates the review process, it poses
the risk of inconsistencies between the checklists. Again, consistency can be automatically ensured
when checklists are generated from a qualitymodel. emodel’s working sets can be used to generate
checklists that address different quality aspects. For example, one could define a working set wPorting
that contains only elements that affect the portability of a systemand generate a checklist that contains
only the facts relevant for this aspect.

wPorting = (E × A × {Porting}) (4.4)

Automation In [45] Brykczynski states that »checklist items should not be used for conventions
better enforced through othermeans (e.g., by the use of automated tools [. . .])« as this helps to reduce
inspection efforts and reduce inspection omissions. Our qualitymetamodel supports this as each fact
is associated with an assessment type via function T . is information can be used in multiple ways.
For example, one could simply omit facts from checklists that are checked automatically or include
the result of the automatic assessment in the generated checklists. In the next section we will show
that this can be particularly beneficial for facts that are assessed semi-automatically as the checklist
may include hints that support the manual assessment.

Summary e explanations above show, that the deficiencies of classic review checklists, i. e. com-
pleteness, assessability and consistency, can be overcome by generating checklists from quality mod-
els based on the metamodel QMM. Moreover, the metamodel supports the a tight integration of
checklists with the automated quality assessments discussed in the next section.

4.3.2 Automated Assessments

Many quality attributes relevant for sowaremaintenance can be assessed with quality analysis tools.
However, themajority of existing tools operates virtually independently from the definition of quality.
Hence, assuring that the quality analysis tools measure what is defined by a quality model is tedious.
Moreover, it is difficult to check if criteria that have not been evaluated by tools are duly taken care off
in inspections. e following sections explain howqualitymodels based on the presentedmetamodel
are ideally suited to be truly integrated with quality analysis tools.

89

4 Defining & Controlling Maintainability

Ideally, quality analysis would be supported by an analysis tool that is aware of a concrete quality
model and directly relates the analysis results to it. It could then generate quality reports that follow
the structure of the quality model and, hence, allow a straightforward assessment of conformity.
Furthermore, the analysis tool could identify quality criteria that are not assessed automatically and
require manual review. However, neither does such a tool exist nor is it realistic to expect one to be
developed. e reason for this is the diversity of analysis problems discussed in the last chapter. Due
to the high complexity and specificity of analysis tasks there never will be one single analysis tool that
is capable of carrying out all required assessments. To exemplify this, think of a real-world soware
system consisting of ten thousands of artifacts in multiple different languages as different as XML, C,
Java, Matlab Simulink as well as domain-specific languages that need to be analyzed with respect to
a multitude of different quality aspects.

As no single integrated tool will be available, another means to relate the assessment results of mul-
tiple analysis tools to a quality model is required. To achieve this, we propose the application of a
integration tool that processes the analysis results of all analysis tools as well as the results of manual
reviews and relates them to the quality model. Based on this, it generates quality reports as well as
other documents, e. g. prefilled review checklists that include the results of all automatically analyzed
criteria. Fig. 4.12 illustrates the role of this integration tool that we refer to as Q-Relator.

Quality Model

Con�guration

Q-Relator

Manual Reviews

Analysis Tool

Analysis Tool

Pre�lled Checklist

Pre�lled Checklist

Quality Report

Quality Report

Figure 4.12: Relating Analysis Results to a Quality Model

To realize such an integration, the Q-Relator must be configured so it knows which analysis results
relate towhich elements of the qualitymodel. is requires the relevant elements of the qualitymodel
to be unambiguously identifiable. e QMM inherently satisfies this and allows the Q-Relator to be
configured accordingly. For example, a configuration could state the fact [Body |WELL-FORMEDNESS] is
assessed by rule ForLoopsMustUseBraces of the static analysis tool PMD. Using this configuration the
Q-Relator can then process the results of multiple analysis tools and generate quality reports that
are directly related to the quality model. To illustrate this, Fig. 4.13 shows three different example
views on the results generated by ConQAT, our implementation of the Q-Relator (discussed in detail
in Sec. 5.2).

Each view focuses on a different aspect: Fig. 4.13a) lists system artifacts that inhibit the porting ac-
tivity, Fig. 4.13b) shows artifacts that contain FOR loops which modify the counter variable within
the FOR loop body and Fig. 4.13c) shows the familiar matrix notation, although it is used for assess-
ment purposes here. As the remainder of this thesis will illustrate, a multitude of different views and
aggregations are required to satisfy the needs of project participants as diverse as developers, quality
engineers and project managers. However, the proposed approach always ensures that each view is

90

4.3 Operationalization

a)

b) c)

Figure 4.13: Quality Reports Generated by the Q-Relator

based on the same definition of quality as this is made explicit by the quality model processed by the
Q-Relator. e explicit relation to the quality model enables the seamless integration of automated
and manual analysis techniques. For example, the Q-Relator can be used to generate a prefilled re-
view checklist that already contains all assessment results that were carried out by the analysis tools
and thereby enables the reviewer to focus on the quality criteria that require manual assessments (see
rows 3 and 5 in Fig 4.14).

is is especially valuable for facts that require semi-automatic assessment. Semi-automatic assess-
ments are used if tools can only support a manual review by preparing the manual assessment but
cannot fully automate it. is, in fact, applies to almost all analysis tools that generate »false posi-
tives« as these list candidates but leave the final decision to the human reviewer. One example are
clone detection tools that aim at detecting redundancy by searching for duplicated code. Another
example for semi-automatic assessments are problems where only specific cases can be handled au-
tomatically. A typical example is the fact [Body | INTRICACY] that requires that the counter variable of a
FOR loop must no be modified within the loop body. It requires a very sophisticated analysis tool to
correctly assess this fact in all cases as a full dataflow analysis is needed. However, simple cases where
the variable is modified directly within the body of the loop can be detected quite simply. As this
case is expected to be the most frequent, it is worth applying an automated analysis although it needs
to be completed with a manual review. Due to the existence of precisely defined quality model both
types of assessments can be integrated by the Q-Relator in a prefilled review checklist that supports
the manual reviewer by relieving him from the task to check trivial cases. An example is shown in
row 4 of Fig 4.14.

Summary e explanations above show that the central shortcoming of existing analysis tools,
their integration with definitional and other analytic approaches, can be overcome by applying a

91

4 Defining & Controlling Maintainability

Entity Description Assessment Result
FOR Loop
(…)

A FOR loop is used only when the loop
variable is increased by a constant
amount for each iteration and when
the termination of the loop is
determined by a constant expression.

MANUAL
Check if . . .

A FOR loop is super�uous i� ts body is
not executed at all or only once.

MANUAL
Check if . . .

Counter Variable
(FOR Loop)

Floating point variables shall not be
used as loop variables as rounding
and truncation errors may make the
number o� terations unpredictable.

AUTOMATIC
Done by PC-Lint

Body
(FOR Loop)

The counter variable should not be
modi�ed in the body of the loop.

SEMI-AUTOMATIC
MockAnalyzer
detects simple
cases. Other . . .

The statements within the body of a
FOR loop shall always be in a block
(enclosed within braces), even if they
are a single statement.

AUTOMATIC
Done by PC-Lint

No violations
found.

Violations in:
line 32, line 148

No simple violations
found. Manual
checking still required.

Figure 4.14: Prefilled Review Checklist

soundly structured quality model that allows to define explicit relation between different quality
analysis approaches. Besides the lack of integration, a number of other shortcomings of analysis
tools were discussed in Chap. 3. We address these in Chap. 5 where we present ConQAT, an imple-
mentation of the Q-Relator.

4.3.3 Guidelines

An important task of quality assurance is to communicate the quality requirements to the developers
and other project participants. As discussed in the previous chapter, quality guidelines are the cen-
tral means to do this. However, classic guideline documents suffer from a number of shortcomings
concerning definitional as well as constructive aspects. e following sections show how generat-
ing guideline documents from quality models based on the presented metamodel helps to overcome
these deficiencies.

Fig. 4.15 shows an excerpt from a guidelines document that has been generated from the example
quality model for FOR loops discussed in Sec. 4.2.4. e example guideline uses the model entities
and their composition function C as the basic structure of the guideline. For each entity e ∈ E it
lists all defined facts with their descriptions and their impacts. While this is only one example of how
guideline generation can be implemented, it demonstrates how the resulting document addresses the
shortcomings discussed in Sec. 3.3:

92

4.3 Operationalization

3. FOR Loop
A FOR loop is a programming language statement which allows code to be
repeatedly executed. Unlike other kinds of loops, the FOR loop is distinguished
by an explicit counter variable. This allows the body of the FOR loop to know
about the sequencing of each iteration.

Appropriateness. A FOR loop is used only when the loop variable is in-
creased by a constant amount for each iteration and when the termination
of the loop is determined by a constant expression.

 Program Comprehension. When spotting a FOR loop the reader of the
code expects a behavior of the loop that follows the basic FOR loop
pattern. Other, inappropriate, behavior confuses the reader.

 Porting. The FOR loop constructs of nearly all non-functional pro-
gramming languages provide the basic FOR loop functionality, i. e.
increasing/decreasing a counter . . .

 Modi�cation. Modi�cations to FOR loops that do not follow the basic
FOR loop pattern are error-prone.

Super�uousness. A FOR loop is super�uous if its body is not executed at
all or only once.

 Program Comprehension. Super�uous program elements confuse the
reader.

3.1 Counter Variable
A counter variable controls the iterations of a FOR loop, usually taking on a range
of integer values in some orderly sequence (e.g., starting at 0 and ending at 10
in increments of 1)

Ambiguousness. Floating point variables shall not be used as loop vari-
ables as rounding and truncation errors may make the number of iterations
unpredictable.

 Porting. Ambiguity in counter variable testing may occur when the
system is ported from one platform to another.

3.2 Body
The body of a FOR loop.

Intricacy. The counter variable should not be modi�ed in the body of the
loop.

 Program Comprehension. Modi�cations of the counter variable make
code harder to comprehend as the body of the loop needs to com-
pletely understood to determine the number of iterations.

Well-Formedness. The statements within the body of a FOR loop shall
always be in a block (enclosed within braces), even if they are a single
statement.

 Modi�cation. Enclosing the body of FOR a loop in braces avoids
the danger of adding code which is intended to be part of the condi-
tional block but is actually not.

 Program Comprehension. Fully braced loop bodies enable the reader
to quickly identify body boundaries.

Entity name:
NE(For Loop)

Attribute name:
NA(APPROPRIATENESS)

Entity description:
DE(For Loop)

Fact description:
DF((For Loop, APPROPRIATENESS))

Impact description:
DI((For Loop, APPROPRIATENESS, Porting))

Impact:
I(((For Loop, APPROPRIATENESS),
 Modi�cation))

Counter variable is part of FOR Loop:
Counter Variable  (C-1(FOR Loop)
Entity name:
NE(Counter Variable)

Entity name:
NE(Body)

Entity description:
DE(Counter Variable)

A�ected activitites:
{t  T | I((Body, WELL-FORM.), t)  dom.I}

Facts for entity »Body«:
{ (Body,a) | a   a (Body,a)  F}

Activity name:
NT(Porting)

Arrow indicates that
fact is inherited

Figure 4.15: Generated Quality Guideline

93

4 Defining & Controlling Maintainability

DefinitionalAspects Classic quality guidelines oen exhibit a somewhat arbitrary structure. is
is addressed by generated guidelines as they follow the clearly defined decomposition imposed by the
quality metamodel. e guideline shown in Fig. 4.15, for example, uses the entities tree to structure
the guideline. Hence, its chapter and section structure is unambiguously defined by the composition
function C, the facts defined for the entities and the affected activities. e inclusion of the affected
activities automatically counters the lack of rationale present in many classic guidelines. e reader
can instantly see why a rule is included in the guideline. Although the descriptions for assessing the
individual criteria are not included in the example guideline, one can be sure that it contains only
assessable criteria as the metamodels requires an assessment description for each fact. If needed, this
description could of course be included in the guideline. Classic guideline documents are usually not
well integrated with the analytic quality assurance approaches as there is no defined relation to them.
With quality guidelines generated from our qualitymodel, this relation is automatically defined. is
allows, e. g., to relate quality assessment results directly to sections in the guidelines.

Constructive Aspects ere are also constructive aspects of quality guidelines that have been
criticized. Usually the reason for this is that guidelines are insufficiently tailored for their target
audience. While the guideline shown in Fig. 4.15 may be well suited for a beginner or a new project
participant, a seasoned developer will perceive it as too verbose as he wants to have only a concise
list that reminds him of the quality criteria. Such a list can easily be generated by customizing the
guideline generator, e. g. by making it leave out the descriptions of the entities and the list of impacts
(see Fig. 4.16). While this provides a better suited view on the same quality model, consistency is still
ensured as all project participants work with the same quality model.

Besides the level of presented details, it has been criticized that quality guidelines oen contain infor-
mation that is not relevant for certain groups of developers. One example are quality criteria specific
to certain language constructs or libraries that may or may not be used in a particular project. While
they are valuable for project participants that work with such a library, they are perceived as disturb-
ing by participants who do not. Experience showed that this kind of tailoring is so frequent, that the
customization of the guideline generator to specifically include or exclude certain model elements
is not a viable way. Hence, such tailorings are best realized with working sets defined by the quality
model. For example, one can define a working set that includes all language constructs but pointers
as these are not used in certain systems. e generation of the guideline can then be performed for
the specified working set:

w\Pointer =
((

E\({Pointer} ∪ C−1
∞ (Pointer))

)
, A, T

)
Since working sets are defined as restrictions on the impact function I , it makes no difference for
the generator if it works on the impact function I itself or on a working set. As working sets can be
combined using set operations on the elements of their domain, the same generator can be used to
generate guidelines for all working sets.

Summary e explanations above show, that the definitional shortcomings of quality guidelines,
i. e. lack of structure, lack of rationale, can be overcome by generating guidelines from the quality

94

4.4 Summary

3. FOR Loop
A FOR loop is used only when the loop variable is increased by a con-
stant amount for each iteration and when the termination of the loop is
determined by a constant expression.

A FOR loop is superfluous if its body is not executed at all or only once.

3.1 Counter Variable
Floating point variables shall not be used as loop variables as rounding
and truncation errors may make the number of iterations unpredictable.

3.2 Body
The counter variable should not be modified in the body of the loop.

The statements within the body of a FOR loop shall always be in a block
(enclosed within braces), even if they are a single statement.

Entity name:
NE(For Loop)

Fact description:
DF((For Loop, APPROPRIATENESS))

Counter variable is part of FOR Loop:
Counter Variable  (C-1(FOR Loop)
Entity name:
NE(Counter Variable)

Facts for entity »Body«:
{ (Body,a) | a   a (Body,a)  F}

Figure 4.16: Simplified Quality Guideline

models based on the metamodel QMM. Moreover, working sets as well as customized guideline gen-
erators help to tailor the guideline documents for the intended target audience while still ensuring
consistency.

4.4 Summary

In the chapter on the state of art (Chap. 3) we concluded that today the biggest obstacle towards a
mature discipline of maintainability management are the approaches used to define maintainability
and their integration with constructive and analytic means of quality assurance.

To remove this obstacle, the quality modeling approach presented in this thesis addresses all short-
comings identified for previous approaches:

Assessability. Previous approaches donot define criteria formaintainability at a level that is suit-
able for an actual assessment. Hence, it is not possible to evaluate if a system complies to stated
quality requirements or not. e quality metamodel QMM requires each fact to be equipped
with a precise assessment description and a classification of the assessment type (manual, semi-
automatic, automatic). is helps to avoid the definition of non-assessable facts. Furthermore,
the structure imposed by the metamodel supports the decomposition of non-assessable into
more tangible, assessable ones.

Rationale. Previous approaches oen omit the rationale behind the required properties of the
system. is makes it difficult to describe impacts precisely and therefore to convince devel-
opers of the importance of the proposed quality criteria. Our modeling approach is based on
the relation between quality facts and the activities of the soware maintenance process. For
each fact, this relation expresses its relevance for soware maintenance and thereby explains its

95

4 Defining & Controlling Maintainability

rationale. As the maintenance activities provide a breakdown of the total maintenance effort,
this can also contribute to a discussion of quality economics.

Structuredness. Previous approaches oen use ambiguous decomposition dimensions which
leads to inconsistent models and hampers the revelation of omissions and inconsistencies in
these models. Our approach overcomes this shortcoming by rigorously separating aspects that
are typically intermingled: activities, entities and attributes. is separation creates separate
hierarchies with clearly defined decomposition criteria. In contrast to previous approaches,
our modeling approach is based on the explicitly defined quality metamodel QMM. e use of
an explicit metamodel further fosters the conciseness, consistency and completeness of quality
models as it forces the model designer to stick to an established structure and supports him in
finding omissions. e rigid structure of the quality model instances enables us to provide a
rich set of tools for editing and maintaining quality models (see next chapter).

Anothermajor shortcoming of previous qualitymodels is that they provide no real operationalization
to support constructive and analytic means of quality assurance. is is a precarious situation as
long-lived soware systems are known to undergo a quality decay and should, hence, be subject
to continuous quality control. Due to the rigid structure imposed by the quality metamodel QMM,
our quality models overcome this problem and lend themselves to serve as basis of a quality control
process. ey support this process not only by providing a precise definition of what constitutes
maintainability in a given context but also by the automatic generation of review checklist and the
integration with quality analysis tools. Moreover, they support quality assurance by the automatic
generation of quality guidelines that are used to communicate the quality requirements to developers
and other project participants.

However, it needs to be noted, that modeling quality is essentially modeling. Hence, all the challenges
one faces when modeling, i. e. creating a appropriate abstraction, apply for modeling quality, too. In
particular, every sufficiently expressive modeling language offers multiple different, perhaps differ-
ently suitable, ways to express the same concepts. Consequently, it is as likely that someone builds
poor quality models with our modeling approach as it is that someone misuses any other modeling
or programming language.

Wewere aware of this problemwhen designing thismodeling approach and, consequently, took great
care to find a metamodel that is rigid enough to prevent obvious misuses but is still simple enough
to be applied in a straightforward manner. is design process was based on a careful analysis of
the shortcomings of previous approaches as well as on the experience we gathered with multiple case
studies in different contexts. Hence, we are confident that our approach provides the necessary solid
basis for modeling and controlling of maintainability. To substantiate this, Chap. 6 reports on our
experiences with the approach in various commercial and academical contexts. e next chapter,
however, introduces the tools that are necessary to put quality modeling and control into practice.

96

»Concepts and tools, history teaches again and again,
are mutually interdependent and interactive.«

Peter F. Drucker

5 Tool Support

It has been repeatedly discussed in this thesis, that the operationalization of quality models is of
paramount importance. is chapter describes the tools that were developed to achieve this. is
includes QMM.editor, an editor to create and maintain QMM-based quality models that are used to
explicitly define the target quality. Moreover, we presentConQAT, a toolkit to build quality dashboards
that supports the continuous control of quality factors during soware maintenance.

5.1 Quality Model Editor »QMM.editor«

Realistic quality models oen contain several hundred model elements. Hence, comprehensive tool
support is necessary to design andmaintain these models in an efficient and effective manner. More-
over, tool support is required to ensure that quality models really conform to the quality metamodel
QMM introduced in the last chapter and to generate checklists and guidelines from quality models.
Our earlier studies have shown that handling realistically sized models is plainly infeasible if no ad-
equate tools are provided. Hence, significant effort was spent on the development of the graphical
model editor QMM.editor that supports all relevant modeling tasks. e following section gives an
overview of the editor and its implementation of the quality metamodel QMM.

5.1.1 Metamodel Implementation

e quality model editor QMM.editor is directly based on the quality metamodel QMM. Hence, all
model element types discussed in the last chapter can be created and modified in the editor. How-
ever, the following extensions, concretions and simplifications of the QMM where introduced. ese
deviations from the formally defined metamodel are driven by the experiences we made in the appli-
cation of the editor. We found that such concretizations are fundamental for operationalizing quality
models. e following list gives a detailed account of all deviations from the formal metamodel:

Impacts. e metamodel allows to use arbitrary impact sets I . As we primarily use the impact
set I = {−, +} in our cases studies we, the QMM.editor implementation is currently restricted
to this impact set.

Ids. A central feature of theQMM is the unambiguous identifiability of all model elements. is
is required to relate constructive and analytic means of quality assurance to specific elements
of a quality model. e formalization straightforwardly provides this identifiability by using
sets. In the concrete implementation of the QMM, however, designated identifiers are required
to provide identifiability for persisted models. e implementation of the QMM realizes this
with two different mechanisms:

97

5 Tool Support

Textual Ids. Each model element in a quality model has a textual identifier. is identi-
fier is not required to be globally unique but must be locally unique so it is ensured that
model elements can be identified by path-like expressions like system/for loop/body. Such
expressions are called fully qualified names.

Numeric Ids. Textual identifiers have the advantage of being readable by humans and,
additionally, the fully qualified names carry information about the location of a model el-
ement within a model. For certain purposes these two advantages, however, turn out to
be disadvantages. First, the fully qualified names tend to be rather lengthy for elements in
large models and, hence, are sometimes inconvenient to use. Second, the fully qualified
names are sensitive to structural changes of the model, e. g. moving an element from one
place in themodel to another changes its fully qualified name. To be able to unambiguously
identify model elements regardless of their location in the model, each model element is
additionally equipped with a globally unique numeric id. is id is assigned at element
creation and never changed thereaer; it is also called the permanent id.

Languages. In many industrial contexts it is required to express the quality models in multiple
languages. As building two quality models that differ only in the language of their descriptions
is tedious and error-prone, the QMM.editor allows to define the textual descriptions of all model
elements in multiple languages. With respect to the formal metamodel, we, hence, define mul-
tiple description functions for eachmodel element type and language. Likewise, the assessment
description function T is defined for multiple languages.

Textual Markup. As model element descriptions are oen of significant length, the QMM.edi-
tor does not limit them to plain text but provides a simple Wiki-like syntax to define basic text
formatting like bullet lists and enumerations.

Rooted Entities Tree. e QMM.editor requires the forest defined by the entities and the compo-
sition function C to be connected and to have a single root element. Experience has shown that
this eases navigation of the entities tree. As an artificial root element can be used, this poses no
actual limitation with respect to the QMM. is constraint does not apply for the generalization
forest.

Sources. To further document the rationale behind model elements, it is beneficial to anno-
tate them with the origin they derive from. Hence, the QMM.editor introduces the additional
model element type source that describes references like articles, books or websites. Eachmodel
element can be annotated with multiple sources.

Assessment Type. e QMM defines the three assessment types , - and
 for facts. However, experience showed that quality model designers oen want to
express that a fact could theoretically be assessed automatically but the organization currently
lacks the required tools. To express this, we introduced the assessment type  -
. Moreover, quality model designers oen are not experts in automatic analyses and,
therefore, do not know if a fact can be assessed automatically. To express this, we introduced
the assessment type . However, the quality model editor warns the user about the
existence of facts with assessment type .

Attribute Inheritance. e QMM defines predicate 4.1 to model the inheritance of attributes.
In the QMM.editor this not implemented as a predicate to check model consistency but as a

98

5.1 Quality Model Editor QMM.editor

mechanism that automatically creates the inherited facts. For example, if one defines the fact
[Program Element | SUPERFLUOUSNESS] the model will automatically contain all subfacts.

Activity Inference. A similar mechanism is used to implement the activity inference predicate
4.3. Each impact defined for an activity is automatically inferred for all its subactivities.

Dangling Facts. rough condition 4.2 the QMM requires each fact to have at least one de-
fined impact. In contrast to attribute inheritance and activity inference this condition cannot
be automatically satisfied as the impact cannot be derived by the editor. erefore, another
mechanism is needed to ensure that this condition is met. is is problematic because the
step-wise design of a quality model usually includes states that violate the condition. Hence,
the editor cannot generally prohibit models that violate the condition. e editor resolves this
dilemma by accepting models that violate the condition but warns the user about the detected
incompleteness.

Other Completeness & Consistency Issues. e same mechanism is used to warn the user about
other potential problems regarding completeness and consistency. Examples are model ele-
ments that lack a description in a specified language or facts that have assessment type -
.

Working Sets. In the current implementation of the QMM.editor, working sets can be defined
only by specifying the entities and attributes that belong to a working set. e set of activities
included in a working set currently cannot be restricted.

5.1.2 Overview

e editor’s main window consists of several views that are used to edit the different element types
of the metamodel QMM (Fig. 5.1). e following list gives an overview of the views and explains how
they relate to the quality metamodel (numbers and letters of the list below refer to elements shown
in the screenshot in Fig. 5.1).

1. Model Explorer. e model explorer shows all entities, activities and attributes of a model.
Double-clicking an element opens it in the editor view (6) to edit its properties. e model
explorer comprises the following parts:

a) Entity Composition Tree. eentity composition tree shows all entities in a collapsible tree.
e tree structure is defined by the composition function C. Context menu entries allow
to create new entities as parts of an existing one and to equip an entity with an attribute to
create a new fact.

b) Activities Tree. e activities tree shows all activities in a collapsible tree where the tree
structure is defined by the superactivity function A. A context menu entry is provided to
create new subactivities of existing activities.

c) Attributes. e attributes view lists all attributes of the quality model. A context menu
entry to create new attributes is provided.

99

5 Tool Support

2. Matrix View. e matrix view visualizes the impact function with the matrix-based notation
introduced in the last chapter. Matrix elements can be selected to open them in the model
explorer view.

3. Generalization View. e generalization view is used to visualize the tree induced by the gen-
eralization function G. It is synchronized with the model explorer view to display the subordi-
nates of the element currently selected there. Context menu entries are provided to create new
subordinates of existing entities.

4. Facts View. e facts view shows all facts defined for the currently selected entity. For each fact
a list of impacts is shown. A context menu entry allows to create new impacts.

5. Sources. e sources view lists all available sources that can be associated with the model
elements to document their origin. Menu entries are provided to create new sources.

6. Editor. e editor view is used to edit the model elements. e view is subdivided into multi-
ple sections where some are common for all model element types and some show information
specific for the element type, e. g. the assessment type for facts or the impact value for impacts.
e common sections for all model element types are:

a) General Information. is section shows the id, the fully qualified name, the permanent
id as well as creation and modification time of the model element.

b) Details. e details section shows details that are specific for the type of the edited model
element. For example, the details section in the screenshot shows the composite elements
as well as the superordinates of the edited entity. Moreover, it provides controls to change
the superordinate and the composite. For clarity’s sake, the details section is accompanied
by another type-specific section for some element types. For example, the attributes section
in the screenshot shows an overview of the facts associated with the entity and illustrates
the inheritance of the attributes.

c) Languages. e QMM.editor allows to define multiple descriptions of each element to
support multi-lingual quality models. e language-specific description of the elements
are edited on separate editor tabs that can be selected at the bottom of the editor. e list
box (6c) is used to add or remove support for a specific language to or from the edited
model element.

d) Sources. e QMM.editor allows to associate each model element with multiple sources to
document where the element derives from. e list box (6d) is used to add and remove
sources.

7. Problems. e problems view reports inconsistencies and incompleteness of the model. Ex-
amples are lacking descriptions or impact definitions.

8. Working Sets View. eworking set view showsworking sets defined for a qualitymodel. Menu
entries are provided to create new working sets.

100

5.1 Quality Model Editor QMM.editor

Figure 5.1: Screenshot of the Quality Model Editor

5.1.3 Model Design &Maintenance

e QMM.editor is designed to support quality model creation in a top-down as well as bottom-up
manner. Hence, model designers can start modeling with any model element, may it be an entity,
an activity or an attribute. To support this, the QMM.editor allows to create incomplete or inconsis-
tent models but informs the designer about such problems. To support the iterative development of
models, the model designer must not provide all required textual descriptions when an element is
created but can build the basic structure first and then annotate the elements with the descriptions.
If required, this can be done in several languages.

e actual construction of the quality model is mainly guided by context-menu entries that provide
access to the relevant operations. For example, the context menu of an entity provides an operation
to create a new part of this entity and an operation to associate the entity with an attribute in order
to define a new fact. Similarly, the context menu of a fact provides an entry to define an impact on

101

5 Tool Support

an activity. If reasonable, these operations are supported by graphical dialogs, e. g. the target activity
for a new impact can be selected in a graphical representation of the activities tree.

Refactoring Quality models need to be extended and updated as quality requirements change or
new ones arise. To efficiently support this, the quality model editor provides several refactorings as
they are known from modern integrated development environments. For example, model elements
and their ids can be changed at any time. Moreover, model elements like entities and activities can be
freely moved within their respective trees. For all changes, the editor ensures that relations to other
model elements are maintained. Refactorings that would lead to invalid states, e. g. duplicate local
ids, are prohibited by the editor.

Working Sets Due to the size of realistic quality models, working sets are an indispensable tool
for managing them. Hence, the editor uses working sets not only to limit the scope of generated
guidelines and checklists as discussed in the last chapter but also to provide views on the currently
edited model. To use this feature, a model designer can pick one of the previously defined working
sets from the working set menu and thereby make the editor hide all model elements that do not
belong to the working set from all views. is enables him to focus on the a specific part of the
model but still provides the flexibility to change to other parts within one mouse click only.

5.1.4 Checklist & Guideline Generation

Next to the design andmaintenance of quality models, theQMM.editor is also used to generate review
checklists, quality guidelines and possibly other documents from a quality model. To support this
the editor provides an extension interface that allows other developers to implement new exporters.
Currently, the editor provides the following exporter implementations:

Entity Tree Exporter. is exporter exports a visualization of the entities tree in several different
graphic formats. e entity tree export is useful for gaining an overview on the model and for
presenting it, e. g. in developer trainings.

Activity Tree Exporter. e same exporter is provided for the activity tree.

Matrix Exporter. ematrix exporter exports thematrix visualization of the impact function to
a bitmap or vector graphic format. is exporter, too, ismainly used for preparing presentations
for developer trainings.

Latex Checklist Exporter. is exporter exports a simple review checklist in the Latex format.

MSR MEDOC Exporter. e MSR MEDOC exporter is currently the most advanced exporter.
It exports a quality model as a quality guideline document in the MSR MEDOC format1. e
generated guideline document is structured in two parts where the first part contains the ex-
ported fact in a concise, checklist style form and the other part contains all relevant further

1e MSR MEDOC format is an XML application to describe generic textual documents. It was defined by the MSR
MEDOC working group whose members are mainly from the German automotive industry (see http://www.msr-wg.
de/medoc for details). e format was chosen as one of our main industrial research partners uniformly uses it for all
its documents. e documents in the MSR MEDOC format can be converted to PDF with XSLT.

102

5.1 Quality Model Editor QMM.editor

explanations. In PDF files that are generated from the MSR MEDOC format, the two parts ref-
erence each other with hyperlinks. is allows developers and reviewers to focus on the concise
checklist and only consult further explanations if needed. Examples of guidelines generated by
this exporter and are shown in the chapter on case studies.

5.1.5 Implementation & Architecture

e QMM.editor is built upon the Eclipse Rich Client Application Platform2 (RCP), as it provides a
comprehensive framework for building graphical editors in a very efficient manner. Figure 5.2 il-
lustrates the basic architecture of the QMM.editor. e figure includes only components that were
specifically developed for the editor and omits standard libraries as well as the RCP framework it-
self; Eclipse plugins are shown in violet, other Java libraries in grey. e central components of the
application are:

QMM Core. e QMM Core is Java library that contains the implementation of the quality
metamodelQMM, the persistencemechanism for qualitymodels and a number ofmodel-related
utility functions. e implementation of the metamodel is a straightforward translation of the
formal metamodel discussed in the last chapter to Java classes. Hence, the UML class diagram
in Fig. 4.8 provides a suitable overview of the implementation classes. Following the command
pattern [111], the QMM Core provides a set of classes to create new model instances and to
modify existing ones. e persistence mechanism for quality models uses XML files to store
and load quality models. e structure of these XML files is defined by an XML Schema. e
QMMCore is not implemented as an Eclipse plugin as it would not benefit from the framework
and is also used by non-Eclipse applications, e. g. by the quality control toolkit discussed in the
next section.

Text. e Text library implements a basic Wiki-like markup functionality for texts that is used
to format the description texts of the model elements. We did not use any of the existing Wiki
markup rendering engines as these are usually focused on transforming the markup to HTML
whereas we must support a number of different output formats like LaTeX and MSR MEDOC.
e Text library is not implemented as an Eclipse plugin, either, since it is used in multiple
non-Eclipse contexts.

QMM Editor. e QMM Editor is the central component of the quality model editor and pro-
vides all the functionality discussed above bar the export of checklists and guidelines. e vast
majority of the component’s code is purely concerned with the user interface of the editor and
does not provide any additional logic beyond what is implemented in the core. An exception
is the auditing functionality that checks quality models for completeness and consistency. is
currently resides in the editor component but will be moved to the core in the future. e com-
ponent provides an extension point3 that other plugins can use to contribute exporters to the
editor.

Exporters. is extension point is used by the exporters that were already introduced above.
To use the extensions points exporters must implement a specific Java interface. is interface

2http://www.eclipse.org/rcp
3An extension point is the standard Eclipse mechanism to define interfaces between plugins.

103

5 Tool Support

is intentionally kept as lightweight as possible to not restrict the type of exporters it describes.
Hence, exporters cannot only be used to export checklist and guidelines but to generate any
kind of information from a quality model.

LaTeX Exporter
(1 kLOC)

Matrix Exporter
(0.5 kLOC)

Tree Exporter
(0.5 kLOC)

MSR MEDOC Exporter
(1.5 kLOC)

QMM Editor
(12 kLOC)

QMM Core
(10 kLOC)

Text
(2 kLOC)

Figure 5.2: Quality Model Editor Architecture

5.1.6 Summary

While the QMM.editor provides all required functionality to design and maintain QMM-based qual-
ity models, it has neither the maturity nor the functionality that is required for day-by-day use of
non-experts. For example, it currently lacks proper search functionality to find model elements by
searching their descriptions as well as functionality to copy model elements from one model to an-
other. Nevertheless, we view the editor as being beyond a mere proof-of-concept implementation
and the fact thatmultiple researchers as well as one industrial partner use the editor seems to confirm
this opinion.

104

5.2 Quality Control Toolkit ConQAT

5.2 Quality Control Toolkit »ConQAT«

Due to the diversity of factors that influence maintainability comprehensive tool support for quality
assessment is indispensable to establish an effective and efficient quality control process. Tools are
not only needed to carry out automated quality assessments but also to provide an integrated view of
all collected quality data in order to assess the quality of a system’s artifacts with respect to the defined
quality requirements. Tools that provide such an integrated view are usually referred to as soware
quality dashboards or soware quality cockpits. However, as the discussion of existing tools in the
chapter on related work points out, there currently is no quality dashboard application available that
satisfies the requirements of a truly integrated quality control process as advocated in this thesis.

To address this, we designed the Continuous Quality Assessment Toolkit ConQAT. ConQAT provides a
rich and extensible library of building blocks that is used for the rapid development of customized
quality dashboard applications. As such, ConQAT’s main focus is not on the provision of new quality
analysis methods but on the seamless integration of existing ones. However, as multiple examples
show, ConQAT also provides a comprehensive basis for building novel analyses. In fact, we found
that the border between reusing existing analyses and developing new analyses oen blurs when
an integrated toolkit is used. While ConQAT can be tightly coupled to QMM-based quality models
(see Sec. 5.2.8), it can also be operated in conjunction with other quality models or even without an
explicit definition of quality requirements. While we do not recommend this, we still leave the option
open to not limit the contexts ConQAT can be used in.

5.2.1 Requirements

If quality dashboards are used to support continuous quality control as described in the last chapter,
theymustmeet the requirements discussed below. e list of requirements is based on the shortcom-
ings of existing analysis tools that were discussed in chapter on the state of the art. It is augmented
by further requirements that were identified as part of our experience with quality control in several
industrial and academic contexts.

Integration To provide an integrated overview of the current state of quality of a system, a quality
dashboard should be able integrate multiple automatic quality analysis tools as well as the results
of manual reviews. e combined results must be put into relation with the stated quality require-
ments.

Diversity e factors influencing product quality are diverse. erefore a quality dashboard may
not be limited to a certain type of factors or artifacts it analyses. It must not only include analyses
for source code but should provide measures for other artifacts like documentation, models, build
scripts or information stored in a change management system. Furthermore, each of these artifact
types can be analyzed at different abstraction levels. Source code is a good example to illustrate this
as each of the following abstraction levels serves as basis for different types of analyses:

Character Level. Certain analyses like the determination of the file size or the search for specific
textual patterns are carried out on the character level of a source code file.

105

5 Tool Support

Line Level. e line level is e. g. used to determine the lines of code or to carry out a line-based
clone detection.

Token Level. A source code file can be tokenized by a lexical analyzer (scanner). ese tokens
serve as basis for analyses that need to differentiate different token types like identifiers, key-
words, literals or comments. Examples are analyses that detect redundant literals or search for
textual patterns in specific tokens like comments. An especially powerful analysis best carried
out on the token level is clone detection.

AST4 Level. Many analyses require knowledge of the syntax tree of a source file. Examples
are the detection of anti-patterns or bug patterns or analyses that detect the misuse of certain
language constructs.

Dependency Graph Level. Other analyses require a representation of the source code that is
above the syntax tree as they focus on the dependencies between program elements like meth-
ods and classes. Examples are the detection of unused methods or classes. Dependency graph-
based analyses oen do not only inspect single source files but rather look at subsystems or even
the whole system.

Byte Code Level. Many modern programming languages are not directly compiled to machine
code but a byte code that is then executed in a virtual machine. While the byte code is not really
an abstraction level of a source code file, it represents a relevant representation of it, as many
analyses can be carried out on the byte codemore easily and alsomore efficiently than on source
code.

As all the above analyses can be relevant for the assessment of maintainability, a quality dashboard
application must not be predisposed to a specific abstraction level.

Customizability Quality requirements are highly project-specific as the analyzed systems, the ap-
plied tools and processes, the involved technologies and the acting people differ. Even more so, these
requirements are not constant but evolve over the course of a project. Hence, a quality dashboard
must be highly customizable to support a project-specific tailoring of the analyses carried out and
the way they are presented. Besides this, mechanisms to reduce the high number of false positives
typically reported by analysis tools are of paramount importance as too high number of false posi-
tives are known to frustrate users. One needs to be aware that the continuous application of quality
analyses significantly raises the bar for the quality of the analyses results. While false positives can be
dealt with relatively easily for one-time assessments, we found that developers hardly tolerate more
than 5% of false positives if they are required to work with the analysis results on regular, e. g. daily,
basis.

In general, there are two ways to deal with false positives: prevention and management. Prevention
aims at avoiding false positives altogether. is can be achieved by carefully selecting the analyses
relevant in a certain context, i. e. by not blindly executing default analysis configurations that come
with most tools. Furthermore, the analysis target must be chosen thoroughly, e. g. by excluding all
generated code from analyses like clone detection. As practice shows, even this seemingly simple
approach is technically challenging as generated code is oen intermingled with handwritten code

4Abstract Syntax Tree

106

5.2 Quality Control Toolkit ConQAT

within source files. Another possibility to deal with false positives is to allow them in first place
but provide mechanisms to mark them as irrelevant and henceforth exclude them from analysis re-
sults. We refer to this technique as black-listing. Again, this is technically challenging as black-listing
should still work if elements the false positives were reported against are moved from one location to
another. Depending on the type of analyses, very different technical solutions have to be applied.

Another type of customization regards the management of tolerations. In most systems continuous
quality control was not applied from the beginning on but is introduced at some later point in the
soware life cycle. Hence, the initial application of quality analysis usually generates an enormous
amount of findings even if false positives are treated correctly. As most organizations cannot cope
with all findings at once,mechanisms are required to define tolerations that exclude particular finding
from the analysis results and thereby enables an organization to clean up a system step by step. It
needs to be stressed that, while the techniques to define these tolerations may be similar to ones used
for dealing with false positives, the motivation to do so is fundamentally different.

Autonomous Operation Tool supported assessments need to be carried out regularly (e. g. daily
or hourly) to provide timely results. To achieve this in a cost-efficient manner, analysis tools need to
be able to work in a completely automated, non-interactive way.

Aggregation & Visualization Automated quality analysis of large soware systems generates an
enormous amount of analysis data. To not overwhelm users, analysis results need to be aggregated
to a comprehensible level and presented in an appropriate manner. As discussed in the description
of our quality metamodel in the last chapter, different types of aggregations are required for differ-
ent purposes. Hence, a quality dashboard must provide different types of aggregation that can be
flexibly composed to achieve the desired results. e provided aggregation mechanism must not be
predisposed on a specific type of aggregation operator or a particular metric scale.

Even highly aggregated analysis results need to be conveyed to the user in an effectivemanner. Hence,
the quality dashboards must provide powerful visualization mechanisms beyond tables and charts,
e. g. graphs for structural information or tree maps to visualize distribution of anomalies within a
system.

Dedicated Views e assessment results must be accessible for all project participants, e. g. on
a website or via a specific client. However, due to differing interests, it must be possible to provide
a customized view for each stakeholder. Project managers, for example, are mainly interested in a
high-level overview that enables them to spot problems without going into details. Developers, on
the other hand, require views of finer granularity that allow them to inspect analysis results for the
artifacts they have been working on.

Trend Analysis Many quality defects are hard to identify by investigating a single snapshot of a
systembut can be discovered by tracking changes over time. Hence, the dashboardmust be capable of
storing and presenting historical data to foster the identification of trends. Moreover, variousmetrics
used today are hard to interpret on an absolute scale but are well-suited if relative measures are used.
It is, for example, not entirely clear what the quality implications of a code cloning ratio of 16% are,

107

5 Tool Support

whereas most quality engineers would agree that it is important to ensure that the cloning ratio does
not increase over time5.

Extensibility As no tool can innately support the whole spectrum of all possible artifacts it must
provide an extension mechanism that allows users to add further analysis or assessment modules as
needed. Examples of artifacts that demand such extensions are models used in model-driven devel-
opment or programs written in newly created domain-specific languages. Moreover, the extensibility
should not be limited to adding new sensors but should also cover the addition of new aggregation
mechanisms, filters, visualizations or other functionality that is not directly related to a specific sen-
sor.

Performance As quality controlling is particularly relevant for large scale systems that rule out
comprehensivemanual assessments, a quality controlling tool must be able to cope with the analyzed
system’s size in acceptable time.

5.2.2 Design Considerations

To the best of our knowledge none of the tools available completely satisfies the requirements pic-
tured above. We therefore designed ConQAT from scratch. Our design considerations are led by
the requirements above and by the experiences we made with existing analysis tools as well as our
own prototypes. A central decision was not to build a monolithic dashboard application but rather
a toolkit or framework that provides building blocks to rapidly develop dashboard applications that
are tailored to the specific needs of the given context. e requirement for extensibility made it ev-
ident that our toolkit must provide a flexible extension mechanism that allows to add new building
blocks. ese extension blocks can carry out various analyses that were previously unthought of but
should nevertheless be composable with other blocks.

e main challenge here was the design of an architecture which is rigid enough to allow the ef-
ficient combination of different analyses while being flexible enough to integrate the plethora of
different kinds of analyses. Detailed analysis of different extensible architectures pointed out that
there is in fact a spectrum of flexibility. However, there’s always a trade-off between the flexibility and
the expressiveness of the extensions. On one end of the spectrum, one finds architectures that are
extremely rigid. ey define a very stringent extension interface and thereby limit the extensions’
expressiveness. Nevertheless, they allow a flexible composition of the extensions and permit a rich
infrastructure in the architectural core of the system. On the other end of the spectrum, one finds
architectures that define a very unspecific interface and integrate their extensions only loosely. is
enables extensions to be much more powerful but limits composition possibilities and inhibits a rich
common infrastructure.

To obtain a better understanding of this spectrum, we developed two prototypes close to both ends
of it. e one on the rigid end basically supported a mapping from compilation units to numerical

5e cloning ratio measures how much of the source code has been copied at least once. It thus provides an estimate of
how likely changes will have to be performed in multiple places due to code duplication.

108

5.2 Quality Control Toolkit ConQAT

metric values6. Obviously this mechanism allows very efficient composition of different analysis
modules but limits the range of analysis types. It doesn’t support metrics which yield anything but a
numerical value (without cumbersomeworkarounds) andmakes analyseswith a granularity different
from compilation units impossible. e prototype at the other end of the spectrum was more or less
a web portal which allowed the extensions to contribute HTML pages with their analysis results. It
should be clear that this approach allows almost unlimited possibilities for the extensions but makes
a meaningful composition of different extensions nearly impossible.

5.2.3 Architecture

Our analyses and experiments showed that finding the »right spot« on this spectrum was impossible
due to the multifaceted nature of quality factors. Whenever we came up with a seemingly suitable set
of interfaces, a new requirement for a specific quality analysis revealed another deficiency. ough
this could be attributed to a lack of skills on our part we are convinced the problem is caused by
the great number of diverse analysis types a system like this must support. We therefore opted for a
solution that avoids picking a fixed spot on the flexibility spectrum and thereby limiting the system’s
versatility. Central idea of the selected solution is to specify interfaces that are general enough to
support literally every kind of analyses and let users of the frameworkwork outmore precise interface
definitions for components that allow a meaningful composition.

ese considerations finally led to the design depicted in Fig. 5.3. e central element of ConQAT’s
architecture are processors that are interconnected in a pipes-and-filter oriented style. ese proces-
sors highly diverse functionality and work like functions that accept multiple inputs and produce
a single output. e Driver component is responsible for configuring the processor network and
passing information from one processor to another. Processors may access external data like the file
system or databases either directly or using one of the provided Libraries.

Libraries
&

Caches

Processors

D
riv

er

IO ParserLexer
Byte-
code

F1
p
1

p
2

p
n

F3
F2

Figure 5.3: Architectural Overview

A simple example for composing an analysis of multiple processors is depicted in figure 5.4. Pur-
pose of this analysis is to determine the average length of methods and to assess it with regard to
a threshold. e analysis is composed of 7 processors that perform highly diverse and dedicated

6is prototype is still available at http://www4.cs.tum.edu/~ccsm/svat/ but no longer maintained.

109

5 Tool Support

tasks. Processor Scope analyzes the file system and records the directory structure for all source code
files thatmatch a certain naming pattern. is tree-like data structure is forwarded to processors LoC
and #Methods which determine the lines of code of each source file respectively compute the number
of methods whereas the latter uses a parser or byte code analyzer (provided as library). Processors
#Methods and LoC both annotate the original data-structure with integer values describing the re-
sults of their analyses and hand them to processor Div. is is a very simple processor which solely
computes the average method length for each source file. Processor Assessment assesses the average
method length with regard to a predefined threshold and rates each source file on simple traffic light
scale with either ,  or . ProcessorAggregator aggregates these assessments from the
leaves to the root of the tree, i. e. nodes that have  child nodes are themselves rated . Finally
processor Output writes the results to a file with a suitable format like HTML.

LoC

Scope

#Methods

Div Assessment Aggregator Output

Figure 5.4: Processor composition example

e type of data exchanged between processors is purposely unspecified to allow greatest possible
flexibility. As ConQAT and its processors are implemented in Java, it is actually defined as java.lang.
Object. Nevertheless, processors must define their concrete interfaces by means explained below.
Our hope was that during the continuing extension of the tool, families of processors with matching
concrete interfaces would emerge as indicated in figure 5.3 by the dashed »clusters« denoted with Fi.
Fortunately our assumption was confirmed very quickly: Aer implementing a couple of processors,
the desired families emerged. Examples are processors that perform calculations on scalar values as
typically done when processing the results of metric analyses. ese processors have no knowledge
of the origin of the values they process and can thereby be flexibly combined and reused in all sit-
uations that demand basic calculations. Another example are processors that deal with the »traffic
light assessments« we typically use. Besides assessing the results produced by other processors, they
are specialized in aggregating and filtering assessed results.

Experience shows that interfaces within processor families remain stable aer a certain tuning phase
due to their relatively limited scope. is allows flexible organization of analyses by composing pro-
cessors in different ways. An obvious example are the processors that deal with scalar values. By
implementing a set of processors that perform basic calculations, more complex calculations can be
performed by composing processors. Note that formally the computability expressed by composition
is limited as we don’t allow recursive calls to the processors. In practice this proves to be of no signif-
icance since each processors may implement every computable function. Equally important are the
interfaces between different families of processors. is is best illustrated by the following example.
ere is a family of processors that perform code audits like checking code format conventions or
finding dubious pieces of code like empty blocks. ese processors create lists with audit warnings
for each source file. A simple interface between these processors and the ones described above is
a processor that counts the number of warnings for each source file. is number may then act as
input to further processors which perform calculations on it or assess it with regard to predefined
rules.

110

5.2 Quality Control Toolkit ConQAT

Over time this approach led to the modularization which we weren’t able to design from scratch due
to the great diversity of requirements. Such an evolutionary approach demands measures of control
to ensure success and avoid undesired developments. Problems that typically arise and which we
experienced as well are »bloated« functionality of single processors and redundancy as two or pro-
cessors implement the same or overlapping functionality. We counter these effects with precisely the
same continuous quality control measures we advocate in this thesis. is involves clone detection,
static checks for architecture violations combined with manual reviews. From the very beginning,
we used ConQAT in a bootstrapping manner on itself to integrate these activities.

Central to these activities was the identification of commonly used functionality and moving it to
libraries that can be accessed by all processors. ese libraries form a central point of entry to the
analyzed system’s artifacts and thereby allow the implementation of efficient caching strategies. As
it is very likely that different processors will use e. g. the AST of a particular compilation unit, the
AST will be cached for future use and needs to be built only once. All ConQAT libraries use caching
mechanisms that greatly reduces analysis time. To further improve performance the libraries are
built on top of each other (if reasonable). For example, the parser library uses pre-cached tokens
from the lexer library. All caches are implemented in a memory-sensitive way and support dynamic
uncaching if the system is short of memory.

5.2.4 Configuration

e evolution of the architecture must be supported by a solid technical basis that inhibits uncon-
trolled growth of the interfaces. Typically one would expect that our decision to loosely specify the
interfaces between the processors would result in a mess of explicit cast operations and the accom-
panying inevitable cast errors. Indeed the problems arising from the unspecified interfaces initially
made our approach look infeasible. Aer implementing about 15 different processors we realized
that the problems of non-explicit interfaces and the required explicit type casts introduced too many
sources of errors to achieve a well maintainable system. We therefore developed a novel solution
which we regard powerful and elegant. As we consider it essential for the success of ConQAT, this
solution is presented in detail along with ConQAT’s configuration mechanism.

We found that the mechanism that allows users and extenders of ConQAT to configure composed
analyses from simple building blocks (the processors) is crucial. In early prototypes this configura-
tion was simply done by hard-coding the configuration with Java. As even the most simple recon-
figuration of the system demanded modification of source code, re-compilation and re-distribution
of the whole system it became evident that this approach is not an option for a system whose central
requirement is flexibility. We therefore moved to a solution that employs a declarative XML config-
uration file to describe the interconnection of processors. is resembles the mechanisms typically
used by extensible architectures like the Eclipse platform. To understand how this configuration
mechanism work, we first provide details on the interface of the processors.

Processor Interface As our processors are basically functions, their interfaces could be described
by a single method:

Object process(Object[] parameters);

111

5 Tool Support

is interface precisely displays the problem discussed before: it is in fact untyped. As implementa-
tions can hardly perform any real work on objects with type Object they need further knowledge of
the actual type of the parameter objects. Processor composition is further hampered by the fact that
the result type of a processor is unspecified. With the new features of Java 5 the latter problem can
be solved relatively easily using covariant return types. Covariant return types allow implementers
of an interface to refine the return types of methods by using a subclass of the original return type,
e. g.:

Integer process(Object[] parameters);

Unfortunately, the former problem can’t be solved as easily since covariant method parameters are
unsafe and therefore not supported in Java. e central idea of our solution to this problem is to omit
input parameters in the interface and leave their definitionup to the processors. is is achieved using
Java’s annotation mechanism7.

Two example processor implementations are shown on the right hand side of Fig. 5.5. Both proces-
sors implement the parameterless method process and define their result types by using covariance.
Processor FileSystemScope is responsible for scanning a given directory path for all Java source files
and creating an IFileSystemElement-object that describes the resulting directory tree. e task of
processor LOCAnalyzer is to annotate each leaf element of this tree object with the number of lines
of code the corresponding source file has. Obviously this processor needs an object of type IFileSys-
temElement to work on. erefore it defines a method

void setRoot(IFileSystemElement root);

and annotates it as a@AConfigElement. is annotation informs the ConQAT runtime system that the
annotated method is meant to provide an input parameter. Additionally one may use the annotation
to specify further details e. g. if this parameter is mandatory or not.

<processor id=“source “ class=“ FileSystemScope “>
 <root dir=“src“/>
</processor>

<processor id=“loc-analysis“ class=“LOCAnalyzer“>
 <input ref=“@source“/>
</processor>

public class LOCAnalzyer implements IProcessor {
 @AConfigElement (name=“input“)
 public void setRoot (@AConfigAttribute (name=“ref“) IFileSystemElement root) {
 ...
 }
 ...
}

public class FileSystemScope implements IProcessor {
 @AConfigElement (name=“root “)
 public void setRootDirectory(@AConfigAttribute (name=“dir“) String rootDir) {

 }
 public IFileSystemElement process() throws ConQATException {
 ...
 }
}










Figure 5.5: Mapping from Configuration File to Implementation

7http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html

112

5.2 Quality Control Toolkit ConQAT

Type Safety To fully grasp the benefit of this approach, one must understand how the connection
of different processors is configured with ConQAT. A typical configuration file is shown on the le
hand side of Fig. 5.5. It defines the processors named »source« and »loc-analysis« where the latter
one is connected to the former one by referencing its name (»@source«). is connection is indicated
by line 1⃝. is configuration implies a corresponding connection between the implementation of
the two processors as shown by line 2⃝. Now the advantage of this mechanism becomes evident:
ConQAT’s run-time system can make sure that two connected processors have matching interfaces
by using Java’s reflection mechanism. In fact, ConQAT refuses to run an analysis if the interfaces of
connected processors do not match. e advantage of this approach is that type safety needs to be
ensured only once before running the first analysis. We call this approach »load time type checking«
(opposed to compile time or runtime type checking).

Besides this, the figure also shows that there is a defined mapping between the configuration file and
the processors’ implementations. Line 3⃝ shows that the processor implementation is referenced by
specifying the class name in the configuration file. Lines 4⃝ and 5⃝ exemplify how XML-elements
are mapped to the corresponding input parameter methods: By using annotations, class FileSystem-
Scope states that it expects only one configuration element called »input« that has exactly one attribute
»root« with type String. In contrast to parameter »@source«, which describes a reference to the out-
put of the processor source, »src« is an immediate parameter since strings can be provided in the
configuration file itself. In fact, annotations in processors are not only used to ensure type-safety and
allow a defined mapping to the declarative configuration, file but also provide a basis for automated
generation of processor documentation.

Blocks ConQAT configurations oen contain repeated elements. A simple example is a configu-
ration that describes the analysis depicted in Fig. 5.4 for multiple different systems or subsystems.
Designing such an analysis results in duplicating large parts of the configuration (Fig. 5.6). To pre-
vent this, ConQAT provides an abstraction mechanism called block that allows to group processors.
is modularization does not only reduce configuration redundancy but provides means to build
reusable groups of logically coherent processors. To support reuse ConQAT also provides mecha-
nisms to document such blocks accordingly. e block mechanisms is hierarchical so that blocks
again can contain blocks.

Blocks are configured in the same manner as »normal« ConQAT configurations are. e only dif-
ference is that they have dedicated inports and outports to explicitly describe their interface. ese
ports can also be documented. Based on our experience, we designed blocks so that, in contrast to
processors, they cannot only have multiple inports but also multiple outports. is allows to build
configurations as shown in Fig. 5.6 where the result of the assessment as well as the raw metric values
are forwarded to the output component.

Runtime e driver component is responsible for interconnecting the processors as defined in the
configuration file and running the analysis. During start-up the driver unfolds the blocks, loads the
processors’ classes via reflection and uses their meta data to ensure type safety. It thereby ensures that
the configuration is valid before starting the analysis. Processors are topologically sorted and then
ran one aer another. During execution, the driver passes the result from one processor to the next.
If a processor’s result is used more than once, the driver is responsible for cloning it. It additionally

113

5 Tool Support

LoC

Scope

#Methods

Div Assessment Aggregator

C

ScopeScope

#Methods

Div Assessment Aggregator

LoLoL C

ScopeScope

Output

AvgMethodLengthAssessor

AvgMethodLengthAssessor

Figure 5.6: Configuration Blocks

performs some monitoring tasks to provide debugging information if one of the processors should
fail.

5.2.5 Modularization & Feature Overview

At the time of writing this thesis, ConQAT provides around 300 processors and 80 blocks that provide
features as different as database access to store analysis results or the detection of clones in Mat-
lab Simulink models. To be able to manage this diversity, a proper modularization mechanism is
of paramount importance. To achieve this, ConQAT provides so-called bundles that group proces-
sors, blocks and libraries that belong together. ese bundles can be viewed similar to what other
extensible architecture like the Eclipse platform call plugins. Consequently, they not only serve the
modularization of ConQAT but also provide the means to extend it. Technically, a bundle is nothing
more than a collection of Java classes, ConQAT blocks and other resources like third-party libraries or
images. Each bundle is accompanied with a simple XML file called the bundle descriptor that stores
information about the organization that developed the bundle and its current version. Furthermore,
the bundle descriptor describes dependencies to other bundles.

Currently, ConQAT has about 30 bundles. Some of these are of highly experimental nature and some
are developed for specific industrial partners and, hence, contain functionality that is relevant only
in the context of a specific environment. Figure 5.7 gives an overview of the most important bundles
and illustrates bundle dependencies by putting bundles that depend on others on top of these. e
size of the depicted bundles was chosen for layout reasons only and does not reflect the amount of
functionality provided by the bundles. e following sections describe the functionality of these
bundles and thereby give an impression of ConQAT’s current functionality8.

8Almost all of the bundles make heavy use of existing third-party libraries, e. g. for parsing Java source or byte code.
Although a lot ConQAT’s functionality could not have been implemented without these libraries, we do not discuss
the individual libraries to keep the description of the bundles as concise as possible.

114

5.2 Quality Control Toolkit ConQAT

Commons

ConQAT Core

Source Code

File System

Java
.NET

Bu
gz

ill
a

D
at

ab
as

e

Su
bv

er
si

on
Simulink

Graph

Blocklib

Self

M
od

el
 C

lo
ne

s

H
TM

L
Pr

es
en

ta
tio

n

M
SR

Pr
es

en
ta

tio
n

A
rc

hi
te

ct
ur

e

Cl
on

eD
et

ec
tiv

e
C/C++

Figure 5.7: ConQAT Core & Bundles

ConQATCore Shown at the bottomof the figure is the ConQATCorewhich itself is not a bundle but a
normal Java application. e core defines the interfaces for the processors and contains the driver that
is responsible for reading ConQAT configurations and executing them. However, the core does neither
provide processors, blocks or libraries. Hence, it is not specifically geared to any domain and could
technically be used to execute ConQAT configurations completely unrelated to quality assessment. If
ConQAT was viewed as a language, the core would be the compiler and the virtual machine.

Commons e Commons bundle provides processors and blocks that have been identified to be
beneficial for a wide range of applications. Most importantly, the Commons define the Java interface
IConQATNode that is used by themajority of processor to exchange information although processors
can technically use any Java type. e interface IConQATNode is of very generic nature and merely
describes a tree of nodes where each node can store arbitrary values identified by a key. Hence, its
centralmethods are getChildren(), getValue() and setValue(). Other bundles can create specializations
of this interface to describe more concrete structures, e. g. a tree of Java source files.

Additionally, the Commons bundle provides around 60 processors that work on IConQATNodes and
simpler data types like strings. Examples are processor for filtering nodes based on values stored at
them or processors for sorting trees based on specific properties. Moreover, the Commons bundle
offers processors that implement simple aggregation operators like minimum, maximum or sum-
mation and processor for basic arithmetic functions. More advanced aggregations are provided by
statistics processors that perform rank-relation calculations like the determination of percentiles for
a collection of metric values. Besides this, the bundle provides a rich library for dealing with ICon-
QATNode-trees, e. g. for traversing or conversion to other data structures. ese libraries can be
used from all bundles that depend on the Commons bundle. If ConQAT was viewed as a language, the
Commons bundle would be the standard class library of the language.

115

5 Tool Support

File System e File System bundle provides processors and blocks that implement functionality
that handles file system access. is includes a processor that scans a file system for files whose names
match a certain pattern and builds a tree of IFileSystemElements from it which is a specialization of
IConQATNode. Based on these file systemnodes other processors implement functions like counting
the lines of a file, determining its size or its last modification time. Special filters are provided that
take into account the file content by searching for specific patterns in text files. An example for amore
advanced processor is theDuplicateFileAnalyzer that detects binary identical files by comparing their
MD59 hashes. e bundle furthermore provides a library for accessing files that implements a cache.
Hence, processors that access the content of a file do not have to re-read a file if it has been processed
before. e cache is implemented in a memory-sensitive manner and supports dynamic uncaching
if the system is short of memory.

Source Code e central role of the Source Code bundle is to provide lexical analyzers for different
programming languages. rough these, it can currently tokenize source code files in Java, C/C++,
C#, Visual Basic, VB.NET, PL/1 and COBOL. ese scanners are implemented in a library that also
caches the token streams to avoid redundant scanning of the same files. Using the token stream, the
bundle provides, amongst others, processors to search for textual patterns in specific token types like
comments and to detect redundant literals (e. g. magic numbers) in source code.

Java e Java bundle builds on the Source Code bundle and provides a parser to access the syntax
tree of Java files and a byte code analyzer to access their byte code. e bundle provides processor to
calculate basic metrics like depth of inheritance tree and number of methods. Search for well-known
anti andbugpatterns is provided byprocessors that interface the popular convention checkers PMD10

and FindBugs11. e result of unit tests can be integrated into dashboards through processors that
read JUnit12 test reports. Test coverage analysis is offered by a similar processor that interfaces the test
coverage analyzer Cobertura13. Furthermore, the bundle provides sophisticated filters that e. g. allow
to filter all Java interfaces or all classes that specialize a particular class. Another set of processors
allows to assess JavaDoc comments and to create dependency graphs for Java classes.

C/C++ Due to the complexity of C and particularly of C++, the C/C++ bundle does not provide
a parser for these languages. Instead, the bundle provides processors to integrate assessment results
from commercial C/C++ analyzers like Klocwork14 and the Siemens Code Inspector that was used
in one of our projects. Additionally, the bundle contains a processor for extracting a dependency
graph of a C/C++ system based on the include directives in the source code.

.NET e .NET bundle provides processors and blocks for the analysis of systems written in .NET
languages likeC# andVB.NET.is includes a processor that creates a source file tree from the project

9e Message-Digest algorithm 5 is a hash function defined by RFC 1321.
10http://pmd.sourceforge.net
11http://findbugs.sourceforge.net
12http://www.junit.org/
13http://cobertura.sourceforge.net/
14http://www.klocwork.com/

116

5.2 Quality Control Toolkit ConQAT

description files used by theVisual Studio IDEwhich is used inmost .NET-based projects. Moreover,
the bundle contains processors to extract information from the .NET byte code. As there currently is
no .NET byte code analysis library available for Java, this is implemented by calling a .NET analysis
program whose results are forwarded to ConQAT processor written in Java. e bundle, furthermore,
offers an integration of the .NET convention checker FxCop 15.

CloneDetective eCloneDetective bundle contains the token-based clone detection tool that has
been described in [168] and [167]. e clone detection tool is tightly integrated with ConQAT and
makes use of advanced filtering features to tailor the clone detection in order to reduce the number
of false positives. For example, the clone detective can use the filters provided by the File System
bundle to exclude certain regions of files from the detection or, more sophisticatedly, use different
normalization algorithms for different file regions. Moreover, a blacklisting mechanism is provided
that allows to exclude specific clones from the detection results.

Model Clones e Model Clones bundles provides processors to carry out clone detection on
graph-based models. Its implementation and application has been described in [76]. While the-
matically related to the CloneDetective bundle the two bundles to not share common functionality as
the detection of clones in graphical models is fundamentally different from token-based detection
of source code clones. e Model Clones bundles provides the basic algorithm for detecting model
clones. However, this must be concretized for specific model types, e. g. Matlab Simulink.

Simulink e Simulink bundle provides a concretization of the model clone detection algorithm
of the Model Clones bundle and can, hence, be used to detect clones in Matlab Simulink models. To
achieve this, the bundle contains a parser for the Simulink file format. Besides the clone detection,
this parser is used to implement convention checks similar to PMD or FindBugs for Simulink and
Stateflow models.

Subversion e Subversion bundle provides processors to assess the Subversion source codeman-
agement system16. ese processors can be used to acquire information stored by Subversion, e. g.
the authorship of files or to asses the conformance of commit messages to agreed patterns. e bun-
dle also offers processors to analyze properties of the working copies of files stored on the local hard
disk.

Bugzilla e Bugzilla bundle allows to access the widely-used issue tracking system Bugzilla17.
is can be used to collect project progress information, e. g. the number of open issues or to assess
process conformance. For example, it can be checked if issues are closed only by members of the
quality assurance team.

15http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx
16http://subversion.tigris.org/
17http://www.bugzilla.org/

117

5 Tool Support

Database e Database bundle provides access to relational databases that support the JDBC in-
terface18. Its central purpose is to collect and store trend data in a database. To do so it provides
processors that extract values stored at IConQATNodes and store them in a database together with a
time stamp. Other processors are used to extract series’ of time-stamped values from the database
that can then be charted by one of the output bundles.

Graph e Graph bundle provides a specialization of the IConQATNode interface that describes
hierarchical graphs and processors that create such graphs from data structures generated by other
bundles such as the .NET or Java bundle. For example, it takes only two processor to create a hier-
archical graph that describes the class dependencies of a Java system. To analyze these graphs, the
bundle provides processors to determine standard graphmetrics like fan-in and fan-out as well as so-
phisticated centrality metrics like the famous Page-Rank. Moreover, the bundle contains processors
to determine clusters in graphs and to detect cycles.

Architecture eArchitecture bundle builds on theGraph bundle and allows to compare a system’s
actual architecture to an intended architecture in order to find architecture violations. To achieve this,
the bundle implements a simple XML-based language for the definition of intended architectures.
As the implementation of the bundle is purely based on graphs, it is neither depended on a specific
programming language nor on a particular type of dependencies. Hence, architecture compliance
analysis based on include directives in C can be carried out in the same way as compliance analysis
based on call-dependencies in Java.

HTML Presentation e HTML Presentation bundle is the central bundle for displaying the anal-
ysis results. It provide processors to format IConQATNodes as tables and tree-tables as well as nu-
merous processors for generating diagrams like bar charts, pie charts, line charts, radar and scatter
plots. Additionally, the bundle provides processors for displaying hierarchical graphs and processors
for layouting standard tree maps [265] as well as cushion tree maps [301]. e graph layout example
in Fig. 5.8a shows architectural dependencies of a system where intended dependencies are colored
green, prohibited dependencies are red and currently tolerated ones are yellow. Experience showed
that the tree map visualization shown on the right of Fig. 5.8 is a powerful tool for visualizing anal-
ysis results with respect to the location within the system. In Fig. 5.8b, for example, each rectangle
represents a Java class where the size of rectangle is determined by the LOC of the class. e color of
the rectangle indicates the number of FindBugs warnings that was found in the class. As the position
of the rectangles reflects the position of a class within the system decomposition, a quality engineer
can use this view to quickly locate areas that exhibit more quality defects than others. is is further
supported by tooltips that show information like the class name and details on analysis results.

Quality dashboards typically do not only show a single chart or table but consist of multiple views to
display different quality characteristics for different parts of a system or even for different systems.
To support this, the HTML Presentation bundle has a processor that creates a single HTML page that
provides an overview of all analyses and serves as an entry point to the other views. An example of
this page is shown in Fig. 5.9. As the center of the page shows, analysis results can be arranged in
groups so that analyses that belong to the same system or are of similar nature are shown together. If
18http://java.sun.com/javase/technologies/database

118

5.2 Quality Control Toolkit ConQAT

JUnit

Core

Lib

Extensions_

Framework_

Runner_ Matchers_

Hamcrest_

Experimental_TextUI_

Tests_

Samples_

a) b)

Figure 5.8: Graph Layout & TreeMaps

analyses use a traffic-light style assessment scale, the results are automatically aggregated and shown
in the colored bars for each analysis. For each group, these assessment results are again aggregated
and displayed as colored bar in the header of the group. e le frame of the main page contains a
collapsible tree that is for navigational purposes, i. e. for directly assessing the results of analyses.

It needs to be stressed that all output generated by the HTML Presentation bundle is purely client-
side HTML. Hence, no server component is required to display the results. is allows to easily copy
the results from one machine to another and also facilitates straight-forward backups of results. Of
course, the output can be equally simply copied to a web server to make it centrally available for all
concerned project participants.

MSR Presentation As ConQAT uses the same flexible mechanism it uses for the analysis also for
the output, other output processors can be defined and even run in parallel to the HTML output.
One example is the MSR Presentation bundle that generates output files in the MSR MEDOC format.
ese files can be converted to the PDF format using XSLT. Hence, the MSR Presentation bundle
allows to generate a single condensed report file as it is sometimes required in industrial contexts
for archival purposes. Currently, the MSR Presentation bundle does not support all the charts and
diagram types offered by the HTML Presentation bundle as they have either not been implemented
yet or do not work well with a non-interactive format like PDF.

Self e Self bundle is specifically designed to analyze ConQAT itself. For example, it allows to
detect dependencies between bundles that exist transitively but are not made explicit in the bun-
dle descriptors of the concerned bundles. Similarly, dependencies that are defined but not actually
required can be detected. Another analysis concerns the existence of duplicate classes: As bundles
can include third-party libraries, it can happen that multiple bundles include the same third-party
library, possibly in different versions. As this oen leads to unexpected behavior, the Self bundle
provides a processor to detect classes that are loaded through multiple bundles. e Self bundle is a

119

5 Tool Support

Figure 5.9: Main Page Generated by the HTML Presentation

prime example for a bundle that contains processors that were specifically designed to assess quality
characteristics that are relevant in a certain context.

Blocklib e real power of ConQAT is only unleashed by combining processors and blocks from
different bundles. An example is the following chain of processors and blocks: e Java bundle reads
all files of a Java system from the disk and filters all files that are subclass of a particular class as these
are known to be generated. e File System bundle further filters files that contain a certain textual
patterns as these files are generated, too. e remaining files are analyzed for redundancy using
the CloneDetective. e clone detection results are written to database to store trend data with the
Database bundle. Finally, the results are visualized as a trend curve as well as a tree map that shows
the location of clones with the HTML Presentation bundle. If this functionality is to be encapsulated
in a block, it is unclear in which bundle the block should reside as it depends on 5 bundles that
not naturally depend on each other. To support creating such reusable cross-bundle functionality
the Blocklib bundle serves as a generic container. e Blocklib bundle has dependencies to all other
bundles and currently contains about 40 blocks.

5.2.6 Documentation

e large number of available bundles, blocks and processors requires a comprehensive and up-to-
date documentation to make ConQAT usable. To achieve this, ConQAT offers the documentation gen-
erator ConQATDoc to generate hyperlinked documentation in the HTML format. ConQATDoc is sim-
ilar to the JavaDoc [110] system that is widely used for Java frameworks. To generate documentation

120

5.2 Quality Control Toolkit ConQAT

ConQATDoc automatically traverses a ConQAT installation and extracts all bundles, processors and
blocks. For each bundle, it uses the information described in the bundle descriptor plus additional
information that may be stored in a file called bundle.html to generate an overview of the bundle.
is overview contains the bundle’s dependencies as well as a list of all blocks and processors pro-
vided by the bundle (Fig.5.10a). For processors and blocks, it presents a description of the supported
parameters (Fig.5.10b). e information required to generate the documentation is extracted from
the annotations in the Java code. To support this, ConQAT requires each processor, parameter and
attribute to be equipped with a human readable description. Integrating the implementation and the
documentation of processors is advantageous as it helps to avoid redundancy between documenta-
tion and implementation and thereby fosters the up-to-dateness of the documentation.

a) b)

Figure 5.10: ConQATDoc Example

5.2.7 Configuration Editor »cq.edit«

Advanced ConQAT configurations oen contain multiple dozens of processors and blocks. As cre-
ating and maintaining these configurations in the XML format is tedious and error-prone, ConQAT
provides the graphical configuration and block editor cq.edit. is editor consists of multiple Eclipse
plugins and can, hence, be run within an existing Eclipse installation or as a standalone application.
e editor provides access to all blocks and processors of a ConQAT installation and allows to create
configurations or blocks using drag&drop. Connections between processors are also defined using
drag&drop. cq.edit applies ConQAT’s type checking system to ensure that the built configuration does
not violate the type safety. Detected problems are presented to the user with the native mechanisms
of the Eclipse platform, i. e. through markers and the problem view. cq.edit support users in find-
ing the appropriate blocks or processors through a search mechanism and the integration of their
ConQATDoc documentation.

If cq.edit is used as plugin for the Eclipse Java development environment, the editor directly links
processors to their implementation and, hence, also supports the development and maintenance of
ConQAT processors. is is completed by a set of ConQAT-specific wizards that serve the creation of
new processors and their parameters as well as a specialized editor for ConQAT bundle descriptors.

121

5 Tool Support

However, it needs to be pointed out that cq.edit is a relatively recent development that has not yet
reached the maturity of ConQAT itself. Consequently, certain functionality is still missing. Despite
these shortcomings, all current cq.edit users agree that it chiefly improves productivity with respect
to the manual editing of ConQAT configurations.

Figure 5.11: Screenshot of the ConQAT Editor cq.edit

5.2.8 Integration with the QMM

What has been described of ConQAT so far is independent of the qualitymodeling approach proposed
in this thesis. As we see the lack of integration with an explicit definition of quality as one of the cen-
tral shortcomings of quality analysis tools, this section explains how ConQAT can be integrated with
the quality metamodel QMM to play the role of the Q-Relator advocated in Sec. 4.3.2. To achieve this,
ConQAT provides the bundle QMM that uses the QMM Core library (Sec. 5.1.5) to load an existing
quality model and relate it to the analysis results generated by other ConQAT processors.

Examples of quality reports generated by theQMMbundle have already been shown in Fig. 4.13. is
section details on the integration of ConQAT and the QMM by describing a ConQAT configuration for
the example quality model discussed in Sec. 4.2.4. e configuration depicted in Fig. 5.12 contains
the JavaScope processor that scans a given directory for all Java source files and generates a tree-
like data structure that consists of the Java packages and classes. is data structure is forwarded
to the PMDAssessor processor that employs the open source analysis tool PMD to assess the QMM

122

5.2 Quality Control Toolkit ConQAT

fact [Body |WELL-FORMEDNESS], i. e. it checks if the loop body is properly enclosed in braces. To capture
the assessment result, the processor annotates each class node in the source file tree; either with
the traffic light color green if no violation was found in the class or with color red if a violation is
found. In the latter case, the class node is additionally annotated with a message that details on
the finding and its location. To assess the facts [Body | INTRICACY], [head | PURPOSIVENESS] and [counter
variable | APPROPRIATENESS] the ECJAssessor is used which works similar to the PMDAssessor, i. e. it
allows to run different types of assessments on the Java syntax tree19. For each of the facts the source
file tree is annotated as described above. e facts [Head | PURPOSIVENESS] and [Body | INTRICACY] can be
assessed only semiautomatically. Hence the processor also uses the color yellow to annotate classes
where the processor could not automatically decide if the fact is adhered to.

is can be exemplifiedwith the analysis that checks if the counter variable of a FOR-loop ismodified
within the body of a loop. If the counter variable is a local variable, the processor can check the
modification quite simply and, hence, assess it automatically. If the counter variable, however, is a
field of the enclosing class, the analysis ismore difficult asmethods that are called from inside the loop
may change the counter variable. However, it can still detected direct manipulations of the variable
in the loop and, consequently, rate the class red. If the variable is not modified and the FOR-loop
does not call any methods, it can be safely rated green. In all other cases, however, the processor
cannot automatically decide and rates the class yellow.

JavaScope

QMM

ECJAssessor HTMLPresentationModelLayouter

ModelReader

PMDAssessor

Figure 5.12: ConQAT Configuration for QMM-Integration

Aer the assessments were run by PMDAssessor and ECJAssessor, all source files are annotated with
four assessment results for the four analyzed facts. To relate the assessment results to an explicitly
defined quality model, the configuration contains the ModelReader processor that uses the QMM
Core library to load a quality model stored in the XML format. e ModelReader provides an option
to limit the loadedmodel to one ormoreworking sets to keep the output concise. e loadedmodel is
forwarded to theModelLayouter that relates the assessment results to the qualitymodel. To define the
relation between assessment results andmodel facts the processor uses the keys where the assessment
results are stored and the permanent ids of the facts defined by quality model.

e last processor of the configuration, the HTMLPresentation, writes the output to disk. It generates
an HTML table as shown in Fig. 5.13. For each fact, the table shows the fact description and an
assessment overview bar (on the right). e assessment overview bar visualizes the percentage of files
thatwere assessed as red, yellowor green and also presents the actual figures. In the depicted example,
11 fileswhere rated redwith respect to fact [Body | INTRICACY], 115where rated green and 16where rated
19e ECJAssessor was specifically developed for ConQAT to implement Java source code analyses that are not supported

by already existing tools. In contrast to PMD, the ECJAssessor employs the industrial-strength compiler provided by
the Eclipse IDE (the abbreviation ECJ stands for Eclipse Compiler for Java).

123

5 Tool Support

yellow, meaning that the processor could not make a final decision here. Clicking the assessment
overview bar points the browser to a new table that illustrates which files did not conform to which
facts and also details on the exact nature of non-conformance. As fact [FOR-Loop | APPROPRIATENESS]
must be assessed manually, the assessment overview bar for this fact remains empty and, hence,
clearly signals that this fact requires further manual inspection.

Depending on the project context, different ways of presenting the conformity results may be re-
quired. Due to ConQAT’s open and flexible architecture this can usually be realized on a configuration
level, i. e. no programming is required. More sophisticated customizations may require implemen-
tation of new processors but can nevertheless be efficiently carried out as ConQAT already provides
support for essential task like reading the quality model. One example customization is a configu-
ration that generates a table with all violations for each file. With the help of the MSR Presentation
bundle, this table can then by written to a PDF file to serve as prefilled review checklist as it was
discussed in the last chapter.

Figure 5.13: Model Assessment Table

5.2.9 Summary

ConQAT’s architecture proves to satisfy our requirements for a flexible yet efficient quality assessment
tool: It runs in a non-interactive manner and generates static output in different formats. It is flexible
and extensible by offering three different levels of configuration: analyses can be composed using a
declarative configuration file, reusable blocks can be built from existing processors and new analyses
can be added by implementing new processors. e system’s design does not limit analyses to a par-
ticular scope, granularity, or type of artifacts and, hence, fulfills the requirement of diversity. ConQAT

124

5.3 Summary

allows to explicitly relate the assessment results generated by different tools to each other. In partic-
ular, the integration of QMM-based quality models allows to assess the conformity of a system to a
specified quality model. In addition to that, ConQAT offers convincing performance characteristics
due to the use of caching mechanisms. Even with a complex set of analyses, medium sized projects
can be analyzed within matter of minutes. e analysis of large projects can be carried out as part of
the nightly build process which is ConQAT’s intended mode of operations.

In contrast to theQMM.editor introduced above, ConQAT is clearly beyond the status of amere research
prototype. As the chapter on case studies shows, its customizability and also its reliability led to its
adoption in multiple industrial projects where it is used for quality control. Besides this, the open
and flexible architecture alsomakesConQAT a suitable candidate for research projects that experiment
with quality assessment techniques. As such ConQAT has been employed for a number of high quality
publications of our [76, 166, 167, 292] and foreign research groups [230].

Currently, one minor shortcoming is the graphical configuration editor cq.edit. While it provides
most of the required functionality, it does not match ConQAT in terms of maturity and reliability. For
a further dispersion and still wider acceptance of ConQAT, a renovation and completion of cq.edit is
currently in the works.

5.3 Summary

e QMM.editor and ConQAT provide the necessary tool support to operationalize quality models
based on the QMM. e following chapter on case studies reports on the successful application of
both tools in several industrial and academic projects.

125

»Experience without theory is blind, but theory
without experience is mere intellectual play.«

Immanuel Kant

6 Case Studies

is chapter describes the case studies that were carried out to evaluate the quality modeling and
control approach presented in this thesis. Section 6.1 describes a case study undertaken with MAN
Nutzfahrzeuge Group where a QMM-based quality model for the maintainability of Matlab Simulink
models was designed. Section 6.2 describes the application of a QMM-based quality model to eval-
uate the maintainability of multiple web user interface frameworks. e case study described in
Sec. 6.3 was undertaken with the BMW Group in the context of mainframe soware development.
It illustrates how the impact of a single fact on the maintenance effort can be evaluated in a quanti-
tative manner. Section 6.4 describes how ConQAT was used to built quality control dashboards at the
Munich Re Group and at ABB. Finally, Sec. 6.5 illustrates how manual and automatic quality assess-
ments were integrated into a quality dashboard to control the development of cq.edit in a student lab
course.

6.1 Model-Based Development of Embedded Systems (MAN)

is case study describes the application of the maintainability modeling approach, the generation
of developer guidelines and the use of quality assessment tools in the context of model-based devel-
opment in the automotive domain. e case study was carried out with the MAN Nutzfahrzeuge
Group and lead to the adoption of the quality modeling approach into the MAN standard develop-
ment process. is study has partly been published in [85].

6.1.1 Environment

e MAN Nutzfahrzeuge Group is a German-based international supplier of commercial vehicles
and transport systems, mainly trucks and buses. It has over 34,000 employees world-wide of which
150 work on electronics and soware development. Hence, the focus of this study is on embedded
systems in the automotive domain.

MAN brought its development process to a high level of maturity by redesigning it according to best
practices and safety-critical system standards. Most parts of the process are supported by an inte-
grated data backbone developed on the eASEE framework from Vector Consulting GmbH. On top
of this backbone, a complete model-based development approach has been established using the tool
chain of Matlab/Simulink and Stateflow as modeling and simulation environment and TargetLink of
dSpace as C-code generator.

Matlab/Simulink is a model-based development suite aiming at the embedded systems domain. It is
commonly used in the automotive area. e original Simulink has its focus on continuous control en-
gineering. Its counterpart Stateflow is a dialect of statecharts that is used to model the event-driven

127

6 Case Studies

parts of a system. e Simulink environment already allows to simulate the model for validation
purposes. In conjunction with code generators such as Embedded Coder from MathWorks or Tar-
getLink by dSpace it enables the complete and automatic transformation of models into executable
code.

6.1.2 Goals

Goal of this study was to develop an explicit definition of quality requirements for Simulink models
with a focus on long-termmaintainability. Importantly, these requirements should be communicated
to developers in the familiar form of quality guidelines. e assessment of conformity, which is
achieved at MAN mainly through manual reviews, should be supported by additional automatic
reviews.

6.1.3 Study Description

e study consisted of three work packages that were dedicated to defining the quality requirements
with an QMM-based quality model, generating quality guidelines from it and developing automatic
analyses to support conformity assessments.

Quality Modeling For the definition of a quality model for Simulink models, we started from a
maintainability model we had developed in a project in the field of telecommunication. is model
already covered various areas that we considered important for MAN, too. Examples are the parts
of the model dedicated to architectural aspects or to the development process. We augmented the
existing model with model elements that address Simulink/Stateflow-models that are used as basis
for code generation. Although such models are seemingly different from traditional source code, we
found that a great number of source-code-related facts could be reused for them as they fundamen-
tally serve the same aim: to specify executable production-code.

Specifically, we extended the facts tree of themaintainability model with 87 facts (64 new entities and
3 new attributes) that describe properties of entities not found in classical code-based development.
Examples are states, signals, ports and entities that describe the graphical representation of models,
e. g. colors. e development of the entities tree was mainly carried out in a bottom-up manner
by including relevant entities of the Simulink metamodel. Furthermore, we modified the activities
tree to match the MAN development process and added two activities (Model Reading and Code
Generation) that are specific for the model-based development approach. 84 impacts describe the
relation between facts and activities. e newly developed parts of the maintainability model are
based on three types of sources:

1. Existing guidelines for Simulink/Stateflow

2. Scientific studies about model-based development

3. Expert know-how of MAN’s engineers

128

6.1 Model-Based Development of Embedded Systems (MAN)

Our focus lay on the consolidation of four guidelines available for using Simulink and Stateflow:
the MathWorks documentation [202], the MAN-internal guideline, the guideline by dSpace [94]
(the developers of the TargetLink code-generator) and the guideline published by the MathWorks
Automotive Advisory Board (MAAB) [195]. Due to confidentiality reasons, we are not able to fully
describe theMAN-specificmodel here. However, we present a number of examples that demonstrate
our approach.

We started with a simple translation of the existing MAN guideline for Stateflow models into the
maintainability model. For example, the MAN guideline requires state machines to have an external
output signal that describes the currently executed state of the state machine. is simplifies testing
of the model and improves the debugging process. In terms of the model this is expressed as: [State-
flowChart | ACCESSIBILITY] +−→ [Debugging] and [StateflowChart | ACCESSIBILITY] +−→ [Test]. We describe the
ability to determine the current state with the attribute ACCESSIBILITY of the entity Stateflow Chart that
describes a Stateflow state machine. In the model we carefully distinguished between the Stateflow
Chart that describes logic of the state machine and the Stateflow Diagram that describes the graphical
representation. As the examples show, we used the impact set I = {−, +} to express positive and
negative impacts of facts on activities.

Another example shows how new scientific results can be incorporated into the model: Up to now
the use of Simulink and Stateflow has not been intensively investigated in terms of maintainabil-
ity. However, especially the close relationship between Stateflow and the UML statecharts allows to
reuse results. A study on hierarchical states in UML statecharts [68] showed that the use of hierar-
chies improves the efficiency of understanding the model in case the reader has a certain amount of
experience. is is expressed in the model as follows: [StateflowDiagram | STRUCTUREDNESS] +−→ [Model
reading].

Guideline Generation We regard quality models as central knowledge bases w.r.t. quality issues
in a project, company, or domain. is knowledge can and should be used to guide development
activities as well as reviews. However, the model in its totality is too complex to be comprehended
entirely and can, hence, not be used as a quick reference. Furthermore, quality models as proposed
in this thesis are not well-known among developers and cannot be dealt with by them without a
substantial amount of training. Hence, it was a central requirement of MAN that the quality model
must be transformed to the classic quality guideline format developers are familiarwith. Additionally,
the new guideline documents should be organized similar to the existing internal MAN guidelines,
i. e. there should be separate document sections for Simulink- and Stateflow-specific aspects.

To cater for different audiences, the documents were split in two parts. e first is a very compact
checklist-style section with essential information only. is representation is favored by experts who
want to ensure that they comply to the guideline but do not need any further explanation. It is also
used as checklist for manual reviews. For novices, the remainder of the document contains a hyper-
linked section providing additional detail.

To be integrated into MAN’s development infrastructure, the guideline documents had to be gener-
ated in the MSR MEDOC format that is generally used for all documents at MAN. ese documents

129

6 Case Studies

can be converted to PDF documents and handed to the developers. An example of a generated guide-
line is shown in Fig. 6.11. e capability for generating guidelines in the MSR format was integrated
in the quality model editor QMM.editor.

Flowchart1.1.4

DetailsRegelId

[, S.10]Es dürfen keine Flowcharts verwendet werden.405

Tabelle 5: Flowchart

History-Junction1.1.5

DetailsRegelId

[, S.10]Im StateFlow-Chart dürfen keine History-Junctions benutzt werden.420

Tabelle 6: History-Junction

Zustand (State)1.1.6

DetailsRegelId

Allgemeines zu Zustand (State)

[, S.15]Jeder Zustand hat keinen oder mehr als einen Subzustand.412

[, S.16]Ein Zustand darf nicht überflüssig sein.414

UND-Zustand (is a Zustand (State) part of StateFlow-Chart is a Komponente part
of Statik part of System is a Produkt-Artefakte)

[, S.15]Ein UND-Zustand darf nicht später aktiviert werden, als die Nachbarzustände, von
denen er Ereignisse empfängt. Seine Activation Order muss also niedriger sein.

417

Tabelle 7: Zustand (State)

MAN Nutzfahrzeuge AG
06.08.2007Datum:StateFlow GuidelineF. DeissenboeckAutor:
1.0Version:1 ChecklisteCCSMAbtl.:
ReviewStatus:

Figure 6.1: Generated Guideline (German)

Automatic Assessments To support the assessment of Simulink models with automatic analy-
sis, we implemented the ConQAT Simulink bundle that provides a parser for Simulink models and
multiple processors to analyze the models. Currently supported analyses include:

Basic size and complexity metrics like number of blocks, number of states (in statecharts) or
the nesting depth of states in hierarchical statecharts,

An analysis to assess the conformance of visual model aspects to MAN’s standards. Examples
are block colors, block shapes and fonts used for labels.

An analysis to determine if Simulink models are layouted in a way that the dataflow is mainly
directed from le to right.

An analysis that identifies hierarchical states that have only a single substate.
1e example guideline is in German as this is the standard for MAN’s documents.

130

6.1 Model-Based Development of Embedded Systems (MAN)

An analysis to determine the usage of library blocks across all MAN models.

An analysis to find blocks that are not properly supported by the C-Code generator.

Next to this rather straightforward analyses, the first algorithm for finding redundancies (clones) in
models was implemented with ConQAT. A detailed description of the algorithm, its application and
the findings made at MAN can be found in [76].

e analysis of models with ConQAT is integrated with MAN’s development process and tools. At
specific process stages, all models are automatically checked out from MAN’s data backbone and
analyzed by ConQAT. e analysis results are written back to the backbone, stored and versioned
there. To achieve this, we also implemented a new output component that generates reports in the
MSR MEDOC format. An extract of a quality report in the MSR MEDOC format showing a model
clone is shown in Fig. 6.2.

Reference.TL_Inport

Reference.TL_Switch

Reference.TL_Switch

Reference.TL_Switch

Reference.TL_RelationalOperator

BusCreator

Ground

BusCreator

Reference.TL_LogicalOperator

Reference.TL_Constant

BusSelector

Reference.TL_LogicalOperator

BusSelector

Reference.TL_Constant

Reference.TL_Constant

Reference.TL_RelationalOperator

Reference.TL_RelationalOperator

BusCreator

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_RelationalOperator

BusCreator

Reference.TL_Gain

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_Inport

Reference.TL_Constant

Reference.TL_Constant

BusSelector

BusSelector

BusSelector

Ground

Ground

Ground

Ground

Ground

Reference.TL_Constant

BusSelector

BusSelector

BusSelector
Ground

Ground

Ground

Ground

WertMetrik

48Groesse

28Gewicht

4Instanzen

192Volumen

112Gewicht Summe

arbVehSpdBetroffene Modelle

Figure 6.2: Example Quality Report Showing aModel Clone (German)

6.1.4 Results

For clarity’s sake the results of the case study are discussed with respect to the work packages intro-
duced above:

Quality Modeling Formalizing the existing guidelines, previous scientific results as well as the
expert know-how of the MAN engineers led to the following results:

131

6 Case Studies

Consolidation of Terminology. In the case study we found that building a comprehensive qual-
ity model has the beneficial side-effect of creating a consistent terminology. By consolidating
the various sources of guidelines, we discovered a very inconsistent terminology that hampers
a quick understanding of the guidelines. Moreover, we found that even at MAN the terminol-
ogy has not been completely fixed. Fortunately, building a quality model automatically forces
the modeler to give all entities explicit and consistent names. e entities of the facts tree of
our maintainability model automatically define a consistent terminology and thereby provide a
glossary. One of themany examples is the term subsystem that is used in the Simulink documen-
tation to describe Simulink’s central means of decomposition. e dSpace guideline, however,
uses the same term to refer to a TargetLink subsystem that is similar to a Simulink subsystem but
has a number of additional constraints and properties defined by the C-code generator. MAN
engineers on the other hand, usually refer to a TargetLink subsystem as TargetLink function or
simply function. While building the maintainability model, this discrepancy was made explicit
and could be resolved.

Resolution of Inconsistencies. Furthermore, we were not only able to identify inconsistencies
in the terminology but also in content. For the entity Implicit Event we found completely con-
tradictory statements in the MathWorks documentation and the dSpace guideline. While the
MathWorks guideline claims that »Implicit event broadcasts [. . .] and implicit conditions [. . .]
make the diagram easy to read and the generated code more efficient.« [202], the dSpace guide-
line states that »e usage of implicit events is [. . .] intransparent concerning potential side
effects of variable assignments or the entering/exiting of states.« [94]. is obvious inconsis-
tency was only discovered when both guidelines were translated to aQMM-based qualitymodel.
In this case, we adopted the dSpace point of view aer consulting the MAN engineers.

Revelation of Omissions. An important feature of the quality metamodel is support for inher-
itance. is became obvious in the case study aer modeling the MAN guideline for Simulink
variables and Stateflow variables. We modeled them with the common parent entity Variable
that has the attribute LOCALITY that expresses that variablesmust have the smallest possible scope.
As this attribute is inherited by both types of variables, we found that this important property
was not expressed in the original guideline. Moreover, we saw by modeling that there was an
imbalance between the Simulink and Stateflow variables. Most of the guidelines related only to
Simulink variables. Hence, we transferred them to Stateflow as well.

e case study demonstrated the applicability of our metamodel and the corresponding method
for modeling maintainability in an industrial development environment. Aer a short time, the
2-dimensional structure was accepted by the MAN engineers. Especially the model’s explicit illus-
tration of impacts on activities was seen as beneficial as it provides a sound justification for the quality
rules expressed by the model. Moreover, the general method of modeling – that inherently includes
structuring – improved the guideline: although the initial MAN guideline included many important
aspects, we were able to reveal several omissions and inconsistencies. An important result was the
creation of a consistent terminology as a side-effect of the quality modeling. is was perceived very
useful by the MAN engineers.

Another insightwe gained during the development of the qualitymodel is that proper tool support for
creating and maintaining quality models is indispensable. At the beginning of the case study, quality
models were stored in a relational database with only minimal editing support. While this served

132

6.1 Model-Based Development of Embedded Systems (MAN)

the purpose of guideline generation, it made creating and maintaining quality models very cumber-
some. We found that especially in the early phase of quality model development, a lot of changes and
additions are required that truly demand proper tool-support. is insight led to the development
of the QMM.editor (see Chap. 5.1). e graphical editor also helped to convey the fundamentals of
QMM-based quality models to MAN engineers as it helped to clarify the basic concepts.

Guideline Generation e generation of quality guideline documents turned out to be a chal-
lenge due to the following reasons. Importantly, some of these challenges are not directly related to
our quality modeling approach but rather caused by the peculiarities of integrating it with an existing
technical and social project infrastructure:

Generating quality guidelines from a formal quality model leads to documents that sometimes
lack the elegance of manually written documents. is is best illustrated with an example taken
from the quality model described in Sec. 4.2.4: ere the fact [Body | INTRICACY] describes that
the counter variable of a FOR loop is modified within the loop body. As this is considered to
increase program comprehension efforts, it has a negative impact on the activity Program Com-
prehension. Initially, the quality guideline generated for this fact consisted only of the descrip-
tion of the fact Df ([Body | INTRICACY]) and its impact. Hence, the guideline document contained
a paragraph:

Negative: Modification of counter variable within loop body.

However, MAN engineers are accustomed to guideline documents that are formulated as rules
and expected a phrase like:

Do not modify the counter variable within the loop body.

As attempts to automatically generate such phrases from the fact description and the impact
were not successful2, we extended the QMM to include an instruction function DFI

that asso-
ciates each fact with an explicit instruction phrase as in the example above. While this instruc-
tion is redundant to the fact description and the impact, we found that this poses no problems
in practice as the redundancy is local to the fact and not spread across the quality model. We
conclude, that certain compromises need to be made to establish a successful transition from a
formal quality model to a classic guideline document.

As it was required that guideline documents were prepared in the MSR MEDOC format, a
guideline exporter for this format had to be developed and integrated into the QMM.editor.
While this may be viewed as merely a technical problem, we found that conformance to this
requirements was vital for successful integration of our quality modeling and control approach
into MAN’s development processes. Only aer we were able to satisfy this requirement, MAN
engineers could actuallyworkwith the generated guidelines. Hence, we conclude that the ability
to seamlessly integrate with an existing project infrastructure is crucial for a quality modeling
framework in an industrial context.

2is was further complicated by the German language used in the MAN quality models.

133

6 Case Studies

Rather naively, we unexpectedly faced challenges that are clearly beyond any conceptual or tech-
nical problems but rather of sociological nature. So we found that it required significant effort
to convince people of the benefits of the new guideline documents as they were accustomed to
the previous guidelines for years. However, explaining the whole quality modeling and control
approach instead of only presenting the new guidelines helped to overcome objections and to
convince all participants of the benefits.

Aer the aforementioned challenges had been overcome, we found that automatically generated
guideline documents provide the following benefits:

By splitting the guideline documents in a short checklist-style part and a part that contains
detailed explanations, we were able to optimally support seasoned developers as well as new
project participants. As this kind of guideline is highly redundant by design, it would be very
tedious to write and maintain them manually without introducing inconsistencies.

As guideline generation is based on the working sets defined in the quality model, we were able
to generate guidelines that are specifically tailored to the needs of developers. For example,
developers not working with Stateflow can obtain a guideline that omits all Stateflow-related
content. However, it is still ensured that this guideline is consistent with all other guidelines
used by other developers. Again, this would be very tedious to achieve with manually written
guidelines.

Changes to the guideline structure that had been requested by developers could be implemented
very efficiently by modifying the generator accordingly. is enables MAN to optimize the
guideline structure without the need to manually change all guideline documents.

In summary, we found that generating quality guidelines is more challenging than expected due to
the reasons described above. However, once these challenges are overcome, automatically generated
guidelines are superior to manually written ones in terms of usability, consistency and flexibility.
Moreover, the guidelines are also guaranteed to satisfy the requirements of assessability, structure and
rationale (see Chap. 3) as they are directly derived from a QMM-based quality model that inherently
satisfies them.

Automatic Assessments At the time of writing this thesis, the implementation of automatic as-
sessments in the MAN development process has been carried out. However, too little experience has
been made to give an detailed account of the results. Our findings so far are very much aligned with
what we found in similar contexts (see Sec. 6.4):

Automatically assessing simple criteria, e. g. colors and fonts used for blocks in Simulink mod-
els, is very beneficial as this is very tedious to achieve in manual reviews and can be done auto-
matically with near-zero rates of false positives.

Assessment of more complex criteria, e. g. clones in Simulink models, requires a high amount
of customization to bring down false positive rates to a level acceptable for continuous quality
control.

134

6.1 Model-Based Development of Embedded Systems (MAN)

Automatic assessments only prove to be of real benefit if they are tightly integrated into the
existing process and tool landscape. Hence, significant effort was undertaken to seamlessly
integrate ConQAT with MAN’s data backbone.

While, at this point in time, we cannot report on quality improvements directly related to the contin-
uous application of automatic assessments, MAN’s engineers are convinced of its benefits and plan
to further broaden the range of criteria that is analyzed in an automatic fashion.

6.1.5 Discussion

At the beginning of the project, MAN was primarily interested in developing a new quality guide-
line for the development of Matlab Simulink models. For MAN’s engineers, the quality modeling
approach behind the generated guideline was initially not important as their interest was focused on
the guideline that is handed to the project participants. However, during the course of the project
we were able to convince MAN of the benefits provided by the modeling approach. Consequently,
MAN decided to not only use the generated guidelines but also integrated the modeling approach
itself, along with theQMM.editor, into their development process. We see this as a strong indicator for
the applicability of our quality modeling approach in an industrial setting. is is emphasized by the
fact that the MAN department we worked with is not an R&D department but a serial development
department that applies our approach for the actual development of soware to be released in their
vehicles.

135

6 Case Studies

6.2 Web User Interface Frameworks (Interasco GmbH)

is case study describes the application of the maintainability modeling approach to compare the
expectedmaintenance efforts of web applications developedwith different user interface frameworks.
e case study was carried out with the Interasco GmbH as a diploma thesis [113]. e results of this
thesis have been used by Interasco as input for a major reengineering of one of their core products.

6.2.1 Environment

Interasco GmbH is a soware and consulting company located in Munich. One of their core prod-
ucts is I|bpmf, a framework for managing enterprise structures and business processes.
e system supports the central management of projects, resources, documents, appointments and
invoices. Additionally, it provides workflow support and an interface to other enterprise systems.
Due to diverse and frequent customer requests of mainly perfective nature, the system undergoes
continuous evolution. Importantly, a significant share of the change requests does not concern the
application logic but the web user interface of the product.

6.2.2 Goals

e web user interface of I|bpmf was initially realized with the Active Server Pages (ASP)
framework3 that is no longer maintained by Microso as it has been superseded by ASP.NET4.
Hence, Interasco planned to replace the outdated UI technology with a more recent one in a ma-
jor reengineering of I|bpmf. Due to the high number of UI-related change requests the
key requirement for the new UI technology was high maintainability, or more precisely, low main-
tenance effort.

Unfortunately, there is a bewildering variety of more than 100 different UI frameworks available
that almost all promise low maintenance efforts. Hence, Interasco required a structured method to
evaluate different UI frameworks with respect to the expected maintenance efforts in the specific
context of I|bpmf.

6.2.3 Study Description

In the study, we developed a quality model that describes properties of UI technologies and used the
model to evaluate 11 different technologies. Based on the evaluation, we chose the technology most
suitable for a reengineering of the I|bpmf system and proposed amodified architecture for
I|bpmf on the basis of the chosen technology.

3http://msdn.microsoft.com/en-us/library/aa286483.aspx
4http://www.asp.net/

136

6.2 Web User Interface Frameworks (Interasco GmbH)

Quality Model Design To support the structured evaluation of UI technology, we developed a
QMM-based quality model. e model was not developed from scratch but borrowed the activities
and a number of facts from a quality model we had developed earlier in a project in the field of
telecommunications. is initial model was then extended to suit the evaluation of UI technologies.
Hence, it does not contain facts that describe the maintainability of an actual system but rather facts
related to the idiosyncrasies of UI technologies. e development of the model was guided by the
following sources:

Interviews that were conducted with Interasco developers to identify issues that hamper main-
tenance of the ASP-based implementation of I|bpmf.

Numerous non-academic sources like developer web sites, blogs and magazines5.

Most importantly, the graduand took six weeks time to develop a full understanding of the
I|bpmf system by reading its source code. Over this time, all phenomena that com-
plicated his understanding of the system were carefully reviewed and, if appropriate, included
in the quality model. Our assumption was that issues that complicate his understanding of the
system are prone to hamper its maintenance in general.

In total, this process led to the addition of 4 activities, 15 entities, 19 facts and 25 impacts to the
initial model. e activities cover UI-specific tasks like UI design, implementation andmodification.
e new entities and facts are used to describe properties of UI technologies. e model is tailored
specifically to the context of I|bpmf. For example, it includes model elements dedicated
to the capabilities of an UI technology to interface the I|bpmf system’s core that is written
in C++ and C#. While this limits the generality of the model and complicates its reuse in a different
context, we believe this specialization is necessary to ensure that the model faithfully describes the
suitability of UI technologies for I|bpmf. Examples of properties covered by the model
are:

Language Mix. Many UI frameworks for web applications require mixing multiple languages,
e. g. HTML, Java and JavaScript, within one source file. is has been identified as being prob-
lematic because program comprehension is severely complicated. Additionally, editing such
source files is inconvenient as advanced editor features like syntax highlighting, code formatting
and auto-completion oen do not work if multiple languages are mixed. In themodel this is ex-
pressed as [Language Mix | EXISTENCE] −−→ [Program comprehension] and [Language Mix | EXISTENCE]
−−→ [Implementation].

Variable Declaration. e script languages of many UI frameworks allow the usage of variables
without explicit declaration. Such implicit variable declarations have been identified to com-
plicate program comprehension and debugging. Hence, the impacts [Var. Decl. | IMPLICITNESS] −−→
[Program comprehension] and [Var. Decl. | IMPLICITNESS] −−→ [Debugging] have been included in the
model.

Data Types. Similarly, script languages oen support variables with loosely defined types. Such
variables also make program comprehension and debugging more difficult. Moreover, they
complicate the integration of the UI with the application’s core that is not written in a loosely

5With the exception of [194], the academic community made few contributions that explicitly deal with factors influenc-
ing the maintainability of web applications at the time of the study.

137

6 Case Studies

typed language as explicit conversions are required. is is expressed by [Data Type | IMPLICITNESS]
−−→ [UI Implementation].

Tool Support. eavailable tool support for a UI framework is a key factor as compilers, debug-
gers, editors and other tools significantly reduce the maintenance effort. is is, for example,
expressed by [Debugger | EXISTENCE] +−→ [Debugging].

Similar to the previous case study, we used the impact set I = {−, +} (see Sec. 4.2.3 for details)
as the central piece of information for each fact was if it has a positive or negative influence on an
activity. However, the remainder of this section will show, that we used a more elaborate scale for the
actual evaluation of the different UI technologies.

Evaluation e resulting quality model was then used to evaluate 11 different UI frameworks.
ese were categorized as:

Classic Web Frameworks use a server-side script language to generate HTML and JavaScript.
Candidates in the study were ASP, Java Server Pages (JSP)6 and PHP7.

Modern Web Frameworks usually follow an object-oriented concept and allow to define user
interfaces on an abstraction level aboveHTML. Candidates in the study were ASP.NET and Java
Server Faces (JSF)8.

Web-UI Generators take abstraction one step further and allow to implement web user inter-
faces in the same way frameworks like Swing9 or SWT10 are used to implement rich client user
interfaces. Hence, developers do not have to deal with script languages to implement web user
interfaces. Candidates in the study were the GoogleWeb Toolkit (GWT)11 and the Eclipse Rich
Ajax Platform (RAP)12.

Sandbox Applications are essentially »normal« applications that are run within the browser
using a virtual machine. Candidates in this study were Java Applets13, .NET User Controls14,
XML Browser Applications (XBAP)15 and Flex16.

For each of the 11 UI technologies the 19 facts were evaluated. Each fact f ∈ F was assigned a
value vf ∈ {0, . . . 6} that expresses how accurately the fact describes a specific UI technology. We
found that this relatively elaborate ordinal scale is required to express differences between different
UI technologies. For example JSP has a value of vf = 0 for the fact [Variable Declaration | IMPLICITNESS]
as JSP requires variables to be declared explicitly. ASP, on the other hand, is assigned a value of
vf = 3 as it allows the developer to globally configure whether variables must be declared or not.

6http://java.sun.com/products/jsp/
7http://www.php.net/
8http://java.sun.com/javaee/javaserverfaces/
9http://java.sun.com/javase/technologies/desktop/

10http://www.eclipse.org/swt/
11http://code.google.com/intl/de/webtoolkit/
12http://www.eclipse.org/rap/
13http://java.sun.com/applets/
14http://msdn.microsoft.com/en-us/library/y6wb1a0e.aspx
15http://msdn.microsoft.com/en-us/library/ms754130.aspx
16http://www.adobe.com/products/flex/

138

6.2 Web User Interface Frameworks (Interasco GmbH)

Lastly, for PHP the value is vf = 5 as it does not provide explicit declarations of variables (the value
is not vf = 6 as implicit variable declarations can at least be identified in a log file). If possible,
these values were determined based on the documentation of the respective UI technology. If the
documentation did not provide sufficient insight, prototypes were developed to evaluate the tech-
nology and the values were then derived from the experience made with the prototype. ough
time-consuming, this was an important step to evaluate how well the technology could be integrated
with the I|bpmf system. As the model itself, the values were chosen to specifically match
the context of I|bpmf. erefore, they are not directly transferable to the evaluation of UI
technologies in the context of other systems.

Based on these values and the impact function I , we defined the rating function RF that combines
the direction of the impact and the assigned value. It is defined as:

(Fact Rating) RF : (F × T) {0, . . . , 6}

RF (f, t) =


vf if I(f, t) = +
vf − 6 if I(f, t) = −
undefined if (f, t) /∈ dom.I

Hence, if the impact I(f, t) of fact f on an activity t is positive and vf has a high value, the activity
is supported well. If the impact I(f, t) is negative and the value vf is high, the activity is supported
poorly. To be able to compare different UI technologies, we defined functionRT that expresses how
well an UI technology supports a specific activity t ∈ T :

(Activity Rating) RT : T → N0

RT (t) =
∑
f∈Ft

RF (f, t)

where Ft = {f ∈ F | I(f, t) ∈ dom.I} is the set of facts that have an impact on t. Note, that
this sum considers all impacts to be equally important. While a more sophisticated scheme using
weights could be applied, we found the unweighted sum to be adequate for our use case. Based on
the value of RT for all activities t ∈ T we were able to compare the different UI technologies with
each other. For this comparison, we chose to visualize the performance of each UI technology with
radar charts as shown in Fig. 6.3. is proved to be useful as the visualization highly aggregates the
information but still allows to identify strengths and weaknesses of each UI technology. We also
experimented with aggregations that condensed all activity ratings to a single number but found
this to be counterintuitive as the single number was inadequate to express the idiosyncrasies of the
different technologies.

In the visualization, all leaf activities {t ∈ T | A−1(t) = ∅} represent the axes of the chart. e
position on an axis for activity t ∈ T is defined by RT (t)

6·|Ft| that describes how close the rating is to the

139

6 Case Studies

optimally achievable rating. Hence, the bigger the area of the radar chart, the better anUI technology
supports the key activities and the lower are the expected maintenance costs17.

Coding

Code
Modi�cation

Impact
Analysis

Debugging

Tracing

Code Reading

Source Code
Analysis

UI
Design

UI
Modi�-
cation

UI
Imple-
mentation

Coding

Code
Modi�cation

Impact
Analysis

Debugging

Tracing

Code Reading

Source Code
Analysis

UI
Design

UI
Modi�-
cation

UI
Imple-
mentation

Coding

Code
Modi�cation

Impact
Analysis

Debugging

Tracing

Code Reading

Source Code
Analysis

UI
Design

UI
Modi�-
cation

UI
Imple-
mentation

Coding

Code
Modi�cation

Impact
Analysis

Debugging

Tracing

Code Reading

Source Code
Analysis

UI
Design

UI
Modi�-
cation

UI
Imple-
mentation

Active Server Pages (ASP) Eclipse Rich Ajax Platform (RAP)

.NET User ControlsJava Server Faces (JSF)

Figure 6.3: UI Technology Radar Plots

6.2.4 Results

We do not report in detail on the results obtained for the different UI technologies as they are not
relevant in the context of this thesis. However, we explain how the four example radar chart in Fig. 6.3
can be interpreted: e ASP technology is rated relatively poor for almost all activities as its script
language exhibits a number of inherent problems. e JSF technology rates higher for most activities
as it raises the abstraction level and supports developers in many UI-specific activities. e Eclipse
17In the chart in Fig. 6.3, all UI technologies reached a relative value of at least 0.4 for all activities. To emphasize differences

between the technologies, the charts, hence, show only the scale from 0.4–1.

140

6.2 Web User Interface Frameworks (Interasco GmbH)

RAP technology ranks high for the activity UI Modification as the user interface is implemented
in plain Java without the need for any additional languages. Modifications are, hence, supported by
automated refactoringsprovided by the Eclipse IDE. RAP ranks rather low for the activityUIDesign as
the GUI editor for RAP was relatively immature at the time the study was conducted. e .NET User
Controls rank equally high for the UI Modification as they, too, do not require additional languages.
However, they rank higher for UI Design due to their excellent GUI editor and for UI Implementation
as they can be easily integrated with I|bpmf ’s core that is also (partly) written in a .NET
language.

e study’s central result was that for the I|bpmf-specific context, .NET User controls
promised to cause the lowest maintenance effort. Consequently, Interasco has chosen this technol-
ogy as basis for the reengineering of the I|bpmf system. As part of his work, the graduand
proposed a modified architecture for I|bpmf on the basis of .NET User Controls. At the
time of writing this thesis, the implementation of this proposal is well under way and, up to now,
the expectations regarding the reduced maintenance effort of the chosen technology have been ful-
filled.

With respect to the quality modeling approach, the study led to the insight that creating a quality
model that is used to assess a technology is comparatively easier than building a model for the as-
sessment of an actual system. e reasons for this are twofold: First, when the conformance of a
system to a quality model is assessed, one has to deal with the problem that each fact needs to be as-
sessed formultiple artifacts. For example, a fact that describes a certain property ofmethods needs to
be assessed for all methods of a system. e results of these individual assessments need to be aggre-
gated in a suitable way (see Sec. 4.2.2 for details). is challenge does not arise for the quality model
in this study as it describes properties of UI technologies instead of actual soware systems. Second,
the model developed in this study is used only once for this specific study and is not intended to be
integrated into a development process. is circumstance allows a certain degree of laxness in the
model design. For example, the descriptions of the model elements do not have to be linguistically
polished as they are not included in generated quality guidelines or checklists.

6.2.5 Discussion

In this study, the QMM-based quality model proved to be well-suited for structuring the multitude
of factors that are expected to influence the effort required to maintain a web user interface. Using a
QMM-based quality model we were able to select a suitable UI technology from a bewildering array
of different options in a structured manner. Interasco developers and managers emphasized that the
clear focus on expected maintenance efforts was preferred to other comparison schemes that merely
list features of different technologies without making explicit the consequences for soware main-
tenance. By putting the focus on efforts the modeling approach ensures that it is not limited to a
specific type of factors, e. g. language features. On the contrary, all factors that affect soware main-
tenance, e. g. available tool-support or circulation of a technology, could be included. Furthermore,
the QMM modeling approach allowed to combine a top-down and bottom-up way of building the
quality model. e top-down design was aided by the activities tree of the model as developers could
break down maintenance of the UI into subactivities and then reason about the facts that influence
these activities. e bottom-up design was supported by including facts about the UI technologies,

141

6 Case Studies

e. g. the implicit variable declarations mentioned above, and reason about the effects they have on
the maintenance activities.

As the reengineering of I|bpmf is still under way, we do not have made enough long-term
experience to judge if the chosen technology really exhibits the expected low maintenance efforts.
However, we consider it a success for the modeling approach that Interasco relied on the results of
this study to make the crucial decision on the UI technology used in future versions of one of their
core products.

142

6.3 Mainframe Development Infrastructure (BMW)

6.3 Mainframe Development Infrastructure (BMW)

is case study focuses on the quantitative evaluation of the economic benefit created by isolated
development and test environments for mainframe soware development. e study is an example
for an in-depth evaluation of the impact that a single fact has on the maintenance efforts. e case
study was carried out with the BMW Group. It has partly been published in [80] and [81].

6.3.1 Environment

e object of investigation of our study was the maintenance and test processes used by the BMW
Group’s mainframe soware development division. At BMW, several hundred soware engineers
develop and maintain critical business information systems with a total of 85 millions lines of PL/I
and COBOL code. e division uses two separated IBM zSeries mainframes for development and
operation, whereas our study focused exclusively on the development mainframe.

Mainframe Software Development Unlike the more common workstation-based development
environments, mainframes in general do not provide developers with isolated environments where
they can edit, compile, link and test the code they are working on without interfering with other
projects or developers. In fact, if no additional measures are taken, all developers share the same
development environment and all test data. Due to the frequent separation of development and op-
eration spaces of a typical mainframe installation, this does not pose any problems for the operation
of the soware, but creates severe problems for the concurrent development and test of multiple
projects. Conflicts between projects can occur during almost all activities (e. g. compile, link, test)
and affect almost all development artifacts [228] (e. g. source code, libraries, test data). ese con-
flicts are not only frustrating and time-consuming for the developers, but make sound testing almost
impossible as test results cannot be interpreted properly. For example, if a test case fails, it is not
decidable whether it failed because of a bug or because another project changed the test data in the
shared data base. Unfortunately, isolated test spaces cannot be established for mainframes as easily
as in ordinary workstation-based environments where every developer can have his own test space
on his own workstation.

TheCAP IsolationMechanism eBMWGroup developed a soware-based isolation technique
on top of the virtualization mechanism provided by the mainframe18. is technique offers projects
isolated test and development environments called Cs (capsules). ese Cs contain a complete
copy of the required development environment including compilers, linkers, job control, and test
databases. ey thereby enable projects to develop and test in an independent, conflict-free manner
until they reach a certain degree of maturity and can be integrated into the main development trunk
in a special integration test phase. Cs have the additional advantage of making it easy to reset the
complete development environment of a project to a specific state. ese advantages, however, come
at a price, as the initialization, operation and support of a C is a non-trivial task that demands
significant hardware resources as well as expenses for dedicated personnel.

18IBM zSeries mainframes provide a coarse-grained virtualization mechanism.

143

6 Case Studies

6.3.2 Goals

e qualitative benefit of a C can be explained quite easily by pointing out how non-isolated de-
velopment environments create expensive conflicts and contribute to poor product quality due to
unreliable test results. It is, however, very hard to compare these qualitative benefits to the known
quantitative costs of the C mechanism. erefore the research question of the study we conducted
was: What is the economic benefit of using a C for a soware project?

6.3.3 Study Description

To answer this question, we chose an activity-based approach and used a QMM-based model to de-
scribe the situation. In this model, the application of Cs is expressed with the model’s sole fact
f = [Cap | EXISTENCE]. Based on this, we transformed the research question formulated above tomatch
the activity-based approach and asked: What is the impact of f on the activityMaintenance? Our goal
required to answer the question not only in a qualitativemanner but demanded a quantitative answer
with respect to the economic benefits. To achieve this, we defined the impact function of the quality
model to express the savings that can be achieved by the application of the C mechanism:

I : (F × T) I

I(f, t) =
eNon-C (t) − eC (t)

eNon-C (t)

where eC (t) is the average effort spent on activity twhenCs are used and eNon-C (t) is the effort
spent on the same activity when Cs are not used. Since the model contains only a single fact, the
impact function does not depend on facts. As we assume that efforts are never negative, the impact
set is defined as I =]−∞, 1] where a positive value means that the application of Cs reduces the
effort, a negative value means that efforts are increased. e impact function I is partial in the sense
that it is only defined for activities t with eNon-C (t) > 0.

As it is hard to directly determine the values of eC (t) and eNon-C (t) for the activity t = Main-
tenance, our approached aimed at determining the efforts for the more tangible subactivities of the
Maintenance activity. e overall effort is then determined by aggregating the efforts using summa-
tion. Hence, we included relevant activities of the BMW maintenance process, e. g. Design, Imple-
mentation or Unit Test in the model and set out to determine their efforts. For simplicity’s sake all ac-
tivities are modeled as a direct subactivity of activity Maintenance, e. g. A(Unit Test) = Maintenance.
We defined the effort for the atomic activities t ∈ T ′ = {t ∈ T | A−1(t) = ∅} to be e′C (t) if Cs
are applied and e′Non-C (t) if Cs are not used. Hence, eC is defined as (eNon-C is defined in
analogy):19

eC (t) =

{∑
l∈A−1(t) eC (l) if A−1(t) ̸= ∅

e′C (t) otherwise
19While function eC is noted in recursive fashion it is not really applied recursively since all leaf activities of the model

are directly attached to the single root activity.

144

6.3 Mainframe Development Infrastructure (BMW)

AProbabilisticProcessAnalysisModel Todetermine the functions e′C and e′Non-C , we chose
an analytical model that abstracts from the problem under investigation and allows us to focus on
the impact of Cs on development efforts. is model was inspired by an observation of the anal-
ogy between soware development processes and concurrent systems theory [9]: e development
activities like implementation or testing are comparable to the tasks run by an operating system save
the fact that they are carried out by developers and not by CPUs. e resources competed for are not
memory and file handles but source code, libraries and test data. Similar to the conflict that arises
from a concurrent write access to the samememory address in a parallel system, a concurrent change
to a program by two different projects produces a conflict in the soware development process.

ese considerations lead to a probabilistic process model that describes a development process as
a system of concurrently executing tasks. e tasks of the system are the activities of the soware
process and the processors are humans (developers) executing these activities. Due to the goal of
the overall process and limited resources, there are constraints on the order of the activities entailing
the need for coordination. e transitions from one activity to possible subsequent activities are
labeled with probabilities. rough this, there may also be loops describing costly rework in the
development process due to failure or incompleteness at a certain stage of the process. e activities
and the frequency of their execution define the cost and the duration of the project.

Implementation

Design

Speci�cation

1–α

α

1–β
β

1

1
Unit Test

Rollout

1

Integration Test

(1)

(2)

(3)

(6)

(5)

(4)

γ

Implementation

Design

Speci�cation

1–α

α

1–β–γ
β

1

1

1

Unit Test

Rollout

1

Integration Test Con�ict Resolution

(a) No Con�icts (b) Possible Con�ict during Integration Test

Figure 6.4: Example Processes

Fig. 6.4a shows a model of a simplified soware process with the typical activities and transitions be-
tween them. Note that thismodel explicitly describes the loops (cycles) realistically found in soware
projects. is enables us to e. g. model the alternation between the activities Implementation and Unit
Test that takes place in practice: Developerswrite some code, test it and then go back to implementing
more code and/or fix existing code. ey do so until they are eventually done with the implemen-
tation and all their tests pass. Note that the sum of the probabilities of the outgoing transitions of
an activity must always be one. Fig. 6.4b illustrates how resource conflicts during specific activities
can be expressed through adding conflict-specific activities and adjusting the transition probabilities
accordingly. For example, a conflict with another project during the Integration Test does not only
reduce the probability that the project can proceedwith the activity Rollout but requires the execution
of the additional activity Conflict Resolution.

Operationalization of theModel While this model provides an interesting abstraction of a so-
ware development process, it does not yet answer the question stated above. Fortunately stochastics

145

6 Case Studies

can help here as the process model can be viewed as a stochastic process or, more precisely, as a dis-
crete absorbing Markov chain [127]. Each state of the Markov chain conforms to an activity in the
maintenance process. e state transition probabilities conform to the probability to move from one
activity, e. g. Implementation, to another, e. g. Unit Test. e last activity, e. g. Rollout conforms to an
absorbing state that has exactly one outgoing transition to itself with the probability 1.

Absorbing Markov chains are a powerful tool for analyzing processes as they provide well defined
methods to determine the expected total number of steps until the chain reaches an absorbing state
as well as to calculate the expected number of steps spent in each state. Without going into the math-
ematical details we illustrate this for the process shown in Fig. 6.4a. For the exemplary probabilities
α = 0.95 and β = 0.2 the absorbing Markov chain analysis yields the following expected number
of visits to each state (if started in state Specification): Specification is expected to be carried out only
once, Design and Integration Test are expected to be performed 1.25 times, and Implementation and
Unit Test 25 times. e total number of steps before the chain reaches the absorbing state Rollout is
given by the sum, that is 53.5. Figure 6.5 shows how different values for the probabilities α and β
influence the expected total number of steps in the example process. While values close to 1 lead to
an infinite number of steps in both cases, one can see that increasing β raises the number of steps
stronger than increasing α as this transition occurs later in the process.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α: Unit Test  Implementation

 90

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

β: Integration Test  Design

 1600

Figure 6.5: Transition Probability vs Total Number of Steps

e expected total number of steps represents a measure for project progress, but it does not yet
answer the questions about the total project effort. To achieve this, each atomic process activity
t ∈ T ′ is now associated with the average effort e1(t) needed for a single execution of the activity.
Importantly, we assume that this effort is not influenced by the application of Cs. Rather, the
frequency of the activity execution is different if Cs are used or not. Hence, we define

e′C (t) = e1(t) · sC (t) and e′Non-C (t) = e1(t) · sNon-C (t)

where sC (t) describes the expected number of executions of activity t if Cs are applied and
sNon-C (t) describes the number of executions if no Cs are used. e next sections explain how
these functions are determined by buildingMarkov chain-based process models for themaintenance
process that applies Cs and the same process without Cs.

146

6.3 Mainframe Development Infrastructure (BMW)

Application of the Analysis Model to Isolated Testing To apply our approach to analyze the
economic benefit of isolated test and development at BMW, two fundamental pieces of information
are needed:

1. transition probabilities

2. average execution e1(t) effort for each activity t ∈ T ′

As it is not realistic to correctly determine this information without investing a large amount of ef-
fort for empirical studies, we analyzed the two process variations (C and Non-C) in a relative
manner. We therefore designed a reference process, calibrated it with existing empirical data and pa-
rameterized it with the probability for conflicts during development and test. Based on this reference
process we designed the process models for C andNon-C development and compared them us-
ing the method presented above. is comparative approach allowed us to abstract from concrete
values for the transition probabilities as well as the efforts spent for each activity.

Based on existing process descriptions and interviews with project managers as well as developers,
we created the reference process model with 13 activities and 18 transitions (not presented here in
its entirety due to confidentiality reasons). is model does not contain special isolation-related
activities and therefore consists of the usual specification, design, implementation and test activities.
It does, however, carefully distinguish between module tests and two levels of integration tests and
contains explicit error analysis activities. Eleven of the 18 transitions of the model have a transition
probability unequal one. Using existing process analysis data as well as interviews, we estimated
the probabilities and ensured that the remaining impreciseness does not bias our study results (the
discussion in Sec. 6.3.4 illustrates that the choice of the transition probabilities is not as crucial as one
might expect).

To determine the effort needed for each execution of the activities, we calibrated the reference process
with data from well-known empirical studies like [37, 162]. For example, the Markov chain analy-
sis showed that the activity Implementation will be carried out 95.24 times and thereby accounts for
36.78% of the expected total 258.95 process steps. As [37] and other sources point out that imple-
mentation usually accounts for≈ 20% of the total development effort, we concluded that the relative
effort e1(Implementation) of each execution of Implementation activity in our process is 0.21%. ese
relative measures of effort were later on used to compare the different processes.

(a) Parameterless Process (No Conflicts) (b) Parameterized Process (Possible Conflicts)

Fault Analysis Rollout

Integration Test

0.3 0.7 fail pass

Integration Test

Fault Analysis Rollout

0.3
0.7c

1–0.3–0.7c fail

conflict

 pass

Figure 6.6: Process Parameterization

Obviously, the difference between theC andNon-Cdevelopment processes is determined by the
number of conflicts with other projects that arise during the different activities. We expressed this by
introducing the conflict probability parameter c and parameterized the process models accordingly.

147

6 Case Studies

Figure 6.6 exemplifies this for the Integration Test and shows how the conflict parameter c influences
the transition probabilities. Please note that the C process, though isolated, is not fully free of
conflicts as conflicts may arise during the Integration Test when the project leaves its C.

Based on the previously defined reference process we built specific models for C and Non-C
development. e models differ as the C model contains specific C-related activities, e. g. CAP
Refresh and the Non-C model explicitly describes conflict resolution activities (Fig. 6.7). In the
figure, the nodes that belong to the reference process are shown as white boxes and the reference
process’ transitions as solid lines. Gray boxes and dotted lines are extensions that were introduced to
model the specifics of the C and Non-C processes. e C and Non-C process models were
then used to determine the functions sC (t) and sNon-C (t) that describe the average number of
activity executions for all activities t ∈ T ′. As pointed out before, this can be done rather easily by
applying the standard analysis techniques for absorbing Markov chains.

(a) Module Test in CAP Process (b) Module Test in Non-CAP Process

Wait for ext. Resolution

Conflict Resolution

Implementation

Module Test

Fault AnalysisIntegration Test

Implementation

Module Test

CAP Support

Fault AnalysisIntegration Test

CAP Refresh

Figure 6.7: Differences between CAP and Non-CAP Process (Module Test)

For both processes the Markov chain analysis was performed. e total effort (eC (Maintenance)
respectively eNon-C (Maintenance)) was put into relation with the same calculation for the reference
process. Table 6.1 exemplifies this for the example processes shown in Fig. 6.7. It shows the relative
effort for each execution of each atomic activity e1(t) in the second column. e other columns
show the expected number of executions for each activity if Cs are used or not. Additionally, the
total efforts e′C (t) and e′Non-C (t) for the atomic activities are shown. e bottom row shows the
aggregation for the Maintenance activity. e total efforts for this activity if Cs are used is 1.06,
i. e. 6% more expensive then the reference process. If Cs are not used, they are 1.55. Hence, the
expected savings caused by the C mechanism for this example are:

I(f,Maintenance) =
eNon-C (Maintenance) − eC (Maintenance)

eNon-C (Maintenance)
=

1.55 − 1.06
1.55

= 0.32

6.3.4 Results

e same approach was used to analyze the process models for C and Non-C development.
However, for this analysis also varying conflict probabilities have been taken into account. Figure 6.8

148

6.3 Mainframe Development Infrastructure (BMW)

Activity t e1(t) sCap (t) e′Cap (t) sNon-Cap (t) e′Non-Cap (t)
Implementation 0.08 3 0.25 4.3 0.34
Module Test 0.08 3 0.25 4.3 0.34
Integration Test 0.25 1 0.25 1 0.25
Fault Analysis 0.25 1 0.25 1.9 0.48
CAP Support 0.1 0.3 0.03 0 0
CAP Refresh 0.1 0.3 0.03 0 0
Conflict Resolution 0.1 0 0 0.9 0.09
Waiting for ext. Resolution 0.1 0 0 0.5 0.05∑

8.6 1.06 12.9 1.55

Table 6.1: Expected Efforts and Steps for the Example Process (Fig. 6.7)

shows the results in two resolutions. On the le, the total effort for all three processes is shown for
the conflict parameter interval [0; 0.6]. One can easily see that the efforts for the reference and C
process behave in a similar way whereas the effort for the Non-C process increases much stronger.
However, the right side with its finer resolution (interval [0; 0.2]) shows that for very low conflict
probabilities the effort for the C process exceeds the effort for the Non-C process.

 0

 200

 400

 600

 800

 1000

 1200

 0 0.1 0.2 0.3 0.4 0.5 0.6

Reference
Cap

Non-Cap

 100

 110

 120

 130

 140

 150

 160

 170

 180

 0 0.05 0.1 0.15 0.2

Reference
Cap

Non-Cap

Figure 6.8: Conflict Probability vs Relative Effort

e results can be explained by analyzing the frequencies of each activity in the three processmodels.
In the C and reference process an increasing conflict probability raises only the frequency of the
integration test that is performedwhen the project leaves the C. In theNon-C process, however,
the conflict probability also affects the module test. As the test activities constitute nested loops in the
process this leads to a much stronger increase of the overall effort. It is also obvious that the C
process has higher costs than the Non-C process for very small conflict probabilities as the cost
for creating and maintaining the Cs occurs independently of the conflict probability. is meets
the expectation that Cs are obsolete if there are no conflicts.

Estimationof theConflict Probability As the results of the process analyses show, the final deci-
sion on the economic efficiency of the C mechanism depends on the conflict probability parame-
ter c. To determine the conflict parameter, we analyzed the average number of dependencies among

149

6 Case Studies

mainframe programs and examined the number of actual changes of these programs by using the
configuration management system. e latter is important as program-to-program dependencies
do cause conflicts only if both programs are modified at the same time. For the analyzed period of
one year we found that 55, 86 relevant (i. e. with possible conflict) changes occur for every program
every year. Given a work year of 200 days, this resolves to 0.279 relevant changes a day. As the ref-
erence process predicts about 100 test activities per year, this finally leads to a conflict probability of
0.279/2 = 0.1395 or 14%. Note that this does only regard static program dependencies but not data
dependencies. For data, the conflict probability is expected to be even higher.

e process analysis and the estimation of the conflict probability yield that I((Cap, EXISTENCE),
Maintenance) = 0.2. Hence, we concluded:

Projects with an average number of dependencies save about 20% of total effort through using
the C isolation mechanism as they avoid additional process cycles and conflict resolution
activities.

We therefore recommended to use non-isolated development only for projects with no or very few
dependencies. Although we do not have a formal external validation of our results, we can say that
our quantitative results fully support our project partners’ qualitative experiences. In addition to
this, our recommendationwas already followed before this studywas conducted, as projectmanagers
intuitively chose isolated development only for projects with zero or few dependencies.

Threats to Validity e major threats to the validity of these results is the determination of the
transition probabilities and the memoryless nature of Markov chains. To evaluate how strongly dif-
ferent transition probabilities influence the results, we performed a sensitivity analysis [257] to deter-
mine the transition that has the highest influence on the result. Using the variance-based Extended
FAST Method [256] we found the transition Module Test → Integration Test to be not only the most
important but with an total order index of 0.72 about three times as important as the second ranked
transition. We therefore focused our analysis on themost important transition probability and found
that changes to this probability do of course change the absolute efforts calculated for each process
model. ey do, however, not change the relation between C and Non-C development pro-
cesses.

e memorylessness of Markov chains implies that the transition probability from e. g. Module Test
to Implementation Test and others is always the same, no matter how oen the activities have been
carried out before. As this might contradict one’s intuition, we evaluated the influence of memory-
lessness by introducing a process memory in form of a compound interest function for the activity
efforts. By defining a negative interest rate (reduction rate) we could simulate a situation where each
execution of an activity demands less effort than the previous execution. Repeating the analysis for
the two process models with this process memory showed again that the memory does influence
the absolute results but not invalidate the relation between the C and Non-C development pro-
cesses.

150

6.3 Mainframe Development Infrastructure (BMW)

6.3.5 Discussion

Due to the simplicity of the applied quality model, the study did not create new insights on the cre-
ation of quality models itself. However, it helped to significantly advance our approach with respect
to a quantitative evaluation of the impact a specific fact has on common maintenance activities. As
expected, the study illustrated that a quantitative evaluation of impacts is considerably more chal-
lenging than a qualitative solution. In particular, it showed that a quantitative evaluation requires
the explicit modeling of activity interdependencies. For example, we found that it is not possible
to determine the impact of a fact on the activity Unit Test without taking into account that another
activity, e. g. Integration Test, is also affected by the fact and, hence, might cause repeated executions
of the Unit Test.

Nevertheless, the study showed that the activity-based approach is well-suited for breaking down
complex questions regarding the economic benefits of a specific project characteristic into more tan-
gible questions regarding specific activities. It shows that, given a suitable impact function plus the
required aggregation mechanism, QMM-based quality models cannot only be used to define quality
characteristics but also to perform a quantitative evaluation of maintenance efforts. e fact that
the results of the study fully supported our project partners’ qualitative experiences in this complex
scenario, makes us confident, that a similar approach can be applied to answer quantitative questions
regarding other quality factors described by QMM-based models.

151

6 Case Studies

6.4 Quality Dashboards (ABB &Munich Re)

is case study describes the application of ConQAT-based quality dashboards in industrial settings.
To continuously control selected quality criteria of soware products, ConQAT-based dashboards
were used by ABB in Vaasa, Finland and by the Munich Re Group in Munich for four projects. In
both cases, the quality dashboards not only helped to keep the current state of quality but also sup-
ported step-by-step quality improvements. Parts of this study have been published in [77].

6.4.1 Environment

e Munich Re Group is one of the largest re-insurance companies in the world and employs more
than 37,000 people in over 50 locations. For their insurance business, they develop a variety of indi-
vidual soware systems supporting their business processes. Subject of this case studywere 3 systems
that are based on the .NET platform and are written in C#. ey are each developed by different or-
ganizations and provide substantially different functionality, ranging from damage prediction, over
pharmaceutical risk management to credit and company structure administration. e systems sup-
port between 10 and 150 expert users each. eir sizes range from 300 to 500 kLOC 20.

ABB is one of the world’s leading power and automation engineering companies. It employs about
115,000 employees inmore than 100 countries. ABBDistributionAutomation is a subdivision of ABB
Power Products and develops products for the protection, automation and monitoring of electrical
networks. Subject of this case study was a desktop application written in C# that is used by ABB
customers to configure the hardware products. Due to ABB’s worldwide operations, themaintenance
is carried out at locations in Vaasa, Finland and Bangalore, India. e system has about 500 kLOC.
In the study the quality control infrastructure was installed for the whole system. However, only the
developers of a selected subsystem were made familiar with the quality control approach.

6.4.2 Goals

For both companies, the goal of using a soware quality dashboard was to increase the transparency
regarding the quality of themaintained soware product. To achieve this, project managers as well as
developers sought a solution that enables them to monitor key quality criteria in a continuous man-
ner. In ABB’s case this requirement was emphasized by the distributed development environment
that makes controlling product quality particularly challenging. As the dashboards were to be intro-
duced for the maintenance of relevant systems, minimal disturbance of the maintenance processes
and operations of the systems were a key requirement of both companies. Consequently, the focus
was on quality criteria that can be assessed in an automatic manner.

6.4.3 Study Description

Both companies did not plan to significantly change their practice of quality management but rather
wanted to extend the existing practice by the application of a quality dashboard. Hence, we did not
20thousand lines of code

152

6.4 Quality Dashboards (ABB & Munich Re)

apply a QMM-based quality model but selected specific quality criteria and supported their control
by a ConQAT-based quality dashboard.

Criteria Selection Both companies planned to start with a small set of criteria to gain experiences
without investing toomuch efforts. Furthermore, the initial set of criteria should be kept small to not
overwhelm users of the dashboard. e process of selecting these criteria consisted of three steps:

1. In workshops as well as interviews with different project participants (developers, project man-
agers, architects) we elicited quality criteria that are relevant for the projects. While this elicita-
tion process did not always follow a structured approach, it was designed in a top-downmanner,
i. e. starting from the core activities of the respective maintenance process, we tried to elicitate
quality criteria that pose problems for these activities.

2. From the criteria identified in the elicitation process, we selected the ones that can be ana-
lyzed in an automatic manner with reasonable effort. We then configured ConQAT to analyze
these criteria and ran it on the system under investigation. Crucially, we also analyzed crite-
ria that were not discussed or dismissed during the elicitation to later present these results to
the project participants, too. ese criteria were selected on the basis of our experiences with
similar projects.

3. In the next step, the results from the first analyses were discussed with the project participants
in workshops. In these workshops, we presented the results of the criteria that the project par-
ticipants considered important along with the results for the criteria we additionally analyzed.
From this extended set of criteria, a subset of criteria was chosen that promised to be most ben-
eficial for the respective project. e decision on the criteria took into account the following
factors: (1) the impact the criterion has on the maintenance process, (2) the current state of
quality of the system with respect to the criterion, (3) the efforts required for creating or config-
uring the analysis (if not yet provided by ConQAT), and (4) the expected quality of the analysis
results with respect to the rate of false positives.

In the case of ABB, we chose to analyze source code redundancy (code clones), unused code and
internationalization (i18n) issues. Code clones were selected as they are harmful for two reasons:
(1) multiple, possibly unnecessary, duplicates of code increase maintenance costs [183, 251] and,
(2) inconsistent changes to cloned code can create faults and, hence, lead to incorrect program be-
havior [167]. e identification of unused code was chosen as such code unnecessarily bloats the
systems and complicates program comprehension. e identification of i18n issues, e. g. hard coded
error messages in English, were chosen as they are crucial for ABB that sells its products in several
countries. e clone detection was carried out with our own clone detection tool CloneDetective21

that is based on ConQAT [166]. e other analyses were performed with FxCop22, a static analysis
tool for .NET languages. In the case of unused code, the analysis was limited to types of unused
code that can be detected easily and produces low rates of false positives. Examples are unused local
variables or methods with visibility private that are never called.

21http://www.clonedetective.org/
22http://msdn.microsoft.com/en-us/library/bb429476(VS.80).aspx

153

6 Case Studies

In the case of the Munich Re, we also chose to analyze source code redundancy due to the reasons
outlined above. In addition, we focused on an architecture conformance analysis that compares the in-
tended architecture with the actual architecture implemented in the system. Todays object-oriented
programming languages typically do not provide dedicated structuringmechanisms beyond the class
level. Hence, architectural rules, e. g. regarding componentization or layering, are not made explicit
in the system. Consequently, developers can (intentionally or unintentionally) violate these rules
and thereby create a system that violates the original architectural concept. Such violations can sig-
nificantly increase maintenance efforts. For example, an architectural rule can state that a certain
component may only be accessed via a dedicated interface as this allows to change the internals of
the component without affecting other components. If this rule is, however, violated and other com-
ponents directly access the internals of the component, changes to its internals become considerably
more costly.

Setup Aer the final decision on the criteria to be analyzed, ConQAT was configured to match the
requirements for each project. For the unused code and i18n issue analysis, this mainly consisted
of selecting the relevant FxCop rules and creating an appropriate configuration for FxCop. For the
clone detection, most efforts were devoted to reducing the number of false positives generated by
CloneDetective; e. g. by excluding generated code and stereotype code patterns like the getter and
setter methods typically found in object-oriented systems.

e architecture analysis obviously requires a description of the intended architecture. e initial
architecture descriptions were developed together with the system architects based on the existing
architecture documentation. Usually, this initial description does not fully match the architecture
of the system. However, this mismatch is not only caused by architecture violations but also by the
outdatedness of the architecture documentation. Hence, each violation reported by the architecture
analysis was discussed with system architects to decide if it really constitutes a violation or if the
architecture description needs to be updated accordingly. is process was supported by a graph
visualization generated by ConQAT that shows allowed architectural dependencies as well as archi-
tecture violations (Fig. 6.9). Details on the architectural analysis can be found in [103].

On average, about one person day was required for the initial setup and the tailoring of the clone
detection in each project. In the case of ABB, the configuration of FxCop required half a person day.
In the Munich Re projects, about two days were spent on the creation of the architecture description
for each project.

Infrastructure Integration To continuously control the selected quality criteria, ConQAT and
other required tools like FxCop were integrated into the nightly build process of the respective sys-
tems. As Fig. 6.10 shows, the source code is checked out from the version management system,
compiled and analyzed with ConQAT and other tools every night. e results are published via a web
server to make them available for all project participants. For this, different visualizations were used.
e results of the architecture analysis were visualized with the graphs shown in Fig. 6.9. Addition-
ally, a simple list of violations depicting the offending classes is included in the report to support
developers in removing violations. Clone detection results are also reported as a list that contains all
clones including their location in the source code. As this list is usually rather long, the results are
also visualized with tree maps (cf. Fig. 5.8) that give an overview of the distribution of clones over

154

6.4 Quality Dashboards (ABB & Munich Re)

Figure 6.9: Architecture Analysis Graph

the system. Furthermore, the web server provides a clone detection result file that can be loaded with
the standalone clone analysis application that comes with CloneDetective. is supports developers
in deeply investigating clones to understand causes and consequences. Analysis results regarding
unused code and i18n issues were also visualized with tree maps and as lists. In addition, relevant
metrics like clone coverage23 and number of architecture violations were stored in a database to trace
their development over time. ese developments were visualized with line charts. Integrating Con-
QAT into the nightly build process of the projects required one person day on average.

Process Integration While the technical integration of the analyses into the nightly build is neces-
sary, it is not sufficient for continuously controlling the selected quality criteria. An integration into
the organization’s or project’s development process is required to ensure that the results of analyses
are considered and necessary action is taken.

Successfully integrating the quality control measures into an existing process is challenging as it de-
pends not only on technical but also on organizational and sociological factors. Examples are the
maturity of the organization with respect to quality assurance processes in general and the dedica-
tion as well as the standing of the person that advocates the new quality control measures within a
team. As these factors were not under our influence, we confined ourselves to giving suggestions
regarding the process integration but le the decisions largely to the organizations. If desired, we
provided trainings for all concerned project participants to teach them in interpreting the analysis
results. As we could not provide trainings to all developers in ABB’s case due to its multi-site opera-
tions, we wrote a handbook that explains the core functionality of the quality dashboard.

Due to the reasons explained above, we encountered very different ways of integrating the quality
control measures into the existing processes for the different projects we analyzed. In ABB’s case,
it is le mainly to the individual developer to consult the analysis reports and react accordingly.
23e clone coverage is the ratio between the size of the part of the system that is part of at least one clone and the entire

system size. It depicts the probability that an arbitrary system statement is cloned.

155

6 Case Studies

Source Code

User

User

User

Continuous AccessNightly Build

Quality-
Profile

Compiler
FxCop

Cecil
…

Web Server

CM

Figure 6.10: Nightly Build Integration

Additionally, developers are strongly encouraged to report relevant findings and developments in
their regular developer meetings. ese meetings include the project manager who can decide on
appropriate measures if the decision cannot be taken by the developer himself.

Also in the case of Munich Re, regular developer meetings are the central means for discussing the
quality analysis results and deriving adequate measures. However, for specific quality criteria, the
Munich Re aims at designating a single person responsible for monitoring the criterion and reacting
accordingly. For example, in one project a developer took care of the architecture violations. Aer
removing all of them in the current systems, he now follows a zero violation policy and ensures that
new violations are dealt with immediately.

6.4.4 Results

e initial setup of the quality control infrastructure was carried out at ABB in May 2008, at the Mu-
nich Re between April and June 2008. While it is still in use at both companies, the following results
are based on data collected until August 2008 (ABB) respectively December 2008 (Munich Re).

Munich Re At the Munich Re we found that the application of continuous quality control not only
helped to maintain the status quo but, in fact, led to stepwise quality improvements. Figure 6.11
shows the development of the clone coverage metric over the analyzed period of time for two of the
three projects. In the upper project, the clone coverage was reduced by 10%, in the lower by 25%. In
the third project (not shown) no significant reduction was achieved. As there are currently no good
quantitative estimates for the effect of clones on maintenance efforts, it is hard to precisely capture

156

6.4 Quality Dashboards (ABB & Munich Re)

the benefit of the reduction in clones. However, in another study carried out with Munich Re, we
found that clones do not only increase maintenance efforts but are also fault-prone [167]. Hence,
we consider a reduction of the clone coverage by 10% respectively 25% a significant improvement in
product quality.

Figure 6.11: Clone Coverage Trends (Munich Re)

With respect to the architecture analysis, we found that the creation of the architecture description
already was a valuable step in itself. e newly created architecture description not only represents
an accurate and up-to-date documentation for the architecture but is also well-suited to be kept up
to date due to the possibility to automatically compare it with the implemented architecture of the
system. We also found that the different projects applied different strategies for dealing with the
identified architecture violations. While one project removed all violations and further on adopted
the zero violation policy, other projects only dealt with the most crucial violations immediately. To
enable these projects to differentiate between known but tolerated violations and newly introduced
ones, we extended the architecture analysis mechanism to explicitly support violation toleration.
Such tolerated violations are visualized as yellow edges in the dependency graphs to make them dis-
tinguishable from newly introduced violations. In summary, the architecture violation analysis did
not help to remove all violations in all projects but, nevertheless, allows to identify new violations as
soon as they are introduced.

157

6 Case Studies

ABB While the status quo regarding the i18n issues was maintained at ABB over the course of the
three month study period, no significant improvement was achieved. is is illustrated by the trend
curves shown in Fig. 6.15. e temporary rise of the number of issues was caused by a temporary
increase in system size. e trends, however, are very different for the number of warnings regard-
ing unused code (Fig. 6.1324) and for clone-related metrics (Fig. 6.1425): With respect to warnings
about unused code, a reduction of 61% was achieved and code cloning was reduced by about 42%.
Interviews with developers revealed that this mainly was the result of thorough clean-up activities
that took place in the first half of August.

Figure 6.12: I18N Issues Trend for Selected Subsystem (ABB)

However, it needs to be kept in mind that these trends capture only the selected subsystem for which
developers were made familiar with the quality control approach. Over the same period of time, the
trends for the whole system show no significant improvements although the status quo was main-
tained. is is illustrated by the clone trends for the system shown in Fig. 6.15.

General In general, we found that for all projects the application of a quality dashboard efficiently
and effectively supported continuous quality control. Our partners at ABB and Munich Re consid-
ered the installed dashboards as highly beneficial and concluded that they enable them to control the
selected quality criteria with relatively few additional efforts. For most of the selected quality criteria,
the applied quality control approach did not only help to maintain the status quo but, in fact, led to
stepwise quality improvements. An insight we gained with this study was that the trend curves do
not only support themonitoring of developments over time but are also perceived verymotivating by
developers. Particularly, when developers carried out dedicated clean-up activities, the trend curves
were considered helpful as they provided timely feedback on quality improvements.

During the study we encountered a number of challenges that need to be addressed to make contin-
uous quality control successful:

In order to apply continuous quality control, a certain degree of awareness for quality issues is
required from all project participants. It is not enough that upper management decides on a

24e figure shows the total number of warnings found and the number of warnings per line of code.
25Next to the clone coverage, the figure shows the total number of clones and the number of cloned source code statements

(units).

158

6.4 Quality Dashboards (ABB & Munich Re)

Figure 6.13: Unused Code Trend for Selected Subsystem (ABB)

»quality improvement program« if project managers and developers either do not see a need
for it or do not understand the issues that are addressed. However, we also found that sound
analysis results are a major factor in convincing project participants of the importance of qual-
ity control measures. In fact, striking results, e. g. a list of inconsistent clones that represent
faults [167], was found to be a strong motivator for developers and upper management alike.

Next to a sound technical integration of analysis tools, a firm integration of quality control in
the maintenance process is required. As measuring alone does not yield quality improvements,
roles and processes need to be defined that ensure that assessment results are monitored and
necessary action is taken. Due to the differences in the development organizations and cul-
ture, we cannot give precise guidelines on how such processes must be designed at this point.
In fact, we found that different approaches work with varying degrees of success in different
environments. As pointed out before, the success of a certain strategy largely dependents on
organizational and individual factors.

A fair amount of training is required for all project participants to make ideal use of the quality
dashboards. is training must not only include material on the basic usage of the dashboards
but must also ensure that all project participants have a good understanding of the relevance of
the selected quality criteria. We found that quality improvements could only be achieved if the
concerned persons did not only have a technical understanding of the selected quality criteria
but also considered them important themselves. During our first attempts we also found that
there is a high risk of overwhelming users of quality dashboards. us, we selected a relatively
small set of quality criteria in this study and advice all dashboard endeavors to start small.

159

6 Case Studies

Figure 6.14: Cloning Trend for Selected Subsystem (ABB)

Figure 6.15: Cloning Trend for Whole System (ABB)

While these challenges are clearly of managerial nature, we also found that the application of qual-
ity dashboards in an industrial setting poses a number of technical challenges with respect to the
analysis tools. One challenge is to present analysis results in a form that suits different project par-
ticipants equally well. For this, we found that, in fact, different levels of aggregation and different
types of visualization support different project participants differently well. Moreover, the suitabil-
ity of the presentation also depends on the task a project participant carries out and is not strictly
bound to his role. For example, graphs that visualize architecture violations were perceived as well
suited for creating architecture descriptions. However, continuous monitoring of new violations was
best supported by simple violation lists. Clone detection results were visualized with tree maps to
indicate their distribution over the systems. While this worked well to provide an overview, devel-
opers usually required a more detailed view on individual clones. In this case we found that their
requirements were well beyond anything a normal visualization could provide and, hence, equipped
them with a specific clone inspection application. Our conclusion is that analysis results are best
presented on different levels of aggregation using different visualizations. While this increases train-

160

6.4 Quality Dashboards (ABB & Munich Re)

ing efforts required to make users familiar with the different kind of reports, it helps to support all
project participants in all their manifold tasks.

Another aspect relevant for continuous quality control is the toleration of known quality defects.
In most cases, quality control is introduced to systems that are under maintenance for many years.
Hence, most of them contain a number of quality defects that are first identified when quality con-
trol is applied. As projects rarely have time or resources to remedy these quality defects at once,
quality dashboards must provide mechanisms to tolerate such problems. is is crucial to be able to
distinguish known but accepted problems from newly arisen ones.

Analysis Accuracy Most importantly, we found that the application of analysis tools in a continu-
ous manner raises different requirements regarding the accuracy of analysis results than the sporadic
application of the same tools. An experienced user of analysis tools can easily copewith false positives
when he carries out an analysis only sporadically. However, when analyses are applied continuously,
e. g. during the nightly build, developers and other project participants need to deal with the false
positives on a daily basis. We found that this is not only cost-intensive but simply infeasible as de-
velopers refuse to respect the analysis results if they are polluted with false positives. In fact, our
estimate is that false positive rates above 2% or 3% are not tolerated by developers, i. e. a precision26

greater than 97% is required for continuous application. Currently, many analysis techniques (and
tools) do not provide such high levels of precision if run »out of the box«. e reasons for this are
diverse:

Sometimes it is not fully definedwhat accurate analysis results are. An example for this problem
is clone detection. As it is not always clear which code fragments are actually clones, certain
findings by the tools may be considered false positives by some project participants [297].

Some analyses are inherently imprecise as they rely on heuristics that do not always satisfy the
requirement of high precision. Again, clone detection is a prime example for this problem.

In some cases, analysis results are imprecise as the analysis tools are not implemented properly.
An example is the analysis for unused private fields provided by PMD. In certain situations, it
reports fields to be unused although they are actually used. A special case of this problem are
certain project idiosyncrasies that analysis tools were not prepared for. As this can be highly
project-specific aspects, such problems cannot be called bugs of the analysis tools. e effect,
however, is the same.

Another problem is that analysis tools are sometimes applied in an inappropriate context. For
example, the results generated for portions of code that are automatically generated and never
changed are usually irrelevant as no manual maintenance is performed that could be affected
by the findings.

Different methods to address these problems exist. Heuristic approaches usually provide some kind
of parameterization that allows to influence the applied heuristics. In most cases, the parameters can
be used to increase precision at the expense of a reduced recall. While this is a potentially dangerous
26Precision and recall are terms originally used in the context of information retrieval to measure the performance of

retrieval techniques [198]. In the context of quality analysis tools, precision can be interpreted as the fraction of the
generated results that is truly relevant and recall can be interpreted as the fraction of relevant results identified by the
analysis tool. Ideally, both should be equal one.

161

6 Case Studies

approach as important findings may be excluded too, it sometimes is the only feasible way to include
an analysis in a continuous quality control approach. Fortunately, recall must not always be sacrificed
for precision. In certain cases, the parameters allow to adapt the heuristics to the specifics of a project
and thereby help to increase accuracy. However, some heuristic approaches are simply not (yet)
suited for a continuous application. Examples are the detection of inconsistent clones to identify
faults [167] or most approaches that involve natural language analysis, e. g. in the context of program
identifiers or comments [243, 244].

An approach to deal with unreliable heuristics or improperly implemented analyses is to usemultiple
tools that carry out similar analysis and compare their results. Depending on the number of tools and
the quality of their analysis results, different strategies can be applied to increase result accuracy. For
example, findings can be reported only if more than one tool identified the same problem. Another
strategy that can be used to deal with many forms of false positives involves the developers and is
usually called blacklisting. Blacklisting allows developers tomark individual findings as false positives
with the purpose of excluding them from future reports. While this approach is conceptually simple,
it is technically challenging as the location of the findings stored in the blacklistmust be robust against
changes of the system. Furthermore, developers must be equipped with tools to create and maintain
blacklists. We applied blacklisting for the clone detection results in all projects of this case study
and found it to be a very effective and efficient technique to increase analysis accuracy. We currently
extend ConQAT with a generic blacklisting mechanism for all kinds of findings.

e last problem, the application of analysis tools in inappropriate contexts, can usually be addressed
with suitable filters. For example, in all case studies generated code was excluded from the clone
detection. Again, this is technically more challenging than one would expect. e reason is that
generated code is oen intermingled with handwritten code within source files. In these cases, it is
not possible to excludewhole files; rather an exclusion of specific regionswithin the files is required.

e provision of different visualizations and different aggregations of the same data, the capability
to deal with tolerations and the implementation of approaches to deal with false positives require a
high flexibility and customizability of the applied analysis tools and the quality dashboard. is case
study generated convincing evidence that the pipes&filters architecture that was chosen for ConQAT
is capable to provide the required flexibility and, hence, supports the efficient and effective creation
of quality dashboards in realistic industrial settings.

6.4.5 Discussion

Both companies stated that they were not only convinced by the quality improvements that were
achieved during this case study but perceive continuous quality control with ConQAT-based dash-
boards as beneficial for their projects in general. While many questions remain open, e. g. about the
ideal process integration, we believe that this case study provides strong evidence for the usefulness
of continuous quality control in industrial settings. is is emphasized by the fact that both compa-
nies extended their cooperation with our research group to widen the application of quality control.
Moreover, a number of other companies now apply ConQAT in a similar fashion.

To fully implement the quality control approach advocated in this thesis, a QMM-based definition of
quality criteria and the automatic generation of guidelines still remains to be done. As we will con-
tinue our work with both companies, we are confident that this can be achieved in the near future.

162

6.5 Integrating Manual and Automatic Quality Analysis

6.5 IntegratingManual and Automatic Quality Analysis

is case study describes the integration of manual and automatic quality assessment measures. We
apply this combination for the development of ConQAT itself and use it to control product quality
in student projects. is study specifically reports on the application of integrated assessment tech-
niques in a student lab course that was dedicated to the development of ConQAT’s graphical editor
cq.edit.

6.5.1 Environment

e tool development group of theCompetence Center for SowareMaintenance (CCSM) at the Tech-
nische Universität München actively maintains about 200,000 lines of code that include ConQAT and
related tools. e maintenance is performed by 5 permanently employed researchers. In addition,
several students work on the code as part of lab courses, bachelor and master theses or as student
assistants. Furthermore, a number of industrial partners contribute to some of the open source
projects. Over a period of 4 years, 49 different developers contributed to code base. On average,
there are about 10 active maintainers. Due to the relatively high fluctuation, the maintainability of
the code is crucial. In many cases, student developers spend only a limited time, e. g. 6 month on a
project, and, hence, cannot afford to waste time for becoming acquainted with a system that is hard
to comprehend or extend. To control the maintainability of the CCSM code base, we apply the tech-
niques and tools proposed in this thesis. In particular, we use ConQAT-based dashboards to execute
automated assessments and monitor their results.

However, as repeatedly discussed in this thesis, there is a number of important quality criteria that
cannot be assessed in an automatic manner but require manual reviews. Hence, the CCSM adopted
manual reviews as its main means for assuring quality of the entire code base. As a fundamental pol-
icy, each source file has to be peer reviewed by another developer before it can be released. is rule
applies to source code developed by researchers in the same way as it applies to students. In student
lab courses, students cannot get credits for the course unless all the source code they developed was
manually reviewed and accepted by one of the researchers. e manual reviews do not only help
to improve quality but are also well-suited to teach students about soware quality and reviewing
techniques. So, the consistent application of manual reviews is viewed as beneficial by all project
participants. Students, in particular, repeatedly articulated that they enjoy having their source code
scrutinized by experts (the researchers).

While the techniques discussed in this case study are applied for all soware maintenance carried
out by the CCSM, for clarity’s sake, this case study focuses on a single student lab course. is lab
course was dedicated to the development of ConQAT’s graphical editor cq.edit (see Sec. 5.2.7). As the
developed codewould later on bemoved to theCCSMcode base, stringent quality requirements were
applied. During this 5 month course, 14 students developed the first version of the graphical editor.
e editor is based on the Eclipse Rich Client Application Platform27 (RCP) and comprised about
25,000 LOC at the end of the course. In preparation of the development of the editor, the students
had several programming assignments to become acquainted with the RCP. In these assignments,

27http://www.eclipse.org/rcp

163

6 Case Studies

about 50,000 LOC were developed that were all manual reviewed by the course advisors. However,
only one round of review was performed for the code submitted for these assignments.

An important idiosyncrasy is the asynchronous and distributed type of development usually encoun-
tered in our lab courses. As both students and advisors have further tasks besides the lab course, they
freely choose their development time as well as the location. Only for dedicated meetings, usually
once a week, all project participants get together to discuss progress and next steps.

6.5.2 Goals

e goal of this study was to establish a deep integration of manual and automatic assessment tech-
niques. In particular, the results ofmanual assessments should be integrated into a quality dashboard
along with the results of automated assessments. is should enable the course advisors to keep track
of the state of quality of all artifacts developed during the course. Moreover, a tight integration of
manual and automatic assessments should help to reduce the efforts spent on manual reviews. e
integration should enable reviewers to focus on difficult aspects that demand human involvement
and leave simple things to the analysis tools. Moreover, the course advisors wanted to use automatic
assessments as kind of quality gate before manual techniques are applied to ensure that artifacts that
are manually reviewed exhibit a minimum level of quality.

6.5.3 Study Description

is section describes the approach that was used by the CCSM team to integrate manual and au-
tomated assessments in a quality dashboard. As the focus of this study is on the integration aspect,
the quality criteria assessed manually and automatically are not discussed in detail. Examples of au-
tomatically assessed criteria were code cloning, unused code and the violation of low-level design
rules in Java, e. g. the implementation of the equals()-method without an implementation of the
hashCode() method. Examples for manually reviewed criteria were the appropriate choice of pro-
gram identifiers, suitable comments and the correct application of standard data structures as well
as algorithms.

ArtifactQuality Life Cycle e central idea of the approach to integrate manual assessments with
quality dashboards is the notion of the artifact quality life cycle shown in Fig 6.16. By default, a newly
created artifact is rated . e author of an artifact can change its state to  to express that he
is confident that all quality requirements are met. With this color change, the author signals that the
artifact is ready to be reviewed. A reviewer, other than he authors, performs a quality review of the
artifact and rates it  if all quality requirements are met or  if one ore more requirements are
violated. is review process is supported by automatic analyses as described below. If the reviewer
rated the artifacts , the author corrects the quality deficiencies and rates the artifact yellow, when
he is finished. A  artifact is automatically rated  if it is subject to any modification. is
way, it is ensured that all modifications are properly reviewed. Ideally, the artifact quality life cycle is
tightly coupled with the soware maintenance process as illustrated in the next section.

164

6.5 Integrating Manual and Automatic Quality Analysis

RED YELLOW GREENreleasecreation review

review

modi�cation

deletion

Figure 6.16: Artifact Quality Life Cycle

Process Integration In the lab course, we applied the simplistic soware maintenance process
depicted in Fig. 6.17. is process is change request driven and designed to be supported by the
open source change management tool Bugzilla28. We refer to this process as Lean Soware Evolution
and Development (LED) process. e table below explains the process transitions and the relation
of the artifact quality life cycle to the maintenance process. In the lab course the assignments as
well as the development of the editor were steered by this process. Concretely, the advisors created
the change requests in the change management tool Bugzilla and assigned them to the students that
implemented them. e students then used Bugzilla as their main mode of communication with the
advisors and also with students of other teams. is enabled us to support the course’s asynchronous
and distributed type of development.

as s igned 1 res olved 2

reopened
 3

clos ed
5

 4

Transition Description Rating
1 → ASS Every teammember can create a CR at

any time.
–

2 ASS → RES The CR is switched to RESOLVED after
the work is completed.

All files affected by the CR must have
rating YELLOW.

3 RES → REO If QA decides that the CR is not com-
pleted properly, it reopens the CR.

At least one of the affected files must
have rating RED.

4 REO → RES The developers corrects the issues
commented by the reviewers and
switches the CR to RESOLVED

All files affected by the CR must have
rating YELLOW.

5 RES → CLO If the resolution satisfies all QA criteria,
QA puts CR in state CLOSED.

QA must rate all files GREEN.

Figure 6.17: The LEvD SoftwareMaintenance Process

28http://www.bugzilla.org

165

6 Case Studies

Technical Realization To keep track of the artifacts’ quality rating, the rating needs to be stored
explicitly. is could either be done in a dedicated database or within the artifact itself. For simplic-
ity’s sake we chose the latter option and use a simple mechanism for storing an artifact’s rating within
comment constructs of the artifacts. An example for a rating stored in a Java source file is shown in
Fig. 6.18a; in an HTML file in Fig. 6.18b: e token @rating is followed by the assigned rating color
and the version the file had when the rating was assigned. e version information is required to
identify files that have been modified aer they where rated. To support this, the token @version is
used to store the current version of the file. If this version is greater than the rating version, the file
was modified aer it was rated. In such situation it is by default assumed to be .

While the versioning could theoretically be handled manually, in practice this is not feasible. Hence,
the support of a version management system like Subversion29 or CVS30 is required. Such systems
usually provide a mechanism to replace a special token like Rev with the current version of the
file when the file is checked out from the version management system. is ensure that the version
information stored with the @version token is always up to date and allows to identify files that have
been modified by comparing the rating version with the current version.

package edu . tum . c s . commons ;
import j a v a . i o . F i l e ;

/ * *
* T h i s c l a s s . . .
*
* @ve r s i on $Rev : 16749 $
* @ra t i ng GREEN Rev : 16749
* /

p u b l i c c l a s s F i l e S y s t e m U t i l s { . . . }

< ! DOCTYPE html PUBLIC . . . >
< !−−

@ve r s i on $Rev : 1643$
@ra t i ng GREEN Rev : 1640

−− >
<html xmlns = " . . . " >
. . .

< / html >

a) b)

Figure 6.18: Rating Tags

In a similar fashion, review comments are directly stored in the concerned artifact. A review com-
ment is always prefixed with the tag TODO followed by the initials of the reviewer. e Eclipse devel-
opment environment provides built-in support for such task tags and thereby supports the developer
in locating the reviewer’s comments. is is illustrated by the screenshot in Fig. 6.19: Eclipse does
not only highlight the TODO tag in the code but also provides markers indicating such tags within a
file (right) and list of tags that allows to navigate directly to the review comments (bottom).

IDE Integration While the rating information can bemaintainedmanually for the artifacts, amin-
imal amount of tool support helps to increase efficiency. Hence, we developed a plugin for the Eclipse
IDE that visualizes the rating of the artifacts and helps to set their rating. Both functionalities are
shown in Fig. 6.20. Each artifact icon in the Package Explorer tree is decorated with a small colored
circle on the top le. As the figure shows, rating colors are aggregated from bottom to top levels.
Consequently, the package suffixtree as well as its super packages are rated  since the package

29http://subversion.tigris.org/
30http://www.nongnu.org/cvs/

166

6.5 Integrating Manual and Automatic Quality Analysis

Figure 6.19: Review Comments in Source Code

contains a Java class with rating . Right-clicking an artifact allows to select the rating color via
a context menu entry. Alternatively, a menu entry can be chosen that keeps the rating color of the
artifact but updates the rating version. e same menu entries exist for packages to set the rating for
all artifacts that belong to a package. e figure shows that these features do not only work for Java
classes but also for artifacts like XML or HTML files.

Figure 6.20: Eclipse Rating Plugin

Dashboard Integration e Eclipse plugin allows to set artifact ratings and shows the rating of
artifacts that reside in a developer’s workspace. However, this still provides no suitable means for the
course advisors to control the quality of all artifacts. Hence, the rating information was integrated
into ConQAT-based quality dashboards. During the course, the dashboard was updated hourly and,

167

6 Case Studies

therefore, allowed to continuously monitor the rating of all artifacts. Integrating the rating informa-
tion into the dashboard was achieved with a ConQAT processor that analyzes the rating of files and
annotates the files with the according traffic light color. Like this, the rating of a file and therewith the
results of manual reviews can be integrated into a quality dashboard. Once the rating information is
integrated, various aggregation and visualization techniques can be applied. We found the tree map
representation shown in Fig. 6.21 to be the most important tool for controlling quality. e figure
shows a snapshot of all Java classes of cq.edit. e size of each rectangle reflects the size of the class in
LOC and the color represents the rating. One can easily see that the component on the le is mainly
, i. e. reviewed and accepted. e components on the right exhibit a more patchy pattern with
many yellow and red classes. Pointing the mouse brings up a tool-tip with additional information.

Figure 6.21: Rating TreeMap

A visualization that illustrates trends w.r.t. to the source code rating is the stacked area chart shown
in Fig. 6.22. e chart displays the total size of the system (in LOC) and depicts the portions of source
code that are rated ,  and . is visualization is well-suited to monitor the amount
of unreviewed code during phases of system growth.

Obviously, the dashboard can also be used to cross-check the rating information against the results
of automatic assessments. For example, the dashboard can identify files that were rated  or
 but violated any of the automatically assessed quality criteria. Moreover, the results of the
automated assessments presented by the dashboard can help to improve review efficiency. In the lab
course, this was achieved in two ways:

Before reviewing an artifact, the reviewer consulted the dashboard to check if any of the auto-
mated analysis tools reported a finding for the artifact to be reviewed. If a finding was reported,
the reviewer simply rated the artifact  without reviewing it. He then set the associated
change request in the state reopened and added a suitable comment using the Bugzilla system.
e developer of the artifact was alerted to this state change by e-mail and could correct the
findings shown in the dashboard. During the lab course, the dashboards were updated hourly
as part of an automated build process to ensure up-to-date information. is also enabled the
developers of artifacts to check the findings of automated analysis before asking advisors for
reviews.

Obviously, this process works only for automated analyses that generate very low rates of false

168

6.5 Integrating Manual and Automatic Quality Analysis

Figure 6.22: Rating Trend Curve

positives. For other analyses, e. g. the detection of redundant literals, the advisors used the anal-
ysis results by incorporating them into the reviews. Concretely, the reviewer started the review
by checking such analysis results before he started the actual manual review. If the results were
true positives, he added the respective review comments to the file using the aforementioned
TODO tags. Aer this, he proceeded with his manual review.

6.5.4 Results

We found that the integration of manual and automatic quality assessments in one dashboard greatly
helped to control the quality of the system artifacts. While the researchers involved in the lab course
had advised several other lab courses before, this was the first time they were truly able to control
the quality of the developed system. Using the dashboard they could quickly get an overview of the
state of quality of the entire code base and react accordingly. For example, they stopped development
of new features at multiple points and made student developers clean up existing code. Progress of
such clean-up activities could again be monitored using the dashboard.

Furthermore, advisors concluded that the dashboard helped them to increase review efficiency as
they could simply reject artifacts that did not fulfill minimum quality requirements. Moreover, ad-
visors agreed that review effectiveness was increased, too. For example, they could conveniently

169

6 Case Studies

consult the dashboard to check if a source file under review shares duplicated code with other ar-
tifacts and annotated the file accordingly. Such a check would be impossible with manual reviews
only. Even if appropriate tools were available but not integrated into a dashboard it would be very te-
dious as the analysis tool would need to be run for each reviewed artifact. Similarly, reviewers found
that, possibly due to a lack of concentration, they oen overlooked issues that the automated tools
identified, e. g. unused fields of a class.

Nevertheless, the view of the author of this thesis regarding the importance of manual reviews was
again confirmed in this lab course. All project participants agreed that many relevant review find-
ings concerned things that are impossible to analyze automatically. Common examples are iden-
tifiers, comments and the inappropriate usage of data structures and algorithms. A great number
of findings was related to students inexperience with the humongous Eclipse RCP framework. So,
students oen implemented functionality that, unbeknownst to them, was already provided by the
framework. Importantly, these problems could not have been detected by current clone detection
tools as they are limited to finding code that has actually been copied and cannot identify code with
equivalent functionality that has been developed independently [165]. Another large share of review
findings was dedicated to over engineering that was prevalent throughout the lab course. In many
places students implemented functionality in a very complex fashion to suit possible future needs
that had never been discussed by the course’s advisors. Overall, manual reviews were perceived as
an indispensable tool for assuring maintainability.

Concordant with our experience in industrial settings (Sec. 6.4), ConQAT proved to be well-suited
to build dashboards that offer the required functionality in an efficient and effective manner. It was
straightforward to implement the processors that extract the rating information from the source files
and, crucially, once this was done, ConQAT’s functionality for aggregation, visualization and histor-
ization could be appliedwithout further changes. However, we found thatmost reviewers would have
liked a tighter integration with the development environment. Similar to the prefilled checklists pro-
posed in Chap. 4, the reviewers suggested to introduce a dedicated review view in Eclipse that, when
reviewing a file, would list all findings stored in the dashboard. is would relieve developers from
the tedious and error-prone switching between the IDE and the dashboard.

Regarding the appliedmaintenance process we found that, even in this asynchronous and distributed
setting, it allowed us to control the quality of all development artifacts without reducingmaintenance
productivity. However, we also found that this process is very demanding if the number of reviewers
is too small with respect to the number of developers. As in this course, three advisors had to review
the code of 14 students, the advisors oen had to struggle to complete their reviews to not delay
progress. For a new lab course we, hence, plan to also involve students in the reviewing process by
teaching review techniques at the beginning of the course.

Another problem we found concerns the artifact quality life cycle: An artifact that was rated 
once, stays  unless it is modified. is notion can be problematic, however, as artifacts can, in
fact, exhibit quality decay without being touched. An example for this problem is a class containing
a method that implements a certain functionality that is later added to some library or framework.
While the class was not modified, a new review would rate it  as it contains duplicated function-
ality. We are aware of this inherent limitation of the artifact quality life cycle but do not believe that
there is a generic solution to the problem. Instead, we currently rely on the fact that the affected arti-
fact will sooner or later be changed due to some other reason. A review of this change will hopefully
bring to light the missed quality deficiency, too.

170

6.5 Integrating Manual and Automatic Quality Analysis

6.5.5 Discussion

All lab course participants, students and advisors alike, agreed that the integrated application ofman-
ual and automated assessment techniques has been highly beneficial for them and the developed
system. Advisors were glad that review efforts could be reduced, students enjoyed getting direct
feedback on their coding and both parties profited from the high quality of the developed system.

Besides organizing lab courses, the CCSM maintains a code base of about 200,000 LOC that, among
others, includes ConQAT and CloneDetective. ese tools have a history of more than four years and
are now successfully applied in various industrial and academic contexts. Due to the growing user
base, these tools have clearly le the area of academic prototypes and demand professional devel-
opment and quality assurance techniques. For this, we apply exactly the same processes and tech-
niques as used in the lab course, i. e. every source artifact is reviewed until all quality criteria are met
and products are only released if all their artifacts are rated . To achieve this, ConQAT-based
dashboards that integrate various automated analyses and manual ratings are used. Based on this
experience, we are convinced that such an integration enables us to control maintainability of large
and changing systems in a highly productive manner.

171

6 Case Studies

6.6 Summary

e above case studies do not evaluate all aspects of the quality control approach proposed in this
thesis in equal depth. However, we took great care to ensure that each aspect of the approach was
thoroughly evaluated in at least one case study in an realistic setting. e case study undertaken with
MAN showed that aQMM-based qualitymodel can be used to describe the various quality criteria of a
complex concept like model-based development in the domain of embedded systems. Furthermore,
the study showed that quality guidelines can be generated from such a model and used in a serial
development department. e suitability of QMM-based models is further emphasized by the case
study undertaken with the Interasco GmbH where we used a quality model to evaluate multiple UI
frameworks for web applications with respect to their maintainability. e case study concerning
process variations of the mainframe development processes applied at BMW showed that a QMM-
basedmodel can be used to estimate the effect of specific quality criteria in a quantitativemanner. e
studies undertaken with Munich RE and ABB illustrate that quality dashboards help to continuously
monitor and improve selected quality criteria in industrial settings. e study also showed that the
quality control toolkit ConQAT is well-suited to build and customize such dashboards in an efficient
and effective manner. is was confirmed by the case study set in an academic context where we
showed that dashboards can be used to integrate manual and automated assessment techniques for
the long-term quality control of diverse aspects of the multifaceted concept of maintainability.

172

»Quality is a complex and multifaceted concept.
It is also the source of great confusion. . . «

David A. Garvin

7 BeyondMaintainability

Considering the generic nature of the activity-based approach tomodel maintainability, the question
arises if the same approach can be used to model other quality attributes. is chapter describes an
application of the QMM for modeling usability. Furthermore, the chapter illustrates how activity-
based models can be applied to describe all relevant quality attributes in an integrated manner.

7.1 Modeling Usability

Usability is a key quality attribute of successful soware systems. Unfortunately, there is no common
understanding of the factors influencing usability and their interrelations. Hence, there is a lack of
a comprehensive basis for designing, analyzing and improving user interfaces. As this situation is
very similar to maintainability, we applied the activity-based quality modeling approach to usability
in order to evaluate in how far it can be used for quality attributes other than maintainability. To
achieve this, we reviewed existing approaches to model usability and evaluated how activity-based
quality modeling can overcome their deficiencies. We found, that by separating activities and sys-
tem properties, sound quality criteria can be identified, thus facilitating statements concerning their
interdependencies. A case study demonstrates how QMM-based models aid in revealing contradic-
tions and omissions in existing usability standards. e application of the QMM for usability has
partly been published in [304].

7.1.1 State of the Art

is section describes work in the area of quality models for usability. We discuss general quality
models, principles and guidelines, and first attempts to consolidate the quality models.

Quality Models for Usability Hierarchical structures as quality models which focus mainly on
quality assurance have been developed following Boehm’s [38] andMcCall et al.’s [51] original quality
models. However, this kind of decomposition is too abstract and imprecise to be used for analysis and
measurement. In addition, since usability is not a part of the main focus, this factor is not discussed
in detail. In order to provide means for the operational measurement of usability, several attempts
have been made in the domain of human-computer interaction (HCI). Prominent examples are the
models from Shackel and Richardson [261] or Nielsen [212]. Nielsen, for example, understands
usability as a property with several dimensions, each consisting of different components. He uses
five factors: learnability, efficiency, memorability, errors, and satisfaction. Learnability expresses how
well a novice user can use the system, while the efficient use of the system by an expert is expressed by
efficiency. If the system is used occasionally, the factor memorability is used. is factor differentiates
itself from learnability by the fact that the user has understood the system previously. Nielsen also

173

7 Beyond Maintainability

mentions that the different factors can conflict with each other. e ISO has published a number of
standards which contain usability models for the operational evaluation of usability. Next to the ISO
9126 (see Sec. 3.2.1) that also includes the attribute usability, the ISO 9241 describes human-factor
requirements for the use of soware systems with an user interface. e ISO 9241-11 [149] provides
a framework for the evaluation of a running soware system. e framework includes the context of
use and describes three basic dimensions of usability: efficiency, effectiveness, and satisfaction.

Principles and Guidelines In addition to the models which define usability operationally, a lot
of design principles have been developed. Usability principles are derived from knowledge of the
HCI domain and serve as a aid for the designer. For example, the “eight golden rules of dialog
design” from Shneiderman [266] propose rules that have a positive effect on usability. One of the
rules, namely strive for consistency, has been criticized by Grudin [128] for its abstractness. Grudin
shows that consistency can be decomposed into three parts that also can be in conflict with each
other. Although Grudin does not offer an alternative model, he points out the limitations of the de-
sign guidelines. Dix et al. [90] argue as well that if principles are defined in an abstract and general
manner, they do not help the designer. In order to provide a structure for a comprehensive cata-
logue of usability principles. Dix et al. divide the factors which support the usability of a system into
three categories: learnability, flexibility, and robustness. Each category is further divided into sub-
factors. e ISO 9241-110 [157] takes a similar approach and describes seven high-level principles
for the design of dialogs: suitability for the task, self-descriptiveness, controllability, conformity with
user expectations, error tolerance, suitability for individualization, and suitability for learning. ese
principles are not independent of each other. For example, self-descriptiveness influences suitability
for learning. Some principles have a part-of relation to other principles. For example, suitability for
individualization is a part of controllability. e standard does not discuss the relations between the
principles and gives little information on how the principles are related to the overall framework
given in [149].

Consolidated Quality Models for Usability ere are approaches which aim at consolidating
the different models. Seffah et al. [260] applied the FCM model to the quality attribute usability. e
developed model contains 10 factors which are subdivided into 26 criteria. For the measurement of
the criteria the model provides 127 metrics. e motivation behind this model is the high abstrac-
tion and lack of aids for the interpretation of metrics in the existing hierarchically-based models.
Put somewhat differently, the description of the relation between metrics and high-level factors is
missing. In addition, the relation between factors, e. g. learnability vs. understandability, are not
described in the existing models. Seffah et al. also criticize the difficulty in determining how fac-
tors relate to each other if a project uses different models. is complicates the selection of factors
for defining high-level management goals. erefore, in [260] a consolidated model that is called
quality in use integrated measurement model (QUIM model) is developed. Since the FCM decom-
position doesn’t provide any means for precise structuring, the factors used in the QUIM model are
not independent. For example, learnability can be expressed with the factors efficiency and effective-
ness [149].

e same problem arises with the criteria in the level below the factors: ey contain attributes as
well as principles, e. g. minimal memory load, which is a principle, and consistency which is an at-
tribute. ey contain attributes about the user (likeability) as well as attributes about the product

174

7.1 Modeling Usability

(attractiveness). And lastly, they contain attributes that are similar, e. g. appropriateness and con-
sistency, both of which are defined in the paper as capable of indicating whether visual metaphors
are meaningful or not. To describe how the architecture of a soware system influences usability,
Folmer and Bosch [107] developed a framework to model the quality attributes related to usability.
e framework is structured in four layers. e high-level layer contains usability definitions, i. e.
common factors like efficiency. e second layer describes concrete measurable indicators which are
related to the high-level factors. Examples of indicators are time to learn, speed, or errors. e third
layer consists of usability properties which are higher level concepts derived from design principles
like provide feedback. e lowest layer describes the design knowledge in the community. Design
heuristics, e. g. the undo pattern, are mapped to the usability properties. Van Welie [286] also ap-
proaches the problem by means of a layered model. e main difficulty with layered models is the
loss of the exact impact to the element on the high-level layer at the general principle level when a
design property is first mapped to a general principle. Based on Norman’s action model [214] Andre
et al. developed the User Action Framework [6]. is framework aims toward a structured knowl-
edge base of usability concepts which provides a means to classify, document, and report usability
problems.

Summary In general, we found that the existingmodels forusability suffer from the sameproblems
that have been identified in the case of maintainability.

1. Customizability. Many of the models discussed above are concrete quality models that are not
designed to be adapted to a specific situation. As it is unrealistic to expect that one qualitymodel
would fit all soware systems developed today, such models are prone to be ill-fitted for most
systems as they either lack important criteria or define irrelevant ones.

2. Assessability. Most qualitymodels contain a number of criteria that are too coarse-grained to be
assessed directly. An example is the attractiveness criterion defined by the ISO 9126. Although
there might be some intuitive understanding of attractiveness, this model clearly lacks a precise
definition and hence a means to assess it.

3. Rationale. Additionally,most existing qualitymodels fail to give a detailed account of the impact
that specific criteria (or metrics) have on the user interaction. Again, the ISO standard cited
above is a good example for this problem, since it does not provide any explanation for the
presentedmetrics. Although consolidatedmodels advance on this by providing amore detailed
presentation of the relations between criteria and factors, they still lack the desired degree of
detail. An example is the relationship between the criterion feedback and the factor universality
presented in [260]. Although these two items are certainly related, the precise nature of the
relation is unclear.

4. Structuredness. Due to a lack of clear separation of different aspects of quality, most exist-
ing models exhibit inhomogeneous sets of quality criteria. An example is the set of criteria
presented in [260] as it mixes attributes like consistency with mechanisms like feedback and
principles like minimum memory load.

5. Operationalization. As with maintainability, it remains unclear for most usability models how
they should be operationalized in the soware development process. Since usability is also an
attribute that needs to be controlled continuously, we consider this a severe limitation.

175

7 Beyond Maintainability

7.1.2 Activity-BasedModeling of Usability

To address the problems with the quality models described in the previous section, we evaluated
in how far the quality metamodel QMM is suited to model usability. Transferring the activity-based
approach developed formaintainability to usability turns out to be straightforward. In the sameman-
ner maintainability describes all aspects that influence the activity maintenance, usability describes
all aspects that have an impact on the activity usage. Also for usability we found the same dangerous
mixture of activities and actual system properties as identified in the case of maintainability. A typi-
cal example of this problem can be found in [260] where time behavior and navigability are presented
as the same type of criteria. Where navigability clearly refers to the navigation activity carried out by
the user of the system, time behavior is a property of the system and not an activity. One can imagine
that this distinction becomes crucial if the usability of a system is to be evaluated regarding different
types of users: e way a user navigates is surely influenced by the system, but is also determined by
the individuality of the user. In contrast, the response times of systems are absolutely independent
of the user. A simplified visualization of the system property and activity decompositions as well as
their interrelations is shown in Fig. 7.1 (attributes are not shown for clarity’s sake). e activities are
based on Norman’s action model [214]. e model is described in more detail in Sec. 7.1.3.

Interact

Evaluate
Outcome …

Perceive
State

Form
Intention

Execute
Action

Evaluate …Execute

Input
Output

Knowledge
Phys. Abilities

……

Dialog Mgmt.
Input Data
Output Data

Ph
ys

. In
te

rfa
ce

Us
erCo

nt
ex

t
Pr

od
uc

t

Sit
ua

tio
n

Lo
gic

al
Ar

ch
.

Figure 7.1: Simplified quality model

e final goal of usability engineering is to improve the usage of a system, i. e. to create systems that
support the activities that the user performs on the system. erefore, we are convinced that usability
qualitymodels should not only feature these activities as first-class citizens, but also precisely describe
how properties of the system influence them and therewith ultimately determine its usability.

Our usability model does not only describe the product, i. e. the user interface, itself, but also com-
prises all relevant information about the situation of use (incl. the user). For this, entities and at-
tributes of the QMM are used in the same way for modeling usability as they are used for maintain-

176

7.1 Modeling Usability

ability. For example, the model describes that the entity User Interface consists of the subentities
Visual Interface and Aural Interface. Attributes are used to equip the entities with desired or unde-
sired low-level quality criteria like CONSISTENCY, AMBIGUOUSNESS, or even the simple attribute EXISTENCE.
us, the facts, which are tuples of entities and attributes, express system properties. An example is
the fact [Font Face | CONSISTENCY] that describes the consistent usage of font faces throughout the user
interface.

Activities also follow the decomposition introduced for maintainability models. Typically, the root
node of the activity tree is the activity Interact that is subdivided into activities like Execute and Evalu-
atewhich in turn are broken down intomore specific subactivities. Activity attributes allow to express
which aspect of an activity is influenced by a fact. For example, we use [Font Face | CONSISTENCY] +−→
[Reading | DURATION] to express that the consistency of the font face has positive impact on the Read-
ing activity as it reduces the time it takes to process information on the screen. Activity attributes
represent an extension to the metamodel used for maintainability. ey help to make explicit the
different types of impacts that are relevant for usability engineers. While an impact can be expressed
by discussing the additional costs associated with it, we found that a finer-granular discussion that
explicitly regards aspects like Error Probability and Activity Duration supports user interface design-
ers in a more direct manner. Without activity attributes, this information would be captured in the
prose impact description only. is can lead to inconsistencies and redundancy. It needs to be in-
vestigated more thoroughly if activity attributes can improve maintainability models, too. However,
based on our experiences so far, we do not expect that the gained explicitness is worth the increased
complexity of the metamodel in this case. As in most of the maintainability case studies, we use the
impact set I = {−, +} to express positive and negative impacts. Hence, impacts are defined as

[Fact f | ATTRIBUTE A1]
+/−−→ [Activity a | ATTRIBUTE A2]

Another example is [Input Validity Checks | EXISTENCE] −−→ [Data Input | ERROR PROBABILITY] that expresses
that the existence of validity checks for the input reduces the likelihood of an error. We found that
this extension of the metamodel helped to formalize aspects of the impacts that repeatedly occurred
in QMM-based models for usability.

7.1.3 A Quality Model for Usability

Confident that activity-based models are, in general, capable of describing usability aspects, we ap-
plied a two-staged approach to evaluate this in detail: First, we built a QMM-based quality model that
is based on the references given above as well as on company-specific quality models we encountered
in projects with industrial partners. Second, we used this basic model to express the principles and
guidelines of the ISO 15005 standard [153]. is standard describes ergonomic principles for the
design of transport information and control systems (TICS).

The Activity Subtree »Interacting with the Product« e activity tree in the usability model
has the root node Use that denotes any kind of usage of the soware-based system under considera-
tion. It has two children, namely Execution of Secondary Tasks and Interacting with the Product. e
former stands for all additional user tasks that are not directly related to the soware product. e

177

7 Beyond Maintainability

latter is more interesting in our context because it describes the interaction with the soware itself.
We provide a more detailed explanation of this subtree in the following.

e activity Interacting with the Product is further decomposed, based on the seven stages of action
from Norman [214] that we arranged in a tree structure (Fig. 7.2). Scholars oen use and adapt
this model of action. For example, Sutcliffe [279] linked error types to the different stages of action
and Andre et al. [6] developed the User Action Framework based on this model. We believe that
this decomposition is the key for a better understanding of the relationships in usability engineering.
Different system properties can have very different influences on different aspects of the use of the
system. Only if these are clearly separated, we will be able to derive well-founded analyses. e three
activities, Forming the Goal, Executing, and Evaluating, comprise the first layer of decomposition. e
first activity is the mental activity of deciding which goal the user wants to achieve. e second
activity refers to the actual action of planning and realizing the task. Finally, the third activity stands
for the gathering of information about the world’s state and understanding the outcome.

Interacting with
the product

Forming the goal

Executing Evaluating

Perceiving the
state of the world state of the world

Interpreting theForming the
intention

Specifying an
action action

Executing the
outcome

Evaluating the

Figure 7.2: The subtree for »Interacting with the Product« (adapted from [214])

e activity Executing again has three children: First, the user forms his intention to do a specific
action. Secondly, the action is specified, i. e. it is determined what is to be done. irdly, the action is
executed. e activity Evaluating is decomposed into three mental activities: e user perceives the
state of the world that exists aer executing the action. is observation is then interpreted by the
user and, based on this, the outcome of the performed action is evaluated.

Attributes To be able to define the relation of the facts and activities to general usability goals, we
need to describe additional properties of the activities. is is done by a simple set of attributes that
is associated with the activities:

Frequency. e number of occurrences of a task.

Duration. e amount of time a task requires.

Physical stress. e amount of physical requirements necessary to perform a task.

Cognitive load. e amount of mental requirements necessary to perform a task.

178

7.1 Modeling Usability

Error Probability. e distribution of successful and erroneous performances of a task.

The Entity Subtree »Logical User Interface« e entity tree in the usability model contains sev-
eral areas that need to be considered in usability engineering, such as the physical user interface or
the usage context. By means of the entity User, important properties of the user can be described.
Together with the entity Application it forms the Context of use. e Physical Output Devices and the
entity Physical Input Devices are assumed to be part of the Physical User interface. However, we con-
centrate on a part we consider very important: the entity Logical User Interface. Fig. 7.3 shows the
decomposition of the entity tree in the form of an architecture diagram to illustrate the dependencies
between entities.

ApplicationUser
Input

channels
Physical input

devices
Dialogue

management
Output

channels
Physical output

devices

Application-initiated messages

Logical User Interface

User Interface Context

Situation

Context

Physical UI

Figure 7.3: The user interface architecture

e logical user interface contains Input Channels, Output Channels, and Dialog Management. In ad-
dition to the architecture, we also add data that is sent via the channels explicitly: Input Data and
Output Data (not shown). e architecture in Fig. 7.3 also contains a specialization of input data,
Application-Initiated Messages. ese messages, which are sent by the Application, report interrupts
of the environment or the application itself to the Dialog Management outside the normal response
to inputs. e entity Application-Initiated Messages is required to model quality aspects in so-called
adaptive systems that aid the user by automatically initiating certain actions.

Attributes e attributes play an important role in the quality model because they are the prop-
erties of the entities that can actually be assessed manually or automatically. It is interesting to note
that it is a rather small set of attributes that is capable of describing the important properties of the
facts. Moreover, we observe that the attributes used in the usability model differ only slightly from
the ones contained in the maintainability model. Hence, there seems to be a common basic set of
those attributes that is sufficient – in combination with facts – for quality modeling.

Existence. emost basic attribute that we use is whether a fact exists or not. epure existence
of a fact can have a positive or negative impact on some activities.

179

7 Beyond Maintainability

Relevance. When a fact is relevant, it means that it is appropriate and important in the context
in which it is described.

Unambiguousness. An unambiguous fact is precise and clear. is is oen important for in-
formation or user interface elements that need to be clearly interpreted.

Simplicity. For various facts it is important that in some contexts they are simple. is oen
means something similar to small and straightforward.

Conformity. ere are two kinds of conformity: conformity to existing standards and guide-
lines, and conformity to the expectations of the user. In both cases the fact conforms to some-
thing else, i. e. it respects and follows the rules or models that exist.

Consistency. Consistency means that the entire product follows the same rules and logic and,
hence, exhibits a homogeneous behavior.

Congruence. Congruence aims at correspondence with external facts, such as analogies, or a
common understanding of things. Congruence is sometimes referred to as external consistency.

Controllability. A controllable fact is a fact which relates to behavior that can be strongly influ-
enced by the actions of the user. e user can control its behavior.

Customizability. A customizable fact is similar to a controllable fact in the sense that the user
can change it. However, a customizable fact can be preset and fixed to the needs and preferences
of the user.

Guardedness. In contrast to customizability and controllability, a guarded fact cannot be ad-
justed by the user. is is a desirable property for some critical parts of the system.

Adaptability. An adaptive fact is able to adjust to the user’s needs or to its context depend-
ing on the context information. e main difference to customizability is that an adaptive fact
functions without the explicit input of the user.

Examples e entire model is composed of the activities with attributes, the entities with the cor-
responding attributes (facts) and the impacts between facts and attributed activities. e model with
all these details is too large to be described in detail, butwe present some interesting examples: triplets
of a fact, an attributed activity and a corresponding impact. ese examples aim to demonstrate the
structuring that can be achieved by using the quality metamodel.

ConsistentDialogManagement. A central component in the logical user interface concept pro-
posed in Sec. 7.1.3 is the Dialog Management. It controls the dynamic exchange of information be-
tween the product and the user. In the activities tree, the important activity is carried out by the user
by interpreting the information given by the user interface. One attribute of the dialog management
that has an impact on the interpretation is its CONSISTENCY. is means that its usage concepts are sim-
ilar in the entire dialog management component. e corresponding impact description describes
that a consistent dialog management reduces the error probability:

[Dialog Management | CONSISTENCY] +−→ [Interpretation | ERROR PROBABILITY]

180

7.1 Modeling Usability

Obviously, this is still too abstract to be easily assessed and needs to be refined for the specific context.
For example, menus in a graphical user interface should always open the same way.

Guarded Physical Interface. e usability model does not only contain the logical user interface
concept, but also the physical user interface. e Physical Interface refers to all the hardware parts
that the user interacts with in order to communicate with the soware-based system. One important
attribute of such a physical interface is GUARDEDNESS. is means that the parts of the interface must
be guarded against unintentional activation. Hence, the guardedness of a physical interface has a
positive impact on activity Executing as it reduces the error probability:

[Physical Interface | GUARDEDNESS] +−→ [Executing | ERROR PROBABILITY]

A physical interface that is not oen guarded is the touchpad of a notebook computer. Due to its
proximity to the location of the hands while typing, the cursor might move unintentionally. ere-
fore, a usability model of a notebook computer should contain the triplet that describes the impact
of whether the touchpad is guarded against unintentional operation or not.

7.1.4 Modeling the ISO 15005

To further evaluate our usability modeling approach we refined the high-level model described in
the last section into a specific model based on the ISO 15005 [153]. e goals of this evaluation were
twofold: First, we wanted to demonstrate that the activity-based approach can be used to model the
criteria expressed in the standard. Second, we wanted to discover inconsistencies, ill-structuredness,
and implicitness of important information in the standard.

e standard describes ergonomic principles for the design of transport information and control sys-
tems (TICS). Examples for TICS are driver information systems (e. g. navigation systems) and driver
assistance systems (e. g. cruise control). In particular, principles related to dialogs are provided,
since the design of TICS must take into consideration that a TICS is used in addition to the driving
activity itself. e standard describes three main principles which are further subdivided into eight
sub-principles. Each sub-principle is motivated and consists of a number of requirements and/or
recommendations. For each requirement or recommendation a number of examples is given. For
example, the main principle suitability for use while driving is decomposed among others into the
sub-principle simplicity, i. e. the need to limit the amount of information to the task-dependent min-
imum. is sub-principle consists, among others, of the recommendation to optimize the driver’s
mental and physical effort. All in all the standard consists of 13 requirements, 16 recommendations,
and 80 examples. For translating the ISO 15005 to a QMM-based model we applied an approach
similar to the one we used for translating quality guidelines for Simulink models (Sec. 6.1). Hence,
we inspected each principle, sub-principle and requirement and expressed it with suitable elements,
i. e. facts, attributes, impacts, etc. of the QMM. e final model consisted of 41 entities, 12 activities,
15 attributes, 48 facts, and 51 impacts.

181

7 Beyond Maintainability

Examples To illustrate how the elements of the standard are represented in our model, we present
the following examples. An element in the logical user interface concept presented in Sec. 7.1.3 is the
Output Data, i. e. the information sent to the driver. A central aspect is the representation of the data.
One attribute of the representation that has an impact on the interpretation of the state of the system
is its UNAMBIGUOUSNESS, i. e. that the representation is precise and clear. is is especially important
so that the driver can identify the exact priority of the data. For example, warning messages are
represented in a way that they are clearly distinguishable from status messages.

[Output Data | UNAMBIGUOUSNESS] +−→ [Interpretation | ERROR PROBABILITY]

Another attribute of the representation that has an impact on the interpretation is the CONSISTENCY.
If the representations of the output data follow the same rules and logic, it is easier for the driver to
create a mental model of the system. e ease of creating a mental model has a strong impact on the
ease of interpreting the state of the system:

[Output Data | CONSISTENCY] +−→ [Interpretation | DURATION]

One attribute of the representation that has an impact on the perception is SIMPLICITY. It is important for
the representation to be simple, since thismakes it easier for the driver to perceive the information:

[Output Data | SIMPLICITY] +−→ [Perception | COGNITIVE LOAD]

A TICS consists of several features which must not be used while driving the vehicle. is is deter-
mined by the manufacturer as well as by regulations. One important attribute of such features is its
GUARDEDNESS. is means that the feature is inoperable while the vehicle is moving. is protects the
driver from becoming distracted while using the feature. e guardedness of certain features has a
positive impact on the driving activity as the error probability is reduced:

[Television | GUARDEDNESS] +−→ [Driving | ERROR PROBABILITY]

Observations & Improvements As a result of the QMM-based analysis, we found the following
inconsistencies and omissions in the ISO 15005 standard:

Inhomogeneous Decomposition. Like many other quality models and guidelines the ISO 15005
exhibits an inhomogeneous decomposition. For example, two of the three main principles refer
to activities (driving and usage of the TICS) whereas the third main principle namely suitabil-
ity for the driver describes the user but not activity he carries out. e mix of different aspects
within the decomposition is continued on the level of sub-principles. Some sub-principles de-
scribe activities, some describe properties of the system and others characteristics of the user.
As argued before, such an seemingly arbitrary decomposition complicates reasoning about the
completeness of the model. One possibility to resolve this mix-up, could be to promote sub-
principles that only describe activities to main principles while degrading those sub-principles
that describe soware entities to the requirements level.

182

7.1 Modeling Usability

Requirements with Implicit Impacts. 9 out of 13 requirements do not explicitly describe impacts
on activities. Requirements serve to define the properties which the system entities should
fulfill. If a requirement does not explicitly describe its impacts on activities, the impact could
be misunderstood by the soware engineer. Hence, we suggest that requirements should be
described by facts and their impacts on activities.

Incomplete Examples. 14 out of 80 examples only describe facts and their attributes, leaving
the impacts and activities implicit. To provide complete examples, we suggest that the examples
should be described with explicit impacts and activities.

Inconsistent Terminology. e German translation of the ISO 15005 exhibits an inconsistent
terminology. For example, the sub-principle Controllability is referred to in some places as
Steuerbarkeit and Kontrollierbarkeit in other places.

7.1.5 Discussion

Usability is a quality attribute that is at least as complex andmultifaceted asmaintainability. Similarly
to maintainability, there is no widely accepted method for explicitly defining what constitutes usabil-
ity. We found thatmost previous approaches formodeling usability suffer from similar shortcomings
as comparable methods for maintainability do. e problem is that usability modeling approaches
are either (1) too inflexible, (2) do not define assessable criteria, (3) do not provide rationale for the
criteria or (4) exhibit inhomogeneous criteria break-downs due to the lack of a defined decomposi-
tion criterion. Also, it is le unclear for many usability models how they can be operationalized, e. g.
for application in constructive and analytic quality assurance.

We found that the quality modeling approach originally developed in the context of maintainability
can be applied to usability with minor adjustments only. As »to use« is one of the most fundamental
activities, it is no surprise that the activity-based nature of the quality metamodel QMM can be ap-
plied smoothly to usability, too. e clearly defined decomposition rules of the entity tree help to
structure the system and its environment so that clearly understandable impacts on the activities can
be described. e case study related to the ISO 15005 standard described above demonstrated that
such clearly structuredmodels help to identify omissions and inconsistencies that are prone to go un-
noticed in traditional usability guidelines. For example, the standard contains three sub-principles
which describe activities, but no impacts on them, as well as 9 requirements that have no described
impacts. is hampers the justification of the guideline: A rule that is not explicitly justified will not
be followed.

While we did not evaluate this in detail, it is obvious that the same mechanisms that are used to
generate guidelines and review checklists for maintainability could be applied to the usability models
as well. is allows to operationalize usability models to make them an integral part of the usability
engineering process. It is, however, unclear in how far automated analyses can be applied to support
analytic means of quality assurance. In our example models, we found only a limited amount of
facts that lend themselves to automatic analysis. An example is the minimum size of fonts shown on
displays.

One problem is that, in some contexts, the term usability includes aspects as fuzzy and subjective as
aesthetics. Activity-based quality models still help to reason about the user activities that are affected

183

7 Beyond Maintainability

by such aspects. However, we found that decomposition we apply in the entity tree clearly reaches
its limits for such aspects, as there is no obvious way of breaking down e. g. aesthetics to the different
entities of a system.

184

7.2 An Integrated Approach for Quality Modeling

7.2 An Integrated Approach for Quality Modeling

e previous section has shown that QMM-based model can be used to model usability in a similar
fashion to maintainability. However, both quality attributes were modeled in isolation only. is
section describes how activity-based quality models can be used to build integrated quality models
that cover different quality attributes while minimizing overlaps and inconsistencies. is work was,
in parts, already published in [84, 291, 295].

Overlaps, Inconsistencies & Trade-offs ough there usually is an emphasis on certain quality
criteria, e. g. safety in the automotive domain, soware development organizations do not focus on
a single quality attribute but need to cover a broad quality spectrum. Today they do so by applying
different quality models in isolation and thereby create a situation that makes it hard to recognize
overlaps and inconsistencies in the various models. For example, many coding guidelines that target
security contain rules that also appear in guidelines for safety or maintainability. An example is the
rule that states that floating point variables should not be used as counter variables in FOR loops.
is is stated by the MISRA guidelines [209], which mainly focus on safety, as well as by the CERT
Sun Microsystems Secure Coding Standard for Java1, which focus on security.

Moreover, this situation does not allow to discuss quality trade-offs in a systematic way. A classic
example is the long-disputed trade-off between portability and performance. While [281] reports
that in Microso Windows portability was deliberately sacrificed for performance, [122] found that
for OR-mapping frameworks this trade-off is virtually nonexistent. Another example is the oen-
encountered trade-off between security and usability as some security features make systems less
comfortable to use. We claim that the lack of a systematic concept to integrate the different quality
models renders a comprehensive analysis of soware difficult and causes overlaps as well as incon-
sistencies in definitions of quality.

Focus on Stakeholders We found that QMM-based quality models provide a good basis for an
integrated modeling of various quality attributes as activities can be applied nearly universally as a
structuring mechanism. To understand this, it’s necessary to recall that making activities first-class
citizens in quality models is not an end in itself but helps to decompose the non-conformance qual-
ity cost that are usually difficult to untangle. Applying an activity-based approach in an integrated
context that includes quality attributes as different as maintainability, usability and performance ob-
viously is more challenging than limiting the approach to soware maintenance. We found that the
central problem is to identify all relevant, i. e. cost-inducing, activities. For this, it proved to be useful
to take the perspectives of the different stakeholders of a soware system into account. A soware sys-
tem has multiple stakeholders including the users of the system, developers that maintain the system
and operators that take care of the system’s operation. While these stakeholders are rather obvious
there are less evident ones like trainers that train the system’s users or even attackers that try to pene-
trate the system’s security features. Each of the stakeholders carries out multiple activities with or on
the system and each of these activities is associated with conformance and non-conformance quality
costs. For example, using a system becomes costly for the users if the systems has poor performance

1https://www.securecoding.cert.org/confluence/display/java/The+CERT+Sun+Microsystems+Secure+Coding+
Standard+for+Java

185

7 Beyond Maintainability

or oen crashes due to reliability problems. If the usability is poor, also the costs for user training
are prone to be high. e reliability problems also affect the operation costs as the operator has to
restart the system frequently. e maintenance cost are obviously affected by the maintainability of
the system. Finally, costs also arise if the attacker is not prevented from carrying out his malevolent
activities. e quality model presented in this thesis does not attempt to model the blurry concept
of maintainability but focuses on the impact that non-conformance to various quality factors has on
the maintenance costs. In precisely the same manner, the integrated model proposed here focuses on
the impact that non-conformance has on the total life cycle costs of a soware product.

Integrated Modeling Fig. 7.4 exemplifies how the diverse concerns and relationships can be
modeled in an integrated manner using a QMM-based quality model. Depicted are 7 facts that con-
cern the soware part of the product, its documentation and its user interface. Four stakeholders
carry out 6 different atomic activities on or with the system. e fact [User Manual | COMPLETENESS]
affects almost all activities as developers, operators and users alike benefit from it. Unfortunately,
the details provided in the manual might also support an attacker in concocting an attack plan, e. g.
based on the well-known SQL injection. e completeness of the glossary helps the user to under-
stand messages generated by the system but also aids the developer in locating domain concepts in
the code. While consistency of identifiers mainly concerns the developers, it can also affect operators
as theymust maintain configuration files that oen use the terminology of the identifiers in the code.
Source code redundancy (clones), however, is a fact that affects only the developers of the system,
particularly when they modify it. e same applies to the fact [Variable | LOCALITY] that expresses that
program variables should be defined with a scope as minimal as possible. e appropriateness of
the font faces, on the other hand, concerns only the user of the system. Interestingly, the fact [Input
Validation | EXISTENCE] does not only aid the user but also prevents the attacker from executing SQL
injection attacks.

Interaction

Evalua-
tion Injection Con�-

guration
Exe-

cution
Modi-

�cation
Code

Reading

Attack Operat.UsageMaintenance

Do
cu

m
en

ta
tio

n
UI

Pr
od

uc
t

So
ftw

ar
e

Input Validation EXISTENCE

Glossary COMPLETENESS

Identi�ers CONSISTENCY

User Manual COMPLETENESS

Variable LOCALITY

Font Face APPROPRIATENESS

Source Code REDUNDANCY

Developer User Attacker Operator

Figure 7.4: An Integrated QMM-based Quality Model

186

7.3 Summary

e integrated model allows to reason about the various factors that affect quality and, importantly,
their interdependencies. Consequently, the overlaps that frequently occur if isolatedmodels are used
for different aspects are resolved. is does not only reduce quality model redundancy but prevents
inconsistencies between models. Moreover, the integrated model provides a basis for the structured
discussion of trade-offs between different quality aspects. Importantly, such an integrated model can
be used in the same manner the maintainability models where used in the case studies presented
in Chap. 6. For example, quality guidelines and review checklists can be generated from it. Using
working sets or similar modularization mechanisms, such documents can be tailored for the specific
user and, hence, kept concise while it is still ensured that all documents are consistent with each
other.

It is worth to note that the integrated model deliberately does not include the well-known quality
attributes (»-ilities«) likemaintainability or security that are usually used in the discussion of different
quality aspects. As argued in Chap. 3, we came to the conclusion that the classic »-ilities« do not
provide a sound basis for structuring the various facets of quality since they do not allow to reason
about the costs associated with non-conformance. From our point of view, it is irrelevant if a certain
fact, e. g. the use of floating point variables as loop counters, affects maintainability or security. e
relevant question is: »What costs are associated with the a use of an inappropriate data type?« While
we cannot answer such questions in a quantitativemanner right now, we are convinced that activities,
that are known to be a solid basis for cost structure analysis in many other areas, will provide the key
for a better understanding of quality and the costs associated with it.

7.3 Summary

e application of QMM-based models in the context of usability showed that the activity-based con-
cept is not limited to modeling factors important for soware maintenance but can be applied for
other quality attributes, too. is is confirmed byWagner and Islam’s successful application of QMM-
based quality models for soware security [296]. Furthermore, we illustrated how activity-based
models can be used to build integrated quality models that describe aspects as different as usability,
maintainability, security or performance in one model. In comparison to the use of multiple isolated
models, this helps to reduce overlaps and inconsistencies between models and fosters a substantiated
discussion of quality trade-offs.

187

»Science never solves a problem without creating ten more.«

George Bernard Shaw

8 Summary and Outlook

In this final chapter we summarize the contributions of this thesis and put them into context. We
also describe our current work and directions for possible further research.

8.1 Summary

Between 60% and 80% of the total life-cycle cost of long-lived systems are spent during the mainte-
nance phase rather than the initial development phase. As half of these efforts are devoted to chang-
ing existing functionality and implementing new requirements, the ability to perform sowaremain-
tenance in a cost-effective and timely manner is a key factor for the commercial success of soware
developing organizations. With a focus on the soware systems themselves, this ability is commonly
referred to as maintainability. Notwithstanding its undoubted importance, most organizations to-
day do not apply dedicated processes, tools and techniques to assure maintainability. us, we today
lack an established discipline of maintainability engineering. We consider this a precarious situation;
particularly because maintainability is known to degrade while soware systems evolve.

We claim that the reluctance to actively control maintainability is, foremost, caused by the lack of a
precise definition of maintainability: Organizations do not control maintainability since they do not
know what it really is. An in-depth investigation of the state-of-the-art in defining maintainability as
well as our practical experience, revealed that existing approaches are inadequate as they either (1)
describe vague criteria that cannot be actually assessed, (2) do not provide rationale for the presented
criteria or (3) exhibit insufficient structures that prevent reasoning about the completeness and con-
sistency of quality definitions. Moreover, most existing approaches cannot be operationalized in the
sowaremaintenance process and, hence, provide no solid basis for constructive and analytic quality
assurance activities.

is thesis proposes a new quality modeling approach that helps to create a precise and assessable
definition of maintainability. e approach is based on the rigidly defined quality metamodel QMM
that carefully distinguishes aspects that are typically intermingled: entities the system consists of,
attributes that describe wanted or unwanted characteristics of the entities and maintenance activi-
ties that are positively or negatively affected by these characteristics. is separation creates distinct
hierarchies with clearly defined decomposition criteria that facilitate a structured decomposition of
maintainability. By making the impact on maintenance activities explicit, the model provides the
rationale for the defined quality requirements so that model users can comprehend why they are in-
cluded in the model. As the maintenance activities provide a breakdown of the total maintenance
effort, this can also contribute to a discussion of quality economics. Furthermore, the quality meta-
model requires each fact to be equipped with a precise assessment description and a classification of
the assessment type (manual, semi-automatic, automatic) to avoid the definition of non-assessable
facts.

189

8 Summary and Outlook

Most previous approaches do not provide means for communicating the quality requirements de-
fined by a quality model to developers and other project participants to support constructive quality
assurance. We advance on this by automatically generating quality guidelines from quality mod-
els that can be tailored to suit the needs of the target audience. To support analytic quality assur-
ance, review checklists as they are typically used in inspections can be automatically generated from
activity-based quality models. Moreover, the results of automatic quality assessment tools like static
code analyzers can be explicitly put into relation with the quality model. is allows a seamless in-
tegration of manual and automatic quality assessment techniques and thereby paves the way for a
practice of continuous quality control for maintainability.

While many existing approaches view quality models as pen&paper artifacts, the modes of oper-
ationalization proposed in this thesis require rich tool support for the creation, manipulation and
transformation of quality models that need to be stored in a machine-processable format. We sup-
port the creation and maintenance of quality models with a dedicated quality model editor applica-
tion. is editor can be used to generate quality guidelines and review checklists. With respect to
analytic quality assurance, there already is a plethora of automatic quality analysis tools of academi-
cal and commercial origin. However, the majority of existing tools operates virtually independently
from the definition of quality. We advance on this by providing the Continuous Quality Assessment
Framework ConQAT that allows to integrate the results of various quality analysis tools as well asman-
ual reviews into a quality control dashboard. e dashboards can put quality assessment results into
relation with the explicitly defined quality model and thereby enables users to judge if the quality re-
quirements expressed by themodel are met. ConQAT advanced to a state that is clearly beyond amere
research prototype and is now used by multiple major companies and number of research groups.

Several case studies were undertaken to evaluate if our modeling approach and the accompanying
tool-chain can be applied in practice. In a study with the MAN Nutzfahrzeuge Group we used a
activity-based quality model to describe quality criteria of Matlab/Simulink models that are fre-
quently used for the development of embedded systems. Quality guidelines for developers were
generated from the quality model and automatic assessments of model quality were integrated with
MAN’s process infrastructure. e case study showed that our quality modeling approach is well-
suited to create a precise definition of quality criteria for maintainable Matlab/Simulink models and
led to the adoption of our approach as well as our tools in the MAN development process. In a study
undertaken with the Interasco GmbH, aQMM-based qualitymodel was used to evaluate the expected
maintenance efforts of different web user interface frameworks. Our modeling approach allowed to
structure the relevant quality criteria and thereby guided Interasco in selecting a suitable framework
from a plethora of available options. e results of the study have been used by Interasco as input for
amajor reengineering of one of their core products. Together with the BMWGroupwe evaluated the
economic impact of variations in the project infrastructure on the different maintenance activities
in the context of mainframe soware development. is case study showed that QMM-based models
are principally suited to reason about the impact of quality criteria in a quantitative manner. Con-
QAT’s suitability to build quality dashboards in an industrial context was evaluated with our partners
Munich Re Group and ABB Distribution Automation. At both partners ConQAT was used to con-
trol selected quality criteria in multiple projects. In both cases, ConQAT-based quality dashboards
not only helped to keep the current state of quality but also supported step-by-step quality improve-
ments. In a case study that was undertaken in a programming lab course, we evaluated how manual
and automatic quality assessment techniques can be tightly integrated using quality dashboards. e
integration helped to improve the quality of the developed soware while reducing the efforts for

190

8.2 Outlook

manual reviews. Moreover, the continuous feedback provided by the dashboard helped students to
improve their programming skills.

Finally, we evaluated if the quality modeling approach that was developed in the context of main-
tainability can be transferred to other quality attributes. In a case study dedicated to usability we
found that only minor changes to the quality metamodel were required to apply the same approach
to an attribute that, at first sight, appears to be highly different from maintainability. Furthermore,
we showed how the activity-based quality metamodel can be used to build integrated quality models
that describe quality attributes as different as maintainability, security and portability in one model.
is helps to avoid the overlaps and inconsistencies that frequently occur if multiple isolated models
are used. In addition, the integrated quality model supports a substantiated discussion of trade-offs
between quality attributes.

8.2 Outlook

While the quality control approach presented in this thesis addresses major shortcomings of existing
approaches, it would be bold to claim that all problems are solved. is section discusses possible
improvements of the presented approach and illustrates directions for further research on modeling
maintainability in particular and quality in general.

Assessment & Aggregation Currently, the quality metamodel QMM provides support for qual-
ity assessments only through the prose assessment descriptions that are associated with the quality
criteria. While this helps to avoid the formulation of criteria that are not assessable, one would oen
want a more formalized assessment description that includes explicit metrics. Moreover, the QMM
provides no support for aggregating assessment results to higher levels. As there are multiple pos-
sible aggregation dimensions and aggregation methods’ suitability strongly depends on the goals of
the aggregation, aggregation is currently le to the quality assessment tools. While flexible tools like
ConQAT can be customized to perform all required types of aggregations, omitting precise aggrega-
tion instructions from the quality models itself leads to an undesirable degree of freedom in quality
model interpretation. Hence, it would be beneficial to extend the quality metamodel to include for-
malized assessment and aggregation instructions. Referring to the example in Sec. 4.2.4, for example,
themodel would contain an instruction that states that an instance of the entity For Loop conforms to
the quality model if its facts and the facts of its parts, e. g. [For Loop | APPROPRIATENESS] and [Body |WELL-

FORMEDNESS], are fulfilled. A Method’s instruction could state that a method is conform if all the For
Loops as well as the other program constructs it contains are conform. Such instructions could be
formalized with a technique similar to the detection strategies used in [201].

Software Development Life Cycle e focus of the approach presented in this thesis is clearly
on the late phases of the soware development life cycle (SDLC). However, quality requirements,
including the ones that concern soware maintenance, should ideally be discussed in all stages of
the SDLC; beginning with the tender preparation. Hence, we evaluated initial ideas to apply activity-
based quality models throughout the SDLC and, particularly, in its early stages. In [295] we propose
the 5-staged process shown in Fig. 8.1 to elicitate and refine quality requirements:

191

8 Summary and Outlook

Identifying
Cost

Drivers
relevant

stakeholder

Ranking
activities

De�ning
requirements
qualitatively

Quantifying
requirements

Identifying

Figure 8.1: Process Steps for Quality Requirements Elicitation and Refinement

1. Identifying Relevant Stakeholders & Activities. e first step is, similar as in other requirements
elicitation approaches, to identify the stakeholders of the soware system. For quality require-
ments, this usually includes users, developers, maintainers and operators. However, it is of-
ten sensible to include less evident stakeholders like user trainers or even malevolent attackers.
When the stakeholders have been identified, the quality model structure can be used to derive
the activities they performon andwith the system. For example, the activities for themaintainer
include concept location, impact analysis, coding, or modification. Especially the activities of the
user can be further detailed by developing usage scenarios.

2. Ranking Activities. In the next step, we rank the activities of the relevant stakeholders according
to their importance. is results in an list of all activities of the relevant stakeholders. On top of
this list are themost important activities, the least important at the bottom. For this, importance
is best defined via the expected costs associated with an activity. In practice, the importance can
be judged by experts or based on experiences from similar projects.

3. Defining Requirements Qualitatively. Aer activities have been ranked, a qualitative definition
of requirements is required. For example, if a soware system is to be installed on many user
workstations, the Installation activity is desired to be highly automated. If the soware is ex-
pected to undergo frequent changes, its Modification should be supported well. If the data se-
curity is an issue, the Attack should be as difficult as possible. Hence, quality requirements are
expressed in purely activity-based manner.

4. Identifying Cost Drivers. Starting with the most important activities, cost drivers for the defined
qualitative requirements are identified. ey are modeled in form of the quality model’s entity
tree and put into direct relation to the activities through explicitly modeling their impacts. For
example, the activity Testing is positively influenced by the conformance of soware compo-
nents to a common interface. e well-defined structure of the entities tree supports building
the model and allows to reason about its completeness. For example, one can relatively easy
distinguish cost drivers that are inherent to the system and cost drivers that are located in the
systems operational environment. e Testing activity again provides a good example as testing
is not only influenced by the system under test but also by the availability of adequate test tools.

5. Quantifying Requirements. Finally, the goal is to define quantitative and, hence, assessable re-
quirements. Requirements can be quantified on the activity-level or on the entity-level. An
example on the activity level is, that an average Modification activity should take 4 person-hours
to complete. Requirements on the entity-level might be quantitatively assessable depending on
the attribute concerned. For example, superfluous code variables can be counted and an upper
limit can be defined. While we assume that it is theoretically possible to quantitatively define
all requirements, we are aware that this is not always feasible in practice as either there is no
known decomposition of the requirement or its impact is not understood well enough yet.

192

8.2 Outlook

While this proposal for an activity-based approach to quality requirements worked in our case stud-
ies [295], there clearly still is a long way to go to apply quality models throughout the SDLC in a
consistent manner. In particular, it is currently unclear how one should deal with the problem that
most important system artifacts do not exist in the requirements phase and, hence, cannot be in-
cluded in the entities tree. To address this problem, we envision a dedicated quality requirements
process that is tightly coupled with the main development process. is process serves the step-wise
refinement of quality requirements in the same manner a mature development process builds the
soware system as a series of step-wise refinements from the requirements to the actual soware
system. If both processes are properly synchronized, the introduction of new entities by the main
development process automatically triggers a refinement of the quality requirements. is stepwise
refinement again is supported by the quality model structure. e questions to be answered at each
refinement step are: »What are the important attributes of the new entity and what is their impact
on relevant activities?«

Economic Aspects e activity-based notion that underlies the quality modeling approach pre-
sented in this thesis is strongly shaped by economic considerations. However, the quality models
built with this approach cannot directly answer questions regarding economic aspects yet. As we
view a true economically justification as the ultimate goal for the practice of quality engineering, this
is clearly a shortcoming. We currently see two important directions of further work to remedy this:

Cost Models. To be able to reason about economic aspects, quality models must be extended
with or put into relation to explicit cost models that allow to describe the effect of quality char-
acteristic in a quantitative manner. By using adequate cost models the conformance and non-
conformance costs induced by quality criteria could not only be used as guiding notion in qual-
ity modeling but could be actually calculated. A first step into this direction is described in
Sec. 6.3 where we used an approach based on absorbing Markov chains to evaluate the different
costs of two process alternatives in the context of mainframe soware development. How-
ever, with respect to quality modeling, this application was limited to a single quality criterion.
Hence, we currently do not know in how far the applied technique can be generalized to the
multiple hundred quality criteria described by realistic quality models. Another potential can-
didate to address this problem, are Bayesian Networks that Wagner used in conjunction with
activity-based quality models for predictive purposes [290].

Empirical Data. Independent of the type of model that is applied to reason about economic
aspects, empirical data is needed to use such models in a sensible way. Currently, there is a
tremendous lack of empirical data regarding many highly relevant questions in soware qual-
ity. For example, almost no organization today is able to quantify the impact of outdated doc-
umentation or code cloning in economic terms. Much less, there is reliable data for specific
domains let alone the whole soware engineering industry. To remedy this more and larger
empirical studies need to be carried out. For this, however, organizations must collect more
data in a more structured manner which, of course, first requires them to value the long-term
economic benefit generated by such studies.

We are confident, that activity-based models will help support a stronger economic perspective in
quality engineering as activities are known to be a solid basis for cost structure analysis in diverse
areas.

193

8 Summary and Outlook

Model Reuse and Standardization Building an integrated quality model that covers all aspects
relevant for an organization is certainly a herculean task. A combination of all quality models de-
scribed in the chapter on case studies (Chap. 6) already contains more than 800 model elements
although the focus was on soware maintenance only. A fully integrated model that includes usabil-
ity, security and other aspects is expected to have multiple thousands of elements. Hence, it is not to
be expected that a single organization is capable of building and maintaining an integrated quality
model on its own. Instead, we advocate reusable qualitymodels that can be shared across projects, or-
ganizations or, as a final goal, domains. Ideally, such quality models would be developed by the ISO
or similar standardization bodies. In conjunction with an adequate conformance assurance process
this would provide a means for product quality standardization that goes far beyond anything that is
currently offered. Existing standardized quality models like the ISO 9126 neither provide a means to
assess if a product conforms to the quality model nor do they support the developing organizations
in building products that conform to the model.

Due to the size of such models, a modularization mechanism that allows to compose quality models
from invidious building blocks is required. Ideally, a base quality model would be defined that can
then be extended with specific models for particular quality aspects, technologies or domains. With
such a mechanism organizations or projects could tailor quality models to their specific needs while
still being consistent with a standardized model. For example, an organization that develops prod-
ucts in the domain of embedded systems using a combined code- and model-based approach with
Matlab/Simulink and C, would use the base model plus extensions dedicated to safety critical sys-
tems and the applied technologies. An organization that develops business applications based on the
Java Enterprise platform (Java EE) would use the base model plus extensions for Java EE and, most
likely, extensions dedicated to security of web applications. e modularization of quality models is
illustrated in Fig. 8.2.

AutoFOCUS

Simulink State�ow

Model-Based

Avionics

Automotive

Embedded

Graphical UI

User Interface

Voice Interface

Web 2.0 Interface

IEC 61508 SIL 3 …

Business

LogisticsFinanceJava
.Net

C++

Object-Oriented

Base Quality Model

Figure 8.2: Quality Model Modularization

194

8.2 Outlook

is modularization needs to be explicitly supported by the underlying quality metamodel. In par-
ticular, the quality metamodel must provide a means that allows quality models to be extended by
other models. Initial experiments showed that the quality metamodel presented in this thesis is,
in principal, well-suited for modularization as the entities and activities trees can be augmented by
model elements stored in other models. e connection between the models is provided through
the unique identifiability of all model elements. However, it needs to be resolved if such an openness
for extensions is really desired or if dedicated points of extension need to be introduced. Moreover,
certain extensions would require an explicit notion of refinement. For example, one would want to
include the generic fact [Identifier | CONFORMANCE] that describes the format of identifiers in the base
model and concretize it for specific programming or modeling languages.

Project »QuaMoCo« Regarding the realization of the challenges outlined above the author of this
thesis is in a fortunate situation: Together with other leading research institutions and multiple key
players of the German soware industry, we participate in the BMBF1-sponsored research project
QuaMoCo2. QuaMoCo’s goal is the development of standardized quality model that can be applied
in practice to objectively define, assess and continuously control soware product quality. QuaMoCo,
hence, addresses, among others, all the challenges discussed in this section. We are confident, that the
excellent consortiumof soware quality theoreticians and practitioners that participate inQuaMoCo
will be able to successfully tackle these challenges over the course of the three-year project!

1German Federal Ministry of Education and Research
2More information on the project can be found at http://www.quamoco.de.

195

Bibliography

[1] H. Abdul-Rahman, P. ompson, and I. Whyte. Capturing the cost of non-conformance on
construction sites: An application of the quality cost matrix. Int. J. Qual. Reliab. Manage.,
13(1):48–60, 1996.

[2] A. Abran, R. Al Qutaish,M.-M.Desharnais, andN.Habra. An informationmodel for soware
quality measurement with ISO standards. In Proc.of the International Conference on Soware
Development, pages 337–352, 2005.

[3] A. Abran, J. W. Moore, P. Bourque, and R. Dupuis, editors. Guide to the Soware Engineering
Body of Knowledge. IEEE CS, 2004.

[4] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. Soware inspections: An effective verifi-
cation process. IEEE Sow., 6(3):31–36, 1989.

[5] H. Al-Kilidar, K. Cox, and B. Kitchenham. e use and usefulness of the ISO/IEC 9126 quality
standard. In Proc. of the International Symposium on Empirical Soware Engineering (ISESE),
2005.

[6] T. S. Andre, H. R. Hartson, S. M. Belz, and F. A. McCreary. e user action framework:
A reliable foundation for usability engineering support tools. Int. J. Hum.-Comput. Stud.,
54(1):107–136, 2001.

[7] R. S. Arnold and D. A. Parker. e dimensions of healthy maintenance. In Proc. of the Inter-
national Conference on Soware Engineering (ICSE), pages 10–27. IEEE CS Press, 1982.

[8] D. Ash, J. Alderete, P. W. Oman, and B. Lowther. Using soware maintainability models to
track code health. In Proc. of the International Conference on Soware Maintenance (ICSM),
pages 154–160. IEEE CS Press, 1994.

[9] J. Bacon. Concurrent Systems: Operating Systems, Database and Distributed Systems: An Inte-
grated Approach. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1993.

[10] T. Ball and S. G. Eick. Soware visualization in the large. Computer, 29(4):33–43, 1996.

[11] R. D. Banker, S. M. Datar, and C. F. Kemerer. Factors affecting soware maintenance produc-
tivity. In Proc. of the International Conference on Information Systems, 1987.

[12] R. D. Banker, S. M. Datar, and C. F. Kemerer. A model to evaluate variables impacting the
productivity of soware maintenance projects. Manage. Sci., 37(1):1–18, 1991.

[13] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Soware complexity and maintenance
costs. Commun. ACM, 36(11):81–94, 1993.

[14] R. D. Banker and S. A. Slaughter. A field study of scale economies in soware maintenance.
Manage. Sci., 43(12):1709–1725, 1997.

197

Bibliography

[15] J. Bansiya andC. G. Davis. A hierarchicalmodel for object-oriented design quality assessment.
IEEE Trans. Soware Eng., 28(1):4–17, 2002.

[16] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo, and J. D. Valett. Understanding and
predicting the process of sowaremaintenance release. In Proc. of the International Conference
on Soware Engineering (ICSE), pages 464–474. IEEE CS Press, 1996.

[17] V. Basili, P. Donzelli, and S. Asgari. A unifiedmodel of dependability: Capturing dependability
in context. IEEE Sow., 21(6):19–25, 2004.

[18] V. Basili and H. Rombach. e tame project: Towards improvement-oriented soware envi-
ronments. IEEE Trans. Soware Eng., 14(6):758–773, 1998.

[19] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Soware Eng., 22(10):751–761, 1996.

[20] V. R. Basili, G. Caldiera, andD. Rombach. e goal questionmetric approach. In Encyclopedia
of Soware Engineering. John Wiley & Sons, Inc., 1994.

[21] V. R. Basili and D. H. Hutchens. An empirical study of a syntactic complexity family. IEEE
Trans. Soware Eng., 9(6):664–672, 1983.

[22] V. R. Basili and R. W. Selby. Comparing the effectiveness of soware testing strategies. IEEE
Trans. Soware Eng., 13(12):1278–1296, 1987.

[23] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract
syntax trees. In Proc. of the International Conference on Soware Maintenance (ICSM), page
368. IEEE CS Press, 1998.

[24] K. Beck. Embracing change with extreme programming. Computer, 32(10):70–77, 1999.

[25] L. A. Belady and M. M. Lehman. A model of large program development. IBM Syst. J.,
15(3):225–252, 1976.

[26] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of
clone detection tools. IEEE Trans. Soware Eng., 33(9):577–591, 2007.

[27] K. H. Bennett and V. T. Rajlich. Soware maintenance and evolution: A roadmap. In Proc. of
the Conference on e Future of Soware Engineering (ICSE), pages 73–87. ACM, 2000.

[28] M. Bennicke and J.-P. Richter. Architecture of a generic soware control centre. In Proc. of
Workshop on Measurement-based Cockpits for Distributed Soware and Systems Engineering
Projects (SOFTPIT), 2007.

[29] G. M. Berns. Assessing soware maintainability. Commun. ACM, 27(1):14–23, 1984.

[30] N. Bevan. Measuring usability as quality of use. Soware Qual. J., 5(2):115–130, 1995.

[31] T. J. Biggerstaff. Design recovery for maintenance and reuse. Computer, 22(7):36–49, 1989.

[32] T. J. Biggerstaff, B. G.Mitbander, andD.Webster. e concept assignment problem in program
understanding. In Proc. of the International Conference on Soware Engineering (ICSE), pages
482–498. IEEE CS Press, 1993.

198

Bibliography

[33] W. R. Bischoerger, J. Kühl, and S. Löffler. Sotograph - a pragmatic approach to source code
architecture conformance checking. In Proc. of the European Workshop on Soware Architec-
ture (EWSA), pages 1–9. Springer, 2004.

[34] J. Boegh. A new standard for quality requirements. IEEE Sow., 25(2):57–63, 2008.

[35] J. Boegh, S. Depanfilis, B. Kitchenham, and A. Pasquini. A method for soware quality plan-
ning, control, and evaluation. IEEE Sow., 16(2):69–77, 1999.

[36] B. Boehm, L. Huang, A. Jain, and R. Madachy. e ROI of soware dependability: e iDAVE
model. IEEE Sow., 21(3):54–61, 2004.

[37] B. W. Boehm. Soware Engineering Economics. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1981.

[38] B.W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.Macleod, andM. J.Merrit. Characteristics
of Soware Quality. North-Holland, 1978.

[39] E. G. Boring. Intelligence as the tests test it. New Republic, pages 35–37, June 1923.

[40] L. Briand, K. E. Emam, and S.Morasca. On the application ofmeasurement theory in soware
engineering. Empirical Soware Engineering, 1(1):61–88, Jan. 1996.

[41] L. C. Briand, J.Wüst, S. V. Ikonomovski, andH. Lounis. Investigating quality factors in object-
oriented designs: An industrial case study. In Proc. of the International Conference on Soware
Engineering (ICSE), pages 345–354. IEEE CS Press, 1999.

[42] M. Broy, F. Deissenboeck, and M. Pizka. A holistic approach to soware quality at work. In
Proc. of the World Congress for Soware Quality (WCSQ), 2005.

[43] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying maintainability. In Proc. of the Work-
shop on Soware Quality (WOSQ). ACM Press, 2006.

[44] T. Bruckhaus, N. H. Madhavji, I. Janssen, and J. Henshaw. e impact of tools on soware
productivity. IEEE Sow., 13(5):29–38, 1996.

[45] B. Brykczynski. A survey of soware inspection checklists. SIGSOFT Sow. Eng. Notes,
24(1):82, 1999.

[46] D. W. Bucher. Maintenance of the computer sciences teleprocessing system. In Proc. of the
International Conference on Reliable Soware, pages 260–266. ACM, 1975.

[47] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. Towards a taxonomy of soware
change: Research articles. J. Sow. Maint. Evol., 17(5):309–332, 2005.

[48] R. P. Buse and W. R. Weimer. A metric for soware readability. In Proc. of the International
Symposium on Soware Testing and Analysis (ISSTA), pages 121–130. ACM, 2008.

[49] T. Calvo, G. Mayor, and R. Mesiar, editors. Aggregation Operators: New Trends and Applica-
tions. Physica-Verlag, 2007.

[50] E. G. Carmines and R. A. Zeller. Reliability and Validity Assessment. SAGE, 1979.

199

Bibliography

[51] J. P. Cavano and J. A. McCall. A framework for the measurement of soware quality. In
Proc. of the Soware Quality Assurance Workshop on Functional and Performance Issues, pages
133–139, 1978.

[52] T. Chan. Beyond productivity in sowaremaintenance: factors affecting leadtime in servicing
users’ requests. In Proc. of the International Conference on SowareMaintenance (ICSM), 2000.

[53] N.Chapin. Sowaremaintenance life cycle. InProc. of the International Conference on Soware
Maintenance (ICSM), 1988.

[54] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan. Types of soware evolution and
soware maintenance. J. Sow. Maint. Evol. Res. Pr., 13(1):3–30, 2001.

[55] K. Chen and V. Rajlich. Case study of feature location using dependence graph. In Proc. of the
International Workshop on Program Comprehension (IWPC), page 241. IEEE CS Press, 2000.

[56] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans.
Soware Eng., 20(6):476–493, 1994.

[57] E. J. Chikofsky and J. H. C. II. Reverse engineering and design recovery: A taxonomy. IEEE
Sow., 7(1):13–17, 1990.

[58] A. Cimitile, A. D. Lucia, G. A. D. Lucca, and A. R. Fasolino. Identifying objects in legacy
systems. In Proc. of the International Workshop on Program Comprehension (IWPC), page 138.
IEEE CS Press, 1997.

[59] E. K. B. Clark, J. A. Forbes, E. R. Baker, and D. W. Hutcheson. Mission-critical and mission-
support soware: A preliminary maintenance characterization. Technical report, US DOD,
1999.

[60] R. Clayton, S. Rugaber, and L. Wills. On the knowledge required to understand a program.
In Proc. of the Working Conference on Reverse Engineering (WCRE), page 69. IEEE CS Press,
1998.

[61] D. Coleman, D. Ash, B. Lowther, and P. W. Oman. Using metrics to evaluate soware system
maintainability. Computer, 27(8):44–49, 1994.

[62] D. Coleman, B. Lowther, and P. Oman. e application of soware maintainability models in
industrial soware systems. J. Syst. Sow., 29(1):3–16, 1995.

[63] M. L. Cook. Soware metrics: An introduction and annotated bibliography. SIGSOFT Sow.
Eng. Notes, 7(2):41–60, 1982.

[64] R. Cooper and R. S. Kaplan. Measure costs right: Make the right decisions. Harvard Bus. Rev.,
67(Sept.-Oct.):96–103, 1988.

[65] T. A. Corbi. Program understanding: Challenge for the 1990’s. IBM Syst. J., 28(2):294–306,
1989.

[66] M.-A. Cote, W. Suryn, , and E. Georgiadou. In search for a widely applicable and accepted
soware quality model for soware quality engineering. Soware Qual. J., 15(4):401–416,
2007.

[67] P. B. Crosby. Quality Without Tears: e Art of Hassle-Free Management. McGraw-Hill, 1995.

200

Bibliography

[68] J. A. Cruz-Lemus, M. Genero, M. E. Manso, and M. Piattini. Evaluating the effect of compos-
ite states on the understandability of UML statechart diagrams. In Proc. of the International
Conference on Model Driven Engineering of Languages and Systems. Springer, 2005.

[69] B. Curtis. Measurement and experimentation in soware engineering. Proc. of the IEEE,
68(9):1144–1157, 1980.

[70] B. Curtis. Substantiating programmer variability. Proc. IEEE, 69(7):846, 1981.

[71] B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love. Measuring the psychological
complexity of sowaremaintenance tasks with theHalstead andMcCabemetrics. IEEE Trans.
Soware Eng., 5(2):96–104, 1979.

[72] S. Danicic, C. Fox, M. Harman, and R. Hierons. ConSIT: A conditioned program slicer. In
Proc. of the International Conference on Soware Maintenance (ICSM), page 216. IEEE CS
Press, 2000.

[73] C. Debou, A. Kuntzmann-Combelles, and A. Rowe. A quantitative approach to soware pro-
cess management. In Proc. of International Symposium on Soware Metrics, 1994.

[74] F. Deißenböck, B. Hummel, and E. Jürgens. CQAT - Ein Toolkit zur kontinuierlichen
Qualitätsbewertung. In Tagungsband der Soware-Engineering-Konferenz, page 55, 2008.

[75] F. Deißenböck and T. Seifert. Kontinuierliche Qualitätsüberwachung mit CQAT. In
Tagungsband der Informatik 2006, pages 118–125. GI, 2006.

[76] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F. Girard, and S. Teuchert.
Clone detection in automotive model-based development. In Proc. of the International Con-
ference on Soware Engineering (ICSE), pages 603–612. ACM, 2008.

[77] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda, and M. Pizka. Tool
support for continuous quality control. IEEE Sow., 25(5):60–67, 2008.

[78] F. Deissenboeck and M. Pizka. Concise and consistent naming. In Proc. of the International
Workshop on Program Comprehension (IWPC), pages 97–106. IEEE CS Press, 2005.

[79] F. Deissenboeck and M. Pizka. Concise and consistent naming. Soware Qual. J.,
14(3):261–282, September 2006.

[80] F. Deissenboeck and M. Pizka. e economic impact of soware process variations. In Proc.
of the International Conference on Soware Process. Springer, 2007.

[81] F. Deissenboeck and M. Pizka. Probabilistic analysis of process economics. Sow. Process
Improve. Pract., 13(1):5–17, 2008.

[82] F. Deissenboeck, M. Pizka, and T. Seifert. Tool support for continuous quality assessment. In
Proc. of the InternationalWorkshop on Soware Technology and Engineering Practice, volume 0,
pages 127–136. IEEE CS Press, 2005.

[83] F. Deissenboeck and D. Ratiu. A unified meta-model for concept-based reverse engineering.
In Proc. of the 3rf International Workshop on Metamodels, Schemas, Grammars and Ontologies
for Reverse Engineering (ATEM). Johannes Gutenberg-Universität Mainz, 2006.

201

Bibliography

[84] F. Deissenboeck and S. Wagner. Kosten-basierte Klassifikation von Qualitätsanforderungen.
In Workshopband der Soware-Engineering-Konferenz. GI, 2007.

[85] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard. An activity-based quality
model for maintainability. In Proc. of the International Conference on Soware Maintenance
(ICSM). IEEE CS Press, 2007.

[86] T. DeMarco and T. Lister. Peopleware: Productive projects and teams. Dorset House Publishing
Co., Inc., New York, NY, USA, 1999.

[87] W. E. Deming. Out of the Crisis. MIT Press, 2000.

[88] E. W. Dijkstra. Letters to the editor: Go to statement considered harmful. Commun. ACM,
11(3):147–148, 1968.

[89] M. T. Dishaw and D. M. Strong. Supporting soware maintenance with soware engineering
tools: A computed task-technology fit analysis. J. Syst. Sow., 44(2):107–120, 1998.

[90] A. Dix, J. Finley, G. Abowd, and R. Beale. Human-Computer Interaction. Prentice-Hall, 1998.

[91] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. Non-functional requirements in
industry – ree case studies adopting an experience-based NFR method. In Proc. of the
International Conference on Requirements Engineering, pages 373–382, 2005.

[92] R.G.Dromey. Amodel for soware product quality. IEEETrans. Soware Eng., 21(2):146–162,
1995.

[93] R. G. Dromey. Cornering the chimera. IEEE Sow., 13(1):33–43, 1996.

[94] dSpace. Modeling guidelines for MATLAB/Simulink/Stateflow and TargetLink. Technical
report, dSpace, 2006.

[95] dSpace. Modeling guidelines for MATLAB/Simulink/Stateflow and TargetLink 2.0. Technical
report, dSpace, 2007.

[96] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: An extensible language-independent environ-
ment for reengineering object-oriented systems. In Proc. of the International Symposium on
Constructing Soware Engineering Tools, 2000.

[97] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code decay? Assessing
the evidence from change management data. IEEE Trans. Soware Eng., 27(1):1–12, 2001.

[98] A. Epping andC.M. Lott. Does soware design complexity affectmaintenance effort? In Proc.
of the Soware Engineering Workshop, pages 297–313. NASA Goddard Space Flight Center,
Greenbelt MD 20771, 1994.

[99] L. Erlikh. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17–23, 2000.

[100] M. E. Fagan. Design and code inspections to reduce errors in program development. IBM
Syst. J., 15(3):182–211, 1976.

[101] M. E. Fagan. Advances in soware inspections. IEEE Trans. Soware Eng., 12(7):744–751,
1986.

[102] A. Feigenbaum. Total quality control. Harvard Bus. Rev., 34(6):93–101, 1956.

202

Bibliography

[103] M. Feilkas, D. Ratiu, and E. Juergens. e loss of architectural knowledge during system evo-
lution: An industrial case study. In Proc. of the International Conference on Program Compre-
hension (ICPC). IEEE CS, 2009.

[104] N. Fenton. Soware measurement: A necessary scientific basis. IEEE Trans. Soware Eng.,
20(3):199–206, 1994.

[105] N. E. Fenton and S. L. Pfleeger. Soware Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston, MA, USA, 1998.

[106] R. Fjeldstad and W. Hamlen. Tutorial on Soware Maintenance, chapter Application Program
Maintenance Study: Report to Our Respondents, pages 13–30. IEEE CS Press, 1983.

[107] E. Folmer and J. Bosch. Architecting for usability: A survey. J. Syst. Sow., 70:61–78, 2004.

[108] M. Fowler. Refactoring: Improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., 1999.

[109] B. Freimut, L. Briand, and F. Vollei. Determining inspection cost-effectiveness by combining
project data and expert opinion. IEEE Trans. Soware Eng., 31(12):1074–1092, 2005. Senior
Member-Lionel C. Briand.

[110] L. Friendly. e design of distributed hyperlinked programming documentation. In Proc. of
the International Workshop on Hypermedia Design, pages 151–173. Springer, 1995.

[111] E. Gamma, R.Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable Object-
Oriented Soware. Addison-Wesley, 1995.

[112] M. J. B.Garćıa and J. C.G.Alvarez. Maintainability as a key factor inmaintenance productivity:
a case study. In Proc. of the International Conference on Soware Maintenance (ICSM), page 87.
IEEE CS Press, 1996.

[113] A. Gardener. Effiziente Wartung und Weiterentwicklung der Benutzeroberflächen be-
trieblicher Informationssysteme. Master’s thesis, Technische Universität München, 2007.

[114] D. A. Garvin. What does »Product Quality« really mean? MIT Sloan Management Review,
26(1):25–43, 1984.

[115] V. R. Gibson and J. A. Senn. System structure and soware maintenance performance. Com-
mun. ACM, 32(3):347–358, 1989.

[116] T. Gilb. Soware Metrics. Winthrop Publishers, 1977.

[117] T. Gilb and D. Graham. Soware Inspection. Addison-Wesley, 1993.

[118] G. K. Gill and C. F. Kemerer. Cyclomatic complexity density and soware maintenance pro-
ductivity. IEEE Trans. Soware Eng., 17(12):1284–1288, 1991.

[119] R. L. Glass. Maintenance: Less is not more. IEEE Sow., 15(4):67–68, 1998.

[120] R. L. Glass. Facts and Fallacies of Soware Engineering. Addison-Wesley, 2002.

[121] A. L. Goel. Soware reliability models: Assumptions, limitations, and applicability. IEEE
Trans. Soware Eng., 11(12):1411–1423, 1985.

203

Bibliography

[122] T. Goldschmidt, R. Reussner, and J. Winzen. A case study evaluation of maintainability and
performance of persistency techniques. In Proc. of the International Conference on Soware
Engineering (ICSE), pages 401–410. ACM, 2008.

[123] R. R. Gonzalez. A unified metric of soware complexity: measuring productivity, quality, and
value. J. Syst. Sow., 29(1):17–37, 1995.

[124] J. Gosling, B. Joy, G. Steele, and G. Bracha. e Java Language Specification. e Java Series.
Addison-Wesley Longman Publishing Co., Inc., 2 edition, 2000.

[125] R. B. Grady andD. L. Caswell. Soware Metrics: Establishing a Company-Wide Program. Pren-
tice Hall, 1987.

[126] J. C. Granja-Alvarez and M. J. Barranco-Garcia. A method for estimating maintenance cost in
a soware project: A case study. J. Sow. Maint. Evol. Res. Pr., 9(3):161–175, 1997.

[127] C. M. Grinstead and J. L. Snell. Introduction to Probability. AMS, 2003.

[128] J. Grudin. e case against user interface consistency. Commun. ACM, 32(10):1164–1173,
1989.

[129] F. M. Gryna. Juran’s Quality Control Handbook, chapter Quality Costs, pages 4.1–4.30.
McGraw-Hill, 1988.

[130] M. Halstead. Elements of Soware Science. Elsevier Science Inc., New York, NY, USA, 1977.

[131] S. J. Hanson and R. R. Rosinski. Programmer perceptions of productivity and programming
tools. Commun. ACM, 28(2):180–189, 1985.

[132] H. J. Harrington. Business Process Improvement. e Breakthrough Strategy for Total Quality,
Productivity, and Competitiveness. McGraw-Hill, New York (NY), 1991.

[133] C. S. Hartzman and C. F. Austin. Maintenance productivity: Observations based on an ex-
perience in a large system environment. In Proc. of the Conference of the Centre for Advanced
Studies on Collaborative Research: Soware Engineering, pages 138–170. IBM Press, 1993.

[134] I. Heitlager, T. Kuipers, and J. Visser. A practical model formeasuringmaintainability. In Proc.
of the International Conference on the Quality of Information and Communications Technology,
pages 30–39, 2007.

[135] M. Henricson and E. Nyquist. Programming in C++: Rules and recommendations. Technical
report, Ellemtel Telecommunication Systems Laboratories, 1992.

[136] J. Highsmith. Agile soware development ecosystems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[137] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106, 2004.

[138] L. Huang and B. Boehm. How much soware quality investment is enough: A value-based
approach. IEEE Sow., 23(5):88–95, 2006.

[139] A. Hunt and D. omas. e pragmatic programmer: From journeyman to master. Addison-
Wesley Longman Publishing Co., Inc., 1999.

[140] A. Hunt and D. omas. Zero-tolerance construction. IEEE Sow., 19(5):100–102, 2002.

204

Bibliography

[141] G.Hwang and E. Aspinwall. Quality costmodels and their application: A review. Total Quality
Management, 7(3):267–282, 1996.

[142] L. Hyatt and L. Rosenberg. A soware quality model and metrics for identifying project risks
and assessing soware quality. In Proc. of the Annual Soware Technology Conference, pages
345–354, 1996.

[143] IEEE. Standard 610.12 – Glossary of soware engineering terminology. Standard, IEEE, 1990.

[144] IEEE. Industry implementation of international standard ISO/IEC 12207 : 1995 – soware
life cycle processes. Standard, IEEE, 1996.

[145] IEEE. 1219 standard 1219 for soware maintenance. Standard, IEEE, 1998.

[146] IEEE. Standard 730 for soware quality assurance plans. Standard, IEEE, 2002.

[147] ISO. Standard 8402 for quality management and quality assurance – Vocabulary. Standard,
ISO, 1994.

[148] ISO. Standard 9000 for quality management systems – Fundamentals and vocabulary. Stan-
dard, ISO, 1995.

[149] ISO. Standard 9241-11 for ergonomic requirements for office work with visual display termi-
nals (VDTs) – Part 11: Guidance on usability. Standard, ISO, 1998.

[150] ISO. Standard 14598 for information technology – Soware product evaluation. Standard,
ISO, 1999.

[151] ISO. Standard 9126 for soware engineering – Product quality. Standard, ISO, 2001.

[152] ISO. Standard 9126 for soware engineering – Product quality – Part 1: Quality model. Stan-
dard, ISO, 2001.

[153] ISO. Standard 15005 for road vehicles – Ergonomic aspects of transport information and
control systems – Dialogue management principles and compliance procedures. Standard,
ISO, 2002.

[154] ISO. Standard 9126 for soware engineering – Product quality – Part 2: External metrics.
Standard, ISO, 2003.

[155] ISO. Standard 9126 for soware engineering – Product quality – Part 3: Internal metrics.
Standard, ISO, 2003.

[156] ISO. Standard 9126 for soware engineering – Product quality – Part 4: Quality in usemetrics.
Standard, ISO, 2004.

[157] ISO. Standard 9241-110 for ergonomics of human-system interaction – Part 110: Dialogue
principles. Standard, ISO, 2006.

[158] ISO/IEC. Standard 15504 for information technology – Process assessment. Standard,
ISO/IEC, 2004.

[159] ISO/IEC. Standard 14764 for soware maintenance. Standard, ISO/IEC, 2006.

205

Bibliography

[160] M. Johnson. e development of measures of the cost quality for an engineering unit. Int. J.
Qual. Reliab. Manage., 12(2):86–100, 1995.

[161] P. M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and T. Yamashita. Improving so-
ware developmentmanagement through soware project telemetry. IEEE Sow., 22(4):76–85,
2005.

[162] C. Jones. Applied soware measurement: assuring productivity and quality. McGraw-Hill, Inc.,
New York, NY, USA, 1991.

[163] C. Jones. Activity-based soware costing. Computer, 29(5):103–104, 1996.

[164] C. Jones. Soware assessments, benchmarks, and best practices. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[165] E. Juergens, F. Deissenboeck, and B. Hummel. Clone detection beyond copy&paste (Position
Paper). In Proc. 3rd Intl. Workshop on Soware Clones. IEEE CS, 2009.

[166] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective – Aworkbench for clone detec-
tion research (Tool Demo). In ICSE ’09: Proc. of the 31th international conference on Soware
engineering. IEEE CS, 2009.

[167] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones matter? In Proc. of
the International Conference on Soware Engineering (ICSE). IEEE CS, 2009.

[168] E. Juergens, B.Hummel, F.Deissenboeck, andM. Feilkas. Static bug detection through analysis
of inconsistent clones. In Workshopband Soware-Engineering-Konferenz, Lecture Notes in
Informatics. Gesellscha fü Informatik, 2008.

[169] J. M. Juran. Juran’s Quality Control Handbook. McGraw-Hill, 1988.

[170] D. Kafura and G. R. Reddy. e use of soware complexity metrics in soware maintenance.
IEEE Trans. Soware Eng., 13(3):335–343, 1987.

[171] M. Kajko-Mattsson. Preventive maintenance! Do we know what it is? In Proc. of the Interna-
tional Conference on Soware Maintenance (ICSM), page 12. IEEE CS, 2000.

[172] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans. Soware Eng., 28(7):654–670, 2002.

[173] C. Kaner and W. P. Bond. Soware engineering metrics: What do they measure and how do
we know? In Proc. of the International Soware Metrics Symposium. IEEE CS Press, 2004.

[174] K. Katheder. Studie zu Soware-Wartung. Bachelor’s thesis, TechnischeUniversitätMünchen,
2003.

[175] K.Keizer, S. Lindenberg, andL. Steg. e spreading of disorder. Science, 322(5905):1681–1685,
2008.

[176] C. F. Kemerer and S. Slaughter. An empirical approach to studying soware evolution. IEEE
Trans. Soware Eng., 25(4):493–509, 1999.

[177] B. Kitchenham, S. Linkman, A. Pasquini, and V. Nanni. e SQUID approach to defining a
quality model. Soware Qual. J., 6(3):211–233, Sept. 1997.

206

Bibliography

[178] B. Kitchenham and S. L. Pfleeger. Soware quality: e elusive target. IEEE Sow.,
13(1):12–21, 1996.

[179] B. Kitchenham, S. L. Pfleeger, andN. Fenton. Towards a framework for sowaremeasurement
validation. IEEE Trans. Soware Eng., 21(12):929–944, 1995.

[180] B. A. Kitchenham. Soware quality assurance. Microprocess. Microsyst., 13(6):373–381, 1989.

[181] B. A. Kitchenham, G. H. Travassos, A. von Mayrhauser, F. Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang. Towards an ontology of soware main-
tenance. J. Sow. Maint. Evol. Res. Pr., 11(6):365–389, 1999.

[182] S. T. Knox. Modeling the cost of soware quality. Digital Tech. J., 5(4):9–17, 1993.

[183] R. Koschke. Survey of research on soware clones. InDuplication, Redundancy, and Similarity
in Soware. Dagstuhl Seminar Proc., 2007.

[184] H. Krasner. Using the cost of quality approach for soware. Crosstalk, 11:6–11, 1998.

[185] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl. Assessing the benefits of
incorporating function clone detection in a development process. In Proc. of the International
Conference on Soware Maintenance (ICSM), 1997.

[186] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Metrics and laws of
soware evolution – e nineties view. In Proc. of the International Symposium on Soware
Metrics. IEEE CS Press, 1997.

[187] T. Lethbridge and J. Singer. Understanding soware maintenance tools: Some empirical re-
search. In Proc. of the Workshop on Empirical Studies of Soware Maintenance (WESS). IEEE
CS Press, 1997.

[188] H. Li, M. Ross, G. King, G. Staples, and M. Jing. Quality approaches in a large soware house.
Soware Quality Control, 8(1):21–35, 1999.

[189] X. Li and C. Prasad. Effectively teaching coding standards in programming. In Proc. of the
Conference on Information Technology Education, pages 239–244. ACM, 2005.

[190] B. P. Lientz, P. Bennet, E. B. Swanson, and E. Burton. Soware Maintenance Management: A
Study of the Maintenance of Computer Application Soware in 487 Data Processing Organiza-
tions. Addison Wesley, Reading, 1980.

[191] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application soware main-
tenance. Commun. ACM, 21(6):466–471, 1978.

[192] M. Lindvall, S. Komi-Sirviö, P. Costa, and C. Seaman. Embedded soware maintenance.
A DACS state-of-the-art report, Fraunhofer Center for Experimental Soware Engineering,
2003.

[193] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental models and sowaremaintenance.
J. Syst. Sow., 7(4):341–355, 1987.

[194] G. A. D. Lucca, A. R. Fasolino, P. Tramontana, and C. A. Visaggio. Towards the definition of a
maintainabilitymodel forweb applications. InProc. of the Conference on SowareMaintenance
and Reengineering (CSMR), page 279. IEEE CS Press, 2004.

207

Bibliography

[195] MAAB. Controller style guidelines for production intent using Matlab, Simulink and State-
flow. Technical report, MAAB, 2001.

[196] MAAB. Controller style guidelines for production intent usingMatlab, Simulink and Stateflow
2.0. Technical report, MAAB, 2007.

[197] W. Mandeville. Soware costs of quality. IEEE J. Sel. Areas Commun., 8(2):315–318, 1990.

[198] C. D. Manning, P. Raghavan, and H. Schütze. An Introduction to Information Retrieval. Cam-
bridge University Press, 2008.

[199] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and R. Wettel. iPlasma: An integrated
platform for quality assessment of object-oriented design. In Internation Conference on So-
ware Maintenance (ICSM), pages 77–80, 2005.

[200] R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In ICSM
’04: Proc. of the 20th IEEE International Conference on Soware Maintenance, pages 350–359.
IEEE CS, 2004.

[201] R. Marinescu and D. Ratiu. Quantifying the quality of object-oriented design: e factor-
strategy model. In Proc. of the Working Conference on Reverse Engineering (WCRE), pages
192–201. IEEE CS Press, 2004.

[202] e MathWorks. Simulink Reference, 2006.

[203] R. G. Mays. Practical aspects of the defect prevention process. In T. Gilb, editor, Soware
Inspection, pages 336–360. Addison-Wesley, 1993.

[204] T. J. McCabe. A complexity measure. In Proc. of the International Conference on Soware
Engineering (ICSE), page 407. IEEE CS Press, 1976.

[205] J. McCall and G. Walters. Factors in Soware Quality. e National Technical Information
Service (NTIS), Springfield, VA, USA, 1977.

[206] T. Mens and T. Tourwé. A survey of soware refactoring. IEEE Trans. Soware Eng.,
30(2):126–139, 2004.

[207] M. Metcalf. Fortran 77 coding conventions. SIGPLAN Fortran Forum, 2(4):10–15, 1983.

[208] S. Microsystems. Code conventions for the Java programming language. Technical report,
Sun Microsystems, 1999.

[209] MISRA. Guidelines for the use of the C language in vehicle based soware. Technical report,
MISRA, 1998.

[210] J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional requirements:
A process-oriented approach. IEEE Trans. Soware Eng., 18(6):483–497, 1992.

[211] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In Proc. of
the International Conference on Soware Engineering (ICSE), pages 452–461. ACM, 2006.

[212] J. Nielsen. Usability Engineering. AP Professional, 1993.

[213] F. Niessink and H. van Vliet. Two case studies in measuring soware maintenance effort. In
Proc. of the International Conference on Soware Maintenance (ICSM 1998), 1998.

208

Bibliography

[214] D. A. Norman. Cognitive engineering. In D. A. Norman and S. W. Draper, editors, User
Centered System Design: New Perspectives on Human-Computer Interaction, pages 31–61.
Lawrence Erlbaum Associates, 1986.

[215] J. T. Nosek and P. Palvia. Soware maintenance management: changes in the last decade.
Journal of Soware Maintenance, 2(3):157–174, 1990.

[216] C. Oezbek and L. Prechelt. JTourBus: Simplifying program understanding by documenta-
tion that provides tours through the source code. In Proc. of the International Conference on
Soware Maintenance (ICSM), 2007.

[217] T. Okubo and H. Tanaka. Secure soware development through coding conventions and
frameworks. In Proc. of the Second International Conference on Availability, Reliability and
Security, pages 1042–1051. IEEE CS, 2007.

[218] P. Oman and J. Hagemeister. Metrics for assessing a soware system’s maintainability. In Proc.
of the International Conference on Soware Maintenance (ICSM), pages 337–344, 1992.

[219] P. W. Oman and C. R. Cook. Typographic style is more than cosmetic. Commun. ACM,
33(5):506–520, 1990.

[220] P. W. Oman, C. R. Cook, and M. Nanja. Effects of programming experience in debugging
semantic errors. J. Syst. Sow., 9(3):197–207, 1989.

[221] M. L. Ouchi. Soware maintenance documentation. In Proc. of the International Conference
on Systems Documentation, pages 18–23. ACM Press, 1985.

[222] G. Parikh and N. Zvegintzov, editors. Tutorial on Soware Maintenance. IEEE CS Press, 1983.

[223] R. E. Park, W. B. Goethert, and W. A. Florac. Goal-driven soware measurement – a guide-
book. Handbook CMU/SEI-96-HB-002, Soware Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA, August 1996.

[224] D. L. Parnas. Soware aging. In Proc. of the International Conference on Soware Engineering
(ICSE), pages 279–287. IEEE CS Press, 1994.

[225] M. Paulk, C. V.Weber, B. Curtis, andM. B. Chrissis. eCapabilityMaturityModel: Guidelines
for Improving the Soware Process. Addison-Wesley Longman Publishing Co., Inc., 1995.

[226] T. Pearse and P. Oman. Maintainability measurements on industrial source code maintenance
activities. In Proc. of the International Conference on Soware Maintenance (ICSM), page 295.
IEEE CS, 1995.

[227] D. E. Peercy. A soware maintainability evaluation methodology. IEEE Trans. Soware Eng.,
7(4):343–351, 1981.

[228] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale soware development: an
observational case study. ACM Trans. Soware. Eng. Meth., 10(3):308–337, 2001.

[229] S. L. Pfleeger, R. Jeffery, B. Curtis, and B. Kitchenham. Status report on sowaremeasurement.
IEEE Sow., 14(2):33–43, 1997.

209

Bibliography

[230] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, and T. N. Nguyen. Complete and
accurate clone detection in graph-based models. In Proc. of the International Conference on
Soware Engineering (ICSE). IEEE, 2009.

[231] T. M. Pigoski. Practical Soware Maintenance. Wiley Computer Publishing, 1996.

[232] M. Pizka. Soware-Wartung. Lecture notes, TU München, 2004.

[233] M. Pizka. Straightening spaghetti-code with refactoring? In Proc. of the International Confer-
ence on Soware Engineering Research and Practice, pages 846– 852. CSREA Press, June 2004.

[234] R. Plösch, H. Gruber, A. Hentschel, C. Körner, G. Pomberger, S. Schiffer, M. Sa, and S. Storck.
e EMISQ method and its tool support-expert-based evaluation of internal soware quality.
Innovations in Systems and Soware Engineering, 4(1):3–15, Apr. 2008.

[235] R. Plösch, H. Gruber, G. Pomberger, M. Sa, and S. Schiffer. Tool support for expert-centred
code assessments. In Proc. of the International Conference on Soware Testing, Verification,
and Validation (ICST), pages 258–267. IEEE CS, 2008.

[236] I. Podnar and B. Mikac. Soware maintenance process analysis using discrete-event simula-
tion. In Proc. of the European Conference on Soware Maintenance and Reengineering (CSMR).
IEEE CS, 2001.

[237] M. Poppendieck and T. Poppendieck. Lean Soware Development: An Agile Toolkit. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[238] A. A. Porter and R. W. Selby. Empirically guided soware development using metric-based
classification trees. IEEE Sow., 7(2):46–54, 1990.

[239] V. Rajlich. Role of concepts in soware evolution. In Proc. of the International Workshop on
Principles of Soware Evolution, pages 75–78. ACM Press, 2001.

[240] V. Rajlich andK.H. Bennett. A stagedmodel for the soware life cycle. Computer, 33(7):66–71,
2000.

[241] V. Rajlich and P. Gosavi. A case study of unanticipated incremental change. In Proc. of the
International Conference on Soware Maintenance (ICSM), page 442. IEEE CS Press, 2002.

[242] S. Ramanujan, R. W. Scamell, and J. R. Shah. An experimental investigation of the impact
of individual, program, and organizational characteristics on soware maintenance effort. J.
Syst. Sow., 54(2):137–157, 2000.

[243] D. Ratiu and F. Deissenboeck. How programs represent reality (and how they don’t). In Proc.
of the Working Conference on Reverse Engineering (WCRE). IEEE CS Press, 2006.

[244] D. Ratiu and F. Deissenboeck. From reality to programs and (not quite) back again. In Proc. of
the IEEE International Conference on Program Comprehension (ICPC). IEEE CS Press, 2007.

[245] C. A. Reeves and D. A. Bednar. Defining quality: Alternatives and implications. e Academy
of Management Review, 19(3):419–445, 1994.

[246] H. D. Rombach. A controlled experiment on the impact of soware structure on maintain-
ability. IEEE Trans. Soware Eng., 13(3):344–354, 1987.

210

Bibliography

[247] H. D. Rombach. Design measurement: Some lessons learned. IEEE Sow., 7(2):17–25, 1990.

[248] H.D. Rombach, B. T.Ulery, and J.D.Valett. Toward full life cycle control: Addingmaintenance
measurement to the SEL. J. Syst. Sow., 18(2):125–138, 1992.

[249] S. Roski. DoD-STD-2167 default Ada design and coding standard. Ada Lett., VI(5):34–44,
1986.

[250] A. J. Rostkowycz, V. Rajlich, and A. Marcus. A case study on the long-term effects of soware
redocumentation. In Proc. of the International Conference on Soware Maintenance (ICSM),
pages 92–101. IEEE CS, 2004.

[251] C. K. Roy and J. R. Cordy. A survey on soware clone detection research. Technical Report
541, Queen’s University at Kingston, 2007.

[252] W. W. Royce. Managing the development of large soware systems. In IEEE WESCON, pages
1–9. IEEE CS Press, 1970.

[253] R. J. Rubey and R. D. Hartwick. Quantitative measurement of program quality. In Proc. of the
National Conference, pages 671–677. ACM Press, 1968.

[254] G. Ruhe and M. O. Saliu. e art and science of soware release planning. IEEE Sow.,
22(6):47–53, 2005.

[255] H. Sackman, W. J. Erikson, and E. E. Grant. Exploratory experimental studies comparing
online and offline programming performance. Commun. ACM, 11(1):3–11, 1968.

[256] A. Saltelli. A quantitative model-independent method for global sensitivity analysis of model
output. Technometrics, 41(1):39–56, 1999.

[257] A. Saltelli, editor. Sensitivity Analysis. John Wiley & Sons, 2000.

[258] N. F. Schneidewind. Methodology for validating soware metrics. IEEE Trans. Soware Eng.,
18(5):410–422, 1992.

[259] P. Schuh. Recovery, redemption, and extreme programming. IEEE Sow., 18(6):34–41, 2001.

[260] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda. Usability measurement and metrics: A
consolidated model. Soware Quality Control, 14(2):159–178, 2006.

[261] B. Shackel and S. Richardson, editors. Human Factors for Informatics Usability. Cambridge
University Press, 1991.

[262] M. Shepperd. A critique of cyclomatic complexity as a soware metric. Sow. Eng. J.,
3(2):30–36, 1988.

[263] W. A. Shewhart. Statistical Method from the Viewpoint of Quality Control. Dover Publications,
1986.

[264] J. S. Shirabad, T. C. Lethbridge, and S. Matwin. Supporting maintenance of legacy soware
with data mining techniques. In Proc. of the Conference of the Centre for Advanced Studies on
Collaborative Eesearch, page 11. IBM Press, 2000.

[265] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans.
Graph., 11(1):92–99, 1992.

211

Bibliography

[266] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer Inter-
action. Addison-Wesley, 3 edition, 1998.

[267] P. Simmons. Quality outcomes: Determining business value. IEEE Sow., 13(1):25–32, 1996.

[268] H. Siy and L. Votta. Does themodern code inspection have value? In Proc. of the International
Conference on Soware Maintenance (ICSM), page 281. IEEE CS Press, 2001.

[269] S. A. Slaughter, D. E. Harter, and M. S. Krishnan. Evaluating the cost of soware quality.
Commun. ACM, 41(8):67–73, 1998.

[270] H. Sneed. Estimating the costs of soware maintenance tasks. In Proc. of the International
Conference on Soware Maintenance (ICSM), 1995.

[271] H. Sneed. A cost model for soware maintenance & evolution. In International Conference on
Soware Maintenance (ICSM). IEEE CS Press, 2004.

[272] H. M. Sneed. Planning the reengineering of legacy systems. IEEE Sow., 12(1):24–34, 1995.

[273] H. M. Sneed. Measuring the performance of a soware maintenance department. In Con-
ference on Soware Maintenance and Reengineering (CSMR), pages 119–127. IEEE CS Press,
1997.

[274] I. Sommerville. Soware Engineering. Pearson Addison Wesley, 7th edition, 2004.

[275] R. Stallmann. GNU coding standards. Technical report, Free Soware Foundation (FSF),
Sept. 2001.

[276] G. E. Stark. Measurements for managing soware maintenance. In Proc. of the International
Conference on Soware Maintenance (ICSM), page 152. IEEE CS Press, 1996.

[277] S. S. Stevens. On the theory of scales of measurement. Science, 103(2684):677–680, 1946.

[278] E. Stone-Romero, D. Stone, and D. Grewal. Development of a multidimensional measure of
perceived product quality. J. Qual. Manage., 2(2):87–111, 1997.

[279] A. Sutcliffe. User-Centered Requirements Engineering: eory and Practice. Springer-Verlag,
2002.

[280] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Requirements-driven soware re-
engineering framework. In Proc. of the Working Conference on Reverse Engineering (WCRE),
page 71. IEEE CS, 2001.

[281] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper Saddle River, NJ,
USA, 2007.

[282] W. Trochim and J. P. Donnelly. e Research Methods Knowledge Base. Atomic Dog, 3rd
edition, 2006.

[283] US DOD (AFOTEC). Soware maintainability evaluation guide. AFOTEC Pamphlet 99-102,
HQ Air Force Operational Test and Evaluation Center, 1996.

[284] US DOD (STSC). Soware reengineering assessment handbook v3.0. Technical report, US
DOD, 1997.

212

Bibliography

[285] J. van Gurp and J. Bosch. Design erosion: Problems and causes. J. Syst. Sow., 61(2):105–119,
2002.

[286] M. van Welie, G. C. van der Veer, and A. Eliëns. Breaking down usability. In Proc. of the
International Conference on Human-Computer Interaction, pages 613–620. IOS Press, 1999.

[287] J. Voas. Can clean pipes produce dirty water? IEEE Sow., 14(4):93–95, 1997.

[288] A. von Mayrhauser and A. M. Vans. Program comprehension during soware maintenance
and evolution. Computer, 28(8):44–55, 1995.

[289] S.Wagner. A literature survey of the quality economics of defect-detection techniques. InProc.
of the International Symposium on Empirical Soware Engineering (ISESE), pages 194–203.
ACM, 2006.

[290] S. Wagner. A bayesian network approach to assess and predict soware quality using activity-
based quality models. In Proc. of the International Conference on Predictor Models in Soware
Engineering (PROMISE). ACM Press, 2009.

[291] S. Wagner and F. Deissenboeck. An integrated approach to quality modelling. In Proc. of the
Workshop on Soware Quality. IEEE CS Press, 2007.

[292] S.Wagner, F.Deissenboeck,M.Aichner, J.Wimmer, andM. Schwalb. An evaluation of two bug
pattern tools for Java. In Proc. of the International Conference on Soware Testing, Verification
and Validation (ICST). IEEE CS Press, 2008.

[293] S. Wagner, F. Deißenböeck, M. Feilkas, and E. Jürgens. Soware-Qualitätsmodelle in
der Praxis: Erfahrungen mit aktivitätenbasierten Modellen. In Workshopband Soware-
Qualitätsmodellierung und -bewertung (SQMB). Technische Universität München, 2008.

[294] S. Wagner, F. Deissenboeck, and S. Winter. Erfassung, Strukturierung und Überprüfung
von Qualitätsanforderungen durch aktivitätenbasierte Qualitätsmodelle. In Workshopband
Soware-Engineering-Konferenz, Lecture Notes in Informatics. Gesellscha fü Informatik,
2008.

[295] S. Wagner, F. Deissenboeck, and S. Winter. Managing quality requirements using activity-
based quality models. In Proc. of the International Workshop on Soware Quality (WoSQ),
pages 29–34. ACM, 2008.

[296] S. Wagner and S. Islam. Modellierung von Soware-Security mit aktivitaetenbasierten Qual-
itaetsmodellen. In Workshopband Soware-Qualitätsmodellierung und -bewertung (SQMB),
2009.

[297] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-relevant clone
detection reference data. In Proc. of the Working Conference on Reverse Engineering (WCRE),
page 285. IEEE CS, 2003.

[298] M. P. Ware, F. G. Wilkie, and M. Shapcott. e application of product measures in directing
soware maintenance activity. J. Sow. Maint. Evol. Res. Pr., 19(2):133–154, 2007.

[299] G. M. Weinberg. e psychology of computer programming. Van Nostrand Reinhold Co., 1971.

[300] G. Wiederhold. What is your soware worth? Commun. ACM, 49(9):65–75, 2006.

213

Bibliography

[301] J. J. V. Wijk and H. van de Wetering. Cushion treemaps: Visualization of hierarchical infor-
mation. In Proc. of the Symposium on Information Visualization, page 73. IEEE CS, 1999.

[302] A. Williams, A. van der Wiele, and B. Dale. Quality costing: A management review. Int. J.
Manage. Rev., 1(4):441–460, 1999.

[303] J. Q. Wilson and G. L. Kelling. Broken windows. e Atlantic Monthly, 249(3):29–38, 1982.

[304] S. Winter, S. Wagner, and F. Deissenboeck. A comprehensive model of usability. In Proc. of
Engineering Interactive Systems. Springer, 2007.

[305] D. Yeh and J.-H. Jeng. An empirical study of the influence of departmentalization and or-
ganizational position on soware maintenance. J. Sow. Maint. Evol. Res. Pr., 14(1):65–82,
2002.

[306] H. Zuse. A Framework of Soware Measurement, chapter History of Soware Measurement.
Walter de Gruyter & Co., 1997.

214

