
d d d d
ddd ddd ddd ddd

d d dd

Tangible Information Displays

Florian Echtler

TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Informatik, Lehrstuhl I16

Tangible Information Displays

Florian Echtler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Rüdiger Westermann

Prüfer der Dissertation: 1. Univ.-Prof. Gudrun J. Klinker, Ph.D.

2. Univ.-Prof. Dr. Andreas Butz,
Ludwig-Maximilians-Universität München

Die Dissertation wurde am 8.7.2009 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 20.11.2009 angenommen.

To my parents, without whom this thesis would never have started.
To Andrea, without whom it would have ended in the lunatic asylum.

Zusammenfassung

Das Ziel der vorliegenden Arbeit ist es, eine generische Softwarearchitektur für
Multi-Touch und Multi-User Interfaces vorzustellen.

In den letzten Jahren hat sich die Forschung im Bereich neuartiger Be-
nutzerschnittstellen stetig intensiviert - insbesondere Multi-Touch und Multi-
User Interfaces finden immer mehr Beachtung. Ein Grund hierfür ist die zuneh-
mende Verfügbarkeit praktisch einsetzbarer, erschwinglicher Eingabegeräte.

Aufgrund dieser gestiegenen Verbreitung wurde in wenigen Jahren eine
beachtliche Anzahl verschiedenster Anwendungen für diese neuartigen Eingabe-
geräte entwickelt. Vom Standpunkt eines Softwareentwicklers aus betrachtet
weisen diese Anwendungen jedoch einige Nachteile auf. Beispielsweise sind
die meisten dieser Systeme monolithisch und machen es daher schwierig, ihren
Quellcode wiederzuverwenden. Auch müssen gewisse Kernfunktionen wie z.B.
Gestenerkennung immer wieder neu implementiert werden. Zuletzt sind diese
Anwendungen häufig auf eine bestimmte Art von Eingabehardware zugeschnit-
ten und können nicht ohne weiteres mit einem anderen Gerät benutzt werden.

Um diesen Einschränkungen entgegenzuwirken, wurde in dieser Arbeit eine
Softwarearchitektur entworfen, die es ermöglichen soll, beliebige interaktive
Anwendungen zu modellieren. Auch wurde als Teil dieser Architektur eine
formale Beschreibung für Gesten entwickelt.

Eine Referenzimplementierung für diese Architektur ist libTISCH. Ein Ent-
wickler, der libTISCH benutzt, soll in der Regel nicht mehr Zeit für die Ent-
wicklung einer neuartigen interaktiven Anwendung benötigen als für ein kon-
ventionelles grafisches Benutzerinterface. Dasselbe gilt für die Integration
neuer Sensorhardware - bestehende Anwendungen sollen ohne weitere Modifi-
kation verwendbar sein, sofern ein passender Treiber zur Verfügung steht. Um
die Eignung von libTISCH für diese Aufgaben zu untersuchen, wurden mehrere
Anwendungen entwickelt und auf verschiedener Sensorhardware getestet. Die
erzielten Ergebnisse belegen die angestrebte Funktionalität im Hinblick auf
Anwendungsentwicklung und Hardwareintegration.

v

Abstract

The goal of this thesis is to provide a generic architecture and software frame-
work for graphical multi-touch and multi-user interfaces.

In recent years, research in novel types of computer-human interaction
has increased considerably. Particularly multi-touch and multi-user interfaces
have received a lot of interest, partly due to the availability of robust and
affordable sensor hardware. This trend has been accelerated by the emergence
of commercial products which have made these interaction concepts available
to a wide user base in a surprisingly short timeframe.

Although a considerable amount of useful applications has already been
written based on these new modalities, they share some deficiencies from a
developer’s point of view. Even when source code is available, most of these
applications are written in a monolithic fashion, making reuse of code difficult.
Furthermore, they duplicate large amounts of core functionality such as ges-
ture recognition and are often locked to a single type of input hardware.

To address this lack of reusability and portability, a layered architecture is
presented in this thesis to describe an interactive application in a generalised
fashion. As part of this architecture, a formal description of gestures will also
be specified.

A reference implementation of this architecture, libTISCH, is presented.
When using this framework, a developer should not require more time for cre-
ating a novel user interface than for a conventional one. The same applies
to integration of new types of input hardware - existing software should “just
work” after a suitable adapter has been provided. A number of example appli-
cations have been created with libTISCH and tested on various input sensors.
The results show the suitability of libTISCH for the intended tasks regarding
software development and hardware integration.

vii

Acknowledgements

Writing a thesis thankfully requires no blood, but a significant amount of sweat
and at least some tears (metaphorically speaking). Therefore, I would like to
thank all those people who have helped me during these nearly four years (i.e.,
3 years, 5 months and one really nasty week).

First of all, many, many thanks go to my advisor, Prof. Gudrun Klinker, for
limitless support, advice and help in pursuing this thesis. More encouragement
towards and freedom in choosing a research area can hardly be imagined.
I would also like to thank my second advisor, Prof. Andreas Butz, for his
thought-provoking comments and many invaluable last-minute tips.

Special thanks go to my colleagues Manuel Huber and Marcus Tönnis who
were always ready to discuss and help with any electronic or mechanic is-
sues, particularly the really esoteric ones. I am also much obliged to Peter
Keitler, Patrick Maier, Simon Nestler, Daniel Pustka, Michael Schlegel and
Björn Schwerdtfeger for being an amazing team to work with.

Let me express my gratitude towards all those students who have con-
tributed to this thesis: Andreas Dippon, Nikolas Dörfler, Thomas Pototschnig,
Martin Weinand, Franziskus Karsunke and Amir Beshay. I am also indebted
to all those who sacrificed their time to read draft versions of this thesis and
point out some of the innumerable mistakes: Gudrun Klinker, Andreas Butz,
Marcus Tönnis, Heike Kreitmaier, Matthias Rahlf, Andreas Dippon, Andrea
Echtler and especially Chris Hodges.

Finally, I would like to thank those people in my immediate vicinity who
had to endure a rich variety of “thesis moods”, but nevertheless helped me
in ways I could not have imagined: Sylvia & Ernst Echtler, Carsten Dlugosch
and many others. Last but not least, I would like to thank Andrea Echtler for
her unending patience and subtle ways in steering me back towards a finished
thesis with my sanity still largely intact.

ix

This thesis was supported by the Bayerische Forschungsstiftung within
the scope of the “TrackFrame” project and by the Europäische Forschungsge-
sellschaft für Blechverarbeitung through the “Kopiertreiben” project.

This thesis has entirely been created with open-source1 software such as
LATEX, Evince, make, GIMP and Inkscape. The sole exception is figure 4.4,
which was drawn using the Eagle freeware2 edition.

All pictures were created by the author unless noted otherwise. British
spelling is used throughout this document.

1free-as-in-speech
2free-as-in-beer

x

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Challenges . 4

1.3 Related Areas of Research . 5

1.3.1 Computer-Human Interaction 6

1.3.2 Input Sensor Hardware 7

1.3.3 Software Architectures for Interactive Systems 8

1.4 Document Structure . 9

2 Related Work 11

2.1 Computer-Human Interaction 11

2.1.1 Interaction Metaphors 12

2.1.2 Multiple Orientations . 12

2.1.3 Applications . 13

2.2 Input Sensor Hardware . 14

2.2.1 Mechanical Sensors . 14

2.2.2 Electrical Sensors . 15

2.2.3 Acoustic Sensors . 19

2.2.4 Optical Sensors . 20

2.2.5 Sensor Capabilities . 26

2.3 Software Architectures for Interactive Systems 27

2.3.1 Layered Architectures 27

2.3.2 Windowing Systems . 27

2.3.3 Widget Sets and Toolkits 28

2.3.4 Toolkits and Frameworks for Novel Input Devices 28

2.3.5 Gesture Recognisers . 29

xi

CONTENTS

3 A Layered Architecture for Interaction 31
3.1 Fundamentals . 31

3.1.1 Concepts . 31
3.1.2 Architecture Design . 36

3.2 Transport of Motion Data . 38
3.2.1 Design Considerations 38
3.2.2 Location Transport Protocol 39

3.3 A Formal Specification of Gestures 40
3.3.1 Widgets and Event Handling 41
3.3.2 Abstract Description of Gestures 42
3.3.3 Gesture Description Protocol 50

4 Sensor Hardware 57
4.1 Fundamental Techniques . 57

4.1.1 Synchronised Active Illumination 57
4.1.2 Interleaving Disjoint Light Sources 64
4.1.3 Using LEDs as Sensors 65

4.2 Interactive Surfaces . 67
4.2.1 TISCH . 67
4.2.2 MiniTISCH . 72
4.2.3 SiViT . 75
4.2.4 FlatTouch . 76
4.2.5 LCD with IR-LED Sensor 81
4.2.6 Visible-light Display & Sensing 82

4.3 Commercial Systems . 84
4.3.1 Free-Air Handtracking 84
4.3.2 iPhone . 85

4.4 Sensor Capabilities . 85

5 The libTISCH Middleware 87
5.1 Design Considerations . 87

5.1.1 Interoperability and Network Transparency 87
5.1.2 Speed-Accuracy Tradeoff 88

5.2 Hardware Abstraction Layer . 88
5.2.1 Adapters for Existing HAL Software 88
5.2.2 Native Hardware Drivers 91
5.2.3 Camera-Based Tracking: touchd 92

5.3 Transformation Layer . 98
5.3.1 Removal of Lens Distortion 99

xii

CONTENTS

5.3.2 Perspective Correction 100
5.3.3 Online Transformation Process 100

5.4 Gesture Recognition Layer . 101
5.4.1 Gesture Matching Algorithm 101
5.4.2 Default Gestures . 104
5.4.3 Performance . 106

5.5 Widget Layer . 106
5.5.1 OpenGL-based Widgets 107
5.5.2 Widget Bindings for Other Languages 110
5.5.3 Class Diagram . 111

6 Applications 115
6.1 Interfacing with Legacy Applications 115

6.1.1 Pointer Control Interface 115
6.1.2 Gestures for Mouse Emulation 116
6.1.3 Discussion . 117

6.2 Casual Entertainment . 118
6.2.1 Picture Browser . 118
6.2.2 Sudoku . 120
6.2.3 Virtual Roaches . 121
6.2.4 Tangible Instruments . 123

6.3 Interaction with Mobile Devices 124
6.3.1 Detecting Phones on a Tabletop Display 125
6.3.2 Joining Casual Games 128
6.3.3 Evaluation . 129

6.4 Collaborative Applications . 130
6.4.1 Virtual Chemistry . 130
6.4.2 Interactive Whiteboard 130
6.4.3 Virtual Patient . 131

7 Conclusion 135
7.1 Discussion . 135
7.2 Outlook & Future Work . 137
7.3 Summary . 139

A Appendix 141
A.1 libTISCH Configuration Files 141

A.1.1 Calibration File . 141
A.1.2 touchd Parameter File 142

xiii

CONTENTS

A.2 Firmware for the ATtiny13 LED Controller 143
A.3 A Minimal X3D Renderer . 145
A.4 MPX Compatibility Patch for FreeGLUT 146
A.5 GLUT-Compatible Wrapper for the iPhone 146
A.6 libTISCH Class Reference . 147

A.6.1 libtools . 148
A.6.2 libsimplecv . 151
A.6.3 libsimplegl . 155
A.6.4 libgestures . 158
A.6.5 libwidgets . 161

B Glossary 169

C Bibliography 175

xiv

List of Figures

2.1 Resistive touchscreen . 16
2.2 Capacitive touchscreen . 17
2.3 Projected capacitive sensing . 18
2.4 FTIR-based touchscreen . 22

3.1 Overview of the four architecture layers 37
3.2 Relationship between regions, gestures and features 43
3.3 Overlapping widgets capturing input events 44
3.4 Desynchronisation of widgets and regions 45
3.5 Protocol flow . 51

4.1 Active illumination modes . 59
4.2 Continuous vs. synchronised illumination 60
4.3 LED pulse capacity diagram . 61
4.4 LED control circuit . 62
4.5 Two consecutive images taken with an HDR camera 65
4.6 LED modes of operation . 66
4.7 Overview of TISCH . 67
4.8 Point light sources . 69
4.9 Reflection of incident light . 69
4.10 Overhead light source . 70
4.11 Light source for diffuse illumination 71
4.12 Objects captured by diffuse illumination 72
4.13 MiniTISCH . 73
4.14 Siemens Virtual Touchscreen . 76
4.15 Inverted FTIR . 77
4.16 FlatTouch . 79
4.17 Touching the surface with three fingers 79
4.18 LCD with IR-LED touch sensor 81

xv

LIST OF FIGURES

4.19 Schematics of LED-based display and sensor matrices 82
4.20 Simultaneous display and sensing with LED matrices 83
4.21 Commercial interaction devices 84

5.1 touchd modules . 93
5.2 Processing stages for a sample FTIR image 95
5.3 Peak detection . 97
5.4 Blob tracking . 97
5.5 Contact-shadow correlation . 98
5.6 Gesture matching algorithm . 102
5.7 process input(packet p) . 102
5.8 process gestures() . 103
5.9 Widget examples . 110
5.10 libTISCH interpretation/widget layer class diagram 114

6.1 Picture browser . 118
6.2 Picture annotations . 119
6.3 Sudoku game . 121
6.4 Hunting virtual roaches hiding under a book 122
6.5 Playing a chord on the virtual piano 123
6.6 Using Beatring with plain wooden blocks 124
6.7 Using Beatring with fiducial markers 125
6.8 Bluetooth name/location assignment 127
6.9 Interaction between mobile and tabletop Sudoku 129
6.10 Colour selection process . 131
6.11 Using the virtual whiteboard . 132
6.12 Interaction with the virtual patient 132

A.1 LED control state machine . 144

xvi

Chapter 1

Introduction

This thesis aims at providing a generic approach to implementing multi-touch,
multi-user and tangible interfaces. Since some years, especially the term
“multi-touch” has appeared in computer science with increasing frequency.
More recently, it has even made the jump to mass media. But what are these
concepts which we keep hearing about?

For decades, interaction between computers and their users has happened
mostly through two devices: keyboard and mouse. While the occasional joy-
stick or touchscreen has been used in gaming or sales applications, mouse and
keyboard have remained a core part of the vast majority of computer systems.
They have also helped to define the look of the user interface (UI) itself: al-
most all software which is in use nowadays adheres to the windows, icons,
menus, pointer (WIMP) paradigm with its windows, text fields, buttons and
similar items.

Although this concept has been a spectacular success so far, there have been
attempts at other, radically different approaches to graphical user interfaces
(GUIs). One such approach is the concept of multi-touch, or more generally,
multi-point input. All previously used input devices and interfaces are designed
to react to one single input location which is pinpointed by the mouse cursor.
When several of these input points can appear in the same context at once, the
number of dimensions in which the user’s actions can be measured suddenly
multiplies.

User interfaces which are based on these new concepts are often labelled
natural user interfaces (NUIs) based on the rationale that human interaction
with the natural world is also not limited to a single point. Rather, humans
use all their fingers, hands and feet to interact with real-world objects. It

1

CHAPTER 1. INTRODUCTION

is this property which suggests that such interfaces may be easier and more
intuitive to use.

A variety of options exists to implement such interfaces. Multi-touch sen-
sors extend the well-known touchscreen concept to allow several fingers to be
used simultaneously. Tangible interfaces provide physical handles for virtual
objects, also allowing several of them to be used at once. Hybrid solutions
combine these novel concepts with established input technologies, e.g., by en-
abling several mice and pointers to be used in parallel.

Although research on these topics has already been conducted for over 20
years, why are we only now seeing such a surge in attention towards them?
Partly, this is because the results from these decades of research are now finding
their way into commercial products and therefore into the hands of everyday
users; partly, this is due to surprising recent discoveries which have significantly
lowered the price of crucial sensor hardware components, thereby giving an
increasing number of hobbyists and researchers access to such devices.

Whatever the reasons are, the increased interest in these interaction con-
cepts has naturally led to the development of a wide range of new applica-
tions. Although many of them are extensions of existing software, some of
these applications break existing paradigms to offer completely novel ways of
interaction.

1.1 Motivation

As mentioned above, the goal of this thesis is to provide a generic approach to
implementing software based on these novel interaction concepts. But is such
a generic solution really necessary? Before discussing this question, let us first
consider some scenarios which might present themselves in this context.

New Input Device Imagine a company which wants to bring its newly-
developed multi-touch input device to market. The device by itself is
not an attractive product, it needs support for applications to become
one. Consequently, this company has two choices: either provide an
attractive application out-of-the-box or provide a driver which allows
existing applications to be used with the device. Unfortunately, both
choices are far from perfect: in the first case, the company has to branch
out into application development, which is probably not its primary area
of expertise. In the second case, existing software may not work on the

2

1.1. MOTIVATION

device as expected, as this new device will likely differ subtly from those
used to develop the applications.

Web-Based Information Booth Suppose a touchscreen-based information
booth is to be installed. As the touchscreen offers multi-touch capabil-
ities, some eye-catching games are planned. The main task of browsing
information should however be done through a website. But how should
this double functionality be implemented? It would be a time-consuming
task to modify an existing browser engine to accept multi-touch input.
On the other hand, reducing all multi-touch data to mouse pointer move-
ments would severely limit the usability of the additional games.

Bringing Multi-Touch Software to Market Consider a startup company
which has an amazing idea for an application with a multi-touch user
interface. As they have no hardware-related expertise, they are planning
to solely rely on distributing their software. But which hardware should
they target? As they cannot afford to lock their program to a single type
of device, their best bet is to create an internal hardware abstraction
layer. However, this requires them to update their entire installation
base when a new input device should be supported. Moreover, if the
application makes use of gestures (which is likely), then their product
needs to contain a significant amount of code for their recognition.

Prototyping of Multi-Touch Applications Think of a researcher who tries
to develop a novel, multitouch-based application for a certain task. As
the most suitable user interface for this task is not yet known, a number
of prototypes will have to be created. It is very likely that the researcher
will still be using a conventional desktop GUI for this task. In order
to test any feature, it is necessary to switch to a multitouch-enabled
interface. This may be tedious in the case of many small, quick tests.
In addition, even an application based on completely new paradigms is
likely to contain some well-known user interface objects such as buttons,
sliders etc. Moreover, some novel user interface concepts such as mov-
able tiles have already emerged as being applicable to a wide range of
tasks. Would the researcher in question have to rebuild some or all of
these components from scratch in order to experiment with them, this
task would likely consume a significant amount of the work schedule.

After considering these scenarios, it is apparent that some general difficul-
ties exist. Summarised very briefly, these are

3

CHAPTER 1. INTRODUCTION

• the sketchy support for existing, mouse based software,

• the lack of a common denominator for accessing various kinds of sensor
hardware

• and the need to re-implement core components such as GUI elements or
gesture recognition time and again.

We can now return to the question whether a generic approach to implement-
ing such interfaces is really needed. Would it solve the described problems?
The answer is yes, although only if one important restriction is made. As
development in the field of these novel interfaces is continuing at an amaz-
ing speed, any generic solution presented now can only serve as a starting
point. As new sensor devices and interaction methods emerge in the future,
the approach introduced in this thesis will have to be re-evaluated. Neverthe-
less, even a generic solution which is only as complete as it is possible in the
current context will still offer significant benefits.

1.2 Challenges

Naturally, the decision to pursue such a generic approach to novel user in-
terfaces raises other questions. What are the challenges in designing such a
solution? Is there only one strategy?

First, we will try to identify the most crucial requirements which this so-
lution needs to fulfil. Such a generic approach should

• hide hardware differences from the application,

• allow easy integration of new types of input devices,

• provide a fall-back path for existing mouse-based applications,

• provide generic routines for common tasks such as gesture recognition,

• and offer an abstracted high-level view for the application developer.

Some of these requirements, particularly the first three, are rather straight-
forward and have to some extent already been implemented as standalone
concepts. However, the last two requirements turn out to be more challenging.
What high-level view is appropriate for the developer? What is a gesture?

With respect to the last question, it becomes apparent that there is no
formal definition of a gesture. The Merriam-Webster Dictionary defines ges-
ture as “the use of motions of the limbs or body as a means of expression”. By
this broad definition, even using a mouse is already a gesture. Consequently,

4

1.3. RELATED AREAS OF RESEARCH

one challenge is to find a means of specifying gestures in a formal and there-
fore computer-readable way which nevertheless does not constrain the range
of gestures that can be described.

When thinking about high-level interfaces for developers, a number of
cues can be taken from existing application programming interfaces (APIs).
Modular, event-driven systems for creating user interfaces exist in abundance,
thereby suggesting a certain suitability for the task. However, it is not imme-
diately apparent whether these designs that have been developed for conven-
tional GUIs are also well suited for these novel concepts. For example, it seems
likely that a single logical event queue will not be sufficient to deal with several
simultaneous streams of input data as they appear on a multi-touch device.
Moreover, the same motion event can have quite different meaning depending
on the context in which it originated. Another challenge is therefore to find a
way of delivering these events to the correct recipients and interpreting them
within the correct context.

Finally, we will consider the question of alternate strategies. In this thesis,
we will follow the path of taking established methodologies and adapting or
extending them to meet the requirements and challenges described above. But
radically different concepts are also possible. One example has been presented
by Wilson et al. [124]. In this approach, input data is directly converted to
forces in a physics simulator, thereby allowing natural interaction without ex-
plicitly specified gestures. While meeting some of the requirements presented
earlier, this method nevertheless fails to cover the entire spectrum of interac-
tion and can therefore also be only considered a starting point.

1.3 Related Areas of Research

After having presented the motivation and main challenges for this thesis, we
will now look at the larger context in which it is embedded. This thesis strongly
relates to three overarching fields of research which span several disciplines such
as electrical engineering, cognitive psychology and of course computer science.
We will now briefly summarise the historical and current context provided by
each of the following fields.

5

CHAPTER 1. INTRODUCTION

1.3.1 Computer-Human Interaction

The first area is computer-human interaction (CHI), often also called human-
computer interaction (HCI). Novel methods of input need new ways of inter-
acting with them, as a simple translation of existing mouse-based concepts is
often insufficient. Therefore, some important design decisions for this thesis
need to be based on results from this field of research.

CHI seems to be a relatively new field of research within the larger context
of computer science. However, its beginnings can be traced back to the 1960s
when the first graphical user interfaces were developed at Stanford ARC and
later, at Xerox PARC [129]. Until recently, the main body of work has been
focused on usability of common desktop interfaces. Widely known examples
include, e.g., Fitts’s Law [38]. It was published already in 1954 and deals
with the tradeoff between speed and accuracy which is involved when moving
towards a target.

Even though the topic of multi-touch seems to have emerged only in the
last years, research in this area has started at least 25 years ago. One notable
example is VIDEOPLACE by Myron W. Krueger [73], which showcased a
wealth of interaction techniques that still seem revolutionary even in today’s
context.

However, only now that such interfaces are available to a wider audience,
a significant amount of CHI research has been guided in this direction. One
interesting topic in this context is orientation. While a normal desktop work-
place consists of a monitor which usually never changes its orientation with
respect to the user, this is quite different for many types of recently adopted
interfaces. A tabletop display, for example, might be viewed by several users
from quite different directions - some standing behind the table, some off to
one side. The same applies to a mobile device which might be flipped over by
the original user to show the content to a friend standing opposite. This fact
has to be taken into account when designing software for such novel devices.

Another subject which needs to be considered is that of input focus. Most
existing interface designs have been developed with a single pointer in mind.
Therefore, most toolkits and widget sets are not equipped to deal with several
simultaneous input points, even if they are mapped back to mouse events.
While this might still work for unrelated windows on the same screen, two or
more input foci within the same window are likely to cause malfunctions of
various severity.

Along with the increasing amount of interest in multi-touch, a wealth of
new gestures has also been proposed. These include the now-ubiquitous two-

6

1.3. RELATED AREAS OF RESEARCH

finger scaling and rotation gestures as well as more esoteric ones [32]. When
aiming for a generic method of dealing with gestures, this body of work can
serve as a test case. Ideally, a generic approach should be able to represent
every imaginable gesture.

1.3.2 Input Sensor Hardware

The second area, which is only marginally related to computer science, is input
sensors. In order to interact with any computer program, the actions of the
user have to be conveyed to the machine in some way. The most well-known
and widely used devices for this task are keyboards and mice. Unfortunately,
they are limited to a single person and a single point of interaction by design
and are therefore not the primary choice for the types of interfaces which this
thesis deals with.

Historically, the first computer input devices were simply arrays of switches,
either operated manually or through a punch card. During the beginnings of
computer science in the late 1940s and 1950s, these arrays directly modified the
internal state of the machine. However, the switch to alphabetical input was
soon made with keyboards which are little different from those in use today
[78]. Later, in 1968, Douglas Engelbart [30] introduced the mouse, which
was preceded by the invention of the trackball in 1952 [13]. Again, the basic
functionality of these devices has changed little since.

Touch sensors, on the other hand, have appeared independent of computing
applications. Surprisingly, they have already been used for electronic musical
instruments during the 1960s [75]. Touchscreens, which combine touch sensors
with a display, were developed during the late 1960s and early 1970s [11]. The
first multi-touch system appeared in 1982 [81], yet this type of input sensor
remained a niche application until recently.

Nowadays, available input sensor technologies can roughly be grouped into
three categories: electrical, optical and mechanical. Well-known examples
include laptop touchpads as electrical sensors, the Nintendo Wiimote [87] as
an optical sensor and ball mice as mechanical sensors.

However, these examples all have in common that they are designed to
report a single point of interaction, controlled by a single person, back to the
machine. While the possibility exists to connect several such devices to a
single machine and have them controlled by several users [57], this is a purely
software-based solution and will be discussed elsewhere. Here, we will only

7

CHAPTER 1. INTRODUCTION

consider hardware which has explicitly been designed to track several points
of interaction simultaneously.

Especially among hobbyists, optical multi-touch sensors are very popular as
they can be constructed with little effort from commonly available hardware.
On the other hand, commercial products focus mainly on electrical sensors,
in particular capacitive ones. This type of sensors is usually less sensitive
to environmental influences and allows better integration with thin display
screens.

During the course of this thesis, several existing sensor designs have been
extended or combined with each other in order to provide more data about
the users’ actions or to increase robustness.

1.3.3 Software Architectures for Interactive Systems

The third and last area is design of software architectures for interactive sys-
tems. For the common software developer, the software presented in this
thesis should make it easy to create a new multi-touch GUI, ideally as easy as
it would be for a normal GUI. Therefore, existing design methodologies with
a large user base should be considered.

So far, there seems to be little work with respect to designing software
architectures for novel kinds of input devices. Of course, in computer science,
the entire branch of software engineering focuses on the construction of ar-
chitectures in general and therefore provides generic guidelines. This branch
has developed since the late 1960s and has its roots in the so-called “software
crisis” of the 1960s to 1980s. During that time, it became apparent that prior
structural planning was unavoidable to manage the huge growth in computer
capacities and code volume.

One example which has been employed in this thesis is the widespread
practice of splitting a larger task into self-contained subtasks, each of which is
then implemented in a so-called layer. Together, these layers and the interfaces
between them form a stack in which every single layer can be swapped for a
different implementation without the need to change any other layer, as long
as the interfaces stay the same. This technique has been employed in many
network stacks, for example [60]. As most of the processing needed in our
case can be broken down into four subtasks (data acquisition, transformation,
interpretation and presentation), the resulting framework is split into four
distinct layers with well-defined interfaces between them.

One important point which also needs to be considered in this context is

8

1.4. DOCUMENT STRUCTURE

support for the existing, mouse-based infrastructure. The new design should
therefore offer hooks to provide mouse-compatible input data to the underlying
operating system.

From a developer’s point of view, existing design concepts should be taken
into account. One extremely widespread and well-known such concept is that
of widgets. Widgets are small, self-contained building blocks of user interfaces,
e.g., a button, a scrollbar or a slider. The development of this concept can be
traced back to the Alto system [129] by Xerox PARC and to MIT’s Project
Athena [111]. Extending these accepted practices to multi-touch or multi-user
systems will ease the transition for developers accustomed to common GUI
libraries.

1.4 Document Structure

Following this short survey of the existing research within the context of this
thesis, we will now give a brief structural overview of this document.

Chapter 2 - Related Work takes a detailed view at related fields of re-
search and the existing work within them.

Chapter 3 - A Layered Architecture for Interaction gives an overview
about the architecture which has been designed to subsume the various
aspects of novel interaction devices into a coherent system.

Chapter 4 - Sensor Hardware describes the various types of input hard-
ware which have been employed to retrieve data about the users’ actions.

Chapter 5 - The libTISCH Middleware details the software framework
which was developed to aid application development on the input devices
described previously.

Chapter 6 - Applications describes several end-user applications which have
been constructed based on this framework.

Chapter 7 - Conclusion provides a discussion of the presented work and
future research directions.

9

CHAPTER 1. INTRODUCTION

Summary

In this chapter, the topic and motivation for this thesis was presented along
with some example scenarios. The larger context provided by existing fields of
research was also examined. We shall now proceed to review the related work
within these fields.

10

Chapter 2

Related Work

This chapter will provide a short survey of the existing work within the three
fields mentioned previously. A large body of work has emerged in the last
few years, and even dedicated conferences such as ”Tabletops and Interactive
Surfaces” have already been held. However, most related publications are still
distributed over a range of larger conferences such as CHI and UIST, both
touching relevant areas. Whether the current surge in research and media
attention that has focused on multi-touch or multi-user interfaces is the start
of a paradigm shift remains to be seen.

2.1 Computer-Human Interaction

The first main area of research which this thesis relates to is computer-human
interaction (CHI). This field itself has connections to diverse other disciplines,
such as cognitive psychology and statistics, and is the most abstract one of
the three related fields of research. In many cases, CHI-related research does
not even consider implementation details such as sensor hardware or soft-
ware libraries, but instead focuses solely on the question of usability, e.g. by
examining paper-based mockups of a novel interface. A centrepiece of CHI-
related research is the so-called user study, which aims to generate a reliable
assessment whether a certain interface or interaction method is really offering
benefits compared to existing system. To this end, a number of test subjects
use the interface in question while their interactions and opinions are recorded
and later analysed with statistical tools.

11

CHAPTER 2. RELATED WORK

2.1.1 Interaction Metaphors

The concepts which are used in interacting with common graphical applica-
tions have reached such a large user base that they might already be consid-
ered common cultural knowledge, at least in technologically oriented societies.
However, the same does not yet apply to multi-touch or tangible interaction
concepts.

While the commercial success of the iPhone has started to promote some
device-specific interaction metaphors, they are a long way from being as well-
known as their mouse-based predecessors. Unfortunately, the application of
such gestures may be hampered by patent issues [64]. While it is questionable
whether specific movements of fingers can be patented, commercially-oriented
adopters of such techniques may be deterred by the prospect of expensive
litigation.

Another area where several simple gestures have been widely adopted is
touchpad-based interaction. Many of these input devices now allow the user
to use gestures such as dragging two fingers for scrolling and tapping with
three fingers to simulate a right-button click.

Although new interaction metaphors are constantly being introduced, some
very basic multi-touch gestures seem to have emerged across a wide range of
devices and applications. These gestures are used for basic spatial transfor-
mations such as moving, scaling or rotating objects. To a certain degree,
they mimic the movements which would be applied to real-world objects, e.g.,
rotating a sheet of paper by pushing with two fingers in opposite directions.

However, an universally accepted library of gestures will likely not be avail-
able in the foreseeable future. In this context, the work of Epps et al. [31]
should be considered, in which the most intuitive use of hands and fingers
for a variety of common tasks was evaluated without even using a computer.
Participants were given paper mockups of user interfaces and instructed to per-
form certain tasks using their hands without further information as to which
gestures should be used.

2.1.2 Multiple Orientations

Conventional, mouse-based user interfaces share one common property which
may not be obvious at first sight. All GUI elements, particularly text, are
oriented along one primary axis which points towards the user. When consid-
ering horizontal interfaces where many users can be interacting with the device
from various directions, this single axis of orientation is insufficient. To sup-

12

2.1. COMPUTER-HUMAN INTERACTION

port such a scenario, the system should be able to rotate every GUI element
(or at least groups of them) independently of the others. One example for a
system which extends the existing Java GUI framework to support this kind
of interaction is DiamondSpin [102].

2.1.3 Applications

When looking at the available applications which have so far been built with
these novel concepts and interfaces, it quickly becomes apparent that this is an
area which still has room for improvement. While a large amount of smaller
applets, demos and the like does exist, few of these have so far made the jump
to actual, day-to-day use as applications. Of course, this may in part be due
to a ”chicken-and-egg” problem: without convincing software, people will be
reluctant to acquire the hardware needed to run potential applications. At the
same time, developers will be reluctant to target these novel platforms when
the number of potential users is still tiny. This highlights the importance
of hardware-independent applications, as these will be able to reach a larger
number of potential users. Particularly support for using legacy input devices
such as multiple mice might also provide a significant benefit.

When reviewing the currently existing applications, it seems that tools
which allow one or more users to manipulate pictures using multi-touch input
are probably the most prevalent type of software at the moment. Examples
include the so-called interface currents by Hinrichs et al. [51] or the PhotoHelix
by Hilliges et al. which combines multi-touch input with a tangible control
device [49].

Another widely used scenario for multi-touch input is control of a virtual
map display, such as in [39, 114, 7]. More advanced map applications, e.g.
including additional interaction with mobile devices, also exist [101].

While the two previous categories of applications are mostly of a rather
casual nature, one ”serious” application area where novel user interfaces seem
to show a lot of potential is music. The best-known example in this context is
the reacTable [69] which has already been used by professional musicians. One
of the few commercial multi-touch systems, the Lemur [63], is also intended
to be used for controlling electronic music devices.

Perhaps surprisingly, games do not account for a large percentage of ap-
plications for such novel interfaces. Although many demos take the form of
simple reaction games [98], only few novel games have been created [116] so
far. Another approach which also has been explored only rarely until now, is
to use existing games, e.g., Warcraft 3 with novel input devices [114].

13

CHAPTER 2. RELATED WORK

Regardless of their use as day-to-day applications, a wide variety of in-
terfaces using novel interaction devices has already been presented. When
regarding this body of work, it becomes apparent that any generic approach
will have to be able to encompass a sizable number of different modes of in-
teraction.

2.2 Input Sensor Hardware

As described in the previous chapter, input sensors have evolved for at least 50
years. However, since the introduction of the mouse, most other types of input
devices have been consigned to specialised niche applications. Input sensors
can be broadly categorised as direct or indirect [103]. A well-known example
for direct sensors are touchscreens, which directly record the position of the
user’s finger. On the other hand, indirect sensors such as mice or the Wiimote
usually record the motion of the device itself which is then translated into
cursor motion. Note that the distinction is not always intuitive at first sight
- a touchpad is still an indirect input device, as the data is not manipulated
directly at the touched location, but instead through a cursor.

From an abstract point of view, the field of input devices has a significant
overlap with tracking and positioning devices in general. Therefore, several
such devices will also be introduced where appropriate. Special emphasis will
be placed on the support of multiple interaction points.

2.2.1 Mechanical Sensors

For the sake of completeness, mechanical sensors should also be considered.
They have been the first kind of dedicated input sensors [13] and have been
employed in joysticks, ball mice [30] or trackballs for decades. While rolling
over the surface beneath the mouse, the ball drives two perpendicular rotary
encoders which translate the movement along each axis into ”ticks” which are
arbitrary, mouse-dependent units. Although most mice adhere to a common
connection standard such as the Universal Serial Bus (USB), the number of
ticks per unit length varies widely, resulting in potentially different user expe-
riences when changing devices.1

Mechanical mice also highlight one of the big drawbacks of mechanical sen-
sors: they are susceptible to accumulation of dirt, which degrades performance

1These per-device differences even apply to modern optical mice.

14

2.2. INPUT SENSOR HARDWARE

and necessitates regular cleaning. Therefore, mechanical sensors have largely
vanished from commonly used input devices.

However, high-end mechanical sensors are able to provide the highest avail-
able tracking accuracy, though at significant cost. They are employed in high-
precision measurement devices, e.g. by Faro [36], where the additional cost of
dirt-proof encapsulation is insignificant compared to the overall price. While
this device has not primarily been designed to be an interaction device, it nev-
ertheless is shipped with a mouse driver that allows use of common applications
with the measurement arm.

2.2.2 Electrical Sensors

Electrical sensors are a very common type of input device. For example, most
laptop touchpads fall into this category. These sensors try to measure changes
in the electric or magnetic field which are triggered by the presence of, e.g.,
a finger or a special kind of pen. Other well-known hardware devices in this
category include graphics tablets or touchscreens.

Resistive Sensing

Resistive sensors are the cheapest and most common kind of electronic input
devices and are usually found on small touchscreens, e.g. in mobile devices.
This sensor consists of two transparent, conductive layers which are held apart
by a grid of elastic, transparent spacers (see figure 2.1). Usually, these layers
consist of a transparent plastic film that has been coated with indium tin oxide
(ITO). Two opposing sides of the upper layer are equipped with contacts
between which a potential difference is applied. The other two sides of the
lower layer also carry contacts, which are connected to voltage sensors. When
pressure is applied to the screen, the upper and lower layer make contact and
a voltage divider network is formed. The two voltage measurements obtained
at the lower layer can now be used to calculate the x and y coordinates of the
contact point when the total voltage as well as the resistance of the layers is
known.

This is also the reason why this type of screen does not support detection
of multiple contact points. Any two measurements which result from two or
more contacts could equally result from a single contact point at the centre
of gravity of the other points. By a trick, it is nevertheless possible to infer
the positions for two simultaneous contacts as shown in [7]. When the second
finger is put down, the reported position immediately jumps from the first

15

CHAPTER 2. RELATED WORK

finger

y2

y1

x1

x2

edge connectors (copper)
transparent conductor (ITO)

... spacer dots
 (isolating)

Figure 2.1: Resistive touchscreen

position to the centre point. As this jump is too fast to be caused by real
movement, the conclusion can be drawn that a second finger has been placed
on the surface. Moreover, the jump vector is roughly half of the distance to
the second point, whose position can now be calculated, too. From this point
on, the relative scaling and rotation of the two points can be inferred as long
as only one of both is moved at a time.

While this is a quick way to generate events similar to true dual-touch, it
is nevertheless only a temporary solution and fails to produce sensible results
for more than two input points. Another drawback of resistive touch sensors
is that due to the flexible upper layer and the small air gap beneath, they
can be damaged by sharp objects or wear out due to repeated pressure on a
single point. They are therefore not well suited for frequently used or public
applications. Moreover, the sensor does not supply any pressure information;
the contact data is binary. An advantage of this kind of sensor is that it can
be operated equally well with gloved hands, pens or any other object.

Capacitive Sensing

Capacitive sensing is a term which encompasses several quite different tech-
nologies. In its simplest form, called surface capacitive sensing, it works similar
to the resistive sensing method mentioned above. Several electrodes (usually
four) are attached to the corners of a non-conductive surface or coating which

16

2.2. INPUT SENSOR HARDWARE

acts as a dielectric. When a conductive object comes into contact with the
surface, it creates one ”virtual” capacitor together with each of the four elec-
trodes (see figure 2.2). Together with additional circuits at the electrodes,
each of these capacitors forms part of an oscillator. As the capacitance is
proportional to the distance to the electrodes, the resulting frequency of the
oscillator changes with the distance between contact point and electrode. This
frequency can easily be measured by the sensor controller and is then used to
infer the exact location of the contact point.

finger

e3

e1 e2

e4

electrodes
dielectric

virtual capacitor

Figure 2.2: Capacitive touchscreen

Again, this method is unable to reliably detect two or more points, as
further contacts severely disturb the capacitance. Depending on the specific
implementation, the ”jump detection” method mentioned above could again
be employed to support up to one moving and one stationary contact simul-
taneously.

However, there is a second type of capacitive sensing, usually called pro-
jected capacitive technology (see figure 2.3). In these systems, a grid of con-
ductors is spread over the sensing surface. These can be very thin wires or
printed traces of transparent, conductive materials such as ITO. As the hori-
zontal conductors are separated from the vertical ones by an insulating layer,
each of the crossings forms a tiny capacitor. By consecutively charging each
of these capacitors through one of the vertical conductors and then measur-

17

CHAPTER 2. RELATED WORK

ing the capacitance at each of the horizontal ones, a capacity ”image” of the
surface can be generated. When a conductive object approaches or touches
the surface, the capacitance of the closest elements changes, thereby indicating
contact (highlighted in green).

electrodes
isolator

finger

Figure 2.3: Projected capacitive sensing

Note that there are two possible methods of driving this type of sensor.
In the first case, each single capacitance is measured separately, resulting in
one measurement per crossing. Touch points can be calculated with methods
very similar to those applied to images. This method is employed, e.g., by the
iPhone [64]. In the second case, a grid of m rows and n columns of conductors
will produce m + n distinctive measurements, each one indicating the total
capacitance along a conductor. This has repercussions on the available data.
Image-based methods will not work here, as additional heuristics are needed
to translate the resulting row and column maxima into actual touch locations.

Capacitive Coupling

Slightly different approaches are followed by two commercial products. The
first one is SmartSkin [98] from Sony. It also employs a matrix of horizontal
and vertical conductors which are separated by an insulator. However, the
capacitances are only marginally relevant for measuring touch points. Instead,
a high-frequency signal is sent through the vertical conductors and received
through the horizontal ones. When the user touches the surface, the body

18

2.2. INPUT SENSOR HARDWARE

acts as ground and drains the signal. This loss of intensity can be measured.
As only one wire at a time is used to transmit the signal, an unambiguous
mapping of touch locations to sensor locations is possible. The system is also
able to sense objects on the surface if they are conductive and being touched
by the user.

The second system is DiamondTouch [15] from Mitsubishi Research. Its
name results from the distinct rhomboid shape which the conductors employ
to cover the entire surface with little overlap. One distinguishing property of
DiamondTouch is that the user itself acts as transmitter. Through a special
seat cushion or foot mat, the user is connected to the system and transfers
a high-frequency signal to the conductors in the surface upon contact. This
concept has the significant advantage that by using different signals and con-
ductive mats, it is possible to identify the user to whom a certain contact
point belongs. However, there is also one drawback: when one user creates
two or more contacts, an unambiguous identification is not possible, as row and
column signals are measured simultaneously. Therefore, only an axis-aligned
bounding box containing the set of possible contact points from a single user
can be measured directly. Any further differentiation depends on point track-
ing and additional heuristics.

2.2.3 Acoustic Sensors

A third, completely different type of input sensor is based on acoustics. Instead
of augmenting the interaction surface with conductors, microphones are em-
ployed to pick up specific sounds created or altered by the user. One advantage
of this kind of sensor is that many existing surfaces can be easily converted
into input devices. This is especially interesting for applications where a high
degree of robustness is desired.

Surface Acoustic Wave

This type of acoustic sensor also contains an active component. Piezo-electric
emitters send high-frequency sound pulses into the material which are reflected
at the borders and finally arrive at a receiver. When a person touches the sur-
face, part of the wave energy is absorbed by the finger. By analysing the
received signal, the touch location can be inferred. An example for a commer-
cial product which employs this technology in vandalism-proof touchscreens is
the SecureTouch [28] system by EloTouch.

19

CHAPTER 2. RELATED WORK

Acoustic Pulse Recognition

The other type of system which we are going to investigate relies on sounds
which are actively created by the user. This means that simply touching the
surface will not be registered by the sensor. Rather, the user needs to knock on
or scratch over the surface to generate input data. The generated sounds can
be analysed in two different ways. The first approach, called time difference
of arrival, takes data from two or more microphones and correlates the signals
arriving at each one of them [92, 130]. By analysing the time difference between
pairs of signals, a set of hyperbola can be calculated which ideally intersect
in the point where the sound originated. One drawback of this approach is
that reflections and multi-path propagation inside the material tend to add a
high margin of error to the signal correlation and therefore also to the location
estimation.

A slightly different method which partly solves the problem mentioned
above is to pre-record a number of sounds by knocking at known locations
on the surface [93]. This approach is called location template matching. It
only requires a single microphone, and sounds generated by the user are then
compared to the library of stored sounds. The closest match is assumed to
have been recorded close to the actual location, thereby providing an estimate
on the position. The accuracy of this method mainly depends on the quality
of the calibration process.

A variant of this method does not attempt to determine the exact location
of the interaction, but rather tries to classify the shape which the user is tracing
on the surface. To this end, the distinct sounds created by different paths are
pre-recorded and then compared to the signal at runtime [46].

2.2.4 Optical Sensors

A wealth of multitouch-capable sensors is based on optical principles, likely
because they are for the most part easier to manufacture than electrical systems
and more precise than acoustic sensors. Unless noted otherwise, all of these
systems operate in the infrared (IR) spectrum which is invisible to the human
eye.

Occlusion Sensors

A very simple approach to sensing contacts is to surround the area in question
with a bezel carrying an array of light emitters and sensors. These are usually

20

2.2. INPUT SENSOR HARDWARE

arranged in pairs opposite each other and, with suitable optics, can exactly
detect when an object interrupts the specific light beam. Again, this suffers
from similar drawbacks as some electrical sensors mentioned earlier, as only
an axis-aligned bounding box can be measured directly. An example for this
kind of system is the commercial CarrolTouch [27] system from EloTouch.

A similar, slightly more complex approach is followed by the SmartBoard
[107] systems from SMART. Instead of separate light barriers which result in a
binary value each, the emitter is a continuous light strip which is viewed by line
cameras situated in the edges. Depending on the number of cameras and the
processing unit, two or more contact points can be detected simultaneously.
From an abstract point of view, every camera projects a number of ”occlusion
rays” across the surface which intersect in a contact point. Yet again, this
system has limitations when sensing several contact points, as these quickly
lead to ambiguities and occlusion problems.

Frustrated Total Internal Reflection

One very popular method for multi-touch sensing is that of frustrated total
internal reflection (FTIR). Originally, this method has been patented for fin-
gerprint sensing in 1965 [121]. However, in 2005, Jeff Han [45] adapted this
principle for use in a touchscreen by basically just scaling it up. The basic
principle of operation is as follows (see also figure 2.4). Infrared light-emitting
diodes (LEDs) are placed on the rim of a sheet of, e.g., acrylic glass and radi-
ate into the material. As long as the surface is untouched, the infrared light
is reflected internally similar to an optical fibre due to the large difference
in refractive index to the surrounding air. However, if a dense object such
as human skin touches the surface, the total reflection is interrupted and the
contact area is illuminated. The bright spot which subsequently appears on
the projection surface can then be recorded by the back-mounted camera and
delivered to a computer for processing.

As this type of sensor is very easy to build, even from off-the-shelf compo-
nents, a large number of systems based on this principle have been constructed.
Consequently, a significant amount of improvements and modifications have
been published. One notable example deals with the drawback that it is un-
comfortable for the user to drag fingers over plain acrylic glass. The ”NUI
Group” community [88] has shown that by adding a thin layer of elastic sil-
icone on top, the user experience can be improved dramatically. Details on
various materials can be found in the technical report by Schöning et al. [100]
It is also worth noting that only very few materials other than human skin are

21

CHAPTER 2. RELATED WORK

projector/
camera

finger

LED

bright spot

acrylic glass

projection screen

Figure 2.4: FTIR-based touchscreen

reliably able to trigger the FTIR effect. Depending on the application, this
fact can turn out to be an advantage as well as a drawback.

While highly popular, this method requires significant space behind the
projection screen, often resulting in bulky setups. A modified approach which
applies the FTIR concept to an liquid crystal display (LCD) screen is called
FlatIR by Hofer et al. [53]. This method puts an FTIR surface in front of
the LCD panel. As these panels are mostly transparent to infrared light, the
reflections from surface contacts can be detected behind the display. To save
space, these emissions are not captured by a camera, but instead by an array
of photodiodes which has been inserted behind the backlight. While effective,
this concept requires major re-engineering of the entire display.

”Backscatter” Detection

Another variant of optical multi-touch sensing can be achieved by directing
infrared light onto the interactive surface from behind. This method is often
called diffuse illumination (DI). As an approximation, it can be assumed that
roughly 50 % of this light is directly reflected back towards the camera, while
the other half radiates outward. When an object now approaches the surface,
it starts reflecting some of the light shining out of the surface. Therefore, the
closer an object is to the surface, the brighter it appears. Again, the display

22

2.2. INPUT SENSOR HARDWARE

surface acts as a diffuser, so the object will also quickly get out of focus with
increasing distance. One difference between this method and FTIR is that
almost any kind of object can be sensed instead of only human skin. Moreover,
objects can already be detected before they directly touch the surface. As
a consequence, it becomes difficult to unambiguously differentiate between
objects that are actually in contact with the surface and those which are only
hovering above. Additionally, the image processing steps which are needed
for touch detection are slightly more complex, as a high-pass filter has to be
employed to separate distant, out-of-focus objects from those which are very
close to the surface. Some well-known setups which utilise this type of sensing
include Surface [82] and reacTable [69].

One disadvantage which this method has in common with most other
camera-based methods is that a significant amount of space behind the dis-
play is needed, even in combination with a fish-eye lens. A system which
heavily modifies this method to counter this drawback is ThinSight [61]. As
mentioned above, LCD screens usually permit transmission of infrared light.
ThinSight takes advantage of this fact by placing an array of integrated IR
distance sensors behind an LCD. These sensors continue to work through the
display and sense the approach of any kind of object through reflected infrared
radiation, similar to the DI method. In contrast, the space requirements of
the entire setup are reduced significantly. Unfortunately, a significant amount
of modifications to the display system are necessary.

A variant of backscatter detection is ”liquid displacement sensing” [50]. In
this method, a glass plate is covered with a thin sheet of white latex which acts
as top-projection screen. The space between glass and latex is filled with ink
and lit from the backside. A camera viewing the sheet from below normally
only sees a black ink surface. However, when an object is pressed on the latex
sheet, the ink is displaced and the white latex becomes visible through the
glass plate. This concept works with fingers as well as other objects and even
allows a certain degree of pressure sensitivity.

Assisted Hand Tracking

In this category, we will now consider hardware which tracks the user’s hands
and possibly also fingers by means of arbitrary devices which are either worn
on or held in the hand. These devices include such diverse categories as fiducial
markers, infrared emitters or video game controllers.

At first glance, the following systems do not seem to have anything to do
with multi-touch sensing. Nevertheless, the data produced by these trackers

23

CHAPTER 2. RELATED WORK

is easily mappable onto the general concept of multi-touch. In popular media,
this type of interaction is often cited, as it prominently appears in the movie
”Minority Report” [109]. One commercial example is the hand-tracking system
produced by ART [1]. While this company mainly manufactures high-precision
tracking systems which deliver motion data in six degrees of freedom, they also
offer an extension which enables these systems to track two hands and three
fingers on each hand simultaneously in three degrees of freedom (DOF) (six
in the case of the hands). Two special gloves equipped with infrared emitters
have to be worn. From the 3D positions of the various emitters detected
by the stereo cameras, the entire hand posture can then be calculated. If a
person wearing these gloves stands in front of a large screen, the projection of
the 3D hand and finger positions into the screen plane can be interpreted as
multi-touch data.

Another widely known approach to delivering hand and finger tracking data
are so-called data gloves, which usually employ stretch sensors embedded in a
glove above the fingers [37]. When coupled with any 3-DOF or 6-DOF tracking
system, these gloves are also able to deliver accurate hand and finger positions.

A less capable, but also less expensive variant of this technology can be
created by using the Nintendo Wiimote as a sensing device. The Wiimote
contains a high-performance IR sensor which reports the position and size of
the four brightest spots in the sensor’s field of view with 100 Hz. As shown
by J. Lee [76] and L. Vlaming [117], this can be employed for low-cost hand
tracking. Again, special gloves are needed which either carry a battery and
IR LEDs or retro-reflective tape on two fingers each (usually thumb and index
finger). In the second case, the Wiimote has to be placed near an infrared
illuminator which provides light for the reflectors. While the reported data
is only two-dimensional, the mapping onto a screen plane would discard the
third dimension anyway. To reduce errors, the sensor viewing direction should
therefore be oriented roughly perpendicular to the screen.

Finally, this category also includes dedicated hand-held tracking devices
such as the Wiimote in its originally intended mode of usage or so-called flight-
sticks which are best described as a joystick handle that can be freely moved
through space.

Free-Hand Tracking

While the previously described methods for tracking hands in 3D space are
easy to set up, they nevertheless require the user to wear or carry additional

24

2.2. INPUT SENSOR HARDWARE

equipment which may be distracting. Some researchers have focused on setups
which are able to track bare hands without markers. One such system is
Touchlight [122] by A. Wilson, which uses a stereo camera to track objects
approaching the interaction surface. To allow the cameras a clear view, a
special type of projection screen is used. It contains a holographic element
which is transparent or opaque depending on the view angle. From the point
of view of the projector, the screen is opaque and therefore acts as a diffuser
and projection surface, whereas for the cameras, it appears transparent.

Another system which has also been presented by Wilson is PlayAnywhere
[123]. Here, a short-range projector and camera with wide-angle lens have been
set up so that they can be put on any non-reflective surface and use the area in
front of the device as projection screen and sensing surface. An infrared light
source illuminates the area, and objects create shadows extending backwards
from the device on the surface. When an object like a finger comes closer to
the surface, it occludes a larger part of its own shadow, thereby changing the
shape of the shadow that is visible to the camera. When touching the surface,
the shadow has a distinct peak as opposed to a rounded end when the finger
is at a distance. This can be recognised by the system and translated into
a touch event. Moreover, blank sheets of paper can also be recognised and
tracked in order to be used as miniature projection screens.

A slightly different approach which explicitly focuses on tracking fingertips
is Brightshadow [99] by J. Rekimoto. Here, the system builds two or more
”light walls” created by directed IR emitters which are synchronised with the
camera. For two light walls, the camera takes three consecutive frames. In the
first frame, both light walls are off, while during the second and third frame,
one light wall each is active. This allows easy background subtraction and
recognition of objects such as fingers which intersect the light wall(s). From
this data, a 3D position of the fingertip can be calculated.

Hybrid Approaches

An interesting combination of several previously mentioned approaches is Sec-
ondLight [62] by S. Izadi. The basis of the system is an FTIR-based tabletop
display. However, the projection surface is not an ordinary diffuser, but rather
a switchable one, often called ”privacy glass”. This material operates on the
same principle as liquid crystal displays and can be electrically switched be-
tween diffuse and transparent states. Both states are alternated 60 times per
second. In the diffuse state, the surface acts as screen for a synchronised pro-
jector, while in the transparent state, a synchronised camera is able to see

25

CHAPTER 2. RELATED WORK

through the surface and reliably recognise hands and objects above. In an ad-
ditional step, a second projector is added which projects through the surface
in the transparent state and is therefore able to display additional images on
small hand-held projection screens, provided they can also be tracked by the
camera.

2.2.5 Sensor Capabilities

Sensor multi- user direct hover arbitrary fiducial
Technology point identification touch state objects markers

Resistive - - + - + -
Capacitive
(standard)

- - + o - -

Capacitive
(projected)

+ - + o - -

Capacitive
coupling

+ + + o - -

Acoustic o - + - - -
FTIR + - + - - -
Backscatter + - + + + +
Hand Tracking
(assisted)

+ + - + o o

Hand Tracking
(free-hand)

+ - - o o o

Table 2.1: Sensor Technology Overview

To provide a short overview of the numerous sensing methods presented
above, table 2.2.5 quickly summarises the main features and the degree to
which they are supported (+ full support, o rudimentary support/dependent
on implementation, - no support).

26

2.3. SOFTWARE ARCHITECTURES FOR INTERACTIVE SYSTEMS

2.3 Software Architectures for Interactive Sys-

tems

As mentioned before, there seems to be little work so far which focuses on
building software architectures or frameworks for novel types of interactive
systems. However, such approaches are abundant in other disciplines of com-
puter science, e.g. in ubiquitous computing as shown in the survey by Endres
et al. [29]. Generally, such a middleware will greatly ease standard tasks for
developers when designed well.

To get an overview of the context as well as of the specific work which has
already been done regarding frameworks for novel input devices, we will first
look at the general principles involved in software design followed by a brief
survey of the existing application-specific systems.

2.3.1 Layered Architectures

One of the most basic principles on which many larger software systems are
built is that of a stacked or layered architecture. In this design, the whole task
is split into a series of several smaller, self-contained subtasks. These subtasks
or layers are sorted into a stack, with the least specific tasks at the bottom
and the most specific ones at the top. Each layer in this stack should only
communicate with those directly above and below by means of well-defined
interfaces. This yields the additional benefit that one layer usually can be
swapped with an alternative implementation without changing the rest of the
stack. One widely known example for this kind of design is the ISO/OSI net-
work model [60]. Many operating systems can also be viewed as such a stack,
with hardware drivers and the kernel at the bottom, libraries and daemons in
the middle and end-user applications at the top end of the stack.

2.3.2 Windowing Systems

When considering a common GUI-based system in its entirety, a special role
is filled by the windowing system. Well-known examples include Xorg2 [131],
Quartz [42] or the Windows GUI system [83]. Its most basic task is to mediate
between the hardware on one side and the end-user application on the other
side. Most windowing systems are more than a simple hardware abstraction

2the current reference implementation of the X11 Window System

27

CHAPTER 2. RELATED WORK

layer, as they provide a canvas system which allows painting of graphics prim-
itives and pixmaps as well as the ability to arrange several partly overlapping
drawing surfaces, i.e. GUI windows. Additionally, a message passing inter-
face is usually also provided, which is employed to direct user input such as
mouse movement or keystrokes to the correct window. Moreover, the win-
dowing system is responsible for displaying and controlling the mouse pointer
and sometimes the input focus. This is important when considering multi-
pointer interaction, as all examples mentioned above only provide a single
mouse pointer for the entire screen. So far, only an experimental extension
to Xorg, called Multi-Pointer X (MPX) [57], offers the ability to control a
virtually unlimited number of mouse pointers, thereby enabling simultaneous
control of several legacy applications or of a single multi-pointer aware pro-
gram. The next version of Microsoft Windows is also expected to contain
similar functionality, although details are still sketchy.

2.3.3 Widget Sets and Toolkits

Especially in the realm of graphical user interface design, the concept of the
widget is commonly used. The term derives from ”window gadget” and was
coined in 1988 during Project Athena [111] at MIT, even though similar con-
cepts were already used in the Xerox Alto [129]. A widget is a small, self-
contained building block of a GUI. By combining several different types of
widgets, a complex user interface can be rapidly assembled. Common widgets
include buttons, sliders, text entry boxes and many more. As a consistent
”look-and-feel” as well as easy interoperability between individual widgets is
generally desired, widgets are mostly grouped together in large collections,
called toolkits, which share a common, often configurable, look and implemen-
tation details. Examples for widely used toolkits include Qt [97], GTK+ [112],
Swing [110], Aqua [2] or the Windows User Interface API [84].

2.3.4 Toolkits and Frameworks for Novel Input Devices

All these toolkits mentioned in the previous section have started their de-
velopment at a time when multi-touch or multi-pointer input were largely
unknown concepts. These systems have therefore not been designed to deal
with several simultaneous input points, even if the windowing system should
already offer support for this functionality. For this reason, extensions for or
redesigns of existing toolkits which focus on supporting multiple input points
have started to appear. Due to its success as one of the first commercially

28

2.3. SOFTWARE ARCHITECTURES FOR INTERACTIVE SYSTEMS

available multi-touch input devices, a significant portion of these libraries are
based on the DiamondTouch hardware platform. Examples include Diamond-
Spin [102], which modifies the widely used Java API to allow free rotation
of GUI elements as well as multi-user input, or DTFlash [33], which aims to
achieve the same for Flash development. Recently, a .NET-based toolkit [14]
also has been published.

On the other hand, many systems which are based on optical tracking
currently employ the Tuio [68] protocol which is based on the OSC Spec-
ification [126] to deliver tracking data to applications. While these are not
GUI frameworks, they nevertheless form the basis for many applications. One
well-known example is reacTIVision [69], which focuses on tracking tangible
objects on a rear-illuminated surface. Another system which is extensively
used in the hobbyist community is touchlib [89] and its successor CCV [90].
The main goal of these systems is to provide an easily accessible platform for
multi-touch tracking, e.g. with a simple webcam.

Another library which goes beyond the object or blob tracking provided by
the previously mentioned ones is libavg [118]. libavg offers a Python script-
ing interface which can be directly employed to create interactive graphical
applications. A tool whose main focus is visual programming for audio and
video installations is vvvv [119], though it has also been adapted to multi-
touch development. One other important development platform is Processing
[41] and others based thereon [79]. Processing aims to provide a Java-based
development environment which hides most of the language’s complexity from
the user. Its simplicity has resulted in high popularity among users which do
not have previous programming experience, such as graphical designers.

While some of these software packages already provide reusable compo-
nents to some degree, their adaptability to varying conditions such as different
hardware devices or programming environments is limited. Although support
for camera-based tracking and touch detection is already quite broad, a full
GUI toolkit similar to those for common mouse-based interfaces does not yet
seem to exist.

2.3.5 Gesture Recognisers

A different aspect of higher-level interaction support is provided by software
which tries to recognise gestures in the input stream as opposed to simply
reacting to touch/release events. Several approaches based on DiamondTouch
have been presented by Wu et al. [128, 127]. A common aspect of these systems
is that gesture recognition still is performed inside the application itself.

29

CHAPTER 2. RELATED WORK

However, there are approaches to separate the recognition of gestures from
the end-user part of the application [48, 26]. With the exception of Sparsh-UI
[44], these systems are not yet beyond the design stage. Sparsh-UI follows
a layered approach with a separate gesture server that is able to recognise
some standard gestures for rotation, scaling etc. independently of the end-
user application.

Looking at these systems, it is apparent that even those which follow ap-
proaches at generalisation in one context do not extend this generalisation to
other contexts. For example, most of the generic gesture recognition software
which exists is still focused on a single hardware device. Moreover, no coher-
ent formalism has so far been presented which could provide a basis to model
interaction concepts.

Summary

A review of the related work which was presented in this chapter shows that
most research still is focused on creating novel kinds of input devices. While
many diverse applications have already been written for these devices, they
often do not evolve beyond the status of tech demos. Moreover, the topics of
reusability and generalisation of the underlying concepts seem to have received
almost no attention up to now.

30

Chapter 3

A Layered Architecture for
Interaction

In this chapter, the system architecture which has been developed to create a
coherent model of novel interaction devices shall be described. As mentioned
previously, a large body of work on multi-touch interfaces, tangible interfaces
and other novel types of interaction has been created during the last ten years.
Almost all of the systems which have been developed so far are monolithic
and have been designed for a single type of input hardware, thereby limiting
reusability of code and concepts.

To address this limitation, a layered architecture has been designed which
has the goal to subsume all these various means of interaction into one single,
coherent formalism [22].

3.1 Fundamentals

In this section, we shall first take a look at the concepts which our architecture
is based on in order to reach its goal. We will then go on to describe the
architecture itself and briefly present its separate layers.

3.1.1 Concepts

Capturing Movement Data

From an abstract point of view, the starting point in any kind of computer-
human interaction is the intent of the user. Assuming familiarity with the

31

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

interface in question, the user will then proceed to execute an action that
causes the intended result.

When looking at user interfaces throughout the history of computing, the
user’s actions can at the most generic level be divided into two types:

Text entry. Text-based interfaces were the first ones that allowed users to
truly interact with the computer through a sequence of commands and
responses (command line interface (CLI)). They are still common today,
though use of the command line has receded and often been replaced
by keyboard shortcuts. For the purpose of our classification, it does not
matter whether the text itself is entered through a keyboard, through a
speech recognition interface or by any other means.

Movement. All other actions of the user can be very broadly classified as
movement.1 We can further subdivide this category as follows:

Mediated movement. In this case, the user movements are recorded
by a physical object which is directly or indirectly connected to the
computer. The simplest example for such a physical object is, of
course, the mouse. However, all those types of interaction which are
usually described as “tangible” can also be put into this category.

Free movement. This case describes those interactions where the user
does not have to touch and move a specific object, but can instead
move freely through space. While additional equipment such as spe-
cial gloves may still have to be worn in some cases, the movements
themselves are unconstrained. A popular and well-known example
for this kind of interaction appears in the movie “Minority Report”
[109].

On-surface movement. Finally, this case is a hybrid of the previous
two. Here, the user does touch an object such as a screen. However,
it remains fixed and the movements of the user relative to the surface
of this object are recorded. The most common example for this type
of interaction are touchscreens, but also touchpads.

In the context of this thesis, the main focus will be on interactions of
the second type – movement. While text-based modes of interaction shall be

1Although technically, text entry also requires the user to perform finger or lip move-
ments, we will not consider them here.

32

3.1. FUNDAMENTALS

considered where appropriate, the presented architecture has not primarily
been designed to deal with them. Therefore, the most basic step which this
architecture has to perform is to locate and identify various types of objects
and track their movements through space. It is also necessary that this position
data can be related to the display coordinate system later in some way.

When reviewing the various types of movement which are considered here,
it can be concluded that the system should conceptually distinguish between
at least three different entities:

• fingers

• hands

• objects

In this case, “objects” serves as a catch-all term for anything which does not
fall into the first two categories, e.g., tangible UI elements. The question why
differentiation between these entities is necessary in the first place is easily
answered, as very different semantics may be attached to, e.g., finger movement
as opposed to object movement. From now on, we will refer to these entities
collectively as “input objects”.

When considering the kinds of data which can be gathered about the motion
of these entities, the following list of data atoms emerges:

Position. Definitely the most basic and most important type of data is the
spatial position of the entity in question. Depending on the sensor hard-
ware, this can be a two- or three-dimensional vector relative to an arbi-
trary, hardware-dependent reference coordinate system.

Point-of-Interest/Peak. Depending on the object in question, the position
may not be the same as the point-of-interest. One example is a hand
with outstretched index finger. While the overall position would likely
be described by the centre of the palm, the point-of-interest would rather
be located at the peak of the index finger. In some contexts, this location
is also called the hot spot.

Orientation. While not all types of sensors (e.g., touch sensors) are able
to deliver this information, it is nevertheless important especially for
tangible UI elements. However, this information is also meaningful for
fingers and hands when available.

Contact Size/Pressure. These two properties are mostly relevant for touch
sensors. Unfortunately, they are difficult to separate, as many sensors

33

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

detect an increase in pressure as an increase in size. Additionally, this
does not take into account that different persons may have different-sized
fingers in the first place, so this data should only be used if the sensor
in question is actually able to deliver true pressure measurements.

Shape. Especially when using camera-based sensors, the shape of an object
can sometimes also be determined. This information can be valuable
when using arbitrary objects as tangible UI elements.

Identifier (ID). When using objects that are tagged with fiducial markers,
every one of these markers usually exhibits a unique identifier which may
also serve to deliver additional meaning. The same applies to hardware
such as the DiamondTouch which is able to identify the user whom a
certain contact belongs to. In addition, temporary identifiers should be
assigned to untagged objects and stay with them as long as they move
within the sensors’ range.

Parent. In some cases, a parent-child relationship exists between two kinds
of objects, e.g., between fingers and hands. The ability to express this
relationship should be provided through an additional “parent id” which
relates to the identifier of the parent object.

The architecture design should be able to process all of these measurements
about the previously mentioned types of objects, if the sensor hardware is able
to provide them.

Alignment of Motion Data

While three-dimensional user interfaces exist, the vast majority of currently
existing systems is based on a two-dimensional output device such as an LCD
or a projection screen. Graphics are displayed on such a screen based on pixel
coordinates.

The previously described set of data on the motion of various entities used
for interaction is generally delivered in the coordinate system of the sensor
hardware itself. For a camera-based system, this might be image coordinates,
whereas for an electrical field-based sensor, the coordinates will probably refer
to conductor rows and columns. If several sensors are used, the data may even
be described in one of several overlapping coordinate systems.

From these considerations, a second basic concept for the architecture de-
sign can be deduced. It is necessary to translate all previously measured data

34

3.1. FUNDAMENTALS

into a common reference frame. This process is often referred to as registra-
tion. The single reference coordinate system which will be available in any
scenario is the screen coordinate system. Note that while the output device
in its entirety may be composed of several disjoint sub-displays, we will not
consider this case here, as a large body of work on merging such multi-display
setups into a single, rectangular virtual display exists (e.g., [35]). The same
applies to the special case of non-planar displays [10].

To allow easier processing in the following steps, the data should be trans-
formed into pixel coordinates. It is the responsibility of this alignment process
to appropriately scale the coordinates if the screen resolution changes.

Recognition of User Intent

Assuming that the previously described steps have been performed, all rel-
evant data about the user’s (or users’) motions are now available within a
single, screen-aligned frame of reference. The next logical step now is to assign
meaning to these movements. In a slightly more narrow context, this process
is often also called gesture recognition.2

We have now arrived at an especially crucial point. For this translation
step, the motions to be recognised have to be described to the system in
a machine-readable way. Some existing systems present a catalogue of pre-
defined gestures from which the ones to be recognised can be selected. How-
ever, this approach is inflexible when considering varying hardware platforms
with different input capabilities. Therefore, this concept is probably the most
complicated one which the proposed architecture has to provide and will be
described in detail in section 3.3.

Visual Feedback

The fourth and last step is to close the feedback loop with the user by gen-
erating graphical output. The displayed content should react to the user’s
intentions which have been interpreted by the previous processing step. This
goal can be achieved in a variety of ways, e.g., by re-using the graphical com-
ponents from an existing GUI toolkit or through drawing libraries such as
OpenGL.

2Although this implies a focus on gestures only as we use them in everyday conversation,
this term will be used for the broader task of translating motion into semantic entities
throughout the rest of the document. From here on, the term “gesture” will therefore
describe any interaction triggered through the user’s movement.

35

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

One additional subtask that is part of this concept is to deal with the fact
that the previously described gestures are not guaranteed to be valid over the
entire interaction area. Rather, it is to be expected that each type of GUI
element is sensitive to one set of gestures. Therefore, the areas covered by
specific GUI objects and the associated gestures have to be communicated to
the gesture recognition task described previously.

3.1.2 Architecture Design

Each one of the four previously described conceptual steps can be mapped to
one “slice” in a layered architecture which is presented in figure 3.1. The data
flowing through the layers from bottom to top decreases in quantity while at
the same time gaining in information density and semantic content.

The four layers are modelled on the concepts which have been identified in
the previous section, and are ordered from bottom to top as follows:

Hardware Abstraction Layer (HAL). This layer performs the task of re-
trieving motion data about the user’s actions. As different hardware
may have very different capabilities, it translates the data into the seven
atoms mentioned in section 3.1.1.

Transformation Layer. The transformation layer acts as a filter that trans-
forms the motion data received from the HAL into the screen coordinate
space of the display. The steps necessary to achieve this task may be a
combination of such operations as homogeneous transformation, radial
undistortion or a simple vector translation.

Interpretation Layer. Probably the most difficult task, the interpretation
of motion data, is accomplished by this layer. In addition to the screen-
aligned motion data, it also receives region and gesture definitions by the
layer above. Moreover, as different types of hardware may need to use
different methods of interaction, a capability description for the specific
kind of sensor in use can also be loaded.

Widget Layer. Finally, the user-visible output and therefore the final part
of the feedback loop between user and interface is formed by the widget
layer. Basically, any graphics library or toolkit can be used to form this
final part of the stack.

Between the layers, two types of communication protocols are employed.
The first one is used to transport motion data from the HAL through the

36

3.1. FUNDAMENTALS

Input Hardware

Hardware Abstraction Layer

Multi-Touch Mouse
Optical Hand

Tracking ...

raw input data

Transformation Layer

raw position data

Interpretation Layer

calibrated position data

Widget Layer

gesture
events

regions-of-
interest

feedback
to user

capability
description

Figure 3.1: Overview of the four architecture layers

transformation layer to the interpretation layer, while the second one is used
between interpretation and widget layer in both directions to describe regions
and gestures as well as deliver recognised events. Both protocols will be de-
scribed in detail in the following sections.

But why is it necessary at all to strictly separate these tasks into inde-

37

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

pendent layers? The reason is twofold. First, a clear and formal definition
of abstract entities is required in order to communicate between these layers.
While a monolithic solution would perhaps not require these clear definitions
and could therefore possibly be implemented more quickly, the long-term goal
of improving reusability will benefit from clear conceptual separation. The
second reason is that interoperability will be easier to achieve when the layers
are largely independent from each other. For example, a new widget layer
can be created without any restrictions as to which programming language or
graphics engine should be used for the task as long as it adheres to the protocol
specifications given below.

3.2 Transport of Motion Data

3.2.1 Design Considerations

Between the three lower layers of the presented architecture, motion data of
the various types described in section 3.1.1 has to be delivered. Between the
two lowest layers, this motion data is still in sensor coordinates. After it has
passed through the transformation layer, it has been converted to reference
coordinates. However, the same protocol can be employed regardless of the
reference frame used, as long as the two protocol streams can be addressed
individually.

One aspect which has to be kept in mind is that of bandwidth. For example,
while the exact shape of an object may be useful in some applications such
as recognition of arbitrarily shaped tangible objects, describing it accurately
will require a significant amount of data. Even when only the outline of each
object is delivered, this expands to a list with hundreds of positions even for
small objects. Moreover, non-optical sensors may only be able to detect a very
rough outline that does not contain much information about the true shape
of the object in question. For these reasons, the shape of the object is best
described by an approximation. There are several possibilities for such an
approximate description. The most straightforward one is a sequence of lines
along roughly linear parts of the shape. A simpler approach, however one with
the added benefit of also giving an estimate on the object’s rotation, is the
equivalent ellipse. This is usually given by two or three direction vectors which
are orthogonal with respect to each other and describe the axes of the ellipse.

A large part of the data atoms required here are already present in the Tuio
protocol [68]. However, two crucial aspects are not available: the point-of-

38

3.2. TRANSPORT OF MOTION DATA

interest and the parent-child relationship. Moreover, Tuio is a binary protocol
which is slightly more efficient, but not human-readable and therefore more
difficult to debug. It also requires an external parser for the underlying OSC
protocol. On the other hand, Tuio has already been extensively used in exist-
ing systems. Based on these considerations, the Location Transport Protocol
(LTP) was designed as a clear-text protocol which is compatible with Tuio
plus additional data fields. To gain interoperability with the existing body
of software, an adapter was written which converts between LTP and Tuio in
both directions.

3.2.2 Location Transport Protocol

LTP is composed of short, self-contained messages. Each message describes
a sensor reading for a particular object. In order to synchronise sender and
receiver, a special “frame” message can also be sent which indicates that a
new sensor reading has been taken, e.g., a camera image. This message is
then followed by an arbitrary number of location messages. Therefore, the
specification of LTP in extended Backus-Naur form (EBNF)3 notation is as
follows:

<message> ::= <frame msg> | <location msg>

<frame msg> ::= ’frame’ <int:framenum>

<location msg> ::= <objecttype> <vector:position>

<double:size> <int:id>

<int:parent id> <vector:peak>

<vector:axis1> <vector:axis2>

<vector> ::= <double:x> <double:y>

<objecttype> ::= ’finger’ | ’hand’ | ’object’ |

’blob’ | ’other’

The object type can be one of five identifiers:

’finger’ for objects that can unambiguously be identified as fingers, e.g.
contacts on an FTIR surface,

3We will assume the non-terminal prefix symbols <int>, <double>, <string> etc. to be
already defined as they are in most programming languages. To enhance clarity, they can
be followed by an additional descriptor, separated by a colon.

39

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

’hand’ for motion sensors which can reliably detect and identify the user’s
hands,

’object’ for clearly identifiable tangible UI elements, e.g., those tagged with
fiducial markers,

’blob’ for objects detected by systems which can only reliably capture an
outline, e.g., a shadow and

’other’ for any other kind of entity.

Depending on the sensor as well as the object type, the rotation of the ob-
ject relative to the reference coordinate system can sometimes not be uniquely
determined. Therefore, the more general representation of an equivalent ellipse
will be delivered, which is composed of two axes that are by definition perpen-
dicular to each other. Should the sensor-object combination support unam-
biguous determination of the current rotation, for example in a camera-based
setup with fiducial markers, then the first axis will represent the direction of the
object’s local x axis and the second axis that of the local y axis. Otherwise, the
two axes will span an ellipse approximating the object’s shape and orientation.

An example LTP data stream therefore looks as follows (each line corre-
sponds to one message):

frame 58
hand 524.19 271.58 397 52 0 536.05 300.98 4.84 1.88 0.62 -1.61
finger 528.71 294.36 64 15 52 534.25 300.90 1.51 1.18 0.39 -0.50
frame 59
hand 524.37 272.07 388 52 0 536.05 300.98 4.64 1.73 0.57 -1.54
finger 528.87 294.30 62 15 52 532.32 302.63 1.22 0.86 0.28 -0.40
frame 60
hand 524.07 271.51 398 52 0 536.05 300.98 4.92 1.83 0.60 -1.64
frame 61
frame 62

Note that after frame 59 the “finger” object with ID 15 vanishes, and
shortly after its parent “hand” object with ID 52. In frames 61 and 62, no
objects have been detected.

3.3 A Formal Specification of Gestures

When traversing the layer stack from bottom to top, we have now arrived at the
last and most crucial interface, which is between the interpretation and widget

40

3.3. A FORMAL SPECIFICATION OF GESTURES

layers. As mentioned above, communication at this point is bidirectional.
First, the widget layer needs to specify screen regions and the gestures which
are to be recognised within them. Afterwards, the interpretation layer will
notify the widget layer when one of the previously specified gestures has been
triggered by the user.

3.3.1 Widgets and Event Handling

Before discussing the specification of gestures resp. events, we will briefly
examine how widgets and events are handled in common mouse-based toolkits.
Here, every widget which is part of the user interface corresponds to a window.
While this term is mostly applied only to top-level application windows, every
tiny widget is associated with a window ID. In this context, a window is simply
a rectangular, axis-aligned area in screen coordinates which is able to receive
events and which can be nested within another window. Due to this parent-
child relationship between windows, they are usually stored in a tree.

Should a new mouse event occur at a specific location, then this tree is
traversed starting from the root window which usually spans the entire screen.
Every window is checked whether it contains the event’s location and whether
its filters match the event’s type. If both conditions are met, the check is
repeated for the children of this window until the most deeply nested win-
dow is found which matches this event. The event is then delivered to the
corresponding handler of this window. This process is called event capture.

However, there are occasions where this window will not handle the event.
One such occasion is, e.g., a round button. Events which are located inside
the rectangular window, but outside the circular button area itself should have
been delivered to the parent instead. In this case, the button’s event handler
will reject the event, thereby triggering a process called event bubbling. The
event will now be successively delivered to all parent windows, starting with
the direct parent, until one of them accepts and handles the event. Should the
event reach the root of the tree without having been accepted by any window,
it is discarded.

When we now compare this approach to our previously presented archi-
tecture, one fundamental difference is apparent. Instead of one single class of
event, we are dealing with two semantically different kinds of events.

The first class is comprised of input events which describe raw location
data generated by the sensor hardware. These events are in fact quite similar
to common mouse events. However, if we were to deliver these events directly

41

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

to the widgets, no interpretation of gestures would have happened yet. The
widget resp. the application frontend would have to analyse the raw motion
data itself.

In the interpretation layer, these input events are therefore transformed
into a second event class, the gesture events which are then delivered to the
widgets. The existence of these two different event classes will influence some
parts of the design which will be discussed in the following section.

Before we arrive at this discussion, the following question should be asked:
why are existing concepts such as widgets and events used here instead of
a radically new concept? This question is easily answered, as these existing
concepts have the significant advantage of being known to a vast number of
developers. As the primary goal of this approach is to make it easier for
developers to build an interface based on novel input devices, building on
established and widely known practices is a reasonable choice.

3.3.2 Abstract Description of Gestures

As no artificial restrictions should be imposed on the developer as to which
gestures are available, a generic and broadly applicable way of specifying them
has to be found. To this end, the three abstract concepts of regions, gestures
and features shall now be introduced. Their relationships are shown in figure
3.2.

From an abstract point of view, regions are on-screen polygons which cor-
respond to widgets. A region can contain an arbitrary number of gestures
which are only valid within the context of this region. Gestures can be shared
between regions and are then valid in all containing regions. A gesture itself
is composed of one or more features. Features are simple, atomic properties of
the input objects and their motions which can in turn also be shared between
gestures. Each of these features can be filtered through setting boundary con-
ditions. Should all features of one gesture match their respective boundary
conditions, then the gesture itself is triggered and delivered to its containing
region.

Regions

The primary task of regions is to assign input events to their corresponding
widgets. As it is the case with any regular GUI, a gesture-based interface can
also be assumed to be divided into nested areas. In a mouse-based UI, these

42

3.3. A FORMAL SPECIFICATION OF GESTURES

Region Region

Gesture Gesture GestureGesture

Feature Feature Feature Feature

"move" "tap" "rotate" "spin"

Motion BlobCount Rotation Scale

...

...

...

Figure 3.2: Relationship between regions, gestures and features

areas are called windows as described above. When moving to the presented,
more general approach to user interfaces, this concept needs to be extended.
For example, the fixed orientation and axis alignment is insufficient when con-
sidering table-top interfaces, e.g., a round coffee table.

Therefore, a region is defined as an area in screen coordinates which has a
unique identifier and is described by a closed, non-intersecting polygon. Re-
gions are managed in an ordered list, with the first region in the list being
the topmost region on screen. This means that lower regions can be totally or
partially obscured by those on top.

But why do regions need arbitrary shapes? Wouldn’t a simple rectangle still
be sufficient? The answer to these questions is more complicated than it seems
at first glance. Consider two overlapping widgets as shown in figure 3.3(a). In
a standard toolkit, the input event which was erroneously captured by widget
A could simply be “bubbled” back to widget B. However, in the presented
architecture, the input events are converted to gesture events before being
delivered to the widgets. The two input events would merge into one gesture
event which cannot be split back into the original input events. Where should
this single event now be directed to? The solution is therefore to ensure that
input events are always assigned to the correct widget in the first place. The
most straightforward way to achieve this goal is to allow regions of arbitrary
shape which can closely match the shape of the corresponding widget as shown

43

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

B
A

regions widgets

(a) with rectangular regions

B
A

regions widgets

(b) with arbitrary regions

Figure 3.3: Overlapping widgets capturing input events

in figure 3.3(b).

Besides having arbitrary shape, regions can also further select input events
based on their object type. This behaviour is realised through a number of
flags, one for each of the object types mentioned above. When one of these
flags is set, the region is sensitive to input events from this object type. If the
flag is cleared, the region is transparent to this type of input event.

In addition to these object type flags, a region can also be flagged as volatile
to describe that its location or shape may change without user interaction.
Why is it necessary to explicitly mark such regions? In this context, it is
important to consider that every region actually has two representations: one
in the widget layer which describes the current state of the widget’s graphical
representation, and one in the interpretation layer which represents the state
of the widget when it was last transmitted. These two representations are
not necessarily synchronised (see figure 3.4). Keeping them synchronous even
while the user is modifying the widget would generate significant amounts of
traffic between the two layers. Depending on the communications channel, this
may lead to dropouts and other undesirable behaviour. Therefore, some cases
such as “self-modifying” regions may require special handling to update the
secondary representation of the region at the correct moment. Such behaviour
is sometimes called lazy updates. Other aspects of this issue will be discussed
below.

At runtime, the input events described in the previous section are checked

44

3.3. A FORMAL SPECIFICATION OF GESTURES

B
A

regions widgets

(a) before movement

B

A

regions widgets

(b) after movement

Figure 3.4: Desynchronisation of widgets and regions

against all regions, starting from the first one. When the location falls inside
the region and the flag for the corresponding object type is set, this input event
is captured by the region and stored for subsequent conversion into gesture
events. Otherwise, regions further down are checked until a match is found.
When no match occurs, the input event is finally discarded.

Gestures

The core element of this formalism are gestures. An arbitrary number of
gestures can be attached to every region. These gestures can either be created
from scratch or taken from a list of predefined default gestures.

At runtime, these gestures can then be triggered by the input events which
are captured in the containing region. Should the conditions for one or more
specific gestures match, an event describing the gesture is delivered to the con-
taining region and therefore to the widget whose outline is described by the
region. A gesture is composed of a name, a number of flags and one or more
features which will be detailed in the next section. The name can either be
an arbitrary descriptor chosen by the developer for custom gestures, or one of
a list of predefined “common” gesture names. In the latter case, no features
need to be specified, as these are part of the existing definition.

Additionally, two flags can be set to further differentiate the behaviour of
the gesture. When the gesture is marked as one-shot, then it will only be sent
once for a specific set of input objects. For example, consider a “tap” gesture
which is to be triggered when the user touches a region. The corresponding
event should only be delivered once after the first input event has occurred,

45

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

not subsequently while the user continues to touch the region. In this case,
setting the one-shot flag will ensure the desired behaviour.

The gesture can also be flagged as sticky. In this case, input events which
started the gesture will continue to be sent to the originating region, even if
they move outside of the region’s boundaries. The region can be said to capture
the identifiers of these input events, not only their locations. This prevents
gestures from stopping abruptly when the respective location events leave the
area where they started. This is a consequence of the previously described
dual, asynchronous representations of regions. Without this “stickiness”, the
region would have to be updated continually after every single event, thereby
creating excessive protocol traffic.

Finally, the gesture can have the default flag set. Should such a gesture be
received, its name and features will be added to the list of standard gestures
which can be accessed using only their name. This allows applications to reg-
ister their own custom gestures for reuse among several widgets or to overwrite
the definitions of the standard gestures given below.

Currently, 5 predefined standard gestures are available. These gestures and
their semantics are as follows:

tap - triggered once when a new input object appears within the region

release - triggered once when all input objects have left the region

move - sent continuously while the user moves the region

rotate - sent continuously while the user rotates the region

scale - sent continuously while the user scales the region

Note that the actual features which comprise these gestures are not given
here. The reason is that these features may differ significantly depending on
the sensor. For example, on a camera-based touchscreen, rotation can be
achieved by turning a single finger, whereas a capacitive sensor will require
at least two fingers rotating relative to each other. However, this is irrelevant
for the semantics of the resulting gesture - the intention of the user stays the
same. Therefore, the composition of these default gestures can be redefined
dynamically depending on the hardware used.

46

3.3. A FORMAL SPECIFICATION OF GESTURES

Features

As mentioned previously, gestures themselves are composed of features. Every
feature is a single, atomic property of all input events that have been captured
by a region. Examples for such properties are the average motion vector or the
total number of input objects. A feature can appear in one of two variants: as
a feature template when it is sent to the interpretation layer and as a feature
match when it is later sent back to the widget layer. Both variants never
appear as standalone entities, but only as components of a gesture.

By sending a gesture composed of one or more feature templates, the widget
layer specifies what properties the motion data must have in order to trigger
this gesture. When these conditions are later met, the actual values of these
properties are sent back within the gesture as feature matches.

A feature is described by a name, type flags, optional boundary values and
a result value. The name describes the specific kind of feature, i.e., which class
is responsible for handling the feature calculation. The type flags are similar
to those already described for regions. For every type of input object, one flag
is present. If this flag is set, then input events of this type are incorporated
into the feature calculation. While the flag settings on a region provide a first
high-level filter that determines which input events are captured at all, the
flags on each feature provide a more fine-granular control over which events
are actually used for calculating this specific feature.

Depending on the class of feature, one or more boundary values can be
given in a feature template that limit the value which the feature itself is al-
lowed to take. For example, a feature with a single numerical result can have
a lower and an upper boundary value. Note that the boundary values always
have the same type as the result value itself. After the value of a feature has
been calculated, it is checked against the boundary values if they are present.
Should the value of the feature fall within the specified range, the feature tem-
plate changes into a feature match which has a valid result value.

Features can be divided into two groups: single-match and multi-match.
Single-match features have a single result value for the entire region, such as
the average motion vector. Multi-match features, on the other hand, can have
several result values, usually up to one result per object inside the region. Why
is this distinction necessary? As an example, consider a hypothetical user in-
terface which should display a tile that can be moved by the user when touched
and dragged. Additionally, every single touch location on the tile should be

47

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

highlighted to provide additional visual feedback. For the motion information,
a gesture that contains a single-match feature providing the average motion
vector is sufficient. The individual motion vectors are not needed. However,
for displaying the touch locations, the individual coordinates have to be deliv-
ered. The respective gesture has to contain a multi-match feature representing
the object locations. Should this region be moved with, e.g. three fingers, then
every movement will trigger one motion event and three location events.

Conceptually, both types of features are used in exactly the same way; the
only difference is that a gesture which is composed of multi-match features can
be triggered several times within a single frame of sensor data. Note that while
mixing single- and multi-match features within a single gesture is possible, it
is unlikely to have the desired effect, as only one single result will be produced.

We will now briefly describe the currently available features.

Single-Match Features:

ObjectCount This feature counts the number of input events within the
current region. E.g., if the appropriate filters for finger objects are set
and the user touches the region with two fingers, this feature will have a
result value of 2. A lower and upper boundary value can be set.

Motion This feature simply averages all motion data which has passed the
filters and gives a relative motion vector as its result. Two boundary
vectors can be specified which describe an inner and outer bounding box
for the result vector. This can be used, e.g., to select only motions within
a certain speed range.

Rotation In this feature, the relative rotation of the input events with respect
to their starting position is calculated. This feature itself is a superclass
of two different kinds of sub-features. The first subfeature, MultiObjec-
tRotation, can only generate meaningful results with two or more input
objects and extracts the average relative rotation with respect to the
centroid of all event locations. The second subfeature, RelativeAxisRo-
tation, requires only one input object, but needs a sensor which is able to
capture at least the axes of the equivalent ellipse of the object. The av-
erage relative rotation of the major axes of all input objects is extracted.
In both cases, the result value is a relative rotation in radians which can
again be constrained by two boundary values that form lower and upper
limit.

48

3.3. A FORMAL SPECIFICATION OF GESTURES

Scale Similar to Rotation, this feature calculates the relative change in size
of the bounding box and has the corresponding scaling factor as a result.
This feature also has two optional boundary values which serve as lower
and upper limit.

Multi-Match Features:

ObjectID The results of this feature are the IDs of all input objects within
the region that have passed the filters. Two boundary values can again
be specified to constrain the results to a smaller subset of IDs, e.g., to
filter for specific tangible objects with previously known IDs.

ObjectParent This feature is similar to ObjectID, but returns the parent ID
of each input object instead of the object IDs themselves. To receive
both IDs for all objects, this feature can be paired with ObjectID in a
single gesture.

ObjectPos The results of this feature are the positions vectors of all input
objects. This feature currently does not have any additional boundary
conditions.

ObjectDim This feature has a special result type called dimensions. This is
similar to the shape descriptor used in LTP and gives an approximation
for the outline and orientation of an object through its equivalent ellipse.
Two optional dimension objects can be given as boundaries, specifying
upper and lower limits for each component of the shape descriptor. This
filter allows to select, e.g., only blobs of a certain size and height/width
ration.

ObjectGroup This feature generates a match for each subset of input objects
which can be grouped together in a circle of a specified radius. The result
is a vector containing the centroid of one group. Two boundary values
can be given, with the first component describing the minimum number
of objects and the second component determining the radius of the circle.

Examples

To give a better understanding of how these concepts work, the decomposi-
tion of some gestures into features shall now be discussed. The five standard
gestures mentioned previously can easily be mapped to a single feature each,
e.g., the “release” gesture consists of an ObjectCount feature with both lower

49

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

and upper boundary set to zero. As the one-shot flag of the gesture is also set,
this results in a single event as soon as the object count (e.g., finger contacts
inside the region) reaches zero.

Another important mapping is that of the “move”, “rotate” and “scale”
gestures which contain a single Motion, Rotation and Scale feature, respec-
tively. Note that a freely movable widget which uses all three gestures will
behave exactly as expected, even though the raw motion data is split into
three different entities. Consider, for example, rotating such a widget by keep-
ing one finger fixed at one corner and moving the opposing corner with a
second finger. In this case, the widget rotates around the fixed finger, thereby
seemingly contradicting the definition of the Rotation feature which delivers
rotation data relative to the centroid of the input events. However, as the
centroid of the input events itself also moves, the resulting motion events will
modify the widget’s location constantly to reflect the expected behaviour.

While a large number of interactions can already be modelled through single
features and carefully selected boundaries, combining several different features
significantly extends the coverage of the “gesture space”. For example, a user
interface might provide a special gesture which is only triggered when the users
quickly swipes five fingers across the screen. This can easily be described by
the combination of an ObjectCount feature with a lower boundary of five and
a Motion feature with a lower boundary equal to the desired minimum speed.

3.3.3 Gesture Description Protocol

Control Flow

In this section, the formal specification of the Gesture Description Protocol
(GDP) which is used between the two topmost layers shall now be detailed.
From a high-level point of view, the protocol flow follows the left side of the
diagram shown in figure 3.5. To provide a temporal context, relevant LTP
messages are also shown on the right side.

As mentioned previously, the top-level object used in this protocol is the
region which describes a screen area along with associated gestures. The life-
cycle of a region consists of five distinct stages which are also shown in figure
3.5.

Registration. When a new widget is added to the user interface, the widget
layer registers the corresponding region with the interpretation layer. A
unique, non-zero numerical identifier is sent along which will later be
used by both layers to refer to this region.

50

3.3. A FORMAL SPECIFICATION OF GESTURES

time time time

widget
layer

interpretation
layer

transformation
layer

GDP LTP

Register
region

Receive
events

Handle
new input

events

Modify
region

Remove
region

Figure 3.5: Protocol flow

Receiving continuous events. When input events arrive which fall within
the region and trigger a gesture, this event will be delivered to the wid-
get layer along with the identifier of the region. Depending on the type
of gesture, this event may be sent only once or continuously as long as
the relevant conditions are fulfilled. Note that if the gesture is flagged

51

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

as sticky, events will continue to be sent even if the input objects leave
the original boundaries of the region. This is especially important when
considering, e.g., movable widgets or generally widgets whose region may
change due to user interaction. Without use of the sticky flag, the re-
gion would have to be updated after every event, thereby leading to an
additional round trip between the two layers for every single event which
would significantly increase lag. When using the sticky flag, however,
even very fast user movements will continue to be delivered to the cor-
rect region without the need to send an updated region outline.

Reacting to new input data. While the previously described behaviour is
necessary to provide a smooth user experience, special handling is nec-
essary when a new input ID arrives. When a region is modified through
gestures as described in the previous step, the graphical representation
will already have adapted to the new conditions, while the region which
has been transferred to the interpretation layer still has the old position
and shape - the two layers are out of sync. This is not a problem as long
as no new input events arrive or only input events whose ID has already
been associated with a sticky gesture. However, if an input event with
a new, unassociated ID appears, the current locations of certain regions
need to be retrieved. Otherwise, the input event might miss the region
which it is destined for, as the stored position differs from the graphical
representation. To counter this problem, the interpretation layer sends a
message requesting updates for specific regions to the widget layer. An
update is requested for those regions which are flagged as volatile and
for those regions which contain one or more sticky gestures, as the two
representations for these kinds of regions may be out of sync.

Modifying a region. This step already appeared as part of the previous one,
but can also be triggered by the widget layer on its own. It is very similar
to the registration step with the only difference being that a previously
sent identifier is used again. The internal representation of this region
within the interpretation layer is then overwritten. This is useful, e.g., to
change the behaviour of a widget by registering a different set of gestures.
A variant of this step is to leave the region itself unchanged, but raise
it to the top of the region stack. Of course, this behaviour needs to be
mirrored by the graphical representation in the widget layer.

Removing a region. Again, this step is similar to the previous one. When a
widget is removed, its corresponding region can be unregistered with the

52

3.3. A FORMAL SPECIFICATION OF GESTURES

interpretation layer by updating the region to have no boundary points.
This empty region will not match any input events and can therefore be
removed altogether.

Protocol Specification

For describing the protocol itself, we will start with the smallest entity, the
feature, and construct the larger entities consecutively.

<feature> ::= <template> | <match>

<template> ::= <feature header> <type:boundary>*

<match> ::= <feature header>

<feature header> ::= <string:class> <int:has result>

<int:flags> <type:result>

<int:boundary count>

The class string specifies which type of feature is transmitted here. It
may contain one of the descriptors listed in section 3.3.2. Note that this also
implicitly defines which data type is used for the result and boundaries. The
next item, has result, describes whether this feature is a template (has result
= 0), i.e. a specification sent by the widget layer, or a match (has result = 1),
i.e. contains a result determined by the interpretation layer. After the result
marker, a bitfield of flags specifies which types of input objects this feature will
react to. This is followed by the result itself, which has a type that is deter-
mined by the feature class. If a template is transmitted, the result must still be
present, but will be discarded. The next item is boundary count, which spec-
ifies how many boundaries will now be transmitted. Finally, this is followed
by as many boundary values as determined by boundary count. However, this
is only the case for templates - matches never contain any boundary values,
as they have no meaning in this context. Therefore, matches and templates
share the same header up to the boundary list.

The next entity to be considered is the gesture, which is composed of fea-
tures. The specification is therefore quite straightforward:

<gesture> ::= <string:name> <int:flags>

<int:feature count> <feature>*

53

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

The name of the gesture can be freely chosen. However, if it matches
a predefined name such as one of those described in section 3.3.2, then the
feature count can be set to zero and the rest of the gesture specification will
be read from the pool of predefined gestures. In any other case, the flags field
first defines the behaviour of the gesture. It is composed of three flags: sticky,
one-shot and default, whose meaning has already been described previously.
Particularly if the default flag has been set, the gesture will also be added to
the pool of predefined gestures.

Finally, the feature count field specifies how many feature specifications
will follow. It is important to note that a gesture will always be sent back
to the containing region and that its specification is only valid in the context
of that region. Therefore, different gestures with the same name can exist in
different regions.

A gesture can be transferred in both directions, again either as template
or as match. The differentiation happens solely by transmitting the features
themselves either as templates or as matches. Note that mixing template and
match features within a single gesture will result in undefined behaviour.

Finally, we will now specify the region descriptor which is slightly more
complex, as a region consists of its own boundary as well as of a list of gestures.

<region> ::= <string:id> <int:flags>

<int:point count> <vector>*

<int:gesture count> <gesture>*

The first element of every region is a unique id which can be freely chosen
by the application. The same identifier will be later used to deliver gestures
to this region or to update its description. This identifier should follow the
usual C language conventions, i.e. contain no spaces or special characters.
The following flags parameter determines which types of input objects this
region is sensitive to, as well as whether the region is marked as volatile, i.e.
may change without user input. Afterwards, the region itself is specified as a
list of point count vectors which describe a polygon. The last point in the
list is assumed to be connected to the first one, thereby always resulting in
a closed polygon. Specifying a self-intersecting polygon is not supported and
may result in undefined behaviour. Finally, the gestures for this region are
specified in the same manner, as a list with gesture count elements.

Note that when a region is registered for the first time, it is inserted at the
top of the region list and is therefore the first one to be checked for matches

54

3.3. A FORMAL SPECIFICATION OF GESTURES

with input data. Consequently, regions which are registered later may partially
or completely cover the previous region. Depending on the users’ interactions,
it may later be necessary to raise certain obscured regions to the top again.
This can be achieved by sending the corresponding message followed by the
identifier of a region which will be moved to the top of the region list.

After all building blocks of the protocol have been described, the global
protocol specification shall now be given. This includes messages from the
widget layer (client) to the interpretation layer (server) as well as in the op-
posite direction. Usually, one gesture recognition task will continuously run
on an interactive surface while several different client applications sequentially
connect to this server.

<client message> ::= <region msg> | <raise msg> | <quit msg>

<region msg> ::= ’region’ <region>

<raise msg> ::= ’raise’ <string:id>

<quit msg> ::= ’bye’

<server message> ::= <update> | <event>

<update> ::= ’update’ <string:id>

<event> ::= ’gesture’ <string:id> <gesture>

The client mainly sends two messages with the purpose to modify the
server’s copy of the currently active regions. For creating a new region or
modifying an existing one, the string ’region’ is prepended to the region
descriptor itself to uniquely identify the kind of message. The second type of
message consists of the string ’raise’ followed by a region identifier. Should
a region with this identifier have been registered at the server, it becomes the
topmost one. The client can also send a message (’bye’) indicating its ter-
mination, which will cause the server to erase all regions and wait for a new
client connection.

On the other hand, the server can send two different types of messages. The
update message requests an update of the region with the specified identifier
from the client, while the event message delivers a recognised gesture to one
of the client’s regions which is also named in the message.

Note that while this protocol does not provide explicit support for multi-
ple clients, this can nevertheless be easily achieved by, e.g., utilising several
separate protocol channels such as network streams.

55

CHAPTER 3. A LAYERED ARCHITECTURE FOR INTERACTION

Summary

In this chapter, the fundamental design of our interaction architecture has been
presented. The concepts used for modelling interaction have been presented
as well as the four layers derived from these concepts. Moreover, a formal
specification for gestures has been introduced as well as the communication
protocols which are used between the layers.

56

Chapter 4

Sensor Hardware

In this chapter, the various types of input hardware which have been developed
or extended during the course of this thesis will be discussed. First, some
fundamental techniques which are applicable to several different setups will be
presented. In the following sections, the hardware systems themselves shall be
discussed.

4.1 Fundamental Techniques

As mentioned previously, an input device requires some sort of physical sensor
which gathers data on the users’ actions. When reviewing the related work,
it becomes apparent that currently optical sensors, i.e. cameras, are the most
common type used for input devices. As cameras have a multitude of other
applications, especially in industrial settings, there are some techniques re-
garding their application which have been extensively used in such industrial
vision scenarios. However, these methods have rarely been published in a sci-
entific context. We will therefore review them here instead of in the section
on related work.

4.1.1 Synchronised Active Illumination

A significant problem in many machine vision setups is stray light, i.e. light
which reaches the camera but does not originate from the objects which the
system is designed to detect. Depending on the intensity, this can lead to false-
positive detection by creating ghost objects in the image or to false negatives
by obscuring the objects themselves. The two main sources of stray light are

57

CHAPTER 4. SENSOR HARDWARE

the sun and ceiling lamps. While direct sunlight is not relevant in most cases,
even ambient daylight on cloudy days may prove to be problematic.

From an abstract point of view, the solution to this problem is to provide
illumination for the relevant objects which is continuously more intensive than
the rest of the scene, i.e. has a high contrast with respect to the background.
However, this proves to be quite difficult at times, as many environments have
highly variable lighting intensity. The most obvious approach is to use high-
intensity light sources to illuminate the scene while at the same time adjusting
the camera sensitivity accordingly. As visible light of high brightness may be
distracting or even dangerous to the human eye, light sources in the near-
infrared spectrum of 800 nm - 900 nm wavelength are usually used in such a
scenario. Unfortunately, almost all sources of stray light mentioned above have
very broad emission spectra which include the near-infrared range. Therefore,
high-intensity lighting can only alleviate, but not solve the problem altogether.
Moreover, there is an upper limit to the brightness which can be achieved with
external lighting, as infrared light of very high intensity can still cause damage
to the human eye.

A more subtle approach to this problem is that of modulated light [105].
In most cases, the light source which is used in the system to illuminate the
relevant objects is composed of LEDs. These have several advantages, such
as a clearly defined emission spectrum, high durability and low waste heat
generation. Another property of LEDs is that they can be operated in a
pulsed mode. While the easiest and most straightforward method is to power
them with a constant current according to their specification, there is also
the option of applying high currents for short periods of time and letting the
LEDs cool off afterwards. By repeating this process fast enough, a seemingly
constant light output of equal intensity to the continuous operating mode can
be achieved.

It is important to note that during the pulses, the current as well as the
intensity of the emitted light can be approximately one order of magnitude
higher than during normal operation. This fact can now be exploited to in-
crease overall contrast by modifying the camera exposure time.

In figure 4.1, three possible variants of illuminating a scene are presented.
Ambient light intensity is shown in blue, while the intensity of the active light
sources is shown in red. The curves are not to scale.

In the first case, which has been described above, the active illumination
is powered constantly. While it is usually brighter than the ambient light, the
total contrast is still low. As the camera integrates all light hitting the sensor

58

4.1. FUNDAMENTAL TECHNIQUES

ambient light
IR light from LEDs

time

int.
camera exposure

time

int.
camera exposure

time

int.
camera exposure

Mode 1: continuous operation

Mode 2: multiple pulses

Mode 3: single pulse

Figure 4.1: Active illumination modes

during the exposure time, the contrast is the relative difference between the
integrals of the respective light intensity over time.

In the second case, the active light source is now operating in pulsed mode.
The peak intensity is significantly higher than in the first case. However, due
to the unavoidable cool-down phase in between the pulses, the integral over
the entire exposure time does not change significantly relative to the first case.
Therefore, the overall contrast is still not noticeably better.

The third case now circumvents this problem by applying two modifica-

59

CHAPTER 4. SENSOR HARDWARE

tions [25]. First, the pulsed light source is now synchronised to the camera so
that a pulse occurs at the start of exposure of every frame. Second, the cam-
era exposure time is set to the same duration as a pulse, thereby integrating
light only during this short period. However, as the active light source is up
to one order of magnitude brighter at this point, the contrast also increases
dramatically. Special care must be taken to avoid other sources of errors such
as reflections, as the very high relative brightness from the active light sources
can easily flood the camera sensor, making correct object detection difficult.

Figure 4.2: Continuous vs. synchronised illumination

Figure 4.2 illustrates the effectiveness of this method. Both sides of the
image show the same scene, an LED which is viewed head-on by the camera.
On the left side, the LED is powered continuously. The brightness value of
the LED itself is 255 which is also the maximum. The average brightness
value of the background is approximately 160. Assuming that the LED itself
is the foreground object to be detected, this results in a contrast of 1 : 1.6.
On the right side, the LED is pulsed and synchronised to the camera. The
foreground brightness is still 255, while the background brightness has dropped
to approximately 20, resulting in a contrast of 1 : 12.8. Although the exact
contrast ratio can not be determined from this example, as the illuminated
pixels are saturated in both cases, it can safely be concluded that the contrast
can be increased at least by a factor of eight (r = 12.8/1.6 = 8.0).

When implementing such a setup, an important additional aspect needs
to be considered, as the maximum achievable framerate is influenced by the
cool-down duration for the LEDs. As it is desirable to maximise LED current
as well as pulse duration to achieve the best contrast possible, the cool-down
time also increases. However, the summed duration of pulse and cool-down
phase must not exceed the time needed for acquisition of one frame, i.e. the
inverse of the framerate. To balance these two opposing factors, the datasheet

60

4.1. FUNDAMENTAL TECHNIQUES

for the specific type of LED which is used has to be consulted.

Figure 4.3: LED pulse capacity diagram (image from [91])

In figure 4.3, an excerpt from the datasheet [91] for Osram SFH4250 LEDs
is shown. Each curve represents one possible ratio between pulse and cool-
down duration, usually called duty cycle. In many setups, a pulse current of 1
Ampere is used, which is also highlighted in the diagram. Assume a frame rate
of f = 60Hz. Therefore, one full pulse/cool-down cycle must have a duration
of Dmax = 1

f
= 16.67 ms. Now, the total cycle duration has to be calculated

based on the duty cycle for each curve and the allowed pulse duration at a
current of 1 A. For example, at a duty cycle of 3.3 %, the pulse duration is
approximately tP = 120µs for a total cycle duration of D = 3.6ms. At a ratio
of 1 % with a pulse duration of tP = 250 µs, the total duration already rises
to D = 25ms > Dmax, which is too long. Therefore, a duty cycle of 2 % is the
appropriate choice with a pulse duration of tP = 200 µs and a total duration

61

CHAPTER 4. SENSOR HARDWARE

of D = 10ms, which still offers a comfortable safety margin.

When selecting a camera for use in such a setup, it is important to choose
a model which is able to provide such short exposure times on the order of
100 microseconds. Moreover, the camera needs to use a global shutter which
captures all image pixels at the same time, as synchronisation would otherwise
not be possible. A synchronisation output is also necessary.

As an experiment, a common webcam (Logitech Quickcam 5000) was mod-
ified with such an output. On the main controller chip, an output pin carrying
a line-sync signal was identified using an oscilloscope. This signal was filtered
using an LM1881 sync separator integrated circuit (IC) to obtain a frame-sync
signal. Unfortunately, even extensive tuning of the LED timing relative to the
frame signal did not yield satisfactory results, as this webcam uses a rolling
shutter which sequentially captures each image line. It is therefore safe to
conclude that common webcams can not be used in conjunction with synchro-
nised illumination, as they usually lack the required global shutter and precise
exposure controls as well as synchronisation connectors.

Instead, an industrial-grade camera should be selected, preferably one
which can be controlled according to the IIDC standard [58] due to its broad
software support. A well-suited and relatively affordable example is the Firefly
MV from Point Grey Research [94].

Figure 4.4: LED control circuit

62

4.1. FUNDAMENTAL TECHNIQUES

A practical issue which also has to be addressed is how to synchronise the
LEDs to the camera. While most industrial cameras have a highly config-
urable synchronisation output which offers a start-of-frame signal, this output
is unsuitable for driving high-powered LEDs directly. Therefore, an additional
power switching element has to be added. As this power switch will be in-
terfaced to a digital output, a logic-level field effect transistor (FET) is an
appropriate choice. One suitable example is the IRF512 [34]. While it is en-
tirely possible to simply connect the FET to the camera output and use it
to directly switch the LEDs, this approach is somewhat error-prone. For ex-
ample, it is not possible to predict what state the synchronisation output will
have while the camera is not capturing images - this is entirely dependent on
the camera model. Should the output be continuously active in this case, then
the LEDs will also continuously be powered at high current without the neces-
sary cool-down pauses. This will quickly lead to overheating and permanently
damage the light source.

In figure 4.4, an extended version of the LED control circuit is shown. While
the FET mentioned previously is still used to switch the LEDs, it now is not
directly connected to the camera anymore. Instead, a microcontroller has been
added as an additional control instance which prevents the LEDs from being
powered continuously regardless of the camera output. As an additional safety
measure, a fuse has been inserted in series with the LEDs. The rating of this
fuse should be selected so that it will immediately blow at the current which
flows through the LEDs. While this may sound counterintuitive at first, the
fuse will not trigger during normal operation, as the pulses of few hundreds of
microseconds are too short to actually trip the fuse. However, should all other
safety measures fail, the continuous current will blow the fuse before the LEDs
can suffer permanent damage. For reasons of convenience, it is advisable to
select a so-called polyfuse which will reset itself after the voltage supply has
been turned off [52].

The control IC shown in the above circuit is an ATtiny13 microcontroller
[3]. While this IC adds some complexity to the setup, it is nevertheless nec-
essary due to its real-time capabilities which are usually not provided by off-
the-shelf hard- and software. When a trigger pulse arrives from the camera,
the LEDs should be activated with as little delay as possible. After the calcu-
lated pulse duration, they should be disabled again regardless of any external
signals. Moreover, the controller should not allow reactivation before the cool-
down period has passed. As these requirements are difficult to realise with
non-programmable logic such as a 555 timer [115], a microcontroller is the
appropriate choice. While this IC requires a programming device to load its

63

CHAPTER 4. SENSOR HARDWARE

firmware, this step is only necessary once during setup. An example firmware
for this type of controller is described in appendix A.2.

4.1.2 Interleaving Disjoint Light Sources

A second technique which can be employed in the context of infrared sensing
is that of interleaving several spatially disjoint light sources. Depending on the
setup, different types of visual information may be captured best by different
types of illumination. However, the approach of combining several conceptu-
ally different light sources to illuminate the setup poses a problem, as the light
sources are likely to interfere with each other. Light from source A may very
well appear as unwanted stray light when trying to capture light from source B.

One approach to solving this problem is to separate the light optically.
For example, infrared LEDs with different emission spectra could be used for
the different light sources. Narrow-band filters in front of each camera could
specifically select the light which one camera is sensitive to. However, this
solution has two drawbacks. First, optical narrow-band filters are difficult to
create and usually do not achieve acceptable transmission ratios. Second, this
approach requires one single camera for each light source, thereby increasing
cost as well as complexity. This approach is therefore only suitable when
several cameras are required from the start.

A different, more flexible solution is to interleave the light sources over two
or more camera frames. If a synchronisation circuit like the one described in
the previous section is available, this approach requires almost no additional
hardware. When only one single light source is active during a given camera
frame, no interference is possible. Moreover, this solution is usable with only a
single camera as opposed to the previous one. When several cameras are used,
care should be taken to interleave the camera frames themselves over time,
i.e. only one camera is capturing an image at any given moment. Otherwise,
interference would again occur. This method has only one drawback when
using a single camera, as the effective framerate is reduced in this case and
results from the raw framerate divided by the number of disjoint light sources.

When using the circuit described above, it is sufficient to replicate only
the part consisting of FET, fuse and LEDs for each light source and connect
it to one microcontroller output pin each. By counting the input pulses and
thereby the camera frames in the controller firmware, it is possible to enable
one from n sets of LEDs for every n-th frame.

64

4.1. FUNDAMENTAL TECHNIQUES

An extended variant of this method is available when using a camera which
is capable of high dynamic range (HDR) imaging. Such cameras can store two
or more sets of settings such as exposure time, gain value etc. and automat-
ically switch between them after a frame has been captured. This results in
two or more consecutive images which have been captured with completely
different settings. When using only one active light source, an example for
this method would be to use odd frames with very short exposure times to
specifically capture the synchronised illumination, e.g. from an FTIR screen,
and to use even frames with normal exposure times to capture an image of
the scene as it appears to the naked eye. The odd frames can then be used
to detect touch events while the even frames can be used for tracking of fidu-
cial markers. When the camera offers a sufficiently high framerate, the HDR
mode can therefore be employed to support two completely different modes of
tracking with a single camera. Two consecutive raw images which have been
taken with a Point Grey Dragonfly2 in HDR mode are shown in figure 4.5. For
the image on the left side, the camera parameters are tuned to reception of
light from pulsed infrared LEDs as described above. The LEDs themselves are
clearly visible around the display’s rim. For the right-hand image, the camera
parameters are adjusted to their default settings to capture an image using
the ambient light in the room.

Figure 4.5: Two consecutive images taken with an HDR camera

4.1.3 Using LEDs as Sensors

In all methods described up to this point, LEDs have exclusively been used as
light sources, i.e. emitters. However, LEDs offer the additional functionality
of also being able to function as light sensors. The reason for this behaviour
is that from a purely semiconductor-centric viewpoint, an LED does not differ

65

CHAPTER 4. SENSOR HARDWARE

from a photodiode which is usually employed as a discrete light sensor. While
the photodiode is optimised for reception and the LED for emission of light,
both types of component can fulfil both roles. Although this capability has
been described as early as 1973 [85], it is not widely known.

emission reverse-bias measurement

_

+

µC

+

_

µC

in

_

µC

Figure 4.6: LED modes of operation

One big advantage of this method is that the same LED can now be used
alternately as sensor and emitter. Usually, an LED is connected in conducting
direction to a current source which causes it to emit light. In order to sense
light instead, two possible methods exist. The first one [95] is to connect
the LED to an analog measurement device such as an analog input pin on
a microcontroller and directly measure the photocurrent. While this is the
most precise method, it quickly requires additional circuit components such
as a dedicated analog-digital conversion IC for larger numbers of LEDs and
therefore may be quite complex to implement. The second method [16] is to
just connect the LED between two digital input-output pins. This allows to
drive the LED normally for emitting light, but also to reverse-bias it. Under
reverse voltage, the LED behaves as a tiny capacitor and stores a small charge,
but does not conduct current. When the supply pin is now switched to input
mode, this virtual capacitance discharges through the input pin (see figure
4.6). The amount of incident light has an approximately linear influence on
the discharge speed, and therefore also on the time until the voltage at the
input drops below the trigger threshold. Through appropriate wiring, it is
even possible to use off-the-shelf LED matrices alternately as emitter array or
as sensor array [56].

66

4.2. INTERACTIVE SURFACES

4.2 Interactive Surfaces

In this section, we shall now look at the hardware implementations of the
previously mentioned concepts, particularly those which are aimed towards
flat horizontal displays. These setups are usually called tabletop interfaces.

4.2.1 TISCH

The central hardware device which this thesis was started upon is called Tan-
gible Interactive Surface for Collaboration between Humans (TISCH).

(a) TISCH hardware diagram (b) TISCH with two users

Figure 4.7: Overview of TISCH

The hardware configuration of TISCH is shown in figure 4.7(a). The core
element is a frosted-glass table from Ikea which acts as projection surface and
main structural element. The table is mounted to a frame constructed from
Isel aluminium profiles. On top of the frosted-glass table, a second sheet made
of 8 mm acrylic glass has been placed. On its rim, this outer surface carries
70 Osram SFH4250 infrared LEDs which enable it to function as an FTIR-
based touch detector (see also section 2.2.4). Two mirrors underneath the
table provide the necessary optical path length which the projector as well as

67

CHAPTER 4. SENSOR HARDWARE

the infrared camera require to view the entire surface. The projector (InFocus
LP290) displays a maximum of 1024x768 pixels, while the camera (Point Grey
Firefly MV) has a sensor size of 720x576 pixels. The interactive surface covers
an area of approximately 1.1 m x 0.7 m and is situated at a height of about
0.9 m. These values result in a sensor resolution of about 15 DPI and in a
display resolution of about 25 DPI. It can be comfortably operated by one or
more persons standing beside the table. An example is shown in figure 4.7(b).
As the interior offers additional space next to the mirrors, the computer as
well as the power supply and control electronics can be placed here, creating a
completely self-contained system which is protected by side panels. Moreover,
the entire frame has been mounted on four wheels, thereby enabling the entire
setup to be easily moved to another location.

Shadow Tracker

An additional feature of TISCH besides the FTIR-based multi-touch sensor is
the shadow tracker [21]. On the ceiling above the device, a second infrared
light source has been mounted which uniformly illuminates the table surface.
Any opaque object on the surface will now cast a clearly defined shadow on
the projection screen which can also be detected by the same camera. This
second light source is interleaved with the FTIR sensor as described in section
4.1.2. Both sets of LEDs are also pulsed through a control circuit to increase
contrast. This is especially important in the lab environment in which TISCH
is situated, as it exhibits highly variable lighting conditions.

One application of this setup is the differentiation between contacts from
fingers which belong to the same hand. As these contact points appear below
the same shadow in most cases, they can now be grouped together. Moreover,
this method now enables the system to identify objects on the surface which
do not trigger a response from the FTIR sensor, such as tangible interface
elements or mobile devices.

The design of the secondary light source proved to contain some unexpected
challenges. At first glance, the obvious choice for creating clearly defined
shadows would have been a point light source. Two options were evaluated,
both of which are shown in figure 4.8. The first one is composed of 15 SMD
LEDs mounted on a regular circuit board, while the second one is composed
of 16 5 mm LEDs arranged in a radial pattern on a spherical surface.

68

4.2. INTERACTIVE SURFACES

(a) with SMD LEDs (b) with 5 mm LEDs

Figure 4.8: Point light sources

Figure 4.9: Reflection of incident light

Surprisingly, both of these light sources illuminated only a small circular
region directly beneath the light source itself. While the desired clear shadows
were visible in this region, the lack of illumination in the outer areas proved this
setup to be unsuitable. The reason for this effect is that light from outside
has to pass a total of four material-air interfaces (see figure 4.9). If each
layer reflects only 15% of incoming light (a conservative assumption), the total
intensity arriving at the camera already drops to approximately (1− 0.15)4 ≈
52% of emitted light. The reflected percentage increases with decreasing angle
of incidence according to Fresnel’s equations (see [43]). Below the critical angle

69

CHAPTER 4. SENSOR HARDWARE

of approximately 41◦, the light transmission even drops to zero. This is simply
because at this angle, total reflection starts to occur and all light is captured
in the upper plate.

Figure 4.10: Overhead light source (LEDs highlighted)

Due to this effect, it was necessary to redesign the overhead light source in
such a way that the incident rays hit the table surface at an angle close to 90◦.
Therefore, the third and final iteration of this light source now consists of an
array of 28 narrow-beam infrared LEDs (Osram SFH485) that are arranged
in a regular grid of 4x7 elements at a distance of approximately 25 cm each
(shown in figure 4.10. As the grid is suspended from the ceiling at a distance
to the table surface of about 1.5 m, the light cones overlap slightly on the
table surface, thereby creating an almost parallel field of light. While the
illumination is now sufficiently uniform, the system still has two drawbacks.
First, the ceiling-mounted component requires the interactive table itself to be
placed at a fixed spot, rendering it immobile for as long as the shadow tracker
is supposed to be used. Second, persons bending over the table are likely to
also generate shadows with their heads and upper bodies, which are usually
not supposed to be tracked.

70

4.2. INTERACTIVE SURFACES

“Diffuse Illumination” Modification

These two aforementioned drawbacks suggest a modification to the setup. By
moving the secondary light source below the table surface, both of these disad-
vantages can be remedied. This method is often called “diffuse illumination”
(see also section 2.2.4). As the light grid setup from the previous approach
would intersect the projector’s light path, a slightly different design is needed.
Two spotlights consisting of 16 LEDs each (Osram SFH485) have been placed
within the table on opposing sides, thereby uniformly illuminating the projec-
tion surface from below. Similar to the first approach, these LEDs are also
interleaved with the touch-detecting LEDs in the acrylic surface plate to avoid
interference.

An additional feature of this approach is that fiducial markers which have
been placed face-down on the surface are now visible to the camera and can be
tracked. One drawback of this approach, however, is that certain dark materi-
als absorb enough infrared light to remain invisible to the camera. Neverthe-
less, the advantages with respect to the shadow-tracking approach outweigh
this shortcoming. An image of one light source is shown in figure 4.11.

Figure 4.11: Light source for diffuse illumination

While this light source is quite similar to the point light source discussed
above, the reflection properties of the surface differ significantly depending on
whether the light comes from above or from below. Although this type of
light source was unsuitable for shadow tracking, it can easily be used in this
application.

In figure 4.12, the thresholded (top) and denoised (bottom) images from
two objects on the surface are shown. The user’s hand is clearly visible, also

71

CHAPTER 4. SENSOR HARDWARE

the fiducial marker. Note that this marker with a physical size of 6 x 6 cm is
already below the threshold where the code can be reliably detected. This is
due to diffusion caused by the projection surface. The marker in its entirety
can still be tracked.

Figure 4.12: Objects captured by diffuse illumination before and after noise
filtering

4.2.2 MiniTISCH

While the previous, projection-based approach has various advantages such as
image size and brightness, it may not be the ideal solution for some applica-
tions. When requirements such as high resolution or a small, compact device
are given, LCD screens often are superior to projectors. In the current con-
text of interactive surfaces, this choice of display type raises the question of
detecting touches on such a screen.

As it turns out, LCDs are mostly transparent to infrared light. The “light
valves” which compose red, green and blue pixels on this kind of display are
equipped with coloured filters that allow only one primary colour to pass

72

4.2. INTERACTIVE SURFACES

through. However, blocking non-visible wavelengths such as infrared or ul-
traviolet light would be unnecessary or even detrimental from an engineering
perspective, as the increase in absorbed energy might decrease the panel’s life-
time. Therefore, regardless of its display state, an LCD allows a significant
portion of infrared light to pass through, much like the projection surface from
the previous section.

The fact that LCD panels do not block IR light can now easily be exploited
to convert such a panel to a touchscreen in a way which is very similar to the
projector-based approach. An FTIR surface consisting of a 5 mm acrylic plate
with 40 Osram SFH4250 LEDs is placed in front of the panel whose infrared
emissions are again captured by a rear-mounted camera. This comes at the cost
of added depth of the entire setup, as the camera requires a minimum distance
from the front to be able to capture the entire surface. One additional challenge
in this context is the backlight. In most cases, the backlight is a thick plate
of acrylic glass behind the screen which has a white, opaque diffuser on the
rear and two or more cold-cathode fluorescent lights at the sides. Especially
due to the diffuser, the backlight is not transparent to infrared light. As
the backlight is a crucial component without which an LCD cannot function
properly, a replacement has to be found.

acrylic glass
LCD panel
tracing paper

infrared LEDs

camera

fluorescent
bulbs

power supply

case

(a) Schematic view (b) Displaying a Sudoku game

Figure 4.13: MiniTISCH

One possible solution would be replacing the diffuser with a material which
is opaque to visible light, but transparent to infrared light. While such mate-
rials exist, they are very expensive and usually not available in a form which
is easily applicable in this context, such as a thin film. A different, easier so-
lution is therefore to simply move the backlight backwards so that it is at the

73

CHAPTER 4. SENSOR HARDWARE

same distance from the screen as the camera and does not block the infrared
light from the FTIR surface. In the current setup, the original backlight was
replaced by four energy-saving light bulbs which are arranged symmetrically
around the camera. The diffuser was replaced by a sheet of tracing paper
which evenly distributes light from the bulbs while still allowing the FTIR
response to be visible. The acrylic distribution plate was removed altogether.
In figure 4.13, the entire setup is shown.

As the energy-saving bulbs still emit a significant amount of infrared light,
a synchronisation/pulsing circuit again needs to be employed to achieve suf-
ficient contrast. Even though the camera itself is equipped with an infrared
band-pass filter, the backlight would otherwise still outshine the response from
the FTIR screen. Another aspect which needs to be carefully considered is the
choice of LCD screen for this approach. Many such displays contain a con-
troller circuit which is directly attached to the panel itself through a flexible
flat cable that runs along the entire width of the display. In a normal assem-
bly, this circuit is folded around the backlight and rests on the rear side of the
display. To give the camera an unobstructed view of the panel’s rear, however,
this circuit has to be moved out of the way. As this is not easily possible
with all LCD models, some experimentation may be needed to find a suitable
device. In this setup, a BenQ FP757 17 inch monitor was disassembled to
retrieve the panel and controller circuit.1 This screen offers a maximum of
1280x1024 pixels, therefore providing a display resolution of about 95 DPI. A
Point Grey Firefly MV with a sensor size of 720x576 pixels was again used as
camera, resulting in a sensor resolution of approximately 50 DPI.

With this setup, it seems also possible at first glance to add a second in-
ternal light source for diffuse illumination. Due to the portable nature of the
device, a shadow-tracking approach with an external infrared emitter is im-
practical. However, an evaluation with two different secondary light sources
has shown that the reflective properties of the combined LCD screen and trac-
ing paper make detection of reflected light from objects on the outer side of the
display surface almost impossible. In both variants (15 wide-angle LEDs or 16
narrow-angle LEDs), the vast majority of the light was immediately scattered
back towards the camera, outshining any additional reflection from external
objects.

1An internet community which focuses on constructing video projectors from LCD screens
also offers information on which models are easy to disassemble and “unfold” [80].

74

4.2. INTERACTIVE SURFACES

One method to counter these problems would be to switch to a camera
which offers HDR functionality. This would allow to alternate between odd
frames with active FTIR light source for touch detection and even frames with
long exposure times for shadow tracking with ambient light. Unfortunately,
the currently mounted camera does not offer this option.

4.2.3 SiViT

The Siemens Virtual Touchscreen (SiViT) is another kind of input device which
seems quite different from the previously described ones at first glance. This
commercial system was designed to be deployed in public settings like train
stations where it may be subjected to dust, vibrations, vandalism and other
harsh environmental conditions. Therefore, its main structural element is a
massive steel column at the top of which a metal box containing all electronic
components is mounted. Below, a table made from particle board acts as
projection and interaction surface. As all sensitive devices are out of reach of
the user, the setup is quite robust.

The device compartment contains a projector, computer, infrared camera
and two high-powered infrared spotlights. The camera as well as the projector
are focused on the table. As its white surface reflects a large amount of infrared
light, most objects above the table such as a user’s hand appear darker than the
background. In the original setup, the user could control the mouse pointer of
a standard Windows installation by using a single outstretched finger. A click
could be triggered by keeping the hand still for a short while. However, this
system was primarily designed to use a single pointer with legacy applications.

We have updated the system, which was originally built around 1999 [106],
with a recent computer and software [18]. In particular, we added a small
hardware modification to allow more natural interaction while not compro-
mising the system’s ruggedness. Two piezo-electric microphones were added
underneath the projection surface to detect sounds, thereby allowing the user
to activate objects by tapping or knocking them as on a touchscreen. To keep
the additional hardware’s complexity small, only two microphones were used
which can be directly connected to a standard computer’s audio input. How-
ever, this introduces the drawback that the location of a sound on the surface
can not be located exactly, but only up to a hyperbolic curve. Therefore, it is
necessary to correlate this information with the optical tracking to achieve an
accurate estimation of an interaction.

One drawback of the current setup is that even when taking the optical
tracking data into account, the accuracy still is only approximately 15 - 20 cm.

75

CHAPTER 4. SENSOR HARDWARE

case
projector
camera

IR spotlight

steel
column

interaction
surface

stand

(a) Schematic view (b) SiViT

(c) Using a web browser

Figure 4.14: Siemens Virtual Touchscreen

One reason for this low precision may be the composition of the particle board
surface from compressed wood shavings. As the internal structure is highly
random, reflections and multi-path propagation of sound waves within the
material are unpredictable. While the raw sound data is processed by the gen-
eralized cross correlation with phase transformation (GCCPHAT) algorithm
which is designed to counter such effects, a more homogeneous material might
still offer significant improvement.

4.2.4 FlatTouch

As described earlier, projector-based multi-touch interfaces usually require sig-
nificant space behind the display. While sensor solutions for flatscreens exist,

76

4.2. INTERACTIVE SURFACES

they are usually either quite expensive or require significant re-engineering
of the display panel. But there are other options worth exploring. In this
approach, an FTIR sensing surface is put in front of a regular, unmodified
flatscreen display. An infrared camera which views the screen from the same
side as the user is attached to the display in an off-centre position to keep in-
terference with the users’ actions to a minimum. By synchronising the FTIR
light source with the camera, a sufficiently high contrast can be achieved to
capture infrared light shining through the user’s finger upon surface contact.
Such a system in use can be seen in figure 4.16(b).

Theory of Operation

When changing to a more abstract point of view for a moment, it becomes
apparent that a finger touching an FTIR surface is simply lit from below.
However, a human finger is far from being completely opaque, as a short ex-
periment with a flashlight can easily show. In particular, it allows partial
transmission of the red and infrared parts of the light spectrum. This prop-
erty is sometimes being used in heart rate sensors which are clipped to the
finger tip and measure the transmission intensity of infrared light. Due to this
effect, some of the infrared light hitting the finger through the FTIR surface
will also radiate outwards. Moreover, a fraction of the light reflected down-
wards will be reflected a second time on the display surface, thereby creating
a halo of infrared light around the contact point. These effects are illustrated
in figure 4.15.

camera

finger

LED acrylic glass

LCD panel

Figure 4.15: Inverted FTIR

77

CHAPTER 4. SENSOR HARDWARE

These various paths emit light towards the user which can now be sensed
by an infrared camera placed on the front side of the display. As the intensity
of the light reflected towards the outside is lower than that reflected towards
the display, special care must be taken to achieve a high contrast with respect
to stray light such as the infrared emissions from the LCD backlight.

Hardware Setup

For evaluation of this approach, a 42 inch LCD television screen from LG was
chosen. This display supports full high definition (HD) resolution of 1920 x
1080 pixels and offers a maximum brightness of 500 cd/m2, which is appro-
priate for most indoor conditions. After temporarily removing the front bezel,
a 5 mm acrylic plate was inserted in front of the panel. The plate is held
in place by the reattached front cover and also provides additional protection
for the LCD panel. On the rim of this acrylic plate, 150 high-powered in-
frared LEDs (Osram SFH4650) with an emission wavelength of 850nm have
been attached with instant glue. These LEDs are organised in 30 groups of
5 diodes each. Within each group, the LEDs are connected in series, whereas
the groups themselves are wired in parallel to a 12V power supply through
a switching circuit. This circuit pulses the LEDs in sync with the camera’s
shutter as described in section 4.1.1. The camera used in this setup is a Point
Grey Dragonfly 2 with a resolution of 1024 x 768 pixels running at a frame rate
of 30 Hz. The camera is equipped with an infrared low-pass filter to block all
interference from visible light, particularly from the screen content. A diagram
of the entire setup is shown in figure 4.16(a).

The correct placement of the camera is of particular importance. By us-
ing a fish-eye lens with a focal length of 2.5 mm, the camera can be moved
close to the screen while still being able to view the entire surface. However,
care must be taken not to position the camera in such a way that the user is
hindered. For a vertical display, attaching the camera to a short beam above
the user’s head is the most suitable solution. In case of a horizontal display,
the best position for the camera would likely be centred above the surface to
avoid blocking one side of the display. However, this may require attaching
the camera to the ceiling, as the mounting beam might otherwise still interfere
with the user’s movement.

A sample raw image from the camera is shown in figure 4.17. The halos
around the three fingers touching the surface are clearly visible, also the in-
creased brightness of the fingertips themselves. Although this image is similar

78

4.2. INTERACTIVE SURFACES

camera
mounting bracket

infrared LEDs
acrylic glass

LCD panel
electronics

rear case
front bezel

(a) Schematic view (b) FlatTouch in use

Figure 4.16: FlatTouch

to that taken from the backside of an FTIR surface, there are some important
differences. In FTIR setups, the bright blobs resulting from surface contacts
usually reach maximum intensity near their centre while gradually getting
darker towards the border of the contact area. With this setup, the bright-
ness distribution is less clearly defined. In most cases, a contact results in two
bright stripes to the left and right of the finger with a slightly darker area (the
finger itself) in-between.

Figure 4.17: Touching the surface with three fingers

When applying the usual image processing steps such as background sub-

79

CHAPTER 4. SENSOR HARDWARE

traction, thresholding, denoising and connected-component analysis to such an
image, this will usually result in the two bright stripes besides the finger being
detected as blobs which move and rotate in parallel. This data can directly be
delivered as input events and will produce the expected results in most cases
despite generating two blobs per contact point. As turning the finger rotates
the blobs with respect to each other, even single-fingered rotation is possible
up to a certain point. Depending on the camera location and angle, however,
this may at some point lead to occlusion of one blob by the finger itself.

An important observation in this context was that the backlight of the
LCD panel may interfere with the touch detection under some circumstances,
as the fluorescent tubes which are usually employed emit significant amounts
of infrared light. While the backlight does reduce the contrast between back-
ground image and touching fingers, this does not pose a problem as the LED
pulsing method still produces sufficiently high contrast.

However, some LCDs offer the ability to regulate the brightness of the
backlight. This is achieved through pulse-width modulation of the backlight
voltage. In the case of the LG television which we are using, this modulation
is done at a frequency of 200 Hz. Unfortunately, as the camera is running at
a frame rate of 30 Hz, this causes intense pulsing and flickering of the LCD
background in the camera image. An easy solution to this problem is to turn
the LCD brightness up to maximum intensity, thereby effectively turning the
modulation off. This results in a constant, even background brightness. Note
that LCD panels are mostly transparent to infrared light regardless of the
displayed image. Therefore, changing content of the on-screen image does not
influence the background brightness.

One aspect which has not yet been studied are long-term effects of the
modification on the hardware. The acrylic front plate acts as a heat insulator,
thereby increasing the temperature of the panel assembly during operation.
This may reduce the lifetime of the panel itself or the backlight. While this
sensing method is highly suitable for a table-based setup where users are able
to place their feet beneath the table, some reports suggest that running LCD
screens horizontally for longer periods of time may also lead to premature
failure of the device, maybe also due to decreased cooling efficiency. Adding
active cooling might be a possible approach to mitigate these effects.

80

4.2. INTERACTIVE SURFACES

4.2.5 LCD with IR-LED Sensor

A different approach to multi-touch sensing on flatscreens is to remove the
camera altogether and instead scale the sensor across the entire area of the
display while simultaneously moving it closer. One such setup is ThinSight
[61], which uses an array of commercial distance sensors to achieve this result.
However, these sensors are expensive and required in large numbers, resulting
in prohibitive cost for the entire setup.

A slightly different method exploits the previously mentioned capabilities
of LEDs to replace the expensive distance sensors [95]. An appropriately wired
array of infrared LEDs can be placed behind the backlight and detect touches
in a similar manner to the various diffuse illumination approaches, yet without
the need for a full optical system with its distance requirements. In fact, the
resulting array is functionally identical to a large-scale charge-coupled device
(CCD) sensor with low resolution, in this case 48x32 pixels.

(a) Rear view of sensor array (b) Front view of sensor array (c) Live sensor data

Figure 4.18: LCD with IR-LED touch sensor (images from [95])

As the “camera pixels” can be accessed directly in such a circuit, a differ-
ent approach can be used to differentiate between light from the LEDs and
environment light. By modulating the emitting LEDs with a known frequency,
e.g. 10 kHz, and adding an appropriate band-pass filter to the sensing circuit,
a clear separation of emitted light and background noise can be achieved.

One additional aspect which must be taken care of is that a matrix of
LEDs is usually accessed through row and column conductors. However, as
some LEDs must always be active while others are used as sensors, a simple
matrix circuit is insufficient. Otherwise, the active LEDs would influence the
readings taken from the sensing LEDs. Therefore, each column of LEDs is
accessed through two conductors that are wired to even or odd LEDs only,
thereby effectively creating two matrices which are interleaved column-wise

81

CHAPTER 4. SENSOR HARDWARE

(see also variant 2 in figure 4.19).

4.2.6 Visible-light Display & Sensing

In the previous setup, infrared LEDs were used. However, nothing prevents the
same method from working also with visible-light LEDs, thereby offering the
potential to use such an LED field as display and touch sensor simultaneously
[17]. One way of implementing this method was already presented in [56],
however, this approach was only designed to allow alternating use of the two
functions.

When aiming towards simultaneous display and touch sensing, some prob-
lems arise. The most fundamental limitation is that sensing is only possible
for those LEDs which are adjacent to one or more currently emitting LEDs, as
otherwise no reflected light from a touching object would be present. While it
might be possible to rely entirely on occlusion of environment light for sensing,
this approach is highly unpredictable, as the intensity of suitable wavelengths
will vary randomly. It is important to note that not all types of LEDs are
equally well suited for such setups. In particular, infrared and visible “hyper-
red” LEDs seem to be most sensitive to their own wavelengths, making them
suitable for sensing applications.

...

...

...

...

... ...

+_

_

_

+/in

z +_

_

+/in

z

...

...

...

...

_

+/in

sensing LEDemitting LED

Variant 1: normal matrix
with column resistors

Variant 2: interleaved matrix
with row resistors

Figure 4.19: Schematics of LED-based display and sensor matrices

82

4.2. INTERACTIVE SURFACES

A second problem which needs to be considered is that the LEDs which
are driven as emitters at any given moment must not influence those which
are used as sensors at the same time. One way of avoiding this problem is
to insert current-limiting resistors into the column conductor.2 However, this
approach has the drawback that with increasing number of emitting LEDs in
one column, the intensity drops rapidly. Moving the current-limiting resistors
to the row lines fixes the problem of varying intensity. Unfortunately, in an
ordinary matrix with a single set of row and column conductors, this causes
leakage currents to occur which render the measurements invalid. An approach
to solving both problems is therefore to keep the current-limiting resistors in
the row lines, but split the matrix internally by providing two alternating
sets of column lines as described in the previous section. This allows to have
all even LEDs in one column emit light with constant intensity while at the
same time sensing reflected light using the odd LEDs. The drawback of this
approach is that commercial LED matrices which only have a single set of
column lines are unsuitable. Moreover, it has proven difficult to find suitable
discrete LEDs which are sensitive enough to their own emitted wavelength.
The two variants are illustrated in figure 4.19. A setup which uses variant 1 is
shown in operation in figure 4.20.

(a) LED matrix displaying a letter (b) Sensing presence of a finger

Figure 4.20: Simultaneous display and sensing with LED matrices (images
from [17])

2For consistency, we will assume LED matrices where the column lines are connected to
the individual anodes.

83

CHAPTER 4. SENSOR HARDWARE

4.3 Commercial Systems

While all previously described setups have been constructed during the course
of this thesis, some commercial systems have also been employed or repurposed
as multi-point input devices to test the suitability of the presented architecture
beyond custom hardware. They shall briefly be mentioned here for complete-
ness’ sake.

(a) ART hand tracker (b) Wiimote (c) iPhone

Figure 4.21: Commercial interaction devices

4.3.1 Free-Air Handtracking

One widely-known example for multi-finger interaction in popular media is
the movie “Minority Report”, in which the protagonist uses special gloves to
control a vertical large-scale display with gestures in mid-air. Several commer-
cial hardware devices are available which can be used to realise this kind of
interaction.

ART Handtracking

A commercial free-air handtracking system is available from Advanced Real-
time Tracking [1]. It consists of an active IR marker which is attached to the
back of the hand and three finger markers which are connected to the hand
marker through short wires. In conjunction with the ART tracking cameras,
a 6-DOF pose of the hand and the three fingertips can be extracted. Various
interaction modalities for this system can be envisioned, such as triggering an
interaction by pinching two fingers together or by touching a virtual plane in
mid-air.

84

4.4. SENSOR CAPABILITIES

Wiimote

One drawback of the previously mentioned systems is its high cost, particularly
due to the tracking cameras. One other solution which is easily available is
to use the widely popular Nintendo Wiimote, either as a replacement for a
tracking camera or as an interaction device itself. In the first mode, the user
also has to wear gloves, either with reflectors or with active IR emitters at the
fingertips. In the second mode, at least two IR emitters (the “sensor bar”)
have to be present in a fixed location relative to the screen.

4.3.2 iPhone

Finally, the commercially very successful iPhone from Apple has also been
used in this thesis. Its capacitive sensor (see also section 2.2.2) allows to sense
several simultaneous finger contact points, although not their orientation. A
“hover state”, while probably supported by the hardware, is not made available
through the API.

4.4 Sensor Capabilities

The various purpose-built and commercial devices which have been presented
in the previous sections offer a wide range of capabilities which have to be
integrated into the framework. The following matrix describes the degree of
support (+ full support, o rudimentary support, - no support) for the various
available features. Although it is a software-based solution, the capabilities of
a multi-mouse setup shall be compared here, too.

Multi-User Several persons can use the system simultaneously.

Multi-Touch Several interaction points simultaneously are possible.

Direct Direct touch means that the user interacts directly with the display
as opposed to a proxy object.

Hover Interaction without touching is possible.

Tangible Objects Arbitrary objects on the surface can be tracked and used
for interaction.

85

CHAPTER 4. SENSOR HARDWARE

Fiducial Markers Objects can carry tags, markers or similar which uniquely
identify them. 3

Multi- Multi- Direct Hover Tangible Fiducial
User Touch Objects Markers

TISCH + + + o + o
MiniTISCH + + + o + o
SiViT + o + + + - (+)3

FlatTouch + + + + + - (+)3

LEDTouch + + + o o -

(Multi-)Mouse + - - + - -
iPhone - + + - - -
ART Handtrack + o - + - +
Wiimote + o - + - -

Table 4.1: Device Capabilities

Summary

In this chapter, various fundamental techniques for developing and improving
multi-touch sensors were presented along with their benefits and drawbacks.
Moreover, a number of devices which have been constructed or enhanced during
the course of this thesis were discussed, along with some commercial systems
which were also used.

3Support for this feature may depend on which side the fiducials are on.

86

Chapter 5

The libTISCH Middleware

Now that the architecture as well as the various available input devices have
been discussed, we shall examine the core software implementation of the pre-
sented framework. The library, called libTISCH, is licensed under the Lesser
General Public License (LGPL) [40] and can be downloaded from the open-
source repository site Sourceforge [20]. The library was primarily developed
on Linux, but supports the three major platforms Linux, MacOS X and Win-
dows. One design goal was to keep the number of external dependencies as
low as possible; the only core dependencies are therefore the C++ Standard
Template Library (STL) and an OpenGL Utility Toolkit (GLUT)-compatible
library such as FreeGLUT [4]. The implementation closely follows the design
of the architecture and is therefore split into four separate layers.

5.1 Design Considerations

The previously described architecture does not specify any implementation
details. Therefore, a wide range of implementations are possible. For the
libTISCH reference design, several high-level design decisions thus had to be
made which shall be discussed here.

5.1.1 Interoperability and Network Transparency

With respect to the layers, no specific type of transport technology between
them has been specified. The libTISCH implementation uses the User Data-
gram Protocol (UDP) across all three interfaces, ensuring the highest degree
of interoperability with alternative implementations as well as network trans-

87

CHAPTER 5. THE LIBTISCH MIDDLEWARE

parency. While using a network protocol invariably introduces an additional
source of latency when compared to other inter-process communication meth-
ods such as local sockets or shared memory, our evaluation has shown that this
additional latency remains within acceptable limits (see section 5.4.3).

5.1.2 Speed-Accuracy Tradeoff

In most cases where a tradeoff between speed and accuracy had to be made,
the decision was made for speed. The rationale behind this decision is that an
interface designed for direct or indirect manual interaction should be designed
as resilient as possible, i.e. not require high-precision interaction from the user
such as hitting tiny buttons which are smaller than a finger.

5.2 Hardware Abstraction Layer

As mentioned previously, the lowest layer has the task of converting raw mo-
tion data into a common format describing the movement of various object
types over the interactive surface. This can either be done by converting data
from existing software packages or by directly reading sensor data from the
hardware.

5.2.1 Adapters for Existing HAL Software

There is a wide range of existing software which fulfils the role of hardware
abstraction in some way. Examples include the X11 windowing system resp.
its Xorg reference implementation, the Ubitrack tracking framework or the
reacTIVision library. Here, the adapters which translate events from existing
software into libTISCH’s own LTP format are presented.

Tuio Converters

The most basic type of HAL implementation is the Tuio [68] converter. The
OSC-based Tuio format has gained some popularity in interactive surface ap-
plications. Several widely used software packages such as touchlib [89] or
reacTIVision [67] communicate through this protocol. A converter is therefore
desirable to improve interoperability between libTISCH and other software in
this field. While Tuio lacks some features which have prompted the adaption
of a different protocol within libTISCH (LTP, see also section 3.2.2), it is nev-
ertheless very similar. Therefore, the two protocols can easily be converted

88

5.2. HARDWARE ABSTRACTION LAYER

into each other. The same authors who devised the Tuio protocol also provide
a small OSC parsing library, oscpack [6]. Both converters are based on this
library.

Ubitrack Adapter

The Ubitrack library [55] has been developed with a strong focus on industrial-
grade tracking with six degrees of freedom. Although the connection to inter-
active systems may not be apparent at first glance, many of the features of
Ubitrack, such as reliable tracking of fiducial markers, can be highly valuable in
this context. Therefore, an Ubitrack adapter has been included in libTISCH.
The only requirement with respect to the tracking data is that it should be de-
livered in a coordinate system whose x-y plane is roughly parallel to the screen
on which the interactive application is displayed. This coordinate system does
not have to be registered exactly relative to the screen; a rough alignment
is sufficient. The reason for this rough pre-alignment is that in one mode of
operation, the Ubitrack adapter uses a virtual plane parallel to the x-y plane
for detection of emulated touches. The exact registration between tracking
coordinates and screen coordinates is later performed by the transformation
layer.

The Ubitrack adapter has three basic modes of operation. In the first
and most simple mode, the adapter accepts 3-dimensional position data or
6-dimensional pose data for a list of objects. This data is converted into
uncalibrated 2-dimensional screen coordinates by projecting the data into the
x-y plane and is then sent as input events of type object. When the input
data consists of poses with orientation, the orientation vector is also projected
into the x-y plane and used as orientation for the generated input event. This
mode is suitable for tracking, e.g., tangible objects with fiducial markers on a
surface.

The second mode is slightly more complex. Here, the adapter switches to
a touch emulation mode. A tracked object’s data is converted into events of
type blob (generic tracked entity) as long as a certain configurable distance to
the screen plane is kept. Should the object’s distance fall below this threshold,
an additional finger object with the same position and orientation appears,
thereby emulating a touch. This mode can be used in applications where, e.g.,
each hand of the user can be tracked individually. While the hand is held away
from the screen, a “hover” mode of interaction can be used which changes to
an emulated “touch” state when a virtual plane above the screen is crossed.

89

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Finally, in the third mode of operation, input data has to be sent as pairs
of tracked objects. While these objects are separated by a distance above a
configurable threshold, the position of their centroid is sent as a blob object
with the orientation determined by the vector between the two objects. When
the distance falls below the threshold, an additional finger object with the same
size and orientation is added. This mode is suitable for applications where
at least two fingers resp. fingertips of the user can be tracked individually.
“Hover” interaction is possible while holding the fingers apart, whereas “touch”
interaction is emulated by pinching the fingers together in mid-air.

Generic Mouse Adapter

While developing a multitouch-enabled application, it may often be conve-
nient to quickly test a certain aspect of the interface without access to a full
multi-touch interface. For this reason, a mouse adapter has been included
with libTISCH. While it can provide only a single spot of interaction, this is
nevertheless often sufficient for quick testing. This adapter is available on all
three platforms, as the mouse data can be retrieved through the cross-platform
GLUT library. However, this results in the limitation that the mouse adapter
is only available when the included OpenGL-based graphics layer is used.

This adapter translates the mouse pointer into an elliptic blob object,
thereby impersonating a generic object on the surface. By using the mouse
wheel, the equivalent ellipse of the blob can be rotated, giving access to addi-
tional interaction modalities. When the primary mouse button is pressed, an
additional finger object of same size and shape appears, simulating a surface
contact. A registration step is not needed in this case, as GLUT always de-
livers event coordinates relative to the window within which the application is
running.

MPX Adapter

While the previously described mouse adapter is mainly a tool for quick test-
ing, its MPX extension offers additional options. As mentioned earlier, the
multi-pointer X server MPX is an extension of the widely used X11 window-
ing system which allows an arbitrary number of mice and mouse pointers to
be used simultaneously. By providing a patch to the FreeGLUT library, it is
now possible to differentiate between the various mouse events. As the blob
emulation works in the same manner as described above, several persons can
now use several mice simultaneously to interact with a libTISCH-based appli-

90

5.2. HARDWARE ABSTRACTION LAYER

cation. Again, no registration is necessary; however, it is mandatory to use
libTISCH’s own widget layer to access this feature, as the top-level window it-
self has to be registered with the X server for reception of multi-mouse events.
The modifications to FreeGLUT are described in detail in appendix A.4.

iPhone Adapter

Although it may not seem obvious at first sight, there is almost no difference
between the MPX-based HAL implementation and the one for the iPhone.
Data delivered from the iPhone’s touchscreen is almost isomorphic to that
provided by MPX, with the exception that the iPhone is physically unable
to provide hover data or blob orientation. Although GLUT is not available
for the iPhone, a compatibility wrapper has been provided inside libTISCH
which allows the various interfaces of the iPhone API to appear as a GLUT
implementation. Details on this wrapper are provided in appendix A.5.

5.2.2 Native Hardware Drivers

While the hardware devices presented in the next section can also be used, e.g.,
as mouse drivers or connected to one of the existing libraries, their popularity
suggests that it would be beneficial for users of libTISCH to be able to use
them “out of the box” without the need for additional large software packages.

Wiimote Connector: wiimoted

The Wiimote is a very popular interaction device, partly due to its low price
of approximately e 40. In its original mode of operation, the user holds the
device in one hand and points it towards the so-called “sensor bar”, which in
fact consists just of two infrared LED clusters at a distance of 30 cm. The
sensor itself is situated inside the Wiimote itself and consists of a high-speed
infrared camera with integrated image processing functionality. The camera
directly delivers the image coordinates and sizes of the four brightest blobs
to the device, which then sends this data to a computer through a Bluetooth
link.

As the Wiimote itself contains all necessary sensor hardware, it can be
used as a standalone infrared camera. This offers another mode of interaction
where the device itself is stationary and is used to track infrared-reflective or
active markers on the user’s fingertips. This method has been presented by

91

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Vlaming et al. [117]. In both cases, the driver connects to the Wiimote using
the wiiuse library [74] which is available for Linux and Windows.

The libTISCH Wiimote driver [9] has the primary task of translating image
blobs delivered by the Wiimote into LTP packets. In the first mode of opera-
tion, the Wiimote is held by the user. The driver takes the two brightest spots
in the image and uses their centre point as the primary location at which a
blob object is sent. The orientation is determined by the vector between those
two points. When the user pushes one of the buttons, a finger object is added,
simulating a touch. This mode is similar to one of the Ubitrack adapter modes.
The “sensor bar” should be situated below the display, roughly parallel to its
lower edge.

In the second mode of operation, the Wiimote itself is stationary on top or
next to the display and facing the user, who wears gloves which are equipped
either with reflectors or IR emitters on each thumb and forefinger. When
holding the fingers apart, two spots are tracked for each hand, treated as in
the previous mode and sent as a blob object at the average location. When the
user pinches the fingers together, the spots merge into a single one, prompting
a touch emulation event and adding a finger object at the same location.

DiamondTouch Adapter

Another device which has enjoyed great popularity in the field of multi-touch
interfaces is the DiamondTouch [15], also because it was the first commercially
available device. While the device does not deliver true multi-touch data, but
rather a list of row and column intensities, it is on the other hand able to
reliably differentiate between several users. The adapter will try to match the
row and column intensities, thereby creating an estimate of where the actual
contact spots are. These can be directly sent as finger blobs, with the added
feature that the parent ID for these blobs can be set according to the user to
which they belong. Note that due to the lack of a real DiamondTouch interface,
this adapter has not yet been evaluated on real hardware and must therefore
be considered non-functional until further testing has been conducted.

5.2.3 Camera-Based Tracking: touchd

In the context of this thesis, the most important kind of HAL implementation
is the optical tracking layer. It offers tracking and analysis of image blobs for
such diverse input modalities as FTIR, shadow tracking or diffuse illumination.

92

5.2. HARDWARE ABSTRACTION LAYER

An overview of the data flow is given in figure 5.1. The implementation consists
of three major sub-components, which shall now be discussed in detail.

LTP packet
generation

contact/
shadow
correlation

segmentation/
blob tracking

background
removal and
thresholding

network

"shadow" image

"contact" image

Figure 5.1: touchd modules

Image Acquisition

touchd uses an abstract class ImageSource to retrieve raw image data from
the camera. This class mainly offers a method to retrieve the image data itself,
and a set of methods to adjust camera hardware parameters such as frame rate,
sensor gain, shutter speed and brightness control. There are currently three
implementations of the ImageSource class:

V4LImageSource Available on Linux. This image source uses the Video4Linux
API, version 2, and offers full support for all camera parameters if the
underlying hardware driver also supports them.

DCImageSource Available on Linux and MacOS X. This image source uses
libdc1394 [19] to access cameras which comply to the 1394 Digital Cam-
era specification (mostly Firewire-based cameras). All parameters are
supported.

93

CHAPTER 5. THE LIBTISCH MIDDLEWARE

DirectShowImageSource Available on Windows. This image source uses the
DirectShow API to access any camera which has a generic DirectShow
driver available. Parameter setting is currently unsupported.

Image Processing

To extract meaningful data from the raw images, they have to be subjected to
several processing steps. From an abstract point of view, the goal of this pro-
cessing pipeline is to separate regions of interest from the background. While
the background is mostly uniform in all current applications, its brightness may
rapidly change due to varying external lighting conditions, such as sunlight or
fluorescent ceiling lights.

Therefore, the first step is generation of a difference image between the raw
camera data and a dynamically adapted background image. This background
image is initialised to black upon startup. After every frame, the pixel values
of the background image are updated with a moving average between the
current background value b and the current raw image value r according to
bt = (1− a)bt−1 + art, with the experimentally determined value a = 1

512
. a is

a fraction of a power of two as this can be implemented with fast fixed-point
integer arithmetic.

After background subtraction, the next step is generation of a binary image
by thresholding of the difference image. Due to the background subtraction
step, the threshold can be chosen as the difference between the overall intensity
of the background image and the raw image. Even though this difference may
be quite small, it is nevertheless sufficient, as varying lighting conditions have
already been compensated by the dynamic background.

While the resulting binary image now mostly contains regions of interest,
small amounts of noise are usually still present. These can effectively be re-
moved through an erosion step which counts the number of bright neighbour
pixels for each bright pixel and removes this pixel if it has less than, e.g., 8
neighbours.

Sample images from each of these five stages are shown in figure 5.2.

These steps were first implemented in pure C++. However, the perfor-
mance impact was noticeable and occasionally too large. Therefore, a second,
alternative implementation in MMX assembler is now available which provides
a significant performance boost on systems which use the gcc compiler. While
popular image processing libraries such as OpenCV [59] offer the same func-
tionality, the algorithms used here are simple enough to be implemented with-

94

5.2. HARDWARE ABSTRACTION LAYER

(a) raw (b) background (c) subtracted

(d) thresholded (e) denoised

Figure 5.2: Processing stages for a sample FTIR image

out the need for an additional external dependency. Moreover, while OpenCV
provides accelerated versions of those functions, too, they are not available
under an open-source license but have to be paid for instead.

As mentioned previously, some hardware setups support the alternating ac-
quisition of two images with different active illumination. This also means that
for each type of illumination, a separate background image needs to be stored.
Therefore, the entire image processing sequence has been encapsulated in a
class Pipeline which also stores a separate background image and threshold
parameters. Consequently, it is important to reliably determine which image
(e.g, odd- or even-numbered) belongs to which light source. Two options for
this decision exist. When using a camera based on the IIDC standard, this
camera may be able to embed information such as the state of its output pins
into the first few pixels of the image. Should such a feature not be available,
the total brightness of the images can be used for differentiation, as it usually
differs significantly depending on the switched lighting conditions. An addi-
tional option which is currently not implemented but could be easily added is
based on an indicator LED. A suitably placed LED which is only active and
visible in, e.g., odd frames could be employed to differentiate the images.

95

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Image Analysis and Correlation

After the image has been converted into a binary representation, the most
important step is now to analyse the properties of the foreground objects. The
first operation is therefore to perform so-called connected component analysis,
which combines coherent areas of pixels into a single object which is usually
referred to as blob. For each blob, the so-called moments of first and second
order [54] are calculated which can be used to describe the primary location,
orientation and shape of the blob in terms of an approximated ellipse which
has its centre point located at the centroid of the blob. The long and short
axis of this ellipse are usually called major and minor axis of the blob. While
this information is quite sufficient to describe, e.g., a finger contact spot, it
lacks some aspects which are necessary for describing more complex blobs such
as the outline of a user’s arm.

Therefore, the next step after calculation of the moments is to locate the
peak of the blob, should one exist. For the arm outline, this peak should cor-
respond to the tip of an outstretched finger or the tip of a flat palm. To this
end, the major axis of the blob is scanned outward from the centroid. Perpen-
dicular to this axis, consecutive scanlines are searched for pixels belonging to
the blob. When a scanline without such pixels has been found, the previous
scanline contains the outermost pixel of the blob in one direction. This process
is done twice for both directions of the major axis, resulting in two candidates
for the blob’s peak (see also figure 5.3). The final result is determined by a
two-step process: if the blob has already been tracked in the previous frame,
the peak closer to the previous one is used. Otherwise, the peak which is more
distant from the image border is taken, following the rationale that a blob such
as a hand appearing from the side will not have its point-of-interest located at
the very border, but rather towards the image centre.

While all blobs have now been identified and processed for one single im-
age, it is highly desirable to also track the blobs across images, i.e. assign a
persistent identifier to each blob that does not change even if the blob moves
or changes its shape. Therefore, the motion of each blob has to be estimated
based on the blob positions in the previous frame. While more sophisticated
solutions to this task such as Kalman filters [66] exist, the following simple
algorithm has proven to work reliably. First, blob speed and centroid position
from the previous frame are used to generate an estimated current position for
each old blob. Next, the new blobs within a configurable radius around this
estimated position are evaluated. The blob whose centroid is closest to the
estimated new location is tagged with the old identifier and removed from the

96

5.2. HARDWARE ABSTRACTION LAYER

major axis

scan line

centroid

peak candidates

Figure 5.3: Peak detection

search list. If no new blobs have been found within the search distance, the
identifier is removed. This process is repeated until all old identifiers have been
reassigned or removed. The remaining new blobs are tagged with previously
unused identifiers. This process is also illustrated in figure 5.4.

42

23

42

23

43

frame n frame n+1

old location

input location estimated motion vector

estimated new location
search area

Figure 5.4: Blob tracking

The following step which only needs to be performed when two disjoint
illumination sources such as an FTIR screen and a shadow tracker are used is
correlation of contact and shadow blobs. At the centroid of each contact blob,
the shadow image is examined. Should a shadow blob cover this location, its

97

CHAPTER 5. THE LIBTISCH MIDDLEWARE

identifier is set as parent ID for the respective contact blob, thereby allow-
ing differentiation between contact spots belonging to different hands. This
process is illustrated in figure 5.5.

1. scan circular neigh-
borhood for shadow

2. assign shadow id
to contact blob

for each contact blob:

contact image shadow image

Figure 5.5: Contact-shadow correlation

After this final step, the blob data can now be transmitted to the following
layer in LTP format. As mentioned above, libTISCH uses UDP as transport
mechanism. The raw position data is therefore now sent to port 31408 on the
local host by default. A parameter file which can be used to fine-tune the
various image processing and tracking steps is described in appendix A.1.2.

5.3 Transformation Layer

As the data sent by the hardware abstraction layer is still described in terms
of sensor coordinates, it is now necessary to transform this location data into
screen coordinates so they can be easily correlated with the visible elements of
the user interface. This task is fulfilled by the transformation layer in two ma-
jor steps. The necessary parameters are stored in a file named .tisch.calib,
which is located in the user’s home directory or, should this directory not exist,
in the /tmp directory. The format of this file is described in appendix A.1.1.

98

5.3. TRANSFORMATION LAYER

5.3.1 Removal of Lens Distortion

The first task, which is only applicable to camera-based interfaces, is the re-
moval of lens distortion. Especially when using a wide-angle or fisheye lens,
the original image may be heavily influenced by so-called barrel distortion.
Usually, this step is first performed on the entire original image. However,
this is a processor-intensive task which may degrade performance of the image
processing, especially at high frame rates. Fortunately, when the foreground
objects can be assumed to be small relative to the image size, it is sufficient to
process the image as-is and perform the undistortion step only on the object
positions. This is usually the case in this application, particularly for finger
contact spots and tangible objects.

The undistortion process relies on the assumption that an ideal camera
would linearly map world coordinates to image coordinates according to a
function r = f(x) = ax, with x being the distance between world point and
camera baseline and r being the distance between related pixel and image
centre. When a lens is used, it tends to warp the mapping into a more complex
function which is usually approximated as r = ax+ bx3 [70].

To revert this warping, the coordinates of an object now have to be scaled
according to their distance from the image centre. While the image centre is
not automatically equal to the optical centre, we have found this assumption
to be sufficiently accurate within this context, as the difference is usually only
on the scale of few (1-2) pixels.

The two parameters a, b from this equation have to be estimated once for
a given combination of camera and lens. As the lens distorts straight lines
into curves, the estimation can be done based on lines in the image which
are known to be straight. In many computer vision systems, the estimation
is therefore done based on an image of a chequerboard pattern. However, in
some interactive setups such as the MiniTISCH, it can be next to impossible
to reliably position such a pattern in front of the camera without obstruction
by the screen. Disassembling the entire system to take an image of the pattern
is usually also beyond question. Therefore, a quick-and-dirty solution to this
problem is to adjust the parameters interactively using visual feedback. The
distort utility displays the camera image and allows the user to unwarp it
by adjusting the parameters. The keys 1 and 2 modify the parameter a while
3 and 4 change b. The current parameters are displayed on-screen and can be
transferred to the calibration file by pressing s. Although this ad hoc process
is less accurate than an automated parameter estimation, it has nevertheless
proven to be sufficient for this application.

99

CHAPTER 5. THE LIBTISCH MIDDLEWARE

5.3.2 Perspective Correction

After the transformation from world coordinates to image coordinates now has
been linearised, the second step is to determine the perspective transformation
from sensor to screen coordinates. This step is also applicable for non-camera
sensors and accounts for such factors as the sensor being off-centre or even
upside down, the scaling being different etc. As the number of parameters
is too high to be estimated manually in this case, a calibration procedure
has to be performed. Luckily, this step does not require line patterns, but
instead can be reliably calculated using point correspondences. The calibration
tool sequentially displays four crosshair markings in the corners of the display
and prompts the user to touch (or activate) each one in turn. Samples are
taken continuously, and if the jitter of the active position falls below a certain
threshold, an average over the last 30 samples is taken and stored together
with the screen coordinates of the current crosshair.

After the minimum of four correspondences has been captured, the corre-
spondences are stored in two matrices, forming an equation system an = Xbn.
By applying a singular value decomposition as described in the well-known
book by Hartley and Zisserman [47], the third matrix X representing the trans-
formation between the two coordinate systems can be estimated. The singular-
value decomposition algorithm used here is based on the popular Template
Numerical Toolkit [96]. The resulting matrix is also stored in the calibration
file.

5.3.3 Online Transformation Process

When a suitable calibration file has been generated through distort and cal-

ibtool, the calibration daemon calibd can be started to continuously con-
vert raw data packets from the hardware abstraction layer into calibrated data
which is represented in screen coordinates. By default, this daemon listens on
port 31408 and sends the transformed packets to port 314091. These packets
are now ready to be processed by the gesture recognition layer. Should the
screen resolution change, the calibration process has to be repeated. To quickly
access this feature, the daemon can be sent the hangup signal on Unix systems,
which will cause it to quit and start the calibration tool instead. After the
recalibration has finished, the daemon will be automatically restarted.

10x7AB1 in hexadecimal notation

100

5.4. GESTURE RECOGNITION LAYER

5.4 Gesture Recognition Layer

One of the most central components of libTISCH is the generic gesture recog-
niser. As described previously, this layer receives abstract region and gesture
definitions as well as input data and tries to match gesture descriptions to the
incoming movements. When a match has been found, the abstract gesture tem-
plate is converted into a concrete instance and sent back to the corresponding
region.

Note that due to the use of UDP as communications protocol, it is entirely
possible to send updates for default gesture definitions from one client while
another client is already active. This allows to redefine the default gestures
on-the-fly even without explicit support by the primary client.

5.4.1 Gesture Matching Algorithm

The gestured process consists of two threads. The first thread listens for
region and gesture descriptors on UDP port 31410 and updates an internal
list containing Region objects and their associated Gesture objects. This
list is properly locked prior to any modification to avoid race conditions with
the main thread, which uses this list to retrieve the gesture templates. Addi-
tionally, every region object inside this process contains an associated “input
state” object which maintains the state and history of all input objects that
have fallen inside the region. When regions are received from a client process,
the source address and source UDP port of the received packets are stored.
Recognised gestures are sent back to this stored address and port, thereby
automatically establishing a two-way communications channel.

The main thread listens on UDP port 31409 for input data packets which
already have been transformed into screen coordinates. The variables and
instruction sequence used by the main thread are given in figure 5.6.

The three main variables are the list of regions (which is shared with the
update thread as mentioned above), a dictionary which describes the IDs of
those input objects which are currently attached to a sticky region and a flag
which is set when new, previously unseen IDs have arrived.

After an input data packet has been received, it is first checked whether it
contains position information or a frame marker.

Should it contain position data, the algorithm checks whether this identifier
has been received for the first time. If this is the case, a flag is set to indicate
that one or more new identifiers have appeared. Next, the list of currently
active sticky regions is searched for this identifier. If a match is found, the

101

CHAPTER 5. THE LIBTISCH MIDDLEWARE

vector <Region> regions
map <id,Region> stickies
bool newid

while true do
receive packet p
if type of p is ”input data” then

process input p

if type of p is ”frame marker” then
process gestures

Figure 5.6: Gesture matching algorithm

blob is immediately appended to the input state of this region. Otherwise,
all regions starting from the topmost one are checked whether they have the
appropriate flag for this specific type of input data set and whether the position
is inside the region. Should both conditions match, the input data object is
appended to the region’s current input state. Otherwise, when no region with
the correct flag set contains the input position, it is discarded. This process is
shown in figure 5.7.

begin
if id of p is new then

newid := true
if stickies contains id of p then

get matching region s from stickies
append p to s

else
foreach region r from regions do

if r contains position of p then
if r is flagged with type of p then

append p to r
break

end

Figure 5.7: process input(packet p)

In the case that the packet contains a frame marker, the actual gesture
recognition can now be performed, as at this point the entire input data for

102

5.4. GESTURE RECOGNITION LAYER

this frame has been received. First, should the flag for new identifiers have
been set, all currently active sticky regions have to be updated from the widget
layer. The rationale behind this step is that the graphical representation of an
active sticky region may have changed regarding its shape and position without
notifying the gesture recognition layer. While existing identifiers which have
properly been assigned to a sticky region will be sent to that region regardless
of its position, this does not hold for newly appearing input data. Should a
new input spot be created, it may therefore not lie within the currently stored
region, even if it appears that way to the user. Therefore, the two layers have
to be re-synchronised at this point.

begin
if newid == true then

foreach region r from stickies do
request update for r

foreach region r from regions do
if r has flag ”volatile” then

request update for r

clear stickies
foreach region r from regions do

foreach gesture g from r do
foreach feature f from g do

update f with each inputdata i from r

if all features match then
flag gesture as match

foreach match m from r do
if m has flag ”one-shot” then

if inputdata i for r has not changed then
continue

if m has flag ”sticky” then
foreach inputdata i from r do

add id of i and r to stickies

transmit m to id of region r

newid := false
end

Figure 5.8: process gestures()

103

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Now all regions can be separately checked for gesture matches. In a prepa-
ration step, first all features contained within the gesture templates are loaded
with the stored input data from the region. As the input data will not change
anymore within this frame, the features need to be loaded only once. After this
process, the matching gestures for the current region can now be processed.
Note that a single gesture template may result in several matches depending on
the features used. For each match, the one-shot flag is checked first. Should
the set of input identifiers for this region have changed with respect to the
previous frame, the gesture is transmitted. In the next frame, it will not be
sent again unless the currently active input identifiers change. Gestures for
which the sticky flag has been set also need additional handling. Should such
a gesture have matched, the input identifiers which are currently active for this
region are added to the list of sticky IDs along with a pointer to the region
itself. This ensures that further actions from these identifiers will be transmit-
ted to this region regardless of synchronisation issues. Finally, the gesture is
transmitted back to the widget layer with the region’s ID. The entire gesture
matching algorithm is shown in figure 5.8.

5.4.2 Default Gestures

A central feature of the protocol described in section 3.3 is the ability to specify
gestures by name only and retrieve the specific features from a pool of default
gestures. One set of such default gestures is loaded by the gestured process
at startup which consists of the following definitions:

Gesture Name: move

Flags: none

Feature: Motion

Flags: 0xFF (i.e. all object types)

Boundaries: none

Gesture Name: rotate

Flags: none

Feature: MultiBlobRotation

Flags: 0xFF (i.e. all object types)

Boundaries: none

104

5.4. GESTURE RECOGNITION LAYER

Gesture Name: scale

Flags: none

Feature: MultiBlobScale

Flags: 0xFF (i.e. all object types)

Boundaries: none

Gesture Name: tap

Flags: one-shot

Feature: ObjectID

Flags: 0xFF (i.e. all object types)

Boundaries: none

Feature: ObjectPos

Flags: 0xFF (i.e. all object types)

Boundaries: none

Gesture Name: release

Flags: one-shot

Feature: ObjectCount

Flags: 0xFF (i.e. all object types)

Boundaries: lower boundary: 0, upper boundary: 0

The definitions of the first three gestures are straightforward, as each one
of them can be mapped to a single feature without boundaries. Note, however,
that the MultiObjectRotation feature in the definition of the “rotate” gesture
could be replaced by the RelativeAxisRotation feature when a sensor is present
that is able to capture the rotation of a single object. As both features are
derived from an abstract Rotation feature, the redefinition will be transparent
to any application.

The definition of the last two gestures is slightly more complex. The “tap”
gesture has the one-shot flag set and will therefore be only triggered once
when a new input ID appears within the containing region. The ObjectID
and ObjectPos features will deliver the ID and position of this new input
ID. Note that as both are multi-match features, this gesture can be triggered
multiple times in a row, e.g., if several new input IDs appear simultaneously.

105

CHAPTER 5. THE LIBTISCH MIDDLEWARE

The last default gesture, “release” is also flagged as one-shot and contains
an ObjectCount feature with both boundaries set to zero. This gesture will
therefore be triggered once when the number of objects within the containing
region reaches zero.

5.4.3 Performance

One crucial aspect is the performance and latency impact which is caused by
the separately implemented gesture recogniser. In any kind of interactive ap-
plication, avoiding latency is of high importance, as it can significantly degrade
the user experience. To test the latency introduced by the gesture recogniser,
it was used in conjunction with the mouse-based frontend (see also section
5.2.1). When one of the mouse buttons is pressed, a timestamp is taken inside
the frontend. The mouse adapter starts sending simulated input data packets
to the gesture daemon at this point, which processes them and sends gesture
events back to the frontend. After an event has been received which was trig-
gered by the button press, a second timestamp is taken. The difference between
the two values is the total latency added through two UDP transmissions and
the gesture processing step in-between.

A test with 100 samples resulted in an average latency of approximately
3.43 ms with a standard deviation of 1.99 ms. The high variation results from
the granularity of the internal timer of the mouse data transmitter. However,
even with this ad hoc measurement, it is safe to conclude that the additional
latency introduced through the separate gesture recogniser is within acceptable
limits for an interactive system. These tests were conducted on a dual-core
machine with an Intel Core2 processor running at 2.0 GHz under Linux 2.6.29.

5.5 Widget Layer

The final part of libTISCH is the widget layer which displays graphical ob-
jects that react to gestures recognised by the previous layer. This layer has to
accomplish two subtasks besides the most basic one of drawing the widgets.
First, it needs to determine the screen coordinates and therefore the regions
covered by the various widgets and relate them to the gesture recogniser, up-
dating them when necessary. Second, it needs to react to recognised gestures,
updating the widgets’ state accordingly.

106

5.5. WIDGET LAYER

5.5.1 OpenGL-based Widgets

The reference widget layer is based on OpenGL and C++ for the best cross-
platform compatibility possible. OpenGL offers various options for maintain-
ing a stack of transformations, thereby making it easy to render a tree of
nested objects. One difficulty when using OpenGL is determining the screen
coordinates of graphical objects, as the original coordinates are usually modi-
fied by several transformation matrices such as the modelview and projection
matrix. A possible way to solve this problem is the so-called feedback mode
in which transformed vertices are not drawn into the framebuffer, but instead
written to a separate storage array from which their screen coordinates can
then be retrieved. However, this approach suffers from the drawback that feed-
back mode is often only poorly supported by many OpenGL implementations.
Moreover, it can cause a significant number of graphic context switches which
usually result in a severe performance hit. Therefore, a faster and more reliable
solution to this problem is to retrieve the current modelview and projection
matrix when needed and explicitly multiply the vertices with these matrices
in the userspace part of the library. Additionally, not all vertices which are
needed to draw the widget are also necessary to define its outline and thereby
the region which should be registered. Each widget should consequently im-
plement two different methods, called outline() and draw() to handle these
separate tasks. These methods are defined in the abstract base class Widget

from which every concrete widget implementation should be derived.

The most basic widget which does not have a graphical representation of
its own is the Container which just groups other widgets. In this context of
the parent-child relationship between container and sub-widgets, an important
task is to determine the absolute rotation of the widget itself with respect to
the screen coordinates, as all movement and location data within the delivered
features is in screen coordinates. Especially if the widget is inside a container
which itself has been rotated relative to the screen, then all vector data inside
received features first has to be converted into the parent container’s coordinate
system. To this end, the two unit vectors (1.0, 0.0) and (0.0, 1.0) from the
widget’s local coordinate system are also projected into screen coordinates,
resulting in two transformed vectors from which the absolute rotation as well
as scale can be determined. A widget can then hand a received vector to its
parent widget to transform this vector into its coordinate system. Afterwards,
this vector can be used to transform the widget’s own pose, thereby correctly
applying the transformation within the parent’s coordinate system.

The following widgets are available:

107

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Widget The abstract base class from which all other widgets are derived. A
new widget should implement the virtual methods action() (handles
received gestures), outline() (defines the region in local coordinates)
and draw() (paints the widget on-screen). Additionally, the member
object region should be filled with the desired gestures.

Button This rectangular widget accepts the two most basic gesture events,
“tap” and “release”. Two virtual methods of the same name are called
accordingly. Additionally, its look can be customised with an arbitrary
texture.

Tile The tile widget is derived from the Button class and adds handling for
the remaining three simple gesture events “move”, “scale” and “rotate”.
An instance of Tile can therefore be transformed by the user without
having to add further code.

Dial The dial widget displays a round knob which can be rotated by the user
to adjust its value. This can either be done through the default “rotate”
gesture or by moving a single interaction point tangential to the widget’s
rim. The current percentage is displayed on top of the dial. To avoid
capturing events outside the circular widget, the Dial uses an octagonal
region to better approximate the true widget shape.

Textbox This widget displays a text field as it is commonly used in many
desktop interfaces. However, while a standard text box can be filled
using the keyboard, this has some issues, especially in the context of
novel user interfaces. A normal keyboard may be unavailable, or several
users might want to enter text simultaneously. Therefore, this widget
expands to reveal a small on-screen keyboard when tapped. After text
entry, a second tap on the text itself will shrink the widget back to its
original size, hiding the keys.

Container This widget is derived from Tile, but offers the additional meth-
ods add(), raise() and remove() in order to manage child widgets.
Should this widget be transformed, either in code or through the stan-
dard gestures inherited from Tile, then all sub-widgets will be trans-
formed accordingly.

MasterContainer This class is of special importance. It is derived from Con-

tainer and handles the additional task of registering the regions of all di-
rectly or indirectly contained widgets with the gesture recognition layer.

108

5.5. WIDGET LAYER

Moreover, it receives gesture events and delivers them back to the correct
widget. For this reason, only one MasterContainer can currently exist
per application.

Checkbox The checkbox widget is derived from Button and acts as a toggle
switch. Upon receiving a tap, it will alternate between a checked state
which displays a cross and an unchecked, empty state.

Slider The slider widget, just like Dial, allows the user to adjust a numerical
value. Here, this can be done by linearly moving the sliding part along
its “tracks” as opposed to rotating the widget.

Label This completely passive widget has been added for convenience. Even
completely novel user interfaces will very likely require text labels. Note
that as the label widget doesn’t register a region, it is completely trans-
parent to any input objects and will not receive any gestures.

An additional important class which is not a widget itself is Window. This
class wraps a GLUT window, which is itself an abstraction from the various
low-layer OpenGL implementations, and therefore offers a platform-independent
way of creating an OpenGL context. Window is also derived from MasterCon-

tainer in order to automatically register all widgets within this context with
the gesture recognition layer. Currently, only one Window object can therefore
be opened within one process. However, this is only a minor limitation, as
most applications built on this framework can be expected to run in fullscreen
mode, thereby requiring only a single window from the start. Elements like
popup menus do not require top-level windows, but can instead be created
from the framework’s own widgets.

In figure 5.9, most of the standard widgets are shown in an example ap-
plication. Although this sample shows only the default textures, all widgets
can be textured individually. Note that the textbox widget is currently in its
expanded state, showing the on-screen keyboard.

To demonstrate the ease with which an application can be built with
libTISCH, consider the example given in listing 5.1. This example provides a
basic picture browser in which every picture reacts to the previously described
default gestures for motion, rotation and scaling.

The main steps in this application are creation of a new Window object,
creation of a texture for each image passed on the command line and finally
the creation of one Tile object for each texture with randomised position and

109

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Figure 5.9: Widget examples

angle. Note that although the window size and the range for widget positions
are predetermined, the window will correctly handle resizing, maximisation etc.
Immediately after allocation, each tile is added to the window (which is also
a Container). Finally, all widgets are registered with the gesture recognition
layer and the main loop is started.

5.5.2 Widget Bindings for Other Languages

As the reference implementation is written in C++, the resulting native li-
braries offer the possibility of being bound to other popular languages such
as Python or Java. This process is vastly simplified through the use of the
Simplified Wrapper and Interface Generator (SWIG) [5]. By describing the
classes to be wrapped in a meta language, a wrapper library and classes for a
variety of languages can be generated. All widget classes are wrapped, includ-
ing MasterContainer. As the creation and management of OpenGL contexts
may differ widely between languages, the Window class is not part of the wrap-
per. Therefore, when using the wrapper library in a different environment,
care should be taken to create and activate an OpenGL context before any of
the drawing or registration functions are called. One reference wrapper which

110

5.5. WIDGET LAYER

is already included with libTISCH is that for Java. After using JOGL [65]
to create an OpenGL context, a MasterContainer object can be instantiated
and widgets added to it. The popular graphical development environment
Processing [41] which is based on Java can thus now also be used to develop
libTISCH-based applications. An example on how to use libTISCH’s widgets
within an OpenGL context provided by Processing is given in listing 5.2.

5.5.3 Class Diagram

To provide a concluding overview of the most important classes and their
relationships, particularly for the interpretation and widget layers, a Unified
Modeling Language (UML) inheritance diagram is given in figure 5.10.

Summary

In this chapter, the reference implementation libTISCH of the previously de-
signed architecture has been described. libTISCH offers support for a vari-
ety of input hardware devices and frees the developer from the task of re-
implementing gesture recognition algorithms again and again. Moreover, it
even allows to swap the definitions of gestures depending on the hardware
used. A generic widget layer based on OpenGL is also part of libTISCH.
It uses the gesture recogniser to react to user actions and provides various
ready-made common user interface elements.

111

CHAPTER 5. THE LIBTISCH MIDDLEWARE

#include <t i s c h . h>
#include <Window . h>
#include <Ti l e . h>

int main (int argc , char∗ argv []) {

// crea t e a new window ,
Window∗ win = new Window(640 , 480 , ”PicBrowse”) ;

// i n i t i a l i z e random number genera tor
srandom (4 5890) ;

// read a l l p i c t u r e s s p e c i f i e d on command l i n e
for (int i = 1 ; i < argc ; i++) {

// load image in to new t e x t u r e
RGBATexture∗ tex = new RGBATexture(argv [i]) ;

// crea t e a t i l e widge t wi th random po s i t i o n
Ti l e ∗ t i l e = new Ti l e (

tex−>width ()/10 , tex−>he ight ()/10 , // s i z e
rand ()∗600−300 , rand ()∗450−225 , // po s i t i o n
rand ()∗360 , // o r i e n t a t i on
tex // t e x t u r e

) ;

// add to window
win−>add (t i l e) ;

}

// perform i n i t i a l r e g i s t r a t i o n and s t a r t main loop
win−>update () ;
win−>run () ;

}

Listing 5.1: libTISCH Picture Browser Example

112

5.5. WIDGET LAYER

import javax . media . opengl . ∗ ;
import p r o c e s s i n g . opengl . ∗ ;
import l i b t i s c h . ∗ ;

MasterContainer master ;
int f i r s t = 1 ;

void setup () {

s i z e (640 , 480 , OPENGL) ; // crea t e window
Loader l t l o a d = new Loader (this) ; // load wrapper l i b r a r y

RGBATexture tex = new RGBATexture(” c o l o r 9 . png”) ;
T i l e widget = new Ti l e (50 ,50 , 50 ,50 , 0 . 0 , tex) ;

master = new MasterContainer (6 4 0 , 4 8 0) ;
master . add (widget) ;

}

void draw () {

PGraphicsOpenGL pgl = (PGraphicsOpenGL) g ;
GL g l = pgl . beginGL () ; // ge t OpenGL con t ex t

// r e s e t OpenGL matr ices
ortho (0 , 640 , 0 , 480 , −1000000 , 1000000) ;
background (1 2 8) ;
r e se tMatr ix () ;
g l . glMatrixMode (GL.GL MODELVIEW) ;
g l . g lLoadIdent i ty () ;

// perform f i r s t update
i f (f i r s t != 0) { master . update () ; f i r s t = 0 ; }

master . draw () ; // redraw master conta iner
pgl . endGL () ;

}

Listing 5.2: libTISCH Processing Wrapper

113

CHAPTER 5. THE LIBTISCH MIDDLEWARE

Gesture Feature

Result:

gestures

1

n 1 n

Vector

outline

n

Region

ObjectCountMotion Rotation Scale

Widget

region

1

1

Tile

ButtonDial SliderTextbox

Checkbox

Container

MasterContainer

Window

UDPSocketGLUTWindow

Label

1 1

ObjectIDObjectPosObjectGroup ...

Figure 5.10: libTISCH interpretation/widget layer class diagram

114

Chapter 6

Applications

In this chapter, various real-world applications of libTISCH and the suitability
of libTISCH for their implementation shall be reviewed. While some of the
applications presented here require special capabilities which can currently
only be provided by one specific input device from those available, most of
these programs can indeed be run on different sensor and display hardware
without modification.

6.1 Interfacing with Legacy Applications

When using a direct-touch input device, it is often still necessary to switch
to desktop input devices such as keyboard and mouse for accessing standard
desktop applications, e.g. a web browser. For quickly looking up some infor-
mation or for operating an information booth such as the SiViT (see section
4.2.3), it is desirable to use such software without the need for legacy input
devices.

6.1.1 Pointer Control Interface

The easiest way to support such interaction between standard applications
and novel input hardware is to control the mouse pointer (or, in the case of
MPX, pointers) using input data from the hardware abstraction layer. For a
normal mouse-based application, no difference in the received events will be
perceptible.1

1When using MPX, applications may sometimes react unexpectedly when more than one
mouse pointer is within their window at once.

115

CHAPTER 6. APPLICATIONS

There are two basic methods to control the mouse pointer from within
a userspace program. The first, portable method uses a Java application to
send mouse events to the operating system [120]. This is supported by the
Java class Robot which is available on all supported platforms. However, the
Java privileges have to be set correctly to allow this class to actually access
the device. Moreover, this approach is limited to a single mouse pointer, as
most operating systems so far do not support multiple pointers. Should several
instances of input data exist, the mouse pointer will remain locked to the one
which was detected first.

Therefore, the second method which is only available on X11-based systems
uses the XTest extension to control the pointer(s). Should an MPX-capable
X server with a suitable version of XTest be installed, this extension allows to
control each pointer independently of the others. Otherwise, the behaviour is
similar to the Java method.

6.1.2 Gestures for Mouse Emulation

Depending on the available features of the input device, various gestures can be
employed to control the pointer. The first distinction is whether the device is
able to differentiate between a “hover” and a “touch” state. The “hover” state
corresponds to just moving the mouse, while the “touch” state corresponds to
clicking and/or dragging the mouse. In the default configuration, “blob” input
events are used to control the pointer’s motion, while “finger” events which
are associated to the blob trigger a click with the primary mouse button.

When this distinction is not supported by the hardware, two options are
available. The first and most straightforward option is to execute any emulated
mouse movement in conjunction with an emulated button press. Should the
hardware be unable to deliver “blob” events (or equivalent data), each “finger”
event will trigger a movement with pressed button. However, emulating mouse
movement with a constantly pressed button will invariable have some adverse
effects on the applications, such as involuntarily selecting any text the mouse
is moved over. A different option which does not exhibit such effects is to
translate touch and movement with a single finger into pointer movement only.
Button press events are not triggered until a second finger is put down.

To support the more complex interactions which are possible with mice
such as scrolling or context menus, the number of additional “finger” objects is
evaluated. Tapping and dragging with one additional finger causes scroll events
to be sent, whereas tapping with two additional fingers triggers a secondary-
button click. While these modes of interaction may seem arbitrary at first,

116

6.1. INTERFACING WITH LEGACY APPLICATIONS

they are well-known to many laptop users, as recent touchpads offer similar
multi-finger behaviour.

6.1.3 Discussion

To test the real-world behaviour of the MPX-based mouse emulator, it was
used in conjunction with the Wiimote as well as the iPhone. While the iPhone
itself does not allow any mouse-based interaction, it can nevertheless serve as
a multitouch-capable, wireless touchpad for a common desktop interface. As
libTISCH applications are inherently network-transparent, such a setup can be
easily provided. A standard web browser (Firefox) was started on a common
laptop, but controlled through the mouse emulator.

Although no quantitative evaluation was performed, using a standard mouse-
based application with novel input devices yielded an important insight. As
most common user interfaces take advantage of the high precision which is
available through the mouse, using them with a less precise device such as
the Wiimote can be challenging. As the Wiimote connector requires the user
to push one of the device’s buttons to trigger interaction (see section 5.2.2),
this motion can cause the cursor to jump away from the originally targeted
location, sometimes causing a short drag-and-drop event which is mostly unde-
sired. Moreover, the cursor showed noticeable jitter due to small, involuntary
hand movements which were amplified by the distance between Wiimote and
infrared light source.

With the iPhone, a surprisingly accurate control of the pointer was possible.
Due to lack of a hover state, the second option described above was used in
which a click had to be triggered through a second finger, while scrolling was
done through dragging with three fingers. Due to the high accuracy of the
iPhone’s touch sensor, a user experience similar to a standard touchpad was
possible. One noticeable drawback in this setup was due to the resolution
and size differences between the two screens. The fingers frequently had to be
lifted off and placed at the other end of the iPhone screen in order to traverse
the entire laptop screen with the cursor. While this effect could be mitigated
by adding a scaling factor to the mouse emulator, this would cause the setup
to lose some precision, thereby causing other unwanted effects as with the
Wiimote.

117

CHAPTER 6. APPLICATIONS

6.2 Casual Entertainment

As mentioned earlier, one of the most prevalent class of applications for multi-
touch and multi-user interfaces is casual entertainment software. To showcase
the abilities of libTISCH, several such applications have been created.

6.2.1 Picture Browser

Probably the most common application for novel interfaces is conceptually
quite simple: the picture browser. Usually, a number of pictures are scattered
randomly across the entire interactive surface and can be manipulated by users
with the common move/scale/rotate gestures. It has already been shown in
section 5.5.1 that such an interface can be easily implemented with libTISCH
by using Tile widgets. In figure 6.1, the same application is shown running
on two conceptually quite different hardware devices, thereby showcasing the
abstraction capabilities of libTISCH with respect to input as well as output.

(a) on FlatTouch (b) on iPhone

Figure 6.1: Picture browser

A small modification to this example serves to underline the ease with
which the functionality of libTISCH applications can be extended. Instead
of Tile widgets, their child class Container can also be used. Through the
container functionality, it is now possible to add, e.g., an annotation field to
each picture by adding a single line of code compared to listing 5.1. This code
snipped is shown in listing 6.1.

This small change results in the user interface shown in figure 6.2. Of
course, additional code would be needed to reliably save and restore these

118

6.2. CASUAL ENTERTAINMENT

. . .

// crea t e a conta iner widge t wi th image t e x t u r e
Container ∗ cont = new Container (. . . , tmp) ;

// add t e x t b o x wi th s i z e and po s i t i o n r e l a t i v e to image s i z e
cont−>add (new Textbox (

tmp−>width ()/20 , tmp−>he ight ()/200 , // s i z e
0 , tmp−>he ight ()/20 // po s i t i o n

)) ;

// add to window
win−>add (cont) ;

. . .

Listing 6.1: Adding annotation fields

annotations; however, such functionality is beyond the scope of libTISCH.

Figure 6.2: Picture annotations

119

CHAPTER 6. APPLICATIONS

6.2.2 Sudoku

Maybe the most common type of interactive software is games. A very popular
pen-and-paper game is Sudoku, in which the player has to fill a usually rect-
angular grid with numbers so that every number occurs only once in each row,
column and sub-grid. Many variants of Sudoku exist, using larger grids, differ-
ent symbols, non-rectangular grids and more. Interestingly, although Sudoku
originally is a single-player game, it can very well be played collaboratively by
several persons. Also due to its complexity, it has on several occasions been
used as a test case for user interfaces [72]. Therefore, Sudoku provides a well-
suited example for a complex multi-user interface and has therefore already
appeared at various locations throughout this thesis.

An example of the interface is shown in figure 6.3(a). Tiles with white
background represent fixed numbers which can not be changed by the user,
while tiles with coloured background are movable and can be slotted into the
fields of the grid. The interface was inspired by the browser game JigSawDoku
[77]. On several occasions such as the faculty’s “Open House” day, casual users
were observed playing the game collaboratively (see figure 6.3(c)). Notable
observations in this context were that up to eight persons could collaborate
effectively and solve several puzzles. Users tended to divide the remaining
numbers among them so that one person was responsible for a specific number.

As the image clearly shows, users distribute themselves evenly around the
table. Therefore, no assumptions regarding the viewing direction can be made
for this setup. However, the numbers on the game tiles of course have one sin-
gle preferred viewing direction. The first iteration of this game featured tiles
which carried every number four times for the four primary directions. Unfor-
tunately, this arrangement created a significant amount of visual clutter when
the grid started to fill up, thereby confusing users. The most straightforward
solution is to allow the user to turn the tile’s content so it faces in the most
comfortable viewing direction. As it would be inconvenient to require every
single tile to be rotated individually, all tiles which share the same number
always rotate synchronously. This approach also takes advantage of the fact
that users usually do not mix numbers between them, i.e. only one user is
likely to look for a specific number at one time. An example where a single
orientation is sufficient is shown in figure 6.3(b). Here, two users collaborate
at a standard laptop computer using two mice in parallel.

The implementation of this game is very straightforward. All tiles are
instances of Tile which have their “scale” handler disabled. Moreover, they
feature a custom “rotate” handler which does not rotate the entire tile, but

120

6.2. CASUAL ENTERTAINMENT

(a) Closeup with single player

(b) Playing Sudoku with multiple mice (c) Collaborative Sudoku playing

Figure 6.3: Sudoku game

only its content and propagates this change to all tiles which share the same
number. Finally, for the fixed tiles, the “move” handler has also been disabled.

Another important feature of this system is that the game logic is handled
by a separate server process. This allows collaboration on the same game
between several disjoint devices.

6.2.3 Virtual Roaches

While this game seems to fall squarely into the “nonsense” category at first
sight2, it nevertheless serves to illustrate an important capability of libTISCH,
namely the use of arbitrary tangible objects. In this application, any trackable

2 Although any practical use of this application seems hard to find, it has been suggested
to use it as a tool for therapy of people who suffer from phobia of insects. Running this

121

CHAPTER 6. APPLICATIONS

object placed on the interactive surface will attract virtual roaches which hide
beneath the object as illustrated in figure 6.4. The user can then remove
the object to reveal the roaches which can be squashed by touching them.
This application can currently only be run on the TISCH device due to the
simultaneous requirement of arbitrary object tracker and touchscreen.

Figure 6.4: Hunting virtual roaches hiding under a book

In this application, two different kinds of custom widgets are used. The
first widget covers the entire screen and is responsible for displaying the back-
ground as well as registering for “shadow” events which indicate appearance,
movement or removal of an object on the surface. This information is propa-
gated to the roach widgets which change their movement accordingly. These
objects are derived from the Button widget class and therefore react to “tap”
events.

While the program is running, the roach widgets move on their own with-
out user interaction. This highlights the important issue of synchronisation
between the widget layer and the gesture recogniser, as the roaches will quickly
move beyond their originally registered position. The gesture recognition layer
requests a region update when a new input identifier has been received so that
it can be checked against the true positions of the regions. However, only
volatile regions or those with sticky gestures will be updated. As the roach
widgets do not contain any sticky gestures, they have therefore to be flagged

application on a front-projected system such as the SiViT would cause the virtual roaches
to appear on top of any object such as a hand and might help the user to gradually cope
with the resulting panic.

122

6.2. CASUAL ENTERTAINMENT

as volatile.

6.2.4 Tangible Instruments

Another very accessible application for tabletop systems are virtual musical
instruments. A virtual piano, for example, is possibly the most intuitive multi-
touch application imaginable, as almost any person will instantly recognise a
piano keyboard and its inherent ability to react to several keystrokes at once
(see figure 6.5).

(a) on MiniTISCH (b) on iPhone

Figure 6.5: Playing a chord on the virtual piano

Regarding the implementation, this application is quite simple, as it only
consists of black and white button widgets which are layered on top of each
other. When the “tap” method of one button is called, an appropriate MIDI
event is sent to the sequencer interface. This can either be a hardware device
connected through a MIDI interface or a software synthesiser which generates
sound through the computer’s audio interface. In terms of sound latency, the
hardware synthesiser is usually the better choice as software implementations
often require a significant amount of processing time, especially when gen-
erating multiple concurrent sounds. Note that the iPhone lacks a software
synthesiser and can therefore only be used in conjunction with an external
MIDI device.

A different, more complex music application is Beatring. It was inspired
by BeatBearing [8], an application in which steel bearing balls can be placed
in slots above a flat-panel display. On this display, a bar is shown which

123

CHAPTER 6. APPLICATIONS

Figure 6.6: Using Beatring with plain wooden blocks

repeatedly scans from left to right below the slots. When the bar passes
beneath a slot containing a steel sphere, a sound depending on the row is
triggered. This is very similar to the drum sequencer interfaces found in many
professional music applications.

Beatring extends this concept by bending the linear rows into a circle which
is scanned by a virtual clock hand. A dial in the centre of the circle can be
turned using the usual multi-touch gestures to slow down or speed up the
rotation speed and therefore the playback speed of the drum sequence. Instead
of the electrical connections used in BeatBearing, this application relies on the
shadow tracker from TISCH to allow any opaque object to serve as a trigger
for sounds as shown in figure 6.6.

Another mode of operation is possible with a top-projected surface or reg-
ular LCD screen. Fiducial markers can be tracked through Ubitrack using a
top-mounted camera, thus enabling the same application to be used without
requiring a touch-sensitive surface or a shadow tracker. The position data is
delivered through the Ubitrack adapter described in section 5.2.1. This setup
is shown in figure 6.7.

6.3 Interaction with Mobile Devices

Nowadays, one can reasonably expect a person who is interacting with a table-
top display to also carry a mobile phone. As most mobile phones are capable
computers themselves with advanced features such as 3D graphics, wireless

124

6.3. INTERACTION WITH MOBILE DEVICES

Figure 6.7: Using Beatring with fiducial markers

network connectivity and the ability to run custom software, a rich new area
of interaction possibilities results from the combination of these two kinds of
interfaces [24].

6.3.1 Detecting Phones on a Tabletop Display

Prior to exploring new kinds of interaction, the presence and location of a mo-
bile device (phone, organiser or similar) on the surface needs to be determined.
Some approaches require the device to be equipped either with specialised soft-
ware [125] or with a fiducial marker [82] beforehand. However, these methods
are unsuitable for any kind of casual interaction in which passersby may spon-
taneously want to couple their mobile device with the surface. Therefore, a
method to detect unmodified devices is desirable [23].

The first component of the approach presented here is the previously de-
scribed shadow tracker. This method is able to reliably detect the presence of
almost any kind of opaque object on the surface. However, a decision whether

125

CHAPTER 6. APPLICATIONS

the object actually is a mobile device is not yet possible. Therefore, a Blue-
tooth proximity detector is added as second component. As proximity sensing
is performed via the Received Signal Strength Indicator (RSSI), this informa-
tion should be available with low latency. Therefore, a Broadcom USB adapter
has been chosen which supports the “inquiry with RSSI” feature that was in-
troduced in version 2.1 of the Bluetooth Core Specification [12]. This enables
the adapter to continuously run inquiry scans while at the same time delivering
RSSI data on all discoverable devices within radio range. One scan cycle takes
about 1 second as opposed to older Bluetooth devices that do not have this
feature. These adapters have to issue a time-consuming connection request (up
to 11 seconds in the worst case) for every single RSSI measurement. Moreover,
this connection requires pairing the mobile device and the adapter for which
the user has to enter a password. In contrast, the presented approach is able
to function without explicit user interaction.

Of course, this very fact raises some questions regarding security and pri-
vacy. One might argue that persons who allow a personal Bluetooth-enabled
device to be discoverable know what they are doing. However, most people are
unaware of the implications. For example, certain phones are vulnerable to
a wide range of Bluetooth-based attacks when they are in discoverable mode
[108]. It might therefore be advisable to remind the user through a message
on the interactive surface that the Bluetooth transceiver should be turned off
after use. Care should also be taken not to compromise the users’ privacy by
generating a log of detected devices. Although the software does store a list
of device addresses, this list is not timestamped and never saved to disk and
should therefore be unproblematic regarding privacy.

The tracking software is composed of two threads. The first one continu-
ously collects RSSI data from Bluetooth devices within reception range, while
the second one receives and processes notifications from the gesture recognition
layer. The gesture specification is designed to differentiate between shadows
that are really cast by mobile phones and those cast by other objects, such as
the users’ hands.

One obvious and easily applied criterion is blob size. There are upper and
lower bounds on the surface area which a mobile phone covers, as it is usually
roughly pocket-sized. For this setup, these bounds have experimentally been
determined to be at 2000 and 10000 square pixels, respectively. These values
depend on camera resolution and size of the surface. In this case, a camera
with a resolution of 720 x 576 pixels is viewing a surface area of 1.15 x 0.75

126

6.3. INTERACTION WITH MOBILE DEVICES

m, resulting in a covered area of approximately 2 mm2 per pixel. While the
area range may seem large, it was chosen to account for, e.g., the difference
between open and closed clamshell phones. In practice, these values have
proven to be sufficient to include every phone which was placed on the surface
while filtering out other objects such as a user’s arm. The second criterion
for the gesture specification is blob motion. Before a phone can be reliably
recognised, it should remain motionless on the table for one second, as this
is approximately the duration of one inquiry scan cycle. The specification is
therefore composed of two features, BlobDimensions and BlobMotion with
appropriate boundaries. When both features match, a “phone” gesture (or
rather, event in this case) is delivered by the recognition layer, meaning that
the corresponding shadow is a candidate for being from a mobile phone.

Figure 6.8: Bluetooth name/location assignment

The next step is to correlate these candidates with the proximity data from
the Bluetooth thread. The RSSI measurements are usually returned in dBm.3

The values typically range between -40 dBm for close proximity and -90 dBm
at the limits of reception range. Obviously, these values are dependent on
the mobile phone as well as the Bluetooth adapter in use. As our adapter is
mounted at a distance of approximately 80 cm below the tabletop, a phone
lying on the surface generates RSSI values of about -60 dBm. Therefore, a
proximity threshold of -65 dBm is used to determine whether a phone is on

3Even though this value might not reflect the true received signal power, but rather some
internal measure, we can accept this measurement as-is, as we are currently relying on an
experimentally determined threshold to decide between the inside- and outside-range cases.

127

CHAPTER 6. APPLICATIONS

or near the table surface. Although the distance to a mobile phone which is
carried in the pocket of a person standing beside the table is about the same,
the RSSI values for such phones are significantly lower. This is due to the
non-uniform reception pattern of the dipole antenna which is used in almost
all Bluetooth dongles. Such an antenna usually exhibits several distinct lobes
with high reception sensitivity. In this setup, the antenna is oriented so that
the main lobe points straight upwards, thereby favouring phones located on
the surface and not those beside the table.

Finally, the list of phone candidates and Bluetooth devices can be com-
pared. In an ideal case, there is one unassigned candidate and one newly
detected device in range, which makes the assignment trivial. In this case,
the optical characteristics (size and length of major and minor axis) of the
candidate are also stored along with the Bluetooth data. This can be used for
later identification of devices if ambiguities arise. For example, a candidate
blob can appear without suitable Bluetooth devices in range. This can occur
when the discoverable mode of a phone has a fixed timeout or Bluetooth is
turned off completely. In this case, the blob features are compared with the
list of previously recognised devices. The best-fitting match according to a
squared-error measure is then used to match the blob with Bluetooth data.
Also, if several blobs and Bluetooth devices appear simultaneously, the blob
features are compared with previous matches to resolve this ambiguity. There-
fore, this method is currently unable to differentiate between several previously
unknown objects which are placed on the surface in a short timeframe (< 1
sec.). A view of various devices on the surface which have been annotated with
their Bluetooth names where available is shown in figure 6.8.

6.3.2 Joining Casual Games

Due to its collaborative nature, a Sudoku game was again chosen as a test
case for interaction between an interactive surface and mobile devices. The
Sudoku implementation consequently features a second mode in which users
can choose between playing directly on the tabletop interface or on their own
mobile device. On one side of the tabletop, a “join area” is located in which
users can place their mobile device in order to join the game (see figure 6.9).
Instructions for activating the Bluetooth transceiver and placing the device
are displayed inside the join area. Once a device has been located as described
above, download of the mobile Sudoku client to the device is initiated. Users
can now pick up their device in order to authorise the file transfer. After the
download has finished, most mobile devices will automatically prompt the user

128

6.3. INTERACTION WITH MOBILE DEVICES

whether the received software should be executed. After the client has been
started, it will immediately connect to the game server and join the running
game.

Figure 6.9: Interaction between mobile and tabletop Sudoku

6.3.3 Evaluation

To test our casual connection method in a real-world scenario, we first eval-
uated the pairing process between mobile devices and the tabletop system
through an expert review with four participants. The reviewers were given the
task to join the running Sudoku game with their mobile phone by following
the instructions displayed on the tabletop system.

All four persons agreed that the main drawback was the still noticeable
delay between putting down the device and starting the download. While the
optical tracker is able to recognise the device almost immediately, the list of
visible Bluetooth devices is often cached internally by the transceiver. This
caching process may add a significant delay until the download is initiated.
The duration after which cached entries expire is usually not adjustable exter-
nally and depends on the transceiver being used. Testing several transceivers
with respect to their scan cycle duration and cache expiry time is therefore
advisable.

A valuable suggestion by one of the reviewers was to display visual feedback
as soon as the optical tracking detects a potential mobile device. To provide

129

CHAPTER 6. APPLICATIONS

such feedback, a pulsing coloured circle will now appear below the device,
thereby informing the user that the joining process has been started.

6.4 Collaborative Applications

While the previously mentioned demos and games are well suited to illustrate
the potential of novel interaction concepts, their practical potential is limited.
We will therefore now consider some applications which are geared towards
real-world use.

6.4.1 Virtual Chemistry

Another natural application for multi-touch is interaction with 3D content.
The user is able to employ more intuitive metaphors for grasping, moving and
rotating a 3D object on the screen than with a mouse-based method such as
ArcBall [104]. While these metaphors are still far from perfect as the user can
only touch a flat surface, the metaphors for swiping along an axis to rotate
the object in that direction or for grabbing it with two or more fingers and
rotating it along the view direction seem natural enough.

In one application [71], a custom molecule viewer is used for displaying a
3D view of chemical reactions. This viewer is based on Ubitrack and receives
3D rotation and position information from arbitrary tracking devices in order
to adjust the viewpoint. To provide multi-touch input to this application, a
second type of Ubitrack adapter is currently being developed which receives
movement and rotation gestures from an arbitrary multi-touch input device.
These gestures are then translated into a persistent 6D pose which is passed
on to the Ubitrack library and delivered to the molecule viewer.

6.4.2 Interactive Whiteboard

One of the most simple, yet practical uses of an interactive surface is to convert
it into a virtual whiteboard. Several users can collaborate to sketch diagrams,
discuss ideas and get a digital copy of their results immediately afterwards.

One problem which quickly comes to mind when considering several users is
that of colour selection. Usually, such quick sketches are easier to understand
when drawn in different, easily discernible colours. On a real whiteboard,
this task is solved by having several pens available from which every user
can choose. Therefore, the virtual whiteboard needs a means to differentiate

130

6.4. COLLABORATIVE APPLICATIONS

between users, as otherwise only a single global colour selection would be
possible. While this may be sufficient in some cases, it is nevertheless better
not to restrict the user arbitrarily.

Obviously, this differentiation between users should be supported by the
hardware. Applicable devices would be, e.g., the Wiimote, the DiamondTouch
surface and TISCH in conjunction with the shadow tracker. While the lat-
ter is, strictly speaking, not able to differentiate between users, but between
hands, this does not pose a problem here. In order to select a colour for a
specific user, two variants are possible. The first one is to display one or more
persistent colour palettes at a fixed location on the screen, preferably near the
edges. Every user can then independently assign a colour to the own hand
and subsequently paint with this colour by touching the screen. The second
variant is to assign a specific gesture to display an individual colour selector at
the hand’s position. Use of this method on the TISCH is illustrated in figure
6.10 with a simple five-finger gesture.

Figure 6.10: Colour selection process

As mentioned earlier, the Wiimote does also allow to differentiate between
several users simply by giving every user a separate device. Therefore, this
whiteboard application can also be collaboratively used with several Wiimotes.
This case, as well as usage on the TISCH, are shown in figure 6.11.

6.4.3 Virtual Patient

Personnel from emergency response services such as ambulance crews, fire
brigade etc. often need to be trained in the process of so-called triage. Should
an unforeseen event such as a natural disaster, large-scale accident or similar
occur, these first responders arriving at the scene are required to assess the
severity of the various injuries as quickly as possible. This is necessary to en-
sure the best utilisation of strained resources such as ambulances, paramedics,

131

CHAPTER 6. APPLICATIONS

(a) on TISCH (b) with Wiimotes

Figure 6.11: Using the virtual whiteboard

emergency physicians and similar. This assessment process should be com-
pleted in under 90 seconds per casualty and is usually guided by a flowchart.
As the persons conducting the triage may be under considerable physical and
mental stress, it is important to train this process repeatedly to achieve the
best possible performance, even under adverse conditions. However, these
trainings are a highly complex and costly process, as they usually involve a
number of mimes who have to be made up with realistic-looking injuries and
who have to be trained themselves in reacting appropriately to the paramedics.

Figure 6.12: Interaction with the virtual patient (image from [86])

To provide a less involved alternative to this kind of training, a virtual pa-

132

6.4. COLLABORATIVE APPLICATIONS

tient application has been developed [86]. This application randomly displays
one of several virtual injured persons. As the virtual patient should be as close
to life-size as possible, this application is designed to run on the TISCH table-
top interface only. Paramedics can interact naturally with the virtual patient,
e.g. by touching a wrist to check the patient’s pulse which is then displayed in
a small window above the wrist. This feature also highlights an improvement
with respect to existing triage training software. While these existing pro-
grams are used with a common desktop computer, the multi-touch interface
requires users to stand and occasionally use both hands for a task, such as
propping the patient up (see figure 6.12). It is therefore closer to reality than
a pure desktop-based interface. For example, should the paramedic be holding
a clipboard or similar device, it has to be put down prior to certain actions.

In an evaluation performed by Nestler et al. [86] with paramedics from
the fire department in Munich, it was shown that the accuracy of the training
results when using the virtual patient application were comparable to those
obtained with mimes. Due to the significant reduction in complexity regarding
the training exercises, the virtual patient seems to provide a viable alternative
to common training procedures.

Summary

In this chapter, various games and applications which have been built based
on the libTISCH framework have been reviewed. Where applicable, these pro-
grams have been tested with different input hardware devices or been evaluated
in user studies or expert reviews.

133

CHAPTER 6. APPLICATIONS

134

Chapter 7

Conclusion

In this chapter, the architecture and concepts introduced in this thesis shall be
discussed. Also, a look at future extensions of the presented implementation
shall be taken.

7.1 Discussion

The contributions offered by this thesis are threefold. First, an architecture for
describing a wide variety of interactive systems, especially those based upon
novel input devices, has been presented. Second, as a core part of this archi-
tecture, a generic and extensible protocol for the specification of gestures was
developed. Finally, a reference implementation of this architecture, libTISCH,
has been presented and tested in a range of scenarios. Each of these contribu-
tions shall now be discussed shortly.

Architecture Design

The overall experience currently supports the design of the presented inter-
action architecture. This architecture has proved to be generic enough to
subsume a wide variety of applications, gestures and hardware devices into
one coherent system. Extensibility is provided through a number of clearly
documented interfaces, making it easy to add new widgets or support for new
input hardware.

Where applicable, this architecture follows established design practices
from existing window-management systems and toolkits. Other solutions have
envisioned completely different approaches to novel interaction devices such
as using a physics simulation instead. However, the integration of existing

135

CHAPTER 7. CONCLUSION

concepts such as events and widgets will provide an easy migration path for
developers which are used to these established methods.

Using the Gesture Description Protocol

A point of critique made by several developers using the library pertained to
the gesture description protocol. In some cases, the mapping from real-world
gestures to abstract GDP entities is not obvious due to the high number of
configurable parameters offered by the specification. While this complexity is
unavoidable to provide the high degree of flexibility required by some applica-
tions, it may be confusing for developers.

Partly, this problem can be solved by providing appropriate default gestures
for common use cases and assigning them to suitable widgets. Of course,
these default gestures should be usable for a wide range of hardware devices.
Therefore, it may be necessary to create several sets of default gestures for
conceptually different sensors and load them according to the hardware which
is currently in use.

libTISCH Performance

An important aspect of any library aimed at developing interactive software
is performance. The layered design of the underlying architecture does not
mandate a specific means of communication. To achieve best platform and
language independence, UDP was used in the reference implementation. Tests
have shown that each UDP link can be expected to add an average of 1-2 ms
of latency to the overall system delay when running on the same host. This
results in an expected total latency of not more than 6 ms that is caused by
the use of three UDP links between the layers.1

However, should even this small increase be unacceptable due to other
factors, two or more separate layers could be integrated into one single, multi-
threaded application and communicate internally. Another option would be
to link the layers via shared memory, Unix pipes or other, local-only means of
inter-process communication.

1Note that this does not take hardware delays into account which inevitably occur when
linking separate hosts.

136

7.2. OUTLOOK & FUTURE WORK

7.2 Outlook & Future Work

While this thesis has presented an important step towards a more generic
approach to novel modes of interaction, there are still aspects which have not
been explored in-depth.

Cross-Device Gesture Standardization

Some basic gestures such as “move” or “rotate” will likely be part of a large
number of applications. However, depending on the input device, the move-
ments used to trigger these events may be quite different. To avoid burdening
the end-application developer with specifying gestures over and over again, a
basic set of gestures should be available regardless of the hardware device used.
The responsibility for specifying those gestures then shifts to the person who
implements the hardware abstraction layer for a specific input device.

Consistency of Interaction Metaphors

However, this approach immediately highlights another problem. How can the
end user know which movements actually are needed to trigger a specific kind
of interaction? If these movements are dependent on the specific hardware
device in use, either a learning phase specific to each device is unavoidable, or
the interface has to be designed in such a way that the user is subtly guided
to the correct movements for each device. Graphical affordances may be used
to this end. Another possibility is to design the basic gestures in such a way
that they appear identical or at least similar to the user, despite the different
underlying implementation.

Analysis of Application Areas

When viewed from a less technical perspective, it becomes apparent that one
big drawback of multi-touch and other novel kinds of interfaces in general is
the still present lack of applications. A wider analysis of other scientific and
industrial disciplines, especially those not directly related to computer science,
should be conducted in order to identify areas where such user interfaces can
provide a benefit over existing standard interfaces.

137

CHAPTER 7. CONCLUSION

Extension of Widget Library

When looking at standard desktop toolkits like Swing, the developer is of-
fered a huge variety of widgets. In comparison, the rudimentary widget set in
libTISCH offers only the most basic functionality and relies on the developers
to derive more specialised widgets on their own. The previously mentioned
analysis of new application areas may give insights into which other types of
widgets should be included in a standard set, thereby easing the deployment
of such user interfaces in other disciplines.

Non-Graphical User Feedback

Another topic which has not yet been considered is that of non-graphical feed-
back such as sound, vibration etc. The Wiimote, for example, offers vibration,
sound generation and four bright LEDs which can deliver additional signals to
the user. Future touchscreens may deliver localised vibration or deformation
for haptic feedback. Support for these features would necessitate an additional
feedback channel from the gesture recognition layer to the hardware abstrac-
tion layer as well as an extension of the gesture formalism to described the
type of feedback to be delivered.

Multi-Sensor Support

Although libTISCH supports a variety of sensors, merging their data at run-
time is currently only supported for some special cases such as the combined
shadow/FTIR tracker. A generic sensor fusion approach is probably beyond
the scope of libTISCH. However, such functionality is already offered by the
Ubitrack library. The existing Ubitrack adapter offers an easy way to explore
complex multi-sensor setups such as, e.g., combining fiducial markers with a
touchscreen and hand-held interaction devices.

3D Interaction

Finally, an extension which may not be apparent at first sight is the support of
fully three-dimensional interaction, for example in virtual or augmented reality
environments. While the implementation presented in the context of this thesis
has been focused on two-dimensional interfaces, the architecture as well as the
protocol specifications do not pose any restrictions in this regard. For example,
a region in 3D could be described by a sequence of triangles, thereby composing
a polyhedron. While free-hand interaction using the Wiimote has already been

138

7.3. SUMMARY

implemented within this thesis, this is still inherently a two-dimensional mode,
as the data is projected into the screen plane prior to processing. However, all
protocols fully support the transport of three-dimensional data. While most of
the existing features would have to be extended or replaced in order to support
3D interaction, the basic gesture matching algorithm would also work in this
context.

7.3 Summary

In this thesis, a new approach to interactive systems has been presented. An
abstract architecture has been developed which can be used to formally de-
scribe the various components of a wide variety of user interfaces, from the
hardware up to the graphical representation of the UI. Special emphasis has
been given to a formal specification of gestures. In principle, this formalism
adheres to widely used design methods such as widgets and events, but extends
them where necessary. An important extension is the separation of events into
input events which describe motion and gesture events which describe mean-
ing.

A reference implementation of this architecture, libTISCH, has been de-
veloped. libTISCH was used to create several different kinds of applications
which have been run on various sensor devices. While a significant amount of
work remains to be done, this architecture and library are an important step
of bringing novel kinds of interfaces such as multi-touch systems closer to the
mainstream.

139

CHAPTER 7. CONCLUSION

140

Appendix A

In this chapter, some of the more technical details of certain important imple-
mentation aspects shall be described. Moreover, a class reference for libTISCH
is given in order to help developers using this library.

A.1 libTISCH Configuration Files

A.1.1 Calibration File

The calibration file is stored under the name .tisch.calib, either in the user’s
home directory or in /tmp. It contains two major calibration elements: the
perspective transformation matrix from sensor to screen coordinates and the
radial undistortion parameters. The format of the file is as follows:

m1 m2 m3

m4 m5 m6

m7 m8 m9

c0 c1 c2 c3

tx ty tz

sy sy sz

The parameters m1 - m9 describe the homography which translates sensor
coordinates into screen coordinates. The bottom row m7 m8 m9 should be
equal to (0, 0, 1) for a perfect calibration. Small deviations may occur due to
numerical inaccuracies of the singular value decomposition which is used to
calculate the mapping. For example, in one real-world calibration, this last
row of the matrix has the values (−0.000182321, 0.0000219296, 1.0).

The parameters c0 - c3, tx ty tz, sx sy sz describe the radial undis-
tortion. c0 - c3 are the coefficients for the undistortion equation mentioned

141

APPENDIX A. APPENDIX

in section 5.3.1. This equation takes the general form r = ax+ bx3 for almost
all kinds of lenses. Therefore, the coefficients c0, c2 are usually zero. As
this function can only be applied to normalised pixel coordinates in the range
[−1, 1], the image coordinates have to be mapped to this range before undis-
tortion is applied. This can be achieved through the translation tx ty tz and
scale sx sy sz parameters. Note that the centre of the normalised coordinates
does not necessarily map to the centre of the image. Instead, it should map
to the centre of distortion which may be located off-axis. After undistortion,
the mapping is applied in reverse to retrieve the final, undistorted image pixel
coordinates.

A.1.2 touchd Parameter File

As various camera and tracking parameters may require fine-tuning depending
on the exact hardware used, the touchd blob tracking daemon can also be
configured through a plain-text file. This file is named .tisch.touchd and is
stored in the same location as the calibration file.

This file consists of one or more blocks, each of which describes one track-
ing modality. Several tracking modalities may be specified which are cycled
through after every incoming camera image. One block has the following for-
mat:

name

threshold invert bgfactor

minsize maxsize id factor radius scanpeak colour1 colour2

width height fps camtype gain exposure brightness flash

The name parameter is a string which specifies the tracking mode described
in this block, e.g. “finger”. This is also the identifier which is later used for
transmitting blobs detected by this tracking mode. All other parameters are
numerical unless noted otherwise.

As described in section 5.2.3, the base threshold is calculated as the absolute
difference between the average intensities of background image and foreground
image. The threshold value is added to this difference to obtain the final
value. The invert parameter selects whether the background image should
be subtracted from the foreground image or vice versa. In the first case (invert
== 0), objects which are brighter than the background will be detected, e.g.
for FTIR tracking. In the second case (invert == 1), darker objects will
be detected, e.g. for shadow tracking. The bgfactor parameter determines

142

A.2. FIRMWARE FOR THE ATTINY13 LED CONTROLLER

which percentage of the foreground image intensity should be integrated into
the background. Currently, only fractions of powers of two are supported to
avoid generic floating-point calculations. A fraction like 1

512
can be realised

through fast integer shift operations.

The next set of parameters controls the blob tracking algorithm. minsize
and maxsize specify the minimum and maximum number of pixels which a
blob must contain. Otherwise, it is discarded. id determines the first number
which will be assigned as a new identifier. This number will be continually
increased while the software is running. radius specifies the radius in pix-
els around the estimated new blob location in which a corresponding blob
is searched. scanpeak and factor determine whether a peak should be de-
termined for each blob (scanpeak > 0) and by which factor the axes of the
equivalent ellipse should by scaled to obtain the search axes. The colour1

and colour2 parameters are only relevant for the visualisation and specify the
colour in which the blob centroid and the motion vector shall be displayed.
Both values are RGB triples.

The final set of parameters in each block determines the camera settings.
width, height and fps specify the image size and frame rate. camtype deter-
mines which camera driver should be used (1: Video4Linux, 2: Firewire IIDC,
3: DirectShow). The following three settings, gain, exposure and brightness

set these three camera parameters. Note that the range and values may dif-
fer widely between camera models. The final parameter, flash, is only valid
when a flash controller such as the ATtiny13 mentioned below is connected
which supports different modes of operation such as alternating light sources.
The flash parameter is passed to the FlashControl class which configures
the flash controller accordingly. The exact meaning of this parameter depends
on the firmware used in the control circuit.

A.2 Firmware for the ATtiny13 LED Controller

The LED pulsing method described in section 4.1.1 benefits from using a mi-
crocontroller to activate the LEDs. Such a device offers higher flexibility and
reliability than possible when, e.g., controlling the LEDs directly through the
camera. For example, strict timing requirements such as observing the neces-
sary cool-down delays between two pulses would otherwise not be possible.

To this end, a custom firmware for the ATtiny13 microcontroller was writ-
ten. This firmware contains a primitive state machine with 7 states:

143

APPENDIX A. APPENDIX

0 wait for trigger signal, LEDs off

1 check if odd or even cycle

2/3 turn corresponding LED group on

4 flash active: start timer, wait 300µs (pulse duration)

5 timer expired, turn all LEDs off

6 cooldown: start timer, wait 19.7ms (cooldown phase)

wait

flash

check

disable all
groups

cooldown

input level
transition

timer
expired

timer
expired

start timer
20 ms

start

enable
group 2

enable
group 1

start timer
300 µs

odd cycle even cycle

Figure A.1: LED control state machine

After state 6 has ended, the state machine returns to the default state 0.
The state graph therefore is cyclic. State transitions can be triggered by two
different interrupts, either by a logical transition from 1 to 0 on the input
pin or by an one-shot timer interrupt when the timer has been started by the
previous transition. The presented state machine is designed to control two
LED groups, but can be easily modified to support more. Note, however, that
for n LED groups, the effective framerate will be reduced by a factor of 1

n
.

144

A.3. A MINIMAL X3D RENDERER

A.3 A Minimal X3D Renderer

This concept of a lightweight rendering engine for the X3D standard has first
been developed for the Ubitrack library. Due to its small size, it was also
included in libTISCH to provide a fast, easily accessible method to render 3D
content.

The core idea behind this concept relies on the fact that X3D is an Extended
Markup Language (XML) dialect. The inherent tree structure of XML is used
to describe a scene graph, which is often also a tree or at least a directed acyclic
graph. Most XML parsing libraries support the Simple API for XML (SAX)
programming model, which triggers event callbacks upon entry and exit of a
node during parsing. When viewing the XML tree as a scene graph, then this
sequence of events is nearly identical to that which occurs during scene graph
traversal. Therefore, a separate scene graph data structure and traversal code
can be replaced by the XML representation and parser callbacks which call
appropriate OpenGL commands depending on the current node type.

Of course, this approach requires an XML parsing library in the first place.
Libraries which fully support the entire XML standard can reach significant
code size on their own, thereby rendering the entire concept largely useless.
Fortunately, non-validating libraries can still be kept quite small. One example
which this renderer is based on is TinyXML [113]. It has the additional benefit
of using the C++ STL as its only dependency. By heavily using many STL
data structures, the library can remain very small (about 90k of compiled code
size).

However, while this concept is able to significantly reduce source code size,
an unoptimised implementation suffers from bad performance. The reason is
that the XML document tree and particularly all node attributes like colour
information, vertex coordinates etc. have to be re-parsed for every rendering
pass. Fortunately, OpenGL offers the ability to compile so-called display lists
at runtime, which are sequences of commands that are stored in the GL server
and can later be called through a simple identifier. This feature provides
significant optimisation potential: each node is parsed regularly when it is
visited for the first time, generating the appropriate OpenGL commands. At
the same time, a display list is compiled and stored in a hash table with the
node’s identifier as index. In all subsequent rendering passes, parsing can be
aborted for every node which has an entry in the hash table. Instead, the
stored display list can be called which delivers the same commands.

145

APPENDIX A. APPENDIX

A.4 MPX Compatibility Patch for FreeGLUT

When implementing cross-platform 3D graphics, OpenGL is by far the most
common choice. As OpenGL itself does not deal with context allocation, event
handling and similar issues, the GL Utility Toolkit (GLUT) library is usually
employed for these tasks. Currently, the most widely used GLUT implemen-
tation is FreeGLUT [4].

The GLUT programming model allows to register callbacks for various
events such as key presses, mouse movement etc. As this quasi-standard is
over ten years old, the signature of these callbacks is naturally geared towards
a single pointer. All mouse-related callbacks simply deliver a single x-y co-
ordinate pair. When considering extensions such as MPX, this is insufficient.
Should, for example, two pointers move at the same time, the application will
likely receive motion events with coordinate sets that alternate between the
two different positions.

To deal with this limitation, a patch to FreeGLUT was developed which
adds multi-pointer aware versions of the four most basic mouse callbacks which
deal with entry/exit, motion, button and passive motion events. The functions
for setting these callbacks are:

void glutXExtensionEntryFunc(void (*callback)(int, int))
void glutXExtensionButtonFunc(void (*callback)(int, int, int, int, int))
void glutXExtensionMotionFunc(void (*callback)(int, int, int))
void glutXExtensionPassiveFunc(void (*callback)(int, int, int))

When the FreeGLUT library has been built with support for these features,
then the macro GLUT HAS MPX will be defined to indicate their presence. The
signature of each the callback functions themselves now has an additional
int parameter. When the callback is triggered, this parameter denotes the
pointer from which the event originated. By maintaining a hash table with
the pointer IDs as keys, the event can thus easily be assigned to the correct
set of coordinates.

It is currently unclear whether Windows 7 will offer similar functionality.
If this is the case, then this API could be extended to provide access to multi-
pointer input data under Windows, too.

A.5 GLUT-Compatible Wrapper for the iPhone

By using OpenGL, even such exotic platforms as the iPhone can be integrated
into the framework with little effort. The programming environment which

146

A.6. LIBTISCH CLASS REFERENCE

Apple provides for the iPhone and iPod touch does offer an graphic library
based on OpenGL ES (embedded systems). Unfortunately, an equivalent for
GLUT does not exist. Functions such as context creation, callback handling
etc. have to be performed through the ObjectiveC-based UIKit library.

However, as ObjectiveC is binary-compatible to C, it is possible to create
a wrapper module which offers the most important GLUT functions in C, but
which is internally implemented in ObjectiveC to access the UIKit interface.
Additionally, this offers the opportunity to re-use the extension callbacks which
were previously introduced for MPX. Semantically, the touch events from the
iPhone do not differ from the MPX extension pointer events, with the sole
exception that the iPhone hardware is not able to deliver “hover” events which
trigger the passive motion callback from GLUT. This callback is therefore non-
functional. All other extended callbacks work as expected, with a finger ID
being delivered instead of a pointer ID.

While this wrapper cannot provide the entire functionality of GLUT, it
offers the basic features which are needed to get an OpenGL context and
receive input events. One important feature which should be supported but
has not yet been implemented is rendering of geometric primitives such as
cubes, spheres or text strings. Of course, some of the advanced functions of
GLUT such as support for multiple windows are not usable on the iPhone.
However, as libTISCH is also geared towards a single top-level window, this
does not pose a problem.

A.6 libTISCH Class Reference

libTISCH is divided into five core libraries. Each of them shall be described
briefly, followed by a list of the contained classes and their methods. This
section is designed to help developers build applications based on libTISCH.
Unless noted otherwise, all classes are available on all three supported operat-
ing systems (Linux, MacOS X and Windows).

Note that all classes which need to be transferred between layers at some
point, including, e.g. Vector or Region, define stream input/output operators
(<< and >>). This allows easy serialisation and unserialisation through any
std::iostream object.

147

APPENDIX A. APPENDIX

A.6.1 libtools

This library provides a collection of various low-end helper classes and tem-
plates. Some of these have been inspired by classes from the Boost library.
While simply integrating Boost would have been a possibility, prior experience
has shown that it is still a significant source of compile-time errors due to slight
changes between library releases. Therefore, the classes Functor, SmartPtr,
Thread and Vector have been re-written from scratch.

Vector

Description This class provides a simple encapsulation of a 3-vector along
with a number of common vector operations mapped to C++ operators.
The class is templated with the component type, allowing for various
kinds of vectors. The default component type is double.

Definition
template <typename Type> class Vector

typedef Vector<double> Vector

Constructor Vector(Type x = 0, Type y = 0, Type z = 0)

Methods
The arithmetic operators + - * can be used as expected. vec1 * vec2

results in the dot product, while vec * number results in a scaled vector.
The operation vec1 & vec2 results in the cross product.
The member variables x,y,z provide direct access to the components.
double length() returns the length of the vector.
void normalize() scales the vector to a length of 1.
void rotate(double angle) rotates the vector around the specified
angle in the x-y plane.

BasicBlob

Description This class describes a generic input object through properties
such as size, position, orientation, identifier etc. All member variables are
public. The name results from the computer vision term for connected
components which are often used as input objects. However, entities such
as tangible objects can also be described with BasicBlob.

Definition class BasicBlob

Constructor BasicBlob()

148

A.6. LIBTISCH CLASS REFERENCE

Member Variables
int size Size of the object in arbitrary units, e.g. pixels for vision-based
blobs.
int id Unique identifier for the object.
int pid Unique identifier of the parent object when available, 0 other-
wise.
Vector pos Position of the object.
Vector speed Current (estimated) movement vector.
Vector peak Peak (e.g. fingertip) of the object when available.
Vector axis1,axis2 Major and minor axis of the equivalent ellipse.

UDPSocket

Description This class is an object-oriented wrapper around the widely
used Sockets interface for network programming. UDPSocket is derived
from the STL class std::iostream. Therefore, the default stream input
and output operators >> << can be used to transmit and receive objects
as UDP packets.

Definition class UDPSocket: public std::iostream

Constructor UDPSocket(const char* address, int port, struct

timeval* to = 0) The address parameter specifies the local address
on which this socket should listen. This can be a hostname, an numerical
address or a constant such as INADDR ANY for all available interfaces. The
port parameter specifies the UDP port which the socket should listen at.
When this parameter is set to 0, an arbitrary unused port will be chosen
by the operating system. The optional timeout parameter to can point
to a struct timeval object that specifies how long the socket should
wait for new data to arrive before aborting the operation. When this
parameter is unset, the socket will wait indefinitely.

Methods
void target(const char* address, int port) specifies the address
and port where packets from the socket should be sent to. The address
and port specification is the same as in the constructor.
in addr t source(int* port) returns the address and port where
the last received packet came from. The address is returned as a 32-bit
integer.
void flush() discards all buffer contents and clears all error flags, thereby
resetting the socket state.

149

APPENDIX A. APPENDIX

Thread

Description This class provides a simple object-oriented wrapper around
an execution thread. To create a new thread, a subclass of Thread has
to be created which implements its own run() method. For convenience,
the class also provides access to an internal mutex object for thread
synchronisation.

Definition class Thread

Constructor Thread();

Methods
virtual void* run() has to be overwritten in a derived class and pro-
vides the inner thread loop.
void start() executes the run() method in a new thread.
void lock() acquires a lock of the thread’s internal mutex. If another
thread already has locked the mutex, then the call will block until the
mutex is released again.
void release() releases the internal mutex, allowing other threads to
lock it.

SmartPtr

Description As libTISCH relies heavily on the STL, there are occasions
where pointers have to be stored in STL containers. When using normal
pointers, this can easily lead to memory leaks at runtime. It is there-
fore advisable to use a reference-counting pointer in these cases. The
SmartPtr class provides such a pointer which offers the usual pointer
semantics. Additionally, it will automatically delete the object which it
points to when all references have been deleted.

Definition template <class X> class SmartPtr

Constructor SmartPtr(X* p = 0)

Methods
All pointer operators * = -> can be used as with normal pointers.
X* get() will explicitly return the internally stored pointer.

Functor

Description A functor is a “canned function call”. A reference to a normal
function is stored along with a list of parameters. At a later point in time,

150

A.6. LIBTISCH CLASS REFERENCE

these parameters are passed to the function and the call is executed by
the functor object.

Definition template <typename Result> class Functor

Constructor Functor is a special case, as it should in general not be
created through its constructor. Rather, the polymorphic function bind

can be used to create a functor, e.g. as follows: Functor<void> func =

bind(glColor3f, 1.0, 1.0, 0.0);

Methods
operator() () - calls the stored function with the stored parameters,
e.g. func();

A.6.2 libsimplecv

This library provides a set of basic image management and computer vision
functions. While all of these functions could have been provided by an ex-
ternal library such as OpenCV, this approach would have had two significant
drawbacks. Besides adding an additional dependency along with unavoidable
problems such as version conflicts, the open-source version of OpenCV is writ-
ten in pure C. While an accelerated implementation is available, this version is
not available under a free license, but has to be paid for. Therefore, libsimplecv
offers accelerated versions in MMX assembler for the most performance-critical
functions. The helper classes ColorLUT, YUYVImage and YUV420Image shall not
be described in detail, as they are only used internally by the image sources
to convert raw camera image data into the common luminance or RGB colour
spaces.

Image

Description The core element of libsimplecv is the abstract Image class.
Three concrete implementations exist for 8-bit greylevel images
(IntensityImage), 16-bit greylevel images (ShortImage) and 24-bit RGB
colour images (RGBImage).

Definition class Image

Constructor Image(int width, int height, double bpp) creates a
new image with dimensions width * height and bpp bytes per pixel
(fractions are possible).

151

APPENDIX A. APPENDIX

Methods
In all following methods, target images should always have the same size
as the current image itself unless noted otherwise.

unsigned char getPixel(int x, int y, int channel = 0) retrieves
a single pixel value.
void setPixel(int x, int y, unsigned char value, int channel

= 0) sets a single pixel value.
void clear(int value = 0) sets all bytes in the image to the same
value.

The following functions are only available for RGBImage:
void getChannel(int channel, IntensityImage& target) extracts
a single colour channel into target.
void getIntensity(IntensityImage& target) converts the RGB data
into intensity data in target.
void combine(const IntensityImage& red, const IntensityImage&

green, const IntensityImage& blue) creates an RGB image from
three separate channel intensity images.

The following functions are only available for ShortImage:
void update(const IntensityImage& img, const IntensityImage&

mask) calculates the new pixel intensity values as a weighted average
between the current intensity and the intensity in img. mask can be used
to exclude image regions from being updated.
void subtract(const IntensityImage& source, IntensityImage&

target, int invert) subtracts the local intensity values from the
source image. Intensity values from source are temporarily extended
to 16 bit. The result is written into target. When invert is true, the
source image is subtracted from the local image instead.
void convert(IntensityImage& img) converts the local 16-bit in-
tensity values into 8-bit values and stores them in img.

The following functions are only available for IntensityImage:
void sobel(IntensityImage& target)

152

A.6. LIBTISCH CLASS REFERENCE

void sobel() apply a horizontal and a vertical Sobel operator to the
image, thereby highlighting edges.
void adaptive threshold(int radius, int bias, IntensityImage&

target) apply an adaptive thresholding operator to the image.
int threshold(unsigned char value, IntensityImage& target)

int threshold(unsigned char value) apply a standard global thresh-
old to the image.
void invert(IntensityImage& target)

void invert() subtract the image values from 255 and store the re-
sult.
int histogram(int hg[]) calculates an intensity histogram of the
image.
int intensity() calculates the average image intensity.
long long int integrate(Point start, Vector& centroid, Vector&

axis1, Vector& axis2, unsigned char oldcol = 255, unsigned char

newcol = 0) performs a connected-component analysis. The seed point
is located at start while oldcol and newcol specify the colour which
should be searched for and the replacement colour. Centroid, major and
minor axis are stored in the respective parameters. The return value is
the blob size in pixels.
void undistort(Vector scale, Vector delta, double coeff[4],

IntensityImage& target) performs a generic radial undistortion on
the image, based on the coefficient array.
void despeckle(IntensityImage& target, unsigned char threshold

= 8) applies either an erosion or dilatation operator to the image. A
pixel is set to full intensity if at least threshold neighbour pixels also
have full intensity.
IntensityImage& operator-=(const IntensityImage& arg)

void subtract(const IntensityImage& i1, const IntensityImage&

i2) subtracts two images from each other. Negative result values are
clamped to 0.

ImageSource

Description ImageSource is an abstract class which is used to encapsulate
various kinds of camera interfaces in its derived classes
DirectShowImageSource, V4LImageSource and DCImageSource.

Definition class ImageSource

153

APPENDIX A. APPENDIX

Constructor
V4LImageSource(const std::string& path, int width, int height,

int fps = 30, int debug = 0)

DCImageSource(int width, int height, int fps = 0, int

num = 0, int verbose = 0)

DirectShowImageSource(int width, int height, const char*

videodev = "", int verbose = 0)

These constructors create concrete implementations of image sources.
The parameters width, height, fps and verbose all have the same
meaning. The selection of a specific camera is done either through a
device path for Video4Linux, a device number for Firewire/IIDC or a
device name for DirectShow.

Methods
int acquire() instructs the camera to buffer the most recent image.
void release() releases the previously buffered image. A call to acquire
should always be followed by a call to release.
void start() starts the camera’s image acquisition process.
void stop () stops the camera.
void getImage(IntensityImage& target) loads the buffered image
into an intensity image, possibly converting it in the process.
void getImage(RGBImage& target) loads the buffered image into an
RGB image, possibly converting it in the process.
void setFPS(int fps)

void setGain(int gain)

void setExposure(int exp)

void setShutter(int speed)

void setBrightness(int bright) set various camera parameters.
These may not be implemented in all image sources. Particularly the
DirectShow implementation is currently lacking support for camera pa-
rameters.
void printInfo(int feature = 0) displays either information about
the selected feature or about the camera state in general.

Line

Description This class offers an abstract representation of the Bresenham
line algorithm. It can be used to perform an arbitrary operation for all
pixels in an image on a line between two points.

Definition class Line

154

A.6. LIBTISCH CLASS REFERENCE

Constructor Line(Point p1, Point p2) creates a line between two
points with integer coordinates.

Methods
void foreach(int x, int y) This pure virtual method will be called
once for every point on the line. Derived classes need to overload this
function with their own implementation.
void follow() executes foreach for all points.

Circle

Description Similar to Line, this class represents the Bresenham circle
algorithm and allows arbitrary operations on image pixels which are sit-
uated on a circle.

Definition class Circle

Constructor Circle(Point c, int r) creates a circle with centre point
c and radius r.

Methods
void foreach(int x, int y) This pure virtual method will be called
once for every point on the circle. Derived classes need to overload this
function with their own implementation.
void follow() executes foreach for all points.

A.6.3 libsimplegl

The libsimplegl library provides a number of convenience classes in order to
access OpenGL graphics functions independently from the operating system.
Although lots of this functionality is already provided by GLUT, there are
some subtle differences regarding available OpenGL features which are hidden
through this library. Additionally, it provides the lightweight X3D rendering
engine described in section A.3.

GLUTWrapper

Description GLUTWrapper is not a class, but rather a collection of defines
and helper routines which hide most remaining differences between var-
ious implementations of GLUT. It also provides some helper functions
which subsume various repetitive tasks.

155

APPENDIX A. APPENDIX

Methods
template <class T> void glutPaintArrays(int num, T* vertices,

T* texcoord = 0, T* normals = 0,

GLenum mode = GL TRIANGLE STRIP, GLenum where = GL TEXTURE0)

This function draws one single vertex array with num triples of type T.
Optionally, a 2D texture coordinate array and a 3D normal array of the
same type can also be specified.

GLUTWindow

Description This class provides an object-oriented wrapper around a top-
level window with associated OpenGL context. GLUT event callbacks
are translated into virtual method calls, thereby allowing easy access in
derived classes.

Definition class GLUTWindow

Constructor GLUTWindow(int w, int h, const std::string& title

) The w/h parameters determine the dimensions of the window, whereas
the title parameter specifies a titlebar text.

Methods
void clear(float red = 0.0, float green = 0.0, float

blue = 0.0, float alpha = 0.0) sets the clear colour and empties
the colour and depth buffers.
void print(const std::string& text, int x, int y) displays a
string at the specified position using bitmap fonts.
void mode2D() sets an orthogonal projection matrix and various other
parameters for using OpenGL as a 2D rendering engine with blending.
void show(const RGBImage& img, int x, int y)

void show(const ShortImage& img, int x, int y)

void show(const IntensityImage& img, int x, int y) These func-
tions display a raw, unscaled image at the specified window coordinates.
void swap() exchanges the front and back buffers and should usually be
called at the end of the display callback.
void run() executes the GLUT main loop and will not return. It should
therefore be called at the end of the main() routine.
void idle()

void display()

void reshape(int w, int h)

156

A.6. LIBTISCH CLASS REFERENCE

void keyboard(int key, int x, int y) are the window-global vir-
tual callback functions which are identical to the GLUT callbacks with
the same names.
void mouse(int num, int button, int state, int x, int y)

void passive(int num, int x, int y)

void motion(int num, int x, int y)

void entry(int num, int state) are the pointer specific virtual call-
backs. These also correspond to their GLUT-specific counterparts with
the exception that the all have an additional first parameter num which
contains the ID of the pointer that triggered the callback.

PicoPNG

Description This class contains a minimal Portable Network Graphics
(PNG) parser which can be used to read any RGBA PNG image file
into memory. It is based on the picoPNG parser by Lode Vandevenne.

Definition class PNGImage

Constructor PNGImage(const std::string& file) opens the specified
filename as PNG and allocates a suitable memory block for the raw image
data.

Methods
unsigned char* data() returns a pointer to the data block.
int width(), int height() return the dimensions of the image.

Texture

Description This class provides a generic wrapper for an OpenGL texture.
It is templated with the four parameters. Several widely used default
combinations of parameters are provided.

Definition
template < int TEXTURE TARGET, int TEXTURE FORMAT,

int DATA FORMAT, int DATA TYPE > class Texture

typedef Texture < DEFAULT TEXTURE TARGET, GL RGBA8, GL RGBA,

GL UNSIGNED BYTE > RGBATexture

Constructors
Texture(GLint w, GLint h, GLenum filter = GL LINEAR,

GLenum mode = GL REPLACE) creates an empty texture with dimensions
w * h, filtering mode filter and texture mode mode.

157

APPENDIX A. APPENDIX

Texture(const char* pngfile, GLenum filter = GL LINEAR,

GLenum mode = GL REPLACE) creates a texture directly from a PNG file
named in pngfile.

Methods
void bind(GLenum where = GL TEXTURE0) binds the texture to the
specified texture unit.
void release() detaches the texture from its current texture unit.
int width(), int height() return the texture dimensions in units which
are suitable for glTexCoord* calls. E.g., when TEXTURE TARGET equals
GL TEXTURE 2D, then width and height will be 1.0.
void load(const GLvoid* data, GLenum data format,

GLenum data type)

void load(const char* pngfile)

void load(const IntensityImage* img)

void load(const RGBImage* img) offers various methods to load data
from memory or from a file into the texture.
void read(GLvoid* data) writes the texture contents to the speci-
fied memory location.

X3DRender

Description This class contains the lightweight X3D rendering engine de-
scribed earlier.

Definition class X3DRender: public TiXmlVisitor

Constructor X3DRender()

Methods This class has no public methods of its own. Instead, a
TiXmlDocument should be created, e.g. as TiXmlDocument* doc = new

TiXmlDocument("foo.x3d"); doc->LoadFile();. Afterwards, e.g. in
the display callback of a GLUTWindow object, the renderer can be in-
structed to traverse the document by calling doc->Accept(&x3drender

);.

A.6.4 libgestures

This library provides the core functionality for the generic gesture recognition
engine described in section 5.4. In particular, these are the Region, Gesture
and Feature classes.

158

A.6. LIBTISCH CLASS REFERENCE

Region

Description This class is derived from std::vector< Vector > which
describes the outline of the on-screen region as a closed polygon. The
last element in the vector is implicitly connected to the first one.

Definition class Region: public std::vector<Vector>

Constructor Region(int flags = (1<<INPUT TYPE COUNT)-1) The
flags parameter is a bitmask which can contain any of the following flags:
1 << input type specifies that this region should be sensitive to the
given type of input object, whereas the predefined flag REGION FLAGS -

VOLATILE tells the system that this region may move without explicit
user interaction.

Methods
int contains(Vector v) determines whether the parameter v is in-
side the region or not and returns 0 or 1 accordingly.
int flags(), void flags(int f) can be used to retrieve and set
the region’s flags.
std::vector<Gesture> gestures allows access to the gestures which
are currently active for this region.

Gesture

Description This class encapsulates the concept of a gesture event. As a
gesture is composed of features, it is derived from a std::vector of point-
ers to FeatureBase objects (see also below). Due to the polymorphic
nature of Feature objects, only pointers can be stored in the container.
To avoid any potential memory leaks, these pointers are encapsulated in
the SmartPtr class described earlier.

Definition class Gesture:

public std::vector< SmartPtr<FeatureBase> >

Constructor Gesture(std::string name, int flags = 0) creates a
gesture with descriptor name. The flags parameter determines spe-
cial behaviour of the gesture: GESTURE FLAGS STICKY describes a gesture
which will continue to capture input events, even if they have moved out-
side of the original region, GESTURE FLAGS ONESHOT describes a gesture
which will only be triggered once for a specific set of input object identi-
fiers, and GESTURE FLAGS DEFAULT determines that this gesture should be

159

APPENDIX A. APPENDIX

added to the default set of gestures which are stored in the interpretation
layer.

Methods
std::string& name() returns the descriptor of this gesture.
int flags() returns the gesture’s flags.

Feature

Description The feature class is the most basic building block for the
formalisms used in libTISCH. Feature is derived from a pure virtual class
FeatureBase. Pointers to this base class are in turn stored in Gesture

objects. Additionally, all features are templated with a parameter Value
that determines the basic data type which is used as result and boundary
values.

Definition template< class Value > class Feature:

public FeatureBase

Constructor Feature(int tf = (1<<INPUT TYPE COUNT)-1) Similar to
Regions, the constructor takes a flags parameter which describes the
types of input objects which the feature will react to. No other flags
besides the input types are available.

Methods
Value result() returns the current result of this feature.
void bounds(std::vector<Value>& bnd) sets the boundary array of
this feature to bnd.
int next() This function needs to be overloaded in derived features
which are able to provide more than one single result. When called,
the next available result should be selected and 1 returned. Other-
wise, 0 should be returned if no more results are available. void load(

InputState& state) This function needs to be overloaded in all de-
rived features. The InputState object contains the current state and
history of all input objects within the containing region. From this data
and the boundary array, the load function should generate one or more
result values and store them internally.
const char* name() This function also has to be overloaded in all de-
rived features and should return a constant string specifying the feature’s
name.

Factory

160

A.6. LIBTISCH CLASS REFERENCE

Description The Factory class is responsible for generating feature ob-
jects by name. As a single, global factory object exists which can be
accessed through the global function g factory(), it is usually not neces-
sary to create other factories. However, it is important in this context to
always add the macro RegisterFeature(FeatureClassName); once
to every source file which defines a new feature class. This macro ensures
that the new feature type can be constructed by the global factory object.

A.6.5 libwidgets

The last library, libwidgets, offers a high-level programming interface for
rapidly building gesture-based user interfaces. These widgets are rendered us-
ing OpenGL graphics to provide speed and flexibility. The classes are designed
to be easily extensible into new types of widgets.

Widget

Description This class is the virtual base class for all other widgets. It
provides the basic functionality of defining an outline in screen coordi-
nates, drawing a texture and registering the widget with the interpreta-
tion layer.

Definition class Widget

Constructor Widget(int w, int h, int x = 0, int y = 0, double

angle = 0.0, RGBATexture* tex = 0, int regflags = (1<<INPUT -

TYPE COUNT)-1) The parameters w, h, x, y, angle control the initial
size, position and orientation of the widget. Note that the origin of the
reference coordinate system is in the centre of the parent widget or win-
dow. The tex parameter can optionally point to a texture object which
is used to paint the widget, whereas the regflags parameter can be used
to specify custom flags for the internal Region object.

Methods
void glOutline2d(double ox, double oy) This function should only
be used in the outline function.
void outline() This virtual function should be overloaded in a derived
widget when a non-rectangular outline is desired. To this end, three or
more calls to glOutline2d should be made which specify points on the
bounding polygon in widget-local coordinates. These points should be as
close as possible to the graphical representation of the widget.

161

APPENDIX A. APPENDIX

void enter() This function modifies the OpenGL matrix stack so that
the local coordinate system is equal to that of the widget itself. A call
to this function must always correspond to a later call to leave.
void leave() This function reverts the effects of a previous enter() call.
void texture(RGBATexture* tex) updates the widget’s texture pointer.
void paint() draws the default representation of the widget, which is a
rectangle containing the default texture given in the constructor.
void draw() This virtual function can be overloaded in derived classes
for more complex drawing routines. Its default implementation consists
of the three method calls enter(); paint(); leave();. Any alterna-
tive implementation should also contain two corresponding enter() and
leave calls.
void action(Gesture* gst) This pure virtual function must be over-
loaded in all derived widgets. It is called when a gesture event for the
widget’s region has been received from the interpretation layer.

Textbox

Description The textbox class is directly derived from Widget. It provides
a text entry area and additionally a pop-up keyboard which appears
directly below the text. To show the keyboard, the text area should
be tapped once. A second tap will hide the keyboard again. Although
it would be possible to implement every single key as a widget, this
would unnecessarily increase network traffic. As the ordered layout of
the keys provides an easy way to map tap locations to keys, the keyboard
is implemented as a single widget.

Definition class Textbox: public Widget

Constructor Textbox(int w, int h0, int h1, int x = 0, int y =

0, double angle = 0, RGBATexture* tex = 0) creates a new textbox
widget. All parameters are equal to those in the base widget with the
exception of the two height parameters h0,h1. As the widget can have
two states, h0 specifies the height in retracted state whereas h1 speci-
fies the expanded height. Note that the ratio between these two heights
should also be reflected in the texture, as the lower part (h1−h0) will be
hidden in retracted state. When no texture is specified, then the widget
will load a default texture from "Textbox.png".

Methods
std::string get() retrieves a copy of the current text field contents.
void set(std::string text) changes the text field contents.

162

A.6. LIBTISCH CLASS REFERENCE

Slider

Description The slider widget has the purpose of adjusting a numerical
value by linearly moving an object.

Definition class Slider: public Widget

Constructor Slider(int w, int h, int x = 0, int y = 0, double

angle = 0.0, RGBATexture* tex = 0) creates a new slider widget
with the same parameters as the base widget. When no texture is speci-
fied, the default texture will be loaded from "Container.png".

Methods
double get() returns the current position of the slider as a fraction be-
tween 0 and 1.
void set(double val) sets the slider’s current position. Values out-
side the [0, 1] range will be clipped.

Dial

Description The dial widget has the same purpose as a slider, which is
to allow modification of a numerical value. However, this task is accom-
plished through rotation of a circular object. Additionally, the dial can
optionally display its current value as a number on top.

Definition class Dial: public Widget

Constructor Dial(int d, int x = 0, int y = 0,

double angle = 0.0, RGBATexture* tex = 0) As the dial is inher-
ently circular, its dimensions can be specified through a single parameter
d determining the diameter. All other parameters have the usual seman-
tics. A default texture will be loaded from "Dial.png" when the tex

parameter is 0.

Methods
double get() returns the current position of the dial as an angle between
0 and 2π.
void set(double val) sets the dial’s current position. Values outside
the [0, 2π] range will be clipped.

Label

Description This completely passive class can be used to display a static
text label.

163

APPENDIX A. APPENDIX

Definition class Label: public Widget

Constructor Label(int w, int h, std::string& text, int x = 0,

int y = 0, double angle = 0.0) creates a label widget with the usual
parameters and the initial label contents text.

Methods
void set(std::string& label) changes the displayed text.

Button

Description The button is one of the most basic components of many
interfaces. This widget reacts to two gestures, “tap” and “release” and
triggers two callbacks accordingly which can be overloaded in derived
widgets.

Definition class Button: public Widget

Constructor Button(int w, int h, int x = 0, int y = 0, double

angle = 0.0, RGBATexture* tex = 0) creates a new button with the
usual parameters. The default texture is "Container.png".

Methods
void tap(Vector pos, int id) is called when a tap event occurs.
The pos parameter specifies the location in screen coordinates, while the
id parameter contains the identifier of the input object which triggered
the event.
void release() is called when all input objects have been removed from
the region.

Checkbox

Description A specialised variant of the button is the checkbox. Tapping
toggles between two states, checked and cleared. When checked, a cross
is displayed on top of the widget to indicate its state.

Definition class Checkbox: public Button

Constructor Checkbox(int w, int h, int x = 0, int y = 0,

double angle = 0.0, RGBATexture* tex = 0) This constructor is
identical to that of the Button class.

Methods
int get() returns 0 when unchecked, 1 when checked.
void set(int state) sets the state of the checkbox.

164

A.6. LIBTISCH CLASS REFERENCE

Tile

Description The tile widget is also a very useful object, especially for
common multi-touch and multi-user applications like picture browsing.
A tile automatically reacts to “move”, “rotate” and “scale” gestures. It
is also possible to selectively disable some gestures when they should not
be used in a specific UI.

Definition class Tile: public Button

Constructor Tile(int w, int h, int x = 0, int y = 0,

double angle = 0.0, RGBATexture* tex = 0, int mode = 0xFF)

The tile constructor is almost identical to those described earlier with the
exception of the mode parameter. This parameter can be set to any com-
bination of the flags TISCH TILE MOVE, TISCH TILE ROTATE and TISCH -

TILE SCALE. When one of the flags is unset, then the tile will not react
to the corresponding gesture.

Methods Tile does not define any methods beyond those inherited from
Button and Widget.

Container

Description The container widget can be used to group other widgets
together. It is derived from Tile to take advantage of the movement
capabilities which have already been implemented there.

Definition class Container: public Tile

Constructor Container(int w, int h, int x, int y, double angle

= 0.0, RGBATexture* tex = 0, int mode = 0) constructs a new
Container with the same parameters as the Tile constructor. However,
the default mode is 0, thereby disabling all movement.

Methods
void add(Widget* w) adds an existing widget to the container. From
this point on, the widget will be transformed together with the container.
void raise(Widget* w = 0) pushes the specified widget to the top
of the container. Any other widget inside the container may be partially
or fully obscured. When the default parameter of 0 is passed, then the
container itself will be raised with respect to its sibling widgets.
void remove(Widget* w) detaches the specified widget from the con-
tainer again.

165

APPENDIX A. APPENDIX

MasterContainer

Description A master container exists to handle a special case: one top-
level container should exist per application which handles issues such
as communication with the interpretation layer and delivering incoming
events to the correct widgets. Usually, developers only need to deal
with master containers when integrating libTISCH into new windowing
environments or programming languages.

Definition class MasterContainer: public Container

Constructor MasterContainer(int w, int h) Due to its designation
as a top-level container which directly corresponds to a classic window
on operating system level, the MasterContainer constructor lacks many
of the previously used parameters. Only width and height need to be
specified.

Methods
void update(Widget* target = 0) instructs the MasterContainer

to send an update for the specified widget to the interpretation layer.
When the target parameter is 0, then all widgets shall be updated.
void adjust(int w, int h) When the containing window changes
its size, then the MasterContainer should be notified of this change by
calling the adjust method with the new dimensions as parameters.

Window

Description The window class is derived from two separate classes:
GLUTWindow and MasterContainer. The first component handles issues
related to creating and managing a top-level window with an appropriate
OpenGL context, while the second component handles communication
with the interpretation layer as mentioned above.

Definition class Window:

public GLUTWindow, public MasterContainer

Constructor Window(int w, int h, std::string title, int use -

mouse = 0) creates a new top-level window with dimensions w * h and
titlebar text title. Should use mouse be set to 1, then the window
will automatically generate LTP packets based on mouse pointer actions
within the window. Note that when this parameter is active at the same

166

A.6. LIBTISCH CLASS REFERENCE

time as another LTP source such as touchd, unspecified and very likely
erratic behaviour will result.

Methods Window defines no additional methods. In most cases, developers
will use the methods inherited from Container to add widgets to the
window.

167

APPENDIX A. APPENDIX

168

Glossary

API
application programming interface - General term for a code interface
through which a software library can be controlled/accessed.

CCD
charge-coupled device - A widely used type of camera sensor.

CHI
computer-human interaction - Discipline of computer science as well as
a catch-all term for any interaction between computers and their users.
Also, the name of a prestigious conference in this field. See also HCI.

CLI
command line interface - Text-based method of interacting with a com-
puter which is based on commands and responses.

DI
diffuse illumination - Sensor technology for multi-touch and tangible in-
terfaces.

DOF
degrees of freedom - Metric used to describe trackers, e.g., 3DOF for
position trackers in 3D space or 6DOF for position and rotation trackers.

DPI
dots per inch - Metric for resolution of input and output devices.

EBNF
extended Backus-Naur form - Means of describing a formal language
based on a context-free grammar.

169

Glossary

FET
field effect transistor - Semiconductor element which regulates electrical
current based on input voltage.

FTIR
frustrated total internal reflection - Sensor technology for multi-touch
interfaces.

GCCPHAT
generalized cross correlation with phase transformation - Signal process-
ing algorithm designed to cope with reverberations and echoes in the
signal.

GDP
Gesture Description Protocol - Communications protocol presented in
this thesis which is used to define gestures.

GLUT
OpenGL Utility Toolkit - Helper library for cross-platform access to
OpenGL.

GUI
graphical user interface - General term for a user interface which does
not rely on text alone.

HAL
hardware abstraction layer - General term for a software which subsumes
various types of hardware into one representation.

HCI
human-computer interaction - Discipline of computer science as well as
a catch-all term for any interaction between computers and their users.
See also CHI.

HD
high definition - Standard for high-resolution displays; ”Full HD” is
equivalent to a resolution of 1920 x 1080 pixels.

HDR
high dynamic range - General term for any method which enables an
image sensor to capture data outside its standard dynamic range.

170

Glossary

IC
integrated circuit - General term for any complex electronic semiconduc-
tor component, e.g., a processor.

IIDC
Instrumentation and Industrial Control Digital Camera - Specification
for accessing and controlling industrial-grade cameras.

IR
infrared - Part of the light spectrum between wavelengths of 700 to 1400
nm (near-infrared); mostly invisible to the human eye. Different from
thermal radiation (far-infrared) in the wavelength range of 3 to 5 µm.

ITO
indium tin oxide - Conductive substance which is transparent in thin
films; often used in touchscreens.

LCD
liquid crystal display - Widely used technology for flatscreen displays.

LED
light-emitting diode - Semiconductor element which emits monochro-
matic light when a voltage is applied.

LGPL
Lesser General Public License - Free, open-source software license by the
Free Software Foundation.

LTP
Location Transport Protocol - Communications protocol presented in
this thesis which delivers abstracted tracking data about the user’s mo-
tion.

MIDI
Music Instruments Digital Interface - Connection standard and protocol
used between musical instruments, computers and auxiliary devices. See
also OSC.

MMX
MultiMedia Extensions - Intel processor extension to allow simultaneous
processing of several independent data items.

171

Glossary

MPX
Multi-Pointer X - Extension to the standard X server that allows for
multiple mouse pointers and pointing devices.

NUI
natural user interface - General term for a number of novel types of
user interfaces; also the name of an internet community focused on these
devices.

OSC
Open Sound Control - Communications network protocol used mainly
between software sequencers. See also MIDI.

PNG
Portable Network Graphics - Commonly used image file format with
lossless compression and transparency support.

RSSI
Received Signal Strength Indicator - Metric for reception strength of
radiowaves, usually given in decibel (dBm).

SAX
Simple API for XML - Quasi-standard for accessing XML parsers. See
also XML.

SMD
surface-mounted device - Class of electronic circuit component which is
soldered on the surface of the circuit board instead of on the backside.

STL
Standard Template Library - C++ library which is part of the C++
standard and provides generic classes such as vectors, lists etc.

SWIG
Simplified Wrapper and Interface Generator - Tool to automatically gen-
erate C/C++ library bindings for a variety of other programming lan-
guages.

TISCH
Tangible Interactive Surface for Collaboration between Humans - Multi-
touch tabletop interface used in this thesis.

172

Glossary

UDP
User Datagram Protocol - Connectionless datagram protocol from the
Internet suite of protocols.

UI
user interface - General term for any means of communication between
computers and users.

UIST
User Interface Systems and Technology - Prestigious conference focusing
on technical aspects of user interfaces.

UML
Unified Modeling Language - Formal language for describing software
systems.

USB
Universal Serial Bus - Hardware standard and protocol for connecting
peripheral devices to a computer.

WIMP
windows, icons, menus, pointer - Interaction concepts on which many
current user interfaces are modeled.

XML
Extended Markup Language - Meta-language concept which can be used
to describe arbitrary, nested data structures.

173

Glossary

174

Bibliography

[1] Advanced Realtime Tracking. ARTrack. http://www.ar-tracking.

de/, accessed 2009-05-13.

[2] Apple Corporation. User Experience Technologies: Aqua.
http://developer.apple.com/documentation/MacOSX/Conceptual/

OSX_Technology_Overview/UserExperience/UserExperience.html,
accessed 2009-05-13.

[3] Atmel Semiconductors. ATTiny13 Datasheet. http://www.atmel.com/
dyn/resources/prod_documents/doc2535.pdf, 2003 (accessed 2009-
07-06).

[4] S. Baker et al. FreeGLUT. http://freeglut.sourceforge.net/, ac-
cessed 2009-05-14.

[5] D. Beazley. SWIG: Simplified Wrapper and Interface Generator. http:
//www.swig.org/, accessed 2009-05-14.

[6] R. Bencina. oscpack library. http://www.audiomulch.com/~rossb/

code/oscpack/, accessed 2009-05-14.

[7] H. Benko, A. Wilson, and P. Baudisch. Precise selection techniques for
multi-touch screens. In CHI ’06: Proceedings of the SIGCHI conference
on Human Factors in computing systems, pages 1263–1272, New York,
NY, USA, 2006. ACM Press.

[8] P. Bennett and S. O’Modhrain. The BeatBearing: a tangible rhythm
sequencer. In Proceedings of NordiCHI 2008: 5th Nordic Conference on
Computer-Human Interaction (electronic proceedings), 2008.

[9] A. Beshay. Hand tracking with the Wiimote. Master’s thesis, Technische
Universität München, Department of Computer Science, July 2009.

175

http://www.ar-tracking.de/
http://www.ar-tracking.de/
http://developer.apple.com/documentation/MacOSX/Conceptual/OSX_Technology_Overview/UserExperience/UserExperience.html
http://developer.apple.com/documentation/MacOSX/Conceptual/OSX_Technology_Overview/UserExperience/UserExperience.html
http://www.atmel.com/dyn/resources/prod_documents/doc2535.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2535.pdf
http://freeglut.sourceforge.net/
http://www.swig.org/
http://www.swig.org/
http://www.audiomulch.com/~rossb/code/oscpack/
http://www.audiomulch.com/~rossb/code/oscpack/

BIBLIOGRAPHY

[10] O. Bimber. Spatial Augmented Reality. A K Peters, 2005.

[11] D. Bitzer. Touch Screen for PLATO IV system, 1964.

[12] Bluetooth SIG. Core specification 2.1 + EDR. http://www.bluetooth.
com/Bluetooth/Technology/Building/Specifications/, 2007 (ac-
cessed 2009-07-06).

[13] T. Cranston, F. Longstaff, and K. Taylor. DATAR: Digital Automated
Tracking and Resolving, 1952.

[14] R. Diaz-Marino, E. Tse, and S. Greenberg. Programming for multiple
touches and multiple users: A toolkit for the DiamondTouch hardware.
In UIST ’03: Companion proceedings of the 16th annual ACM sympo-
sium on User interface software and technology, 2003.

[15] P. Dietz and D. Leigh. DiamondTouch: a multi-user touch technology.
In UIST ’01: Proceedings of the 14th annual ACM symposium on User
interface software and technology, pages 219–226, 2001.

[16] P. Dietz, W. Yerazunis, and D. Leigh. Very low-cost sensing and commu-
nication using bidirectional leds. UbiComp 2003: Ubiquitous Computing,
pages 175–191, 2003.

[17] A. Dippon. Gleichzeitige Ansteuerung einer LED-Matrix als Display und
Sensor. Master’s thesis, Technische Universität München, Department
of Computer Science, July 2009.

[18] N. Dörfler. Building a gesture-based information terminal. Master’s the-
sis, Technische Universität München, Department of Computer Science,
Oct. 2008.

[19] D. Douxchamps. libDC1394. http://damien.douxchamps.net/

ieee1394/libdc1394/, accessed 2009-05-14.

[20] F. Echtler. libTISCH: Library for Tangible Interactive Surfaces for
Collaboration between Humans. http://tisch.sourceforge.net/, ac-
cessed 2009-05-14.

[21] F. Echtler, M. Huber, and G. Klinker. Shadow tracking on multi-touch
tables. In AVI ’08: Proceedings of the working conference on Advanced
Visual Interfaces, pages 388–391, 2008.

176

http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/
http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/
http://damien.douxchamps.net/ieee1394/libdc1394/
http://damien.douxchamps.net/ieee1394/libdc1394/
http://tisch.sourceforge.net/

BIBLIOGRAPHY

[22] F. Echtler and G. Klinker. A multitouch software architecture. In Pro-
ceedings of NordiCHI 2008, pages 463–466, Oct. 2008.

[23] F. Echtler and G. Klinker. Tracking mobile phones on interactive table-
tops. In MEIS ’08: Proceedings of the Workshop on Mobile and Embedded
Interactive Systems, 2008.

[24] F. Echtler, S. Nestler, A. Dippon, and G. Klinker. Supporting casual
interactions between board games on public tabletop displays and mobile
devices. Personal and Ubiquitous Computing, 13(to appear), 2009.

[25] F. Echtler, T. Sielhorst, M. Huber, and G. Klinker. A Short Guide to
Modulated Light. In TEI ’09: Proceedings of the conference on tangible
and embedded interaction, pages 393–396, Feb. 2009.

[26] J. Elias, W. Westerman, and M. Haggerty. Multi-touch gesture dictio-
nary. United States Patent 20070177803, 2007.

[27] Elo TouchSystems. Carroltouch. http://www.elotouch.com/

Products/Touchscreens/CarrollTouch/, accessed 2009-05-13.

[28] Elo TouchSystems. Securetouch. http://www.elotouch.com/

Products/Touchscreens/SecureTouch/, accessed 2009-05-13.

[29] C. Endres, A. Butz, and A. MacWilliams. A survey of software infras-
tructures and frameworks for ubiquitous computing. Mobile Information
Systems, 1(1):41–80, 2005.

[30] D. C. Engelbart et al. SRI-ARC. A technical session presentation at the
Fall Joint Computer Conference in San Francisco, 1968.

[31] J. Epps, S. Lichman, and M. Wu. A study of hand shape use in tabletop
gesture interaction. In CHI ’06: Extended abstracts of the SIGCHI con-
ference on Human Factors in computing systems, pages 748–753, 2006.

[32] A. Esenther and K. Ryall. Fluid DTMouse: better mouse support for
touch-based interactions. In AVI ’06: Proceedings of the working confer-
ence on Advanced Visual Interfaces, pages 112–115, 2006.

[33] A. Esenther and K. Wittenburg. Multi-user multi-touch games on Dia-
mondTouch with the DTFlash toolkit. In INTETAIN ’05: Proceedings of
the International Conference on Intelligent Technologies for Interactive
Entertainment, 2005.

177

http://www.elotouch.com/Products/Touchscreens/CarrollTouch/
http://www.elotouch.com/Products/Touchscreens/CarrollTouch/
http://www.elotouch.com/Products/Touchscreens/SecureTouch/
http://www.elotouch.com/Products/Touchscreens/SecureTouch/

BIBLIOGRAPHY

[34] Fairchild Semiconductor. IRF512 Datasheet. http://www.

datasheetcatalog.org/datasheets/166/283672_DS.pdf, accessed
2009-05-14.

[35] R. Faith et al. Distributed Multihead X. http://dmx.sourceforge.

net/, accessed 2009-05-13.

[36] Faro UK. Measuring arms. http://measuring-arms.faro.com/, ac-
cessed 2009-05-13.

[37] Fifth Dimension Technologies. 5DT Data Glove 14 Ultra. http://www.
5dt.com/products/pdataglove14.html, accessed 2009-06-28.

[38] P. Fitts. The information capacity of the human motor system in control-
ling the amplitude of movement. Journal of Experimental Psychology,
47(6):381–391, 1954.

[39] C. Forlines and C. Shen. Dtlens: multi-user tabletop spatial data explo-
ration. In UIST ’05: Proceedings of the 18th annual ACM symposium on
User interface software and technology, pages 119–122, New York, NY,
USA, 2005. ACM.

[40] Free Software Foundation. GNU Lesser General Public License, Version
3. http://www.gnu.org/licenses/lgpl-3.0-standalone.html, 2007
(accessed 2009-05-14).

[41] B. Fry and C. Reas. Processing. http://processing.org/, accessed
2009-05-13.

[42] D. Gelphman and B. Laden. Programming with Quartz: 2D and PDF
Graphics in Mac OS X. Morgan Kaufmann, 2006.

[43] C. Gerthsen and D. Meschede. Gehrtsen Physik. Springer, 2005.

[44] S. Gilbert et al. SparshUI Toolkit. http://code.google.com/p/

sparsh-ui/, accessed 2009-07-06.

[45] J. Han. Low-cost multi-touch sensing through frustrated total internal
reflection. In UIST ’05: Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages 115–118, 2005.

178

http://www.datasheetcatalog.org/datasheets/166/283672_DS.pdf
http://www.datasheetcatalog.org/datasheets/166/283672_DS.pdf
http://dmx.sourceforge.net/
http://dmx.sourceforge.net/
http://measuring-arms.faro.com/
http://www.5dt.com/products/pdataglove14.html
http://www.5dt.com/products/pdataglove14.html
http://www.gnu.org/licenses/lgpl-3.0-standalone.html
http://processing.org/
http://code.google.com/p/sparsh-ui/
http://code.google.com/p/sparsh-ui/

BIBLIOGRAPHY

[46] C. Harrison and S. E. Hudson. Scratch input: creating large, inexpensive,
unpowered and mobile finger input surfaces. In UIST ’08: Proceedings
of the 21st annual ACM symposium on User interface software and tech-
nology, pages 205–208, New York, NY, USA, 2008. ACM.

[47] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edition,
2004.

[48] X. Heng, S. Lao, H. Lee, and A. Smeaton. A touch interaction model for
tabletops and PDAs. In PPD ’08. Workshop on designing multi-touch
interaction techniques for coupled public and private displays, 2008.

[49] O. Hilliges, D. Baur, and A. Butz. Photohelix: Browsing, Sorting and
Sharing Digital Photo Collections. In To appear in Proceedings of the
2nd IEEE Tabletop Workshop, Newport, RI, USA, Oct. 2007.

[50] O. Hilliges, D. Kim, and I. Izadi. Creating Malleable Interactive Sur-
faces using Liquid Displacement Sensing. In Proceedings of the 3rd IEEE
Tabletop and Interactive Surfaces, Oct. 2008.

[51] U. Hinrichs, S. Carpendale, and S. D. Scott. Interface currents: sup-
porting fluent face-to-face collaboration. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Sketches, page 142, New York, NY, USA, 2005. ACM.

[52] S. Hodges. Private communication, 2008.

[53] R. Hofer, D. Naeff, and A. Kunz. FLATIR: FTIR multi-touch detection
on a discrete distributed sensor array. In TEI ’09: Proceedings of the 3rd
International Conference on Tangible and Embedded Interaction, pages
317–322, New York, NY, USA, 2009. ACM.

[54] M.-K. Hu. Visual pattern recognition by moment invariants. Information
Theory, IEEE Transactions on, 8(2):179–187, 1962.

[55] M. Huber, D. Pustka, P. Keitler, F. Echtler, and G. Klinker. A Sys-
tem Architecture for Ubiquitous Tracking Environments. In Proceedings
of the 6th International Symposium on Mixed and Augmented Reality
(ISMAR), Nov. 2007.

[56] S. E. Hudson. Using light emitting diode arrays as touch-sensitive input
and output devices. In UIST ’04: Proceedings of the 17th annual ACM

179

BIBLIOGRAPHY

symposium on User interface software and technology, pages 287–290,
New York, NY, USA, 2004. ACM.

[57] P. Hutterer. MPX - The Multi-Pointer X server. http://who-t.

blogspot.com/, accessed 2009-07-05.

[58] IIDC Working Group. IIDC Camera Specification 1.31. http://

damien.douxchamps.net/ieee1394/libdc1394/iidc/IIDC_1.31.pdf,
accessed 2009-05-13.

[59] Intel Corporation. Open Computer Vision Library. http://

sourceforge.net/projects/opencvlibrary/, accessed 2009-05-14.

[60] International Organization for Standardization. Information
technology – Open Systems Interconnection – Basic Refer-
ence Model: The Basic Model. ISO/IEC 7498-1:1994 -
http://standards.iso.org/ittf/PubliclyAvailableStandards/

s020269_ISO_IEC_7498-1_1994(E).zip, 1994 (accessed 2009-05-13).

[61] S. Izadi, S. Hodges, A. Butler, A. Rrustemi, and B. Buxton. ThinSight:
integrated optical multi-touch sensing through thin form-factor displays.
In EDT ’07: Proceedings of the 2007 workshop on Emerging displays
technologies, page 6, 2007.

[62] S. Izadi, S. Hodges, S. Taylor, D. Rosenfeld, N. Villar, A. Butler, and
J. Westhues. Going beyond the display: A surface technology with an
electronically switchable diffuser. In Proceedings of the ACM Symposium
on User Interface Software and Technology (UIST ’08), 2008.

[63] JazzMutant. Lemur. http://www.jazzmutant.com/lemur_overview.

php, accessed 2009-05-20.

[64] S. Jobs et al. Touch screen device, method, and graphical user interface
for determining commands by applying heuristics. U.S. Patent 7,479,949,
2008.

[65] JOGL Project. JOGL: Java binding for the OpenGL API. https:

//jogl.dev.java.net/, accessed 2009-05-14.

[66] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

180

http://who-t.blogspot.com/
http://who-t.blogspot.com/
http://damien.douxchamps.net/ieee1394/libdc1394/iidc/IIDC_1.31.pdf
http://damien.douxchamps.net/ieee1394/libdc1394/iidc/IIDC_1.31.pdf
http://sourceforge.net/projects/opencvlibrary/
http://sourceforge.net/projects/opencvlibrary/
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO_IEC_7498-1_1994(E).zip
http://www.jazzmutant.com/lemur_overview.php
http://www.jazzmutant.com/lemur_overview.php
https://jogl.dev.java.net/
https://jogl.dev.java.net/

BIBLIOGRAPHY

[67] M. Kaltenbrunner and R. Bencina. reacTIVision: a computer-vision
framework for table-based tangible interaction. In TEI ’07: Proceedings
of the 1st international conference on Tangible and embedded interaction,
pages 69–74, 2007.

[68] M. Kaltenbrunner, T. Bovermann, R. Bencina, and E. Costanza. TUIO:
A protocol for table-top tangible user interfaces. In Proceedings of Ges-
ture Workshop 2005, 2005.

[69] M. Kaltenbrunner, S. Jordà, G. Geiger, and M. Alonso. The reacTable:
A Collaborative Musical Instrument. In WETICE ’06: Proceedings of
the Workshop on Tangible Interaction in Collaborative Environments
(TICE) at the 15th International IEEE Workshop on Enabling Tech-
nologies, 2006.

[70] J. Kannala and S. Brandt. A generic camera calibration method for
fish-eye lenses. In ICPR ’04: Proceedings of the Pattern Recognition,
17th International Conference on (ICPR’04) Volume 1, pages 10–13,
Washington, DC, USA, 2004. IEEE Computer Society.

[71] F. Karsunke. Controlling 3D objects by using a multitouch surface with
gesture recognition. Master’s thesis, Technische Universität München,
Department of Computer Science, July 2009.

[72] G. Klinker. Sudokuvis - how to explore relationships of mutual exclu-
sion. In Advances in Visual Computing, Fourth International Sympo-
sium, ISVC 2008 Las Vegas, USA, December 1-3, volume 5359(2) of
Lecture Notes in Computer Science, Berlin, 2008. Springer.

[73] W. Krueger, Myron, T. Gionfriddo, and K. Hinrichsen. VIDEOPLACE
- an artificial reality. In Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’85), pages 35–40, 1985.

[74] M. Laforest. WiiUse library. http://www.wiiuse.net/, accessed 2009-
05-14.

[75] H. LeCaine et al. Printed circuit keyboard. http://www.hughlecaine.
com/en/prcirkb.html, 1962 (accessed 2009-05-13).

[76] J. Lee. Tracking your fingers with the Wiimote. http://johnnylee.

net/projects/wii/, accessed 2009-05-13.

181

http://www.wiiuse.net/
http://www.hughlecaine.com/en/prcirkb.html
http://www.hughlecaine.com/en/prcirkb.html
http://johnnylee.net/projects/wii/
http://johnnylee.net/projects/wii/

BIBLIOGRAPHY

[77] R. Lee and G. Greenspan. JigSawDoku. http://www.jigsawdoku.com/,
accessed 2009-05-14.

[78] Librascope. LGP-30. http://en.wikipedia.org/wiki/Librascope_

LGP-30, 1956 (accessed 2009-07-04).

[79] H.-H. Lin and T.-W. Chang. A camera-based multi-touch interface
builder for designers. In Human-Computer Interaction. HCI Applica-
tions and Services, 2007.

[80] Lumen Labs. LCD Monitor Database. http://www.baseportal.com/

cgi-bin/baseportal.pl?htx=/Lumenlab/main, accessed 2009-05-14.

[81] N. Mehta. A flexible machine interface. Master’s thesis, Department of
Electrical Engineering, University of Toronto, 1982.

[82] Microsoft Corporation. Surface. http://www.microsoft.com/

surface/, 2008 (accessed 2009-05-13).

[83] Microsoft Corporation. Desktop Window Manager. http:

//msdn.microsoft.com/en-us/library/aa969540(VS.85).aspx, ac-
cessed 2009-05-13.

[84] Microsoft Corporation. Windows User Interface. http://msdn.

microsoft.com/en-us/library/aa383743.aspx, accessed 2009-05-13.

[85] F. M. Mims, III. Led Circuits and Projects, pages 60–61, 76–77, 122–123.
Howard W. Sams, New York, USA, 1973.

[86] S. Nestler, M. Huber, F. Echtler, A. Dollinger, and G. Klinker. Devel-
opment and evaluation of a virtual reality patient simulation (VRPS).
In The 17th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision, Plzen, Czech Republic,
Februar 2009.

[87] Nintendo. Wii Controllers. http://www.nintendo.com/wii/what/

controllers, accessed 2009-06-23.

[88] NUI Group Community. What is a compliant surface? http://wiki.

nuigroup.com/Compliant_surface, accessed 2009-05-13.

[89] NUI Group Community. Touchlib. http://www.nuigroup.com/

touchlib/, accessed 2009-06-28.

182

http://www.jigsawdoku.com/
http://en.wikipedia.org/wiki/Librascope_LGP-30
http://en.wikipedia.org/wiki/Librascope_LGP-30
http://www.baseportal.com/cgi-bin/baseportal.pl?htx=/Lumenlab/main
http://www.baseportal.com/cgi-bin/baseportal.pl?htx=/Lumenlab/main
http://www.microsoft.com/surface/
http://www.microsoft.com/surface/
http://msdn.microsoft.com/en-us/library/aa969540(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa969540(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa383743.aspx
http://msdn.microsoft.com/en-us/library/aa383743.aspx
http://www.nintendo.com/wii/what/controllers
http://www.nintendo.com/wii/what/controllers
http://wiki.nuigroup.com/Compliant_surface
http://wiki.nuigroup.com/Compliant_surface
http://www.nuigroup.com/touchlib/
http://www.nuigroup.com/touchlib/

BIBLIOGRAPHY

[90] NUI Group Community. Community Core Vision. http://ccv.

nuigroup.com/, accessed 2009-07-06.

[91] OSRAM Opto Semiconductors. SFH 4250 Datasheet. http://www.

osram-os.com/, 2005 (accessed 2009-07-06).

[92] J. A. Paradiso, C. K. Leo, N. Checka, and K. Hsiao. Passive acoustic
knock tracking for interactive windows. In CHI ’02: CHI ’02 extended
abstracts on Human factors in computing systems, pages 732–733, New
York, NY, USA, 2002. ACM.

[93] D. T. Pham, M. Al-Kutubi, M. Yang, Z. Wang, and Z. Ji. Pattern Match-
ing for Tangible Acoustic Interfaces. In IPROMS 2006: 2nd Conference
on Intelligent Production Machines and Systems, 2006.

[94] Point Grey Corporation. http://www.ptgrey.com/, accessed 2009-05-
13.

[95] T. Pototschnig. Development of a multitouch sensor for LCD screens.
Master’s thesis, Technische Universität München, Department of Com-
puter Science, May 2009.

[96] R. Pozo. TNT: Template Numerical Toolkit. http://math.nist.gov/

tnt/, accessed 2009-05-14.

[97] Qt Software. Qt Toolkit. http://www.qtsoftware.com/products, ac-
cessed 2009-05-13.

[98] J. Rekimoto. SmartSkin: an infrastructure for freehand manipulation on
interactive surfaces. In CHI ’02: Proceedings of the SIGCHI conference
on Human Factors in computing systems, pages 113–120, 2002.

[99] J. Rekimoto. Brightshadow: shadow sensing with synchronous illumina-
tions for robust gesture recognition. In CHI ’08: Extended abstracts of
the SIGCHI conference on Human Factors in computing systems, pages
2769–2774, 2008.

[100] J. Schöning, P. Brandl, F. Daiber, F. Echtler, O. Hilliges, J. Hook,
M. Löchtefeld, N. Motamedi, L. Muller, P. Olivier, T. Roth, and U. von
Zadow. Multi-touch surfaces: A technical guide. Techreport, Technische
Universität München, 2008.

183

http://ccv.nuigroup.com/
http://ccv.nuigroup.com/
http://www.osram-os.com/
http://www.osram-os.com/
http://www.ptgrey.com/
http://math.nist.gov/tnt/
http://math.nist.gov/tnt/
http://www.qtsoftware.com/products

BIBLIOGRAPHY

[101] J. Schöning, M. Rohs, and A. Krüger. Spatial authentication on large
interactive multi-touch surfaces. In IEEE Tabetop 2008: Adjunct Pro-
ceedings of IEEE Tabletops and Interactive Surfaces, October 2008.

[102] C. Shen, F. Vernier, C. Forlines, and M. Ringel. DiamondSpin: an ex-
tensible toolkit for around-the-table interaction. In CHI ’04: Proceedings
of the Conference on Human Factors in Computing Systems, pages 167–
174, 2004.

[103] B. Shneiderman and C. Plaisant. Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction (4th Edition). Pearson
Addison Wesley, 2005.

[104] K. Shoemake. Arcball rotation control, pages 175–192. Academic Press
Professional, Inc., San Diego, CA, USA, 1994.

[105] T. Sielhorst. Private communication, 2008.

[106] Siemens. History Site. http://w4.siemens.de/archiv/de/

geschichte/zeitleiste/chronik_3.html, accessed 2009-06-23.

[107] Smart Technologies. SMART Board. http://www.smarttech.com/

SmartBoard, accessed 2009-05-13.

[108] A. Solon, M. Callaghan, J. Harkin, and T. McGinnity. Case Study on the
Bluetooth Vulnerabilities in Mobile Devices. IJCSNS, 6(4):125, 2006.

[109] S. Spielberg. Minority Report. http://www.imdb.com/title/

tt0181689/, 2002 (accessed 2009-05-13).

[110] Sun Corporation. Creating a GUI with JFC/Swing. http://java.

sun.com/docs/books/tutorial/uiswing/index.html, accessed 2009-
05-13.

[111] R. R. Swick and M. S. Ackerman. The X Toolkit: More Bricks for
Building User-Interfaces or Widgets for Hire. In USENIX Winter, pages
221–228, 1988.

[112] The GTK+ Project. GTK+ Toolkit. http://www.gtk.org/, accessed
2009-05-13.

[113] L. Thomason. TinyXML. http://www.grinninglizard.com/

tinyxml/, accessed 2009-06-18.

184

http://w4.siemens.de/archiv/de/geschichte/zeitleiste/chronik_3.html
http://w4.siemens.de/archiv/de/geschichte/zeitleiste/chronik_3.html
http://www.smarttech.com/SmartBoard
http://www.smarttech.com/SmartBoard
http://www.imdb.com/title/tt0181689/
http://www.imdb.com/title/tt0181689/
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://www.gtk.org/
http://www.grinninglizard.com/tinyxml/
http://www.grinninglizard.com/tinyxml/

BIBLIOGRAPHY

[114] E. Tse, C. Shen, S. Greenberg, and C. Forlines. Enabling interaction
with single user applications through speech and gestures on a multi-
user tabletop. In AVI ’06: Proceedings of the working conference on
Advanced visual interfaces, pages 336–343, New York, NY, USA, 2006.
ACM.

[115] T. van Roon. 555 timer tutorial. http://www.uoguelph.ca/~antoon/

gadgets/555/555.html, 2004 (accessed 2009-07-06).

[116] R. Viladomat. Reactable Role Gaming. http://www.youtube.com/

watch?v=QflrIK-m4Ts, 2009 (accessed 2009-07-04).

[117] L. Vlaming, J. Smit, and T. Isenberg. Presenting using two-handed inter-
action in open space. In Proceedings of the 3rd Annual IEEE Workshop
on Horizontal Interactive Human-Computer Systems (Tabletop 2008),
pages 31–34, 2008.

[118] U. von Zadow. libAVG. http://www.libavg.de/, accessed 2009-07-06.

[119] vvvv Group. vvvv: a multipurpose toolkit. http://vvvv.org/, accessed
2009-06-28.

[120] M. Weinand. Development and Evaluation of Ergonomic Gesture-Based
Menus. Master’s thesis, Technische Universität München, Department
of Computer Science, May 2009.

[121] W. White. Method for optical comparison of skin friction-ridge patterns.
U.S. Patent 3,200,701, 1965.

[122] A. Wilson. TouchLight: an imaging touch screen and display for gesture-
based interaction. In ICMI ’04: Proceedings of the 6th international
conference on Multimodal interfaces, pages 69–76, 2004.

[123] A. Wilson. PlayAnywhere: a compact interactive tabletop projection-
vision system. In UIST ’05: Proceedings of the 18th annual ACM sym-
posium on User interface software and technology, pages 83–92, 2005.

[124] A. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. Kirk. Bring-
ing physics to the surface. In UIST ’08: Proceedings of the 21st annual
ACM symposium on User interface software and technology, pages 67–76,
New York, NY, USA, 2008. ACM.

185

http://www.uoguelph.ca/~antoon/gadgets/555/555.html
http://www.uoguelph.ca/~antoon/gadgets/555/555.html
http://www.youtube.com/watch?v=QflrIK-m4Ts
http://www.youtube.com/watch?v=QflrIK-m4Ts
http://www.libavg.de/
http://vvvv.org/

BIBLIOGRAPHY

[125] A. Wilson and R. Sarin. Bluetable: connecting wireless mobile devices on
interactive surfaces using vision-based handshaking. In GI ’07: Proceed-
ings of Graphics Interface 2007, pages 119–125, New York, NY, USA,
2007. ACM.

[126] M. Wright. The Open Sound Control 1.0 Specification. http://

opensoundcontrol.org/spec-1_0, 2002 (accessed 2009-07-06).

[127] M. Wu and R. Balakrishnan. Multi-finger and whole hand gestural in-
teraction techniques for multi-user tabletop displays. In UIST ’03: Pro-
ceedings of the 16th annual ACM symposium on User interface software
and technology, pages 193–202, 2003.

[128] M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan. Gesture
registration, relaxation, and reuse for multi-point direct-touch surfaces.
In TableTop ’06: Proceedings of the first IEEE international workshop
on horizontal interactive human-computer systems, pages 185–192, 2006.

[129] Xerox PARC. Alto, 1973.

[130] L. Xiao, T. Collins, and Y. Sun. Acoustic source localization for human
computer interaction. In SPPRA’06: Proceedings of the 24th IASTED
international conference on Signal processing, pattern recognition, and
applications, pages 9–14, Anaheim, CA, USA, 2006. ACTA Press.

[131] X.Org Foundation. The X Window System. http://www.x.org/, 2004
(accessed 2009-05-13).

186

http://opensoundcontrol.org/spec-1_0
http://opensoundcontrol.org/spec-1_0
http://www.x.org/

	Introduction
	Motivation
	Challenges
	Related Areas of Research
	Computer-Human Interaction
	Input Sensor Hardware
	Software Architectures for Interactive Systems

	Document Structure

	Related Work
	Computer-Human Interaction
	Interaction Metaphors
	Multiple Orientations
	Applications

	Input Sensor Hardware
	Mechanical Sensors
	Electrical Sensors
	Acoustic Sensors
	Optical Sensors
	Sensor Capabilities

	Software Architectures for Interactive Systems
	Layered Architectures
	Windowing Systems
	Widget Sets and Toolkits
	Toolkits and Frameworks for Novel Input Devices
	Gesture Recognisers

	A Layered Architecture for Interaction
	Fundamentals
	Concepts
	Architecture Design

	Transport of Motion Data
	Design Considerations
	Location Transport Protocol

	A Formal Specification of Gestures
	Widgets and Event Handling
	Abstract Description of Gestures
	Gesture Description Protocol

	Sensor Hardware
	Fundamental Techniques
	Synchronised Active Illumination
	Interleaving Disjoint Light Sources
	Using LEDs as Sensors

	Interactive Surfaces
	TISCH
	MiniTISCH
	SiViT
	FlatTouch
	LCD with IR-LED Sensor
	Visible-light Display & Sensing

	Commercial Systems
	Free-Air Handtracking
	iPhone

	Sensor Capabilities

	The libTISCH Middleware
	Design Considerations
	Interoperability and Network Transparency
	Speed-Accuracy Tradeoff

	Hardware Abstraction Layer
	Adapters for Existing HAL Software
	Native Hardware Drivers
	Camera-Based Tracking: touchd

	Transformation Layer
	Removal of Lens Distortion
	Perspective Correction
	Online Transformation Process

	Gesture Recognition Layer
	Gesture Matching Algorithm
	Default Gestures
	Performance

	Widget Layer
	OpenGL-based Widgets
	Widget Bindings for Other Languages
	Class Diagram

	Applications
	Interfacing with Legacy Applications
	Pointer Control Interface
	Gestures for Mouse Emulation
	Discussion

	Casual Entertainment
	Picture Browser
	Sudoku
	Virtual Roaches
	Tangible Instruments

	Interaction with Mobile Devices
	Detecting Phones on a Tabletop Display
	Joining Casual Games
	Evaluation

	Collaborative Applications
	Virtual Chemistry
	Interactive Whiteboard
	Virtual Patient

	Conclusion
	Discussion
	Outlook & Future Work
	Summary

	Appendix
	libTISCH Configuration Files
	Calibration File
	touchd Parameter File

	Firmware for the ATtiny13 LED Controller
	A Minimal X3D Renderer
	MPX Compatibility Patch for FreeGLUT
	GLUT-Compatible Wrapper for the iPhone
	libTISCH Class Reference
	libtools
	libsimplecv
	libsimplegl
	libgestures
	libwidgets

	B Glossary
	C Bibliography

