

Etablierung der FISRE (Free-Ion Selective Radiotracer Extraction)-Technik zur Bestimmung der kinetischen Stabilitäten von Radionuklidkomplexen

Dissertation

von

Denis Jurkin

Technische Universität München

Institut und Lehrstuhl für Radiochemie der Technischen Universität München

Etablierung der FISRE (Free-Ion Selective Radiotracer Extraction)-Technik zur Bestimmung der kinetischen Stabilitäten von Radionuklidkomplexen

Denis Jurkin

Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.- Prof. Dr. Michael Schuster

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Andreas Türler2. Univ.-Prof. Dr. Klaus Köhler

Die Dissertation wurde am 17.6.2009 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 21.7.2009 angenommen.

Die vorliegende Arbeit wurde am Institut für Radiochemie der Technischen Universität München in Garching unter der Anleitung von Frau Dr. Birgit Wierczinski in der Zeit von April 2006 bis April 2009 durchgeführt.

Das dieser Dissertation zugrunde liegende Forschungsvorhaben wurde mit Mitteln der Deutschen Forschungsgemeinschaft (DFG) unter dem Förderkennzeichen WI 3115/1-1 gefördert.

Danksagung

Frau Dr. Birgit Wierczinski danke ich für die interessante Themenstellung, das uneingeschränkte Vertrauen, das Schaffen hervorragender Rahmenbedingungen und das große Interesse, dass sie meiner Arbeit entgegenbrachte, sowie die wertvolle wissenschaftliche Zusammenarbeit, die maßgeblich zum Gelingen dieser Arbeit beigetragen hat.

Herrn Prof. Dr. Andreas Türler danke ich für die Aufnahme am Institut und Lehrstuhl für Radiochemie, für die Möglichkeit, die Infrastruktur des Lehrstuhls im Rahmen meiner Dissertation zu nutzen sowie für die kritische Durchsicht dieser Arbeit.

Herrn Dr. Franz-Josef Gildehaus der Klinik für Nuklearmedizin des Klinikums Grosshadern für die großzügige Bereitstellung von Liganden, die permanente Unterstützung und kompetenten Rat in medizinischen Fragestellungen.

Herrn Dr. Richard Henkelmann für die großzügige Bereitstellung von Institutsmitteln und Räumlichkeiten.

Frau Paula Juntunen und Herrn Dr. Tuomo Nikula für die freundliche Kooperation im Rahmen der RCM/ITM-Zusammenarbeit und die Erlaubnis zur Nutzung der ⁹⁰Sr/⁹⁰Y- und ¹⁸⁸W/¹⁸⁸Re-Generatoren.

Herrn Dr. Konstantin Zhernosekov und Frau Silvia Lehenberger danke ich für die Produktion, Bereitstellung und Reinigung von ¹⁶¹Tb.

Herrn Prof. Dr. Bert Th. Wolterbeek der Delft University of Technology (Niederlande) für die wertvollen Diskussionen und Anregungen.

Ein ganz spezieller Dank gilt Herrn Guy Birebent für die entspannte Büroatmosphäre und die umsichtige Kaffeeversorgung.

Des Weiteren möchte ich mich bei allen Kolleginnen und Kollegen des Instituts und Lehrstuhls für Radiochemie der Technischen Universität München für die freundliche Aufnahme und die außerordentlich gute Zusammenarbeit während meiner Doktorarbeit bedanken.

Da sie diese Arbeit erst möglich machten, gebührt der größte Dank Valeska, Janis, Robert, Marija, Boško und nicht zuletzt meinen kleinen Kurzschläfern Merle und Lennart.

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Veröffentlichte Teile der Dissertation

Publikationen in wissenschaftlichen Zeitschriften

1) D. Jurkin, F. J. Gildehaus, B. Wierczinski. "Kinetic Stability Studies on Yttrium(III)-1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid by Free-Ion Selective Radiotracer Extraction". *Anal. Chem.* **2007**, *79*(24), 9420.

2) D. Jurkin, F. J. Gildehaus, B. Wierczinski. "Dissociation Kinetics Determination of Yttrium(III)-polyaminocarboxylates using Free-Ion Selective Radiotracer Extraction (FISRE)". *J. Lab. Comp. Radiopharm.* **2009**, *52*(2), 33.

3) D. Jurkin, F. J. Gildehaus, B. Wierczinski. "Determination of Dissociation Kinetics of ¹⁸⁸Re(I)-radiopharmaceuticals by Free-Ion Selective Radiotracer Extraction (FISRE)". *J. Radioanal. Nucl. Chem.*, angenommen.

Poster

D. Jurkin, F. J. Gildehaus, B. Wierczinski. "Bestimmung der kinetischen Labilität von Yttrium(III)-DOTA mittels Free-Ion Selective Radiotracer Extraction". Poster im Rahmen der GDCh-Jahrestagung Chemie, Fachgruppe Nuklearchemie, Ulm, September 2008.

Vorträge

D. Jurkin. "FISRE (Free-Ion Selective Radiotracer Extraction) - Eine Methode zur Bestimmung der Labilität von Metallkomplexen." Eingeladener Vortrag im Rahmen des wissenschaftlichen Seminars im Forschungszentrum Dresden-Rossendorf e. V. , Juni 2008.

D. Jurkin. "Determination of Dissociation Kinetics of ¹⁸⁸Re(I)-radiopharmaceuticals by Free-Ion Selective Radiotracer Extraction (FISRE)". Vortrag im Rahmen von MARC VIII (8th International Conference on Methods and Applications of Radioanalytical Chemistry), Kailua-Kona, HA, USA, April 2009.

VERZEICHNIS DER VEWENDETEN ABKÜRZUNGEN

AAIII	2,2'-(1,8-Dihydroxy-3,6-disulfonaphthylen-2,7-bisazo)bisbenzylarsensäure
BB	Bombesin
BER	Borohydride Exchange Resin (engl.)
BFC	Bifunktioneller Chelator
BM	Biomolekül
ССК	Cholecystokinin
CDTA	Trans-1,2-Diaminocyclohexan-N,N,N',N'-tetraessigsäure
DGT	Diffusion Gradients in Thin Films (engl.)
DOTA	1,4,7,10-Tetraazacyclododecan- 1,4,7,10-tetraessigsäure
DOTATOC	DOTA-[Tyr ³]-Oktreotid
DTPA	Diethylentriaminpentaessigsäure
DVB	Divinylbenzol
EDTA	Ethylendiamintetraessigsäure
GRP	Gastrin Releasing Peptide (engl.)
HA	Huminsäure
HEDTA	N-(2-Hydroxyethyl)ethylendiamin-N,N',N'-triessigsäure
HEPES	4-(2-Hydroxyethyl)piperazin-1-ethansulfonsäure
HPLC	High Performance Liquid Chromatography (engl.)
HSAB	Hard and Soft Acids and Bases (engl.)
	Cyclo(L-arginylglycyl-L- α -aspartyl-D-phenylalanyl-L-lysyl),5,5'-[N-[[4,7,10-
IS20I	tris(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl]acetyl]-L-glutamoyl]bis-
	,bis(trifluoroacetat)
ITLC-SG	Instant Thin Layer Chromatography – Silica Gel (engl.)
LET	Linearer Energietransfer
LSC	Liquid Scintillation Counting (engl.)
MES	2-(N-Morpholino)ethansulfonsäure
NIST	National Institute of Standards and Technology
NK	Neurokinin
NOC	[NaI ³]-Oktreotid
NOTA	1,4,7-Triazacyclononan-N,N',N''-triessigsäure

NTA	Nitrilotriessigsäure
NTR	Neurotonsin-Rezeptor
PACAP	Pituitary Adenylate Cyclase Activating Polypeptide (ebgl.)
PEEK	Polyetheretherketon
PET	Positron Emission Tomography (engl.)
PRT	Peptide Receptor Targeting (engl.)
PTFE	Polytetrafluorethylen (TEFLON®)
RGD	Aminosäuresequenz (Arg-Gly-Asp)
SPECT	Single Photon Emission Computed Tomography (engl.)
SSTR	Somatostatin-Rezeptor
TACN	1,4,7-Triazacyclononan
TATE	[Tyr ³]-Oktreotate
TEAP	Triethylammoniumphosphat
TETA	1,4,8,11-Tetraazacyclotetradecan-N,N',N'',N'''-tetraessigsäure
TLC	Thin Layer Chromatography (engl.)
TOC	[Tyr ³]-Oktreotid
tSIE	Transformed Spectral Index of External Standard (engl.)
VIP	Vasoaktives intestinales Peptid

INHALTSVERZEICHNIS

1. Einleitung	1
1.1. Radiopharmazie	2
1.2. Design zielspezifischer Radiopharmaka	3
1.2.1. Auswahl der Radionuklide	3
1.2.2. Peptide Receptor Targeting	5
1.2.3. Bifunktionelle Chelatoren	8
1.3. Problemstellung und Zielsetzung der Arbeit	11
2. Theoretischer Hintergrund	13
2.1. Grundlagen der Kinetik	14
2.1.1. Grundbegriffe chemischer Reaktionskinetik	14
2.1.2. Dynamik der Speziation	18
2.1.3. Ionenaktivität	21
2.2. Analytische Methoden der Speziationskinetik	23
2.2.1. Vorbetrachtungen und Anforderungen an analytische Verfahren	23
2.2.2. Elektrochemische Methoden	
2.2.3. Spektroskopische Methoden	
2.2.4. Physikalische Trennmethoden	29 30
2.2.5. Extraction Rediotracer Extraction	
2.3.1. Vorbemerkungen	
2.3.2. FISRE im diskontinuierlichen Betrieb für Studien der Dissoziationskinetik	
2.3.4. Erfassung metalloradiopharmazeutscher Zusammensetzungen	
2.4. Theoretischer Hintergrund zu den untersuchten Metallkomplexen	
2.4.1. Radiotracer	
2.4.1.1. Radioaktivität und radioaktiver Zerfall	
2.4.1.2. Die Nuklide ⁹⁰ Y, ¹⁶¹ Tb und ¹⁸⁸ Re	
2.4.1.3. Beta-Spektrometrie	
2.4.2. ⁵⁰ Y- und ¹⁶¹ Tb-Komplexe	
2.4.2.1. Chemie der seitenen Erden	47 49
2.4.2.3. DOTA-Komplexe und Peptidrezeptorkonjugate	
2.4.3. ¹⁸⁸ Re(CO) ₃ -Komplexe	61
3. Experimenteller Teil	66
3.1. Reagenzien	67
3.2. Herstellung und Reinigung der Radiotracer	68
3.2.1. Yttrium-90	68
3.2.2. Terbium-161	69
3.2.3. Rhenium-188	
3.2.3.1. Synthese von fac -[⁽¹⁸⁸⁾ Ke(CO) ₃ (H ₂ O) ₃] ⁺	70 70
3.2.3.2. Symmese von <i>juc-voo</i> Re(CO)3(ms) und Derivaten	73 73

3.3. Versuchsaufbau	74
3.4. Durchführung des kontinuierlichen FISRE-Experiments	76
3.5. Durchführung des diskontinuierlichen FISRE-Experiments	78
3.6. Analytik	79
3.7. Ionenaustauscherprüfung	79
3.8. Datenprozessierung	81
3.9. Fehlerbetrachtung	82
4. Ergebnisse und Diskussion	84
4.1. ⁹⁰ Y-Polyaminocarboxylate	85
4.1.1. Vorversuche	85
4.1.1.1. Ionenaustauscherprüfung	
4.1.1.2. Empirische Analyse der Wechselwirkung des Yttriums mit	
Puffersubstanzen	86
4.1.1.3. Einfluss verschiedener M/L-Verhältnisse auf den kontinuierlichen FISRE-	
Modus	88
4.1.2. ⁹⁰ Y-DOTA	89
4.1.2.1. Dissoziationskinetik von 90Y-DOTA im kontinuierlichen FISRE-Betrieb	89
4.1.2.2. Abhängigkeit der Dissoziationskinetik von 90Y-DOTA von der Ionenstärke	93
4.1.2.3. Dissoziationskinetik von 90Y-DOTA im diskontinuierlichen FISRE-Betrieb	94
4.1.3. ⁹⁰ Y-EDTA	96
4.1.3.1. Dissoziationskinetik von 90Y-EDTA im kontinuierlichen FISRE-Betrieb	96
4.1.3.2. Dissoziationskinetik von 90Y-EDTA im diskontinuierlichen FISRE-Betrieb	98
4.1.4. ⁹⁰ Y-DTPA	100
4.1.4.1. Dissoziationskinetik von 90Y-DTPA im kontinuierlichen FISRE-Betrieb	100
4.1.4.2. Dissoziationskinetik von ⁹⁰ Y-DTPA im diskontinuierlichen FISRE-Betrieb	102
4.1.5. ⁹⁰ Y-DOTATOC	104
4.1.5.1. Dissoziationskinetik von ⁹⁰ Y-DOTATOC im kontinuierlichen FISRE-Betrieb.	104
4.1.5.2. Dissoziationskinetik von ⁹⁰ Y-DOTATOC im diskontinuierlichen FISRE-Betri	ieb.
	106
4.1.6. Vergleich der Dissoziationskinetiken der ⁹⁰ Y-Polyaminocarboxylate	107
4.2. ¹⁶¹ Tb-Polyaminocarboxylate	111
421 Vorversuche	111
4.2.1.1. Empirische Analyse der Wechselwirkung des Terbiums mit	
Puffersubstanzen	112
4.2.1.2. Einfluss verschiedener M/L-Verhältnisse auf den kontinuierlichen FISRE-	
Modus	113
4.2.2. Dissoziationskinetiken der ¹⁶¹ Tb-Polyaminocarboxylate im kontinuierlichen FIS	RE-
Betrieb.	114
4.2.3. Dissoziationskinetiken der ¹⁶¹ Tb-Polyaminocarboxylate im diskontinuierlichen	
FISRE- Betrieb.	117
4.2.4. Vergleich der Dissoziationskinetiken der ¹⁶¹ Tb- mit ⁹⁰ Y-DOTATOC	120
4.3 188Ro(I)(CO):(his) basiarta Komploya	100
$\mathbf{T}_{\mathcal{O}} = \mathbf{T}_{\mathcal{O}} $	177
4.3.1. Vorversuche	122
4.3.2. Dissoziationskinetiken der ¹⁸⁸ Re-Tricarbonylkompolexe	124

5. Zusammenfassung / Summary	127
6. Ausblick	134
7. Anhang	137
7.1. Vorversuch	138
7.2. Messergebnisse - Yttrium(III)-polyaminocarboxylate	139
7.2.1. Ionenaustauschertests im Batch-Betrieb	139
7.2.2. Ligandenfreier Versuch	141
7.2.3. Ionenstärkeeinfluss	143
7.2.4. Einflüsse unterschiedlicher M/L-Verhältnisse	149
7.2.5. Ergebnisse der FISRE-Experimente an Yttrium(III)-polyaminocarboxylaten	151
7.2.5.1. Yttrium-DOTA	151
7.2.5.2. Yttrium-EDTA	161
7.2.5.1. Yttrium-DTPA	165
7.2.5.1. Yttrium-DOTATOC	168
7.3. Messergebnisse - Terbium(III)-polyaminocarboxylate	175
7.3.1. Ligandenfreier Versuch	175
7.3.2. Einflüsse unterschiedlicher M/L-Verhältnisse	177
7.3.3. Ergebnisse der FISRE-Experimente an Terbium(III)-polyaminocarboxylaten	179
7.3.3.1. Terbium-DOTATOC	179
7.3.3.2. Terbium-DOTATATE	185
7.3.3.3. Terbium-DOTANOC	191
7.3.3.4. Terbium-IS20I	197
7.4. Messergebnisse - Rhenium(I)-Komplexe	203
7.4.1. pH-abhängige Ionenaustauschertests im Batch-Betrieb	203
7.4.2. Ligandenfreier Versuch	203
7.4.3. Ergebnisse der FISRE-Experimente an Tricarbonylrhenium(I)-Komplexen	204
7.4.3.1. [Re(CO) ₃ (his)]	204
7.4.3.2. [Re(CO)3-L-His-Gly]	205
7.4.3.3. [Re(CO) ₃ -L-Carnosin]	206
8. Literaturverzeichnis	207

1

EINLEITUNG

1.1. Radiopharmazie

Radiopharmakon ist die Bezeichnung für ein Arzneimittel, welches ein Radionuklid beinhaltet und in der Nuklearmedizin routinemäßig der Therapie und Diagnostik vielfältiger Erkrankungen dient. Neben den vorwiegend applizierten, kleinen organischen und anorganischen Verbindungen mit definierter Zusammensetzung können Radiopharmaka auch aus Makromolekülen aufgebaut sein, beispielsweise monoklonalen Antikörpern und Antikörperfragmenten, die nicht stöchiometrisch mit Radionukliden markiert sind. Generell werden je nach medizinischer Anwendung zwei Klassen der Radiopharmaka unterschieden: Radiodiagnostika und Radiotherapeutika^{[1]-[3]}.

Diagnostische Radiopharmaka sind Moleküle, die gamma- (SPECT - single photon emission computed tomography) oder Positron-emittierende (PET - positron emission tomography) Isotope beinhalten. Im Allgemeinen werden Radiodiagnostika in sehr geringen Konzentrationen (10-6-10-8 mol/L) appliziert, wobei eine pharmakologische Wirkung unerwünscht ist^[4]. Die diagnostische Anwendung zielt vielmehr auf die detaillierte Beschreibung der morphologischen Struktur von Organen und Gewebe der Veranschaulichung derer physiologischen Funktion sowie durch die Akkumulation des Radiotracers. Hierbei handelt es sich vorwiegend um Metallkomplexe mit organischen Chelatoren oder Chelat-Biomolekül-Konjugate für zielspezifische Radiopharmaka. Diese Arten von Verbindungen ermöglichen die nichtinvasive Diagnose und örtliche Bestimmung von Erkrankungen sowie eine Kontrolle eines möglichen Therapieerfolgs.

Radiotherapeutika hingegen werden entwickelt, um therapeutische Dosen ionisierender Strahlung spezifisch im erkrankten Gewebe freizusetzen. Radiotherapie wird seit über fünf Jahrzehnten angewandt, angefangen mit Radiojod zur Behandlung von Schilddrüsenerkrankungen^[5]. Die Verfügbarkeit geeigneter Radionuklide und die Techniken für deren spezifische Lokalisation in erkranktem Gewebe schränkt jedoch eine weite kommerzielle Verbreitung radiotherapeutischer Techniken in der klinischen Anwendung wesentlich ein.

1.2. Design zielspezifischer Radiopharmaka

Seit den 90er Jahren liegt das Augenmerk der radiopharmazeutischen Forschung zunehmend auf der Entwicklung zielspezifischer Radiopharmaka, welche auf radioaktiv markierten Rezeptorliganden beruhen, die nach dem Schloss-Schlüssel-Prinzip an Rezeptoren in erkranktem Gewebe binden. Im Allgemeinen setzen sich diese aus vier Bestandteilen zusammen (Abb. 1): einer funktionellen Einheit (Targetmolekül), einem Linker, einem bifunktionellen Chelator sowie dem metallischen Radionuklid^{[2],[6]}.

Abb. 1: Schematische Darstellung eines zielspezifischen Metalloradiopharmakons.

1.2.1. Auswahl der Radionuklide

Die Anforderungen an die eingesetzten Radionuklide sind in erster Linie von dem Anwendungsgebiet des Radiopharmakons abhängig. Für diagnostische Zwecke finden γ -Emitter Verwendung, um hohe Strahlenbelastung für den Patienten zu vermeiden. Therapeutische Radionuklide sind hingegen bevorzugt α - und β -Strahler, also Partikularstrahler mit hohem linearen Energietransfer (LET), welche ihre Energie auf einer verhältnismäßig kurzen Strecke im Gewebe abgeben. Die ideale Halbwertszeit der gewählten Nuklide ist hierbei vor allem von der Zeit abhängig, die das Radiopharmakon benötigt, um das Zielgewebe zu erreichen. Einen Überblick über derzeit häufig angewandte Radionuklide gibt Tab. 1.

Radioisotop	Halbwertszeit	Emittierte Strahlung	Produktionsmethode	Einsatz
⁶⁴ Cu	12,7 h	β-, γ	⁶⁴ Zn(n,p) ⁶⁴ Cu	Therapie
⁶⁸ Ga	67,6 min	β+, γ	⁶⁸ Ge/ ⁶⁸ Ga-Generator	Diagnostik
⁹⁰ Y	64,1 h	β-	⁹⁰ Sr/ ⁹⁰ Y-Generator	Therapie
^{99m} Tc	6,0 h	γ	99Mo/99mTc-Generator	Diagnostik
¹¹¹ In	2,8 d	γ	¹¹¹ Cd(p,n) ¹¹¹ In	Diagnostik
123 I	13,2 h	γ	¹²⁴ Te(p,2n) ¹²³ I	Diagnostik
¹⁵³ Sm	46,3 h	β-, γ	152 Sm(n, γ) 153 Sm	Therapie
¹⁶¹ Tb	6,9 d	β-, γ	160 Gd(n, γ) 161 Gd \rightarrow 161 Tb	Therapie
¹⁶⁶ Ho	26,8 h	β-, γ	¹⁶⁵ Ho(n, γ) ¹⁶⁶ Ho	Therapie
¹⁷⁷ Lu	6,7 d	β-, γ	176 Yb(n, γ) 177 Yb \rightarrow 177 Lu	Therapie
¹⁸⁸ Re	17,0 h	β-	¹⁸⁸ W/ ¹⁸⁸ Re-Generator	Therapie
²¹³ Bi	45,6 min	α, γ	²²⁵ Ac/ ²¹³ Bi-Generator	Therapie

 Tab. 1: Überblick über einige diagnostische und therapeutische Radionuklide^{[3],[7],[8]}.

1.2.2. Peptide Receptor Targeting (PRT)

Als zielspezifische funktionelle Einheiten dienen Makromoleküle wie beispielsweise Antikörper und deren Fragmente, Oligopeptide oder nicht-peptidische Rezeptorliganden. Diese Biomoleküle (BM) fungieren beim Transport zum kranken Gewebe, welches idealerweise hohe Rezeptorkonzentrationen aufweist, als Vehikel.

Die Verwendung von Peptiden als wichtige Regulatoren von Zell- und Wachstumsfunktionen bildet die Grundlage des sogenannten "Peptide receptor targeting". Hierbei werden gezielt Peptide herangezogen, die spezifisch an auf Zielzellen überexprimierte Rezeptoren binden (Tab. 2)^{[9]-[12]}.

Peptid	Peptid-Rezeptor	Rezeptorvorkommen in Tumortyp
Somatostatin	SSTR-Subtypen sst 1-5	Neuroendokrine Tumoren, Kleinzellen-Lungenkrebs, medulläres Schilddrüsenkarzinom, Lymphome (Hodgkin- und Non-Hodgkin-Lymphome), verschiedene Tumoren des Nervensystems
CCK/Gastrin	CCK1-, CCK2-Rezeptor	medulläres Schilddrüsenkarzinom, Kleinzellen- Lungenkrebs, Ovarialkarzinom, Astrozytom
VIP/PACAP	VIP-Rezeptor	Verschiedene Adenokarzinome (Magen, Pankreas, Lunge etc.), Lymphome, Kleinzellen-Lungenkrebs
Bombesin /GRP	BB-Rezeptorsubtypen BB1, BB2, BB3 und BB4	Prostata-, Mammakarzinom, Gastrinome, intestinale Karzinoide, Bronchialkarzinoide
Neurotensin	NTR1-, NTR2- und NTR3-Rezeptor	Ewing-Sarkom, Meningiom, Astrozytom, Kleinzellen- Lungenkrebs, medulläres Schilddrüsenkarzinom
Substanz P	NK 1-Rezeptor	u. A. Mammakarzinom, medulläres Schilddrüsenkarzinom, Kleinzellen-Lungenkrebs
RGD-Analogon	Integrinrezeptoren $\alpha_V \beta_{3'}, \alpha_V \beta_{5'}$ etc.	u. A. Gehirntumoren, Mammakarzinom, Melanom

 Tab. 2: Verteilung einiger Peptidrezeptoren und potentielle Peptidliganden in Abhängigkeit vom

 Humantumortyp^{[9],[12]}.

Die wohl am häufigsten klinisch applizierten Peptide bildet die Gruppe der Somatostatin-Analoga. Das Somatostatin ist ein regulatorisches Peptid mit antiproliferativer Wirkung auf bestimmte Tumorzellen, hervorgerufen durch Induktion der Somatostatin-Rezeptor-Expression, Hemmung der Wachstumshormon-Sekretion und Inhibition der Angiogenese^{[12]-[15]}. Die Notwendigkeit der Synthese von Analoga beruht auf der Anfälligkeit der natürlich vorkommenden Peptide Somatostatin-14, Cortistatin-14 und Somatostatin-28 gegenüber Enzymabbau (Abb. 2^[16].

Abb. 2: Aminosäuresequenzen von Somatostatin-14, Cortistatin-14 und Somatostatin-28. Der enzymatische Abbau ist exemplarisch an Somatostatin-14 dargestellt und erfolgt an den rot markierten Positionen.

Zahlreiche metabolisch stabile oktapeptidische Somatostatin-Analoga wurden auf Basis des systematischen Austausches der Aminosäuren entwickelt, darunter die bekanntesten Vertreter Oktreotid (Sandostatin[®]), Lanreotid (Somatuline[®]) und Vapreotid (Octastatin[®])^{[17]-[20]}. Abb. 3 zeigt daneben einige neuere Modifikationen des Oktreotids, i. E. [Tyr³]-Oktreotid (TOC), dessen erhöhte Hydrophilie durch eine Substitution von Phe³ mit Tyr eine vergleichsweise verbesserte renale Ausscheidung ermöglicht^{[21],[22]}, [NaI³]-Oktreotid (NOC) sowie [Tyr³]-Oktreotate (TATE)^[23]. Diese sind

durch eine hervorragende Aufnahme im Somatostatin-Rezeptor-exprimierenden Gewebe und unterschiedliche Affinitäten zu den SSTR-Subtypen gekennzeichnet^[22].

Abb. 3: Aminosäuresequenzen einiger Somatostatinanaloga.

Die für PRT in Frage kommenden Biomoleküle sind nicht auf die in Tab. 2 genannten Peptidrezeptoren beschränkt. Neben den bereits klinisch etablierten Liganden für den Somatostatin-Rezeptor rücken seit einigen Jahren Integrin-Rezeptoren und das Design geeigneter Liganden in den Fokus der radiopharmazeutischen Entwicklung. Diese Rezeptoren bilden eine Gruppe von heterodimeren Transmembranproteinen, die an zahlreichen biochemischen Prozessen aktiv teilnehmen, u. A. der Signaltransduktion und Wechselwirkung mit der extrazellulären Matrix^[24]. Der Subtyp $\alpha_{V}\beta_{3}$ -Integrin spielt eine wichtige Rolle bei der Angiogenese (Gefäßneubildung) im Hinblick auf die Entstehung solider Tumoren, indem er Endothelzellenwachstum fördert^[25]. Matrixproteine wie z.B. Fibronectin, Vitronectin, Tenascin und Kollagen binden an Integrinrezeptoren über das RGD-Motiv, der Aminosäuresequenz Arg-Gly-Asp. Kurze Peptide mit RGD-Sequenz gelten als wirkungsvolle Antagonisten der Integrin-Rezeptoren und Angiogeneseinhibitoren.

Indem sie ferner die Wechselwirkung mit extrazellulären Matrixproteinen unterbrechen, induzieren sie Zellapoptose (ein Typus des programmierten Zelltods)^{[26],[27]}. Zyklische RGD-Peptide zeichnen sich hierbei im Vergleich zu den offenkettigen Analoga durch erhöhte Selektivität aus, während deren biologische Stabilität durch den gezielten Einbau von D-Aminosäuren modifiziert werden kann^[28]. Ein Beispiel für eine derartige Struktur stellt das in Abb. dargestellte IS20I dar^[29].

Abb. 4: Schematische Darstellung der chemischen Struktur des $\alpha \nu \beta_3$ -Integrin-Inhibitors IS20I. Die 1,4,7,10-tetraazacyclododecan-4,7,10-triacetat-Einheit in IS20I kann potentiell für Radiomarkierungen herangezogen werden.

1.2.3. Bifunktionelle Chelatoren

Die bifunktionellen Chelatoren (BFC) gelten als Bindeglied zwischen dem Radionuklid und dem Linker oder Biomolekül. Die Anforderungen an optimale BFC sind umfangreich. Sie sollten idealerweise über eine hohe Hydrophilie verfügen, um die Blut-Clearance und renale Ausscheidung zu verbessern, beständig gegenüber Radiolyse sein und die Aktivität des Biomoleküls nicht mindern. Vor allem an die Stabilität des mit dem Radionuklid gebildeten Komplexes unter physiologischen Bedingungen werden besondere Anforderungen gestellt. Die am häufigsten eingesetzten Chelatoren für trivalente Radiometalle zu radioimmuntherapeutischen Zwecken sind funktionalisierte Polyaminocarboxylate. EDTA, DTPA (Abb. 5) und andere Polyaminocarboxylate fanden in Form von ¹¹¹Inmarkierten Radiopharmaka medizinische Anwendung^{[30]-[33]}.

Hohe *in vivo*-Stabilitäten entsprechender DTPA-Konjugate bildeten die Grundlage zahlreicher ¹¹¹In-Radiodiagnostika, allen voran das mit DTPA derivatisierte Somatostatinanalogon ¹¹¹In-DTPA-[D-Phe¹]-octreotid (OctreoScan®), das erste klinisch etablierte peptidische Radiopharmakon zur *in vivo* Darstellung von Tumoren^{[34],[35]}. Ausgehend von der Annahme, dass die chemischen Eigenschaften von Indium- und Yttriumionen ähnlicher Natur sind, wurde ¹¹¹In aufgrund seiner charakteristischen γ -Emission häufig als ⁹⁰Y-Ersatznuklid in bildgebenden Verfahren eingesetzt, da ⁹⁰Y als reiner β -Emitter für diagnostische Zwecke ungeeignet ist.

Abb. 5: Strukturformeln der offenkettigen Polyaminocarboxylate EDTA und DTPA.

Immer mehr Studien offenbarten allerdings signifikante Unterschiede in dem Komplexierungsverhalten beider Elemente^{[36]-[38]}. Beispielsweise ist die *in vivo*-Stabilität von ⁹⁰Y-DTPA-Konjugaten für therapeutische Applikationen unzureichend. Trotz hoher thermodynamischer Stabilität dissoziieren diese Komplexe *in vivo*, wonach sich ⁹⁰Y³⁺ - typisch für freie Seltenerdmetallionen - in Knochen und Leber anreichert^[39]. Diese Tatsache führte zu zahlreichen Versuchen, die *in vivo*-Stabilitäten der Polyaminocarboxylat-Komplexe zu erhöhen. Hierbei haben sich insbesondere die cyclischen Polyaminocarboxlyate NOTA, DOTA und TETA als geeignet erwiesen (Abb. 6)^{[40]-[42]}.

Abb. 6: Strukturformeln der cyclischen Polyaminocarboxylate NOTA, DOTA und TETA.

So reichen z. B. im Falle von DOTA und TETA drei Carboxylatgruppen für hohe *in vivo*-Stabilitäten der entsprechenden ⁹⁰Y-Konjugate aus und ein zielspezifisches Biomolekül kann an die vierte Carboxylatfunktion des DOTA-Liganden gebunden werden. Einen derartige Chelat-Biomolekül-Struktur bildet das DOTA-[Tyr³]-Oktreotid (DOTATOC), bestehend aus dem Disulfid-verbrückten Oktreotid und einem über eine Peptidbindung (Linker) verknüpften DOTA-Chelator. Die entsprechende mit ⁹⁰Y markierte Verbindung ⁹⁰Y-DOTATOC wird unter dem Handelsnamen OctreoTher[®] erfolgreich bei der Behandlung neuroendokriner Tumoren appliziert^[43]. Auf der Basis von Somatostatin-Analoga wurde eine große Vielfalt potentieller und bereits applizierter zielspezifischer Radiopharmaka synthetisiert (Tab. 3)^{[32],[44]-[61]}.

Chelator	Somatostatin- Analogon	Radionuklid	Chelator	Somatostatin- Analogon	Radionuklid
DOTA	Oktreotid	¹¹¹ In , ⁹⁰ Y, ⁶⁷ Ga ⁶⁴ Cu, ¹¹¹ In, ⁹⁰ Y,	DTPA	Oktreotid	¹¹¹ In , ⁸⁶ Y
	[Tyr ³]-Oktreotid	⁶⁷ Ga, ⁶⁸ Ga, ⁶⁶ Ga, ⁸⁶ Y, ¹⁷⁷ Lu, ²¹³ Bi		[Tyr ³]-Oktreotid	¹¹¹ In
	Oktreotat	⁸⁶ Y, ¹¹¹ In , ¹⁷⁷ Lu		[Tyr ³]-Oktreotat	¹¹¹ In
	[Tyr ³]-Oktreotat	¹⁷⁷ Lu, ⁶⁴ Cu, ⁹⁰ Y, ⁶⁷ Ga, ¹¹¹ In, ⁶⁸ Ga		Vapreotid	¹¹¹ In
	Vapreotid	¹¹¹ In, ⁹⁰ Y	TETA	Oktreotid	⁶⁴ Cu
	Lanreotid	¹¹¹ In, ⁹⁰ Y		Oktreotat	⁶⁴ Cu
	[Nal ³]-Oktreotid	¹¹¹ In, ⁹⁰ Y, ⁶⁸ Ga		[Tyr ³]-Oktreotat	⁶⁴ Cu

 Tab. 3: Auswahl der Radiolabelling-Kombinationen einiger Somatostatin-Analoga.

1.3. Problemstellung und Zielsetzung der Arbeit

Wie zuvor verdeutlicht, ist es unabdingbar sicherzustellen, dass ein Radiopharmakon während des Transports zum Target intakt bleibt und nicht aufgrund von Metabolisierung oder unzureichender Komplexstabilität eine Strahlenbelastung auf gesundes Gewebe verursacht.

Die Stabilität lässt sich diesbezüglich unter thermodynamischen und kinetischen Gesichtspunkten betrachten. Sicht der Thermodynamik Aus gibt die Gleichgewichtskonstante K (ehemals "Stabilitätskonstante") einen ersten Eindruck über die Stabilität eines Metallkomplexes. Diese thermodynamischen Gleichgewichtskonstanten der Radiometallchelate sind in aller Regel gut charakterisiert und können mit Hilfe von mathematischen Modellen auf physiologische Bedingungen extrapoliert werden, erlauben allerdings keinerlei Aussage über die in vivo-Lebensdauer eines Metallkomplexes. In diesem Zusammenhang ist die Kinetik der Dissoziation ausschlaggebend. Informationen über kinetische Parameter sind hingegen rar und im Falle der genannten Biomolekül-Konjugate sind bisher keine Dissoziationsraten und -konstanten literaturbekannt. Dies allem in der Tatsache begründet, dass sich bei ist vor es den zur radioimmuntherapeutischen Zwecken verwendeten Nukliden idealerweise um Isotope hoher spezifischer Radioaktivität und folglich geringer Masse handelt (typische Metallkonzentrationen in radiopharmazeutischen Zusammensetzungen betragen etwa 10-8-10-6 mol/L), wodurch die Analytik der entsprechenden Radiopharmaka mit Hilfe klassischer Methoden stark eingeschränkt ist^[2]. So entziehen sich die gebildeten Spezies oftmals einer exakten Charakterisierung. Folglich sind angesichts der stetig wachsenden Zahl neuer Radiometall-Konjugate in der Radiopharmazie geeignete Methoden zur Messung der Kinetik der Metallspeziation wünschenswert.

Diese Arbeit befasst sich mit der so genannten FISRE (*Free-Ion Selective Radiotracer Extraction*)-Technik zur Bestimmung der kinetischen Stabilitäten von Metallkomplexen und der Erörterung der Anwendungsmöglichkeiten des Verfahrens in der radiopharmazeutischen Grundlagenforschung. FISRE wurde von 1996 bis 2000 an der Technischen Universität Delft in den Niederlanden entwickelt^[62]. Ursprünglich standen

insbesondere Metallkomplexe mit umweltchemischer Relevanz im Fokus der Untersuchungen. VAN DOORNMALEN verwendete die FISRE-Technik zur Analytik der Speziationskinetiken der Komplexe Cu-EDTA, Cu-CDTA, Cu-NTA, Cu-DTPA und Cu-HA unter Einsatz eines ⁶⁴Cu-Radiotracers im Hinblick auf die Bioverfügbarkeit von Kupferionen in Naturgewässern^{[63]-[65]}. Neben weiteren Versuchen mit Co-NTA und Co-EDTA (⁶⁰Co) erörterte DENKOVA anhand von FISRE-Studien an Lu-DOTA (¹⁷⁷Lu) und Ho-DTPA und Ho-DTPA-bis(propylamid) (¹⁶⁶Ho) die Anwendbarkeit auf radiopharmazeutisch relevante Komplexe^{[62],[66]}. Im Jahre 2006 wurden an der Technischen Universität München FISRE-Screenings der Speziationskinetik zahlreicher Yttrium(III)-Komplexe (Y-Citrat, Y-NTA, Y-CDTA, Y-EDTA, Y-HA, Y-DTPA, Y-DOTA und Y-DOTATOC) unter Applikation von ⁹⁰Y als Radiotracer durchgeführt^[67]. Die vorliegende Arbeit versteht sich als Folgeprojekt, welches ausschließlich dem Studium der Dissoziationskinetik von Metallkomplexen mit nuklearmedizinischer Relevanz unter besonderer Berücksichtigung der Versuchsbedingungen gewidmet ist. Im Einzelnen umfasst dieses:

- Die Ermittlung der Speziationskinetik von ⁹⁰Y-DOTA in Abhängigkeit von pH, Ionenstärke, Ionenaustauscher und dem Metall/Ligand-Verhältnis sowie eine Modifikation der FISRE-Technik zum Studium inerter Komplexe.
- Bestimmung der pH-abhängigen Dissoziationskinetiken von ⁹⁰Y-Komplexen mit den offenkettigen Liganden EDTA und DTPA sowie dem Somatostatin-Analogon DOTATOC und Vergleich mit ⁹⁰Y-DOTA.
- Analyse und Vergleich der Dissoziationskinetiken verschiedener ¹⁶¹Tb-markierter Somatostatin-Analoga (DOTATOC, DOTATATE, DOTANOC) sowie des neuartigen ¹⁶¹Tb-IS20I-Komplexes
- Prüfung der Anwendbarkeit der FISRE-Technik auf redoxempfindliche Metallspezies anhand der Messung der Dissoziationskinetiken von [¹⁸⁸Re(his)(CO)₃] und Derivaten.

2

THEORETISCHER HINTERGRUND

2.1. Grundlagen der Kinetik

2.1.1. Grundbegriffe chemischer Reaktionskinetik

Die Geschwindigkeit *V* einer chemischen Reaktion ist im Allgemeinen als Veränderung der Konzentration eines Edukts oder Produkts der betreffenden Reaktion in Abhängigkeit von der Zeit definiert:

$$V = -\frac{d \left[Edukt\right]}{dt} = n \cdot \frac{d\left[Produkt\right]}{dt}$$
[1]

n bezeichnet hierbei die Anzahl der aus einem Edukt gebildeten Produkte. Das Geschwindigkeitsgesetz stellt eine Gleichung dar, die die Geschwindigkeit einer Reaktion als Funktion der Konzentrationen aller für die Reaktion maßgeblichen Spezies ausdrückt.

Ausgehend von der Annahme, dass die Reaktionsrate lediglich von den Konzentrationen [A] und [B] abhängig ist, so können diese über den Proportionalitätsfaktor k mit der Reaktionsgeschwindigkeit in Beziehung gebracht werden:

$$V = k \cdot [A]^a \cdot [B]^b \tag{2}$$

Für den Proportionalitätsfaktor k findet die Bezeichnung Geschwindigkeits- oder Ratenkonstante rege Verwendung. (Die Begriffe spezifische Geschwindigkeit oder Geschwindigkeitskoeffizient für k werden seltener geprägt, sind jedoch aufgrund der Tatsache, dass k temperaturabhängig und folglich selten konstant ist, treffender.) Die Variablen a und b kennzeichnen die Ordnung der Reaktion.

Der empirischen Bestimmung der Reaktionsgeschwindigkeiten geht eine Identifizierung sämtlicher Reaktionsteilnehmer, Zwischenprodukte, Produkte und Nebenreaktionen voraus. Anschließend kann die sogenannte Isoliermethode angewandt werden, bei welcher sämtliche Edukte mit Ausnahme von einem in großem Überschuss eingesetzt werden. Die Tatsache, dass man die Konzentration des im Überschuss eingesetzten Reaktionsteilnehmers in guter Näherung als konstant betrachten und in k miteinbeziehen kann bringt eine erhebliche Vereinfachung des Geschwindigkeitsgesetzes mit sich^[68].

Lautet das tatsächliche Geschwindigkeitsgesetz beispielsweise

$$V = k \cdot [A] \cdot [B] \tag{3}$$

mit einem großen Überschuss an [B] (= $[B]_0$), vereinfacht sich das Geschwindigkeitsgesetz zu einem Gesetz *pseudo*-erster Ordnung (der Gesamtreaktion):

$$V = k' \cdot [A] \qquad \text{mit} \qquad k' = k \cdot [B]_0 \qquad [4 \text{ a/b}]$$

Die Isoliermethode kann in Verbindung mit der Methode der Anfangsgeschwindigkeiten (Inital-rate method) zur Bestimmung der Reaktionsordnung herangezogen werden, bei welcher die Reaktionsgeschwindigkeiten zu Beginn der Reaktion bei verschiedenen Anfangskonzentrationen der Reaktionsteilnehmer gemessen werden. Dieses Verfahren stellt im Allgemeinen hohe Anforderungen an die Messtechnik und vernachlässigt den Einfluss gebildeter Produkte auf das Geschwindigkeitsgesetz, weshalb eine Erfassung aller Reaktionsteilnehmer über den gesamten Reaktionszeitraum wünschenswert ist^[69].

Da die Konzentration im Vergleich zur Reaktionsgeschwindigkeit eine leichter zugängliche Größe ist, ist es zweckmäßig, die Konzentration einer Spezies in Abhängigkeit von der Zeit darzustellen, indem man Geschwindigkeitsgesetze (Differentialgleichungen) integriert.

Tab. 4 gibt einen Überblick über wichtige integrierte Geschwindigkeitsgesetze, wobei $[A]_0$ bzw. $[B]_0$ die Ausgangskonzentration und $[A]_t$ bzw. $[B]_t$ die Konzentration der Reaktanten zum Zeitpunkt *t* darstellt. Eine weitere nützliche Größe stellt die Halbwertszeit $\tau_{1/2}$ (nicht zu verwechseln mit der Nuklidhalbwertszeit $t_{1/2}$), welche jene Zeit bezeichnet, in der die Konzentration einer Spezies auf die Hälfte ihres Ausgangswertes abnimmt.

Reaktions- ordnung	Reaktion	Geschwindigkeitsgesetz	Integrierte Form	$ au_{1/2}$
0	$\mathbf{A} \not \rightarrow \mathbf{P}$	$-\frac{d[A]}{dt} = k$	$[A]_t = [A]_0 - k \cdot t$	$\frac{[A]_0}{2 \cdot k}$
1	A → P	$-\frac{d[A]}{dt} = k \cdot [A]$	$[A]_t = [A]_0 - e^{-k \cdot t}$	$\frac{ln2}{k}$
2	$A \rightarrow P$	$-\frac{d[A]}{dt} = k \cdot [A]^2$	$[A]_{t} = \frac{[A]_{0}}{1 + k \cdot t \cdot [A]_{0}}$	$\frac{1}{k \cdot [A]_0}$
	$A + B \rightarrow P$	$-\frac{d[A]}{dt} = k \cdot [A] \cdot [B]$	$k \cdot t = \frac{1}{[B]_0 - [A]_0} \cdot ln \frac{[A]_0 \cdot ([B]_0 - [P])}{[B]_0 \cdot ([A]_0 - [P])}$	

Tab. 4: Wichtige integrierte Geschwindigkeitsgesetze.

Werden Geschwindigkeitskonstanten empirisch bestimmt, ist eine eindeutige Aussage über deren Charakter (pseudo/real) in aller Regel erst möglich, wenn sämtliche Reaktanten und Produkte, die zur Reaktionsgeschwindigkeit beitragen, bekannt sind. Hierzu gehören auch Spezies, welche unter Umständen nicht direkt stöchiometrisch erfasst werden, wie beispielsweise H⁺.

Das Auftreten von Konsekutivreaktionen ist insbesondere bei Reaktionsteilnehmern mit mehreren reaktiven Zentren, wie beispielsweise Metallkomplexen, häufig. Die einfachste Form ist eine Sequenz irreversibler Reaktionen erster und pseudo-erster Ordnung:

$$A \xrightarrow{k_1} B \xrightarrow{k_2} C$$
 [5]

$$A \xrightarrow{(+X) k_{1'}} B \xrightarrow{(+Y) k_{2'}} C$$
 [6]

Unter der Voraussetzung, dass [X]>>[A] und [Y]>>[B] ist, gilt:

$$k_1 = k_{1'} \cdot [X]$$
 und $k_2 = k_{2'} \cdot [Y]$ [7]

Die Ratengleichungen lauten:

$$-\frac{d[A]}{dt} = k_1 \cdot [A]$$
[8]

$$\frac{d[B]}{dt} = k_1 \cdot [A] - k_2[B]$$
^[9]

$$\frac{d[C]}{dt} = k_2 \cdot [B] \tag{10}$$

Die Annahme, dass $[A]=[A]_0$ und [B]=[C]=0 bei t=0 ermöglicht die Integration der Gleichungen mit folgenden Ergebnissen:

$$[A] = [A]_0 \cdot e^{-k_1 \cdot t}$$
 [11]

$$[B] = \frac{[A]_0 \cdot k_1}{k_2 - k_1} \cdot (e^{-k_1 \cdot t} - e^{-k_2 \cdot t})$$
[12]

$$[C] = [A]_0 \cdot \left(1 - \frac{k_2}{k_2 - k_1} \cdot e^{-k_1 \cdot t} + \frac{k_1}{k_2 - k_1} \cdot e^{-k_2 \cdot t}\right)$$
[13]

Für den Fall, dass $k_1 \gg k_2$, können die einzelnen Schritte der Konsekutivreaktion separat analysiert werden, während bei $k_2 \gg k_1$ lediglich der erste Reaktionsschritt beobachtet wird, wobei gilt:

$$-\frac{d[A]}{dt} = \frac{d[C]}{dt} = k_1 \cdot [A]$$
[14]

In der Praxis untersucht man kinetische Untersuchungen vorwiegend an Reaktionen, die weit vom thermodynamischen Gleichgewicht entfernt sind, wobei der Einfluss der Reversibilität gemäß dem Prinzip von LE CHATELIER durch Variation von Druck, Temperatur, überschüssigen Einsatz der Reaktanten oder dem Abführen der Produkte effektiv unterdrückt werden kann.

Betrachtet man eine Reaktion in der Nähe des thermodynamischen Gleichgewichts mit Hin- und Rückreaktion erster Ordnung:

$$A \xrightarrow[k_{l_1}]{k_{l_1}} B$$
[15]

mit den Ratenkonstanten k_1 und k_{-1} für Hin- und Rückreaktion, so ergibt die Integration des Geschwindigkeitsgesetzes:

$$\ln\left(\frac{[A]_0 - [A]_{eq}}{[A]_t - [A]_{eq}}\right) = k \cdot t = (k_1 + k_{-1}) \cdot t$$
[16]
[A]_{eq} entspricht der Konzentration der Spezies A im Gleichgewicht, während *k* die abgeleitete Ratenkonstante darstellt. Das Verhältnis der Ratenkonstanten für Hin- und Rückreaktion entspricht der sogenannten thermodynamischen Gleichgewichtskonstante K:

$$K = \frac{k_1}{k_{-1}} \tag{17}$$

2.1.2. Dynamik der Speziation

Für eine Reaktion (*pseudo-*) erster Ordnung eines Metall-Ions *M* (Ladung *m*) mit einem Liganden L (Ladung *n*) wird folgendes Schema betrachtet:

$$M^m + L^n \xrightarrow{k_A}_{k_D} (ML)^{m+n}$$
[18]

 k_A (l·mol⁻¹·s⁻¹) wird als Assoziations-, k_D (s⁻¹) als Dissoziationsratenkonstante bezeichnet. Die Nettodissoziationsrate dieser Reaktion wird durch Gl. [19] wiedergegeben und beschreibt die Dynamik der Metallspeziation in der Nähe des thermodynamischen Gleichgewichts.

$$-\frac{d[(ML)^{m+n}]}{dt} = k_D \cdot [(ML)^{m+n}] - k_A \cdot [M^m] \cdot [L^n]$$
[19]

Bei eingestelltem thermodynamischen Gleichgewicht entspricht [19] dem Wert Null, wodurch K durch das Verhältnis der Assoziationsratenkonstanten k_A zur Dissoziationsratenkonstanten k_D gegeben ist:

$$K = \frac{\left[\left(ML\right)^{m+n}\right]}{\left[M^{m}\right] \cdot \left[L^{n}\right]} = \frac{k_{A}}{k_{D}}$$
[20]

Es ist zu beachten, dass das thermodynamische Gleichgewicht auf der Einstellung der Konstanz von Konzentrationen im zeitlichen Mittel beruht. Auf molekularer Ebene ist die Assoziations-/Dissoziationsdynamik nach wie vor existent, wobei die chemische Form des Metallatoms zwischen M^m und $(ML)^{m+n}$ alterniert.

K wird gemeinhin zur Beurteilung der thermodynamischen Stabilität herangezogen und kann mit Hilfe von Speziationssoftware wie u. A. CHEAQSPRO^[70], MINEQL+^[71], VISUAL MINTEQ^[72], WHAM^[73] oder SOILCHEM^[74] errechnet oder experimentell ermittelt werden. Kalkulationen mit Speziationsprogrammen fußen auf der Annahme eines sich im thermodynamischen Gleichgewicht befindenden Systems. Mittels mathematischer Modelle wird hierbei aus bekannten Parametern wie pH, Temperatur, Redoxpotential, Ionenstärke, CO₂-Partialdruck, Ausgangskonzentration (oder -aktivität) aller Ionen sowie den thermodynamischen Stabilitätskonstanten der beteiligten Komplexe die Speziation im thermodynamischen Gleichgewicht ermittelt. Es ist aus zwei Gründen zweifelhaft, ob diese Annahme in realen Systemen stets gültig ist. Zum einen ist es möglich, dass chemische Reaktionen das Gleichgewicht langsamer erreichen können als angenommen. Dies kann bei Bindung von Metallen sowohl an natürlichen organischen Verbindungen, an gelösten Partikeln oder Mineraloberflächen^{[75],[76]} als auch bei Ligandenaustauschreaktionen^{[77],[78]} der Fall sein. Bei unvollständiger Gleichgewichtseinstellung zum Zeitpunkt der Messung entspricht die ermittelte Speziation demnach nicht jener im Gleichgewicht. Des Weiteren können empfindliche thermodynamische Gleichgewichte leicht gestört werden, durchaus auch durch den Messvorgang selbst^[79].

Diese Gesichtspunkte machen deutlich, dass eine genaue Metallspeziation nur unter Berücksichtigung der zeitabhängigen Dynamik von chemischen Reaktionen zugänglich ist und die Beschränkung auf ein statisches Gleichgewichtsmodell nicht ausreicht. Wird beispielsweise nur eine Spezies, z.B. ein freies Metallion, selektiv von einem Organismus aufgenommen, so ist nicht nur die Konzentration des freien Ions für die Aufnahme entscheidend, sondern auch der Beitrag der freien Ionen, die durch Dissoziation kinetisch labiler Metallkomplexe im betreffenden Zeitrahmen verfügbar würden^{[80]-[82]}.

Als "labil" werden Komplexe bezeichnet, deren Dissoziationsgleichgewichte sich rasch einstellen. Im Falle einer Reaktion erster Ordnung hängt die Dissoziationsgeschwindigkeit von k_D sowie der Konzentration des Metallkomplexes ab. Ist demnach die Dissoziationskonstante bekannt, kann die Labilität verschiedener Komplexe miteinander verglichen werden, falls bei der Messung gleiche Konzentrationen vorliegen.

Komplexe, die nur langsam in freie Metall- und Ligandenionen dissoziieren, werden als "kinetisch stabil" (inert) bezeichnet. Folglich ist der ursprünglich verwendete Terminus "Stabilitätskonstante" für *K* irreführend, da *K* lediglich das Verhältnis der Assoziations- zur Dissoziationskonstanten entsprechend Gleichung [20] wiedergibt und keinerlei Aussage über die Stabilität des Komplexes zu treffen vermag. (Verläuft eine Reaktion nach dem EIGEN-Mechanismus, d. h. die Geschwindigkeit der Komplexbildung wird ausschließlich durch die Abstoßung zwischen dem Metallion und einem Wassermolekül aus seiner inneren Hydratationssphäre bestimmt, ist k_A konstant, *K* indirekt proportional zu k_D und gibt damit Auskunft über die Stabilität^[83].)

Man beachte, dass die Begriffe "labil" und "inert" qualitative Eigenschaften von Metallkomplexen suggerieren, eine derartige Klassifizierung jedoch erst unter dem Bezugspunkt der experimentellen Zeitskala aussagekräftig ist. Die charakteristische Lebensdauer τ der Spezies M^m und $(ML)^{m+n}$ ist definiert als^[63]:

$$\tau_M m = \frac{1}{k_A \cdot [L^n]} \qquad \text{und} \qquad \tau_{(ML)} m + n = \frac{1}{k_D}$$
[21 a/b]

Unter Miteinbezug der experimentellen Zeitskala t_{exp} gilt ein System als statisch, wenn gilt:

$$\frac{t_{exp}}{\tau_{M^m}} \ll 1$$
 und $\frac{t_{exp}}{\tau_{(ML)^{m+n}}} \ll 1$ [22 a/b]

Ein dynamisches System ist wiederum gekennzeichnet durch:

$$\frac{t_{exp}}{\tau_{M^m}} \gg 1$$
 und $\frac{t_{exp}}{\tau_{(ML)^{m+n}}} \gg 1$ [23 a/b]

Sofern die Bedingungen gemäß Gleichungen [22 b] und [23 b] erfüllt sind, ist es möglich einen Metallkomplex als "inert" oder "labil" zu klassifizieren und diese Begriffe mit Hilfe der Geschwindigkeitskonstanten mit einer qualitativen Aussage zu untermauern.

2.1.3. Ionenaktivität

Die bisher behandelten kinetischen Zusammenhänge gelten lediglich in erster Näherung für stark verdünnte ionische Lösungen ($\sum c_i < 10^{-3} \frac{mol}{L}$). Für genauere kinetische Untersuchungen ist das nicht-ideale Verhalten von Elektrolytlösungen zu berücksichtigen, wonach die Konzentration c_i (oder Radioaktivität) der *i*-ten Spezies durch deren Ionenaktivität a_i unter Miteinbezug des Aktivitätskoeffizienten γ_i ersetzt werden muss:

$$a_i = \gamma_i \cdot c_i \tag{24}$$

Im Rahmen der ersten Bedingung der *specific ion interaction theory* (SIT) kann der Aktivitätskoeffizient γ eines Ions *i* mit Elementarladung z_i in einer Lösung mit der Ionenstärke *I* durch folgende Gleichung beschrieben werden^[84]:

$$lg(\gamma_i) = -z_i^2 \cdot \frac{A \cdot \sqrt{I}}{1 + B \cdot d_i \cdot \sqrt{I}} + \sum_k \varepsilon(i, k) m_j$$
[25]

A und *B* sind temperaturabhängige Konstanten, d_i der effektive Durchmesser des hydratisierten *i*-Ions, $\varepsilon(i,k)$ der Koeffizient für die spezifische nahe Wechselwirkung der Spezies *i* und *k* sowie m_j Molalität des Ions *k*. *B*· d_i ist ein empirischer Parameter, der mit $\varepsilon(i,k)$ korreliert und für welchen Werte von 1,0 bis 1,6 kg^{1/2}·mol^{-1/2} vorgeschlagen wurden. Die zweite Annahme der SIT lautet, dass $\varepsilon(i,k)$ für ungeladene Spezies oder Ionen der gleichen Ladung null beträgt.

Eine hohe Bedeutung in der Ermittlung von Aktivitätskoeffizienten kommt gemäß Gl. [25] der Ionenstärke des Mediums zu, definiert als:

$$I = \frac{1}{2} \cdot (c_1 \cdot z_1^2 + c_2 \cdot z_2^2 + \dots) = \frac{1}{2} \cdot \sum_i c_i \cdot z_i^2$$
[26]

Eine Zusammenführung der Gleichungen [20], [24], [25] und [26] lässt den direkten Einfluss der Ionenstärke auf die Kinetik der Komplexierung von Metallionen erkennen. Die Abhängigkeit thermodynamischer Gleichgewichtskonstanten von der Ionenstärke wurde von DANIELE et al. anhand von Protonierungskonstanten anorganischer und organischer Säuren studiert und folgender Zusammenhang postuliert^[85]:

$$log(K(I)) = log(K(I_{ref})) - A \cdot z^* \cdot \left(\frac{\sqrt{I}}{1 + B \cdot \sqrt{I}} - \frac{\sqrt{I_{ref}}}{1 + B \cdot \sqrt{I_{ref}}}\right)$$
$$+ C(I - I_{ref}) + D(I^{\frac{3}{2}} - I^{\frac{3}{2}}_{ref})$$
[27]

I und *I*_{ref} kennzeichnen die tatsächliche sowie die Referenzionenstärke, *z** ist ein Term, der die Elementarladungen der Ionen berücksichtigt, während *C* und *D* durch geeignete Regressionsmethoden bestimmbare empirische Koeffizienten darstellen. MAJLESI et al. bestätigten die Gültigkeit von Gl. [27] für die Komplexierung von Mo(VI) und W(VI) mit einigen Polyaminocarboxylaten^[86].

Ähnliche Zusammenhänge wurden auf Grundlage der molekularen Reaktionsdynamik für kinetische Ratenkonstanten abgeleitet. So behandelt der Formalismus zur Theorie des Übergangszustands (transition-state theory) (Abb.7) die ebenfalls Resultat Ionenstärkeabhängigkeit als sich ändernder Aktivitätskoeffizienten^[68].

Abb. 7: Energiediagramm zur Veranschaulichung der Theorie des Übergangszustands.

Nach Anwendung des DEBYE-HÜCKEL-Formalismus erhält man folgende Beziehung:

$$ln(k) = ln(k_0) - \frac{z_1^2 \cdot A \cdot \sqrt{l}}{1 + B \cdot r_1} - \frac{z_2^2 \cdot A \cdot \sqrt{l}}{1 + B \cdot r_2} + \frac{(z_1 + z_2)^2 \cdot A \cdot \sqrt{l}}{1 + B \cdot r_{\ddagger}}$$
[28]

A bezeichnet eine temperaturunabhängige Konstante, *B* beträgt 0,329· \sqrt{I} Å⁻¹ (25°C). r_1 und r_2 entsprechen den Radien der Reaktanten, r_t dem Radius des Übergangszustands, deren Bestimmung im Regelfall durch Näherungslösungen (z. B. $r_t = r_2$, wenn $r_2 \gg r_1$) umgangen werden kann.

Unter der Annahme, dass $r = r_1 = r_2 = r_{\ddagger}$ und $B \cdot r \ll 1$ ist, vereinfacht sich Gleichung [28] zu:

$$ln(k) = ln(k_0) + 2 \cdot z_1 \cdot z_2 \cdot A \cdot \sqrt{l}$$
^[29]

Es ist folgerichtig anzumerken, dass auf Grund des großen Einflusses der Ionenstärke auf die thermodynamischen und kinetischen Parameter Studien der Kinetik entweder bei konstanter Ionenstärke durchzuführen sind oder ionenstärkeabhängige Messungen auf I = 0 oder $I = \infty$ extrapoliert werden sollten^[69].

In der vorliegenden Arbeit wurde mit Ausnahme einer Versuchsreihe unter konstanter Ionenstärke gearbeitet, wobei zu Zwecken der Nachahmung physiologischer Lösungen NaCl zu deren Einstellung gewählt wurde. Die Probendetektion erfolgte mit durch vergleichende Messungen der Radioaktivität, weshalb Ionenaktivitätsbetrachtungen mit Ausnahme des o.g. Versuchs in erster Näherung außer Acht gelassen werden können.

2.2. Analytische Methoden der Speziationskinetik

2.2.1. Vorbetrachtungen und Anforderungen an analytische Verfahren

Die Bestimmung von Reaktionsraten im wäßrigen Medium setzt eine möglichst genaue Kenntnis der Reaktanten, Stöchiometrie und Produkte voraus, wobei nicht alleine die Identifizierung einzelner Spezies (Koordination, Stereochemie, Stöchiometrie, Ladung, Aggregatszustand) im Vordergrund steht, sondern auch deren Abhängigkeit von Konzentration anderer Reaktionsteilnehmer, pH, Ionenstärke (und Gegenionen) und Temperatur. Es gilt hierbei ebenfalls zu beachten, dass Reaktanten in Wirklichkeit eine Mischung verschiedener Spezies darstellen und sofern diese in ihrer Reaktivität ähnlich sind oder sich in einem labilen Gleichgewicht befinden möglicherweise kinetisch nicht unterscheidbar sind. Die physikalischen und chemischen Eigenschaften der untersuchten Spezies entscheiden in aller Regel über die gewählte Analysemethode.

Im Allgemeinen müssen Messtechniken zur Bestimmung der Speziationskinetik folgende Kriterien erfüllen:

- Die gewählte analytische Methode muss in einer *Zeitskala* vollzogen werden die jene der untersuchten kinetischen Prozesse unterschreitet.
- Das Analyseverfahren sollte in der Lage sein sofern sie es nicht vermag, alle vorkommenden Spezies zu differenzieren – zumindest die analysierte Spezies *selektiv* von anderen zu unterscheiden, wobei vor allem bei schneller Kinetik (im Vergleich zur Analytik) eventuelle Bildungs- und Abbaureaktionen zu berücksichtigen sind.
- Die *Empfindlichkeit* der Untersuchungsmethode sollte f
 ür Konzentrationen ausreichen, die nur einen Bruchteil der Ausgangskonzentrationen der Komponenten ausmachen.
- Der *Einfluss der Messtechnik* auf die Ausgangsspeziation der Probe sollte ausgeschlossen sein, indem das Meßsystem beispielsweise vor Beginn der Messung mit der Probe äquilibriert wird.
- Hohe Zuverlässigkeit sowie Genauigkeit sind lediglich durch optimale *Kontrolle über das analytische Verfahren* bzw. der Versuchsanordnung zu erreichen. Dieser Gesichtspunkt umfasst nicht nur die experimentellen Bedingungen (Ionenstärke, pH, Temperatur, Konzentration der Reaktonsteilnehmer), sondern auch mögliche Wechselwirkungen mit Verunreinigungen oder Puffersubstanzen.

Bei der Untersuchung von typischen Zusammensetzungen metalloradiopharmazeutischer Substanzen kommt den genannten Kriterien unterschiedlicher Stellenwert zu. Angesichts von hier auftretenden Metallkonzentrationen von 10⁻⁸-10⁻⁶ mol/L stellt eine kinetische Studie an Radiopharmaka besondere Ansprüche an die Empfindlichkeit des Messverfahrens^[4]. Gemessen an der Tatsache, dass es sich in der Regel um kinetisch stabile Spezies mit verhältnismäßig geringen Dissoziationsgeschwindigkeiten handelt, sollte die Messtechnik in der Lage sein, die Speziation über eine Zeitskala von Sekunden bis hin zu Tagen zu überwachen. Die Notwendigkeit einer Erfassung schneller Reaktionen (< 10⁻² s) ist hingegen nicht zu erwarten.

Im Folgenden werden einige Messtechniken vorgestellt, die potentiell für die Bestimmung von Speziationskinetiken unter diesen Gesichtspunkten geeignet sind. Methoden zur Bestimmung schneller Reaktionen, wie z. B. *continuous flow-, stopped flow-, quenched flow*–Methoden, Relaxationsmethoden (u. A. Temperatursprungmethode), Ultraschallabsorption und Flash- oder Laserphotolyse werden an dieser Stelle nicht behandelt.

2.2.2. Elektrochemische Methoden

Die Verwendung *ionenselektiver Elektroden* ist eine rasche und effiziente Möglichkeit, die Aktivität einer einzigen Metallspezies – beispielsweise die des freien Metallions – zu bestimmen^{[87]-[89]}. Primär wird das elektrische Potential E_H im Gleichgewicht ermittelt, welches durch die in der NERNST-Gleichung beschriebenen Gesetzmäßigkeit mit der Aktivität des freien Metallions a_{M^m} im Zusammenhang steht:

$$E_M = E_{M^m,M_s}^0 + \frac{2.3 \cdot R \cdot T}{n \cdot F} \cdot \log(a_{M^m})$$
[30]

 E_M bezeichnet das Elektrodenpotential, $E^0_{M^m,M_s}$ das Standardelektrodenpotential, R die molare Gaskonstante, n die Äquivalentzahl und F die FARADAY-Konstante. Die Ionenselektivität der Elektroden beruht auf ionophoren Polymerbeschichtungen. Ein Vorteil dieser Meßmethode ist die Beschränkung auf einen Messvorgang mit geringem Zeitaufwand. Nachteilig ist die eingeschränkte Empfindlichkeit, in der Regel vor allem bei erhöhten Chloridkonzentrationen (z.B. bei Meerwasserproben)^[90].

Im Gegensatz zu ionenselektiven Elektroden, mit Hilfe derer die Potentialdifferenz zwischen Betriebs- und Referenzelektroden ermittelt wird, werden bei *voltammetrischen* Methoden zur Metallspeziation Oxidations- und Reduktionsströme in Abhängigkeit vom angelegten Potential gemessen. Hierbei wird als Betriebselektrodenmaterial in der Regel Quecksilber verwendet, welches zur Steigerung der Empfindlichkeit mit einigen Metallen (z. B. Cadmium, Kupfer, Zink) – je nach Untersuchungsobjekt – legiert oder nach Komplexierung mit spezifischen Liganden mit entsprechenden Metallionen gekoppelt werden kann. Häufig werden voltammetrische Verfahren durch Variation des Betriebselektrodenpotentials modifiziert. Schrittweise Erhöhung (anodic stripping voltammetry) oder Verminderung (cathodic stripping voltammetry) des Betriebspotentials während der Messung erlaubt eine Regulierung von Redoxreaktionen und eine qualitative Bestimmung der Metalle anhand der bei Oxidationsstufenänderungen ermittelten charakteristischen Stromstärken. Voltammetrische Methoden zeichnen sich durch sehr hohe Empfindlichkeit aus (Konzentrationen von 10-11 mol/l sind generell ausreichend^{[91],[92]}) und sind in der Lage identische Elemente unterschiedlicher Valenzzustände in wässrigen Lösungen (z.B. Cr(III)/Cr(VI)) zu unterscheiden. Es ist jedoch zu beachten, dass das voltammetrische Signal auch von kinetischen Parametern wie z. B. der Geschwindigkeit des Stofftransports der Spezies vom Bulk zur Elektrode, der Reversibilität von Reaktionen an der Elektrode und der Labilität von Komplexen abhängig ist. Folglich sind die Messergebnisse aufgrund des Informationsgehalts nur mit Vorsicht zu interpretieren.

Generell kann die Labilität eines Metallkomplexes durch Messung der Stromstärke in Abhängigkeit von der Zeit bestimmt werden^{[90],[93]}. Im Messzeitfenster labile Metallkomplexe neigen an der Elektrodenoberfläche zur Dissoziation, wodurch die Konzentration der zum Messzeitpunkt verfügbaren freien Metallionen höher geschätzt wird als sie tatsächlich ist.

Zur Studien der Metallspeziation sind voltammetrische Techniken vor allem bei Untersuchungen natürlicher Gewässerproben weit verbreitet^[94]. In der Regel wird das voltammetrische Signal während der Titration der Probe mit dem betreffenden Metallion beobachtet. Bei hohen Metallkonzentrationen erreicht die Titrationskurve einen linearen Bereich, der die Sättigung aller metallbindenden Liganden kennzeichnet. Durch Extrapolation des linearen Kurvenanteils in Richtung der x-Achse kann im Folgenden die gesamte Komplexierungskapazität der Liganden ermittelt werden. Zusammen mit der konditionellen Gleichgewichtskonstante und der Kapazität können nun Rückschlüsse über die Konzentration der freien Ionen gezogen werden. K_c wird wiederum mit Hilfe von Linearisierungsmethoden und nicht-linearen Fits aus der betreffenden Titrationskurve erhalten. In einer Variante dieses Verfahrens wird vor Titration ein Ligand mit bekannten Eigenschaften zugegeben, welcher mit dem Probenliganden um die Komplexbildung konkurriert. Eine selektive Messung der Metallkomplexe des zugegebenen Liganden nach Gleichgewichtseinstellung ermöglicht sodann die Bestimmung der Konzentration der freien Ionen und des Probenliganden^{[95]-[97]}. JANSEN et al. verwendeten die Voltammetrie bereits zur Untersuchung von Speziationskinetiken anhand von Zink(II)-Verbindungen^[98]. Hierzu werden die effektiven Messzeiten der voltammetrischen Messung variiert, durch z. B. Regulierung der Pulszeit in der Differential-Puls-Voltammetrie. Ferner wurden chemisch modifizierte, mit Kationenaustauscher versehene Elektroden eingesetzt. Die Messung erfolgt hierbei in Abhängigkeit von der Dauer der Wechselwirkung der Probe mit der Elektrode^{[99]-[101]}.

Die *Elektromigrationsmethode* beruht auf der Korrelation zwischen Kinetiken nahe dem Gleichgewicht und Elektrodiffusion^{[102]-[104]}. Ausgehend von einer Komplexierungsreaktion entsprechend Gl. [18] wurde folgender Zusammenhang der Ratenkonstanten mit dem Elektrodiffusionskoeffizienten *D*_e gefunden^[104]:

$$D_e = \frac{E^2 \cdot k_A \cdot k_D \cdot [L^n] \cdot (u_M m - u_{(ML)} m + n)^2}{(k_A \cdot [L^n] + k_D)^3}$$
[31]

E bezeichnet den elektrischen Feldgradienten, u_{M^m} und $u_{(ML)^{m+n}}$ die elektrophoretischen Mobilitäten von M^m und $(ML)^{m+n}$. Diese Methode setzt zunächst die Bestimmung von u_{M^m} und $u_{(ML)^{m+n}}$ voraus. Anschließend werden die Diffusionskoeffizienten in Abwesenheit eines externen elektrischen Feldes (*D*) und in Anwesenheit eines konstanten elektrischen Feldes (D_{exp}) ermittelt ($D_e = D_{exp} - D$). Ist die thermodynamische Gleichgewichtskonstante *K* bekannt, so lassen sich mittels Gl. [20] die Assoziations- und Dissoziationskonstanten ermitteln. BOZHIKOV et al. ermittelten auf diese Art und Weise die kinetischen Ratenkonstanten für die Komplexierung von Hf(IV) mit DTPA, Vergleichswerte mit anderen Techniken stehen allerdings noch aus^[104].

2.2.3. Spektroskopische Methoden

Infrarotspektrometrie findet bei der kinetischen Analytik der Metallkomplexierung in wässriger Lösung kaum Verwendung, da Wassermoleküle und solvatisierte Ionen Licht im Infrarotbereich absorbieren. Ehemals für Studien des H/D-Austausches angewandt, wurde diese Methode mittlerweile weitgehend von der NMR-Spektroskopie verdrängt.

Die *UV/Vis-Spektrometrie* hingegen wurde für die Analyse von Reaktionsgeschwindigkeiten insbesondere bei Reaktionen von Übergangsmetallkomplexen häufig eingesetzt. Bei genauer Kenntnis der molaren Extinktionskoeffizienten sämtlicher untersuchten Spezies sind sogar Bestimmungen von komplexeren Reaktionen mit Reaktionsordnungen größer 1 möglich^[69].

Fluoreszenzspektroskopische Methoden sind nicht auf Metallkomplexe mit aromatischen Liganden, wie beispielweise Porphyrine beschränkt, sondern wurden unter Anderem auch im Stopped-Flow-Betrieb angewandt, um Austauschkinetiken der Komplexe Ca(EDTA)²⁻ und Tb(EDTA)⁻ zu bestimmen. Hierbei wurde der durch Austausch von H₂O mit EDTA-Liganden versurachte Anstieg der Lumineszenz von Tb³⁺ gemessen^[105].

Polarimetrische Methoden sind vor allem für die Analyse von Reaktionen chiraler Verbindungen, die mit stereochemischen Veränderungen einhergehen, von Bedeutung^[106]. Während die *NMR-Spektroskopie* für eine große Vielfalt kinetischer Untersuchungen anwendbar ist, so beispielsweise für den H₂O-Austausch in inerten Aquokomplexen, Protonenaustausch, Elektronentransfer- und Substitutions-reaktionen^[69], sind *EPR (Electron paramagnetic resonance)*-spektroskopische Untersuchungen auf die Beteiligung paramagnetischer Spezies angewiesen.

Obwohl die Gesamtheit aller spektroskopischen Verfahren mit großem Abstand die am häufigsten angewandte Technik zur Analytik chemischer Reaktionsverläufe darstellt, sind diese Methoden für Untersuchungen auf dem Tracer-Level aufgrund ihrer mangelnden Empfindlichkeit ungeeignet^[4].

2.2.4. Physikalische Trennmethoden

Die *Chromatographie* stellt ein weit verbreitetes Verfahren zur Separation von Verbindungen in einer mobilen Phase durch Affinitätsunterschiede zur stationären Phase (häufig Säulenmaterial) dar. Eine Verbindung bleibt hierbei (bei konstanter Flussrate der mobilen Phase) je länger an der stationären Phase assoziiert, desto stärker die entsprechende spezifische Wechselwirkung ist.

Eine Separation aufgrund von Unterschieden in der effektiven Größe der Komplexe wird durch die Größenausschluss-Chromatographie (*size exclusion chromatography*) erreicht. Hierbei besteht die stationäre Phase aus porösem Gelmaterial mit definierter Porengrößenverteilung. Diese Trennmethode findet vor allem bei natürlichen organischen Verbindungen, wie z. B. Fulvin- oder Huminsäuren Verwendung (Diaphragma-Methode).

Als Variante der Größenausschluss-Chromatographie sei die so genannte modifizierte HUMMEL-DREYER-Technik genannt. Dieses Verfahren wurde ursprünglich für Protein-Wirkstoff-Bindungsstudien angewandt und eignet sich gut zur Untersuchung von Metall-Ligand-Wechselwirkungen. Hierbei wird in der mobilen Phase ein Überschuss von Metallionen zugesetzt, um Dissoziationsprozesse labiler Komplexe während der Trennung zu vermeiden^{[107]-[109]}. Anschließend wird der stationären Phase Ligandenlösung zugeführt. Es bilden sich folglich Komplexe bis sich ein Gleichgewicht zwischen der Konzentration der freien Metallionen in Lösung und dem Liganden einstellt. Verbliebene Metallionen passieren die stationäre Phase langsamer als Metallkomplexe, welche von der Gelmatrix ausgeschlossen werden. Die modifizierte HUMMEL-DREYER-Methode dient in erster Linie der Studie von Metall-Ligand-Bindungen. Als nachteilig erweist sich die Tatsache, dass herkömmliche Gelmaterialien für die Größenausschluss-Chromatographie in geringem Maße auch freie Metallionen binden können oder molekülgrößenunabhängige Effekte zeigen^{[110]-[112]}.

2.2.5. Extraktion freier Metallionen

Die selektive Extraktion freier Metallionen mit Hilfe von Ionenaustauscherharzen oder chelatisierenden Säulenmaterialien - gefolgt von der quantitativen Analyse der adsorbierten Metallionen – ist ein gebräuchliches und verhältnismäßig günstiges Verfahren zur Bestimmung der Speziation^[113]. Hierbei kann die Extraktion entweder kontinuierlich (Säulenextraktion) oder diskontinulierlich betrieben werden, indem das Extraktionsmittel mit der zu analysierenden Probe äquilibriert wird. Die Zeit der Wechselwirkung des Extraktionsmittels mit der Probe, auch Kontaktzeit genannt, beträgt Sekundenbruchteile bis Stunden im kontinuierlichen Modus und kann im diskontinuierlichen Betrieb gar auf Tage hinaus gedehnt werden.

Eine präzise Bestimmung der Konzentration der freien Metallionen setzt eine genaue Kenntnis der Stabilität aller Metallspezies voraus, die prinzipiell zum jeweiligen Metallion dissoziieren können. Je höher demnach die Labilität eines Metallkomplexes und länger die Kontaktzeit, desto höher ist die ermittelte Konzentration an freiem Metallion^{[114],[115]}. Die Extraktion freier Metallionen wurde nichtsdestotrotz bisher nur in wenigen Studien zur Quantifizierung der Labilität von Metallspezies herangezogen. So untersuchten CHAKRABARTI et al. die Kinetik der Komplexierung von Aluminium, Cadmium, Kupfer, Blei und Zink mit den Chelatliganden EDTA, NTA und Fulvinsäure mittels diskontinuierlicher Chelex-Extraktion^[116]. Die kontinuierliche Chelex-Extraktion wurde von PROCOPIO et al. zur Bestimmung der Dissoziationskinetiken einiger Kupfer- und Bleikomplexe verwendet^[117]. Das Ionenaustauscherharz Chelex-100 scheint zur Extraktion polyvalenter freier Metallionen besonders gut geeignet^{[114],[118]}. Das Divinylphenylstyrol-Copolymer enthält chelatisierende Iminodiacetatgruppen, ist im pH-Bereich 2 bis 12 stabil und funktionell aktiv^[119] (Abb. 8).

Abb. 8: Chelatisierende funktionelle Gruppen von Chelex.auf Styrol-DVB-Matrix.

2.3. Free-Ion Selective Radiotracer Extraction (FISRE)

2.3.1. Vorbemerkungen

Die FISRE-Technik ergänzt die herkömmliche Extraktion freier Metallionen um die Verwendung von Radionukliden hoher spezifischer Radioaktivität zur Unterscheidung und Detektion verschiedener Metallspezies. Prinzipiell schließt die Versuchsanordnung die Anwendung von Anionen- oder Mischbettionenaustauschern nicht aus. Da FISRE in der vorliegenden Arbeit in der Hauptsache mit dem Kationenaustauscher Chelex-100 angewendet wurde, geht die folgende Erläuterung des Versuchsprinzips von einer Metallionenextraktion mit Kationenaustauscherharz aus.

2.3.2. FISRE im kontinuierlichen Betrieb für Studien der Dissoziationskinetik

Das Prinzip der Ermittlung von Dissoziationsratenkonstanten durch kontinuierliche Extraktion freier Metallionen (Abb. 9) basiert auf der Variation der Kontaktzeit der Metallkomplexe mit dem Extraktionsmittel. Diese wird in der Praxis durch Verwendung unterschiedlicher Volumina der stationären Phase oder unterschiedliche Flussraten der mobilen Phase realisiert. Je länger die Kontaktzeit, desto mehr Zeit steht dem Metallkomplex zur Dissoziation in Anwesenheit des Extraktionsmittels zur Verfügung. Demnach gibt die Relation zwischen Kontaktzeit und der Konzentration einer beteiligten Spezies Aufschluss über die Dissoziationskinetik.

Ein derartiger Ansatz erscheint unkompliziert, in der Realität stellt jedoch die Wechselwirkung chemischer Prozesse in Probe mit Komplexdissoziation und nachfolgender Extraktion freier Metallionen besondere Anforderungen an die Zusammensetzung des Extraktionssystems und der Probe sowie Sorgfalt mit deren Umgang dar. Will man die Dissoziationskinetik korrekt erfassen, müssen in diesem Zusammenhang einige Kriterien erfüllt sein:

- Es ist dringend erforderlich, dass ein aus einem Metallkomplex dissoziiertes freies Metallion umgehend an das Austauscherharz bindet. Daher ist die Anwesenheit freier Ligandenionen in unmittelbarer N\u00e4he des Metallkations zu vermeiden, da diese das Kation potentiell vor dem Austauscherharz abschirmen k\u00f6nnten. Ein derartiger Effekt w\u00fcrde zu der Messung einer geringeren Dissoziationsrate f\u00fchren, als diese in der Realit\u00e4t w\u00e4re. Dieses Kriterium wird in der Regel durch untersch\u00fcssige Verwendung des Liganden im Vergleich zur Metallkonzentration erf\u00fcllt und nach M\u00f6glichkeit mit Berechnungen der thermodynamischen Speziation der Probe untermauert. Desweiteren kann die Bedingung durch einen Vergleich der Dissoziationskinetiken bei unterschiedlichen [M^m]/[Lⁿ]-Verh\u00e4ltnissen empirisch \u00fcberpr\u00fcft werden.
- Das gesamte analytische System, in welches die Probe injiziert wird, d. h. die mobile Phase sowie die Ionenaustauschersäule, müssen im Verhältnis zur Probe einen *Überschuss freier Metallionen* aufweisen. Diese Voraussetzung führt dazu, dass sobald nach Injektion der Probe ein Metallkomplex dissoziiert, der gebildete freie Ligand aus statistischen Gründen – wenn überhaupt – bevorzugt mit einem anderen freien Metallion re-assoziiert. Ausgehend von einer Komplexierungsreaktion entsprechend Gl. [18] würde sich die Nettodissoziationsrate bei Unterdrückung der Re-Assoziation folgendermaßen vereinfachen:

$$-\frac{d[(ML)^{m+n}]}{dt} = k_D \cdot [(ML)^{m+n}]$$
[32]

Eine derartige Simplifizierung ist allerdings nur möglich, wenn das Verfahren die Metallionen nach ihrem Ursprung (System oder Probe) zu differenzieren vermag.

- Zur Differenzierung der Metallionen wird ein radioaktives Isotop des entsprechenden Metalls zur Probe hinzugefügt. Um die Dissoziation bei geringen Metallkonzentrationen bestimmen zu können wird idealerweise ein Nuklid mit hoher spezifischer Aktivität und guter Detektierbarkeit im Tracermaßstab verwendet. Da sich unter diesen Bedingungen die chemischen Eigenschaften der radioaktiv markierten Metallionen und Komplexe nicht von dem nicht-radioaktiven unterscheiden ist eine Extrapolation von Radioaktivitätsmessungen auf die Gesamtheit der Metallspezies in der Probe zulässig. Während des Kontakts der Probe mit dem Ionenaustauscherharz wird die Extraktion freier radioaktiver Metallionen aufgrund des hohen Gradienten in der spezifischen Aktivität (Bq radioaktives Metall pro mol Metall) zwischen mobiler und stationärer Phase begünstigt. Dieser Effekt kann wiederum statistisch veranschaulicht werden: Aufgrund der erheblich höheren Konzentration von Metallionen an der stationären Phase ist die Wahrscheinlichkeit, dass ein spezifisches Metallion in die mobile Phase überführt wird viel geringer als dass das Gegenteil eintrifft. Das Resultat ist ein Nettotransport der radioaktiven Metallionen in Richtung der stationären Phase.
- Zuletzt gilt es sicherzustellen, dass sowohl das Extraktionssystem als auch die Probe vor Beginn eines Extraktionsschritts sorgfältig äquilibriert sind, so dass durch unvollständige Einstellung des thermodynamischen Gleichgewichts hervorgerufene Messschwankungen vermieden werden. Größte Sorgfalt gilt vor allem der Äquilibrierung der Probe, um die Übertragbarkeit von *ab initio*-Speziationsrechnungen zu gewährleisten.

Abb. 9: Schematische Darstellung des kontinuierlichen FISRE-Betriebs. Die Probe stellt ein sich im thermodynamischen Gleichgewicht befindendes Gemisch von inaktiven freien Metallionen im Überschuss, radioaktiven freien Metallionen in vernachlässigbaren Tracermengen und die durch den unterschüssig vorhandenen Liganden gebildeten aktiven und inaktiven Metallkomplexe dar. Die mobile Phase beinhaltet lediglich freie Metallionen im ansonsten identischen Medium. In der Zeit, die dem radioaktiven Metallkomplex zur Verfügung steht, mit dem Ionenaustauscher zu reagieren, kann prinzipiell Dissoziation und Re-Assoziation erfolgen. Der hohe Überschuss an inaktiven Metallionen vermindert jedoch die Wahrscheinlichkeit einer Re-Assoziation des Liganden mit einem radioaktiven Metallion drastisch. Somit befindet sich im Eluat eine geringere Menge an Radioaktivität als zu Beginn der Wechselwirkung mit der stationären Phase. Diese Differenz ist abhängig von der Flussrate der mobilen Phase bzw. der Kontaktzeit des Metallkomplexes mit dem Ionenaustauscher. Die im Eluat gemessene Radioaktivität ist demnach ein Maß für die Zahl der nicht dissoziierten Komplexe.

Sind die genannten Kriterien erfüllt, beschreibt Gl. [32] die Dissoziationsratengleichung für Reaktionen (pseudo-) erster Ordnung. Die Integration liefert eine exponentielle Funktion erster Ordnung:

$$[(ML)^{m+n}]_t = [(ML)^{m+n}]_0 \cdot e^{-k_D \cdot t}$$
[33]

t bezeichnet hier die Kontaktzeit des Komplexes mit dem Extraktionsmittel, $[(ML)^{m+n}]_0$ die Ausgangskonzentration und $[(ML)^{m+n}]_t$ die Konzentration des Komplexes bei gegebener Kontaktzeit. Ein Plot der relativen Konzentrationen $[(ML)^{m+n}]_t/[(ML)^{m+n}]_0$ gegen *t* liefert über eine graphische Auswertung die Dissoziationsratenkonstante *k*_D. Tragen zwei oder mehr kinetisch unterscheidbare Spezies über Parallelreaktionen zum Dissoziationsprofil bei, müssen in Gleichung [33] *i* Terme für den Beitrag von *i* Spezies berücksichtigt werden:

$$[(ML)^{m+n}]_t = \sum_i [(ML)_i^{m+n}]_0 \cdot e^{-k_{D_i} \cdot t}$$
[34]

2.3.3. FISRE im diskontinuierlichen Betrieb für Studien der Dissoziationskinetik

Der Bestimmung von Dissoziationsratenkonstanten inerter Metallkomplexe mit k_D < 10-3 s-1 sind mit Hilfe des kontinuierlichen FISRE-Betriebs durch die Dimension der Ionenaustauschersäule und hohem Fehler durch Schwankungen der Pumpenleistung bei geringen Flußraten (< 1µL/min) enge Grenzen gesetzt. Aus diesem Grund wurde ein Batch-Betrieb einwickelt, der Ermittlung der Langzeitdissoziation ermöglicht. Der Versuchsaufbau entspricht jenem von Abb. 9, ebenso die durch die Zusammensetzung von Extraktionssystem und Probe vorgegeben Randbedingungen. Im Unterschied zum kontinuierlichen Betrieb wird jedoch die Probe nicht als Gemisch von nichtradioaktiven Metallionen, Radiotracer und Ligand äquilibriert, sondern zunächst die Einstellung des thermodynamischen Gleichgewichts zwischen radioaktiven Metallionen und dem Liganden sichergestellt. Anschließend werden nicht-radioaktive Metallionen zugegeben und Extraktionsschritte mit konstanter Flussrate in mehreren Zeitintervallen nach der Zugabe durchgeführt. Es wird somit der im Komplex durch Dissoziation bedingte Metallionenaustausch detektiert, wobei der Detektionszeitraum unabhängig von der Kontaktzeit des Komplexes mit dem Extraktionsmittel ist. Vielmehr ist die Detektionszeit von der Detektierbarkeit bzw. der Halbwertszeit des applizierten Radiotracers abhängig. Werden die Gesamtkonzentrationen der verwendeten Metallionen, Liganden, Puffer und Salze sowie pН und

Versuchstemperatur identisch gewählt, erlaubt der Batch-Betrieb eine direkte Fortführung des durch den kontinuierlichen FISRE-Betrieb erhaltenen Dissoziationsverlaufs.

Ein vergleichbarer Ansatz ist zur Bestimmung von Assoziationsratenkonstanten möglich, findet allerdings in der vorliegenden Arbeit keine Verwendung, weshalb für detaillierte Informationen auf entsprechende Literatur verwiesen wird^{[63],[65],[67]}.

2.3.4. Erfassung metalloradiopharmazeutischer Zusammensetzungen

Abb. 10: In vivo-Reaktionspfade zielspezifischer Metalloradiopharmaka nach Administration.

Die Dissoziation des Metallchelats stellt nur einen möglichen *in vivo*-Reaktionspfad eines Metalloradiopharmakons nach Administration dar. Dieses unterliegt im Blutkreislauf einer großen Vielfalt möglicher biologischer und chemischer Wechselwirkungen (Abb. 10)^[4]. Hierzu zählen neben der Rezeptorbindung kompetitive Reaktionen mit freien Metallionen (vorwiegend Ca²⁺ und Fe³⁺) und Anionen (Abb. 11), Proteinwechselwirkungen (z. B. mit Transferrin) sowie Abbaureaktionen (Linkerbruch, Metabolisierung, Radiolyse usw.)^{[120],[121]}. Vor diesem Hintergrund ist eine analytische Methode zur Ermittlung der Speziationskinetik und Dissoziation lediglich als ergänzendes Verfahren zur präklinischen Charakterisierung von Radiopharmaka zu betrachten, da hierdurch in aller Regel genannte Nebenreaktionen nicht berücksichtigt werden.

Bei der Untersuchung Dissoziationskinetiken radiopharmazeutischer von die Verbindungen ist es zweckmäßig, Reaktionsbedingungen der Radiopharmakasynthese oder optimierten und erprobten Markierungsbedingungen anzupassen. Diese Herangehensweise ermöglicht zwar direkte Korrelationen der Dissoziationskinetik mit dem Assoziationsverhalten, schränkt jedoch die Aussagekraft über die in vivo-Dissoziation ein, da signifikante Unterschiede in den Konzentrationsverhältnissen vorherrschen.

Abb. 11. Kreisdiagramme der prozentualen Verteilung anionischer Spezies in Blutplasma.

Der Übertragbarkeit der Versuchsbedingungen von Markierungexperimenten auf FISRE-Studien sind durch inhärente Grundvoraussetzungen der Methode enge Grenzen gesetzt. So gilt es sicherzustellen, dass eine Anwendung von Markierungsbedingungen (pH-Wert, Ionenstärke, Art der Inertsalze und Lösungstemperatur) keinesfalls auf Kosten der Quantität und Selektivität des Ionenaustausches im Rahmen des FISRE-Experiments erfolgt.

Einen Kompromiss stellen im Allgemeinen die Konzentrationsverhältnisse in FISRE dar. Lösungen von Metalloradiopharmaka enthalten den Metallkomplex in einer Konzentration von etwa 10⁻⁸-10⁻⁶ mol/L, wobei Liganden in der Praxis im Überschuss appliziert werden, um freie Metallionenkonzentrationen zu vermeiden. Die Anwendung von FISRE im Sinne einer Extraktion kationischer Radiotracer mit analoger Zusammensetzung der Versuchslösung resultiert hingegen in einer Verfälschung der Messergebnisse aufgrund der Anwesenheit freier Ligandenionen^[63]. Als Mittelweg ist es folglich sinnvoll, die Metall-/Ligandkonzentrationen bei FISRE-Experimenten auf dem Tracer-Level zu wählen und den geringsten Metallionenüberschuss zu ermitteln und anzuwenden, bei dem die Dissoziationskinetiken unverfälscht wiedergegeben werden.

Die Menge des applizierten Radiotracers pro FISRE-Probe (< 150 kBq/mL) steht ebenfalls im Kontrast zu typischen Zusammensetzungen von Radiopharmaka (> 50 MBq/mL), ist jedoch zugunsten der Wirtschaftlichkeit und Handhabbarkeit der Analysemethode praktikabel. Im Vergleich derartiger Lösungen steht die unterschiedliche Ausprägung radiolytischer Prozesse im Vordergrund. Unter Radiolyse wird die Trennung einer chemischen Bindung aufgrund von ionisierender verstanden, in verdünnten Lösungen eingeleitet Strahlung durch die strahlungsinduzierte Zersetzung von Wassermolekülen unter Bildung von u. A. Radikalspezies und solvatisierten Elektronen e_{aq} . ^[122]:

$$H_2 0 \iff H_2 0_2, H_2, OH, H, e_{aq.}^-, H^+ \dots$$
 [35]

Dem Studium radiolytischer Prozesse in Radiopharmaka wird zunehmende Bedeutung beigemessen, insbesondere bei Immunokonjugaten harter β-Emitter, wobei Radikalfänger wie z. B. Gentisin- und Ascorbinsäure als Stabilisatoren Verwendung finden^{[123]-[129]}. Die Analyse der Labilität von Metallkomplexen setzt einen möglichst geringen Einfluss von Radiolyseeffekten auf das Reaktionsgeschehen voraus. Diese sind in FISRE-Experimenten prinzipiell nicht auszuschließen, sollten jedoch durch die Anwendung von Radionukliden in verhältnismäßig geringer Konzentration vernachlässigbar gering sein. Es gilt ferner zu beachten, dass sich lediglich Radiolyse Ebene die mittels FISRE bestimmte auf intermolekularer potentiell auf Speziationskinetik während intramolekulare auswirkt, Zersetzungsprozesse (Autoradiolyse) keinerlei Einfluss auf die FISRE-Messung ausüben.

2.4. Theoretischer Hintergrund zu den untersuchtem Metallkomplexen

2.4.1. Radiotracer

2.4.1.1. Radioaktivität und radioaktiver Zerfall

Der Begriff Radioaktivität (lat. *radiare* = strahlen) beschreibt die Eigenschaft instabiler Atomkerne, sich spontan und unbeeinflussbar umzuwandeln. Die Strukturänderung der Atomkerne geht mit einer Energieabgabe in Form von ionisierender Strahlung durch Emission von Teilchen und/oder γ -Quanten einher.

Zu den wichtigsten und häufigsten Arten der Kernumwandlung gehören die α -, β und γ -Strahlung. Die in dieser Arbeit verwendeten Nuklide stellen entweder reine β -Strahler (⁹⁰Y) oder β -Strahler mit γ -Anteil (¹⁶¹Tb, ¹⁸⁸Re) dar, weshalb in den folgenden Ausführungen ausschließlich auf β - und γ -Strahlung eingegangen wird.

Radioaktiver Zerfall ist eine Reaktion erster Ordnung gemäß:

$$X \longrightarrow Y + Z + \Delta E$$
[36]

X entspricht dem Mutter-, *Y* dem Tochternuklid, *Z* dem emittierten Teilchen/Quant und ΔE der kinetischen Energie von *Z*. Im statistischen Mittel ergibt sich folgendes Zeitgesetz^{[130], [131]}:

$$-\frac{dN}{dt} = \lambda \cdot N \tag{37}$$

 $\frac{dN}{dt}$ bezeichnet die Zerfallsrate [s⁻¹], *N* die zur Zeit *t* vorhandenen Atomkerne und λ die nuklidspezifische Zerfallskonstante [s⁻¹]. Unter der Voraussetzung, dass bei *t=0 N=0* und zum Zeitpunkt *t N=N_t* ist, kann durch Integration von Gl. [37] das radioaktive Zerfallsgesetz abgeleitet werden:

$$N_t = N_0 \cdot e^{-\lambda \cdot t} \tag{38}$$

 N_{θ} bezeichnet die Anzahl der radioaktiven Atome zum Zeitpunkt *t*=0, N_t jene zum Zeitpunkt *t*. Die Aktivität A entspricht der Zerfallsrate (SI-Einheit [s⁻¹], auch als *Bq* (Becquerel) bezeichnet) und ist proportional zu N gemäß:

$$A = \lambda \cdot N \tag{39}$$

Somit gilt:

$$\mathbf{A}_t = \mathbf{A}_0 \cdot e^{-\lambda \cdot t} \tag{40}$$

mit $A_{t_{1/2}} = \frac{1}{2}A_0$ erhält man:

$$A_{t_{1/2}} = 2A_{t_{1/2}} \cdot e^{-\lambda \cdot t_{1/2}}$$
[41]

 $t_{1/2}$ wird Halbwertszeit genannt und entspricht der Zeit, nach der im statistischen Mittel die Hälfte der radioaktiven Atome eines Nuklids zerfallen ist. Eine Auflösung von Gl. [41] nach $t_{1/2}$ ergibt:

$$t_{1/2} = \frac{\ln 2}{\lambda} \tag{42}$$

Unter β -Zerfall versteht man eine Kernumwandlung unter Emission eines Elektrons (β -) oder Positrons (β +). Die allgemeinen Kernreaktionsgleichungen lauten:

$${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{\nu}_{e}$$

$$[43]$$

und

$${}^{A}_{Z}X \longrightarrow {}^{A}_{Z-1}Y + e^{+} + \nu_{e}$$

$$[44]$$

Während die Massenzahl *A* unverändert bleibt, erhöht (β ⁻) oder erniedrigt (β ⁺) sich die Kernladungszahl *Z* um eine Einheit. Neben der Emission von Elektronen und Positronen werden Antineutrinos \overline{v}_e und Neutrinos v_e freigesetzt. Da sich die Zerfallsenergie statistisch zwischen den β -Teilchen und den Neutrinos bzw. Antineutrinos verteilt, wird für die Energie des β -Partikels ein kontinuierliches Spektrum gemessen.

Befindet sich ein aus einem radioaktiven Zerfall entstehendes Tochternuklid in einem energetisch angeregten Zustand, so kann die Relaxation zum Grundzustand durch Emission von Photonen mit diskreter Energie erfolgen. Dieser Vorgang wird als γ -Strahlung bezeichnet.

Die Reichweite der γ -Strahlung übertrifft jene der β -Strahlung aufgrund der ladungsbedingt geringeren Wechselwirkung mit Materie. Dieser Umstand macht niederenergetische γ -Emitter für bildgebende Verfahren in der Medizin interessant (Gamma-Szintigraphie), während β -Strahler überwiegend für radiotherapeutische Anwendungen verwendet werden.

2.4.1.2. Die Nuklide 90Y, 161Tb und 188Re

In Tab. 5 sind die wichtigsten chemischen und physikalischen Eigenschaften der verwendeten Radionuklide und entsprechenden stabilen Isotope zusammengefasst.

Nuklid	⁹⁰ Y	¹⁶¹ Tb	¹⁸⁸ Re
Zerfallsschema	${}^{90}Y \rightarrow {}^{90}Zr + e^- + \overline{\nu}_e$	$^{161}\text{Tb}\rightarrow^{161}\text{Dy} + e^- + \overline{\nu}_e + \gamma$	$^{188}\text{Re}\rightarrow^{188}\text{Os} + e^- + \overline{\nu}_e + \gamma$
Produktion	⁹⁰ Sr/ ⁹⁰ Y-Generator	$^{160}Gd(n,\gamma)^{161}Gd(\beta)$	¹⁸⁸ W/ ¹⁸⁸ Re-Generator
Halbwertszeit	64,1 h	6,88 d	16,98 h
E_{β} (max.) [MeV]	2,28	0,593	2,12
$E_{\beta}(\emptyset)[MeV]$	0,934	0,155	0,764
Eγ [keV]	-	26, 49, 75 (9,8%), 58,	155 (15%), 633,
Atomgewicht [amu]	89,907151886	160,927569919	187,958114438
Kernspin	2	3/2	1
Elektronenkonfiguration	$[Xe] 4f^9 6s^2$	[Xe] 4f ⁹ 6s ²	[Xe] $4f^{14} 5d^5 6s^2$
Elektronegativität (Pauling)	1,2	1,22	1,9
Ionenradius (Oxidationszahl)	90 pm (+3)	92,3 pm (+3), 76 pm (+4)	63 pm (+5), 53 pm (+7)

 Tab. 5: Physikalische und chemische Eigenschaften der verwendeten Radionuklide^[136].

Das am häufigsten applizierte therapeutische Nuklid ist 90Y. Es entsteht durch β -Zerfall des Mutternuklids 90Sr und ist ein reiner β-Strahler. Im Gewebe geben β-Partikel zudem nach Wechselwirkung mit Materie einen Teil ihrer Energie in Form von elektromagnetischen Wellen ab (Bremsstrahlung). Zur weiten Verbreitung des ⁹⁰Y in der nuklearmedizinischen Praxis trägt neben der hohen Teilchenenergie die ausgezeichnete Verfügbarkeit bei, da 90Sr (t1/2= 28,8 a) als Spaltprodukt in Kernreaktoren anfällt und sich somit hervorragend für die Generator-basierte Produktion von ⁹⁰Y ohne zugesetzten Träger (no-carrier added) eignet. Die Halbwertszeit des 90Y von 64,1 h ist im Hinblick auf Produktion, Synthese des Radiopharmakons und Transport gut geeignet^[132]. Ein Nachteil der Anwendung von ⁹⁰Y stellt die Abwesenheit von γ-Photonen dar, wodurch zwar die Ganzkörperstrahlenbelastung verhältnismäßig gering ist, Untersuchungen der Bioverteilung, Pharmakokinetik und Dosimetrie jedoch erheblich erschwert sind. Die maximale Reichweite der β-Strahlung von ⁹⁰Y im Gewebe beträgt etwa 9-11 mm (0,5 bis 4 mm in Knochensubstanz)^[133]. Freies ⁹⁰YCl₃ im menschlichen Körper hat eine hohe Knochenmarkstoxizität und Schädigung der hämatopoetischen Stammzellen zur Folge (Myelosuppression)^[134]. Untersuchungen der Pharmakokinetik an Ratten ergeben, dass nach intravenöser Gabe von ⁹⁰YCl₃ zunächst eine rasche Eliminierung aus dem Blut erfolgt (Aktivitätsabnahme von 11% auf 0,14% der injizierten Aktivität nach 24 h). Die Leber nimmt 5 Minuten nach der Injektion 18% der angewendeten Aktivität auf, wobei die Aufnahme nach 24 h auf 8,4 % abfällt. Im Knochengewebe wird die maximale Aktivitätsaufnahme nach etwa 6 h erreicht. Lediglich 31% der injizierten Aktivität werden über 15 Tage hinweg über Stuhl und Urin ausgeschieden^[135].

Im Gegensatz zu ⁹⁰Y ist ¹⁶¹Tb trotz radiopharmazeutisch interessanter Nuklideigenschaften^{[137],[138]} (sowohl niederenergetische γ - als auch β -Emission mit hohem Anteil an Auger- und Konversionselektronen im Vergleich zu z. B. ¹⁷⁷Lu) wenig verbreitet. Der Hauptgrund hierfür ist in der aufwendigeren Darstellung des Nuklids zu suchen. Die bevorzugte Methode zur Produktion von ¹⁶¹Tb hoher spezifischer Aktivität (theor. 4,36 TBq/mg) ist indirekter Art, durch die Neutronenbestrahlung von stabilem ¹⁶⁰Gd und anschließendem β ⁻-Zerfall gemäß ¹⁶⁰Gd(n, γ)¹⁶¹Gd $\xrightarrow{\beta^{-1}}$ ¹⁶¹Tb. Die Halbwertszeit von 161Gd beträgt t1/2= 3,6 min [132]. Diese Methode setzt eine ¹⁶¹Tb Gd nachfolgende chemische Separation des von mittels Ionenaustauschchromatographie voraus. Alternativ ist ¹⁶¹Tb durch doppelten Neutroneneinfang von ¹⁵⁹Tb entsprechend ¹⁵⁹Tb(2n,2y)¹⁶¹Tb zugänglich, aufgrund der verhältnismäßig geringen spezifischen Aktivität des Produkts ist dieser Produktionsweg allerdings wenig sinnvoll. Zur Biodistribution von freiem ¹⁶¹TbCl₃ sind bislang keine Daten verfügbar, jedoch ist davon auszugehen, dass freies ¹⁶¹Tb in Analogie zu anderen freien Seltenerdmetallionen überwiegend in Knochen und Leber akkumuliert wird^{[39],[139]}.

Der β-Emitter ¹⁸⁸Re (t_{1/2}= 16,98 h) kann analog zum System ⁹⁰Sr/⁹⁰Y über einen Generator aus dem β-Zerfall des Mutternuklids ¹⁸⁸W (t_{1/2}= 69 d) gewonnen werden^[140]. ¹⁸⁸W selbst wird in Forschungsreaktoren mit hohem Neutronenfluss über eine mehrwöchige (>20 d) Bestrahlung von ¹⁸⁶W entsprechend der Reaktion ¹⁸⁶W(n,γ)¹⁸⁷W(n,γ)¹⁸⁸W produziert^[141]. ¹⁸⁸Re weist eine maximale β-Energie von 2,12 MeV mit einer γ-Komponente (15%) von 155 keV, welche zur Dosimetrie und Bildgebung herangezogen werden kann^[132]. Die Emissionscharakteristik von ¹⁸⁸Re lässt auf eine maximale Reichweite von 23-32 mm im Gewebe (3-5 mm in Knochensubstanz) schließen^[143]. Die pharmakokinetischen Eigenschaften von ¹⁸⁸Re wurden überwiegend anhand des Perrhenats ¹⁸⁸ReO₄⁻ in Mäusen untersucht^{[143],[144]}. Zusammen mit dem Pertechnetat ^{99m}TcO₄⁻ zeigt es eine dem Iodid ähnliche Biodistribution, bei welcher die Aufnahme vorwiegend in Magen, Speichel- und Schilddrüse erfolgt. Im Falle des ^{99m}TcO₄⁻ können drei Tage nach Injektion noch etwa 30% der eingesetzten Aktivität im Bereich der Verdauungsorgane gefunden werden, während über den Stuhl nach 8 Tagen etwa 60% der Aktivität ausgeschieden^[145]. Eine vergleichbare Ausscheidungsrate ist auch für das Perrhenat zu erwarten.

2.4.1.3. Beta-Spektrometrie

Die Ermittlung der Aktivität von β-strahlenden Nukliden ohne γ-Emission in flüssigen Proben erfolgt üblicherweise mittels Flüssigszintillationszählung, häufig als LSC (engl. *Liquid Scintillation Counting*) bezeichnet. Dieser Messmethode liegt das Prinzip zugrunde, dass bestimmte organische Verbindungen (Szintillatoren) nach Einwirkung ionisierender Strahlung angeregt werden und durch Aussendung von Photonen zum Grundzustand relaxieren^{[146],[147]}. Diese Photonen werden anschließend detektiert. Der schematische Aufbau einer LSC-Vorrichtung ist in Abb. 12 dargestellt. Organische Verbindungen mit Phenyl-, Naphthyl-, Biphenylgruppen sowie Oxazol werden in Alkylbenzolen (Toluol, etc.) gelöst als Szintillatormoleküle verwendet. Das untersuchte Radionuklid wird in diesem Szintillationscocktail gelöst oder suspendiert und kann in Probenbehältern (Vials) aus Polyethylen oder Glas zur Messung gegeben werden. Im Photomultiplier treffen die von der Probe emittierten Photonen auf die Photokathode, an der wiederum Elektronen ausgestoßen werden.

Abb. 12: Schematische Darstellung einer LSC-Apparatur.

Diese werden anschließend elektronenoptisch fokussiert, an mehreren Dynoden vervielfacht und lösen schließlich durch Kontakt mit der Anode einen elektrischen Impuls aus. Der Photomultiplier selbst trägt durch thermische Photonenemission zu einer Untergrunderhöhung bei, weshalb in neueren Geräten üblicherweise zwei Photonenvervielfacher in Koinzidenzschaltung angeordnet sind (siehe Abb. 12). Dadurch werden Impulse, die nicht innerhalb einiger Nanosekunden von beiden Photomultipliern erzeugt werden aus dem Signalweg genommen. Simultane Impulse gelangen über einen Analog-Digital-Wandler zu einem Mehrkanalanalysator, der die energieaufgelöste Darstellung der Impulsrate durch Kanalzuordnung der Impulse ermöglicht.

Die Energieübertragung zwischen Radionuklid und Photomultiplier kann durch komplexe Prozesse, deren Gesamtheit man als *Quenching* bezeichnet, gestört werden. Man unterscheidet zwischen chemischem Quenching (Energieaufnahme mit anschließender strahlungsloser Relaxation), Farbquenching (Photonenabsorption durch fluoreszierende Moleküle), Phasenquenching (Auftreten mehrerer Phasen in Szintillatorlösung) und Konzentrationsquenching (Photonenabsorption bei hohen Szintillatorkonzentrationen). Für Absolutmessungen ist deshalb eine Quenchkorrektur durchzuführen, beispielsweise unter Verwendung einer externen geschlossenen γ -Quelle (*transformed Spectral Index of External Standard*, tSIE). Hierbei ist die γ -Quelle in Probennähe im LSC-Gerät integriert. Es wird ein Compton-Spektrum aufgezeichnet, dessen Form von der Probenumgebung (Quench) abhängig ist. Die Veränderung des Spektrums wird als tSIE-Wert registriert und dient somit als Maß für das Quenching in der Probe.

Eine alternative, mit Flüssigszintillationszählern anwendbare Zählmethode stellt die sogenannte ČERENKOV-Zählung dar. P.A. ČERENKOV entdeckte 1934, dass geladene Teilchen, deren Geschwindigkeit die Phasengeschwindigkeit des Lichts im betreffenden Medium übertrifft, eine bläuliche Leuchterscheinung verursachen^{[148],[149]}. Dieses Phänomen wird als ČERENKOV-Effekt bezeichnet und z. B. in Abklingbecken von Kernreaktoren beobachtet. Es beruht auf der Tatsache, dass geladene Teilchen während ihrer Bewegung durch ein dielektrisches Medium Atome längs der Teilchenflugbahn kurzzeitig polarisieren. Diese polarisierten Atome relaxieren unter Emission von Photonen. Ist die Teilchengeschwindigkeit v_T kleiner als die Lichtgeschwindigkeit c' im Medium, so ist durch destruktive Interferenz der elektromagnetischen Wellen keinerlei Strahlung messbar. Ist jedoch v_T größer als c, werden die Photonen schneller erzeugt als die Auslöschung stattfinden kann. Zwischen c' und der Lichtgeschwindigkeit im Vakuum c_0 gilt folgender Zusammenhang:

$$c = \frac{c_0}{\eta_D} \tag{45}$$

Das Eintreten des ČERENKOV-Effekts ist somit von der Geschwindigkeit des Teilchens und vom Brechungsindex (Brechzahl) des Mediums η_D abhängig. Es gilt:

$$E_{min} = 0.511 \cdot \left[\left(1 - \frac{1}{\eta_D} \right)^{-0.5} - 1 \right] MeV$$
[46]

 η_{D} beträgt für Wasser 1,333 (bezogen auf Vakuum, 20°C), wodurch sich die ČERENKOV-Schwellenenergie E_{min} für Elektronen in Wasser zu 0,263 MeV berechnen lässt. Die Photonenausbeute einer ČERENKOV-Messung ist von dem Anteil der β-Energie über dem Schwellenwert abhängig und kann durch Verwendung von Polyethylenvials anstelle von Glassvials zusätzlich erhöht werden. Die Vorteile von ČERENKOV-Messungen gegenüber LSC liegen in dem Verzicht auf Szintillationscocktails und dem Ausbleiben chemischen Quenchs.

Die in dieser Arbeit untersuchten Tracerproben der höherenergetischen β-Strahler ⁹⁰Y und ¹⁸⁸Re eignen sich aufgrund ausreichend hoher β-Energien gut für ČERENKOV-Zählungen, jene des ¹⁶¹Tb sind zu Zwecken einer optimalen Zählausbeute über Flüssigszintillationszählung zu quantifizieren.

2.4.2. 90Y- und 161Tb-Komplexe

2.4.2.1. Chemie der seltenen Erden

Die die Elemente Scandium, Yttrium und die Lanthanoiden umfassende Gruppe der Seltenerdmetalle nehmen bevorzugt die Oxidationsstufe +3 ein. Gemäß HSAB-Prinzip werden Seltenerdmetallkationen als harte Säuren eingestuft und zeichnen sich durch hohe Oxophilie aus. Im Gegensatz zu den d-Elektronen der Übergangsmetalle handelt es sich bei den 4f-Elektronen der Seltenerdmetalle um durch 5s²-, 5p⁶- und 6s²-Elektronenorbitale abgeschirmte Elektronen. Der Ligandenfeldeffekt ist verhältnismäßig schwach, wobei die koordinative Umgebung des Metallions geringen Einfluß auf dessen magnetische Eigenschaften ausübt. Die 4f-Elektronen sind nicht an der Bindungsblidung beteiligt, daher sind die Wechselwirkungen zwischen Seltenerdmetallionen und Donoratomen überwiegend ionischer Natur. Die unvollständige Abschirmung der 4f-Elektronen von der Kernladung bewirkt eine fein abgestufte Abnahme der Ionenradien der Lanthanoiden (La-Lu) mit steigender Kernladungszahl (Lanthanoiden-Kontraktion, Abb. 13). Scandium und Yttrium werden aufgrund ähnlicher Ionenradien, Koordinationschemie und Redoxverhalten häufig als "Pseudo-Lanthanoide" bezeichnet. Freie Seltenerdmetallionen sind in wässriger Lösung je nach Ionengröße von 7 bis 10 Wassermolekülen koordiniert, welche bei Komplexierungsreaktionen vom jeweiligen Liganden verdrängt werden können^[2].

Abb. 13: Ionenradien der Lanthanoiden sowie Scandium und Yttrium.

Seltenerdmetallionen bilden in wässriger Lösung bereitwillig Präzipitate mit Carbonat-, Phosphat- und Hydroxidanionen (Tab. 6).

Verbindung	logKsp	Verbindung	logKsp
Y(OH) ₃	-24,1	Tb(OH) ₃	-24,3
Y2(CO3)3	-31,5	Tb ₂ (CO ₃) ₃	-34,9
YPO ₄	-25,0	TbPO ₄	-25,4

Tab. 6: Löslichkeitsprodukte einiger ausgewählter Yttrium- und Terbiumverbindungen^{[150],[151]}.

Insbesondere Phosphat- und Carbonatanionen konkurrieren um die Bindung mit freien Seltenerdmetallionen im Blutkreislauf. So wird die Akkumulation letzterer in Knochengewebe häufig der hohen Affinität zu Phosphatanionen zugeschrieben^[152]. Eine direkte, kovalente Bindung von Seltenerdmetallionen an Biomoleküle ist nicht möglich, daher werden bei trivalenten Metallen bifunktionelle, kovalent an Biomoleküle gebundene Chelatoren als Linker benötigt.

2.4.2.2. Komplexe mit offenkettigen Polyaminocarboxylaten

Im Vergleich zu den inerten Komplexen trivalenter Übergangsmetalle (z.B. Cr³⁺) verlaufen Substitutionsreaktionen bei Seltenerdmetallkomplexen im Allgemeinen schneller ab. 1958 analysierten BETTS et al. die ersten Metallaustauschreaktionen an EDTA-Komplexen der Lanthanoide, weitere Untersuchungen folgten anhand der Komplexe Ln(EDTA)⁻, Ln(HEDTA)⁻, Ln(DCTA)⁻ und Ln(DTPA)²⁻ [153]-[161]. Da nach Koordination der hexadentaten EDTA- oder oktadentaten DTPA-Liganden an trivalente Seltenerdmetalle (Koordinationszahl i. A. 8 oder 9) keine freien funktionellen Gruppen verfügbar sind und die Bildung binuklearer Intermediate beeinträchtigt ist treten direkte Austauschreaktionen nur mit geringer Wahrscheinlichkeit auf. Die Ergebnisse einiger Studien deuten darauf hin, dass der Metallaustausch in diesen Komplexen im pH-Bereich von 4-6 über die Dissoziation der ein- bzw. zweifach protonierten Komplexspezies abläuft [78],[162]. Die Zahl der am Metallion koordinierten Carboxylgruppen nimmt durch deren Protonierung ab und erleichtert somit die Komplexdissoziation. Eine allgemeine Beschreibung der in wässriger Lösung auftretenden Gleichgewichtsreaktionen von Seltenerdmetallpolyaminocarboxylaten kann durch folgendes Schema wiedergegeben werden:

$$(ML)^{m+n} \xrightarrow{[H^+]}_{K_1} (MHL)^{m+n+1} \xrightarrow{[H^+]}_{K_2} (MH_2L)^{m+n+2} \xrightarrow{[H^+]}_{K_3} (MH_3L)^{m+n+3} \xrightarrow{[H^+]}_{K_4} \dots$$

$$k_{A0} \begin{vmatrix} k_{D0} & k_{A1} \end{vmatrix} k_{D1} & k_{A2} \end{vmatrix} k_{D2} & k_{A3} \begin{vmatrix} k_{D3} & k_{A3} \end{vmatrix} k_{D3}$$

$$M^m + L^n \qquad M^m + HL^{n+1} \qquad M^m + H_2L^{n+2} \qquad M^m + H_3L^{n+3}$$

$$(47)$$

 K_1 , K_2 , K_3 und K_4 bezeichnen die thermodynamischen Konstanten der Protolysegleichgewichte (siehe Tab. 7), k_{An} und k_{Dn} die Assoziations- und Dissoziationskonstanten der n-fach protonierten Komplexspezies.

Kation	Gleichgewicht	EDTA	DTPA		
		logK			
H+	$L^n + H^+ \rightleftharpoons HL^{n+1}$	$9,42 \pm 0,05$	$9,45 \pm 0,03$		
	$HL^{n+1} + H^+ \rightleftharpoons H_2L^{n+2}$	$6,22 \pm 0,07$	$8,21 \pm 0,09$		
	H_2L^{n+2} + $H^+ \rightleftharpoons H_3L^{n+3}$	$2,88 \pm 0,04$	$4,09 \pm 0,09$		
	$H_3L^{n+3}+H^+ \rightleftharpoons H_4L^{n+4}$	$2,\!19\pm0,\!04$	$2,49 \pm 0,07$		
	$H_4L^{n+4} + H^+ \rightleftharpoons H_5L^{n+5}$	-	$1,87 \pm 0,11$		
	$H_5L^{n+5} + H^+ \rightleftharpoons H_6L^{n+6}$	-	$1,7 \pm 0,2$		
	$H_6L^{n+6} + H^+ \rightleftharpoons H_7L^{n+7}$	-	$0,9 \pm 0,2$		
Y ³⁺	$M^m + L^n \rightleftharpoons ML^{m+n}$	18,5	22,1		

 Tab. 7: Thermodynamische Konstanten der Protonierungs- und Yttrium(III)-Komplexbildungsgleichgewichte von

 EDTA und DTPA (25°C, I=0,1 NaCl oder I=1,0 K/HCl)^[150]

Das Ausmaß der Beiträge der einzelnen Dissoziationspfade zur experimentell bestimmten Ratengleichung einer Dissoziations- oder Isotopenaustauschreaktion ist somit in erster Linie abhängig von dem Metallion, dem Ligandentyp, Ionenstärke und nicht zuletzt dem untersuchten pH-Bereich. GLENTWORTH et al. etwa schlugen ausgehend von Isotopenaustauschstudien anhand des Systems 90 Y/Y(EDTA)⁻ im pH-Bereich von etwa 4,5 bis 5,9 (Acetat-Puffer, 25°C, I = 0,1) folgendes Geschwindigkeitgesetz vor^[156]:

$$V = k_{DI} \cdot [Y(EDTA)^{-}] \cdot [H^{+}] + k_{D2} \cdot [Y(EDTA)^{-}] \cdot [H^{+}]^{2} + k_{DY} \cdot [Y(EDTA)^{-}] \cdot [H^{+}] \cdot [Y^{3+}]^{2}$$

$$(48)$$

mit k_{D1} = 30 L·mol⁻¹·s⁻¹, k_{D2} = 5,2·10⁵ L²·mol⁻²·s⁻¹ und k_{DY} = 3,9·10³ L²·mol⁻²·s⁻¹. Der relative Beitrag des letzten Terms zur Reaktionsrate ist in dem pH-Bereich mit unter 5% sehr gering, jener des zweiten Terms – entsprechend der Dissoziation einer zweifach protonierten Spezies- beträgt bei pH 4,5 40% und sinkt auf unter 5% bei pH 5,75. Man beachte, dass die spontane (protonenunabhängige) Dissoziation des Y(EDTA)--Komplexes in dem gefundenen Geschwindigkeitsgesetz vernachlässigbar ist.

Der Austausch der Carboxymethylenprotonen in Y(EDTA)⁻ und Ce(EDTA)⁻ in Abhängigkeit vom pH (2-5) wurde von LAURENCZY et al. ¹H-NMR-spektroskopisch untersucht und ein vereinfachtes Geschwindigkeitsgesetz für die Dissoziation vorgeschlagen^[163]:

$$V = k_{obs} \cdot [M(EDTA)^{-}]$$
^[49]

Während im Falle des Ce(EDTA)⁻ -Komplexes die zweifach protonierte Spezies nicht detektiert wurde entsprechend

$$k_{D,obs} = k_{D0} + k_{DI} \cdot [H^+]$$
[50]

mit der Ratenkonstante der spontanen Dissoziation k_{D0} = 2·10⁻⁴ s⁻¹ und k_{D1} = 2,9·10³ L·M⁻¹·s⁻¹, lautet der Ausdruck für Y(EDTA)⁻:

$$k_{D,obs} = k_{D0} + k_{DI} \cdot [H^+] + k_{D2} \cdot [H^+]^2$$
[51]

 k_{D0} wurde nicht veröffentlichten Ergebnissen zufolge von LAURENCZY et al. zu 1·10⁻⁴ s⁻¹ bestimmt^[163].

Im Vergleich zu den EDTA-Komplexen der Seltenerdmetalle wird den entsprechenden DTPA-Komplexen eine höhere Anfälligkeit für direkten Metallionenaustausch zugesprochen. Diese Vermutung fußt einerseits auf der Tatsache, dass die thermodynamisch stabile Spezies zweifach negativ geladen ist sowie der Tendenz zur sterischen Hinderung der funktionellen Gruppen bei kleineren Metallionenradien, erkennbar Maximum thermodynamischen am der Komplexbildungskonstante K bei Dysprosium (Abb. 14)^[164]. Eine experimentelle Bestätigung steht allerdings noch aus.

Abb. 14: Thermodynamische Gleichgewichtskonstanten der EDTA-, DTPA- und DOTA-Komplexe der trivalenten Seltenerdmetalle (Zu Sc(DOTA)⁻ und Pm(DOTA)⁻ sind derzeit keine Daten verfügbar)^{[150].}

Prinzipiell folgt die Dissoziation der DTPA-Komplexe dem allgemeinen Schema [47]. MCMURRY et al. untersuchten die Dissoziation des Y(DTPA)²⁻-Komplexes mittels einer Stopped-Flow-spektrometrischen Analyse des Ligandenaustausches mit Arsenazo III (AAIII) und ermittelten bei [Y-DTPA] = $1 \cdot 10^{-5}$ mol/L und [AAIII] = $5 \cdot 10^{-5}$ mol/L die Konstante der protonenassistierten Dissoziation zu 144 s⁻¹ (I=0,2 NaClO₄)^[165].

Die DTPA-Komplexe der Seltenerdmetalle können aufgrund der eingeschränkten Inversion ("Umbrella-Flip", Abb. 15) am koordinierten Aminstickstoff verschiedene isomere Formen annehmen, wobei prinzipiell acht unterscheidbare Isomere gebildet werden können^[166].

Abb. 15: Inversion am koordinierten und unkoordinierten Aminstickstoff.

Die ¹H-NMR-Spektren der Pr³⁺ und Eu³⁺-Komplexe von DTPA zeigen, dass bei Raumtemperatur hauptsächlich zwei Isomere von Bedeutung sind, welche in Lösung bei Temperaturen über 95°C rasch interkonvertieren. Der Austauschprozess erfolgt hierbei nicht über Inversion des Aminstickstoffs, sondern über die Verschiebung einer koordinierten Acetatgruppe mit gleichzeitiger Drehung der Hauptketten-Ethylengruppen zwischen den gestaffelten Konformationen (Abb. 16). Die kinetische Konstante k_{ex} für den Isomerenaustausch ist stark vom Metallion abhängig und wurde bei 278 K für Pr(DTPA)²⁻ zu 265 s⁻¹, für Eu(DTPA)²⁻ zu 360 s⁻¹ und für Eu(DTPA)²⁻ zu 4300 s⁻¹ bestimmt^[167].

Abb. 16: Maßgebliche Isomere der Seltenerdmetall-DTPA Komplexe in Lösung bei Raumtemperatur und Newman-Projektion.

2.4.2.3. DOTA-Komplexe und Peptidrezeptorkonjugate

Die Bedeutung von DOTA als Komplexon zur Synthese thermodynamisch stabiler Metallkomplexe wurde 1976 erstmals von STETTER et al. mit der Darstellung des bis dahin thermodynamisch stabilsten Ca²⁺-Komplexes hervorgehoben (logK= 15,85; 25°C, I=0,1 KCl)^[168]. Angesichts der vergleichbaren Ionenradien von Ca²⁺(106 pm) und jenen der Lanthanoide (85-122 pm) wurden in den folgenden Jahren Untersuchungen an
DOTA-Komplexen von Lanthanoiden insbesondere von DESREUX und MERCINY vorangetrieben und deren Potential für radiopharmazeutische Anwendungen erkannt^{[169]-[172]}. Für die Dissoziation der DOTA-Komplexe von Yttrium und den Lanthanoiden im sauren Medium ist gemeinhin folgender Dissoziationsmechanismus anerkannt^[172]:

Die Dissoziation wird durch die Protonierung einer oder mehrerer Carboxylgruppen unter Entstehung von H[M(DOTA)] bzw. H₂[M(DOTA)]^{*+} eingeleitet. Der erste Protonierungsschritt erfolgt hierbei an dem Sauertoffatom einer nicht koordinierten Carboxylgruppe ohne Beeinträchtigung der Koordinationssphäre. (Bei Protonenkonzentrationen kleiner 0,2 mol/L verläuft die Dissoziation ausschließlich über die einfach protonierte Spezies.) Anschließend wird ein Proton auf ein Stickstoffatom im Ringsystem übertragen, gefolgt von einer schnellen Dissoziation in freies Metallion und Ligand.

Die Literatur zur Ermittlung der kinetischen Konstanten der säurekatalysierten Dissoziation von Seltenerdmetall-DOTA-Komplexen ist nicht nur aufgrund unterschiedlicher Versuchsbedingungen und Messmethoden von sehr uneinheitlicher Natur^[154]. Auch die zugrundeliegenden mechanistischen Modelle und Vereinfachungen sind vielfältig, da die Berechnung der kinetischen Konstanten in hohem Maße von der Messgenauigkeit abhängig ist. Generell gilt für die Dissoziationsrate:

$$-\frac{d[M-DOTA]}{dt} = k_{D,obs} \cdot [M - DOTA]_{ges}$$
[53]

k_{D,obs} entspricht der beobachteten Dissoziationsratenkonstante (pseudo-)erster Ordnung.

Komplex	kD,obs	$\tau_{1/2}$	pН	Т	Ι	Literatur
	$[S^{-1}]$	[h]		[K]		
Y-DOTA	1,5.10-5	12,8	1	310	0,1	[173]
	1,9.10-6	102	1,5	310	0,1	[173]
	3,3.10-7	583	2,0	310	0,1	[173]
	2,0.10-4	0,96	2,0	298	3,0 (H,Na)ClO4	[174]
Gd-DOTA	3,2.10-6	60,2	1	310	0,1	[173]
	9.10-7	214	1,5	310	0,1	[173]
	5.10-8	3929	2,0	310	0,1	[173]
	2,1.10-5	9,17	7,4	298	0,1 NaCl	[175]

Tab. 8: Beobachtete Dissoziationsratenkonstanten kD,obs der Komplexe Y-DOTA und Gd-DOTA.

k_{D,obs} stellt zu Zwecken des Screenings von kinetischen Stabilitäten verschiedener Ligandenmodifikationen eine sehr nützliche Größe dar, gibt jedoch keine Auskunft über die Abhängigkeit der Dissoziation von der Protonenkonzentration. Einige Werte aus der Literatur sind in Tab. 8 wiedergegeben.

Unter Bedingungen pseudo-erster Ordnung (Komplexüberschuss relativ zum Metallion oder hohe H⁺-Konzentration) wird die pH-Abhängigkeit von k_{D,obs} häufig durch einen linearen Zusammenhang analog Gl. [51] wiedergegeben. Die Ratenkonstanten k_{D0}, k_{D1} und k_{D2} eröffnen somit Vergleichsmöglichkeiten zu den Komplexen der azyklischen Polyaminocarboxylate (Tab. 9).

	•				Ũ		
Komplex	k_{D0}	k _{D1}	kd2	Т	Ι	Literatur	
	[S ⁻¹]	$[M \cdot s^{-1}]$	$[M^2 \cdot s^{-1}]$	[K]			
Y-DOTA	-	2,3.10-4	-	310	0,1	[173]	
Eu-DOTA	-	1,4·10 ⁻⁵	-	310	3,0 (H,Na)ClO4	[172]	
Gd-DOTA	5.10-10	2,0·10 ⁻⁵	-	310	3,0 (H,Na)ClO4	[172]	
	5.10-8	8,4·10 ⁻⁶	-	298	1,0 NaCl	[176]	
Ce-DOTA	-	8.10-4	2·10 ⁻³	310	3,0 (H,Na)ClO4	[177]	

Tab. 9: Ratenkonstanten der spontanen und protonen-assistierten Dissoziation einiger DOTA-Komplexe.

Eine Berücksichtigung des Dissoziationsmechanismus (Gl. [52]) erfordert eine genauere Interpretation von k_{D,obs}. Es gilt zu beachten, dass [M-DOTA]_{ges} in Gleichung [54] die Gesamtkonzentration des Komplexes darstellt. Unter Miteinbezug der protonierten Spezies entsprechend Schema [52] gilt nach Stoffbilanz:

$$[M - DOTA]_{ges} = [M(DOTA)^{-}] + [M(HDOTA)] + [M(H_2DOTA)^{+}]$$
[54]

Die thermodynamischen Gleichgewichtskonstanten K1 und K2 sind definiert als:

$$K_1 = \frac{[M(HDOTA)]}{[M(DOTA)^-] \cdot [H^+]}$$
 und $K_2 = \frac{[M(H_2DOTA)^+]}{[M(HDOTA)] \cdot [H^+]}$ [55a/b]

Es gilt:

$$k_{D,obs} = \frac{k_1 \cdot K_1 \cdot [H^+] + k_2 \cdot K_1 \cdot K_2 \cdot [H^+]^2}{1 + K_1 \cdot [H^+] + K_1 \cdot K_2 \cdot [H^+]^2}$$
[56]

Bei schneller Protonierung von $[M(DOTA)^{-}]$ $([H^{+}] > 0,5 \text{ mol/L und } [M(DOTA)^{-}] < [M(HDOTA)])$ lässt sich Gl. [56] zu folgendem Term vereinfachen^[174]:

$$k_{D,obs} = \frac{k_1 + k_2 \cdot K_2 \cdot [H^+]}{1 + K_2 \cdot [H^+]} \approx \frac{k_2 \cdot K_2 \cdot [H^+]}{1 + K_2 \cdot [H^+]}$$
[57]

Hat K₂ einen kleinen Wert, kann es im Nenner vernachlässigt werden und es gilt näherungsweise:

$$k_{D,obs} = k_2 \cdot K_2 \cdot [H^+]$$
^[58]

Ist die Protonenkonzentration hingegen klein ([H⁺] < 1·10⁻³ mol/L), gilt $K_1 \cdot [H^+] \ll 1$ und $K_1 \cdot K_2 \cdot [H^+] \ll 1$ kann Gl. [56] folgendermaßen vereinfacht werden:

$$k_{D,obs} = k_1 \cdot K_1 \cdot [H^+] = k_H \cdot [H^+]$$
[59]

Tab. 10 zeigt einige Literaturdaten zu den genannten kinetischen und thermodynamischen Konstanten, welche mitunter durch hohe Diskrepanz gekennzeichnet sind.

Komplex	K1	k1	K2	k2	Literatur
		[S ⁻¹]		[S ⁻¹]	
Y-DOTA	-	-	5,7	3,7·10 ³	[174]
	1202	-	0,05	-	[178]
	20	-	-	-	[173]
Eu-DOTA	63	$1 \cdot 10^{-6}$	0,12	6,2·10 ⁻⁴	[172]
Gd-DOTA	634	-	-	-	[179]
	141	-	-	-	[180]
	200	-	-	-	[181]

Tab. 10: Raten- und Protonierungskonstanten der Dissoziation einiger DOTA-Komplexe.

Im Vergleich zur Komplexierung von Seltenerdmetallen mit den azyklischen Liganden EDTA und DTPA wird der vollständig koordinierte Komplex mit dem DOTA-Chelator sehr langsam gebildet. Die Bildung von Y-DTPA verläuft nach Angaben von KODAMA et al. um einen Faktor 1600 schneller ab als jene von Y-DOTA^[182]. Zur Assoziation von Seltenerdmetall-DOTA-Komplexen im schwach sauren Milieu wurden zwei Mechanismen vorgeschlagen. Einerseits geht man davon aus, dass das im pH-Bereich 6-7 primär vorliegende H2DOTA2- zunächst schnell mit dem Metallion das Zwischenprodukt [MH2DOTA]+, in welchem das Metallion außerhalb der Käfigstruktur des DOTA-Liganden durch die Carboxylatgruppen koordinativ gebunden ist. Dieses Intermediat steht im Gleichgewicht mit [MHDOTA], welches im folgenden geschwindigkeitsbestimmenden Schritt wiederholt deprotoniert wird. Gleichzeitig wird das Metall in den Käfig eingebunden und die maximale Koordinationszahl erreicht^{[172],[177],[183],[184]}. Der zweite vorgeschlagene Mechanismus beruht auf der Assoziation von dem Metallion mit HDOTA3-, der zwar in verhältnismäßig geringer Konzentration vorhandenen aber erheblich reaktiveren DOTA-Spezies. In dem gebildeten Intermediat [MHDOTA] ist das Metallion durch zusätzlich ein makrozyklisches Stickstoffatom koordiniert. Der geschwindigkeitsbestimmende Schritt ist die Deprotonierung unter weiterer Einbettung des Metallions in die Käfigstruktur^{[176],[185],[186]}. Generell ist die

Komplexbildung im basischen Milieu begünstigt, da die Deprotonierung der Intermediate OH⁻-katalysiert abläuft. In der Praxis liegt der optimale pH-Bereich für das Labelling von DOTA-Peptid-Konjugaten zwischen pH 4,0 und 5,0 ^[187]. Während bei kleinerem pH der Komplex zu langsam assoziiert, ist die Komplexbildung im basischen pH-Bereich durch Bildung von Hydrolyseprodukten der Metallionen eingeschränkt.

Die bisher vorliegenden Studien der Dissoziations- und Assoziationskinetik von peptidgekoppelten DOTA-Komplexen mit Seltenerdmetallen sind vorwiegend semiquantitativer Natur, da gemeinhin davon ausgegangen wird, dass das gekoppelte Biomolekül nur geringen Einfluss auf Mechanismus und Geschwindigkeit der Metall-Ligand-Wechselwirkung ausübt. SHERRY et al. untersuchten Unterschiede im Komplexierungsverhalten und Gleichgewichtskonstanten im System Gd(DOTA)- und Gd(DOTA-PA), einem Analogon mit einer über eine Peptidbindung an einen Carboxylarm gekoppelten Propylamidgruppe (Tab. 11)^[188].

Die Assoziationskinetik wurde über spektrometrische Messungen des Ligandenaustausches im System Gd(AAIII)/ DOTA-PA untersucht ([Gd] = 9,4·10⁻⁶ mol/L ,[AAIII] = 7,6·10⁻⁵ mol/L, [DOTA-PA] = 3,7·10⁻⁴ mol/L; pH 4, 60°C) und eine Assoziationsratenkonstante pseudo-erster Ordnung von kA,obs von 2·10-5 s-1 ermittelt $(k_{A,obs} = 1.10^{-6} \text{ s}^{-1} \text{ für Gd}(DOTA)^{-})$. Aufgrund der geringeren K von Gd(DOTA-PA) wurde gefolgert, dass Gd³⁺ etwa 100 mal schneller aus Gd(DOTA-PA) dissoziieren müsste als aus Gd(DOTA)⁻ (vgl. Gl. [20]). Aus Tab. 11 ist hingegen ersichtlich, dass die Basizität der chelatisierenden Gruppen bei PA-Konjugation geringer ist, was der protonenassistierten Dissoziation entsprechend tendenziell Schema [52] entgegenwirkt.

Kation	Gleichgewicht	DOTA	DOTA-PA
		1	ogK
H+	$L^n + H^+ \rightleftharpoons HL^{n+1}$	11,14	9,6
	$HL^{n+1} + H^+ \rightleftharpoons H_2L^{n+2}$	9,69	9,2
	H_2L^{n+2} + $H^+ \rightleftharpoons H_3L^{n+3}$	4,85	4,4
	$H_3L^{n+3}+H^+ \rightleftharpoons H_4L^{n+4}$	3,95	1,7
Gd ³⁺	$M^m + L^n \rightleftharpoons ML^{m+n}$	24,6	20,1
Y ³⁺	$M^m + L^n \rightleftharpoons ML^{m+n}$	23,5	≈ 21,8

Tab. 11: Vergleich thermodynamischer Gleichgewichtskonstanten von DOTA (25°C, I=0,1 KCl) und DOTA-PA (25°C, I=0,1 KNO₃)^{[188],[2]}.

bei peptidkonjugierten DOTA-Komplexen der Einfluss Insbesondere ist stereochemischer und struktureller Eigenschaften auf die Kinetik von Assoziation und Dissoziation der Komplexe nicht auszuschließen. Alleine den in Seltenerdmetallkomplexen von DOTA sind bereits vier isomere Formen möglich, davon jeweils zwei NMR-spektroskopisch nicht unterscheidbare Enantiomerenpaare (Abb. 17)^{[169],[189]}. Die Isomere $\Delta(\delta\delta\delta\delta)$ und $\Lambda(\lambda\lambda\lambda\lambda)$ (major-Isomere M) weisen eine reguläre antiprismatische Geometrie, die Isomere $\Lambda(\delta\delta\delta\delta)$ und $\Delta(\lambda\lambda\lambda\lambda)$ (minor-Isomere *m*) eine invertierte antiprismatische Geometrie auf (beide C₄-symmetrisch). Die majorund minor-Isomeren unterscheiden sich in der Helizität der Carboxylgruppen bei identischer Konformation des Tetraazamakrozyklus^[190].

Abb. 17: Schematische Darstellung der isomeren Formen von DOTA-Komplexen der trivalenten Seltenerdmetalle.

Die Interkonversion der Enantiomerenpaare erfolgt durch Inversion der Ethylengruppen des Ringsystems und schrittweiser oder konzertierter Rotation der Carboxylat-Arme. Die Energiedifferenz der *M*- und *m*-Isomere beträgt zwar einige kJ/mol, die Interkonversionsbarriere wird jedoch weitaus höher geschätzt. Im Falle von Yb(DOTA)⁻ liegen die *M*-Isomere beispielsweise um 18 kJ/mol energetisch günstiger als die *m*-Isomere, während für die Interkonversion 92 kJ/mol aufgewendet werden müssen^[191]. Neuere 2D-NMR-Studien an Y-DOTATOC in H₂O:D₂O (90:10) bei pH 6,0 belegen, dass der Komplex in Form von zwei Isomeren mit identischer DOTA-Konformation vorliegt (Abb. 18), bedingt durch eine cis-trans-Isomerisierung entlang der DOTA-Peptid-Verknüpfung ((DOTA)CH₂CO-D-Phe¹H^N-Amidbindung). Die cis/trans-Isomerie ist unmittelbar mit dem Eintreten des Carbonylsauerstoffs der Amidbindung in die Koordinationssphäre verknüpft und erzeugt laut DESHMUKH et al. bei 290 K zwei Signalsätze mit einem Integralverhältnis von etwa 33:67 zugunsten der trans-Konfiguration. Die Energiebarriere für die Isomerisierung wurde zu etwa 71 kJ/mol bestimmt^[192].

Abb. 18: Strukturen der cis- und trans-Isomere von Y(III)-DOTATOC (entnommen aus Ref. [191]).

2.4.3. ¹⁸⁸Re(CO)₃-Komplexe

Rhenium ist ein 1925 von NODDACK (geb. TACKE) und BERG entdecktes Element und mit Mangan und Technetium der Gruppe VIIa des Periodensystems zugehörig. Aufgrund der Lanthaniden-Kontraktion sind die Ähnlichkeiten der physikalischen Eigenschaften zwischen Re und Tc bedeutend höher als jene mit Mangan (Tab. 12). Größe, Dipolmoment, Formalladung, Ionenbeweglichkeit, Lipophilie analoger Komplexe von Tc und Re sind in aller Regel vergleichbar^[193].

	8	5	8 ,	
Element	Elektronen- konfiguration	Oxidationsstufen	Atomradius	Ionenradien
Mn	$[Ar] 3d^5 4s^2$	+2, +3, +4, 7 (+2 bis +7)	127	67(+2), 70(+3), 46(+4)
Tc	[Kr] 4d ⁵ 5s ²	+1, +2 , +4 , +7 (+1 bis +7)	136	92(+2), 72(+4), 62(+6), 56(+7)
Re	$[Xe] 4 f^{14} 5 d^5 6 s^2$	+1, +2 , +4, +7 (-3 bis +7 außer -2)	137	72(+4), 61(+6), 53(+7)

Tab. 12: Eigenschaften der Elemente Mangan, Technetium und Rhenium.

Die chemischen Eigenschaften von Tc- und Re-Komplexen weisen hingegen signifikante Unterschiede auf, die bei der Entwicklung von Re- und Tc-Radiopharmaka deutlich zum Tragen kommen. Einerseits verlangsamt die verhältnismäßig höhere Ligandenfeldaufspaltung bei Re-Komplexen Substitutionsreaktionen am Metallzentrum. Der bedeutendste Unterschied liegt jedoch in der Tatsache, dass Rhenium in hohen Oxidationsstufen (+VII) thermodynamisch stabilere Komplexe bildet bzw. nur unter vergleichsweise drastischen Bedingungen in den Oxidationsstufen +III/+V verbleibt^[194]. Aus diesem Grund richtet sich der Augenmerk der Entwicklung von 99mTc- und 186Re/188Re-Radiopharmaka in dem letzten Jahrzehnt zunehmend auf Komplexe mit Tc und Re in der niedrigen Oxidationsstufe +I [195]. Gemäß HSAB-Prinzip sind die Zentralmetalle in der Oxidationsstufe +I weiche Säuren und zeigen nur geringe Affinität gegenüber harten Stickstoffund Sauerstoffdonorgruppen.

1994 stellten ALBERTO et al. die Bedeutung des in wässriger Lösung darstellbaren organometallischen Aquokomplexes *fac*-[Re(I)(CO)₃(H₂O)₃]⁺ als Ausgangsverbindung für Biomolekülkonjugate heraus^[196].

Abb. 19: Chemische Strukturformel von fac-[M(I)(CO)₃(H₂O)₃]⁺.

Tc(I) und Re(I) weisen in diesen Komplexen eine d⁶-Konfiguration im oktaedrischen Feld auf - ein Indiz für hohe kinetische Stabilität. Leicht substituierbare Aquogruppen ermöglichen eine Einführung chelatisierender Liganden.

Während unterhalb des physiologischem pH 7,4 *fac*-[Re(I)(CO)₃(H₂O)₃]⁺ die dominante Spezies ist, tritt unter basischen Bedingungen Deprotonierung und Oligomerisierung ein (Abb. 20)^[197].

Abb. 20: Schematische Darstellung der Hydrolyse von fac-[Re(I)(CO)₃(H₂O)₃]⁺.

Für die Darstellung des *fac*-Triaquatricarbonylrhenium-Kations *fac*- $[^{188}\text{Re}(\text{CO})_3(\text{H}_2\text{O})_3]^+$ mittels Carbonylierung einer Perrhenatvorstufe wurden im Wesentlichen in Schema [60] dargestellten Methoden A-D vorgeschlagen, wobei Methode A lediglich für *fac*- $[^{99m}\text{Tc}(\text{CO})_3(\text{H}_2\text{O})_3]^+$ hohe Ausbeuten liefert und im Falle von *fac*- $[^{188}\text{Re}(\text{CO})_3(\text{H}_2\text{O})_3]^+$ ungeeignet ist $[^{198}]$.

Während in Methode B Kohlenmonoxid unmittelbar in die Reaktionslösung geleitet wird^[199], verwendet Methode C Natriumboranocarbonat Na₂[H₃BCO₂], ein Reagenz, welches CO *in situ* nach Hydrolyse freisetzt^{[199],[200]}. Diese Synthesevariante ist insbesondere von großer Bedeutung für die Entwicklung kommerzieller Labelling-Kits (IsoLink[®], Mallinckrodt), da die Carbonylierung in der nuklearmedizinischen Praxis durch den Verzicht auf Umgang mit CO erheblich vereinfacht wird. (Die Darstellung des Boranocarbonats selbst erfolgt durch Einleiten von CO in eine auf -78°C gekühlte NaOH-Lösung.) Unter Wärmeeinwirkung entwickelt Na₂[H₃BCO₂] im sauren Milieu Kohlenstoffmonoxid unter gleichzeitiger Wasserstofffreisetzung. Daneben steht [B(OH)₄]⁻ als Reduktionsmittel zur Verfügung:

Eine weitere Syntheseoptimierung (Methode D) von PARK et al. sieht den Einsatz von BER als Festphasen-Reduktionsmittel und Anionentauscher in Kombination vor^{[201],[202]}.

Abb. 21: Schematische Darstellung der funktionell aktiven Gruppen des Borhydrid-Ionenaustauschers (BER) auf Styrol-DVB-Matrix.

Nach erfolgter Reduktion kann überschüssiges BER durch Membranfiltration entfernt werden.

Als Linkergruppen zwischen der Rheniumtricarbonyl-Einheit und Biomolekülen gelten Liganden mit Imidazolgruppen, also beispielsweise Histamin und Histidin aufgrund schneller Komplexierung als besonders vielversprechend^[203]. Die Aminosäure Histidin vermag es, dreizähnig und facial mit nur geringer Verzerrung der Komplexgeometrie an das Metallzentrum zu koordinieren. Ist Histidin in eine Proteinsequenz eingebunden, kann eine derartige tridentate Koordination nicht erreicht werden. Zur Peptidkopplung von Biomolekülen steht allerdings die primäre Aminogruppe zur Verfügung:

3

EXPERIMENTELLER TEIL

3.1. Reagenzien

Zur Vorbereitung sämtlicher Lösungen wurde ausschließlich über ein Millipore-System (Milli-Q plus 185, Millipore, Schwalbach) gereinigtes Wasser verwendet (Leitwiderstand \leq 18.5 M Ω ·cm, TOC: 1-5 ppb). Die Einstellung der Ionenstärke erfolgte mit Natriumchlorid (99,999%, Sigma-Aldrich Chemie GmbH, Taufkirchen), jene der pH-Werte mit Natriumhydroxid (98%, Fluka Chemie, Buchs, Schweiz), Salzsäure (37%, Sigma-Aldrich Chemie GmbH, Taufkirchen) und den Puffersubstanzen MES (\geq 99%), HEPES (\geq 99,5%), Piperazin (\geq 99%) und 1-Methylpiperazin (\geq 99,5%, jeweils Sigma-Aldrich Chemie GmbH, Taufkirchen). Als nicht-radioaktive Metallverbindungen wurden Yttrium(III)-chlorid-Hexahydrat (99,99%), Natriumperrhenat (99,99%) und Terbium(III)-chlorid-Hexahydrat (99,999%, jeweils Sigma-Aldrich Chemie GmbH, Taufkirchen) herangezogen.

Die zur Komplexierung eingesetzten Liganden waren DOTA (99,99%), DTPA (>99%), EDTA (99,995%, jeweils Sigma-Aldrich Chemie GmbH, Taufkirchen) sowie DOTANOC (> 95%), DOTATOC (> 95%, jeweils JPT Peptide Technologies GmbH, Berlin), DOTATATE (> 97%, ABX GmbH, Radeberg) und DOTA-di(RGD) (> 95%), zur Verfügung gestellt von der Klinik und Poliklinik für Nuklearmedizin der LMU München. Die zur Chelatisierung der Rheniumspezies benötigten Aminosäuren und Peptide *L*-Histidin, *L*-Carnosin und Gly-His (jeweils > 95%) wurden ebenfalls von der Klinik und Poliklinik für Nuklearmedizin der LMU münchen synthetisiert und bereitgestellt.

Als Ionenaustauscher wurden Chelex-100 (200-400 mesh), Dowex 50 WX 8 (jeweils BioRad Laboratories, München), Dowex Marathon MSC, Amberlite CG-50 (Type I), Dowex Marathon MR-3, Dowex Marathon WBA, Dowex Marathon MSA, DEAE Sephadex A-50, DEAE Sephadex A-25, QAE Sephadex A-25, Amberlite IRA-400 (20-50 mesh), Dowex 1 X8 (jeweils Sigma-Aldrich Chemie GmbH, Taufkirchen), Eprogen SynchroPak AX 300 (Bischoff Chromatography Analysentechnik und –geräte GmbH), AG 1x8 (100-200 mesh), AG 1x8 (200-400 mesh), AG 1x8 (400- mesh, jeweils BioRad Laboratories, München) sowie Poly-Prep-Säulen der Fa. BioRad Laboratories (Richmond, CA) verwendet. Für Reinigung- und Aufarbeitungszwecke verwendete Säuren waren – gegebenenfalls verdünnt – HCl (37%), HNO₃ (65%), H₃PO₄ (98%) sowie H₂SO₄ (Oleum, jeweils Sigma-Aldrich Chemie GmbH, Taufkirchen).

Die Herstellung und Reinigung der Rheniumcarbonyl-Vorstufen erfolgte mit Kohlenmonoxid (2.0, Reinheit \geq 99%) der Fa. Linde AG (Pullach), BH₃·NH₃ (\geq 97%) und NaReO₄ (99,99%) der Fa. Sigma-Aldrich Chemie GmbH (Taufkirchen), PTFE-Filter (0,2 µm) der Fa. Pall (Dreieich) sowie BER, welches entweder mit Hilfe von Amberlite IRA-400 (20-50 mesh) und Natriumborhydrid (99,99%) entsprechend PARK et al. manuell synthetisiert oder kommerziell bezogen (jeweils Sigma-Aldrich Chemie GmbH, Taufkirchen) wurde ^[201]. Ferner wurden IsoLink-Kits der Fa. Mallinckrodt (B.V. Petten, Niederlande) verwendet.

Für analytische Zwecke kamen daneben Methanol (99,9%, Merck KGaA, Darmstadt), TEAP Natriumhydrogencarbonat (≥99,7%, Sigma-Aldrich Chemie GmbH, Taufkirchen), der Flüssigszintillationscocktail Hionic-Fluor (Perkin-Elmer LAS GmbH, Rodgau-Jügesheim), ITLC-SG-Streifen der Fa. Gelman Science (Ann Arbor, MI) und TLC-Streifen der Fa. Fluka Chemie (Buchs, Schweiz) zum Einsatz.

3.2. Herstellung und Reinigung der Radiotracer

3.2.1. Yttrium-90

⁹⁰Y³⁺ ohne Trägerzusatz (*no carrier added*) wurde mit hoher spezifischer Aktivität aus dem institutseigenen 90Sr/90Y-Generator in komplexierter Form als α-Hydroxyisobutyrat eluiert und zur Verfügung gestellt. Die Entfernung eventueller 90Sr-Überführung Verunreinigungen und in 90YCl3 wurde mittels Ionenaustauschchromatographie durchgeführt. Hierzu wurde eine ungefüllte Poly-Prep- Säule zunächst 30 Minuten mit 4 N HCl gespült. Anschließend wurde ca. 1 g DOWEX 50 WX 8 in 3 ml 6 N HCl-Lösung suspendiert, auf die Säule gegeben und nacheinander mit jeweils 15 ml H₂O (dest.), 0,1 N, 3 N, 6 N HCl und H₂O gewaschen. 10 μl des ⁹⁰Yttrium(III)-α-hydroxyisobutyrats (18,5 MBq bis 30 MBq) wurden mit 0,5 ml 0,1 N HCl versetzt und auf die Säule gegeben. Nach Zugabe von 50 ml 0,1 N HCl und 7 ml 3 N HCl wurde die Aktivität schließlich mit 6 ml 6 N HCl eluiert. Das Eluat wurde nun im Stickstoffstrom bei 120 °C bis zur Trockne eingedampft, zur Beseitigung von α-Hydroxyisobuttersäure-Rückständen mit 0,5 ml eines 1:1-Gemisches jeweils konzentrierter H2SO4 (Oleum) und HNO3 aufgenommen und wiederholt im Stickstoffstrom bei 310 °C eingedampft. Der 90YCl3-Rückstand wurde in 0,4 ml 0,05 N HCl aufgenommen und die Radioaktivität wurde mit einem Aktivimeter des Typs ISOMED 501 (MED, Nuklearmedizintechnik Dresden GmbH) gemessen. Aufgrund der mit 64,1 Stunden kurzen Halbwertszeit des Yttrium-90 wurde ein 0,4 ml-Aliquot für max. 5 aufeinanderfolgende Versuchstage verwendet. Die Ausbeute an 90Y nach der geschilderten Reinigungsprozedur betrug zwischen 81 % und 99 %, womit die volumenbezogene spezifische Aktivität der 90YCl3-Proben zu 37 MBq/ml bis 74 MBq/ml nach Reinigung) ermittelt wurde. Die Prüfung der radiochemischen Reinheit erfolgte einerseits mittels ITLC nach MALJA et al. unter Verwendung von ITLC-SG-Streifen in 0,1 N NaHCO₃-Lösung^[204]. Zusätzlich wurden LSC-Messungen (Wallac 1415 oder TriCarb 2900 TR, PerkinElmer) mit jeweils 10 µl der 90YCl3-Lösungen in 10 ml HIONIC-FLUOR-LSC-Cocktail durchgeführt. Die radiochemische Reinheit sämtlicher Proben betrug mindestens 96 %.

Pro Versuchsreihe wurden im Falle der kontinuierlichen Messungen 20 μ l (< 1,48 MBq), zu Zwecken der diskontinuierlichen Messungen 10 μ l (< 0,74 MBq) der ⁹⁰YCl₃-Lösung entnommen.

3.2.2. Terbium-161

Der Darstellung von Terbium-161 ging eine (n,γ)-Reaktion von ¹⁶⁰Gd mit dem Primärprodukt ¹⁶¹Gd voraus. Hierfür wurden 2 mg ¹⁶⁰Gd an der Bestrahlungseinrichtung KBA 1-1 der Forschungsneutronenquelle Heinz-Maier-Leibnitz (FRM II) der Technischen Universität München 14 Tage bei einem thermischen Neutronenfluss von etwa 1,33·10¹⁴ n·cm⁻²·s⁻¹ bestrahlt. Unmittelbar nach Bestrahlung wurde die Aktivität der Rohprodukte mit dem Aktivimeter ISOMED 501 zu 1,1 GBq bestimmt, zu Beginn der Nuklidreinigung wurden 595 MBq detektiert. Die Reinigung selbst erfolgte nach einem semi-automatisierten Ionenaustauschverfahren, welches im Wesentlichen auf der für ⁹⁰Y beschriebenen Reinigungsprozedur beruht, im Detail jedoch an anderer Stelle beschrieben wird^[205]. Die spezifische Aktivität der ¹⁶¹TbCl₃-Probe betrug nach Reinigung 376 MBq·ml⁻¹. Die radiochemische Reinheit wurde mittels ITLC in 0,1 N NaHCO₃-Lösung sowie durch LSC-Messungen (TriCarb 2900 TR, PerkinElmer) mit jeweils 10 μl der ¹⁶¹TbCl₃-Lösungen in 10 ml HIONIC-FLUOR-LSC-Cocktail durchgeführt. Die radiochemische Reinheit der Probe betrug mindestens 98%.

3.2.3. Rhenium-188

¹⁸⁸Re ohne Trägerzusatz (*no carrier added*) wurde mittels NaCl-Lösung (0,9%) in Form von Na¹⁸⁸ReO₄ aus einem ¹⁸⁸W/¹⁸⁸Re-Generator (Isotopen Technologien München AG) eluiert. Die spezifische Aktivität des Eluats wurde mittels Aktivimeter zu 9 GBq·ml⁻¹ bestimmt. Es wurden für pro Versuchszyklus jeweils 300 - 340 MBq an Na¹⁸⁸ReO₄ herangezogen (spezifische Aktivität > 300 MBq/mL). Die radiochemische Reinheit betrug in allen Fällen ≥ 99% (ITLC).

3.2.3.1. Synthese von fac-[(188)Re(CO)₃(H₂O)₃]+

Zur Synthese des *fac*-Triaquatricarbonylrhenium-Kations mittels Carbonylierung von Perrhenat wurden sowohl literaturbekannte ^{[199],[201]} (siehe Methoden B-D in Schema 60) als auch eine neu entwickelte kombinierte Methode (E) herangezogen:

Methode B:

In ein 20 mL-Glas-Vial wurden 5 mg BH₃·NH₃ gegeben. Dieses wurde mit Gummiseptum und Aluminium-Cap verschlossen und 20 min. mit CO gespült. Nach Zugabe von einer zuvor mit 7 μL H₃PO₄ (85%) versetzten Lösung von 1 mL Na¹⁸⁸ReO₄ (> 50 MBq) wurde die Reaktionsmischung anschließend 15 Minuten bei 60°C inkubiert, während durch Wasserstoffentwicklung entstehender Überdruck mit einer 20 mL Spritze ausgeglichen wurde. Die Produktlösung wurde im Eisbad gekühlt und deren pH zu etwa 7,0 bestimmt. Die Ausbeute betrug zwischen 29% und 75% (Radio-HPLC und Radio-TLC).

Methode C:

Die kommerziell erhältlichen lyophilisierten IsoLink[®]-Kits (Mallinckrodt) setzen sich pro Vial aus 8.5 mg Natriumtartrat, 2,85 mg Na₂B₄O₇·10 H₂O, 7.15 mg Natriumcarbonat und 4.5 mg Na₂[H₃BCO₂] zusammen. 1 mL Na¹⁸⁸ReO₄ (> 50 MBq) wurden mit 7 µL H₃PO₄ (85%) versetzt und mit Hilfe einer 2 mL-Injektionsspritze in das zuvor mit Stickstoff gespülte IsoLink[®]-Vial gegeben. Die Reaktionsmischung wurde anschließend 15 Minuten bei 60°C unter Druckausgleich (20 mL-Spritze) inkubiert. Das Vial wird abschließend mit einem Eisbad gekühlt. Der pH-Wert der Lösung wurde zu 6,5 - 7,0 bestimmt, die Ausbeute der Reaktion zu < 33% (Radio-HPLC, Radio-TLC).

Methode D:

3 mg BER, 3 mg BH₃·NH₃ und 3 mg Na₂[H₃BCO₂] wurden in ein 20 mL Vial gegeben und mit einem Gummiseptum sowie einem Aluminium-Cap verschlossen. Anschließend wurden 1 mL Na¹⁸⁸ReO₄ (> 50 MBq) mit 7 μL H₃PO₄ (85%) versetzt und in das Vial gegeben. Die Reaktionsmischung wurde 30 Minuten bei 60°C unter Druckausgleich (20 mL-Spritze) erhitzt. Nach Abkühlen auf Raumtemperatur wurde das BER-Harz mit einem 0,2 μm-PTFE-Filter entfernt. Die Ausbeuten wurden zu 51% bis 59% bestimmt.

Methode E:

3 mg BER und 3 mg BH₃·NH₃ wurden in ein 20 mL Vial gegeben und mit einem Gummiseptum sowie einem Aluminium-Cap verschlossen. Das Vial wurde zunächst für 5 Minuten mit Stickstoff und weitere 20 Minuten mit Kohlenmonoxid gespült. 1 mL Na¹⁸⁸ReO₄ (> 50 MBq) wurden mit 7 µL H₃PO₄ (85%) versetzt und mit Hilfe einer 2 mL-Injektionsspritze in das Vial gegeben. Die Reaktionsmischung wurde anschließend 15 Minuten bei 60°C unter Druckausgleich (20 mL-Spritze) inkubiert. Nach Abkühlen auf Raumtemperatur wurden Feststoffrückstände mit Hilfe eines 0,2 µm-PTFE-Filters entfernt. Die Ausbeuten betrugen pro Synthese zwischen 87% und 98% (Radio-TLC) ohne Hinweise auf ¹⁸⁸ReO₄⁻ als Nebenprodukt.

Die Synthese der nicht-radioaktiven Verbindung fac-[Re(CO)₃(H₂O)₃]⁺ erfolgte ausschließlich über Methode E unter Verwendung von 0,4 g BER (~ 1·10⁻³ meq BH₄⁻), 30,9 mg BH₃·NH₃ (1·10⁻³ mol) und 1 ml NaReO₄ (1 mol/L; 1·10⁻³ mol).

Die Analytik zur *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺-Synthese erfolgte einerseits mittels reversed phase-HPLC oder dünnschichtchromatographisch.

Radio-HPLC:

Agilent 1100/HP[®] System, Aktivitätsdetektor: Raytest[®] Gabi NaI, Probenaufgabeventil: Rheodyne[®] Typ 8125, Säule: RP-18 Hypersil[®] BDS 4,6 x 250)

Gradientensystem: Solvent A: 0,05 M TEAP (pH 2,25), Solvent B: Methanol; HPLC Gradient: 0-3 min.: 100% A / 0% B; 3-9 min.: 75% A / 25% B, 9-20 min.: Gradient von 66% A / 34% B zu 0% A / 100% B.

Retentionszeiten: $3,7 \text{ min.} (fac-[^{188}\text{Re}(\text{CO})_3(\text{H}_2\text{O})_3]^+); 9,2 \text{ min.} (^{188}\text{Re}(\text{O}_4)^-)$

Radio-TLC:

TLC auf Aluminiumfolie mit Kieselgelmatrix 60F₂₅₄ (Fluka Chemie, Buchs, Schweiz); mobile Phase: 99% Methanol / 1% HCl (37%)

R_f: 0,4 (*fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺); 0,8 (¹⁸⁸ReO₄⁻)

3.2.3.2. Synthese von *fac-*⁽¹⁸⁸⁾Re(CO)₃(his) und Derivaten

0,8 ml *fac*-[¹⁸⁸Re(CO)₃(H₂O)₃]⁺-Lösung (≥ 50 MBq) sowie 50 µl einer 10 mM Lösung der entsprechenden Liganden L-Histidin, Glycyl-L-Histidin oder L-Carnosin wurden in ein 20 ml-Vial gegeben welches anschließend mit Gummistopfen und Aluminium-Cap verschlossen und 30 Minuten bei 75°C inkubiert wurde. Die Ausbeuten wurden mittels Radio-TLC zu mindestens 97% bestimmt.

3.2.4. Sicherheitsaspekte

Die hochenergetische β -Strahlung der Nuklide ⁹⁰Y und ¹⁸⁸Re stellen eine direkte Gefahr für Augen und Hautgewebe dar. Es gilt insbesondere, auf einen Schutz vor Sekundärstrahlung zu achten. Die maximale Reichweite d**¢**r -Strahlung beträgt in Luft 9 m, in Wasser 11 mm. Aus diesem Grund wurden sämtliche Experimente in spezialisierten Laboratorien unter Einhaltung der Sicherheitsvorschriften durchgeführt. Bei der Aufarbeitung der Generatoreluate wurden geeignete Plexiglasund Blei-Abschirmungen zur Verringerung der Strahlenexposition verwendet. Zur Abschirmung der γ -Strahlung bei Aufbewahrung von ¹⁸⁸Re- und ¹⁶¹Tb-Proben wurden Blei-Abschirmungen und -behältnisse verwendet. Eine erhöhte Ortsdosisleistung konnte während der Durchführung der Extraktionsversuche nicht festgestellt werden.

3.3. Versuchsaufbau

Eine Darstellung des Versuchsaufbaus ist Abb. 22 zu entnehmen, wobei die wesentlichen Bestandteile im Folgenden genauer erklärt werden sollen.

• Pumpensystem:

Zur Förderung der mobilen Phase wurde eine HPLC-Pumpe LC-10A*i* der Fa. Shimadzu[®] (Kyoto, Japan) verwendet. Nahezu alle Komponenten (Pumpenköpfe, Schläuche, Ventile etc.) des Pumpensystems wurden aus inerten metallfreien Materialien (PEEK, Tefzel) gefertigt, um eventuelle Verunreinigungen durch Fremdmetalle und Nebenreaktionen der mobilen Phase an Materialoberflächen zu vermeiden. Sämtliche Leitungen der Pumpe wurden vor jeder Versuchsreihe mit Isopropanol gereinigt. Zur Einschätzung von Schwankungen in der Pumpleistung wurde bei verschiedenen Flussraten die Zeit gemessen, die die Pumpe benötigt, um 10 mL an wässriger Lösung zu fördern {Tab. 31}*. Die aus der Standardabweichung der Messreihe ermittelten Fehler lagen für den gesamten Flussratenbereich weit unter 1 Prozent, lediglich bei baulich bedingten maximalen Flussrate von 10 mL·min⁻¹ wird dieser Wert überschritten.

• Injektorsystem:

Der Injektor 7125 der Fa. Rheodyne mit PEEK-Rotoranschluss diente in Kombination mit einem 20 μ L-Loop (PEEK, Rheodyne) der Probenzufuhr, wobei die Probelösung mittels 2 ml-Einmalspritze in den Loop gesaugt wurde. Verunreingungen des Systems durch Fremdmetalle (Kanüle) können auf diese Weise weitgehend vermiden werden. Die Anschlussbelegung des Injektors ist Abb. 22 zu entnehmen. Das tatsächliche Volumen des 20 μ L-Loops kann laut Hersteller aufgrund einer Lochdurchmessertoleranz von ±0,05 mm um 13 μ L (65%) abweichen^[206]. Für die im Rahmen der Arbeit durchgeführten Versuche ist allerdings lediglich das relative Volumen ausschlaggebend.

^{*} In geschweiften Klammern angegebene Tabellenbezüge verweisen im Folgenden auf experimentelle Messergebnisse im Anhang.

Ionenaustauscherkartusche:

Die Ionenaustauschersäulen wurden für jeden Versuchstag neu befüllt. Hierzu wurde das zuvor in 0,1 mM Metalllösung gesättigte Ionenaustauscherharz in eine leere PEEK-Kartusche (Ø 4,6 mm, 0,1 mL Leervolumen, Upchurch Scientific®, Oak Harbour, WA, USA) gegeben. Das Säulenmaterial wurde daraufhin mit mobiler Phase konditioniert (30 Minuten bei 0,1 mL/min, anschließend 2 Minuten bei 10 mL/min) und währenddessen der pH-Wert des Eluats auf Konstanz geprüft.

Abb. 22: Graphische Darstellung des FISRE-Versuchsaufbaus.

3.4. Durchführung des kontinuierlichen FISRE-Experiments

Um etwaige Präzipitation von Metallspezies einschätzen und vermeiden zu können wurde vor der Vorbereitung der Lösungen mit Hilfe der Software CHEAQSPro die Metall-Speziation der jeweiligen Proben im thermodynamischen Gleichgewicht ermittelt (siehe Ergebnisse und Diskussion). Fehlende thermodynamische Gleichgewichtskonstanten wurden der NIST-Datenbank 46 entnommen und ergänzt^[150]. NIST-geprüfte thermodynamische Daten zu den in der vorliegenden Arbeit untersuchten peptidgebundenen Komplexen sind nicht verfügbar, weshalb sich Speziationsberechnungen auf die Komplexe Y-EDTA, Y-DTPA und Y-DOTA beschränken.

Zur Vorbereitung der Lösungen wurden zunächst Stammlösungen hergestellt, indem je nach Ionenstärke und pH-Bereich NaCl und Puffersubstanz in Millipore-Wasser gelöst wurden. Als Puffer wurden bei pH 4,5-4,75 N-Methylpiperazin, bei pH 5,0-5,5 Piperazin, bei pH 5,75-6,5 MES und bei pH 6,8-7,4 HEPES verwendet. Anschließend wurde der pH-Wert der Lösung mit konzentrierter HCl (37%) oder 10 M NaOH eingestellt (pH-Meter 691, Metrohm, Filderstadt, Genauigkeit ± 0,001).

Abb. 23: Strukturformeln der verwendeten biologischen Puffersubstanzen.

Durch Lösen von YCl₃, TbCl₃ oder *fac*-[Re(CO)₃(H₂O)₃]⁺ in Stammlösung wurden die mobile Phasen hergestellt ([M]=1·10⁻⁵ mol/L), durch Lösen von DOTA, DTPA, EDTA, DOTATOC, DOTATATE, DOTANOC, IS20I, L-Histidin, Glycyl-L-Histidin oder L-Carnosin die Ligandenlösungen.

Für die kontinuierlichen FISRE-Versuche wurden durch die Mischung von mobiler Phase, Liganden- und Stammlösung Proben mit einem Gesamtvolumen von 9,98 mL vorbereitet. Einen Überblick über die Zusammensetzung der Probelösungen liefert folgende Tabelle:

Yttrium-Komplexe		Terbium-Ko	Terbium-Komplexe		Rhenium-Komplexe		
Reagenzien	с	Reagenzien	Reagenzien c		Reagenzien	с	
	[mol/L]		[mol/L]			[mol/L]	
YCl ₃	1.10-6	TbCl ₃	1.10-6		fac-[Re(CO)3(H2O)3] ⁺	1.10-6	
NaCl	1.10-2	NaCl	1.10-1		NaCl	$1 \cdot 10^{-1}$	
Puffer	5.10-3	Puffer	5.10-3		Puffer	5.10-3	
Ligand	7,5.10-6	Ligand	7,5.10-6		Ligand	7.10-6	

Tab. 13: Probenzusammensetzung für kontinuierliche FISRE-Versuche vor Tracerzugabe.

Nach Zugabe von 20 µL der entsprechenden Radiotracerlösungen wurden die Yttrium- und Terbium-Proben etwa 18 h bei 60° äquilibriert um die Einstellung des thermodynamischen Gleichgewichts zu gewährleisten. Etwaige Zersetzungsprozesse des *fac*-[Re(CO)₃(H₂O)₃]⁺ -Kations über längere Zeiträume stören potentiell den FISRE-Versuch, weshalb die Äquilibrierung im Falle der Rhenium-Proben auf 30 min. (Raumtemperatur) verkürzt wurde.

Zur Analyse der Dissoziationskinetik über den kontinuierlichen FISRE-Betrieb wurden mit der nach Zugabe der Tracerlösung äquilibrierten Probe Extraktionen mit verschiedenen Flussraten \dot{V} von 10 bis 0,1 mL·min⁻¹ durchgeführt. Die Kontaktzeit $t_{Kontakt}$ der injizierten Probe an dem Ionenaustauscherharz lässt sich mit folgendem Ausdruck berechnen:

$$t_{Kontakt} = \frac{v_{Säule}}{\dot{v}}$$
[65]

Bei einem Säulenvolumen von $V_{Säule} = 0,1$ mL entspricht dies einem Kontaktzeitbereich von 0,6 bis 60 s. Es wurden jeweils Eluatproben mit 1 mL Gesamtvolumen entnommen.

Zur Prüfung der Reproduzierbarkeit wurde jede Versuchsreihe dreimal durchgeführt. Des Weiteren wurden zu jeder Versuchsreihe drei Proben in Abwesenheit der Chelex-Säule gemessen (Referenz).

Zum Studium der Metallaustauschkinetik an Chelex und der Einflüsse von Verunreinigungen und Puffersubstanzen wurden überdies kontinuierliche FISRE-Messungen ohne Zugabe von Ligandenlösung durchgeführt. Zudem wurde die Ionenstärkeabhängigkeit der Dissoziation von Y-DOTA durch Einstellung unterschiedlicher NaCl-Konzentrationen geprüft (I=0,002; I=0,051; I=0,1; I=0,5; I=1,0; I=1,5).

Darüber hinaus wurden Einflüsse des Metall/Ligand-Verhältnisses auf die gemessene Dissoziation von Yttrium- und Terbiumkomplexen geprüft. Hierzu wurden die Probenzusammensetzungen aus Tab. 13 gewählt, die Metallkonzentrationen jedoch in einem Bereich von 4·10⁻⁷ mol/L bis 1,5·10⁻⁶ mol/L variiert. Es wurden pro Komplex und Metall/Ligand-Verhältnis jeweils drei Extraktionen bei einer Flussrate von 1 mL/min durchgeführt.

3.5. Durchführung des diskontinuierlichen FISRE-Experiments

Im diskontinuierlichen FISRE-Versuch wurden die Probenzusammensetzungen analog Tab. 13 gewählt, jedoch wurden die Proben in diesem Fall nicht mit der nichtradioaktiven Metallspezies, sondern mit dem Radiotracer äquilibriert (Gesamtvolumen der Proben 9 mL). Die Extraktionsschritte wurden 60 s nach Zugabe von 1 mL der nicht-radioaktiven Metallsalzlösung eingeleitet. Hierbei wurden bei einer konstanten Flussrate von 1 mL·min⁻¹ in verschiedenen Zeitabständen jeweils Eluatproben mit 1 mL Gesamtvolumen aufgefangen. Jede Versuchreihe wurde dreimal durchgeführt. Des Weiteren wurde zu jeder Probe eine Referenzprobe in Abwesenheit der Chelex-Säule gemessen.

3.6. Analytik

Die Čerenkov-Strahlung der ⁹⁰Y- und ¹⁸⁸Re-Proben sowie die β-Emission der ¹⁶¹Tb-Proben (Zugabe von 10 ml Hionic-Fluor Szintillationscocktail) wurde mit Hilfe eines Flüssigszintillationszählers des Typs TriCarb 2800TR der Fa. PerkinElmer bestimmt (20 min. Zähldauer pro Probe). Mit Hilfe der zugehörigen Software QuantaSmart wurden die Messergebnisse halbwertszeitkorrigiert. Die zusammengefassten Resultate sind dem Anhang zu entnehmen. Für die weitere Auswertung wurde die relative Radioaktivität der jeweiligen Proben bezüglich der Referenzproben herangezogen.

3.7. Ionenaustauscherprüfung

Anhand von Batch-Messungen der Adsorption der kationischen und anionischen Modellspezies ⁽⁹⁰⁾Y³⁺ und ⁽⁹⁰⁾Y(DOTA)⁻ an einer Auswahl von Kationen-, Mischbett- und Anionenaustauschern wurde deren Anwendbarkeit für die FISRE-Technik untersucht. Es wurden Lösungen von jeweils 20 mL Volumen der in Tab. 14 aufgeführten Zusammensetzung hergestellt (pH 7).

Y ³⁺⁻ Modellösung			Y(DOTA) ⁻ -Modellösung		
Reagenzien	eagenzien c		Reagenzien	с	
	[mol/L]			[mol/L]	
YCl ₃	1.10-5		YCl ₃	1.10-6	
NaCl	1.10-2		NaCl	1.10-2	
HEPES	5.10-3		HEPES	5.10-3	
DOTA	-		DOTA	1.10^{-5}	

Tab. 14: Probenzusammensetzungen der Modelllösungen für Ionenaustauschertests.

Diese wurden mit 40 μ L (< 3 MBq) ⁹⁰YCl₃ versetzt und zur Einstellung des thermodynamischen Gleichgewichts 18 h bei 60°C und anschließend 2 h bei Raumtemperatur inkubiert. 0,1 g des jeweiligen Ionenaustauschers (Tab. 15) wurden indes 1 h in 2 mL gepufferter Lösung (c(HEPES)= 5·10⁻³ mol/L, c(NaCl)= 1·10⁻² mol/L) bei Raumtemperatur gerührt. Die Suspension wurde anschließend mit 2 mL Modelllösung versetzt und die Čerenkov-Strahlung des Gemisches mit einem Flüssigszintillationszähler gemessen. Nach einstündigem Rühren bei Raumtemperatur wurde die Suspension filtriert (0,2 µm-PTFE-Filter) und eine Čerenkov-Zählung des Filtrats durchgeführt. Die Retention an ⁹⁰Y³⁺ und ⁹⁰Y(DOTA)⁻ wurde mit Hilfe des Zählratenverhältnisses von Suspension und Filtrat ermittelt.

Ionenaustauscher	Тур	Funktionelle Gruppe	pH-	Kapazität	Matrix
			Bereich	[meq/g]	
Dowex	SC	Sulfonyl	0-14	1,5	Styrol-DVB
Marathon MSC					(makroporös)
Biorad	WC	Iminodiacetyl	4-14	0,6	Styrol-DVB
Chelex-100					(makroporös)
Amberlite	WC	Carboxyl	5-14	1,0	Polyacrylat
CG-50 (Type I)					(makroporös)
Dowex	MB	Sulfonyl-/	0-14	-	Styrol-DVB
Marathon MR-3		tert. Amin			(Gel)
Dowex	WA	tert. Amin	0-7	4,2	Styrol-DVB
Marathon WBA					(makroporös)
DEAE	WA	Diethyl-(2-hydroxypropyl)-	2-12	3-4	Dextran
Sephadex A-50		aminoethyl			(Gel)
DEAE	WA	Diethyl-(2-hydroxypropyl)-	2-9	3-4	Dextran
Sephadex A-25		aminoethyl			(Gel)
QAE	SA	tert. Aminoethyl	2-10	2,6-3,4	Dextran
Sephadex A-25					(Gel)
Dowex	SA	Trialkylbenzylammonium	0-14	4,0	Styrol-DVB
Marathon MSA					(makroporös)
Biorad	SA	tert. Amin	0-14	0,6	Styrol-DVB
AG 1 x8 (100-200 mesh)					(makroporös)
Biorad	SA	tert. Amin	0-14	1,0	Styrol-DVB
AG 1 x8 (200-400 mesh)					(makroporös)
Biorad	SA	tert. Amin	0-14	1,2	Styrol-DVB
AG 1 x8 (400- mesh)					(makroporös)
Dowex	SA	tert. Amin	0-14	1,2	Styrol-DVB
1 x8					(Gel)

Tab. 15: Überblick und Eigenschaften der verwendeten Kationen-, Anionen und Mischbettaustauscher.

Analog zur beschriebenen Vorgehensweise wurde die Chelex-Adsorption von *fac*-[Re(CO)₃(H₂O)₃]⁺ in Abhängigkeit vom pH-Wert (Bereich 4,5 bis 7,5) der Lösung geprüft.

3.8. Datenprozessierung

Die graphische und rechnerische Auswertung der Messdaten erfolgte mit Hilfe des Programms LABFit^[207]. Die korrekte Funktionsweise des Programms wurde im Rahmen des *Statistical Reference Datasets Project* (SRD) des *National Institute of Standards and Technology* (NIST) geprüft und bestätigt.

Zur Auswertung wurde jeweils der Mittelwert der relativen Aktivität der Probe mit der zugehörigen Standardabweichung eingegeben. Als Standardeinstellung für den Fit wurde eine Konvergenztoleranz von10⁻⁵ verwendet, die maximale Anzahl der Iterationen betrug 110⁴. Falls erforderlich, wurden die Initialwerte der Parameter manuell variiert.

Die Eingabe der Testfunktionen für die Daten der Dissoziationsstudie erfolgte nach folgendem Schema:

• Ein Dissoziationsverlauf erster Ordnung wird gemäß Gl. [11] durch folgende Funktion wiedergegeben:

$$Y = A^* EXP(-B^*X)$$
[66]

 Wurde mit dieser Funktion der Dissoziationsverlauf nur unzureichend beschrieben (R_{yy}²(x) < 0,96), erfolgte der Fit gemäß der exponentiellen Funktion zweiter Ordnung:

$$Y = A*EXP(-B*X)+C*EXP(-D*X)$$
 [67]

X entspricht t_{Kontakt} [s], A und C der Anteil der ersten und zweiten Spezies an der Gesamtkonzentration des erfassten Komplexes [mol/L] und B und D den zugehörigen k_{D,obs} (in s⁻¹)

3.9. Fehlerbertrachtung

Sämtliche den Messergebnissen zugeordneten Fehler entsprechen der mit der Software Microsoft Excel 2007, Originlab ORIGIN PRO 8 oder LAB Fit ermittelten Standardabweichung mindestens dreier Messresultate und werden in den Graphen als Fehlerbalken dargestellt^{[207]-[209]}.

Die Standardabweichung ist ein Maß dafür, wie weit die Werte einer Stichprobe um den jeweiligen Mittelwert (Durchschnitt) streuen. Ausgehend von einem Stichprobenmittelwert \bar{x} und dem Stichprobenumfang *n* wird die Standardabweichung σ durch folgende Gleichung berechnet:

$$\sigma = \sqrt{\frac{1}{n-1} \cdot \sum (x - \bar{x})^2}$$
[68]

In den durchgeführten Experimenten werden Fehler aus der Zählratenmessung im Vergleich zu experimentellen Fehlern als vernachlässigbar gering angenommen.

Die Qualität der Fit-Kurven mit Hilfe des Bestimmtheitsmaßes $R_{yy^2}(x)$ beurteilt. $R_{yy^2}(x)$ gibt wieder, wie gut die aus der mittels der oben genannten Software durchgeführten Regressionsanalyse resultierende Gleichung die zwischen den Variablen bestehende Beziehung beschreibt und ist definiert als:

$$R_{yy}^{2}(x) = \left(\frac{\sum(x \cdot y) - \frac{1}{n} \cdot (\sum x) \cdot (\sum y)}{\sqrt{\left[\sum x^{2} - \frac{1}{n} \cdot (\sum x)^{2}\right] \cdot \left[\sum y^{2} - \frac{1}{n} \cdot (\sum y)^{2}\right]}}\right)^{2}$$
[69]

Das Bestimmtheitsmaß kann Werte von 0 (Regressionskurve ungeeignet) und 1 (vollkommene Korrelation) annehmen. Je komplexer eine Modellgleichung bzw. größer die Anzahl der unabhängigen Variablen, desto größer wird $R_{yy^2}(x)$. Um die Aussagekraft zweier unterschiedlich komplexer Modellfunktionen vergleichen und einschätzen zu können, ist die Berechnung des korrigierten Bestimmtheitsmaßes $\bar{R}_{yy}^2(x)$ sinnvoll:

$$\bar{R}_{yy}^2(x) = R_{yy}^2(x) - (1 - R_{yy}^2(x)) \cdot \frac{p}{n - p - 1}$$
[70]

 $\overline{R}_{yy}^2(x)$ sinkt durch steigende Komplexität der Modellfunktion, repräsentiert durch die Anzahl unabhängiger Variablen p.

Die Ermittlung der Bestimmtheitsmaße erfolgte ohne Gewichtung der Mittelwerte gemäß der Streuung der Messergebnisse.

4

ERGEBNISSE UND DISKUSSION

4.1. ⁹⁰Y-Polyaminocarboxylate

4.1.1. Vorversuche

4.1.1.1. Ionenaustauscherprüfung

Aus Abb. 24 ist ersichtlich, dass sich zusammen mit dem Kationenaustauscher Amberlite CG-50 (Type I) insbesondere Chelex 100 aufgrund nahezu quantitativer Adsorption freier Yttrium-Ionen und sehr geringer Affinität zu anionischen Spezies hervorragend für die FISRE-Technik eignet.

Abb. 24: Retention der Modellspezies ⁽⁹⁰⁾Y³⁺ und ⁽⁹⁰⁾Y(DOTA)⁻ an verschiedenen Ionenaustauscherharzen {Tab. 32/33.}

Die ferner in Betracht gezogenen Anionen- und Mischbettionenaustascher sind aufgrund ihrer unter Versuchsbedingungen mangelnden Selektivität und Adsorption für kationische und anionische Yttriumspezies für FISRE-Zwecke ungeeignet.

Obwohl Chelex 100 im pH-Bereich von 2-14 funktionell aktiv ist, ist der Ionenaustausch unter pH 4 zunehmend eingeschränkt. CHEAQSPro-Kalkulationen (Abb. 25) für die in den Versuchen verwendete Yttriumspeziation im thermodynamischen Gleichgewicht zeigen ferner, dass bei pH > 8 potentiell Präzipitationen von Yttriumhydroxid sowie –carbonat zu erwarten sind, weshalb die pH-Abhängigkeit der Dissoziation von Yttriumchelatkomplexen zwischen pH 4,5 und 7,4 untersucht wurde.

Abb. 25. CHEAQSPro-Kalkulation der Konzentrationsanteile der Yttriumspezies im pH-Bereich 5-8 (I=0,01 NaCl; CO₂-Partialdruck p=35,97 Pa).

4.1.1.2. Empirische Analyse der Wechselwirkung des Yttriums mit Puffersubstanzen

Wenngleich den für den vorgenannten pH-Bereich gewählten biologischen Puffer HEPES, MES, Piperazin und N-Methylpiperazin generell geringe Bindungsaffinität gegenüber Metallionen zugeschrieben wird, ist es unabdingbar, Fehlerquellen durch die Bildung möglicher ternärer Komplexe mit freien Yttriumionen einzuschätzen, insbesondere wenn die entsprechenden Pufferverbindungen in 5000-fachem Überschuss zur Metallkonzentration appliziert werden^[210]. Zu diesem Zwecke wurden kontinuierliche FISRE-Experimente bei pH 7,4 (HEPES), 6,0 (MES), 5.0 (Piperazin) und 4,5 (N-Methylpiperazin) ohne Zugabe von Chelatbildnern durchgeführt.

Abb. 26: Yttrium-Eluatkonzentrationen in Abhängigkeit von der Chelex-Kontaktzeit* {Tab. 34-37}

Die hohe Ähnlichkeit der in Abb. 26 dargestellten Elutionsprofile weist weniger auf das Vorhandensein und die Dissoziation möglicher binärer Yttrium-Pufferverbindungen als vielmehr auf einen unvollständigen Yttrium-Ionenaustausch bzw. eine verzögerte Austauschkinetik unterhalb von Chelex-Kontaktzeiten von 2 s hin. Bei längeren Kontaktzeiten tragen diese Nebeneffekte mit weniger als 1% zum Dissoziationsprofil bei und bleiben weitgehend konstant, weshalb auf eine Berücksichtigung dieser Fehlerquellen in der weiteren Versuchsauswertung verzichtet werden soll.

^{*} Gestrichelte Linien dienen in diesem und den folgenden Graphen lediglich der Veranschaulichung.

4.1.1.3. Einfluss verschiedener M/L-Verhältnisse auf den kontinuierlichen FISRE-Modus

Die Annahme, dass das freie Metallion umgehend an Chelex adsorbiert wird sobald ein Metallkomplex dissoziiert – die Voraussetzung für eine unidirektionale Betrachtung des Dissoziationsvorgangs - sollte in einem weiteren Versuch überprüft werden. Hierzu wurden die Rahmenbedingungen des kontinuierlichen FISRE-Experiments unter Variation des Verhältnisses $c_{Y^{3+}}/c_{L^{n-}}$ mit den Liganden DOTA, EDTA, DTPA und DOTATOC herangezogen (pH 6,0; I=0,01; Flußrate: 0,1 mL/min).

Abb. 27: Dissoziierte Fraktionen der Gesamt-Yttriumkonzentration in Abhängigkeit von $c_{Y^{3+}}/c_{I^{n-}}$ {Tab. 44-47}.

Abb. 27 stellt den dissoziierten Anteil der Yttrium-Spezies nach 60 s Kontaktzeit dar. Im Falle der Komplexe der azyklischen Liganden EDTA und DTPA wird bis zu einem $c_{Y^{3+}}/c_{L^{n-}}$ -Verhältnis von 1 konstante Dissoziation beobachtet, gefolgt von einer starken Minderung der gemessenen Dissoziation bei genau $c_{Y^{3+}}/c_{L^{n-}} = 1$. Im Gegensatz hierzu ist der Kurvenabfall bei den Komplexen der zyklischen Liganden DOTA und DOTATOC moderat, setzt jedoch bereits ab einem $c_{Y^{3+}}/c_{L^{n-}}$ -Verhältnis von etwa 0,85 ein. Eine Erklärung hierfür wäre die Abschirmung dissoziierter freier Yttriumionen vor dem extrahierenden Agens durch das zyklische DOTA-Ligandengerüst – selbst bei geringem Metallüberschuss. Die Tatsache, dass die gemessene Dissoziation trotz kontinuierlicher Zufuhr von Metallionen über die mobile Phase ($c_{Y^{3+}} = 1 \cdot 10^{-6} \text{ mol/L}$) abnimmt lässt auf eine unvollständige Vermischung zwischen Probe und mobiler Phase bei gegebenen Versuchsbedingungen schließen. Eine umso größere Bedeutung kommt demnach der Ausgangszusammensetzung der Probe zu. Generell gilt, dass sich die Anwesenheit freier Ligandionen erheblich auf FISRE-Experimente mit Chelex auswirkt und letztlich erheblich weniger Dissoziation detektiert wird als in Wirklichkeit auftritt.

Die im Folgenden für kontinuierliche FISRE-Versuche verwendeten $c_{Y^{3+}}/c_{L^{n--}}$ Verhältnisse von 0,75 sind gemäß Abb. 27 gut für die Bestimmung der Dissoziationsparameter geeignet.

4.1.2. 90Y-DOTA

4.1.2.1. Dissoziationskinetik von 90Y-DOTA im kontinuierlichen FISRE-Betrieb

Abb. 28: pH-abhängige Dissoziation von Y-DOTA im kontinuierlichen FISRE-Betrieb {Tab.48-59}

Die im Eluat ermittelte Konzentration an komplexgebundenen Yttrium ist in Abb. 28 in Abhängigkeit von der Kontaktzeit mit Chelex in einem pH-Bereich von 4,5 bis 7,4
wiedergegeben. Mit Ausnahme des Dissoziationsverlaufs bei pH 7,4 liefern Fits für Dissoziationsreaktionen erster Ordnung nur eine unzureichende Beschreibung für die experimentellen Daten ($R^{2}_{yy}(x) \le 0,6792$). Eine erheblich bessere Übereinstimmung wird für die Annahme zweier kinetisch unterscheidbarer Spezies gefunden ($R^{2}_{yy}(x) \ge 0,9671$). Die hierdurch erhaltenen Parameter sind in Tab. 16 zusammengefasst.

pН c (Y-DOTAA) kD,obs(A) c (Y-DOTAB) $k_{D,obs(B)}$ $R^{2}yy(x)$ [10⁻⁶ mol/L] [10⁻⁴ s⁻¹] [10-6 mol/L] $[S^{-1}]$ _ $0,753 \pm 0,003$ 7,4 _ $0,7 \pm 2,6$ 0,008614 7 $0,022 \pm 0,003$ $0,28 \pm 0,08$ $0,740 \pm 0,003$ 0,982443 $1,7 \pm 0,8$ $0,069 \pm 0,008$ $0,40 \pm 0,12$ $0,692 \pm 0,006$ 0,967052 6,8 $5,6 \pm 3,7$ 6,5 $0,134 \pm 0,015$ $0,37 \pm 0,15$ $0,632 \pm 0,013$ $5,3 \pm 4,3$ 0,973665 6,25 $0,196 \pm 0,015$ $0,36 \pm 0,07$ $0,593 \pm 0,013$ $7,9 \pm 5,2$ 0,982630 6 $0,271 \pm 0,025$ $0,64 \pm 0,12$ 0,553 (0,552) ± 0,010 $9,9 \pm 6,0$ 0,986181 5,75 $0,213 \pm 0,006$ $0,67 \pm 0,04$ $0,546 \pm 0,002$ $9,0 \pm 1,2$ 0,999173 5,5 $0,278 \pm 0,011$ $0,71 \pm 0,06$ $0,504 \pm 0,004$ $5,4 \pm 2,6$ 0,997378 5,25 $0,252 \pm 0,003$ $0,79 \pm 0,02$ $0,507 \pm 0,001$ $7,3 \pm 0,9$ 0,999778 5 $0,272 \pm 0,018$ $0,71 \pm 0,07$ $0,470 \pm 0,007$ $0,3 \pm 3,4$ 0,992160 4,75 $0,276 \pm 0,010$ $0,75 \pm 0,05$ $0,470 \pm 0,003$ $5,2 \pm 1,2$ 0,999410 4,5 $0,321 \pm 0,020$ $1,04 \pm 0,08$ $0,460 \pm 0,002$ $11,4 \pm 2,3$ 0,998347

 Tab. 16: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-DOTA bei I=0,01 (NaCl),

 ermittelt aus den Fits zweiter Ordnung.

Die Auswertung der Fits zweiter Ordnung liefern die in Abb. 29 und 30 dargestellten pH-abhängigen Konzentrationen und kinetischen Konstanten. Im Hinblick auf die Speziation lässt die vollständige Rückgewinnung der Ausgangs-Ligandenkonzentration, entsprechend der Summe der einzelnen Spezieskonzentrationen im Eluat, darauf schließen, dass die Akquisitionszeit des Versuchs gut für das Komplexsystem geeignet ist und bestätigt die Beobachtung, dass im thermodynamischen Gleichgewicht keinerlei positiv geladene Y-DOTA-Komplexe auftreten.

Abb. 29: pH-abhängige Speziation von Y-DOTA.

Im Einzelnen sind die Speziationsprofile durch einen gegenläufigen Trend gekennzeichnet, wobei bei physiologischem pH 7,4 lediglich die kinetisch inerte Spezies Y-DOTA^B detektiert wird.

Abb. 30: Beobachtete Dissoziationskonstanten in Abhängigkeit vom pH.

Die beiden kinetisch unterscheidbaren Spezies Y-DOTAA und Y-DOTAB können durch die vorliegenden Ergebnisse nicht eindeutig zugeordnet werden. Thermodynamische Berechnungen deuten lediglich auf das Vorhandensein einer Spezies (Y(DOTA)) hin, erfassen jedoch keine stereochemischen Zusammenhänge. Angesichts der Energiedifferenz und Interkonversionsbarriere der M- und m-Isomere von Y(DOTA) ist daher ein Dissoziationsmuster zweiter Ordnung aufgrund von kinetisch unterscheidbaren Komplex-Isomeren prinzipiell nicht auszuschließen. Dennoch ist anzunehmen, dass die Differenz der beobachteten Dissoziationsratenkonstanten kD,obs(A) und kD,obs(B) von etwa 3 Größenordnungen (Abb. 30) nicht allein durch die Anordnung der Carboxylatgruppen und die Inversion der Ringgeometrie, sondern vielmehr durch tiefgreifende Unterschiede in der Koordination verursacht wird. Die offensichtlich hohe pH-Abhängigkeit der kinetischen Konstanten deutet auf die Mitwirkung eines konsekutiven Dissoziationsmechanismus entsprechend Schema [52] hin. Der Ausgangsschritt ist hierbei die Protonierung eines nicht koordinierten Carboxylsauerstoffs, gefolgt von einem Protonentransfer zu einem Ringstickstoff (mit * gekennzeichnete Komplexe) und einer raschen Komplexdissoziation. Wird eine Protonenkonzentration von 0,2 mol/L unterschritten, ist im Dissoziationspfad lediglich das Auftreten der einfach protonierten Spezies YHDOTA bzw. (YHDOTA)* zu erwarten. Demnach entspräche Y-DOTAA dem elektrisch neutralen Komplex YH(DOTA), entstanden während einer protonenassistierten Dissoziation der thermodynamisch stabilen Spezies Y(DOTA)⁻ (entsprechend Y-DOTA_B).

Der pH-abhängige Verlauf der beobachteten Ratenkonstanten $k_{D,obs}$ ist im Falle der Spezies Y-DOTA_A durch eine nicht-lineare Sättigung gekennzeichnet. Ein ähnlicher Zusammenhang wurde von FÖRSTEROVA et al. bei pH < 2 ermittelt und durch eine Fitfunktion entsprechend Gl. [59] interpretiert^[174]. Ein derartiger Ansatz ist für den hier untersuchten pH-Bereich nicht möglich, da das nicht-lineare Fitting aufgrund zu kleiner Werte für das Produkt $K_2 \cdot [H^+]$ nicht durchgeführt werden kann.

Über die pH-Abhängigkeit der Dissoziation der inerteren Spezies Y-DOTA^B kann aufgrund der verhältnismäßig hohen experimentellen Fehler aus dem kontinuierlichen FISRE-Experiment keinerlei Schlussfolgerung gezogen werden, wohl aber aus dem Batch-Betrieb (Kapitel 4.1.2.3).

4.1.2.2. Abhängigkeit der Dissoziationskinetik von 90Y-DOTA von der Ionenstärke

Die speziationskinetischen Konstanten der Ionenstärke-abhängigen Messung {Tab. 38-43} bei konstantem pH 6,0 sind in Tab. 17 aufgeführt.

Ionenstärke c (Y-DOTAA) $k_{D,obs(A)}$ c (Y-DOTAB) kD,obs(B) $R^{2}yy(x)$ (NaCl) [10⁻⁶ mol/L] [10⁻⁴ s⁻¹] [10⁻⁶ mol/L] $[S^{-1}]$ 0,002 $0,321 \pm 0,011$ $0,52 \pm 0,04$ $0,489 \pm 0,006$ $6{,}2\pm 3{,}4$ 0,997330 0,011 $0,271 \pm 0,025$ $0,64 \pm 0,12$ $0,553 \pm 0,010$ $9,9 \pm 6,0$ 0,986181 0,051 $0,280 \pm 0,004$ $0,62 \pm 0,02$ $0,539 \pm 0,002$ $8,5 \pm 1,0$ 0,999583 $0,266 \pm 0,008$ 0,1 $0,67 \pm 0,04$ $0,565 \pm 0,003$ $11,0 \pm 1,5$ 0,998831 0,5 $0,\!286\pm0,\!017$ $0,69 \pm 0,08$ $0,516 \pm 0,006$ $6,8 \pm 3,5$ 0,994373 $0,262 \pm 0,010$ 1 $0,72 \pm 0,06$ $0,517 \pm 0,004$ $11,5 \pm 2,0$ 0,997907 1,5 $0,270 \pm 0,032$ $0,92 \pm 0,17$ $0,498 \pm 0,007$ $13,9 \pm 4,2$ 0,988594

Tab. 17: Ionenstärkeabhhängige Speziation und Dissoziationskonstanten von Y-DOTA (pH=6,0).

Es zeigt sich, dass die Ionenstärke unter gegebenen Bedingungen nur sehr geringen Einfluss auf Speziation und $k_{D,obs}$ des Y-DOTA-Systems ausübt. Tendenziell ist bei zunehmender Ionenstärke eine geringfügige Zunahme der beobachteten Ratenkonstanten unter Beibehaltung der Speziation auszumachen, was mit den im Kapitel 2.1.3. abgeleiteten Zusammenhängen (ln (k) ~ \sqrt{I}) konform ist.

Abb. 31: Beobachtete Dissoziationsratenkonstanten von Y-DOTA in Abhängigkeit von der Ionenstärke.

Die Ableitung eines detaillierten mathematischen Modells erfordert eine genauere Untersuchung der Ionenstärkeabhängigkeit, gegebenenfalls unter Verwendung weiterer Inertsalze (NaNO₃, Na₂SO₄, CaCl₂, etc.).

4.1.2.3. Dissoziationskinetik von ⁹⁰Y-DOTA im diskontinuierlichen FISRE-Betrieb

Die diskontinuierlichen FISRE-Experimente an Y-DOTA führen den Verlauf der aus dem kontinuierlichen Versuch erhaltenen Dissoziationskurven bei den entsprechenden pH-Werten aufgrund identischer Konzentrationsverhältnisse direkt fort. Entsprechend Abb. 32 können die experimentellen Daten in dem Detektionszeitraum zwischen einer Minute und 648 h sehr gut mit Hilfe von Fitgleichungen erster Ordnung nachvollzogen werden (Y-DOTA_B).

Abb. 32: pH-abhängige Dissoziation von Y-DOTA im diskontinuierlichen FISRE-Betrieb {Tab. 60-63}.

Die ermittelten Speziationsdaten sind in Tab. 18 zusammengefasst.

pH	c (Y-DOTAB)	kD,obs(B)	$R^{2}_{yy}(x)$
	[10 ⁻⁶ mol/L]	[10 ⁻¹⁰ s ⁻¹]	
7,4	$0,7528 \pm 0,0005$	$65,8 \pm 7,1$	0,820643
7,0	$0,7312 \pm 0,0011$	114 ± 11,6	0,835457
6,0	$0,5363 \pm 0,0007$	$340 \pm 8,4$	0,988304
5,0	0,4351 ± 0,0016	2485 ± 3,9	0,995463

Tab. 18: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-DOTA_B (I=0,01).

Die Annahme einer direkt proportionalen Abhängigkeit der beobachteten Konstante (pseudo-) erster Ordnung $k_{D,obs(A)}$ von der Protonenkonzentration entsprechend Gl. [50] ist mit den experimentellen Daten konsistent ($R^2_{yy}(x)=0,99982$). Der Schnittpunkt mit der Ordinaten kennzeichnet $k_{D(A)0}$, die kinetische Konstante für die spontane Dissoziation von Y(DOTA)⁻, welche zu 7,4·10⁻⁸ (± 0,2·10⁻⁸) s⁻¹ ermittelt wurde, während die protonen-assistierte Dissoziationskonstante $k_{D(A)}$ aus der Steigung zu 2,5·10⁻² (± 0,1·10⁻²) M⁻¹·s⁻¹ bestimmt wurde (Abb. 42).

Berücksichtigt man mechanistische Aspekte gemäß Gl. [59], gilt:

$$k_{D,obs(B)} = k_{D0} + k_{D1} \cdot [H^+] = k_{D0} + k_H \cdot [H^+] = k_{D0} + K_1 k_1 \cdot [H^+]$$
^[71]

logK₁ wurde von BROAN et al. zu 3,08 (± 0,05) bestimmt (25 °C, I=0,1 Me₄NNO₃), k₁ beträgt daher 2,08·10⁻⁵ (± 0,09·10⁻⁵) s⁻¹ [¹⁷⁸].

Aufgrund unterschiedlicher experimenteller Herangehensweisen und Messbedingungen können die Resultate nur bedingt mit Literaturdaten verglichen werden, zumal bisher keine kinetischen Studien von Y-DOTA im pH-Bereich 4,5 -7,4 in wässriger Lösung durchgeführt wurden. Die protonen-assistierte Dissoziationskonstante k_{D(A)} wurde von BROAN et al. bei 37°C und im stark sauren Milieu zu 2,3·10-4 M-1-s-1 bestimmt und liegt somit etwa zwei Größenordnungen unter dem hier vorliegenden Ergebnis^[178]. Nichtsdestotrotz sind die mittels FISRE bestimmten kobs(A) erwartungsgemäß signifikant kleiner als jene von BROAN et al. bei 37°C und pH 1,0, 1,5, und 2,0 ($(1,5\cdot10^{-5} \pm 0,5\cdot10^{-5}) \text{ s}^{-1}$, 1,88·10⁻⁶ (± 0,03·10⁻⁶) s⁻¹ und 3,3·10⁻⁷ (± 0,1·10⁻⁷) s⁻¹). Ferner bestätigen die FISRE-Ergebnisse die Vermutung, dass der Beitrag der spontanen Dissoziation ($k_{D(A)0}$) jenen des protonen-assistierten Dissoziationspfades ($k_{D(A)}$ ·[H⁺]) im neutralen pH-Bereich übertrifft. k1 ist bisher lediglich für den Komplex Eu-DOTA bekannt und liegt mit 1·10⁻⁶ (± 0,5·10⁻⁶) s⁻¹ nahe dem hier ermittelten Wert für Y-DOTAB. Zuletzt ist die Schlussfolgerung von MOI et al. aus Studien der Serumstabilität eines modifizierten Y-DOTA-Komplexes bei 37°C und pH 7,4, dass innerhalb von 18 Tagen weniger als 0,5% freies Y³⁺ freigesetzt würden, ebenfalls mit den FISRE-Daten konform^[211].

4.1.3. ⁹⁰Y-EDTA

4.1.3.1. Dissoziationskinetik von ⁹⁰Y-EDTA im kontinuierlichen FISRE-Betrieb

Der Y-EDTA-Komplex dissoziiert entsprechend Abb. 33 in Abhängigkeit von der Chelex-Kontaktzeit nach einer Kinetik (pseudo-) erster Ordnung ($R^{2}_{yy}(x) > 0,998$). Der Anteil des erfassten Komplexes wurde mittels Speziationsberechnung zu mindestens 99% bestimmt. Die im kontinuierlichen FISRE-Betrieb erhaltenen Ergebnisse spiegeln die wiederum hohe pH-Abhängigkeit der Dissoziation des ⁹⁰Y-EDTA-Komplexes wieder. Während bei physiologischem pH im Akquisitionszeitraum nahezu keine freien ⁹⁰Y³⁺-Ionen detektiert werden ist das ⁹⁰Y-EDTA bei pH 5,0 bereits nach 40 s Chelex-Kontaktzeit vollständig dissoziiert.

Abb. 33: pH-abhängige Dissoziation von Y-EDTA im kontinuierlichen FISRE-Betrieb {Tab. 64-67}.

Die aus den exponentiellen Fits erster Ordnung ermittelten Daten sind in Tab. 19 aufgeführt.

рН	c [10 ⁻⁶ mol/L]	k _{D,obs} [s ⁻¹]	$R^{2}_{yy}(x)$	τ _{1/2} [s]
7,4	$0,744 \pm 0,002$	2,68·10 ⁻⁵ ±9,74·10 ⁻⁵	0,0093830	-
7,0	$0,761 \pm 0,002$	$1,08 \cdot 10^{-3} \pm 0,13 \cdot 10^{-3}$	0,8912983	642 ± 77
6,0	$0,764 \pm 0,005$	$2,35 \cdot 10^{-2} \pm 0,06 \cdot 10^{-2}$	0,9979160	$29,5 \pm 0,8$
5,0	$0,756 \pm 0,013$	$1,77 \cdot 10^{-1} \pm 0,08 \cdot 10^{-1}$	0,9983349	$3,9 \pm 0,2$

 Tab. 19: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-EDTA (I=0,01) aus dem

kontinuierlichen FISRE-Betrieb.

4.1.3.2. Dissoziationskinetik von 90Y-EDTA im diskontinuierlichen FISRE-Betrieb

Abb. 34 zeigt den weiteren Verlauf der Dissoziation des Y-EDTA-Komplexes, ermittelt durch den diskontinuierlichen Versuch. Bei pH 7,4 wird nach 8 h vollständige Komplexdissoziation beobachtet.

Abb. 34: pH-abhängige Dissoziation von Y-EDTA im diskontinuierlichen FISRE-Betrieb {Tab. 68-70}.

Die aus den exponentiellen Fitfunktionen erster Ordnung ermittelten speziationskinetischen Daten sind Tab. 20 zu entnehmen.

рН	c(Y-EDTA) [10 ⁻⁶ mol/L]	k _{D,obs} [s ⁻¹]	R ² yy(x)	τ _{1/2} [min]
7,4	$0,756 \pm 0,017$	$1,39 \cdot 10^{-4} \pm 0,07 \cdot 10^{-4}$	0,9940853	83 ± 3
7,0	$0,721 \pm 0,043$	$9,19.10^{-4} \pm 0,99.10^{-4}$	0,9788406	13 ± 2

 Tab. 20: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-EDTA (I=0,01) aus dem diskontinuierlichen FISRE-Betrieb.

Eine Auftragung der errechneten kinetischen Konstanten gegen die H⁺-Konzentration stützt die Annahme einer linearen Beziehung der Parameter gemäß Gl. [50]. Hierbei wurden die beobachteten Konstanten kobs bei pH 5 und 6 aus dem kontinuierlichen Versuch, bei pH 7 und 7,4 aus dem diskontinuierlichen Versuch herangezogen.

LAURENCZY et al. ermittelten in unveröffentlichten ¹H-NMR-Studien des AB-Austausches von Y(EDTA)⁻- Carboxymethylen-Protonen in einem pH-Bereich von 1,8 bis 3 eine Ratenkonstante für die Spontandissoziation der Y(EDTA)⁻-Spezies von $k_{D0} =$ 1·10⁻⁴ s⁻¹. Detaillierte Informationen über Messmethoden und –bedingungen (Ionenstärke und Temperatur) sind jedoch nicht zugänglich^[163].

Während koo verhältnismäßig gut mit den Literaturdaten übereinstimmt, überschreitet die errechnete Ratenkonstante für die protonenkatalysierte Dissoziation kdi von 1,76·10⁴ M⁻¹·s⁻¹ die in der Literatur gefundenen Werte um mehrere Größenordungen^[156]. GLENTWORTH et al. fanden mittels Isotopenaustauschstudien eine Konstante kD1 von 30 ± 1,5 M-1·s-1. Unterschiede in der Methodologie und den experimentellen Bedingungen (I=0,1 KNO3, NH4OAc-Puffer) könnten für diese Diskrepanz verantwortlich sein, nichtsdestotrotz steht eine detaillierte Begründung hierfür aus, da übliche experimentelle Fehlerquellen ausgeschlossen werden konnten. Während der Experimente konnten beispielsweise keine pH-Schwankungen detektiert werden, demnach können mögliche, durch die Bildung einer zweifach protonierten Spezies YH₂(EDTA)⁺ hervorgerufene Störungen ausgeschlossen werden. Eine weitere mögliche Fehlerquelle stellt der bekanntermaßen eingeschränkte Chelex-Metallionenaustausch im sauren Bereich dar. Dieser Effekt hätte die Messung erhöhter Dissoziationsraten zur Folge, macht sich allerdings üblicherweise erst ab einem pH < 4bemerkbar. Zudem konnte im pH-Bereich zwischen 4,5 und 7,4 keine Verminderung in der Yttrium-Sorption an Chelex beobachtet werden.

Zur Klärung der Ursache der unterschiedlichen Ergebnisse ist eine direkte Gegenüberstellung der beiden analytischen Methoden unter exakter Übereinstimmung der experimentellen Rahmenbedingungen notwendig.

4.1.4.1. Dissoziationskinetik von ⁹⁰Y-DTPA im kontinuierlichen FISRE-Betrieb

Die Dissoziationsmuster von Y-DTPA sind in Abb. 35 dargestellt. Entsprechend einem Fit 2. Ordnung ($R^2_{yy}(x) > 0,996$) tragen zwei Spezies zum Dissoziationsverlauf von Y-DTPA bei, die sich in ihrer Labilität beträchtlich unterscheiden. Die mittels CHEAQSPro ermittelte theoretische Zusammensetzung im thermodynamischen Gleichgewicht deutet auf lediglich eine nicht-protonierte Y(DTPA)²⁻-Spezies im untersuchten pH Bereich hin, wobei YH(DTPA)⁻ maximal 0,012% (pH 4,5) der gesamten DTPA-Konzentration ausmacht. Bislang sind keine Hinweise auf kinetisch unterscheidbare Isomere bekannt. Demnach sind weitere strukturrelevante Untersuchungen oder genauere Analysen thermodynamischer Zusammenhänge zur Interpretation der experimentellen Daten unabdingbar.

Abb. 35: pH-abhängige Dissoziation von Y-DTPA im kontinuierlichen FISRE-Betrieb (Tab. 71-74).

Die erhaltenen Speziationsdaten zeigen einen Anstieg des Y-DTPA_A:Y-DTPA_B-Verhältnisses mit zunehmender Protonenkonzentration (Tab. 21).

pН	c (Y-DTPAA)	$k_{D,obs(A)}$	c (Y-DTPAB)	$k_{D,obs(B)}$	$R^{2}_{yy}(x)$
	[10 ⁻⁶ mol/L]	[S ⁻¹]	[10 ⁻⁶ mol/L]	[S ⁻¹]	
7,4	$0,163 \pm 0,044$	1,31 ± 0,39	$0,580 \pm 0,005$	$1,4.10^{-4} \pm 2,6.10^{-4}$	0,959825
7,0	$0,251 \pm 0,032$	$1,26 \pm 0,19$	$0,501 \pm 0,004$	$1,0.10^{-4} \pm 2,4.10^{-4}$	0,989439
6,0	$0,421 \pm 0,098$	$1,52 \pm 0,34$	$0,405 \pm 0,008$	8,1·10 ⁻⁴ ± 6,6·10 ⁻⁴	0,976223
5,0	$0,515 \pm 0,055$	$1,78 \pm 0,16$	$0,357 \pm 0,003$	2,2·10 ⁻³ ± 3,3·10 ⁻³	0,996427

 Tab. 21: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-DTPA bei I=0,01 (NaCl),

 ermittelt aus den Fits der Dissoziationskurven im kontinuierlichen FISRE-Betrieb.

Ferner ist - analog zu Y-DOTA - ein nicht-linearer Sättigungsverlauf zu beobachten (Abb. 36). Die Summe der Spezieskonzentrationen spricht für eine quantitative Erfassung des eingesetzten Y-DTPA-Komplexes.

Abb. 36: pH-abhängige Speziation von Y-DTPA, ermittelt über den kontinuierlichen FISRE-Betrieb.

Die beobachteten Reaktionsraten sind durch eine Zunahme bei erhöhter Protonenkonzentration gekennzeichnet (Abb. 37). Die verhältnismäßig hohe Standardabweichung, insbesondere bei der inerteren Spezies Y-DTPA^B lässt jedoch keine genaueren Aussagen über die pH-Abhängigkeit der Ratenkonstanten zu. Weitere Informationen hierüber liefert das diskontinuierliche Experiment.

Abb. 37: Beobachtete Dissoziationsratenkonstanten der Y-DTPA-Spezies in Abhängigkeit von der Protonenkonzentration.

4.1.4.2. Dissoziationskinetik von ⁹⁰Y-DTPA im diskontinuierlichen FISRE-Betrieb

Abb. 38: pH-abhängige Dissoziation von Y-DTPA im diskontinuierlichen FISRE-Betrieb {Tab. 75-78}.

Abb. 38 veranschaulicht die hohe pH-Empfindlichkeit der inerteren Y-DTPA-Spezies. Beträgt die physikalische Halbwertzeit von Y-DTPA^B bei pH 7,4 noch etwa 30 Stunden, so liegt sie bei pH 5,0 bereits bei nurmehr 12 Minuten.

Die DTPA-Komplexe der Lanthanoide dissoziieren unter physiologischen Bedingungen neben der durch endogene Metallionen induzierten Dissoziation bekanntermaßen vorwiegend durch protonen-assistierte Prozesse. So ist bei Auftragung der aus einem Fit (pseudo-)erster Ordnung erhaltenen Ratenkonstanten gegen die Protonen-Konzentration in der Tat ein linearer Zusammenhang entsprechend Gl. [50] zu erkennen ($R^2_{yy}(x) > 0,99636$). Aus der Fit-Geraden geht hervor, dass die spontane Dissoziation – gekennzeichnet durch $k_{D0} = 3,6\cdot10^{-6} \pm 0,2\cdot10^{-6}$ – im untersuchten pH-Bereich von der protonenassistierten Dissoziation mit einer k_{D1} von $111 \pm 9 \text{ M}^{-1}\cdot\text{s}^{-1}$ übertroffen wird. Dieses Ergebnis zeigt gute Übereinstimmung mit einer von MCMURRY et al. mittels Stopped-flow Spektrophotometrie zu 144 $M^{-1}\cdot\text{s}^{-1}$ bestimmten k_{D1} (0,2 M NaClO₄, 25°C)^[165].

	uen 1 115 uer Dissoziuito		n I IJKL-Deineo.
рН	c (Y-DTPA _B)	$k_{D,obs(B)}$	$R^{2}_{yy}(x)$
	[10 ⁻⁶ mol/L]	[S ⁻¹]	
7,4	$0,580 \pm 0,011$	$5,9.10^{-6} \pm 0,3.10^{-6}$	0,9957959
7,0	$0,490 \pm 0,005$	$1,23.10^{-5} \pm 0,06.10^{-5}$	0,9980169
6,0	$0,374 \pm 0,012$	$1,2.10^{-4} \pm 0,1.10^{-4}$	0,9791664
5,0	$0,358 \pm 0,017$	$1,1.10^{-3} \pm 0,1.10^{-3}$	0,9853498

 Tab. 22: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-DTPAB bei I=0,01 (NaCl),

 ermittelt aus den Fits der Dissoziationskurven im kontinuierlichen FISRE-Betrieb.

Zusammenfassend sind in den Dissoziationsmustern von Y-DTPA einige Parameter auszumachen, die sich nicht mit einer Anwendung von DTPA als bifunktionellen Chelator für Yttrium-basierte Radiopharmaka vereinbaren lassen. Bei physiologischem pH liegen etwa 22% des Komplexes in einer labilen Form vor, die bereits nach wenigen Sekunden vollständig dissoziiert. Nach einer Halbwertszeit von ⁹⁰Y (64,1 h) sind lediglich 20% des Komplexes intakt. Bei schneller Pharmakokinetik, Clearance und Verwendung von Nukliden mit geringer Halbwertszeit kann die radiopharmazeutische Anwendung von Seltenerdmetall-DTPA-Komplexen dennoch sinnvoll sein, zumal deren Bildung im Vergleich zu Komplexen mit zyklischen Chelatoren mit verhältnismäßig hohen Reaktionsgeschwindigkeiten erfolgt.

4.1.5. ⁹⁰Y-DOTATOC

4.1.5.1. Dissoziationskinetik von ⁹⁰Y-DOTATOC im kontinuierlichen FISRE-Betrieb

Abb. 39: pH-abhängige Dissoziation von Y-DOTATOC im kontinuierlichen FISRE-Betrieb {Tab. 79-82}.

Die Dissoziationsprofile des peptidgekoppelten Y-DOTA-Komplexes bei pH 5,0 und 6,0 können hervorragend $(R^{2}_{yy}(x))$ 0,9978 und $R^{2}_{yy}(x) >$ 0,9999) durch Exponentialfunktionen zweiter Ordnung nachgezeichnet werden. Bei pH 7,0 sowie 7,4 zeigt ein Fit (pseudo-) erster Ordnung gute Übereinstimmung. Die erhaltenen kinetischen Parameter haben mit Ausnahme der Spezieskonzentrationen allerdings geringe Aussagekraft, da die detektierte Dissoziation im Rahmen des experimentellen Fehlerbereichs liegt. Die Gesamtkonzentration der labilen Spezies steigt demzufolge mit sinkendem pH-Wert. Die aus den Fits ermittelte Summe der Konzentrationen beider Spezies ist ein Indiz für die vollständige Erfassung des eingesetzten Komplexes.

рН	c (Y-DOTATOCA)	kD,obs(A)	с (Y-DOTATOC _в)	kD,obs(B)	$R^{2}_{yy}(x)$
	[10 ⁻⁶ mol/L]	[S ⁻¹]	[10 ⁻⁶ mol/L]	[S ⁻¹]	
7,4	-	-	$0,7511 \pm 0,0003$	6,2·10 ⁻⁶ ±13·10 ⁻⁶	0,03063116
7,0	-	-	$0,7629 \pm 0,0005$	$7,7.10^{-5} \pm 4,5.10^{-5}$	0,9721373
6,0	$0,147 \pm 0,052$	$0,072 \pm 0,033$	$0,6115 \pm 0,0540$	$9,2.10^{-4} \pm 1,5.10^{-4}$	0,9999726
5,0	$0,250 \pm 0,022$	$0,098 \pm 0,014$	$0,5146 \pm 0,0236$	$6,0.10^{-4} \pm 8,6.10^{-4}$	0,9977981

 Tab. 23: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-DOTATOC bei I=0,01

 (NaCl), ermittelt aus den unabhängigen Fits der Dissoziationskurven.

Die in dem kontinuierlichen FISRE-Versuch ermittelten Konzentrationsverhältnisse der zwei detektierten Spezies – $20(\pm7)\%$: $82(\pm7)\%$ - sind ein Indiz für die Beteiligung der cis-/trans-Konformationsisomere am Dissoziationsprozess, wonach Y-DOTATOC_A dem cis- und Y-DOTATOC_B dem trans-Isomer entspräche (Kapitel 2.4.2.3.)^[192].

Abb. 40: pH-abhängige Speziation von Y-DOTATOC, ermittelt im kontinuierlichen FISRE-Betrieb.

Abb. 41: Beobachtete Dissoziationsratenkonstanten der Y-DOTATOC-Spezies in Abhängigkeit von der Protonenkonzentration.

4.1.5.2. Dissoziationskinetik von ⁹⁰Y-DOTATOC im diskontinuierlichen FISRE-Betrieb

Zuvor durchgeführte *in vivo*-Experimente und Studien der Serumstabilität spechen ⁹⁰Y-DOTATOC eine bemerkenswerte kinetische Stabilität zu. Diese Schlussfolgerung wird durch Untersuchung der Langzeitdissoziation, veranschaulicht durch Abb. 42, bekräftigt. Während bei physiologischem pH über 27 Tage hinweg keine signifikanten Konzentrationen an freiem ⁹⁰Y³⁺ gemessen wurden, bleiben bei pH 7,0 in diesem Zeitraum über 95% des Komplexes intakt. Dieser Sachverhalt ist in Einklang mit der Beobachtung von MOI et al., dass über 18 Tage hinweg weniger als 0,5% Y³⁺ aus Y-DOTA-ähnlichen Komplexen in Serum freigesetzt werden^[211]. Wesentlich höhere Dissoziation wird bei pH Wert 5,0 und 6,0 beobachtet.

Abb. 42: pH-abhängige Dissoziation von Y-DOTATOC im diskontinuierlichen FISRE-Betrieb {Tab. 83-86}.

Die Auftragung der ermittelten k_{obs} gegen die Protonenkonzentration kann mit Hilfe einer linearen Gleichung gemäß Gl. [51] gut nachgezeichnet werden ($R^{2}_{yy}(x)=0,9904$).

Tab. 24: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten von Y-DOTATOC bei I=0,01(NaCl), ermittelt aus den unabhängigen Fits der Dissoziationskurven im diskontinuierlichen FISRE-Betrieb.

рН	с (Y-DOTATOCв)	KD,obs(B)	$R^{2}_{yy}(x)$
	[10 ⁻⁶ mol/L]	$[S^{-1}]$	
7,4	$0,750 \pm 0,001$	$5 \cdot 10^{-10} \pm 13 \cdot 10^{-9}$	0,07070221
7,0	$0,737 \pm 0,002$	$8.10^{-10} \pm 19.10^{-10}$	0,1199831
6,0	$0,561 \pm 0,002$	$5,3\cdot10^{-9}\pm0,3\cdot10^{-9}$	0,9891253
5,0	$0,502 \pm 0,001$	3,3·10 ⁻⁸ ± 0,2·10 ⁻⁸	0,9930298

4.1.6. Vergleich der Dissoziationskinetiken der ⁹⁰Y-Polyaminocarboxylate

Die stets zu etwa 7,5·10⁻⁷ mol/L ermittelte Summe der Konzentrationen einzelner Y-DOTA-, Y-EDTA-, Y-DTPA- und Y-DOTATOC-Spezies zeigt, dass die eingesetzte Konzentration quantitativ erfasst wird und somit der im kontinuierlichen FISRE- Modus erfasste Detektionszeitraum von 0,6 s bis 60 s hervorragend geeignet ist, um die Kurzzeitdissoziation der genannten Komplexe zu untersuchen. Die Dissoziation Yttrium-Polyaminocarboxylate sämtlicher ist erwartungsgemäß durch eine ausgeprägte pH-Abhängigkeit gekennzeichnet. Dieses spiegelt sich sowohl in den beobachteten Reaktionsraten kobs als auch in der kinetischen Speziation wieder, sofern ein Fit zweiter Ordnung angewendet wurde. Die Auswertung der Fits von Y-DOTA, Y-EDTA und Y-DOTATOC zeigt, dass der Anteil der labileren Spezies mit sinkendem pH-Wert zunimmt. Die im kontinuierlichen FISRE-Experiment ermittelten Ratenkonstanten kobs umfassen einen Detektionsbereich von 6·10⁻⁶ s⁻¹ (Y-DOTATOC_B) bis 1,8 s⁻¹ (Y-DTPA_A). Sind die Ratenkonstanten allerdings kleiner als 1·10⁻³ s⁻¹, wie bei den inerteren Spezies insbesondere bei den pH-Werten 7,0 und 7,4 der Fall, wird die Standardabweichung durch die Summe der üblichen experimentellen Fehler überschritten, weshalb nurmehr ungenaue numerische Angaben möglich sind. Der diskontinuierliche FISRE-Modus ist weitaus besser für die Erfassung der inerteren Spezies geeignet und liefert bei analoger Zusammensetzung der Proben eine exakte Fortführung der im kontinuierlichen Experiment erhaltenen Dissoziationsmuster.

Obwohl bei Betrachtung der einzelnen Spezies bei der labileren Y-DTPA-Spezies Y-DTPAA die höchste beobachtete Ratenkonstante gemessen wird, ist tendenziell zu beobachten, dass die kinetische Labilität mit steigender Dentizität des Komplexliganden abnimmt. So ist der Yttriumkomplex des hexadentaten EDTA im vergleich zu jenen der oktadentaten Liganden DTPA, DOTA und DOTATOC durch eine deutlich höhere Gesamtdissoziation gekennzeichnet. Die kinetische Labilität verringert sich durch die zyklische Anordnung des Liganden, erkennbar an den Dissoziationsmustern von Y-DTPA und Y-DOTA. Der Vergleich von Y-DOTA und Y-DOTATOC zeigt ferner, dass die Peptidkopplung in diesem Fall mit einem zusätzlichen Stabilitätsgewinn einhergeht. Hinsichtlich der kinetischen Stabilität ist in dieser Versuchsgruppe somit das Radiopharmakon 90Y-DOTATOC unübertroffen. Im Hinblick auf die spontane und protonen-assistierte Dissoziation wird dieser Sachverhalt auch durch einen Vergleich der pH-abhängigen beobachteten

Ratenkonstanten kobs der jeweils inerteren Spezies wiedergegeben, veranschaulicht durch Abb. 43.

Abb. **43**: Beobachtete Dissoziationsratenkonstanten der jeweils inerten Spezies der Yttrium(III)polyaminocarboxylate in Abhängigkeit von pH bzw. Protonenkonzentration.

Tab. 25 stellt die Geschwindigkeitskonstanten der spontanen und protonenassistierten Dissoziation gegenüber.

Komplexspezies	k_{D0}	k _{D1}	$R^{2}_{yy}(x)$
	[S ⁻¹]	[L·mol ⁻¹ ·s ⁻¹]	
Y-EDTA	1,37·10 ⁻³ ± 0,08·10 ⁻³	$1,76 \cdot 10^4 \pm 0,08 \cdot 10^4$	0,96628
Y-DTPA _B	3,81·10 ⁻⁶ ± 0,15·10 ⁻⁶	$1,11.10^2 \pm 0,10.10^2$	0,99636
Y-DOTA _B	7,40·10 ⁻⁸ ± 0,20·10 ⁻⁸	$2,5.10^{-2} \pm 0,1.10^{-3}$	0,99982
Y-DOTATOC ^B	$9,1.10^{-10} \pm 6,2.10^{-10}$	$3,27 \cdot 10^{-3} \pm 0,02 \cdot 10^{-3}$	0,99037

 Tab. 25: Ratenkonstanten der spontanen und protonen-assistierten Dissoziation der Yttrium(III) polyaminocarboxylate und Bestimmtheitsmaße der zugrundeliegenden linearen Fit-Gleichungen.

Gemessen an den ermittelten Dissoziationskonstanten k_{D0} und k_{D1} ergibt sich folgende kinetische Stabilitätsreihenfolge: Y-DOTATOC > Y-DOTA > Y-DTPA > Y-

EDTA. Diese Reihenfolge findet man mit Ausnahme von Y-DOTATOC, für welches bisher kein logK ermittelt wurde, für die thermodynamischen Gleichgewichtskonstanten wieder: $\log K_{Y-DOTA} = 24,0 > \log K_{Y-DTPA} = 22,05 > \log K_{Y-EDTA} = 18,08$ ^[150].

4.2. ¹⁶¹Tb-Polyaminocarboxylate

4.2.1. Vorversuche

Abb. 44. CHEAQSPro-Berechnung der Konzentrationsanteile der Terbiumspezies im pH-Bereich 5-9 (I=0,1 NaCl; CO2-Partialdruck p=35,97 Pa).

CHEAQSPro-Speziationsberechnungen zeigen, dass im Gegensatz zu den Salzen des Yttriums Präzipitationen von Tb₂(CO₃)₃ und Tb(OH)₃ unter Versuchsbedingungen bei pH > 10 zu erwarten sind, das Dicarbonat Tb(CO₃)₂⁻ allerdings bereits bei pH > 7,0 einen signifikanten Anteil der Terbium-Gesamtkonzentration stellt. Vorausgesetzt, dass das thermodynamische Gleichgewicht sich nach erfolgter Dissoziation einstellt, beträgt die theoretisch mittels Chelex-Extraktion erfassbare Terbiumkonzentration demnach unter physiologischen Bedingungen lediglich 93%, da etwa 7% der Terbiumspezies in anionischer Form vorliegen. In Analogie zu den Experimenten mit Yttrium(III)-polyaminocarboxylaten wurden die Tb-DOTA-Peptide im pH-Bereich von 5,0 bis 7,4 untersucht.

4.2.1.1. Empirische Analyse der Wechselwirkung des Terbiums mit

Abb. **45:** *Terbium-Eluatkonzentrationen in Abhängigkeit von der Chelex-Kontaktzeit bei pH 7,4 (HEPES), 6,0* (MES), 5.0 (Piperazin) und 4,5 (N-Methylpiperazin) {Tab. 87-90}.

Die Elutionsprofile unter Verwendung chelatligandfreier Proben zeigen eine nahezu quantitative Adsorption freier Tb-Ionen (>99%) ab 1 s Chelex-Kontaktzeit bzw. Flussraten kleiner als 6 mL/min unabhängig von Puffersubstanz oder pH (Abb. 45). Wechselwirkungen zwischen Pufferverbindungen und freien Tb-Ionen sind aus den vorliegenden Ergebnissen nicht auszumachen. Entgegen der Speziationsberechnungen wird zudem bei physiologischem pH 7,4 keine Adsorptionsminderung beobachtet. Ein Grund hierfür wäre eine unter Versuchsbedingungen unvollständige Einstellung des thermodynamischen Gleichgewichts. Eine Proben-Inkubationszeit von 18 h (Raumtemperatur) deutet allerdings darauf hin, dass die Bildung von Tb(CO₃)² in der Realität erst ab pH-Werten größer 7,4 bemerkbar macht, möglicherweise aufgrund eines lokal verringerten CO₂-Partialdrucks relativ zum atmosphärischen Standard-Partialdruck (35,97 Pa).

4.2.1.2. Einfluss verschiedener M/L-Verhältnisse auf den kontinuierlichen FISRE-Modus

Abb. 46: Dissoziierte Fraktionen der Terbiumgesamtkonzentration in Abhängigkeit von $c_{Tb^{3+}}/c_{L^{n-}}$ (pH 6,0) {*Tab.* 91-94}.

Abb. 46 stellt den dissoziierten Anteil der Terbium-Spezies nach 60 s Kontaktzeit bei pH 6,0 (MES-Puffer, I=0,1 NaCl) dar. Analog zu den zyklisch koordinierten Yttriumkomplexen Y-DOTA und Y-DOTATOC wird eine moderate Abnahme der relativen dissoziierten Fraktion ab einem $c_{Tb^{3+}}/c_{L^n}$ --Verhältnis von etwa 0,8 beobachtet - ein zusätzlicher Hinweis für die Abschirmung dissoziierter freier Metallionenionen vor dem extrahierenden Agens durch den zyklischen DOTA-Liganden. Das Ausmaße der dissoziierten Fraktionen bei $c_{Tb^{3+}}/c_{L^n}$ < 0,8 deuten auf eine Zunahme der kinetischen Stabilität von Tb-IS20I < Tb-DOTATATE < Tb-DOTANOC \approx Tb-DOTATOC hin. Ein detaillierteres Bild hierzu liefert der kontinuierliche FISRE-Versuch.

4.2.2. Dissoziationskinetiken der ¹⁶¹Tb-Polyaminocarboxylate im kontinuierlichen FISRE-Betrieb

Abb. 47: pH-abhängige Dissoziation der Terbium(III)-polyaminocarboxylate im kontinuierlichen FISRE-Betrieb {Tab. 95-98, 103-106, 111-114, 119-122}.

Abb. 47 stellt die Dissoziationsverläufe der Tb-DOTA-Peptide bei pH-Werten zwischen 5,0 und 7,4 dar (I=0,1 NaCl). Im neutralen Bereich nahezu identisch, weisen diese bei pH 5,0 und 6,0 signifikante Unterschiede auf und bestätigen die im Vorversuch gefundene Stabilitätsreihenfolge.

Fits erster Ordnung beschreiben die Dissoziationsverläufe nur unzureichend ($R^{2}_{yy}(x)$ zwischen 0,35 und 0,65), jene zweiter Ordnung hingegen hervorragend (Tab. 26).

Komplex	pН	c (Tb-LA)	kD,obs(A)	c (Tb-L _B)	kD,obs(B)	$R^{2}_{yy}(x)$
		[10 ⁻⁶ mol/L]	[S ⁻¹]	[10 ⁻⁶ mol/L]	[S ⁻¹]	
	7,4	$0,028 \pm 0,039$	1,73·10 ⁻¹ ± 0,55·10 ⁻¹	$0,730 \pm 0,004$	$6 \cdot 10^{-5} \pm 13 \cdot 10^{-5}$	0,975656
Tb-	7,0	$0,042 \pm 0,010$	6,92·10 ⁻¹ ± 0,32·10 ⁻¹	$0,722 \pm 0,003$	8·10 ⁻⁵ ± 13·10 ⁻⁵	0,924338
DOTATOC	6,0	0,265 ± 0,013	6,95·10 ⁻¹ ± 0,65·10 ⁻¹	$0,514 \pm 0,004$	2·10 ⁻⁴ ± 2·10 ⁻⁴	0,996418
	5,0	0,345 ± 0,016	9,03·10 ⁻¹ ± 0,66·10 ⁻¹	$0,452 \pm 0,003$	$1.10^{-4} \pm 2.10^{-4}$	0,997652
	7,4	$0,027 \pm 0,002$	2,46·10 ⁻¹ ± 0,57·10 ⁻¹	$0,728 \pm 0,002$	$1.10^{-5} \pm 8.10^{-5}$	0,981301
Tb-	7,0	$0,061 \pm 0,002$	4,24·10 ⁻¹ ± 0,44·10 ⁻¹	$0,703 \pm 0,002$	1·10 ⁻⁴ ± 6·10 ⁻⁵	0,996100
DOTATATE	6,0	$0,299 \pm 0,002$	6,59·10 ⁻¹ ± 0,10·10 ⁻¹	$0,451 \pm 0,001$	$1.10^{-4} \pm 5.10^{-5}$	0,999904
	5,0	$0,353 \pm 0,004$	8,93·10 ⁻¹ ± 0,16·10 ⁻¹	$0,398 \pm 0,001$	6·10 ⁻⁵ ± 7·10 ⁻⁵	0,999854
	7,4	$0,038 \pm 0,004$	1,87·10 ⁻¹ ± 0,45·10 ⁻¹	$0,722 \pm 0,004$	$1.10^{-4} \pm 1.10^{-4}$	0,985736
Tb-	7,0	$0,055 \pm 0,003$	3.65·10 ⁻¹ ± 0,52·10 ⁻¹	$0,711 \pm 0,002$	1·10 ⁻⁴ ± 0,8·10 ⁻⁴	0,992583
DOTANOC	6,0	$0,269 \pm 0,006$	5,17·10 ⁻¹ ± 0,31·10 ⁻¹	$0,500 \pm 0,004$	$2.10^{-4} \pm 2.10^{-4}$	0,998609
	5,0	$0,481 \pm 0,001$	7,57·10 ⁻¹ ± 0,24·10 ⁻¹	$0,231 \pm 0,001$	2·10 ⁻⁴ ± 1·10 ⁻⁴	0,999595
	7,4	$0,060 \pm 0,002$	2,38·10 ⁻¹ ± 0,25·10 ⁻¹	$0,702 \pm 0,002$	$1.10^{-5} \pm 1.10^{-5}$	0,996086
	7,0	$0,080 \pm 0,004$	4,82·10 ⁻¹ ± 0,60·10 ⁻¹	0,693 ± 0,002	$1.10^{-4} \pm 1.10^{-4}$	0,994093
I D-15201	6,0	0,355 ± 0,004	6,26·10 ⁻¹ ± 0,14·10 ⁻¹	0,410 ± 0,001	1·10 ⁻⁴ ± 1·10 ⁻⁴	0,999804
	5,0	$0,414 \pm 0,006$	8,37·10 ⁻¹ ± 0,20·10 ⁻¹	0,353 ± 0,001	2·10 ⁻⁴ ± 2·10 ⁻⁴	0,999761

 Tab. 26: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten der Tb(III)-DOTA-Peptide bei

 I=0,1 (NaCl), ermittelt aus den Dissoziationskurven-Fits zweiter Ordnung im kontinuierlichen FISRE-Betrieb.

Die Annahme zweier unabhängig dissoziierender Spezies resultiert in gegenläufigen Trends in deren Konzentration. Wie aus Abb. 48 ersichtlich, nimmt die Konzentration der vergleichsweise labilen Spezies im thermodynamischen Gleichgewicht mit steigender Protonenkonzentration zu. Die Summen der Konzentrationen $c(Tb-L_A)$ und $c(Tb-L_B)$ sind mit der Annahme einer quantitativen Komplexbildung im thermodynamischen Gleichgewicht konform.

Abb. 48: pH-abhängige Speziation der Terbium(III)-polyaminocarboxylate, ermittelt im kontinuierlichen FISRE-Betrieb mit Hilfe eines unabhängigen Fits zweiter Ordnung.

Bei Betrachtung der Dissoziationsratenkonstanten der labileren Spezies k_{D,obs(A)} wird deutlich, dass sowohl Unterschiede in der Speziation als auch in kinetischen Ratenkonstanten für Abweichungen der Dissoziationsprofile verantwortlich sind. So beträgt der Anteil der labilen Spezies an der Gesamtkonzentration des Komplexes im Falle von Tb-IS20I 54,0%, während er bei Tb-DOTANOC 67,6% einnimmt. Dennoch dissoziieren im Versuchszeitraum mehr Tb-IS20I- als Tb-DOTANOC-Komplexe aufgrund höherer k_{D,obs(A)} (Abb. 49).

Die im kontinuierlichen FISRE-Versuch ermittelten Dissoziationsratenkonstanten der jeweils inerteren Spezies k_{D,obs(B)} sind mit sehr hohen Standardabweichungen behaftet und können durch Batch-FISRE mit höherer Genauigkeit wiedergegeben werden.

Abb. 49: Beobachtete Dissoziationsratenkonstanten der jeweils labileren Spezies der Terbium(III)polyaminocarboxylate in Abhängigkeit von der Protonenkonzentration.

4.2.3. Dissoziationskinetiken der ¹⁶¹Tb-Polyaminocarboxylate im diskontinuierlichen FISRE-Betrieb

Die Langzeitdissoziation der ¹⁶¹Tb-markierten DOTA-Peptide wurde in einem Zeitraum von 60 s bis 1632 h überwacht. Die nach 60 s ermittelten Tb-Konzentrationen im Eluat stimmen gut mit den im kontinuierlichen FISRE-Versuch ermittelten Konzentrationen nach 60 s Chelex-Kontaktzeit überein. Abb. 50 gibt die pH-abhängigen Tb-Eluatkonzentrationen und Fits (pseudo-) erster Ordnung wieder. Die kinetische Stabilität der Tb-DOTA-Peptide bei physiologischem pH übertrifft sämtliche in der vorliegenden Arbeit studierten Verbindungen. So dissoziieren innerhalb von 68 Tagen - entsprechend etwa 10 Halbwertszeiten von ¹⁶¹Tb - lediglich 7,6 ± 0,6 % der Tb-DOTATOC-, 8,6 ± 0,6 % der Tb-DOTATATE-, 8,5 ± 0,7 % der Tb-DOTANOC- und 10,4 ± 1,2 % der Tb-IS20I-Komplexe.

Abb. 50: pH-abhängige Dissoziation der Terbium(III)-polyaminocarboxylate im diskontinuierlichen FISRE-Betrieb {*Tab.* 99-102, 107-110, 115-118, 123-126}.

Die Ähnlichkeit der Dissoziationsmuster und der Daten der kinetischen Speziation (Tab. 26) ist ein Indiz für die Tatsache, dass die kinetische Stabilität der Komplexe vorwiegend von der Wechselwirkung zwischen Metallion und Chelator geprägt ist und Substitutionen an der Peptidkette nur sehr geringen Einfluß auf die Dissoziation ausüben. So resultiert selbst die DOTA-Konjugation eines Nicht-Oktreotids, wie dem dimeren cyclischen RGD-Peptid im Falle von IS20I, lediglich in einer geringfügigen Änderung der kinetischen Speziation.

Tab. 26: pH-abhängige Speziation und beobachtete Dissoziationsratenkonstanten der Tb-DOTA-Peptide bei I=0,1
(NaCl) sowie die Bestimmtheitsmaße der zugrundeliegenden Fits erster Ordnung im diskontinuierlichen FISRE-
Betrieb.

Komplex	pН	c (Tb-L _B)	kD,obs(B)	$R^{2}_{yy}(x)$
		[10 ⁻⁶ mol/L]	[S ⁻¹]	
	7,4	$0,729 \pm 0,001$	$7,96 \cdot 10^{-9} \pm 0,24 \cdot 10^{-9}$	0,976072
Tb-	7,0	0,721 ± 0,001	1,24·10 ⁻⁸ ± 0,06·10 ⁻⁸	0,944552
DOTATOC	6,0	$0,510 \pm 0,001$	4,23·10 ⁻⁸ ± 0,04·10 ⁻⁸	0,997863
	5,0	$0,450 \pm 0,001$	3,23·10 ⁻⁷ ± 0,01·10 ⁻⁷	0,999857
	7,4	$0,725 \pm 0,001$	$9,15\cdot10^{-9}\pm0,20\cdot10^{-9}$	0,987583
Tb-	7,0	$0,702 \pm 0,001$	1,44·10 ⁻⁸ ± 0,02·10 ⁻⁸	0,993958
DOTATATE	6,0	$0,450 \pm 0,001$	5,01·10 ⁻⁸ ± 0,03·10 ⁻⁸	0,999294
	5,0	0,398 ± 0,001	3,50·10 ⁻⁷ ± 0,01·10 ⁻⁷	0,999865
	7,4	$0,720 \pm 0,001$	6,95·10 ⁻⁹ ± 0,36·10 ⁻⁹	0,933713
Tb-	7,0	$0,711 \pm 0,001$	1,05·10 ⁻⁸ ± 0,04·10 ⁻⁸	0,958252
DOTANOC	6,0	$0,502 \pm 0,001$	4,09·10 ⁻⁸ ± 0,08·10 ⁻⁸	0,990182
	5,0	$0,481 \pm 0,001$	2,98·10 ⁻⁷ ± 0,01·10 ⁻⁷	0,999582
	7,4	$0,702 \pm 0,001$	$8,40\cdot10^{-9}\pm0,60\cdot10^{-9}$	0,880588
	7,0	$0,692 \pm 0,001$	1,12·10 ⁻⁸ ± 0,06·10 ⁻⁸	0,938138
10-15201	6,0	$0,411 \pm 0,001$	4,72·10 ⁻⁸ ± 0,01·10 ⁻⁸	0,985729
	5,0	0,352 ± 0,001	3,24·10 ⁻⁷ ± 0,03·10 ⁻⁷	0,998758

Eine Auftragung der beobachteten Dissoziationsratenkonstanten gegen die Protonenkonzentration spiegelt den linearen Zusammenhang der Größen wieder (Abb. 51). Die auf diese Weise bestimmten Ratenkonstanten sind in Tab. 28 angegeben.

Die pH-Empfindlichkeit der Komplexe verzeichnet einen geringfügigen Anstieg entlang der Reihe Tb-DOTANOC^B < Tb-DOTATOC^B ~ Tb-IS20I^B < Tb-DOTATATE^B. Unterhalb eines pH-Wertes von 6,6 verläuft die Komplexdissoziation vorwiegend protonen-assistiert, während im neutralen und basischen pH-Bereich der Anteil der spontanen Dissoziation überwiegt.

Abb. **51**: Beobachtete Dissoziationsratenkonstanten der jeweils inerten Spezies der Terbium(III)polyaminocarboxylate in Abhängigkeit von der Protonenkonzentration mit zugehörigen linearen Fits.

Komplexspezies	kD0	k _{D1}	$R^{2}_{yy}(x)$
	[S ⁻¹]	[L·mol ⁻¹ ·s ⁻¹]	
Tb-DOTATOC ^B	$7,89\cdot10^{-9}\pm0,20\cdot10^{-9}$	$3,17 \cdot 10^{-2} \pm 0,01 \cdot 10^{-2}$	0,99888
Tb-DOTATATE ^B	$1,06.10^{-8} \pm 0,01.10^{-8}$	$3,46 \cdot 10^{-2} \pm 0,01 \cdot 10^{-2}$	0,99266
Tb-DOTANOC ^B	$7,03\cdot10^{-9}\pm0,27\cdot10^{-9}$	$2,93 \cdot 10^{-2} \pm 0,01 \cdot 10^{-2}$	0,99817
Tb-IS20I _B	8,44·10 ⁻⁹ ± 0,40·10 ⁻⁹	$3,20.10^{-2} \pm 0,03.10^{-2}$	0,99498
Y-DOTATOC ^{B*}	$9,1.10^{-10} \pm 6,2.10^{-10}$	$3,27 \cdot 10^{-3} \pm 0,02 \cdot 10^{-3}$	0,99037

Tab. 28: Ratenkonstanten der spontanen und protonen-assistierten Dissoziation der M-DOTA-Peptide undBestimmtheitsmaße der zugrundeliegenden linearen Fit-Gleichungen. (* siehe Kapitel 4.1.5.2)

4.2.4. Vergleich der Dissoziationskinetiken von ¹⁶¹Tb- mit ⁹⁰Y-DOTATOC

Aus dem kontinuierlichen Versuchen an den DOTATOC-Komplexen beider Seltenerdmetalle geht hervor, dass die Speziationskinetiken bei Chelex-Kontaktzeiten unter 60 s prinzipiell vergleichbar sind. Unterschiede werden vorrangig durch die durchweg höhere Fraktion der labileren Spezies M-DOTATOCA und der um ca. Faktor 10 erhöhten Ratenkonstanten k_{D,obs(A)} bei ¹⁶¹Tb-DOTATOC hervorgerufen. Das Zusammenwirken dieser Parameter resultiert in einer Zunahme der dissoziierten Fraktion um etwa 5-10% bei 161 Tb-DOTATOC (pH \leq 7).

Wie aus den Batch-FISRE-Studien zu entnehmen ist, bekräftigen zudem die Ratenkonstanten k_{D,obs(B)}, k_{D0} und k_{D1} diese Tendenz und sind im Falle von ¹⁶¹Tb-DOTATOC um eine Größenordnung höher als jene des ⁹⁰Y-Komplexes. So sind 624 h nach Tracerzugabe bei pH 5,0 ca. 71% des ¹⁶¹Tb-Komplexes und lediglich ca. 38% des ⁹⁰Y-Komplexes dissoziiert.

Ausgehend von literaturbekannten thermodynamischen Gleichgewichtskonstanten für Tb-DOTA (28,6 ± 0 [I=1,0 (NaCl), 20°C [212]], 24,7 ± 0,1 [I=0,1 (KCl), 25°C [213]) und Y-DOTA (24,9 ± 0,2 [I=0,1 (Me₄NNO₃), 25°C^[178]], 24,3 ± 1 [I=0,1 (KCl), 25°C^[214]) erscheint das Ausmaß der Unterschiede der kinetischen Stabilität nicht überraschend und ist vermutlich vorwiegend auf die Differenz der Ionenradien ($r(Tb^{3+}) = 92,3 \text{ pm}; r(Y^{3+}) =$ 89,3 pm) zurückzuführen^[215]. In diesem Zusammenhang gilt es in Markierungsversuchen zu prüfen, ob die Bildungsgeschwindigkeit des Tb-DOTA(TOC)-Komplexes gemäß Gl. [20] im Vergleich zur Y-DOTA(TOC)-Assoziation erhöht ist.

4.3. ¹⁸⁸Re(I)(CO)₃(his)-basierte Komplexe

4.3.1. Vorversuche

Im Vorfeld der kinetischen Messungen wurden die Rahmenbedingungen der FISRE-Versuche im Hinblick auf die Synthese der *fac*-[⁽¹⁸⁸⁾Re(CO)₃(H₂O)₃]⁺-Spezies, deren Affinität und Austauschkinetik an Chelex geprüft.

Die Durchführung sämtlicher literaturbekannter Synthesen für *fac*-[⁽¹⁸⁸⁾Re(CO)₃(H₂O)₃]⁺ (B-D) lieferte lediglich unzureichende Ausbeuten (Tab. 29). Vor allem Synthesevarianten mit Verwendung von Na₂[H₂BCO₃] weichen hinsichtlich ihrer Ausbeute stark von den von SCHIBLI et al. und PARK et al. genannten Werten ab (Methode C und D)^{[199],[201]}. Zur Optimierung wurde die Synthese deshalb unter Verwendung von sowohl CO als auch BER durchgeführt (Methode E), entsprechend Tab. 29 mit erheblich verbesserter Ausbeute.

Methode	Ausbeute [%]		
	Literatur	vorliegende Arbeit	
А	_	-	
В	85 ± 5	29 - 75	
С	80 ± 5	0 - 33	
D	97	51 - 59	
Е	-	87 - 98	

Tab. 29: Vergleich der Produktausbeuten der fac-[(188)Re(CO)3(H2O)3]+-Synthese.

Die Tendenz der *fac*-[⁽¹⁸⁸⁾Re(CO)₃(H₂O)₃]⁺-Spezies zur Deprotonierung und Oligomerisierung und der damit verbundenen Bildung ungeladener Spezies schränkt die Quantität der Chelex-Adsorption der Rhenium-Spezies potentiell ein. Diesem Sachverhalt wurde durch eine Prüfung der Batch-Adsorption in Abhängigkeit vom pH-Wert nachgegangen (Abb. 52).

Abb. 52: Batch-Retention von fac-[(188)Re(CO)₃]+ an Chelex in Abhängigkeit vom pH {Tab. 127}.

Titrationsexperimenten von EGLI et al. zufolge tritt ab pH 5 die Bildung des trinuklearen Hydrolyseprodukts $[(CO)_9(\mu-HO)_3(\mu_3-HO)Re_3]$ ein (das deprotonierte Intermediat *fac*-[Re(CO)_3(OH)(H_2O)_2] macht im thermodynamischen Gleichgewicht bei diesen Bedingungen weniger als 1% der Rhenium-Gesamtkonzentration aus (Abb.18))^[197]. Dieser Effekt macht sich unmittelbar in der Chelex-Adsorption bemerkbar, wie aus Abb. 52 ersichtlich. Bei pH 5,0 ist ein Maximum der Adsorption zu verzeichnen, wobei diese zu niedrigeren pH-Werten hin sinkt - mutmaßlich aufgrund der verminderten Ionenaustauschaktivität der Chelex-Iminodiacetatgruppen bei niedrigem pH^[119]. Folglich ist eine pH-abhängige FISRE-Studie von ¹⁸⁸Re(CO)₃(his) und Derivaten mit Chelex nicht ohne Weiteres möglich. Die Untersuchung der Kinetik dieser Komplexe beschränkt sich daher auf Messungen bei pH 5,0.

Die Ergebnisse der kontaktzeitabhängigen Extraktion mit ligandenfreien Proben sind in Abb. 53 dargestellt. Während bei 0,6 s Chelex-Kontaktzeit etwa 2,7% der eingesetzten Rheniumkonzentration im Eluat wiedergefunden wird, übersteigt die Rhenium-Adsorption ab 4 s Chelex-Kontaktzeit ($\dot{V} = 1,5$ mL/min) 99% der Rhenium-Gesamtkonzentration. Einflüsse etwaiger Wechselwirkungen zwischen *fac*- [⁽¹⁸⁸⁾Re(CO)₃(H₂O)₃]⁺ und Piperazin sowie sonstiger Verunreinigungen sind folglich unter den gegebenen Versuchsbedingungen zu vernachlässigen.

Abb. 53: Rhenium-Eluatkonzentrationen in Abhängigkeit von der Chelex-Kontaktzeit {Tab. 128}.

4.3.2. Dissoziationskinetiken der ¹⁸⁸Re-Tricarbonyl-Komplexe

Die Anwendung des FISRE-Experiments im kontinuierlichen Betrieb resultiert in einer quantitativen Wiederfindung der Re(I)-Spezies im Eluat. Im Rahmen einer Chelex-Kontaktzeit von 0,6 s bis 60 s ist keinerlei Dissoziation messbar, womit ferner die Abwesenheit positiv geladener Spezies im thermodynamischen Gleichgewicht bestätigt wird.

Der Langzeit-Dissoziationsverlauf in einem experimentellen Zeitfenster von 60 s bis 162 h ist in Abb. 54 angegeben. Der Bestimmtheitsmaße der exponentiellen Fits erster Ordnung deuten auf die Dissoziation einer Spezies nach einer Reaktion (pseudo-) erster Ordnung hin (Tab. 30).

Abb. 54: *pH-abhängige Dissoziation der Rhenium*(I)-*Tricarbonyl-Komplexe im diskontinuierlichen FISRE-Betrieb* {*Tab.* 129-131}.

Die Erfassung der Komplexspezies ist angesichts einer Ausgangs-Ligandenkonzentration von 7·10⁻⁷ mol/L quantitativ. Im Hinblick auf die beobachteten Dissoziationsratenkonstanten sind geringe Unterschiede zwischen ⁽¹⁸⁸⁾Re(CO)₃(his) und den dipeptidischen Analoga auszumachen. Eine β -alanyl oder Glycyl-Substitution an der primären Aminogruppe bewirkt entsprechend Tab. 30 einen Gewinn an kinetischer Stabilität, was mutmaßlich auf eine verstärkte Abschirmung des Metallzentrums gegenüber potentiellen Reaktanten zurückzuführen ist.

 Tab. 30: Speziation und beobachtete Dissoziationsratenkonstanten der Re(CO)₃-Peptide (I=0,1 (NaCl), pH=5,0),

 ermittelt aus den Fits erster Ordnung im diskontinuierlichen FISRE-Betrieb sowie Bestimmtheitsmaße der

 zugrundeliegenden exponentiellen Fits erster Ordnung.

Komplex	c(Re(CO) ₃ L) [10 ⁻⁶ mol/L]	kD,obs [S ⁻¹]	$R^{2}_{yy}(x)$
Re(CO)₃(L-His)	$0,7049 \pm 0,0004$	$1,71 \cdot 10^{-6} \pm 0,01 \cdot 10^{-6}$	0,99995
Re(CO)3(L-His-Gly)	$0,6911 \pm 0,0027$	$1,28 \cdot 10^{-6} \pm 0,02 \cdot 10^{-6}$	0,99955
Re(CO)3(L-Carnosin)	$0,6930 \pm 0,0018$	$1,39.10^{-6} \pm 0,02.10^{-6}$	0,99701
Bisher sind keinerlei Dissoziationsratenkonstanten von Re(CO)₃-Peptiden literaturbekannt. Aus Studien der Serumstabilität an analogen Bis[imidazol-2yl]methylamin-Chelaten und deren Derivaten geht hervor, dass nach 24 h Inkubationszeit in Humanserum bei 37°C etwa 80 ± 4% und nach 48 h 63 ± 3% der Komplexe intakt sind. Im vorliegenden Versuch betragen diese Werte für Re(CO)₃(his) 86 ± 1% (24 h) und 74 ± 1% (48 h) und sind somit unterschiedlicher Versuchsanordnungen und -bedingungen zum Trotz vergleichbar^[203].

5

ZUSAMMENFASSUNG

SUMMARY

Zusammenfassung

Die zielspezifischer Metalloradiopharmaka Entwicklung neuartiger zu therapeutischen und diagnostischen Zwecken nimmt seit drei Dekaden einen hohen Stellenwert in der nuklearmedizinischen Grundlagenforschung ein. Die Tendenz zur individuellen, patientenabhängigen Krebsbehandlung und deren Diagnostik führte zu einer großen Vielfalt an Kombinationen von Radionukliden, bifunktionellen Chelatoren und zielspezifischen Biomolekülen und deren Derivaten. Während die thermodynamischen Eigenschaften applizierter Metallchelate in aller Regel bekannt sind, sind Informationen über deren kinetisches Verhalten und die zeitabhängige Komplexe radiopharmazeutischen Speziation der in Zusammensetzungen vorherrschenden Konzentrationen von 10-8-10-6 mol/L rar. Ferner gilt es, die Dissoziation von Radionuklidkomplexen und die damit verbundene Freisetzung freier radioaktiver Metallionen vor in vivo-Studien zu quantifizieren, die um Strahlenexposition von gesundem Gewebe zu vermeiden.

Die vorliegende Arbeit befasst sich mit der Anwendung, Modifikation und Diskussion der sogenannten Free-Ion Selective Radiotracer Extraction (FISRE)-Technik zur Bestimmung der kinetischen Stabilität und Speziation von Metallkomplexen mit radiopharmazeutischer Relevanz. FISRE beruht auf herkömmlicher Extraktion freier Metallionen in sorgfältig äquilibrierten wässrigen Lösungen unter überschüssigem Einsatz von Metallionen zur Vermeidung freier Ligandenionenkonzentration. Die Probenzusatz von korrespondierenden Radiotracer-Metallionen erlaubt die Quantifizierung der dissoziierten Komplexfraktion. Das ursprüngliche, kontinuierliche FISRE-Verfahren basiert auf Extraktionen in Abhängigkeit von Kontaktzeit zwischen Metallkomplex und stationärer Phase durch Variation der Probenflussrate. Ergänzend zu diesem Ansatz, der sich im Besonderen für kinetische Studien in einem experimentellen Zeitfenster zwischen 0,6 s und 60 s eignet, wurde ein Batch-Betrieb der FISRE-Technik entwickelt, der die experimentelle Zeitskala je nach Detektierbarkeit

bzw. Halbwertszeit des Radiotracers erweitert und daher bevorzugt dem Studium kinetisch inerter Spezies dient.

Ausgangspunkt der FISRE-Studie war die Untersuchung von Komplexen des Yttriums mit offenkettigen und zyklischen Polyaminocarboxylatliganden - ⁽⁹⁰⁾Y-EDTA, ⁽⁹⁰⁾Y-DTPA, (90)Y-DOTA ⁽⁹⁰⁾Y-DOTATOC, sowie einem zur Behandlung neuroendokriner Tumoren eingesetzten Radiopharmakon. Das Dissoziationsverhalten dieser Verbindungen wurde in einem pH-Bereich zwischen 5,0 (4,5 bei (90)Y-DOTA) und 7,0 und einem experimentellen Zeitfenster von 0,6 s bis zu 648 d untersucht. Mit Ausnahme von (90)Y-EDTA, welches nach einer Reaktion (pseudo-) erster Ordnung dissoziiert, tragen zwei kinetisch unterscheidbare Spezies zum Dissoziationsprofil bei. Die pH-abhängigen Geschwindigkeitskonstanten bestätigen die Abnahme der kinetischen Komplexlabilität mit steigender Ligandenzähnigkeit vom hexadentaten EDTA zum oktadentaten DTPA. Im Vergleich zu den offenkettigen Liganden bildet das zyklische DOTA inerte Yttriumspezies, wobei die Kopplung der [Tyr³]-Oktreotid-Einheit die kinetische Stabilität noch zusätzlich erhöht. Anhand von ⁽⁹⁰⁾Y-DOTA wurde gezeigt, dass eine Veränderung der Ionenstärke in einem Bereich von 0,002 bis 1,5 (NaCl) nur geringen Einfluss auf Geschwindigkeitskonstanten und die zeitabhängige Speziation ausübt. Extraktionsversuche mit chelatligandfreien Proben belegen empirisch, dass mögliche Wechselwirkungen zwischen Yttriumionen mit den verwendeten biologischen Puffersubstanzen und/oder Systemverunreinigungen vernachlässigt werden können. FISRE-Experimente unter Variation des Metall/Ligand-Verhältnisses lassen daneben darauf schließen, dass die zyklischen Liganden DOTA und DOTATOC im Gegensatz zu den offenkettigen Polyaminocarboxylaten freie Metallionen von der stationären Phase selbst bei überschüssigem Einsatz der Metallspezies abschirmen.

In einer zweiten Versuchsreihe wurden Komplexe von ⁽¹⁶¹⁾Tb mit DOTA-basierten Biokonjugaten DOTATOC, DOTATATE, DOTANOC und IS20I mittels FISRE untersucht, um die Auswirkungen von Biomolekül-Substitutionen verschiedenen Umfangs auf die Komplexdissoziation zu ermitteln. Innerhalb eines Messzeitraums von 0,6 s bis zu 68 d konnten lediglich geringe Unterschiede in Speziation und pHabhängigen Ratenkonstanten ausgemacht werden, wodurch bestätigt werden konnte, dass die kinetische Stabilität primär durch die Wechselwirkung zwischen Metallion und bifunktionellen Chelator geprägt wird.

Die Anwendbarkeit von FISRE an vergleichsweise komplexen Systemen wurde mit Hilfe von auf dem organometallischen Synthon [⁽¹⁸⁸⁾Re(CO)₃]⁺ basierenden Verbindungen geprüft. Als Liganden wurden das tridentate L-Histidin sowie die Dipeptide Glycyl-L-histidin und L-Carnosin (β -Alanyl-L-histidin) ausgewählt, um Substitutionseffekte an der primären Aminogruppe von L-Histidin zu studieren. Aufgrund von Hydrolysevorgängen der Spezies *fac*-[⁽¹⁸⁸⁾Re(H₂O)₃(CO)₃]⁺ im neutralen pH-Bereich erfolgt die Chelex-Adsorption der Spezies nicht quantitativ, weshalb sich die durchgeführten FISRE-Experimente auf pH 5,0 beschränken. Über einen experimentellen Zeitraum von 7 Tagen hinweg dissoziieren die Komplexe entsprechend Kinetiken (pseudo-) erster Ordnung. Eine geringfügig verbesserte kinetische Stabilität wird für die Dipeptid-Konjugate verzeichnet, was vermutlich auf die zusätzliche Abschirmung des Zentralions gegenüber kompetitiven Reaktanten durch die Seitenketten zurückzuführen ist.

FISRE erweist sich als geeignete Methode zur experimentellen Ermittlung von Dissoziationsratenkonstanten und zeitabhängiger Speziation unter der Bedingung, dass ein hohes Maß an Versuchskontrolle aufrechterhalten wird und beobachtete kinetische Ratenkonstanten mit Vorsicht interpretiert werden. Die Anwendung der Technik erscheint angesichts geringer Kosten für Ausstattung und Instandhaltung besonders für Laboratorien interessant, welche sich routinemäßig mit der Entwicklung neuartiger bifunktioneller Ligandensysteme beschäftigen. Die maßgebliche Beschränkung von FISRE beruht derzeit auf der experimentellen Voraussetzung eines quantitativen und zugleich selektiven Ionenaustauschs raschen, zwischen extrahierendem Agens und untersuchter Spezies.

Summary

The development of novel therapeutic and diagnostic target-specific metalloradiopharmaceuticals has been playing a vital role in the fundamental research in nuclear medicine through the last three decades. The tendency to customize cancer treatment and diagnosis led to a large variety of combinations of radionuclides, bifunctional chelators, target-specific biomolecules and modifications thereof. Whereas the thermodynamic properties of applied metal chelates are usually well-studied, information on their kinetic behavior and time-dependent speciation at tracer concentrations present in radiopharmaceutical compositions (10-8-10-6 mol/L) is scarce. Furthermore, in order to prevent significant radiation dose to healthy tissue, the dissociation of radiopharmaceuticals and the accompanying release of free radioactive metal ions has to be assessed and quantified accurately prior to *in vivo*-investigations.

This study comprises the application, modification and discussion of the so-called Free-Ion Selective Radiotracer Extraction (FISRE) technique in order to determine the kinetic stability and speciation of metal complexes of radiopharmaceutical relevance. FISRE is based upon common metal ion extractions in carefully equilibrated aqueous solutions with minimized free ligand concentrations and a surplus of free metal ions in the mobile phase and the resin renouncing competing extrinsic metal and ligand ions. Spiking the sample with the corresponding radiotracer allows a determination of dissociated complex fractions. The original continuous FISRE mode involves extractions with varying contact time between metal complex and extracting agent by adjusting the sample flow rate through the column. Supplementary to this approach, which is suitable for lability studies in a time frame between 0.6 s and 60 s, a batch FISRE mode was developed that extends the experimental time frame in dependence of the radiotracer half life and is therefore especially useful for studies of kinetically inert species.

Initially, the focus of investigations was laid on open-chain and cyclic polyaminocarboxylate complexes of yttrium ⁽⁹⁰⁾Y-EDTA, ⁽⁹⁰⁾Y-DTPA, ⁽⁹⁰⁾Y-DOTA as well as ⁽⁹⁰⁾Y- DOTATOC, a radiopharmaceutical for neuroendocrine tumor treatment. The dissociation behavior was studied in a pH range between 5.0 (4.5 in case of ⁽⁹⁰⁾Y-DOTA) and 7.4 and a time scale of 0.6 s to 648 h. Except for the (pseudo-) first order dissociation of ⁽⁹⁰⁾Y-EDTA, two kinetically distinguishable species were detected, which both contribute to the dissociation patterns. The acid-dependent rate constants confirm the decrease of kinetic lability of the complexes with higher ligand denticity from the hexadentate EDTA to the octadentate DTPA. In comparison with the open-chain ligands, the cyclic octadentate DOTA forms kinetically inert yttrium complexes. The coupling of a [Tyr3]-octreotide residue in (90)Y-DOTATOC additionally improves the kinetic inertness. It was shown by means of experiments with (90)Y-DOTA that variations of ionic strength within a range of 0.002 to 1.5 (NaCl) only have a minor impact on rate constants and time-dependent speciation. On the basis of extractions with ligand-free samples, the influence of interactions of yttrium ions with the applied biological buffers and/or system impurities was empirically deduced to be negligible. Extractions performed under variation of the metal/ligand-ratio lead to the conclusion that the ligands DOTA and DOTATOC tend to shield the ion exchanger from free metal ions even at slight excess of the metal species in the sample.

As a second series of experiments, complexes of ⁽¹⁶¹⁾Tb with DOTA-based bioconjugates DOTATOC, DOTATATE, DOTANOC and IS20I were investigated by FISRE in order to quantify effects of slight and major substitutions at the biomolecule residues on complex dissociation. Only slight differences in terms of species concentrations and rate constants were observed within a time frame of 0.6 s to 68 d alluding to the fact that kinetic stability is primarily dependent on the interaction between metal and bifunctional chelator.

The applicability of FISRE on comparatively sophisticated systems was tested on complexes bearing the organometallic precursor [$^{(188)}Re(CO)_3$]⁺. As ligands, the tridentate L-histidine as well as the dipeptides glycyl-L-histidine, and L-carnosine (β -alanyl-L-histidine) were chosen in order to study the effects of different moieties attached to the primary amine of L-histidine. Hydrolysis processes of the species *fac*-

[⁽¹⁸⁸⁾Re(H₂O)₃(CO)₃]⁺ occurring at neutral pH restrict FISRE studies to pH 5.0 due to non-quantitative Chelex adsorption. Over an acquisition time frame of 7 days the complexes dissociate similarly according to (pseudo-) first order kinetics while a slight kinetic stability gain is recorded for the dipeptide conjugates, presumingly caused by additional protection of the central ion towards competing reactants.

FISRE proves to be a suitable technique to experimentally determine dissociation rate constants and time-dependent speciation within high acquisition time frames if a good control of interacting parameters is upheld and the results are interpreted carefully. The application of FISRE is geared towards laboratories developing novel bifunctional ligand systems in demand of a technique for preclinical kinetic stability screenings. It is unmatched in terms of low costs in equipment and maintenance. A major restriction of FISRE is given by the precondition of rapid, quantitative and at the same time selective ion exchange between extracting agent and species under study.

6

AUSBLICK

Es wurde gezeigt, dass FISRE eine im apparativen Aufwand und der Wartung kostengünstige Methode zur Analytik von Speziationskinetiken darstellt und unter Kombination des kontinuierlichen und Batch-Betriebs prinzipiell hervorragend für zielspezifische Metalloradiopharmaka geeignet ist. Dennoch offenbart diese Technik Ansatzpunkte zur Verbesserung, denen es in künftigen Experimenten zu widmen gilt.

Die FISRE-Technik ist durch die stringente Voraussetzung eines raschen, quantitativen und zugleich selektiven Ionenaustauschs zwischen extrahierendem Agens und untersuchter Spezies stark eingeschränkt. Dieses betrifft sowohl die einzuhaltenden Reaktionsbedingungen, den Extraktanten als auch die Natur der untersuchten Spezies. So sind beispielsweise FISRE-Experimente mit Chelex aufgrund nicht-quantitativen Ionenaustauschs auf Lösungen mit pH > 4 beschränkt und Systeme mit kationischer Tracer- und Komplexspezies, wie etwa Kupfer-Komplexe mit 1,4,7-Triazacyclononan (Cu²⁺/[Cu(TACN)₂]²⁺) und Derivaten, sind gar völlig von der Untersuchung ausgenommen^[216]. Es wäre in erster Linie wünschenswert, FISRE um eine umfassende ladungsabhängige Speziation zu erweitern. Diese Aufgabe schließt einerseits die Suche nach geeigneten Kombinationen von Metallen-/Metallkomplexen und Kationen-/Anionenaustauschern ein, welche die Kriterien der Quantität, Selektivität und Ionenaustauschkinetik erfüllen, und andererseits die Anwendung der Ionenaustauscher - separat, als Mischbettionenaustauscher und in Kaskade. Angesichts der rasch wachsenden Zahl an potentiellen α - und β -Radioimmunotherapeutika^{[217]-[219]} kommt zudem der größenabhängigen Separation zunehmende Bedeutung zu, weshalb es zu prüfen gilt, ob größenausschlußchromatographische Trennschritte sinnvoll in FISRE implementiert werden können. Ein derartiges System kann anschließend mit (Elektromigration^[104], alternativen Methoden Dünnschicht-Diffusionsgradienten (DGT)^[220], etc.) verglichen und validiert werden.

Eine weitere Aufgabe liegt in der Weiterentwicklung der FISRE-Technik zur Bestimmung von Assoziationskinetiken von Metallkomplexen, insbesondere mit dem Ziel einer Ausdehnung des experimentellen Detektionszeitfensters^[63]. Die Gegenüberstellung von Assoziations- und Dissoziationskinetiken ist aus Gründen des Studiums thermodynamischer Gesichtspunkte wünschenswert. Parallel zur methodischen Weiterentwicklung sind die Kinetiken weiterer Radiotherapeutika und -diagnostika quantitativ zu untersuchen. Hierbei gilt es neben der Variation der Ligandensysteme (Chelator-Biomolekül-Kombination) den Kreis der verwendeten Radionuklide um α - (z. B. ²¹³Bi), β ⁺- (z. B. ⁶⁸Ga) und γ -Emitter(z. B. ¹¹¹In) zu erweitern sowie die Verwendung kurzlebiger Nuklide (z. B. ⁶⁸Ga (t_{1/2}= 67,63 m)) zu erörtern.

Es sei betont, dass die Anwendungsmöglichkeiten von FISRE aufgrund des hohen Vorkommens von Metallkomplexen in zahlreichen chemischen Disziplinen sehr vielfältig sind. Neben Anwendung in der reaktionskinetischen der FISRE besonders für umweltchemische Grundlagenforschung erscheint Untersuchungen von hohem Nutzwert - z. B. zum Studium der Migration von Metallen in Naturgewässern. Hierbei gilt es nicht nur, die Speziationskinetik der Bindung von Metallionen mit Humin- und Fulvinsäuren, sondern auch mit Wasserorganismen (z. B. Algen) zu quantifizieren.

Anhand des Beispiels ⁽⁹⁰⁾Y-DOTA wird offensichtlich, dass die Interpretation der FISRE-Messergebnisse in hohem Maße von der Information über Strukturdynamik, Thermodynamik und mechanistischen Sachverhalten der untersuchten Komplexe profitiert, weshalb zur optimalen Auswertung ein stetiger Vergleich mit neuen Erkenntnissen aus alternativen Messtechniken und gegebenenfalls Neuinterpretationen der FISRE-Ergebnisse erforderlich sind.

7

ANHANG

7.1. Vorversuch

Flussrate	Zeit Messung 1	Zeit Messung 2	Zeit Messung 3	Sollwert	Fehler
[mL/min]	[s]	[s]	[s]	[s]	[%]
0,5	2408	2403	2404	2400	0.11
1	1195	1199	1203	1200	0.33
2	602	599	601	600	0.25
2,5	482	479	481	480	0.32
4	301	298	301	300	0.58
5	239	241	238	240	0.64
8	151	150	149	150	0.67
10	122	119	120	120	1.27

Tab. 31: Messergebnisse zur Pumpförderung von 10 mL H2O (Pumpleistungsprüfung)

7.2. Messergebnisse – Yttrium(III)-polyaminocarboxylate

7.2.1.Ionenaustauschertests im Batch-Betrieb

Tab.32: Retention von Y ³⁺ an Ionenaustauscherharzen. Kationen-, Mischbett- und Anionenaustauscher sind blau,
violett und rot markiert.

Ionen-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
austauscher	Probe 1	Keferenz 1	Probe 2	Referenz 2	Probe 3	Referenz 3	⁹⁰ Y- Retention	abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[%]	[%]
DOWEX Marathon MSC	12769	52984	5590	55349	10668	60273	82,7	7,0
BIORAD Chelex-100	418	83676	1046	80498	452	75293	99,2	0,4
AMBERLITE CG-50 (Type I)	1324	73563	559	69836	1814	72551	98,3	0,9
DOWEX Marathon MR-3	34523	82987	41250	85937	19403	72399	61,2	10,9
DOWEX Marathon WBA	19155	75118	16521	70301	24586	72101	72,3	5,6
DEAE Sephadex A-50	14381	84098	21020	77280	14095	83405	79,6	5,9
DEAE Sephadex A-25	17201	69360	18306	59823	4983	49827	78,2	10,6
QAE Sephadex A-25	6965	72552	13164	78360	8730	69286	87	3,6
DOWEX Marathon MSA	24936	45670	28489	52466	23597	58265	50,2	8,1
BIORAD AG 1 X8 (100-200 mesh)	16437	38405	18374	48737	20297	39877	56,2	6,7
BIORAD AG 1 X8 (200-400 mesh)	13777	50837	21491	52934	15355	56041	68,3	7,7
BIORAD AG 1 X8 (400- mesh)	15391	63600	22066	68955	12553	65721	74,9	6,5
DOWEX 1 X8	27039	53755	23566	60271	20031	50204	56,9	6,2

Ionen-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
austauscher	Probe 1	Referenz 1	Probe 2	Referenz 2	Probe 3	Referenz 3	⁹⁰ Y- Retention	abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[%]	[%]
DOWEX Marathon MSC	5775	52984	4926	55349	7594	60273	10,8	1,9
BIORAD Chelex-100	1171	83676	966	80498	753	75293	1,2	0,2
AMBERLITE CG-50 (Type I)	1030	73563	2584	69836	435	72551	1,9	1,6
DOWEX Marathon MR-3	15436	82987	21828	85937	16797	72399	22,4	3,5
DOWEX Marathon WBA	45221	75118	39579	70301	36483	72101	55,7	4,8
DEAE Sephadex A-50	40788	84098	40881	77280	42787	83405	50,9	2,2
DEAE Sephadex A-25	32460	69360	33621	59823	24615	49827	50,8	4,9
QAE Sephadex A-25	45055	72552	50150	78360	36929	69286	59,8	5,7
DOWEX Marathon MSA	19547	45670	20252	52466	23714	58265	40,7	2,1
BIORAD AG 1 X8 (100-200 mesh)	19548	38405	22322	48737	20656	39877	49,5	3,2
BIORAD AG 1 X8 (200-400 mesh)	29689	50837	30119	52934	37435	56041	60,7	5,3
BIORAD AG 1 X8 (400- mesh)	44329	63600	43580	68955	41207	65721	65,2	3,9
DOWEX 1 X8	31178	53755	32366	60271	27813	50204	55,7	2,2

 Tab. 33: Retention von Y (DOTA)- an Ionenaustauscherharzen. Kationen-, Mischbett- und Anionenaustauscher

 sind blau, violett und rot markiert.

7.2.2. Ligandenfreier Versuch

Tab. 34: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 7,0 (HEPES-Puffer) und I= 0,01.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	302	75612	1448	62947	2030	70204	0,019	0,013
0,8	2782	77290	1366	65029	260	73315	0,020	0,016
1	476	79415	1593	66394	2096	75271	0,019	0,012
2	2080	80012	665	66497	602	75989	0,015	0,010
4	400	80092	466	66600	1859	76031	0,012	0,011
6	1121	80064	133	66524	1247	76059	0,011	0,008
12	1041	80103	598	66398	749	75994	0,011	0,002
20	721	80077	267	66755	857	76012	0,008	0,004
40	80	80048	467	66714	1039	76224	0,007	0,006
60	481	80114	469	67043	303	76098	0,006	0,002

 Tab. 35: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 6,0 (MES-Puffer) und I = 0,01.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	113	56732	2219	58387	912	45620	0,020	0,018
0,8	1979	58204	60	60308	897	47205	0,018	0,017
1	179	59647	371	61798	1305	48349	0,012	0,013
2	778	59821	495	61936	436	48405	0,010	0,003
4	179	59791	742	61840	439	48752	0,008	0,005
6	540	60023	434	61995	243	48633	0,007	0,002
12	778	59844	620	62041	340	48549	0,010	0,003
20	301	60104	745	62088	354	48730	0,008	0,004
40	475	59388	558	62005	487	48699	0,009	0,001
60	511	60073	422	62037	278	48704	0,007	0,001

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	1588	75618	158	78955	1948	74612	0,016	0,013
0,8	2260	77927	246	82058	1146	77298	0,016	0,013
1	158	79168	1934	84073	1052	79245	0,013	0,011
2	644	80495	926	84205	1109	79357	0,011	0,003
4	1296	80992	673	84161	1063	80020	0,012	0,004
6	324	81021	1100	84650	210	80007	0,007	0,006
12	162	81004	253	84421	748	79804	0,005	0,004
20	81	80698	169	84285	412	79443	0,003	0,002
40	162	80872	85	84607	84	79718	0,001	0,001
60	49	80885	203	84552	312	80105	0,002	0,002

Tab. 36: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 5,0 (Piperazin-Puffer) undI = 0,01.

Tab. 37: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 4,5 (N-Methylpiperazin-
Puffer) und I = 0,01.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10 ⁻⁶ mol/L]
0,6	119	99263	2135	92847	1470	102433	0,013	0,011
0,8	2832	104892	191	95488	1168	106286	0,013	0,013
1	2019	106279	198	99042	1586	108551	0,012	0,009
2	217	108344	992	99205	1319	110201	0,008	0,005
4	1625	108305	203	101405	917	110598	0,008	0,007
6	218	109021	906	100677	1013	111002	0,007	0,004
12	109	109235	500	99928	414	110526	0,003	0,002
20	218	108927	100	100380	381	111394	0,002	0,001
40	109	108873	203	101275	50	111026	0,001	0,001
60	66	109233	244	101617	346	110994	0,002	0,001

7.2.3. Ionenstärkeeinfluss

Kontaktzeit	Zählrate							
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Probe	Refrenz
	1	1	2	2	3	3	4	4
[s]	[cpm]							
0,6	19368	26458	10853	14655	10134	13984	14422	19484
0,8	19183	27305	10621	15041	9999	14680	14389	21038
1	18719	27968	10464	15598	10370	15048	14636	22045
2	16512	27511	9384	15629	9381	15097	13103	22103
4	15033	27836	8205	15677	8054	15085	11618	22086
6	14239	27904	8009	15704	7498	15102	11082	22244
12	13915	27831	7424	15698	7378	15099	10592	22075
20	13518	27562	7512	15711	7199	15115	10586	22049
40	13294	27633	7332	15694	7087	15128	10456	22038
60	13484	27704	7374	15702	7101	15106	10384	22087

 Tab. 38a: Ergebnisse des kontinuierlichen FISRE-Experiments mit Y-DOTA bei I = 0,002 (pH 6,0).

 Tab. 38b: Aus Messergebnissen berechnete Yttrium-Eluatkonzentrationen.

Kontaktzeit	berechnete	Standard-
	Yttrium-	abweichung
	Konzentration	
	im Eluat	
[s]	[10-6 mol/L]	[10-6 mol/L]
0,6	0,7344	0,0076
0,8	0,6934	0,0127
1	0,6733	0,0110
2	0,6037	0,0123
4	0,5308	0,0076
6	0,5037	0,0074
12	0,4853	0,0117
20	0,4812	0,0063
40	0,4728	0,0064
60	0,4741	0,0084

Kontaktzeit	Zählrate							
	Probe	Kererenz	Probe	Referenz	Probe	Referenz	Probe	Kerrenz
	1	1	2	2	3	3	4	4
[s]	[cpm]							
0,6	19121	25736	15051	20478	19086	26834	24298	32746
0,8	18550	26487	15334	21336	20012	27947	23357	33617
1	19341	27701	15127	21975	19470	28605	24151	34591
2	17136	27634	13625	22043	17915	28749	21107	34460
4	15854	27850	12267	22098	15950	28830	19639	34772
6	15419	27756	12176	22015	15559	28802	18565	35006
12	15049	27793	11748	22132	15249	28857	18772	34963
20	14655	27807	11655	22144	15391	28906	18165	34885
40	14679	27745	11483	22095	14923	28895	18176	34509
60	14474	27814	11330	22111	14533	28723	17540	34466

 Tab. 39a: Ergebnisse des kontinuierlichen FISRE-Experiments mit Y-DOTA bei I = 0,051 (pH 6,0).

Tab. 39b: Aus Messergebnissen berechnete Yttrium-Eluatkonzentrationen.

Kontaktzeit	berechnete Yttrium-	Standard- abweichung		
	Konzentration			
	im Eluat			
[s]	[10-6 mol/L]	[10-6 mol/L]		
0,6	0,7328	0,0148		
0,8	0,7075	0,0117		
1	0,6914	0,0085		
2	0,6185	0,0045		
4	0,5606	0,0077		
6	0,5448	0,0117		
12	0,5344	0,0059		
20	0,5266	0,0048		
40	0,5230	0,0059		
60	0,5119	0,0062		

Kontaktzeit	Zählrate							
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Probe	Refrenz
	1	1	2	2	3	3	4	4
[s]	[cpm]							
0,6	29232	39477	27036	35895	29948	41366	19449	25618
0,8	29069	40974	26665	37032	31701	43820	19381	26903
1	28780	41378	26831	38206	30838	44608	19321	27140
2	25920	41605	24530	38314	28194	44823	17563	27209
4	24395	42027	22221	38297	25594	44855	15861	27313
6	23733	42048	21641	38366	25834	44796	15739	27258
12	22911	42133	21465	38350	24723	44768	15322	27355
20	23108	42086	21293	38402	25136	44839	15131	27401
40	22767	42189	21043	38395	23754	44870	14463	27299
60	22351	42155	20721	38324	23769	44903	14332	27435

 Tab. 40a: Ergebnisse des kontinuierlichen FISRE-Experiments mit Y-DOTA bei I = 0,1 (pH 6,0).

Tab. 40b: Aus Messergebnissen berechnete Yttrium-Eluatkonzentrationen.

Kontaktzeit	berechnete Yttrium-	Standard- abweichung		
	Konzentration	_		
	im Eluat			
[s]	[10-6 mol/L]	[10-6 mol/L]		
0,6	0,7442	0,0156		
0,8	0,7183	0,0061		
1	0,7003	0,0090		
2	0,6344	0,0103		
4	0,5780	0,0049		
6	0,5706	0,0074		
12	0,5540	0,0077		
20	0,5541	0,0049		
40	0,5367	0,0089		
60	0,5307	0,0075		

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Refrenz
	1	1	2	2	3	3	4	4
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]
0,6	13336	18677	11546	15837	10493	15204	24363	33688
0,8	13509	19509	10954	16389	10870	16299	23251	35021
1	13071	20047	10997	16958	10991	16572	23465	35704
2	12236	20141	10019	17046	9749	16704	21102	35820
4	10726	20098	9177	16937	9145	16822	19042	35915
6	10155	20117	8793	17003	8756	16805	18405	35870
12	10310	20135	8818	17024	8855	16797	18600	35749
20	10043	20080	8657	16992	8337	16804	18472	35902
40	10105	20149	8569	17122	8181	16769	17851	35866
60	9978	20079	8746	17034	8248	16820	17735	35484

 Tab. 41a: Ergebnisse des kontinuierlichen FISRE-Experiments mit Y-DOTA bei I = 0,5 (pH 6,0).

Tab. 41b: Aus Messergebnissen berechnete Yttrium-Eluatkonzentrationen.

Kontaktzeit	berechnete	Standard-		
	Yttrium-	abweichung		
	Konzentration			
	im Eluat			
[s]	[10-6 mol/L]	[10-6 mol/L]		
0,6	0,7141	0,0171		
0,8	0,6729	0,0132		
1	0,6552	0,0064		
2	0,5920	0,0106		
4	0,5373	0,0064		
6	0,5140	0,0070		
12	0,5194	0,0063		
20	0,5051	0,0084		
40	0,4969	0,0062		
60	0,5001	0,0097		

Kontaktzeit	Zählrate							
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Probe	Refrenz
	1	1	2	2	3	3	4	4
[s]	[cpm]							
0,6	24786	36480	24668	35204	24643	36997	27446	39812
0,8	25751	37968	24220	36722	25882	38569	27676	41627
1	25236	38520	23967	37041	24807	39204	27399	42718
2	22783	38625	21305	37129	22384	39418	25111	43061
4	20902	38909	19314	37188	20805	39614	22452	43219
6	19990	39021	19131	37209	20932	39522	22888	43187
12	19681	39048	18215	37147	20470	39731	22066	43349
20	19559	39006	18393	37171	20711	39702	22465	43268
40	19566	39075	17881	37216	19509	39818	21668	43554
60	18972	39102	17941	37230	19475	39844	20688	43817

 Tab. 42a: Ergebnisse des kontinuierlichen FISRE-Experiments mit Y-DOTA bei I = 1,0 (pH 6,0).

Tab. 42b: Aus Messergebnissen berechnete Yttrium-Eluatkonzentrationen.

Kontaktzeit	berechnete	Standard-
	Yttrium-	abweichung
	Konzentration	
	im Eluat	
[s]	[10-6 mol/L]	[10-6 mol/L]
0,6	0,6839	0,0147
0,8	0,6684	0,0081
1	0,6441	0,0094
2	0,5787	0,0098
4	0,5253	0,0084
6	0,5215	0,0096
12	0,5047	0,0106
20	0,5093	0,0132
40	0,4922	0,0090
60	0,4820	0,0072

Kontaktzeit	Zählrate							
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Probe	Refrenz
	1	1	2	2	3	3	4	4
[s]	[cpm]							
0,6	23327	36480	23260	35204	23452	36997	26247	40360
0,8	23473	37968	22751	36722	25056	38569	27025	42938
1	23310	38520	22856	37041	24595	39204	26957	43916
2	20465	38625	20191	37129	20521	39418	22771	43204
4	19483	38909	18942	37188	19890	39614	21530	43381
6	19599	39021	18387	37209	19726	39522	21871	43519
12	19290	39048	17844	37147	19721	39731	20935	43661
20	19169	39006	18207	37171	20327	39702	20889	43875
40	18003	39075	16765	37216	18609	39818	20110	43689
60	18190	39102	16936	37230	19006	39844	20192	43912

 Tab. 43a: Ergebnisse des kontinuierlichen FISRE-Experiments mit Y-DOTA bei I = 1,5 (pH 6,0).

Tab. 43b: Aus Messergebnissen berechnete Yttrium-Eluatkonzentrationen.

Kontaktzeit	berechnete	Standard-
	Yttrium-	abweichung
	Konzentration	
	im Eluat	
[s]	[10-6 mol/L]	[10-6 mol/L]
0,6	0,6461	0,0119
0,8	0,6292	0,0145
1	0,6158	0,0092
2	0,5303	0,0098
4	0,5021	0,0054
6	0,4995	0,0039
12	0,4876	0,0089
20	0,4923	0,0148
40	0,4597	0,0070
60	0,4642	0,0095

7.2.4. Einflüsse unterschiedlicher M/L-Verhältnisse

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10 ⁻⁶ mol/L]
0.40	6454	23485	6585	25049	6758	24309	0.2719	0.0081
0.60	10072	24857	10241	24736	9858	24516	0.4071	0.0062
0.72	12100	23823	12189	24907	11837	24375	0.4943	0.0119
0.75	12821	24205	13005	24668	13171	25041	0.5276	0.0019
0.80	13845	24179	14743	25034	14403	25067	0.5787	0.0089
0,85	15334	24080	16025	25122	15849	24896	0,6371	0,0007
0,92	18028	23999	18758	24964	18636	24805	0,7513	0,0001
1,00	21318	24058	21963	24870	22027	24841	0,8853	0,0019
1,08	23138	23739	24356	25045	24207	24902	0,9731	0,0014
1,36	23014	23665	24335	24773	23743	24048	0,9807	0,0075
1,44	23787	23971	24717	24861	23963	24561	0,9874	0,0102
1 68	23851	24080	24353	24456	24493	24540	0 9948	0.0039

 Tab. 44: Messung der Dissoziation von Y-DOTA nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

Tab. 45: Messung der Dissoziation von Y-EDTA nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,40	3738	38612	3487	37250	4285	38255	0,1008	0,0098
0,60	6041	38677	6436	37286	5426	38160	0,1570	0,0152
0,75	7839	38504	8320	37802	6729	39101	0,1986	0,0244
0,80	9325	38902	8039	36978	8085	38645	0,2221	0,0158
0,90	9369	39021	8645	37104	11099	38497	0,2538	0,0301
0,95	10614	38765	10559	37152	10018	38165	0,2735	0,0109
1,00	35344	38822	32616	37080	33550	38746	0,8853	0,0228
1,25	37743	38541	36430	37249	36702	38152	0,9731	0,0096
1,50	37044	38499	37030	37108	37490	38177	0,9807	0,0179

M/L- Verhältnis	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
(critaring	1	1	2	2	3	3	Konzentration	ue in chemicang
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0.40	0E7E	44090	0105	17916	2017	45029	0 2010	0.0004
0,40	6575	44069	9103	42040	0947	43028	0,2019	0,0094
0,55	12618	44525	12590	43028	12786	45927	0,2848	0,0072
0,70	16312	44301	15742	43462	15892	45771	0,3592	0,0108
0,75	15356	44266	17198	43091	18484	45628	0,3837	0,0320
0,90	20710	43988	20106	42787	21371	45713	0,4694	0,0017
0,95	21981	44120	21968	42940	22504	45629	0,5010	0,0095
0,97	22991	44239	23104	43001	23538	45918	0,5232	0,0127
1,00	39717	44381	37886	42887	40397	46031	0,8853	0,0088
1,25	42590	43912	42201	43018	43837	45267	0,9731	0,0069
1,50	43697	44561	42062	42846	44902	45828	0,9807	0,0010

 Tab. 46: Messung der Dissoziation von Y-DTPA nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

 Tab. 47: Messung der Dissoziation von Y-DOTATOC nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
	[cpm]	[cnm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10-6 mol/[]	[10-6 mol/[]
	lebuil	[cpiii]	lebul	[cpiii]	lebul	[cpiii]	[10 * 1101/12]	[10 * 1101/12]
0,40	12197	40629	12248	38456	12054	39176	0,3088	0,0092
0,60	17896	39487	18649	39662	18786	39285	0,4672	0,0128
0,70	21828	40377	21113	39716	21249	39154	0,5383	0,0059
0,75	23319	40309	22922	38759	22761	39715	0,5810	0,0094
0,80	23424	40151	22741	39007	22215	38995	0,5787	0,0078
0,90	25385	39048	24145	39121	25271	39241	0,6371	0,0175
0,95	30003	40370	28750	38967	30478	39433	0,7513	0,0189
1,00	36134	40586	34385	39074	35141	39680	0,8853	0,0052
1,10	39228	40279	37966	39136	38540	39516	0,9731	0,0027
1,25	39753	40511	38189	39024	38365	39060	0,9807	0,0019
1,50	39771	40156	38470	38965	38953	39554	0,9875	0,0028

7.2.5. Ergebnisse der FISRE-Experimente an Yttrium(III)-polyaminocarboxylaten 7.2.5.1. Yttrium-DOTA

Kontaktzeit	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Yttrium- Konzentration	Standard- abweichung
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	63653	82636	43240	57266	56177	71291	0,7711	0,0165
0,8	64390	85783	45775	59202	55696	73845	0,7594	0,0121
1	67154	88393	46981	61028	57052	75251	0,7626	0,0063
2	65443	89705	45858	61702	56230	77835	0,7317	0,0106
4	68377	89937	47394	61824	59144	77982	0,7618	0,0043
6	69517	92772	45447	61007	58386	77851	0,7481	0,0027
12	69343	92634	45641	61425	59470	77913	0,7516	0,0105
20	68318	92065	46451	61942	58842	77995	0,7488	0,0063
40	69338	92181	46230	62056	59312	78116	0,7522	0,0072
60	69364	92099	46195	61978	59747	78015	0,7548	0,0103

 Tab. 48: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 7,4.

Tab. 49: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 7,0.

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	
r 1	r 1	r 1	r 1	r 1	r 1	r 1	im Eluat	[10]
[S]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
0,6	54681	72922	37830	50972	31050	39471	0,7596	0,0238
0,8	56050	74612	40276	53894	32038	41084	0,7595	0,0177
1	58099	76719	41813	56383	32923	42903	0,7554	0,0130
2	58071	77413	42158	56864	32862	42881	0,7526	0,0127
4	57975	77391	40893	56213	32701	42946	0,7460	0,0172
6	57252	77046	40644	56194	33001	42760	0,7461	0,0244
12	57546	77251	39951	56486	33024	42832	0,7411	0,0320
20	57071	77184	40140	56194	32629	42917	0,7380	0,0230
40	56479	77350	40784	56697	32368	43006	0,7341	0,0170
60	56836	77213	40715	57018	32313	42974	0,7340	0,0190

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	_
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
		. 1	. 1					
0,6	21716	28488	19384	25679	16490	22419	0,7509	0,0138
0,8	21998	29257	20167	26448	16735	23566	0,7415	0,0277
1	22217	30137	20688	27902	16823	24051	0,7261	0,0231
2	22120	30715	20111	27481	17394	24622	0,7195	0,0127
4	21649	30916	19911	27009	17051	24923	0,7072	0,0272
6	21585	30640	19558	27351	16833	24516	0,7021	0,0144
12	20860	30215	19105	27400	16180	24009	0,6872	0,0120
20	21123	30881	18924	27345	16227	24355	0,6808	0,0132
40	20307	30152	19761	27937	16166	24728	0,6782	0,0271
60	20907	30738	19587	27551	15333	24204	0,6749	0,0390

 Tab. 50: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 6,8.

 Tab. 51: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 6,5.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
	-	-	-	-	-	-		
0,6	11021	14638	22868	30476	22747	29448	0,7586	0,0121
0,8	11155	15294	23350	32025	21732	30526	0,7235	0,0100
1	11668	16302	23428	32471	21861	31443	0,7108	0,0138
2	11517	16244	23081	33092	22151	33506	0,6892	0,0250
4	10748	16035	22665	33056	21774	33480	0,6688	0,0177
6	11084	16720	21556	33140	21497	33657	0,6507	0,0121
12	10724	17003	21615	33917	20286	33029	0,6274	0,0119
20	10403	16458	21073	33224	20204	33772	0,6215	0,0202
40	10017	16304	21425	33991	19642	33024	0,6132	0,0178
60	10388	16972	20877	33628	20383	33578	0,6133	0,0070

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
			-1 -	-1 -		- 1 -		· ·
0,6	13385	17544	8215	11024	6283	8154	0,7596	0,0130
0,8	14114	18920	8313	11438	6409	8423	0,7445	0,0171
1	13693	19277	7928	11679	6110	8570	0,7007	0,0190
2	13374	19239	8107	12086	5991	8631	0,6867	0,0138
4	12622	19406	7694	12121	5648	8622	0,6468	0,0107
6	11655	19338	7156	12095	5377	8703	0,6041	0,0132
12	11755	19475	7012	12104	5190	8682	0,5936	0,0127
20	11737	19800	6826	12173	5147	8759	0,5804	0,0172
40	11370	19462	6841	12260	5068	8712	0,5746	0,0144
60	11197	19506	6736	12204	5030	8804	0,5658	0,0120

 Tab. 52: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 6,25.

 Tab. 53: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 6,0.

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	0
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	43882	58206	72480	95277	44812	61034	0,7496	0,0138
0,8	42338	59776	71468	98205	44201	63846	0,7094	0,0177
1	41596	61847	69079	99575	44413	66278	0,6788	0,0130
2	39759	62194	64287	100474	41445	67102	0,6323	0,0127
4	36093	62945	60888	100381	36978	66916	0,5775	0,0272
6	35155	62641	58576	100729	37132	67061	0,5655	0,0144
12	34136	62990	55860	100198	35756	66975	0,5444	0,0120
20	33272	62791	54820	100306	34910	67017	0,5324	0,0130
40	32901	62545	55205	100649	34754	67458	0,5299	0,0170
60	32888	62881	55697	101535	34766	67992	0,5276	0,0190

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
	-	-	-	-	-	-		
0,6	17289	23402	14588	18950	11474	15627	0,7476	0,0194
0,8	16611	24589	13519	19722	10906	15788	0,6839	0,0077
1	16284	25037	13893	20413	10415	16452	0,6547	0,0241
2	14796	25304	12560	20577	9909	17031	0,5923	0,0157
4	14332	25241	12044	20912	9522	17250	0,5653	0,0122
6	13765	25495	11723	20872	9014	17021	0,5437	0,0164
12	13336	25340	11177	20688	8627	17244	0,5223	0,0203
20	13079	25666	11011	20747	8628	17020	0,5158	0,0130
40	12767	25371	10735	20810	8768	17682	0,5050	0,0101
60	12669	25599	10836	20715	9059	17495	0,5119	0,0150

 Tab. 54: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 5,75.

 Tab. 55: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 5,5.

Kontaktzeit	Zählrate	Zählrate Referenz	Zählrate	Zählrate Referenz	Zählrate	Zählrate	berechnete Vttrium-	Standard-
	1	1	2	2	3	3	Konzentration	abweichung
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	5461	7288	9458	12804	7043	8970	0,7577	0,0244
0,8	5004	7501	8969	13670	6179	9457	0,6589	0,0073
1	4869	7692	8819	13998	5949	9862	0,6221	0,0164
2	4643	7850	8305	14027	5642	9895	0,5846	0,0125
4	4247	7913	7429	14054	5349	10002	0,5334	0,0043
6	4063	7904	7367	14096	5047	10014	0,5136	0,0093
12	4001	7927	7103	13998	4848	9963	0,4996	0,0114
20	3940	7933	6939	14075	4813	9915	0,4917	0,0057
40	3875	7916	6773	14120	5021	10028	0,4899	0,0105
60	3954	7953	6753	14109	5086	10037	0,4942	0,0143

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
	-	-	-	-	-	-		
0,6	17683	24716	17303	23975	40182	54992	0,7226	0,0077
0,8	16291	25891	15904	24988	36920	57038	0,6377	0,0091
1	15670	27004	14942	25612	36347	59730	0,5907	0,0155
2	14869	27016	14093	26090	33775	59882	0,5515	0,0120
4	13713	26915	13123	26134	30547	60037	0,5068	0,0041
6	13044	27034	12666	26097	30206	60044	0,4903	0,0111
12	12711	27097	12018	26105	28870	59926	0,4704	0,0108
20	12376	27131	11940	26126	28592	60121	0,4629	0,0110
40	12477	27169	12161	26038	29914	60156	0,4745	0,0201
60	12153	27147	11724	26201	28761	60203	0,4576	0,0174

 Tab. 56: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 5,25.

Tab. 57: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 5,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	27582	38488	37638	52560	37744	54992	0,7064	0,0173
0,8	24291	41034	32725	54139	33485	57038	0,5945	0,0090
1	24883	42847	32715	55712	32807	59730	0,5724	0,0203
2	23020	42947	29865	56098	31804	59882	0,5332	0,0026
4	21017	42815	28249	56313	29586	60037	0,4951	0,0057
6	20098	43010	26378	56201	26733	60044	0,4606	0,0134
12	18465	42996	25220	55987	25383	59926	0,4345	0,0141
20	18540	43064	25595	56004	25502	60121	0,4372	0,0174
40	18201	43122	24122	56223	25663	60156	0,4259	0,0035
60	18377	43150	24565	56098	25829	60203	0,4309	0,0062

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
						- 1 -		
0,6	11770	16509	13145	18455	12448	16908	0,7205	0,0136
0,8	10326	17908	11121	19673	10694	18020	0,5785	0,0142
1	10321	18655	11338	20307	10445	18792	0,5558	0,0025
2	9904	19547	10385	20412	9939	18994	0,5129	0,0090
4	9212	19384	9805	20455	9341	19212	0,4803	0,0056
6	8587	19440	9071	20419	8810	19153	0,4487	0,0099
12	8067	19302	8357	20467	8203	19179	0,4180	0,0097
20	8069	19512	8743	20402	8490	19204	0,4281	0,0143
40	7995	19467	8256	20480	7950	19198	0,4093	0,0056
60	7931	19397	8523	20499	7825	19209	0,4107	0,0045

 Tab. 58: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 4,75.

Tab. 59: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTA bei pH 4,5.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	30673	42659	31766	44095	35081	50308	0,7123	0,0129
0,8	24987	44305	25613	45092	28919	52758	0,5600	0,0105
1	24344	45979	25010	46879	28477	54029	0,5300	0,0033
2	23065	46036	24046	47628	26921	54941	0,4986	0,0077
4	21609	46203	22083	47990	25817	55607	0,4640	0,0038
6	19544	46198	19793	47979	24776	55514	0,4273	0,0173
12	18383	46272	19570	48005	21911	55598	0,3997	0,0071
20	17758	46240	19313	47992	21893	55630	0,3933	0,0092
40	17709	46319	18358	48041	22080	55253	0,3880	0,0100
60	17512	46158	18136	48030	22163	55491	0,3855	0,0121

Zeit nach Tracerzugabe	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10-6 mol/L]	[10 ⁻⁶ mol/L]
	. 1							. , ,
0,01666	58287	77290	61825	82604	72195	94557	0,7554	0,0076
6	58875	78261	61768	82931	71386	95089	0,7493	0,0039
24	58598	77937	61955	83012	72391	94780	0,7540	0,0089
48	59372	78925	62509	83152	71623	95006	0,7526	0,0011
120	58331	78004	62043	83119	71196	94761	0,7485	0,0025
144	59207	78916	62615	83771	72707	95828	0,7521	0,0059
168	58313	78153	61995	83212	71518	94704	0,7488	0,0056
192	59233	78772	61360	83007	72439	94931	0,7514	0,0119
216	58260	77920	61304	82948	71139	94680	0,7460	0,0063
288	58264	78086	61896	83405	71588	95126	0,7469	0,0053
312	58160	77556	61543	83167	71018	94715	0,7466	0,0057
336	58693	78103	61407	83141	71325	94906	0,7472	0,0075
360	58285	78305	61719	83200	71556	94482	0,7478	0,0083
384	57887	78129	61823	83115	71429	95028	0,7455	0,0056
456	58083	77996	59557	83261	70671	94721	0,7354	0,0174
480	58237	78149	62200	83194	71796	94825	0,7500	0,0063
504	57970	78120	61262	83218	70946	95017	0,7416	0,0053
528	58138	78172	61212	83016	71267	95184	0,7433	0,0057
552	58128	78091	61554	83209	70954	95293	0,7429	0,0027
624	58088	78528	62117	83561	71913	95336	0,7458	0,0076
648	58283	78979	61977	83962	71105	95034	0,7414	0,0059

 Tab. 60: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTA bei pH 7,4.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	1	1	2	2	3	3	Konzentration	adweichung
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10 ⁻⁶ mol/L]
0,01666	68751	93705	61026	84556	52480	70166	0,7345	0,0131
6	69038	94028	60333	84613	52456	70269	0,7313	0,0169
24	68440	93981	61051	84594	52270	70096	0,7319	0,0124
48	68870	94027	59672	84195	51013	70410	0,7219	0,0121
120	68921	94223	59192	84058	52948	70031	0,7306	0,0260
144	68671	94106	60279	84951	51647	70194	0,7250	0,0137
168	68672	94212	60404	84296	51972	70285	0,7283	0,0114
192	68449	94391	60441	84818	52389	71047	0,7251	0,0124
216	68181	93956	59886	84194	52683	70845	0,7269	0,0162
288	68355	94002	59231	84047	51964	70164	0,7242	0,0181
312	68073	94019	59762	84820	51460	70534	0,7194	0,0131
336	67746	93745	60055	84917	52481	70823	0,7236	0,0169
360	67886	93790	62149	84629	50451	71092	0,7226	0,0124
384	67955	94122	59535	84016	51623	70456	0,7211	0,0121
456	67601	94056	58616	84712	52689	70835	0,7182	0,0260
480	67515	93981	59222	84506	51711	71047	0,7157	0,0137
504	67631	94027	59031	84163	51328	71020	0,7145	0,0114
528	67569	93765	59078	84086	51374	70729	0,7165	0,0124
552	67414	94055	58433	83987	51045	70154	0,7134	0,0162
624	67678	94856	59173	85089	51684	70638	0,7135	0,0181
648	67445	94527	58600	84629	51574	71069	0,7105	0,0168

 Tab. 61: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTA bei pH 7,0.

Zeit nach Tracerzugabe	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
U	1	1	2	2	3	3	Konzentration	0
[6]	[cmm]	[anm]	[cmm]	[anm]	[mm]	[cpm]	im Eluat	[10-6 mol/L]
[11]	lebul	[cpiii]	lebul	lchul	lcbiil	lebul	[10 * 1101/L]	[10 * 1101/L]
0,01666	51623	96749	44000	79166	42554	81925	0,5363	0,0183
6	51587	97355	43390	79345	43262	81470	0,5359	0,0095
24	51849	97471	44673	79562	42419	81623	0,5377	0,0215
48	51753	97284	42153	79305	43746	81554	0,5333	0,0027
120	51335	97494	42735	79886	42327	80912	0,5282	0,0061
144	50911	97045	43935	80175	42702	81734	0,5317	0,0142
168	50207	96938	43179	80202	41596	81682	0,5219	0,0150
192	50932	97127	43831	80311	41149	80835	0,5264	0,0184
216	50350	97064	41995	79920	42321	81504	0,5212	0,0037
288	50310	97128	42542	80479	42048	81400	0,5210	0,0066
312	49993	97298	42934	80266	40668	81599	0,5157	0,0183
336	49469	97145	42495	80165	41011	81521	0,5141	0,0142
360	50120	97841	41824	80272	40988	81638	0,5118	0,0095
384	48839	97254	42714	79298	40527	80937	0,5138	0,0215
456	49283	97183	40951	80276	40910	81052	0,5073	0,0027
480	48995	96912	41813	80823	41277	81121	0,5106	0,0061
504	49067	97350	40493	80170	40928	81746	0,5033	0,0023
528	48351	97201	41391	80261	39667	81612	0,4997	0,0150
552	48120	97428	39231	80468	42604	81590	0,5012	0,0184
624	47953	97003	39831	80163	41113	81947	0,4976	0,0037
648	47566	97132	40207	80019	41261	83655	0,4951	0,0066

 Tab. 62: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTA bei pH 6,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete Vttrium-	Standard-
Tracerzugabe	1	1	2	2	3	3	Konzentration	abweienung
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10 ⁻⁶ mol/L]
0,01666	53104	121993	51159	117350	55676	133956	0,4290	0,0115
6	52241	120472	52672	116948	56257	132757	0,4359	0,0135
24	51575	122005	52110	118201	55139	133058	0,4260	0,0135
48	49935	121308	49986	117683	55153	134073	0,4159	0,0077
120	47112	122051	47280	117046	51639	134985	0,3908	0,0115
144	46277	122419	47512	117935	51190	133096	0,3885	0,0129
168	45355	121641	45614	118512	49260	134848	0,3743	0,0099
192	44143	122936	46668	118027	48631	133004	0,3734	0,0194
216	43175	121647	44465	118846	46067	132906	0,3586	0,0141
288	41559	122542	40337	117945	44224	133941	0,3371	0,0062
312	40028	121998	41697	118087	43381	134057	0,3349	0,0159
336	38887	122580	39402	117943	41805	132951	0,3219	0,0106
360	37619	122095	38310	118466	40988	133226	0,3131	0,0090
384	37128	121030	39487	117585	39071	134080	0,3113	0,0226
456	35062	121836	34885	118560	37329	133802	0,2870	0,0077
480	33851	122413	34655	117046	37108	134506	0,2828	0,0115
504	33401	121788	37023	118009	37188	133581	0,2888	0,0217
528	33071	122747	33396	117495	34044	132992	0,2699	0,0141
552	32593	122066	27062	118975	36983	133604	0,2571	0,0261
624	30239	121843	28739	117640	38365	132793	0,2605	0,0247
648	29853	122415	28713	118459	25171	133042	0,2252	0,0312

 Tab. 63: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTA bei pH 5,0.

7.2.5.2. Yttrium-EDTA

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	34892	45372	25408	33877	19860	27891	0,7437	0,0290
0,8	34945	46912	26256	34981	20503	28043	0,7422	0,0100
1	35284	47559	27289	35712	21807	29514	0,7483	0,0138
2	35218	48038	26124	35495	21491	29039	0,7364	0,0035
4	35615	48097	26662	35820	22268	29412	0,7473	0,0087
6	35062	48023	26709	35642	22110	29761	0,7408	0,0098
12	35153	47970	26709	35770	22480	29301	0,7489	0,0173
20	35518	48052	25276	35214	22351	29442	0,7387	0,0207
40	35677	48109	25771	36009	22666	29155	0,7449	0,0310
60	36150	48735	26343	35716	21645	29047	0,7415	0,0038

 Tab. 64: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-EDTA bei pH 7,4.

 Tab. 65: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-EDTA bei pH 7,0.

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Yttrium-	Standard- abweichung
[4]	1	1	2	2	3	3	Konzentration im Eluat	[10-6 mol/[]
[5]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]		[10-6 m01/L]
0,6	14311	18708	11726	15714	17951	23105	0,7627	0,0155
0,8	15128	19925	12882	16859	19239	24903	0,7653	0,0068
1	14985	20039	12941	17045	18222	24796	0,7473	0,0122
2	15479	20371	13164	17293	19102	25002	0,7617	0,0021
4	15301	20495	13163	17250	18487	24791	0,7518	0,0098
6	16276	21703	12680	17018	19312	24556	0,7605	0,0226
12	15900	21142	13018	17406	18436	24098	0,7550	0,0089
20	15631	21089	12702	17399	19332	25047	0,7477	0,0216
40	15323	21240	13010	17451	17553	24665	0,7262	0,0174
60	14948	21072	12795	17650	17117	24310	0,7128	0,0108
Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
-------------	----------	----------	----------	----------	----------	----------	--------------------------	--------------------------
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
	-	-	-	-	-			
0,6	15110	19721	6681	9074	24745	32451	0,755	0,0163
0,8	16135	21460	7079	9681	26134	33972	0,7508	0,0190
1	16531	21985	7267	9823	26314	34690	0,7501	0,0095
2	16337	22084	7032	9905	25764	34577	0,7316	0,0190
4	15657	22039	6728	9914	24540	34299	0,7015	0,0200
6	14558	22408	6335	9878	23702	34506	0,6593	0,0243
12	12276	22174	5420	9954	19359	34333	0,554	0,0097
20	10970	22380	4635	10023	17289	34702	0,4836	0,0188
40	6607	22004	2799	9967	10210	34165	0,2933	0,0109
60	4284	22193	1775	10001	7838	34794	0,1986	0,0244

 Tab. 66: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-EDTA bei pH 6,0.

 Tab. 67:Ergebnisse des kontinuierlichen FISRE-Experiments an Y-EDTA bei pH 5,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	24676	36721	29229	44673	11881	17129	0,6733	0,0197
0,8	25007	38055	29989	45918	12375	18427	0,6606	0,0097
1	25336	39576	29697	46715	12430	19032	0,6430	0,0090
2	20449	39702	22529	47200	10414	19544	0,5084	0,0284
4	15531	39849	17997	47012	7921	19080	0,3959	0,0170
6	10263	40071	12571	47347	5499	19453	0,2681	0,0135
12	2720	39665	3560	48612	1050	19307	0,0654	0,0098
20	372	40029	1012	48225	799	19149	0,0240	0,0164
40	8	42094	1251	47042	129	19688	0,0111	0,0138
60	29	41473	1171	48993	47	19785	0,0090	0,0129

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
_	1	1	2	2	3	3	Konzentration	_
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
[]	[-[]	[-[]	[-F]	[-[]	[-[]	[-[]	[,-]	[,-]
1,67E-02	71941	98225	60407	80792	55136	75455	0,7369	0,0094
3,33E-01	61517	97462	52406	81779	47670	76239	0,6324	0,0079
6,67E-01	53300	98917	45189	80928	41251	76101	0,5464	0,0105
1	47870	97144	42049	81370	37965	76442	0,5021	0,0129
2	23562	98275	21705	80921	18247	75916	0,2495	0,0163
3	16254	98024	14305	81443	12754	76980	0,1691	0,0057
4	5809	97089	6865	81241	5036	77002	0,0699	0,0129
5	5096	97903	6803	81779	4796	76747	0,0659	0,0159
6	4291	98030	5748	81009	2696	77131	0,0499	0,0188
7	1507	98576	4788	81674	2806	77209	0,0368	0,0217
8	605	98225	2480	81299	1107	76443	0,0171	0,0124

 Tab. 68: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-EDTA bei pH 7,4.

 Tab. 69: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-EDTA bei pH 7,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
-	1	1	2	2	3	3	Konzentration im Eluat	-
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
1,67E-02	58787	83772	54324	76522	49204	68923	0,7085	0,0062
1,67E-01	29841	84179	27032	77201	24334	69772	0,3511	0,0030
3,33E-01	21828	84020	20024	76399	17898	69241	0,2601	0,0018
5,00E-01	12367	84755	12394	77925	10361	69161	0,1516	0,0068
6,67E-01	9212	83978	10010	78413	6840	68713	0,1123	0,0142
1	2411	84761	1973	77040	607	69551	0,0209	0,0107

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
1,67E-02	14836	89772	15700	79258	15073	76251	0,1870	0,0188
,							,	,
1,67E-01	261	90598	496	78791	389	78662	0,0047	0,0017

 Tab. 70: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-EDTA bei pH 6,0.

7.2.5.3. Yttrium-DTPA

 Tab. 71: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DTPA bei pH 7,4.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	34098	50873	28543	42986	21953	35291	0,6521	0,0262
0,8	33884	52047	29424	44027	22519	36974	0,6428	0,0305
1	32921	53912	28179	45603	23734	37570	0,6201	0,0107
2	31981	54286	27661	45977	22182	37998	0,5915	0,0092
4	31148	54907	26382	46038	22649	37451	0,5817	0,0202
6	31018	54416	26483	46152	22211	37238	0,5801	0,0143
12	30890	54203	26966	46086	22221	38004	0,5799	0,0087
20	31416	54170	26906	46219	21833	37412	0,5819	0,0018
40	31172	54662	26947	46412	20390	37997	0,5625	0,0230
60	30735	54309	26362	46384	23099	37631	0,5827	0,0270

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
[0]	[cp.ii]	[cpm]	[cpm]	[epiii]	[cpm]	[cpm]	[10 1101/2]	[10 1101/2]
0,6	13610	21954	8901	14789	5581	8794	0,6188	0,0164
0.8	12060	22120	8077	15002	5159	8007	0 5927	0.0122
0,8	13900	23120	0977	15095	5156	8902	0,3927	0,0123
1	13080	23572	9095	16442	5605	9205	0,5723	0,0317
2	13072	23771	8497	16095	4499	9278	0,5209	0,0331
4	11746	23091	8445	16251	4432	9296	0,5017	0,0223
6	11802	23205	8789	16308	4444	9205	0,5101	0,0281
12	11947	23552	8945	16904	4344	9377	0,4999	0,0336
20	11483	23896	8335	16235	4504	9467	0,4899	0,0205
40	11859	24049	8701	16772	4508	9385	0,4974	0,0196
60	12265	24231	8646	16809	4514	9326	0,5015	0,0157

Tab. 72: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DTPA bei pH 7,0

 Tab. 73: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DTPA bei pH 6,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	15266	26738	12748	23057	6037	9657	0,5830	0,0376
0,8	15630	27974	12096	24186	4754	10034	0,5109	0,0435
1	14700	28605	12877	24768	5358	11023	0,5066	0,0181
2	12995	29140	10956	25443	4539	10947	0,4304	0,0157
4	11537	29615	9503	25086	4723	11191	0,3968	0,0225
6	11876	29398	10268	25159	5123	11712	0,4165	0,0182
12	11639	30071	9364	24976	4531	11203	0,3888	0,0149
20	11397	29980	9972	25701	4889	11505	0,3977	0,0239
40	11538	30442	9938	25609	4879	11428	0,3980	0,0254
60	10479	30216	10115	25271	4601	11386	0,3837	0,0320

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	-
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
			. 1					
0,6	19966	37745	15780	27894	12698	24839	0,5353	0,0278
0,8	18948	39008	13688	29377	12703	25936	0,4805	0,0128
1	18457	40206	13277	30174	11421	26772	0,4419	0,0163
2	15098	40561	10735	30095	10575	26803	0,3745	0,0190
4	14686	40798	10619	30172	9138	26793	0,3510	0,0095
6	13938	40501	11050	30086	8751	26554	0,3470	0,0190
12	13985	40127	11435	30451	9047	26890	0,3535	0,0200
20	14132	41336	11225	30780	8370	26477	0,3409	0,0243
40	14326	40912	10267	30442	8519	26902	0,3347	0,0169
60	12698	40870	9572	30295	7978	26724	0,3084	0,0089

 Tab. 74:Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DTPA bei pH 5,0.

Tab. 75: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DTPA bei pH 7,4.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
1,67E-02	45561	77304	35738	58293	47354	88204	0,5798	0,0390
6	40491	78415	34381	59204	42153	88946	0,5237	0,0538
24	25194	79737	19123	59312	29264	87514	0,3243	0,0094
48	16034	78653	14186	60094	18157	87925	0,2155	0,0179
120	3145	78992	2959	60205	541	89034	0,0317	0,0227
144	3017	79038	2898	58993	5543	88614	0,0500	0,0122
168	1648	78890	1296	59450	446	89067	0,0159	0,0094
192	2428	79024	3434	59786	2785	88343	0,0399	0,0152
216	1029	79089	1054	60102	1177	87615	0,0147	0,0025
288	404	79253	400	60728	404	89050	0,0054	0,0011
312	568	79060	500	59336	947	88046	0,0088	0,0018
336	10	79247	245	59899	132	88692	0,0019	0,0020
360	91	79932	48	60750	81	89705	0,0009	0,0002
384	2	79905	45	61238	156	88990	0,0008	0,0009

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
			- 1		- 1			
1,67E-02	39638	78620	31165	62489	26230	52856	0,4997	0,0041
1	38630	79332	29699	62334	24901	53440	0,4765	0,0105
2	35092	77514	28451	64205	23637	54078	0,4443	0,0079
3	34643	78036	25906	63098	22790	53070	0,4280	0,0167
4	32260	78500	25295	63822	22015	53462	0,4064	0,0087
5	30885	79107	23898	64003	21127	53666	0,3858	0,0109
6	27546	77628	23728	63728	20119	54107	0,3663	0,0100
24	15096	78043	10326	64091	11105	54003	0,1867	0,0230
48	4121	78992	1641	63547	3770	53791	0,0494	0,0223
120	118	79443	297	63992	51	53826	0,0024	0,0020
144	3203	78034	46	63201	1105	54125	0,0207	0,0202
168	181	78391	152	63455	95	53552	0,0022	0,0003
192	548	79226	698	63072	316	53096	0,0080	0,0027

 Tab. 76: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DTPA bei pH 7,0.

 Tab. 77: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DTPA bei pH 6,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
1,67E-02	19921	56712	15007	44750	15825	48397	0,3379	0,0123
1,67E-01	19266	57028	15432	45092	17195	48912	0,3439	0,0070
0,33	18304	57194	14651	44397	15834	47913	0,3268	0,0059
0,5	18010	56882	15398	44958	15448	48006	0,3270	0,0137
0,6	17231	57095	13936	45026	13949	47935	0,3008	0,0093
1	16078	57520	11711	45224	12689	48038	0,2675	0,0107
2	7253	57089	7390	44093	5533	49072	0,1358	0,0285
3	5310	57668	4931	45671	4290	48533	0,0962	0,0104
4	3561	56498	1883	44733	2994	48760	0,0555	0,0117
5	2899	57029	3012	44982	2438	48552	0,0560	0,0095
6	369	58703	132	44158	336	49050	0,0054	0,0021

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
1,67E-02	21403	63729	23780	73054	20765	64809	0,3273	0,0079
1 67E 01	10111	61669	14150	70510	14750	64779	0.2086	0.0172
1,0/E-01	13111	04000	14152	72515	14/39	04720	0,2086	0,0172
3,33E-01	4477	64205	5141	72331	6554	64205	0,0810	0,0183
0,5	2777	64632	1329	73406	2374	65060	0,0325	0,0129
0,6	2284	63970	2749	72638	1278	64230	0,0312	0,0098
1	970	64515	1048	73090	1732	64651	0,0187	0,0070
2	893	64781	1135	72550	917	65133	0,0145	0,0010
3	800	63677	1489	73974	96	64917	0,0114	0,0094
4	115	64043	650	72816	924	65085	0,0083	0,0062

 Tab. 78: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DTPA bei pH 5,0.

7.2.5.4. Yttrium-DOTATOC

Tab. 79: Ergebnisse des kontinuierlichen FISRE-Experiments an	Y-DOTATOC bei	pH 7,4.
---	---------------	---------

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	56829	74552	50283	66294	41930	56499	0,7543	0,0107
0,8	57859	77082	55355	72603	43548	58925	0,7507	0,0117
1	60341	79425	55747	73518	44638	60167	0,7533	0,0099
2	59226	79017	54817	73114	45419	60308	0,7508	0,0020
4	60201	79183	56547	73916	43752	60049	0,7513	0,0198
6	60258	80416	56936	74021	44108	60103	0,7508	0,0177
12	61587	80132	56220	74105	43637	60050	0,7513	0,0219
20	59761	80317	55527	73955	45149	59436	0,7515	0,0078
40	60251	80101	55685	74082	45053	60164	0,7509	0,0018
60	60169	80209	56231	74030	44622	60302	0,7499	0,0098

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
		. 1		. 1	. 1	- 1 -		
0,6	48952	63551	25814	33856	57195	72937	0,7723	0,0110
0,8	49430	65082	27061	35007	58205	74980	0,7696	0,0089
1	51312	67541	27961	36801	59740	76502	0,7668	0,0122
2	51108	67109	28248	37013	58688	76914	0,7626	0,0009
4	51718	68025	28175	37151	60782	76810	0,7700	0,0185
6	51581	67912	28037	37089	60365	76992	0,7665	0,0153
12	50940	67153	27912	36799	59438	76405	0,7650	0,0112
20	51213	67647	28296	37125	59412	77031	0,7635	0,0072
40	51289	67558	28236	37206	58793	76983	0,7606	0,0027
60	51170	68129	27714	37189	59605	77118	0,7564	0,0146

Tab. 80: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 7,0.

Tab. 81: Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 6,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	34653	45782	43784	56710	29127	40162	0,7514	0,0239
0,8	35201	46927	43995	58365	31965	42947	0,7494	0,0048
1	35846	48082	44257	59120	32303	43198	0,7473	0,0016
2	35760	48925	43941	59443	32322	43556	0,7374	0,0058
4	35147	48904	41837	59027	31872	43617	0,7194	0,0110
6	33614	48700	41608	58940	31217	43720	0,7034	0,0121
12	32347	48991	39446	58874	28618	42974	0,6654	0,0049
20	30913	48610	37548	59042	27214	43005	0,6349	0,0018
40	28844	49006	35150	59084	25928	42893	0,5960	0,0080
60	27798	48572	34278	59128	25291	42795	0,5810	0,0094

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	70531	93780	62737	80377	47361	63702	0,7587	0,0194
0,8	72475	96816	63769	82895	46089	64512	0,7441	0,0277
1	71891	98553	63730	84912	47007	66040	0,7306	0,0194
2	70975	99194	62397	84467	46867	66125	0,7210	0,0157
4	70283	101835	57338	84152	44396	66088	0,6811	0,0092
6	64438	99270	54551	84995	44525	66143	0,6547	0,0164
12	58331	100206	50216	84633	38786	66409	0,5865	0,0060
20	53853	99378	45243	83798	35884	65903	0,5421	0,0023
40	49769	98974	43958	84612	32960	67030	0,5047	0,0140
60	51245	101023	42871	84517	31901	67204	0,4964	0,0188

 Tab. 82:Ergebnisse des kontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 5,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Reterenz	Yttrium-	abweichung
	1	1	Z	Z	3	3	im Fluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
[]	[cp.m]	[epiii]	[cp.ii]	[ep.in]	[cp.ii]	[cp.ii]	[10 1101,2]	[10 1101/2]
0,01666	92877	121026	79995	108988	87343	117247	0,7488	0,0170
6	90865	121939	80520	108415	90937	117288	0,7544	0,0182
24	91072	123029	81783	108925	90124	118916	0,7497	0,0089
48	92171	123496	81990	109453	90036	120082	0,7484	0,0018
120	92070	123407	83050	110298	91205	119695	0,7537	0,0080
144	90892	123396	82515	110167	90665	119736	0,7476	0,0104
168	93801	124676	83958	110284	89083	119245	0,7536	0,0072
192	92125	124307	82578	110161	90382	120171	0,7476	0,0058
216	94080	124593	83528	110946	90532	119626	0,7549	0,0020
288	92245	124472	83103	110928	90245	120163	0,7471	0,0053
312	92021	124607	83302	110728	89963	119517	0,7478	0,0081
336	94920	124502	82167	110692	90642	119412	0,7546	0,0108
360	93409	124574	83575	110549	91651	120033	0,7565	0,0069
384	92922	124672	82875	110622	90265	120719	0,7474	0,0019
456	92538	124788	82841	109898	91372	119218	0,7539	0,0124
480	91449	124204	82441	110233	90225	120151	0,7450	0,0077
504	92116	124594	82600	110145	92837	119827	0,7547	0,0182
528	92815	124517	83120	110573	91244	119922	0,7527	0,0078
552	93110	124562	82455	110368	89209	120174	0,7456	0,0029
624	93261	124416	83104	110792	90280	119838	0,7510	0,0020
648	91987	124698	84632	111209	90870	119902	0,7522	0,0127

 Tab. 83: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 7,4.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Yttrium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01666	107463	139199	105573	140472	96284	124175	0,7663	0,0129
6	103664	140384	102980	142990	94192	124913	0,7376	0,0170
24	105428	142827	104238	144105	93759	125720	0,7358	0,0114
48	107082	144858	107458	145712	92358	125509	0,7375	0,0017
120	104897	144582	105583	145801	94462	125802	0,7335	0,0151
144	106162	144706	106079	145929	93257	125009	0,7355	0,0097
168	106175	144882	107583	145719	93401	126092	0,7373	0,0040
192	105966	144907	108509	146908	94399	126301	0,7391	0,0081
216	106280	144772	106949	146211	94956	126073	0,7396	0,0118
288	105433	144623	107447	146806	93500	125979	0,7344	0,0069
312	105906	144373	107482	146403	93059	125169	0,7371	0,0056
336	108547	144880	104572	147044	94173	125230	0,7375	0,0228
360	107717	145713	107844	147131	93958	125983	0,7393	0,0064
384	106540	144681	107837	147009	92683	125772	0,7356	0,0018
456	107518	144710	109017	147167	95408	126089	0,7468	0,0086
480	106926	144508	108151	147731	93740	125939	0,7388	0,0062
504	106170	144075	105638	147824	93712	126983	0,7298	0,0132
528	105015	144617	106301	147203	92944	127002	0,7267	0,0049
552	106156	144302	107872	147790	93512	126575	0,7348	0,0045
624	106147	144212	107949	146201	93583	126858	0,7374	0,0012
648	104528	145007	110905	147992	93944	126900	0,7369	0,0146

 Tab. 84: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 7,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
		r 1	r 1	r 1	r 1	r 1	im Eluat	F106 1/F1
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-8 mol/L]	[10 ⁻⁶ mol/L]
0,01666	65815	117711	54654	98716	59501	106772	0,5567	0,0028
6	66017	117829	55189	99210	60894	107135	0,5617	0,0062
24	65471	118910	54881	101298	60568	107891	0,5513	0,0098
48	65863	119203	58396	102993	61281	108524	0,5614	0,0078
120	65751	118914	56481	101790	61045	108611	0,5566	0,0048
144	66818	119775	57681	102918	60795	108732	0,5592	0,0013
168	65578	119206	56964	102516	61575	108445	0,5579	0,0090
192	66259	118977	56572	102300	61156	108692	0,5575	0,0049
216	66690	119125	56570	102191	60514	108009	0,5579	0,0038
288	66421	119737	57171	101978	61294	109014	0,5592	0,0040
312	66740	120036	57522	102773	61404	108769	0,5601	0,0043
336	67153	118971	56776	101498	62408	108920	0,5656	0,0069
360	66421	118006	57390	102525	60154	108023	0,5598	0,0030
384	67643	119192	56785	102047	61621	108076	0,5647	0,0073
456	66509	118715	58399	102603	63197	108659	0,5703	0,0107
480	65193	119026	57723	102928	61824	109204	0,5582	0,0095
504	65111	119105	56916	101784	60839	108724	0,5551	0,0073
528	66730	120301	55393	102057	62371	108992	0,5566	0,0148
552	65532	120156	55272	102332	60770	109452	0,5469	0,0077
624	64896	119134	55218	103527	59990	108906	0,5430	0,0089
648	65846	120719	56512	103708	59937	109237	0,5464	0,0020

 Tab. 85: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 6,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Yttrium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10 ⁻⁶ mol/L]
0.01///	45075	00070	45105	01757	20545	E0221	0 5045	0.0110
0,01666	43975	89972	45135	91756	30547	59771	0,5047	0,0110
6	44446	90163	46013	92646	30453	60516	0,4976	0,0052
24	45905	91677	46506	93052	31173	61948	0,5012	0,0018
48	45472	91225	46813	93661	31541	62974	0,4997	0,0012
120	45441	91787	46070	93784	31341	62784	0,4952	0,0040
144	44694	90966	45742	93805	32167	62991	0,4965	0,0124
168	44744	91461	45776	93500	31552	63401	0,4922	0,0048
192	45334	92021	45278	94201	31429	63028	0,4907	0,0092
216	43019	91540	45725	94036	32200	62979	0,4892	0,0208
288	44641	91639	45063	93552	30581	63018	0,4847	0,0028
312	44230	91442	45230	94227	30968	63727	0,4832	0,0030
336	45273	92108	45048	94002	29242	62768	0,4789	0,0128
360	44876	91711	45319	94304	30062	63827	0,4803	0,0092
384	43207	91514	43892	94502	31539	63094	0,4788	0,0186
456	43366	92016	44287	94056	30323	63011	0,4745	0,0059
480	43954	92304	44980	94228	30970	62950	0,4818	0,0088
504	43349	92143	43707	94153	30589	63721	0,4716	0,0080
528	43197	92081	42710	94851	31137	63415	0,4701	0,0204
552	43211	91799	42188	94367	31197	63882	0,4687	0,0207
624	42647	92231	43477	94519	29939	63572	0,4644	0,0058
648	42888	92610	43728	95192	30234	63817	0,4654	0,0075

 Tab. 86: Ergebnisse des diskontinuierlichen FISRE-Experiments an Y-DOTATOC bei pH 5,0.

7.3. Messergebnisse – Terbium(III)-polyaminocarboxylate

7.3.1. Ligandenfreier Versuch

Tab. 87: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 7,0 (HEPES-Puffer) und I= 0,01.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
0,6	1129	53782	636	52975	597	49725	0,015	0,005
0,8	880	54990	987	54826	719	51373	0,016	0,002
1	611	55589	497	55203	689	53025	0,011	0,002
2	391	55834	442	55277	480	53308	0,008	0,001
4	280	55902	387	55306	160	53419	0,005	0,002
6	224	56041	160	55234	112	53392	0,003	0,001
12	336	56019	221	55367	107	53345	0,004	0,002
20	168	56103	111	55298	53	53491	0,002	0,001
40	56	56077	93	55405	17	53379	0,001	0,001
60	112	56053	33	55208	21	53480	0,001	0,001

 Tab. 88: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 6,0 (MES-Puffer) und I = 0,01.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	591	25688	260	28919	174	24815	0,013	0,009
0,8	479	26593	298	29758	355	25322	0,014	0,004
1	273	27304	181	30124	131	26174	0,007	0,003
2	329	27451	91	30185	314	26203	0,009	0,005
4	192	27397	181	30205	288	26195	0,008	0,003
6	165	27555	242	30281	184	26231	0,007	0,001
12	191	27498	75	30177	68	26355	0,004	0,003
20	110	27460	60	30196	79	26209	0,003	0,001
40	55	27612	91	30232	184	26307	0,004	0,003
60	28	27518	84	30144	58	26279	0,002	0,001

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	981	61289	1339	58230	336	55937	0,015	0,009
0,8	701	63750	557	61846	406	58036	0,009	0,002
1	849	65281	504	62947	713	59376	0,011	0,003
2	524	65530	755	62896	237	59279	0,008	0,004
4	462	66034	378	63048	299	59721	0,006	0,001
6	594	66051	316	63104	776	59662	0,009	0,004
12	198	66102	126	63077	419	59816	0,004	0,003
20	264	66098	188	62819	300	59937	0,004	0,001
40	265	66134	252	63045	420	60013	0,005	0,002
60	66	66221	126	63121	180	60042	0,002	0,001

Tab. 89: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 5,0 (Piperazin-Puffer) undI = 0,01.

Tab. 90: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 4,5 (N-Methylpiperazin-
Puffer) und I = 0,01.

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	IM Eluat [10 ⁻⁶ mol/L]	[10-6 mol/L]
0,6	153	38305	498	41527	824	35827	0,013	0,010
0,8	119	39502	394	43826	666	36982	0,010	0,008
1	201	40134	359	44908	526	37552	0,009	0,005
2	161	40209	225	45021	226	37644	0,005	0,001
4	201	40177	361	45098	415	37770	0,008	0,003
6	78	40213	315	45067	115	37726	0,004	0,003
12	121	40255	226	45171	263	37604	0,005	0,002
20	81	40290	45	45100	227	37758	0,003	0,003
40	40	40198	181	45218	37	37289	0,002	0,002
60	72	40256	90	45166	196	37702	0,003	0,002

7.3.2. Einflüsse unterschiedlicher M/L-Verhältnisse

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
·								
0,40	5915	20792	5319	18655	5338	21479	0,2727	0,0210
0,60	8631	21037	7537	18712	8592	21556	0,4039	0,0059
0,70	9801	20844	8796	18604	9933	21703	0,4669	0,0081
0,75	10530	20917	9411	18993	10964	20976	0,5072	0,0140
0,80	11946	20885	10519	18770	11531	21045	0,5601	0,0121
0,90	15267	20934	13461	18850	15277	21337	0,7198	0,0083
0,95	18725	20896	16680	18903	18568	21048	0,8869	0,0080
1,00	20757	20865	18796	18915	21427	21600	0,9935	0,0014
1,10	20859	20991	18577	18612	21062	21381	0,9923	0,0066
1,25	20931	20954	18912	18996	20934	20976	0,9975	0,0017
1,50	20902	21003	18977	19021	21385	21445	0,9967	0,0013

 Tab. 91: Messung der Dissoziation von Tb-DOTATOC nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

 Tab. 92: Messung der Dissoziation von Tb-DOTATATE nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	_
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
	. 1	. 1		. 1	. 1	. 1		
0,40	6370	25377	6931	28904	6690	28663	0,2414	0,0089
0,60	9285	25601	9949	28663	10096	28304	0,3555	0,0079
0,70	10573	25813	12698	29010	11077	28345	0,4127	0,0236
0,75	11354	25198	12440	28234	12779	28166	0,4483	0,0068
0,80	12534	25466	13922	29035	13898	28917	0,4841	0,0070
0,90	15345	25317	17573	29061	16313	28545	0,5941	0,0196
0,95	21815	25604	24177	28916	24442	28477	0,8488	0,0114
1,00	25246	25801	29035	29251	27628	28166	0,9840	0,0075
1,10	25466	25545	28998	29068	27658	27915	0,9951	0,0037
1,25	25430	25609	28546	28843	28334	28345	0,9941	0,0050
1,50	25852	25880	28865	29028	27396	27410	0,9976	0,0028

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,40	6443	25368	6008	22837	7507	28202	0,2611	0,0063
0,60	10325	25717	8319	22351	11384	28255	0,3922	0,0173
0,70	11737	25499	10792	22715	12583	27043	0,4669	0,0075
0,75	12512	25670	11413	22519	13509	28004	0,4922	0,0129
0,80	14025	25224	12503	22840	15094	28346	0,5453	0,0119
0,90	18450	25109	16056	22608	20456	28137	0,7240	0,0126
0,95	22987	25918	19409	22711	24878	28615	0,8703	0,0162
1,00	25012	25143	22576	22639	27678	28119	0,9921	0,0069
1,10	25427	25604	22457	22540	28113	28195	0,9955	0,0021
1,25	25745	26010	22587	22623	27930	28028	0,9949	0,0045
1,50	25322	25368	22570	22702	28303	28334	0,9971	0,0025

 Tab. 93: Messung der Dissoziation von Tb-DOTANOC nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

 Tab. 94: Messung der Dissoziation von Tb-IS20I nach 60 s Chelex-Kontaktzeit bei unterschiedlichen M/L-Verhältnissen.

M/L-	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Verhältnis	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,40	6900	30277	6860	29736	5481	28403	0,2172	0,0210
0,60	10013	29819	9849	29445	8160	28110	0,3202	0,0259
0,70	12011	30415	11322	29811	10838	28079	0,3869	0,0076
0,75	12661	30657	12045	30150	11484	28425	0,4055	0,0069
0,80	13714	29866	13474	30204	12101	27831	0,4467	0,0122
0,90	19336	29941	19653	30082	17601	28064	0,6421	0,0135
0,95	25309	29702	25284	30179	23609	27877	0,8456	0,0072
1,00	29351	30104	30062	30086	27585	28031	0,9861	0,0122
1,10	29563	30065	29536	29861	28291	28539	0,9879	0,0041
1,25	30181	30205	30081	30144	27908	27961	0,9984	0,0007
1.50	29925	29976	30003	30024	27451	27642	0.9969	0.0033

7.3.3. Ergebnisse der FISRE-Experimente an Terbium(III)-polyaminocarboxylaten

7.3.3.1. Terbium-DOTATOC

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	61762	81018	47488	64233	63280	82049	0,7576	0,0165
0,8	64915	85913	48828	66027	66094	86592	0,7528	0,0121
1	65601	87209	50358	67207	67758	88987	0,7543	0,0063
2	66388	88602	50818	68983	68225	90047	0,7479	0,0106
4	66373	89017	51624	69602	67428	89874	0,7459	0,0043
6	66145	89416	51982	69814	66724	90177	0,7414	0,0027
12	65554	89756	51866	70012	65161	90516	0,7304	0,0105
20	65482	89641	51487	69876	65235	90064	0,7305	0,0063
40	65231	89740	50833	70119	66512	90102	0,7300	0,0072
60	65566	89697	51456	70079	64608	90368	0,7267	0,0103

 Tab. 95: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 7,4.

Tab. 96: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 7,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	25917	34089	22723	30565	26700	35027	0,7553	0,0103
0,8	26392	35095	23619	31878	26893	36719	0,7418	0,0098
1	26650	36201	24436	33025	28058	38026	0,7380	0,0019
2	26989	36312	24099	33142	27728	37981	0,7335	0,0086
4	26890	36409	23840	33109	27628	38018	0,7284	0,0094
6	26210	36314	23955	33240	27985	38561	0,7227	0,0027
12	26204	36286	23929	33741	27865	38492	0,7184	0,0080
20	26072	36389	23891	33357	28067	38588	0,7200	0,0063
40	25987	36320	23905	33296	27761	38490	0,7182	0,0029
60	26175	36408	23885	33535	28204	38733	0,7198	0,0080

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
0,6	34158	48597	35208	50177	32326	47129	0,6968	0,0095
0,8	33325	50272	34956	52480	31632	48926	0,6585	0,0105
1	33860	52071	34101	53984	32270	50172	0,6417	0,0094
2	30663	51938	31099	54045	29410	50164	0,5840	0,0077
4	28129	52092	28416	54294	26709	50209	0,5318	0,0083
6	26942	52047	27682	54603	26357	50197	0,5166	0,0091
12	26414	52104	27736	54394	25936	50490	0,5102	0,0034
20	26458	52007	27953	54830	26112	50251	0,5127	0,0060
40	26261	51978	27855	54628	25887	50283	0,5100	0,0048
60	26175	52133	27545	54827	25961	50229	0,5071	0,0084

 Tab. 97: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 6,0.

 Tab. 98:Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 5,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	34487	52983	38040	56092	35636	54950	0,6592	0,0165
0,8	33442	54780	36068	58036	33807	56083	0,6116	0,0094
1	33218	56987	35471	58972	33200	56829	0,5895	0,0104
2	29039	57021	30594	58704	28961	57084	0,5126	0,0075
4	26098	57103	27850	59082	26292	57309	0,4624	0,0078
6	25595	57076	27008	59036	25869	57359	0,4523	0,0047
12	25605	57202	26617	59102	25879	57101	0,4504	0,0028
20	25414	57301	27096	58969	25641	57405	0,4499	0,0085
40	25586	57238	26692	59029	25277	57146	0,4472	0,0049
60	25240	57149	26452	59203	26527	57439	0,4501	0,0105

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	76615	104884	72707	97848	67033	94501	0,7276	0,0170
6	77059	105929	73041	97503	67465	94617	0,7299	0,0182
24	76617	105027	71730	98084	68787	94536	0,7295	0,0018
48	76496	104956	71277	97539	68851	94668	0,7290	0,0017
120	76579	104998	72084	98105	68918	95031	0,7298	0,0048
192	76547	105617	71549	98203	68120	94967	0,7235	0,0057
216	76296	104733	71190	98067	68562	95014	0,7253	0,0035
288	76353	105104	71841	98554	67585	94397	0,7238	0,0069
312	76320	105716	71181	97683	68153	94762	0,7233	0,0049
384	75919	104958	71577	97995	67464	94826	0,7217	0,0096
456	76516	105763	71022	98500	68038	95017	0,7202	0,0038
504	75261	104974	70518	98104	67551	95127	0,7153	0,0046
552	75731	105112	70825	98412	67785	94762	0,7185	0,0028
624	75195	105306	70767	98358	67312	95107	0,7138	0,0059
696	75409	105029	69783	98167	67956	94856	0,7151	0,0037
720	75288	104960	69591	97614	67798	95022	0,7146	0,0024
792	75431	105629	70556	98627	67555	95194	0,7130	0,0030
816	75814	105225	70665	98270	66708	94856	0,7143	0,0096
888	75618	105397	69804	98355	67079	95027	0,7110	0,0059
984	74573	104951	69753	98782	68340	95258	0,7114	0,0057
1056	75433	105722	68307	97565	67997	95927	0,7075	0,0068
1152	75230	105826	69213	98037	66357	94856	0,7055	0,0057
1224	73852	105084	69440	98644	67096	95148	0,7040	0,0012
1320	73738	105036	67822	97612	66955	95126	0,7002	0,0048
1392	73940	104895	68309	98463	67184	95600	0,7005	0,0059
1488	73700	105230	68132	97443	66775	94878	0,7011	0,0024
1560	73728	105383	67688	98101	67637	95023	0,7005	0,0109
1632	72710	104960	67520	98034	66226	94895	0,6931	0,0046

 Tab. 99: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 7,4.

Zeit nach Tracerzugabe	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	74094	102844	76715	106712	77729	107289	0,7213	0,0029
6	74778	103708	76152	106593	77751	107397	0,7198	0,0049
24	73527	102478	76841	107034	78104	108134	0,7192	0,0027
48	73989	102849	77090	106942	75511	107452	0,7143	0,0101
120	74260	103945	75527	105974	77419	107325	0,7162	0,0046
192	74569	103973	76255	107427	76600	107203	0,7139	0,0037
216	74709	103746	74854	106306	76452	106923	0,7131	0,0082
288	74097	103624	75309	106940	77306	108404	0,7108	0,0058
312	74186	103523	75277	105840	76530	107877	0,7124	0,0037
384	75126	104024	77013	106820	78575	108462	0,7225	0,0018
456	73236	103941	74104	105831	76744	107835	0,7055	0,0058
504	74246	104500	75448	106322	76087	107083	0,7102	0,0005
552	73278	103955	74182	105738	75189	107265	0,7025	0,0021
624	72822	103784	73618	105203	75063	107352	0,7002	0,0013
696	73119	103705	73960	105397	74958	107459	0,7015	0,0038
720	72862	104027	73296	105304	75615	108763	0,6972	0,0028
792	73330	103894	73100	105955	74364	107894	0,6950	0,0094
816	72498	104262	73523	106052	74848	107831	0,6942	0,0010
888	71690	103625	73516	105967	74212	107480	0,6920	0,0016
984	72126	103474	72876	105633	74048	107342	0,6923	0,0041
1056	71674	103845	73325	106642	73704	107950	0,6868	0,0038
1152	71084	103726	72238	105774	73448	107464	0,6839	0,0012
1224	71103	103947	71838	106236	73274	106984	0,6817	0,0048
1320	70258	104099	71616	107030	71594	107233	0,6706	0,0038
1392	70686	103946	72316	106472	73619	107846	0,6806	0,0018
1488	70262	104048	71115	106369	72675	107296	0,6737	0,0046
1560	70055	103155	70506	106411	72994	108461	0,6716	0,0084
1632	70294	104287	71026	105990	73521	107492	0,6760	0,0071

 Tab. 100: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 7,0.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10-6 mol/L]
0,01667	56683	111037	54957	107349	54376	106983	0,5102	0,0018
6	56702	110298	55494	108463	53783	106950	0,5095	0,0059
24	55462	110369	55385	107442	53524	107203	0,5058	0,0086
48	55785	110957	54660	107236	53853	106356	0,5063	0,0035
120	55472	111084	53839	107345	52575	106388	0,4984	0,0038
192	55740	111945	54730	108745	52661	107092	0,4976	0,0058
216	55553	111047	53520	108306	51645	106277	0,4935	0,0072
288	54303	110354	53053	107492	51225	107038	0,4881	0,0083
312	54428	111032	52371	107355	51438	106981	0,4863	0,0049
384	53562	110585	51561	107389	52063	107222	0,4833	0,0029
456	53372	111934	51684	107948	50443	106980	0,4757	0,0038
504	52153	111047	50905	108226	51104	107204	0,4722	0,0039
552	51412	111056	50607	108093	50732	106749	0,4688	0,0062
624	50985	110845	48977	108469	50685	107300	0,4613	0,0105
696	50993	110300	49400	108351	50339	106540	0,4636	0,0083
720	50864	111270	49221	108190	49174	107204	0,4569	0,0019
792	50972	110298	48327	107399	47240	106476	0,4519	0,0094
816	50574	111049	48081	108482	48305	106827	0,4503	0,0063
888	49100	110270	47763	107935	47975	107024	0,4454	0,0029
984	48858	111028	47005	108202	47327	107038	0,4389	0,0040
1056	48587	110894	45594	107986	47028	106429	0,4341	0,0104
1152	47247	110289	45205	107915	45270	106373	0,4243	0,0049
1224	47640	111037	45759	108398	45634	107023	0,4259	0,0035
1320	46637	110834	43963	107927	44968	106388	0,4169	0,0084
1392	46452	111033	44000	107684	44010	107297	0,4124	0,0052
1488	44882	110273	43435	107256	43302	106354	0,4064	0,0012
1560	44936	111048	42605	107513	43470	107366	0,4019	0,0049
1632	44323	111486	42518	107394	45442	113847	0,3975	0,0016

 Tab. 101: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 6,0.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	56798	125738	47049	103847	49928	110827	0,4518	0,0013
6	55444	126037	45680	103099	50379	111020	0,4456	0,0073
24	54837	127093	45999	102909	48091	111726	0,4363	0,0093
48	52753	125337	44420	102076	47192	110845	0,4273	0,0073
120	48922	126834	40436	103209	43469	109725	0,3912	0,0052
192	45227	126400	37818	102784	39249	111066	0,3597	0,0075
216	44186	126389	36522	102801	38930	110347	0,3526	0,0028
288	40711	127346	33762	102307	34970	110976	0,3216	0,0076
312	38938	126005	32095	102450	35084	111065	0,3127	0,0035
384	36858	127209	29931	102997	31352	111070	0,2875	0,0046
456	32814	126347	27902	103024	29130	110934	0,2644	0,0058
504	30983	127037	26249	103260	27782	110312	0,2500	0,0054
552	29176	126444	25204	102983	25828	110554	0,2364	0,0074
624	26665	127051	23563	102766	23641	111084	0,2173	0,0105
696	26110	127340	21511	103201	21184	110034	0,2020	0,0084
720	24607	127029	20625	103487	21131	111270	0,1943	0,0047
792	23178	126543	18734	104052	19466	110209	0,1799	0,0033
816	22329	127894	18843	102979	19101	111098	0,1765	0,0058
888	19529	128017	17254	103290	17765	111307	0,1597	0,0073
984	17509	127542	14782	103408	16480	111206	0,1428	0,0055
1056	16611	126994	14158	103872	14131	111429	0,1313	0,0048
1152	15079	127306	12427	102796	12487	110653	0,1174	0,0041
1224	13027	127688	11882	104005	11215	111674	0,1056	0,0076
1320	11577	126790	9461	102991	10488	110372	0,0927	0,0020
1392	10149	127153	9345	103608	10590	110108	0,0887	0,0083
1488	9928	126378	7924	102960	10003	111674	0,0817	0,0069
1560	9331	127089	8109	103404	8214	110876	0,0753	0,0027
1632	8614	126578	7416	102986	7210	110978	0,0683	0,0035

 Tab. 102: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATOC bei pH 5,0.

7.3.3.2. Terbium-DOTATATE

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
							_	
0,6	45280	59635	41910	56712	43845	58403	0,7497	0,0102
0,8	47285	62846	43051	57948	45126	59712	0,7504	0,0066
1	48076	64255	43740	59123	47028	61888	0,7493	0,0101
2	48586	64982	45141	60810	46116	61979	0,7447	0,0027
4	47800	64751	44026	59973	45643	61605	0,7377	0,0034
6	47069	64298	43981	60231	45600	61772	0,7335	0,0042
12	46906	64750	44103	60408	44778	61534	0,7274	0,0029
20	47135	64628	44137	60224	45167	62005	0,7302	0,0023
40	46924	64559	44411	60716	44280	61780	0,7250	0,0075
60	46908	64311	44183	60541	44552	61499	0,7279	0,0030

 Tab. 103: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 7,4.

Tab. 104: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 7,0

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	uoweleitung
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	29441	38226	27659	36742	22576	30817	0,7519	0,0188
0,8	29941	39726	28199	38060	24213	32487	0,7466	0,0065
1	30146	40177	28268	38209	24791	33721	0,7418	0,0078
2	29555	40238	28277	38712	24195	33612	0,7283	0,0076
4	29235	40279	27447	38619	23815	33514	0,7157	0,0088
6	28473	40164	27306	38971	24031	33845	0,7065	0,0051
12	28309	40178	27629	38920	23312	33649	0,7024	0,0087
20	28325	40362	26805	38445	23553	33700	0,6993	0,0023
40	28122	40255	27500	38741	23395	33682	0,7010	0,0079
60	28103	40290	26801	38655	23540	33775	0,6959	0,0023

Kontaktzeit	Zählrato	Zählrato	Zählrato	Zählrate	Zählrato	Zählrato	herechnete	Standard-
RomaRizen	Probo	Referenz	Proba	Referenz	Proba	Referenz	Torbium	abwoichung
	1	1	11000	2	2	2	Vongontration	abweichung
	1	1	2	2	3	3	Konzentration	
	r 1	r 1	r 1	r 1	r 1	r 1	im Eluat	10/ 1/11
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	47406	72981	46271	69876	41541	64312	0,6526	0,0085
0,8	46250	74621	46777	73091	41255	66738	0,6260	0,0122
1	45953	76931	45693	74928	41510	68559	0,6042	0,0063
2	41967	77820	39906	75250	36258	69078	0,5315	0,0073
4	36371	77697	36403	76004	32214	69024	0,4713	0,0067
6	34828	77548	34883	75827	31653	69131	0,4557	0,0058
12	34564	78003	34356	76293	31449	68910	0,4499	0,0066
20	34294	77962	34392	75938	31543	69044	0,4499	0,0089
40	35108	78050	33812	75690	31380	69156	0,4501	0,0035
60	34206	77879	33987	76021	31544	68799	0,4483	0,0097

 Tab. 105: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 6,0.

Tab. 106:Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 5,0.

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	0
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	30273	49028	29135	48722	28149	46899	0,6052	0,0107
0,8	30308	52142	29707	52098	26799	48052	0,5697	0,0118
1	29354	53174	28885	53409	26007	48797	0,5419	0,0096
2	24723	53429	24234	53122	22304	49204	0,4574	0,0048
4	22559	53588	21305	52985	19843	49355	0,4084	0,0109
6	21349	53280	21162	53071	19734	49302	0,3999	0,0010
12	21518	53475	20842	53046	19499	49851	0,3955	0,0061
20	21133	53602	20710	52960	20350	49720	0,3982	0,0097
40	21486	53591	20660	53100	19821	49066	0,3980	0,0079
60	21533	54007	21042	52976	19349	49378	0,3959	0,0036

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	75955	102884	69695	96370	75194	105877	0,7239	0,0140
6	75374	103872	70413	97024	74832	104728	0,7220	0,0064
24	75192	103092	69851	96916	76136	105290	0,7244	0,0045
48	74332	102746	69696	96634	76647	105466	0,7238	0,0028
120	74781	103850	69334	96155	75677	104389	0,7220	0,0026
192	74247	102958	68618	96607	76156	104857	0,7192	0,0082
216	75480	103339	68701	96208	76240	105203	0,7231	0,0083
288	74018	102845	68645	96590	75879	104900	0,7179	0,0065
312	73522	102998	68672	96745	76148	104553	0,7173	0,0097
384	73205	103040	68957	97116	75390	105068	0,7127	0,0042
456	74073	103907	69211	96823	75897	106341	0,7138	0,0010
504	73729	103757	68391	96514	75635	105238	0,7126	0,0054
552	73833	104006	68708	96221	74688	105127	0,7115	0,0023
624	74098	103553	68156	95997	74665	104826	0,7126	0,0028
696	72234	102457	67669	96241	75454	105411	0,7080	0,0068
720	72095	102849	68243	96722	74880	104629	0,7074	0,0075
792	72102	102704	67947	97083	74994	104877	0,7057	0,0082
816	72169	103206	67911	96582	75376	105738	0,7051	0,0070
888	72846	103768	67385	97201	74933	104829	0,7034	0,0108
984	71184	102780	67898	96405	74189	105041	0,7011	0,0074
1056	72730	103854	67551	96744	73414	104960	0,6993	0,0010
1152	71696	102897	67132	96519	74593	105380	0,7000	0,0068
1224	71514	103586	66959	97002	73962	104857	0,6953	0,0087
1320	70350	102847	66962	96306	73430	104920	0,6931	0,0081
1392	70655	102059	66373	96511	72904	105038	0,6914	0,0033
1488	71107	103442	66744	96723	72204	104667	0,6891	0,0015
1560	70598	102980	66682	95992	72301	104902	0,6898	0,0046
1632	70833	103087	65528	96310	72601	105271	0,6857	0,0048

Tab. 107: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 7,4.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	71015	99477	72536	102536	76621	110477	0,7049	0,0104
6	69668	98476	72162	102847	76138	109298	0,7019	0,0054
24	69816	99203	71579	102446	76906	109667	0,7012	0,0025
48	69747	99344	70755	101948	75834	109253	0,6967	0,0046
120	68556	98291	71425	102947	76843	109460	0,6978	0,0041
192	69087	98477	70306	101811	76298	110035	0,6952	0,0057
216	68789	99387	70976	102949	77754	110259	0,6956	0,0084
288	68394	98346	71254	102635	75822	110615	0,6917	0,0055
312	68139	98322	70125	102662	76116	109288	0,6909	0,0070
384	67576	98716	70415	102946	76419	109751	0,6883	0,0069
456	68067	99035	69795	101947	75540	110240	0,6857	0,0014
504	67976	99351	70300	102846	76904	110982	0,6869	0,0052
552	67147	98725	69874	102781	75749	110266	0,6823	0,0040
624	67706	99371	69462	102889	75610	110728	0,6798	0,0041
696	66179	98462	70391	103041	73745	110375	0,6745	0,0078
720	66420	98379	69019	102556	75113	110289	0,6764	0,0042
792	66028	98585	69479	103812	75079	109992	0,6739	0,0075
816	66080	99440	68718	102947	74161	109285	0,6702	0,0074
888	65852	98497	69101	103084	74323	110487	0,6705	0,0021
984	66307	99329	67728	102556	74625	110776	0,6672	0,0066
1056	66062	100034	67823	102874	74607	110615	0,6647	0,0085
1152	65582	99387	67461	102006	73472	110811	0,6614	0,0016
1224	64680	99461	67418	102899	74083	110209	0,6592	0,0115
1320	65385	100131	67219	102870	72263	109388	0,6557	0,0043
1392	64855	99746	67095	102763	72113	109826	0,6532	0,0032
1488	64035	99282	66317	103048	72758	110183	0,6496	0,0093
1560	64157	99885	66651	102571	71951	110933	0,6469	0,0040
1632	63426	99123	66017	102635	72766	110405	0,6474	0,0103

 Tab. 108: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 7,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	42474	97361	43849	95176	42298	92305	0,4517	0,0135
6	43022	97715	43352	95723	42537	93410	0,4495	0,0081
24	42710	97186	42358	94817	42364	92497	0,4481	0,0093
48	43100	97298	43003	95604	40822	92740	0,4443	0,0049
120	43089	98107	41162	94188	41218	92615	0,4404	0,0042
192	42588	98002	41312	94857	40262	92718	0,4348	0,0007
216	41989	97172	40648	94716	40634	92887	0,4329	0,0042
288	41677	97561	39751	95191	40897	92715	0,4286	0,0118
312	40918	97146	40595	95047	39835	93016	0,4255	0,0038
384	40296	97365	39742	95612	39946	92756	0,4201	0,0092
456	40148	97998	39061	95045	39184	92551	0,4147	0,0076
504	39116	97835	38158	94603	39448	92817	0,4094	0,0136
552	39480	98109	37662	94828	39737	92625	0,4095	0,0171
624	39462	98237	37778	94027	37827	93715	0,4024	0,0011
696	39046	98172	37863	95046	36961	93446	0,3972	0,0015
720	38903	99129	37136	95224	37949	93028	0,3968	0,0097
792	38980	98266	37045	95051	35667	92669	0,3904	0,0059
816	37618	98477	36585	94857	36876	92517	0,3888	0,0087
888	36440	98156	35991	94722	37139	92824	0,3838	0,0148
984	36636	97926	35888	95828	35577	92878	0,3772	0,0050
1056	36198	98172	34445	95304	35021	92444	0,3697	0,0087
1152	35699	99029	34308	94669	34836	92846	0,3660	0,0080
1224	35670	99348	34044	94721	34005	93021	0,3613	0,0037
1320	33956	98261	34236	95037	33459	93018	0,3552	0,0083
1392	33822	98467	33419	95344	32976	93144	0,3493	0,0054
1488	33237	98770	32913	95049	32651	92992	0,3446	0,0074
1560	32549	98304	31247	94627	33021	92847	0,3390	0,0144
1632	32339	98165	32528	94201	31221	93811	0,3358	0,0084

 Tab. 109: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 6,0.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	41760	101734	39499	98366	41428	104376	0,4030	0,0069
6	41575	102809	38433	98352	40240	105303	0,3924	0,0112
24	40704	102475	38173	99034	39634	105294	0,3864	0,0104
48	38795	101985	36973	98152	38893	105826	0,3749	0,0066
120	36253	102770	33856	98264	34777	105283	0,3425	0,0114
192	32242	102273	30549	99120	32176	104981	0,3100	0,0046
216	31576	102560	29776	98369	31336	104520	0,3035	0,0041
288	28501	102298	26703	98151	29725	105822	0,2772	0,0046
312	27859	103029	26873	98279	27603	104957	0,2689	0,0054
384	26271	102586	23552	98123	25029	103916	0,2457	0,0090
456	23247	102994	21821	99004	23344	104582	0,2231	0,0027
504	22021	101846	20186	98265	21591	103670	0,2100	0,0056
552	20839	102631	18712	98101	21632	104699	0,2001	0,0083
624	19493	102745	17953	98704	17911	103846	0,1814	0,0086
696	17536	102861	15844	99130	17398	103902	0,1659	0,0055
720	17505	102847	14982	98262	16767	104607	0,1610	0,0089
792	15787	103298	13802	98714	15481	104255	0,1470	0,0066
816	14673	101459	12887	99361	16095	104717	0,1427	0,0121
888	13490	102672	12090	98262	14009	104627	0,1294	0,0057
984	11890	102400	11494	98615	12373	103844	0,1173	0,0016
1056	10705	102634	10123	98260	11444	104827	0,1055	0,0032
1152	10124	103087	10561	100379	8140	105617	0,0935	0,0147
1224	9406	102745	8759	98265	7903	104659	0,0854	0,0086
1320	8039	102783	8061	98476	7023	104828	0,0757	0,0077
1392	7200	103266	6270	99820	7891	105400	0,0691	0,0061
1488	5396	102980	5906	98621	7311	103476	0,0610	0,0092
1560	5983	102734	4985	98259	6171	104726	0,0560	0,0045
1632	4803	102846	4407	97979	6414	103989	0,0511	0,0092

 Tab. 110: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTATATE bei pH 5,0.

7.3.3.3. Terbium-DOTANOC

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	50759	67929	34751	45762	38329	49827	0,7586	0,0110
0,8	52318	69825	35583	47290	39809	52041	0,7556	0,0083
1	53356	72037	36740	48955	40953	54083	0,7495	0,0083
2	54230	72763	36378	49026	41346	54037	0,7508	0,0125
4	53637	72541	36286	49087	40189	54185	0,7401	0,0014
6	53077	72680	36039	49155	40282	54524	0,7341	0,0043
12	52904	73028	35804	49072	39040	54188	0,7248	0,0046
20	52422	72819	35803	49136	38803	54273	0,7212	0,0069
40	51844	72553	35688	49204	39410	54720	0,7200	0,0054
60	51947	72816	35214	49178	39657	55027	0,7167	0,0037

 Tab. 111: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 7,4.

Tab. 112: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 7,0.

Kontaktzoit	Zählrata	Zählrata	Zählrata	Zählrata	Zählrato	Zählrato	horochnoto	Standard
KUIIIaKizeit							T	
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	35900	47625	29021	38041	34179	46288	0,7517	0,0124
0,8	36714	48920	30133	39691	35936	47982	0,7529	0,0055
1	37505	49912	30654	40859	36306	48595	0,7496	0,0022
2	36676	50105	29872	40673	36884	49278	0,7383	0,0089
4	36515	50403	29885	40822	34892	49188	0,7220	0,0116
6	35916	50229	29364	40766	35418	49827	0,7154	0,0048
12	35631	50165	28703	40282	35053	49725	0,7093	0,0039
20	35932	50178	28626	40290	34849	49540	0,7100	0,0063
40	35568	50204	28587	40371	35687	50082	0,7097	0,0025
60	35229	50341	28568	40722	35376	49776	0,7040	0,0059

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
						-		
0,6	43808	61479	30389	42845	35548	52277	0,7006	0,0179
0,8	43429	63844	30060	44029	36197	54927	0,6740	0,0130
1	43433	65516	29503	45722	37525	56829	0,6562	0,0095
2	40443	66294	27588	46108	33682	56930	0,6000	0,0093
4	35843	66351	24541	45923	29417	56777	0,5309	0,0115
6	34294	66084	23467	46089	28695	57004	0,5105	0,0079
12	33900	66433	22956	45883	27930	56928	0,5004	0,0098
20	33131	66109	23040	45914	27749	57126	0,4962	0,0091
40	33510	66498	23175	46133	27971	57038	0,4989	0,0074
60	33047	66120	22713	46341	27882	57299	0,4922	0,0068

 Tab. 113: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 6,0.

Tab. 114: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 5,0.

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	52116	77218	52887	80363	52677	77928	0,6697	0,0100
0,8	50898	79516	52745	83746	51866	80106	0,6391	0,0089
1	52310	83917	53050	85489	49957	82305	0,6170	0,0088
2	46869	84681	47487	86198	45050	83927	0,5471	0,0090
4	42309	84299	43524	86732	40099	83615	0,4944	0,0129
6	41843	85012	41524	86281	39601	83163	0,4832	0,0082
12	40836	85007	41643	86790	39688	83945	0,4777	0,0042
20	41399	84918	41116	87004	40319	84016	0,4800	0,0075
40	41149	85677	41342	86279	39700	84048	0,4773	0,0043
60	40068	84869	40582	86543	40256	83959	0,4735	0,0054

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10-6 mol/L]
0,01667	59526	82775	59888	84928	59448	81746	0,7172	0,0112
6	59721	82519	59371	84074	61214	82934	0,7227	0,0160
24	59707	83018	61173	84261	58075	81399	0,7195	0,0063
48	59761	83075	61194	84817	59195	81634	0,7220	0,0029
120	59098	82534	60781	84495	58828	81947	0,7178	0,0017
192	58689	82750	60787	85061	58423	81711	0,7130	0,0032
216	59393	83077	61014	84721	58475	82037	0,7160	0,0038
288	59720	82937	60480	84700	58151	81934	0,7146	0,0052
312	59038	82645	60272	85104	58837	81726	0,7142	0,0059
384	58462	82402	59814	84191	58855	83043	0,7096	0,0009
456	58852	82333	60236	84416	57229	81047	0,7115	0,0047
504	59461	82645	59882	84957	58038	82034	0,7106	0,0078
552	58518	83019	60386	85128	57908	82035	0,7067	0,0023
624	58741	82635	60355	84979	58187	82645	0,7084	0,0038
696	57639	81998	59371	84617	58500	81635	0,7071	0,0083
720	58661	82045	59653	84552	58328	81736	0,7114	0,0051
792	57949	82535	58685	84043	58236	81394	0,7053	0,0090
816	57657	82617	59462	83726	58165	82333	0,7048	0,0063
888	57455	82159	59127	84719	58316	81749	0,7035	0,0085
984	57713	81961	59370	84614	57990	82903	0,7018	0,0023
1056	58136	82038	58967	84192	56781	82015	0,7005	0,0082
1152	56877	82085	59395	85393	57983	81936	0,6987	0,0079
1224	57238	82107	59449	84543	57906	81995	0,7022	0,0046
1320	57733	82204	58100	84161	56683	81640	0,6957	0,0061
1392	57647	83008	59391	84629	57992	82011	0,7011	0,0063
1488	56946	82634	58853	84412	56325	81454	0,6926	0,0042
1560	57208	82511	57539	84176	57171	82019	0,6913	0,0070
1632	56545	83147	58484	84722	56409	81937	0,6863	0,0055

 Tab. 115: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 7,4.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
0,01667	53490	75287	55825	77495	51459	70913	0,7188	0,0077
6	54606	76304	56682	78343	49042	71037	0,7098	0,0173
24	54887	76193	55687	77940	49578	70666	0,7121	0,0096
48	53812	76461	55720	78452	49771	69889	0,7087	0,0044
120	53437	75927	54991	78111	50009	70174	0,7068	0,0050
192	53077	75193	55628	78418	48013	70373	0,6992	0,0148
216	53683	75519	54961	78234	49875	71304	0,7043	0,0059
288	53790	76280	54903	78451	49878	71035	0,7024	0,0027
312	52422	75191	54839	78156	49604	71206	0,6985	0,0028
384	53250	75927	53721	77935	50975	70814	0,7035	0,0154
456	52919	75342	54194	77245	49019	71045	0,6980	0,0069
504	52016	75130	54965	78230	48988	70462	0,6967	0,0053
552	52489	75939	54417	78443	49539	70618	0,6955	0,0054
624	53424	76305	53925	77947	48177	69937	0,6936	0,0058
696	52929	75927	53904	78153	48440	70368	0,6917	0,0047
720	52762	76443	54007	78455	48845	71034	0,6887	0,0013
792	52943	76191	53270	77197	48433	70199	0,6916	0,0028
816	52139	76492	52842	77450	49404	70375	0,6886	0,0116
888	51847	75918	53525	78048	48884	70680	0,6868	0,0044
984	51242	74566	52555	77239	49527	70826	0,6890	0,0096
1056	51037	75398	52885	77847	48648	70383	0,6825	0,0076
1152	51404	76042	52773	78136	48514	70444	0,6800	0,0075
1224	50633	75280	52436	78003	49003	71042	0,6782	0,0100
1320	51132	75372	52501	78167	46643	70348	0,6710	0,0077
1392	50560	75199	52188	77914	48294	71055	0,6739	0,0051
1488	50188	74981	52282	77959	47611	70576	0,6715	0,0027
1560	49358	74556	52219	78490	47994	70389	0,6697	0,0106
1632	49545	75003	52476	78205	48643	71024	0,6722	0,0122

 Tab. 116: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 7,0.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10-6 mol/L]
0,01667	47406	92884	44947	89224	46966	94636	0,5035	0,0071
6	47243	93947	45795	90127	46682	95720	0,4996	0,0106
24	46796	92978	44976	90249	46806	94928	0,4982	0,0051
48	46053	92799	44331	90156	47576	94867	0,4965	0,0049
120	45702	93016	43863	89462	47081	94919	0,4925	0,0030
192	44917	93070	44035	90288	46122	94511	0,4861	0,0030
216	44867	93144	43142	89588	46562	95030	0,4844	0,0048
288	45009	92847	42872	89476	46803	95201	0,4852	0,0062
312	44041	93484	42744	90030	46161	94782	0,4776	0,0083
384	43628	92009	42904	89380	43655	94152	0,4726	0,0083
456	42956	93017	41350	89346	45309	94721	0,4677	0,0093
504	43987	93194	42137	89155	44739	93681	0,4741	0,0030
552	42933	92881	41513	90388	43775	94787	0,4611	0,0016
624	41862	92646	40354	90455	44366	94226	0,4563	0,0129
696	42724	93056	40956	90617	41742	94152	0,4515	0,0079
720	42189	93840	40690	90260	42514	94625	0,4499	0,0008
792	42756	93214	40151	89783	42438	95018	0,4508	0,0068
816	42193	93161	39710	89881	41066	94166	0,4436	0,0085
888	40692	92756	39151	90295	41818	94071	0,4389	0,0055
984	40968	93202	38003	89677	40803	93784	0,4328	0,0081
1056	40303	93741	38031	90184	40725	94025	0,4283	0,0059
1152	39323	93497	39332	90173	41344	94820	0,4309	0,0090
1224	39161	93362	36572	89120	39954	94301	0,4178	0,0068
1320	38539	93894	36876	90123	39075	93848	0,4120	0,0038
1392	37631	93611	36020	90169	39636	94025	0,4077	0,0121
1488	37662	92985	36228	90517	36899	94822	0,3981	0,0082
1560	38010	93033	35915	90081	38763	94560	0,4057	0,0061
1632	36769	93156	34478	90325	37118	95072	0,3889	0,0066

 Tab. 117: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 6,0.

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration im Eluat	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10-6 mol/L]
0,01667	45176	98301	45947	95736	44091	89377	0,4776	0,0170
6	47977	98766	45719	95176	43580	90375	0,4828	0,0027
24	46407	98191	44150	96128	42853	90888	0,4678	0,0074
48	45375	99014	46432	96193	38601	90453	0,4559	0,0280
120	42224	98384	39798	95375	37881	90280	0,4220	0,0063
192	39935	99355	38385	95918	34793	89795	0,3965	0,0079
216	38702	99042	36650	97006	33685	90166	0,3807	0,0089
288	35081	98261	33723	96209	31709	90672	0,3524	0,0040
312	34957	99363	32659	96015	30809	91034	0,3435	0,0073
384	32026	97718	29704	95827	27993	90617	0,3155	0,0106
456	29965	99275	28344	96722	26025	90365	0,2943	0,0070
504	28610	98932	26607	95837	24652	90715	0,2795	0,0089
552	26534	98251	25848	95721	23186	90430	0,2655	0,0079
624	25007	99026	24176	96037	22268	90233	0,2503	0,0031
696	22873	99167	21962	96028	20210	90576	0,2275	0,0039
720	22586	98036	21190	96170	19408	90518	0,2217	0,0081
792	21103	98275	19527	95262	17690	90263	0,2052	0,0094
816	21054	98178	19102	95887	19015	91047	0,2075	0,0077
888	17740	98719	17371	96342	17628	90201	0,1851	0,0089
984	17295	99460	16030	97036	14656	90478	0,1670	0,0062
1056	16255	98262	14587	96287	13249	90176	0,1546	0,0096
1152	13225	98051	13612	96725	13016	91130	0,1395	0,0041
1224	12513	99347	12231	96187	11102	90477	0,1253	0,0023
1320	11790	99010	11569	95827	9976	91009	0,1165	0,0060
1392	11643	98264	10365	96281	8803	90460	0,1078	0,0106
1488	9671	99155	8964	97041	9969	88728	0,1008	0,0104
1560	8356	99017	8662	96480	8657	90237	0,0900	0,0058
1632	7431	98268	7953	96283	7120	90174	0,0791	0,0035

 Tab. 118: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-DOTANOC bei pH 5,0.

7.3.3.4. Terbium-IS20I

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	33666	44598	35365	46291	25321	33894	0,7553	0,0085
0,8	35157	46902	36693	48272	25911	34957	0,7503	0,0095
1	35687	48205	37426	49251	26603	35745	0,7482	0,0104
2	35581	48137	36487	49380	27000	36038	0,7424	0,0059
4	35153	48198	36500	49625	25533	35972	0,7249	0,0134
6	34573	48066	36040	50023	25515	36021	0,7160	0,0067
12	34260	48712	35374	50014	25354	36104	0,7043	0,0027
20	34106	48315	35638	49937	24824	35926	0,7035	0,0115
40	34007	48617	35586	50095	25134	36044	0,7024	0,0070
60	33639	48251	35214	49920	25350	36150	0,7013	0,0041

 Tab. 119: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-IS20I bei pH 7,4.

Tab. 120: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-IS20I bei pH 7,0.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	22463	29538	25201	34016	25784	33825	0,7545	0,0119
0,8	23039	31045	26636	36021	27136	36272	0,7432	0,0044
1	23977	32045	27126	36740	27702	37041	0,7448	0,0056
2	23460	32194	26903	36802	26326	36982	0,7239	0,0105
4	22426	32108	26302	37021	26097	37065	0,7043	0,0060
6	22319	32226	25861	36879	25792	37144	0,6961	0,0046
12	22377	32405	25704	37103	25480	37032	0,6905	0,0024
20	22264	32110	25813	36918	25560	37108	0,6938	0,0052
40	22180	32429	25482	36944	25769	37009	0,6900	0,0062
60	22016	32277	24836	36518	26041	37226	0,6872	0,0107
Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
-------------	----------	----------	----------	----------	----------	----------	--------------------------	--------------------------
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
		. 1		. 1	. 1			
0,6	30363	45678	30905	46837	31133	48576	0,6552	0,0126
0,8	30550	47809	29863	48130	31346	51392	0,6231	0,0147
1	29330	48236	29154	49375	31574	52948	0,5983	0,0090
2	24935	48523	25550	49103	26420	52878	0,5113	0,0106
4	21534	48610	21592	49280	23112	52914	0,4393	0,0033
6	20695	48371	20725	49625	21489	52415	0,4185	0,0090
12	19918	48633	20029	49826	21788	53001	0,4075	0,0049
20	19689	48790	20159	50027	22031	52667	0,4083	0,0087
40	19755	48512	20030	49952	22192	52614	0,4100	0,0107
60	19649	48997	20310	50004	21603	52777	0,4055	0,0042

 Tab. 121: Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-IS20I bei pH 6,0.

 Tab. 122:Ergebnisse des kontinuierlichen FISRE-Experiments an Tb-IS20I bei pH 5,0

Kontaktzeit	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
	1	1	2	2	3	3	Konzentration	8
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,6	53481	86203	45829	77512	46013	76293	0,6049	0,0147
0,8	51724	90704	44227	79154	43755	78559	0,5620	0,0072
1	50362	92715	43443	81936	41946	80134	0,5323	0,0100
2	40859	93041	35462	82553	34370	80984	0,4310	0,0075
4	34657	93156	29772	82609	29391	80387	0,3660	0,0058
6	33179	93090	29041	83041	29188	80606	0,3561	0,0062
12	32454	93485	28769	82936	28854	81045	0,3500	0,0052
20	32105	93274	28997	83025	29516	80899	0,3528	0,0108
40	31991	93308	28437	83142	28937	80796	0,3477	0,0091
60	31974	93494	28681	83012	28986	80833	0,3487	0,0088

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	IM Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	58804	83662	63041	90127	60473	87456	0,6979	0,0059
6	58964	84028	63511	90251	63783	88297	0,7093	0,0114
24	58648	84662	62039	89466	62305	87459	0,6995	0,0112
48	58239	83945	63634	90746	62109	88460	0,6990	0,0046
120	58853	83927	63491	90458	62926	88035	0,7060	0,0076
192	58331	84201	62417	89106	61284	88144	0,6962	0,0039
216	57805	83409	62977	89364	62002	89021	0,6981	0,0060
288	58199	84018	62574	90376	61736	88483	0,6943	0,0030
312	58582	84527	63656	90757	60518	88102	0,6938	0,0073
384	57882	83299	62773	89670	60016	87980	0,6924	0,0092
456	58217	83024	62474	90475	60081	88214	0,6909	0,0101
504	58817	83945	61846	90587	60414	87993	0,6900	0,0094
552	58408	84195	61188	89404	60185	87351	0,6890	0,0047
624	58029	83947	61699	89030	61575	88094	0,6944	0,0040
696	57311	84152	62021	89958	60697	88203	0,6862	0,0045
720	57888	84210	62572	90363	59929	88477	0,6857	0,0077
792	57941	84827	62741	91017	62207	88154	0,6927	0,0117
816	58032	85078	62769	90466	62005	88450	0,6923	0,0095
888	57151	84036	62737	90571	59592	88336	0,6825	0,0093
984	57172	84202	61520	90345	60710	89041	0,6806	0,0014
1056	56432	83946	60609	90144	60432	88544	0,6757	0,0059
1152	56651	84514	60951	89579	60194	88359	0,6773	0,0061
1224	57108	84673	60225	89357	60101	88466	0,6759	0,0030
1320	56525	84111	61948	90366	60041	88929	0,6776	0,0071
1392	56503	83945	60688	89778	60601	87923	0,6794	0,0086
1488	56472	84271	59746	89476	58745	88495	0,6672	0,0032
1560	55902	84170	60029	90555	58542	88203	0,6636	0,0006
1632	56292	84625	59753	89340	59660	87503	0,6719	0,0087

Tab. 123: Ergebnisse	des diskontinuierlichen	FISRE-Experiments an	<i>Tb-IS20I bei pH 7,4.</i>

Zeit nach Tracerzugabe	Zählrate Probe 1	Zählrate Referenz 1	Zählrate Probe 2	Zählrate Referenz 2	Zählrate Probe 3	Zählrate Referenz 3	berechnete Terbium- Konzentration	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	63525	90366	59276	85662	64098	92577	0,6958	0,0062
6	63797	91405	59091	86421	64518	93802	0,6898	0,0073
24	63842	91223	60307	86795	63728	93485	0,6921	0,0094
48	61928	90478	58300	85297	65088	93205	0,6888	0,0083
120	62677	90819	59311	87214	64741	93756	0,6869	0,0059
192	62634	90768	59359	87031	65835	94003	0,6908	0,0092
216	62274	91023	58731	87290	64901	93204	0,6844	0,0118
288	62033	90837	58898	86355	63429	92890	0,6826	0,0005
312	61952	91045	58472	86889	63108	93047	0,6772	0,0039
384	61382	90372	59359	87036	63274	93155	0,6802	0,0016
456	61281	91008	58203	86341	64444	93738	0,6783	0,0080
504	61587	90567	57917	85928	63219	93345	0,6771	0,0030
552	61966	90477	57606	86044	64491	93756	0,6807	0,0099
624	60406	89884	57856	85855	63651	94120	0,6741	0,0021
696	60765	90833	57929	86279	63419	93766	0,6723	0,0038
720	60174	90616	57697	86156	63831	93702	0,6716	0,0088
792	60556	90234	57224	86714	63407	93451	0,6698	0,0094
816	60307	91072	58180	86918	64129	93856	0,6716	0,0107
888	61163	91233	57283	87014	62541	92847	0,6674	0,0081
984	60413	91048	56939	86410	62527	92955	0,6650	0,0070
1056	60633	90365	55692	87043	61049	93456	0,6547	0,0156
1152	59596	91010	57013	86594	62270	93024	0,6609	0,0076
1224	60212	90825	58312	86233	61937	93255	0,6678	0,0073
1320	58934	90332	57511	86040	60472	93126	0,6567	0,0102
1392	58536	90617	56500	86736	62490	93617	0,6550	0,0112
1488	58940	90259	56400	86539	60804	93101	0,6526	0,0008
1560	57642	89785	55654	86214	59322	93408	0,6409	0,0053
1632	58959	90612	55877	87031	61119	93369	0,6491	0,0064

Tab. 124: Ergebnisse des diskontinu	ierlichen FISRE-Experime	nts an Tb-IS20I bei pH 7,0.

Zeit nach Tracerzugabe	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	Zählrate Probe	Zählrate Referenz	berechnete Terbium-	Standard- abweichung
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	im Eluat [10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
0,01667	44788	105637	45498	110488	42082	99304	0,4198	0,0070
6	42816	106281	45240	112045	41749	98901	0,4096	0,0109
24	42593	106029	44597	111138	42384	100425	0,4083	0,0119
48	41784	105633	43814	110984	40515	100276	0,3981	0,0051
120	42256	105144	44439	110340	39819	99364	0,4018	0,0010
192	41385	105680	44430	111242	39951	99917	0,3969	0,0046
216	42091	106217	43900	110927	39189	99460	0,3953	0,0012
288	41310	106480	43769	111645	39280	100271	0,3906	0,0023
312	40514	105923	44228	112034	40445	100011	0,3939	0,0110
384	41033	106522	42384	111475	38885	100342	0,3843	0,0037
456	40213	106048	41717	111049	38286	99657	0,3797	0,0043
504	39541	105297	41436	112045	36765	99399	0,3717	0,0033
552	39881	105995	40730	111864	37632	98923	0,3736	0,0085
624	38486	106843	41242	112126	37627	99220	0,3691	0,0096
696	37683	107041	39962	110369	37908	99816	0,3646	0,0140
720	37637	106455	40512	111388	37235	100031	0,3632	0,0094
792	37258	106030	39189	110452	36748	99277	0,3588	0,0100
816	38550	107203	39934	110099	36460	99456	0,3630	0,0035
888	37375	106844	39109	110852	35759	100314	0,3530	0,0033
984	36726	106291	38946	111514	36790	100512	0,3536	0,0109
1056	36534	107058	37986	110937	34403	99469	0,3432	0,0024
1152	35237	106722	38551	110215	34749	99251	0,3434	0,0114
1224	35052	106205	37336	111179	33552	100176	0,3336	0,0031
1320	35099	105842	36438	110284	32338	100204	0,3282	0,0048
1392	34061	105929	36820	111068	31911	99783	0,3243	0,0063
1488	33019	106344	35188	110570	32887	100105	0,3191	0,0090
1560	32044	106149	35457	110662	32418	100233	0,3152	0,0117
1632	31608	106227	33952	111035	30477	99757	0,3029	0,0047

 Tab. 125: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-IS20I bei pH 6,0.

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe	Referenz	Probe	Referenz	Probe	Referenz	Terbium-	abweichung
	1	1	2	2	3	3	Konzentration	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
	-1 -							
0,01667	34322	97518	37116	102983	37357	101746	0,3598	0,0076
6	34082	97355	36254	102775	34894	102662	0,3476	0,0068
24	33171	97231	35356	102304	33924	101443	0,3404	0,0056
48	32160	97999	35079	103019	32790	101062	0,3310	0,0084
120	28051	97514	30955	102451	30683	101839	0,2970	0,0081
192	26519	98021	30093	103627	28355	101480	0,2801	0,0099
216	26235	97462	28141	102947	27955	101746	0,2724	0,0029
288	25272	97228	26370	103826	27022	102034	0,2596	0,0054
312	24003	97514	24562	102465	24937	101661	0,2437	0,0035
384	21321	97153	22873	102361	23367	101746	0,2242	0,0051
456	18784	96938	21228	102669	22097	101294	0,2062	0,0122
504	18771	97405	20222	103040	21186	102508	0,1985	0,0073
552	17854	97230	19497	102456	19528	102771	0,1880	0,0038
624	15934	96892	17692	102834	17787	103032	0,1697	0,0046
696	15577	97297	16149	101947	15409	102846	0,1561	0,0055
720	14495	97168	15094	102857	16450	103098	0,1518	0,0068
792	13256	97354	14265	101844	14639	102554	0,1397	0,0033
816	12473	97866	13992	101972	12364	102746	0,1283	0,0085
888	11756	98203	12941	102556	12880	102892	0,1237	0,0035
984	11074	97554	12384	102845	10386	102434	0,1118	0,0096
1056	9951	97313	11464	102700	9755	103157	0,1028	0,0085
1152	10000	98041	9553	102025	8252	102743	0,0920	0,0109
1224	8683	97203	8786	103048	9331	102656	0,0885	0,0029
1320	7174	97151	7724	102816	7953	101796	0,0757	0,0022
1392	6202	97259	6709	102745	8131	101865	0,0696	0,0089
1488	5021	97668	6564	102104	7263	102043	0,0623	0,0100
1560	4792	97104	5683	101967	6127	102648	0,0549	0,0052
1632	4472	96982	5288	102002	5598	101852	0,0510	0,0045

 Tab. 126: Ergebnisse des diskontinuierlichen FISRE-Experiments an Tb-IS20I bei pH 5,0.

7.4. Messergebnisse – Rhenium(I)-Komplexe

7.4.1. pH-abhängige Ionenaustauschertests im Batch-Betrieb

рН	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
r'''	Probe	Referenz	Probe	Referenz	Probe	Referenz	fac-	abweichung
	1	1	2	2	3	3	[Re(CO) ₃ (H ₂ O)3] ⁺	0
							Retention	
	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[%]	[%]
4,5	18407	19943	13698,3	15426	16486	17538	91,7	2,7
4,75	14563	15186	16020,9	16298	15883	16772	96,3	1,8
5	16300	16349	14815,5	14875	15235	15498	99,2	0,8
5,25	16744	17775	14330,6	15543	16372	16405	95,4	3,9
5,5	14017	15286	15752	17900	15832	16339	92,2	4,5
5,75	16828	18993	15568,4	16527	13604	14550	92,1	3,1
6	16460	18269	15142,3	17266	15603	17203	89,5	1,6
6,25	13698	16725	14887,2	18402	14891	17396	82,8	2,5
6,5	13274	18334	12400,6	17441	12815	17459	72,3	1,2
6,75	13126	19190	8783,45	13513	9797,6	14366	67,2	1,9
7	11705	17655	11773	19112	10452	15439	65,2	3,2
7,25	9273,1	13498	11316,1	16189	13157	20304	67,8	2,7
7,5	8204,5	14470	10133,7	17502	11647	18755	58,9	2,8

Tab. 127: Prüfung der pH-abhängigen Retention von fac-[$Re(CO)_3(H_2O)_3$]⁺ an Chelex (I =0,1).

7.4.2. Ligandenfreier Versuch

Tab. 128: Ergebnisse des kontinuierlichen FISRE-Experiments ohne Ligandzugabe bei pH 5,0 (Piperazin-Puffer)und I = 0,1.

Kontaktzeit	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
	Probe	Referenz	Probe	Referenz	Probe	Referenz	Rhenium-	abweichung
	1	1	2	2	3	3	Konzentration	
							im Eluat	
[s]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
0,6	412	17898	357	22305	334	18569	0,019	0,004
0,8	242	18594	300	23048	194	19408	0,012	0,002
1	209	18973	167	23786	180	19979	0,009	0,002
2	228	19007	214	23804	180	20034	0,010	0,002
4	171	19023	149	23813	115	20016	0,007	0,002
6	133	19011	191	23840	120	20069	0,007	0,001
12	114	19035	107	23796	90	20041	0,005	0,001
20	76	19029	102	23829	74	20094	0,004	0,000
40	112	19009	55	23870	136	20063	0,005	0,002
60	57	19073	50	23804	78	20077	0,003	0,001

7.4.3. Ergebnisse der FISRE-Experimente an Tricarbonylrhenium(I)-Komplexen

7.4.3.1. [Re(his)(CO)₃]

Tab.	129: Ergebnisse	des diskontinuierlichen	FISRE-Experiments an	[Re(his)(CO) ₃] bei	pH 5,0 und I = 0,1.
------	------------------------	-------------------------	----------------------	---------------------------------	---------------------

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe 1	Referenz 1	Probe 2	Referenz	Probe 3	Kererenz 3	Knenium- Konzentration	abweichung
	-	-	-	-	U	U	im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
1,667E-04	52764	73566	50396	71883	52270	73038	0,7026	0,0140
2,222E-04	51776	72984	50438	71045	50215	73960	0,6994	0,0178
2,778E-04	51547	73947	50374	71937	53141	74255	0,7043	0,0099
5,556E-04	50970	73018	49836	71004	52170	73714	0,7026	0,0049
1,110E-03	51859	73049	53022	72947	50638	73900	0,7073	0,0209
1,670E-03	50911	73406	51850	71904	50571	73671	0,7004	0,0183
3,330E-03	51414	73583	51982	72038	52030	74027	0,7077	0,0122
5,560E-03	51769	73478	50840	71943	52080	73903	0,7053	0,0012
1,111E-02	50379	72648	51954	72050	51263	74552	0,7007	0,0179
1,667E-02	50941	72480	50435	71082	51790	73941	0,7043	0,0047
2	49988	72899	51179	72019	50718	73420	0,6957	0,0132
4	50272	73046	49320	71999	50640	73566	0,6872	0,0019
6	49512	73012	48563	71246	50324	74051	0,6798	0,0018
8	48579	72690	49710	72011	48428	74185	0,6705	0,0189
10	48258	73211	48642	71995	48202	73927	0,6623	0,0121
26	44178	73945	43558	71832	43660	74521	0,5966	0,0103
28	42858	73058	43184	71849	43292	73290	0,5928	0,0074
30	42277	73449	42195	71936	44130	74235	0,5855	0,0095
50	37431	73027	36649	71023	38555	73499	0,5177	0,0062
52	37015	72905	37202	71949	37469	73556	0,5114	0,0050
54	36222	73440	36021	72033	36300	73590	0,4955	0,0039
74	32656	72964	32215	71942	32557	73224	0,4467	0,0018
76	30979	72450	32052	72015	33121	74333	0,4394	0,0102
78	31342	72908	32389	72443	31811	73905	0,4358	0,0098
86	29674	72174	30067	71930	30680	73841	0,4149	0,0035
88	29938	72893	29295	71861	30130	73298	0,4098	0,0019
90	28965	73184	30132	71754	29543	74097	0,4048	0,0132
110	25480	72837	26335	71288	26150	73716	0,3580	0,0102
112	25889	73916	25986	72010	25538	73027	0,3536	0,0063
114	25538	72548	25281	72146	25739	73861	0,3503	0,0018
134	21996	73915	21730	71898	23401	73992	0,3054	0,0097
136	21292	72894	22506	71736	22336	73405	0,3034	0,0109
158	19311	72300	19204	72003	19688	74003	0,2666	0,0053
160	19139	73847	19163	71927	19066	73561	0,2616	0,0042
162	17788	72912	18783	72080	19395	73131	0.2566	0.0112

7.4.3.2. [Re(CO)₃-L-His-Gly]

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	Probe 1	Kererenz 1	2	2	3	3	Konzentration	abweichung
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10-6 mol/L]	[10-6 mol/L]
1,667E-04	39865	55289	42605	60133	33772	50172	0,7009	0,0249
2,222E-04	38972	56302	43094	61027	35416	51046	0,6974	0,0076
2,778E-04	38944	55481	42888	60938	35504	50264	0,7040	0,0022
5,556E-04	38525	55193	42237	60705	34599	49976	0,6954	0,0029
1,110E-03	39189	56026	42601	60793	35476	50368	0,7015	0,0025
1,670E-03	38703	55770	42786	61044	34740	49826	0,6974	0,0035
3,330E-03	39175	55682	43168	60984	35714	50363	0,7069	0,0029
5,560E-03	39272	56200	42674	60635	35453	50614	0,7010	0,0026
1,111E-02	38480	55703	41988	60164	35100	50169	0,6961	0,0047
1,667E-02	38633	55461	42691	61039	34822	49870	0,6981	0,0014
2	38619	56023	43146	61987	34347	50326	0,6893	0,0068
4	37846	55296	41682	61249	33230	49118	0,6805	0,0040
6	37041	55278	41081	61082	33203	50124	0,6684	0,0053
8	37014	55639	40882	60944	33187	50513	0,6644	0,0070
10	36574	55184	40652	61307	33556	51202	0,6604	0,0044
26	33039	55296	36820	60822	30120	50780	0,5987	0,0062
28	33022	55040	36091	60675	29038	49442	0,5940	0,0064
30	32903	56129	35442	60094	29945	51051	0,5875	0,0020
50	28880	55394	32045	61075	25720	50277	0,5192	0,0068
52	28826	55178	32321	60938	26497	50658	0,5253	0,0044
54	28982	56152	32038	61053	25791	50342	0,5177	0,0064
74	25894	55386	29128	61200	23167	49785	0,4696	0,0056
76	25384	55197	28065	60378	23586	51024	0,4623	0,0025
78	25378	56015	28722	61455	22560	50069	0,4570	0,0091
86	25086	56121	27373	60668	22665	50786	0,4482	0,0027
88	24727	55668	27121	61024	22597	51253	0,4432	0,0020
90	23810	54990	26767	60292	22022	50965	0,4364	0,0066
110	22124	55068	25058	61441	19945	51021	0,4002	0,0086
112	21855	55312	24899	61212	19697	50682	0,3968	0,0092
114	21325	55046	24182	60752	19534	50978	0,3896	0,0077
134	20485	56039	22156	60613	17976	50164	0,3631	0,0042
136	19897	55123	22106	61094	18275	51026	0,3603	0,0019
158	18538	55477	20604	60888	16488	51142	0,3317	0,0083
160	17933	55680	20478	60679	16327	51122	0,3263	0,0098
162	18004	55203	20511	60514	16274	50753	0,3286	0,0094

Tab. 130: Ergebnisse des diskontinuierlichen FISRE-Experiments an [$Re(CO)_3$ -His-Gly] bei pH 5,0 und I = 0,1.

7.4.3.3. [Re(CO)₃-L-Carnosin]

Zeit nach	Zählrate	Zählrate	Zählrate	Zählrate Referenz	Zählrate	Zählrate	berechnete	Standard-
Tracerzugabe	1	1	2	2	3	3	Konzentration	abweichung
							im Eluat	
[h]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[cpm]	[10 ⁻⁶ mol/L]	[10 ⁻⁶ mol/L]
1,667E-04	26752	37725	29666	42525	30410	44027	0,6992	0,0093
2,222E-04	26786	38262	30497	42863	29917	43957	0,6974	0,0156
2,778E-04	26564	37982	30058	42639	31120	44556	0,7009	0,0035
5,556E-04	26183	37804	30305	42720	30230	43802	0,6974	0,0105
1,110E-03	26166	37680	30120	42992	29973	43176	0,6964	0,0036
1,670E-03	26024	37552	30438	42960	30374	44098	0,6968	0,0104
3,330E-03	26174	37911	29933	42619	30351	43776	0,6954	0,0062
5,560E-03	26856	37546	29293	42834	30520	44005	0,6976	0,0161
1,111E-02	26105	37614	29471	42177	29949	43016	0,6963	0,0024
1,667E-02	26472	37945	29317	41945	30501	43205	0,7009	0,0045
2	26115	37843	29187	42061	30560	43755	0,6942	0,0042
4	25630	38016	28512	42017	30137	44082	0,6788	0,0047
6	24906	37625	28927	42049	29540	44129	0,6731	0,0134
8	24732	37403	28102	41972	28821	43777	0,6630	0,0058
10	24844	38004	27455	41788	28787	44012	0,6549	0,0018
26	22660	37945	25188	42046	26734	44085	0,6009	0,0049
28	21735	37866	25248	42093	26260	44133	0,5896	0,0137
30	21748	37450	25228	42195	25428	44516	0,5833	0,0135
50	20205	37901	22704	41984	22833	44031	0,5308	0,0113
52	19808	38011	22580	42373	22507	44280	0,5208	0,0123
54	19584	38102	21766	42004	22493	43910	0,5148	0,0031
74	17426	37821	20971	42893	20579	44162	0,4719	0,0150
76	17764	37940	20333	42111	20130	43864	0,4700	0,0121
78	17468	37806	19768	41769	20512	44280	0,4662	0,0062
86	16827	37580	19628	41992	18978	43661	0,4500	0,0165
88	16668	37453	19171	42034	19881	44202	0,4503	0,0055
90	16849	37618	19005	41792	18889	43706	0,4449	0,0116
110	15649	37946	18091	42036	17936	44602	0,4150	0,0143
112	15223	37155	17988	42347	17512	43521	0,4123	0,0114
114	15072	37391	18043	42668	17736	44003	0,4097	0,0114
134	14733	38044	16984	42080	16377	43701	0,3885	0,0145
136	14288	37403	16707	41835	16274	43889	0,3841	0,0144
158	13821	37715	15717	42715	15655	44034	0,3633	0,0068
160	13677	38109	15480	41847	15285	43666	0,3596	0,0100
162	13193	37088	15180	42380	15902	43279	0,3605	0,0062

Tab. 131: Ergebnisse des diskontinuierlichen FISRE-Experiments an [$Re(CO)_3$ -L-Carnosin] bei pH 5,0 und I = 0,1.

8

LITERATURVERZEICHNIS

- [1] D. E. Reichert, J. S. Lewis, C. J. Anderson. *Coord. Chem Rev.* **1999**, *184*, 3.
- [2] S. Liu, D. S. Edwards. *Bioconjugate Chem.* 2001, 12, 7.
- [3] W. A. Volkert, T. J. Hoffman. *Chem. Rev.* **1999**, *99*, 2269.
- [4] S. Liu. Chem. Soc. Rev. **2004**, 33, 445.
- [5] R. P. Spencer, R. H. Suvers, A. M. Friedman. *Radionuclides in Therapy*, CRC Press: Boca Raton, FL, 1987.
- [6] S. Liu, D. S. Edwards, J. A. Barrett. *Bioconjugate Chem.* 1997, *8*, 621.
- [7] C. J. Anderson, M. J. Welch. *Chem. Rev.* **1999**, *99*(9), 2219.
- [8] M. J. Abrams, B. A. Murrer. *Science* **1993**, *261*(5122), 725.
- [9] I. Virgolini, M. Raderer, A. Kurtaran, P. Angelberger, S. Banyai, Q. Yang, S. Li, M. Banyai, J. Pidlich, B. Niederle, W. Scheithauer, P. Valent. N. Engl. J. Med. 1994, 331(17), 1116.
- [10] J. C. Reubi, R. Maurer, J. G. M. Klijn, S. Z. Stefanko, J. A. Foekens, G. Blaauw, M. A. Blankenstein, S. W. Lamberts. J. Clin. Endocrinol. Metab. 1986, 63, 433.
- [11] J. C. Reubi, A. Kappeler, B. Waser, J. A. Laissue, R. W. Hipkin, A. Schonbrunn. *Am. J. Pathol.* **1998**, *153*, 233.
- [12] J. C. Reubi. *Endocrine Reviews* **2003**, 24(4), 389.
- [13] T. W. Moody, D. Chan, J. Fahrenkrug, R. T. Jensen. Curr. Pharm. Des. 2003, 9, 495.
- [14] A. V. Schally. *Cancer Res.* **1988**, *48*, 6977.
- [15] E. P. Krenning, D. J. Kwekkeboom, J. C. Reubi, M. van Hagen, C. H. J. Van Eijck, H. Y. Oei, S. W. Lamberts. *Digestion* 1993, 54(Suppl. 1), 84.
- [16] N. Marks, F. Stern. *FEBS Lett.* **1975**, *55*(1), 220.
- [17] I. Virgolini, T. Traub, C. Novotny, M. Leimer, B. Füger, S. R. Li, P. Patri, T. Pangerl, P. Angelberger, M. Raderer, F. Andreae, A. Kurtaran, R. Dudczak. *Q. J. Nucl. Med.* 2001, 45, 153.
- [18] E. P. Krenning, D. J. Kwekkeboom, W. H. Bakker, W. A. P. Breeman, P. P. M. Kooij, H. Y. Oei, M. van Hagen, P. T. E. Postema, M. de Jong, J. C. Reubi, T. J. Visser, A. E. M. Reijs, L. J. Hofland, J. W. Koper, S. W. J. Lamberts. *Eur. J. Nucl. Med.* **1993**, 20(8), 716.
- [19] W. A. P. Breeman, M. de Jong, D. J. Kwekkeboom, R. Valkema, W. H. Bakker, P. P. M. Kooij, T. J. Visser, E. P. Krenning. *Eur. J. Nucl. Med.* 2001, 28(9), 1421.
- [20] I. Virgolini, K. Britton, J. Buscombe, R. Moncayo, G. Paganelli, P. Riva. *Semin. Nucl. Med.* **2002**, *32*, 148.
- [21] A. Heppeler, S. Froidevaux, H. R. Mäcke, E. Jermann, M. Béhé, P. Powell, M. Hennig. *Chem. Eur. J.* **1999**, *7*, 1974.
- [22] J. C. Reubi, J. C. Schär, B. Waser, S. Wenger, A. Heppeler, J. S. Schmitt, H. R. Mäcke. *Eur. J. Nucl. Med. Mol. Imaging* 2000, 27(3), 1619.
- [23] D. Wild, J. S. Schmitt, M. Ginj, H. R. Mäcke, B. F. Bernard, E. P. Krenning, M. de Jong, S. Wenger, J. C. Reubi. *Eur. J. Nucl. Med. Mol. Imaging* 2003, 30, 1338.
- [24] P. C. Brooks. Eur. J. Cancer **1996**, 32A, 2423.
- [25] D. A. Cheresh. *Cancer Metastasis Rev.* **1991**, *10*, 3.
- [26] G. C. Tucker. Curr. Opin. Invest. Drugs 2003, 4, 722.

- [27] A. Meyer, J. Auernheimer, A. Modlinger, H. Kessler. *Curr. Pharm. Des.* 2006, 12, 2723.
- [28] L. M. De Léon-Rodríguez, Z. Kovacs. *Bioconjugate Chem.* 2008, 19(2), 391.
- [29] L. Bello, V. Lucini, C. Giussani, G. Carrabba, M. Pluderi, F. Scaglione, G. Tomei, R. Villani, P. M. Black, A. Bikfalvi, R. S. Carroll. *Neurosurgery* 2003, 52(1), 177.
- [30] C. F. Meares, D. A. Goodwin, C. S. H. Leung, A. Y. Girgis, D. J. Silvester, A. D. Nunn, P. J. Lavender. *Proc. Natl. Acad. Sci.* 1976, 73, 3803.
- [31] M. W. Brechbiel, O. A. Gansow. *Bioconjugate Chem.* 1991, 2, 187.
- [32] W. H. Bakker, R. Albert, C. Bruns, W. A. P. Breeman, L. J. Hofland, P. Marbach, J. Pless, D. Pralet, B. Stolz, J. W. Koper, S. W. J. Lamberts, T. J. Visser, E. P. Krenning. *Life Sci.* 1991, 49, 1583.
- [33] M. W. Brechbiel, O. A. Gansow, R. W. Atcher, J. Schlom, J. Esteban, D. E. Simpson, D. Colcher. *Inorg. Chem.* **1986**, *25*, 2772.
- [34] E. P. Krenning, W. H. Bakker, W. A. P. Breeman, J. W. Koper, P. P. Kooij, L. Ausema, J. S. Lameris, J. C. Reubi, S. W. J. Lamberts. *Lancet* 1989, 1(8632), 242.
- [35] S. W. J. Lamberts, W. H. Bakker, J. C. Reubi, E. P. Krenning. N. Engl. J. Med. 1990, 323, 1246.
- [36] O. Ugur, L. Kostakoglu, E. T. Hui, D. R. Fisher, K. Garmestani, O. A. Gansow, N. V. Cheung, S. M. Larson. *Nucl. Med. Biol.* **1996**, *43*, 1.
- [37] G. L. Griffiths. Cancer Therapy with Radiolabeled Antibodies. D. M. Goldenberg, (Ed.); CRC Press: Boca Raton, FL, 1995; S. 47ff.
- [38] R. W. Kozak, A. Raubitschek, S. Mirzadeh, M. W. Brechbiel, R. Junghaus, O. A. Gansow, T. A. Waldmann. *Cancer Res.* **1989**, *39*, 2639.
- [39] A. Ando, I. Ando, T. Hiraki, K. Hisada. Nucl. Med. Biol. 1989, 16(1), 57.
- [40] J. F. Desreux. Inorg. Chem. 1980, 19, 1319.
- [41] C. C. Bryden, C. N. Reilley, J. F. Desreux. Anal. Chem. 1981, 53, 1418.
- [42] R. Delgado, J. J. da Silva. *Talanta* **1982**, *29*(10), 815.
- [43] A. Otte, E. Jermann, M. Béhé, M. Goetze, H. C. Bucher, H. W. Roser, A. Heppeler, J. Mueller-Brand, H. R. Mäcke. *Eur. J. Nucl. Med. Mol. Imaging* 1997, 24(7), 792.
- [44] A. Otte, R. Herrmann, A. Heppeler, M. Béhé, E. Jermann, P. Powell, H. R. Mäcke. Eur. J. Nucl. Med. 1999, 26, 1439.
- [45] M. Henze, J. Schumacher, P. Hipp, J. Kowalski, D. W. Becker, J. Doll, H. R. Mäcke, M. Hofmann, J. Debus, U. Haberkorn. J. Nucl. Med. 2001, 42, 1053.
- [46] O. Ugur, P. J. Kothari, R. D. Finn, P. Zanzonico, S. Ruan, I. Günther, H. R. Mäcke. Nucl. Med. Biol. 2002, 29, 147.
- [47] F. Rösch, H. Herzog, B. Stolz, J. Brockmann, M. Kohle, H. Muhlensiepen, P. Marbach, H. W. Müller-Gärtner. *Eur. J. Nucl. Med.* **1999**, *26*, 358.
- [48] F. Forrer, H. Uusijärvi, C. Waldherr, M. Cremonesi, P. Bernhardt, J. Müller-Brand, H. R. Mäcke. *Eur. J. Nucl. Med. Mol. Imaging* **2004**, *31*, 1257.
- [49] T. Nayak, J. Norenberg, T. Anderson, R. Atcher. *Cancer Biother. Radiopharm.* **2005**, *20*, 52.
- [50] C. J. Anderson, T. S. Pajeau, W. B. Edwards, E. L. C. Sherman, B. E. Rogers, M. J. Welch. J. Nucl. Med. 1995, 36, 2315.

- [51] J. E. Sprague, Y. Peng, X. Sun, G. R. Weisman, E. H. Wong, S. Achilefu, C. J. Anderson. *Clin. Cancer. Res.* **2004**, *10*, 8674.
- [52] J. S. Lewis, M. R. Lewis, A. Srinivasan, M. A. Schmidt, J. Wang, C. J. Anderson, J. Med. Chem. 1999, 42, 1341.
- [53] H.-J. Wester, J. Brockmann, F. Rösch, W. Wutz, H. Herzog, P. Smith-Jones, B. Stolz, C. Bruns, G. Stocklin. *Nucl. Med. Biol.* **1997**, *24*, 275.
- [54] M. de Jong, W. A. P. Breeman, P. P. M. Kooij, B. F. Bernard, L. J. Hofland, T. J. Visser, A. Srinivasan, M. A. Schmidt, J. L. Erion, J. E. Bugaj, H. R. Mäcke, E. P. Krenning. *Cancer Res.* 1998, *58*, 437.
- [55] W. A. P. Breeman, L. J. Hofland, M. van der Pluijm, P. M. van Koetsveld, M. de Jong, B. Seytono-Han, W. H. Bakker, D. J. Kwekkeboom, T. J. Visser, S. W. J. Lamberts, E. P. Krenning. *Eur. J. Nucl. Med* **1994**, *21*, 328.
- [56] S. Froideveaux, A. Heppeler, A. N. Eberle, A. M. Meier, M. Hausler, C. Beglinger, M. Béhé, P. Powell, H. R. Mäcke. *Endocrinology* 2000, 141, 3304.
- [57] S. Froideveaux, A. N. Eberle, M. Christe, L. Sumanovski, A. Heppeler, J. S. Schmitt, K. Eisenwiener, C. Beglinger, H. R. Mäcke. *Int. J. Cancer* 2002, 98, 930.
- [58] F. Jamar, R. Barone, I. Mathieu, S. Walrand, M. Labar, P. Carlier, J. de Camps, H. Schran, T. Chen, M. C. Smith, H. Bouterfa, R. Valkema, E. P. Krenning, L. K. Kvols, S. Pauwels. *Eur. J. Nucl. Med.* 2003, 30, 510.
- [59] F. Forrer, H. Uusijärvi, C. Waldherr, M. Cremonesi, P. Bernhardt, J. Müller-Brand, H. R. Mäcke. *Eur. J. Nucl. Med. Mol. Imaging* 2004, 31, 1257.
- [60] G. A. Kaltsas, D. Papadogias, P. Makras, A. B. Grossman. Endocr. Relat. *Cancer* **2005**, *12*, 683.
- [61] J. Kowalski, M. Henze, J. Schumacher, H. R. Mäcke, M. Hofmann, U. Haberkorn, *Mol. Imaging. Biol.* **2003**, *5*, 42.
- [62] B. Wierczinski, A. G. Denkova, J. A. Peters, H. T. Wolterbeek. Kinetic Stability of Metal Complexes - Determination of k_a and k_d Using Radiotracers. In: Application of Radiotracers in Chemical, Environmental and Biological Sciences (Vol. 1) S. Lahiri, D. Nayak, A. Mukhopadhyay (Eds.); Saha Institute of Nuclear Physics, Kolkata, India, 2006, S. 112ff.
- [63] J. van Doornmalen. *Analysis and Implications of Copper-complex Lability in Aqueous Systems*. PhD-thesis, Delft University of Technology, The Netherlands, 2003, ISBN 90-9016533-9.
- [64] J. van Doornmalen, J. T. van Elteren, J. J. M. de Goeij. *Anal. Chem.* **2000**, 72(14), 3043.
- [65] J. van Doornmalen, H. T. Wolterbeek, J. J. M. de Goeij. *Anal. Chim. Acta* **2002**, 464(1), 141.
- [66] A. Denkova. Application of the Free-Ion Selective Radiotracer Extraxion (FISRE) Technique. Determination of Association and Dissociation Kinetics of Metal Complexes. Diploma Thesis, Delft University of Technology, The Netherlands, 2003.
- [67] D. Jurkin, B. Wierczinski. J. Radioanal. Nucl. Chem. 2008, 277(1), 91.
- [68] P. W. Atkins. *Physical Chemistry*. 6th Ed., Oxford University Press, Oxford, 1998.

- [69] R. G. Wilkins. *Kinetics and Mechanism of Reactions of Transition Metal Complexes*. 2nd Ed. Wiley-VCH, Weinheim, 1991.
- [70] W. Verweij. *CHEAQSPro: A Program for Calculating Chemical Equilibria in Aquatic Systems*, Version P 2006.1, Groningen (<u>http://home.tiscali.nl/cheaqs</u>).
- [71] W. D. Schecher, D. C. McAvoy. *MINEQL+: A Chemical Equilibrium Program for Personal Computers.* Hallowell, ME: Enivironmental Research Software, 2001.
- [72] J. P. Gustafsson. Visual MINTEQ A Windows Version of MINTEQA2. KTH Department of Land and Water Resources Engineering, Stockholm (<u>http://www.lwr.kth.se/English/OurSoftware/vminteq/</u>).
- [73] E. Tipping. *Computers and Geosciences* **1994**, *20*, 973.
- [74] G. Sposito, J. Coves. SOILCHEM A Computer Program for the Calculation of Chemical Speciation in Soils, Technical report, Kearny Foundation, University of California, Riverside and Berkeley, 1988.
- [75] J. G. Hering, F. M. M. Morel. *Geochim. Cosmochim. Acta* 1989, 53, 611.
- [76] C. H. Langford, R. L. Cook. Analyst 1995, 120, 591.
- [77] J. G. Hering, F. M. M. Morel. *Aquatic Chemical Kinetics. Reaction Rates of Processes in Natural Waters,* John Wiley and Sons, New York, S. 145ff, 1990.
- [78] D. W. Margerum, G. R. Cayley, D. C. Weatherburn, G. K. Pagenkopf. *Coordination Chemistry*, Vol. 2, ACS Symposium Series 174, American Chemical Society, Washington, D. C., S. 1ff, 1978.
- [79] W. F. Pickering. *Chemical Speciation in the Environment*, 1st Ed. Blackie Academic and Professional, Glasgow, 1995, S. 9ff.
- [80] R. J. M. Hudson. *Sci. Total Environ.* **1998**, *219*, 95.
- [81] H. P. van Leeuwen. Env. Sci. Technol. **1999**, 33, 3743.
- [82] M. Whitfield, D. R. Turner. Chemical Modelling in Aqueous Systems, American Chemical Society Symposium Series 93, American Chemical Society, Washington, D. C., 1979, S. 657f.
- [83] M. Eigen. Pure Appl. Chem. 1963, 6, 97.
- [84] I. Grenthe, H. Wanner. *TDB-2 Guidelines for the Extrapolation to Zero Ionic Strength*. OECD Nuclear Energy Agency, Issy-les-Moulineaux, 2000.
- [85] P. G. Daniele, C. Rigano, S. Sammartano. *Talanta* 1983, 30(2), 81.
- [86] K. Majlesi, K. Zare, S. M. Shoaie. J. Chem. Eng. Data 2005, 50(3), 878.
- [87] H. M. Widmer. *Analytical Methods and Instrumentation* **1993**, *1*, 60.
- [88] S. J. Park, O. J. Shon, J. A. Rim, J. K. Lee, S. J. Kim, H. Nam, H. Kim. *Talanta* 2001, 55, 297.
- [89] M. Shamsipur, M. Javanbakht, M. F. Mousavi, M. R. Ganjali, V. Lippolis, A. Garau, L. Tei. *Talanta* 2001, 55, 1047.
- [90] J. Buffle. *Complexation Reactions in Aquatic Chemistry An Analytical Approach*. Ellis Horwood/John Wiley and Sons, Chichester, 1988.
- [91] A. M. Mota, M. M. Correia dos Santos. Metal Speciation and Bioavailibility in Aquatic Systems, Vol. 3, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, 1st Ed., John Wiley and Sons, Chichester, 1995, S. 205f.
- [92] M. G. Paneli, A. Voulgaropoulos. *Electroanalysis* **1993**, *5*, 355.

- [93] A. J. Bard, L. R. Faulkner. *Electrochemical Methods Fundamentals and Applications*, John Wiley and Sons, New York, 1980.
- [94] K. W. Bruland, E. L. Rue, J. R. Donat, S. A. Skrabal, J. W. Moffett. *Anal. Chim. Acta* **2000**, *405*, 99.
- [95] M. L. A. M. Campos, C. M. G. van den Berg. Anal. Chim. Acta 1994, 284, 481.
- [96] J. R. Donat, C. M. G. van den Berg. Marine Chemistry 1992, 38, 69.
- [97] C. M. G. van den Berg. Marine Chemistry 1984, 15,1.
- [98] R. A. G. Jansen, H. P. van Leeuwen, R. F. M. J. Cleven, M. A. G. T. van den Hoop. *Env. Sci. Technol.* **1998**, *32*, 3882.
- [99] J. Labuda, H. Korgová, M. Vanícková. Anal. Chim. Acta 1995, 305, 42.
- [100] M. del Mar Ortiz Viana, M. Pilar da Silva, R. Agraz, J. R. Procopio, M. T. Sevilla, L. H. Hernandez. Anal. Chim. Acta 1999, 382, 179.
- [101] J. Labuda, M. Bucková, L. Halamová. Electroanalysis 1997, 9, 1129.
- [102] A. V. Stepanov, T. P. Makarova, S. G. Gritchenko. J. Radioanal. Nucl Chem. 1974, 21(2), 411.
- [103] J. Mizera, P. Benes, I. Hvozdová, A. Jansová. *Radiochim. Acta* 2001, 89(11-12), 785.
- [104] G. A. Bozhikov, P. I. Ivanov, G. D. Bontchev, O. D. Maslov, M. V. Milanov, S. N. Dmitriev. *Radiochim. Acta* 2003, *91*(5), 279.
- [105] P. J. Breen, W. D. Horrocks, K. A. Johnson. Inorg. Chem. 1986, 25, 1968.
- [106] P. M. Bayley. Prog. Biophys. Molec. Biol. 1981, 37, 149.
- [107] R. F. C. Mantoura, J. P. Riley. Anal. Chim. Acta 1975, 78, 193.
- [108] M. L. Adamic, D. E. Bartak. Anal. Chim. Acta 1984,158, 43.
- [109] M. L. Adamic, D. E. Bartak. Anal. Chem. 1985, 57, 279.
- [110] G. W. Evans, P. E. Johnson, J. G. Brushmiller, R. W. Ames. Anal. Chem. 1979, 51, 839.
- [111] R. S. Morgan, N. H. Morgan, R. A. Guinavan. Anal. Biochem. 1972, 45, 668.
- [112] A. V. Harms, J. T. van Elteren, H. A. Claessens. J. Chromatogr. A **1996**, 755, 219.
- [113] S. C. Apte, G. E. Batley. *Metal Speciation and Bioavailability in Aquatic Systems*, Vol. 3, IUPAC Series on Analytical and Physical Chemistry of Environmental Systems, 1st Ed., John Wiley and Sons, Chichester, 1995, S. 259ff.
- [114] R. J. Stolzberg, D. Rosin. Anal Chem. 1977, 49, 226.
- [115] A. M. Wood, D. W. Evans, J. J. Alberts. *Marine Chemistry* **1983**, *13*, 305.
- [116] C. L. Chakrabarti, Y. Lu, D. C. Grégoire, M. H. Back, W. H. Schroeder. *Env. Sci. Technol.* **1994**, 28, 1957.
- [117] J. R. Procopio, M. del Mar Ortiz Viana, L. H. Hernandez. *Env. Sci. Technol.* 1997, 31, 3081.
- [118] D. R. Jones, S. E. Manahan. Anal. Letters 1975, 8, 421.
- [119] Chelex 100 and Chelex 20 Chelating Ion Exchange Resin Instruction Manual, Lit200 Rev B, Bio-Rad Laboratories, Hercules, CA (<u>http://www.bio-rad.com/webmaster/pdfs/9184_Chelex.PDF</u>).
- [120] P. M. May, P. W. Linder, D. R. Williams. J. Chem. Soc., Dalton Trans. 1977, 588.
- [121] W. M. Garrison. Chem. Rev. 1987, 87, 381.

- [122] D. D. Perrin, R. P. Agarwal. Metal Ions in Biological Systems. Vol. 2, Ed. H. Sigel, Marcel Dekker, New York, 1973, p. 168.
- [123] N. Iznaga-Escobar. Appl. Radiat. Isot. 2001, 54, 399.
- [124] F. B. van Gog, G. W. M. Visser, R. Klok, R. van der Schors, G. B. Snow, G. A. M. S. van Dongen. J. Nucl. Med. 1996, 37(2), 352.
- [125] Q. A. Salako, R. T. O'Donnell, S. J. DeNardo. J. Nucl. Med. 1998, 39, 667.
- [126] D. L. Kukis, S. J. DeNardo, G. L. DeNardo, R. T. O'Donnell, C. F. Meares. J. Nucl. Med. 1998, 39, 2105.
- [127] M. C. Chakrabarti, N. Le, C. H. Paik, W. G. De Graff, J. A. Carrasquillo. J. Nucl. Med. 1996, 37, 1384.
- [128] M. Chinol, D. J. Hnatowich. J. Nucl. Med. 1987, 28, 1465.
- [129] S. Liu, C. E. Ellars, D. S. Edwards. *Bioconjugate Chem.* 2003, 14(5), 1052.
- [130] K. H. Lieser. *Einführung in die Kernchemie*, 2nd Ed., VCH, Weinheim, 1980.
- [131] G. F. Knoll. Radiation Detection and Measurement. 2nd Ed., John Wiley and Sons, New York, 1989.
- [132] G. Pfennig, H. Klewe-Nebenius, W. Seelmann-Eggebert. *Karlsruher Nuklidkarte*, 6. Auflage, Forschungszentrum Karlsruhe, 1995, korr. 1998.
- [133] I. Kaplan. Nuclear Physics, Addison-Wesley, New York, 1964.
- T. E. Witzig, L. I. Gordon, F. Cabanillas, M. S. Czuczman, C. Emmanouilides,
 R. Joyce, B. L. Pohlman, N. L. Bartlett, G. A. Wiseman, N. Padre, A. J. Grillo-López, P. Multani, C. A. White. J. Clin. Onc. 2002, 20(10), 2453.
- [135] *Ytracis-Markerzubereitung, Lösung.* (<u>http://www.pharmazie.com</u> /graphic/A/97/0-90697.pdf)
- [136] Table of Nuclides. (http://atom.kaeri.re.kr/ton/index.html)
- [137] M. de Jong, W. A. P. Breeman, B. F. Bernard, E. J. Rolleman, L. J. Hofland, T. J. Visser, B. Setyono-Han, W. H. Bakker, M. E. van der Pluijm, E. P. Krenning. *Eur. J. Nucl. Med* 1995, 22, 608.
- [138] D. Nayak, S. Lahiri. J. Radioanal. Nucl. Chem. 1999, 242(2), 423.
- [139] S. Hirano, K. T. Suzuki. *Env. Health Perspectives* **1996**, *101*(Suppl. 1), 85.
- [140] A. P. Callahan, D. E. Rice, F. F. Knapp. NucCompact Eur./Am. Commun. Nucl. Med. 1989, 20, 3.
- [141] F. F. Knapp. Cancer Biother. Radiopharm. 1998, 13(5), 337.
- [142] J. A. O'Donoghue, M. Bardiès, T. E. Wheldon. J. Nucl. Med. 1995, 36, 1902.
- [143] L. S. Zuckier, O. Dohan, Y. Li, C. J. Chang, N. Carrasco, E. Dadachová. J. Nucl. Med. 2004, 45(3), 500.
- [144] W. Y. Lin, J. F. Hsieh, S. C. Tsai, T. C. Yen, S. J. Wang, F. F. Knapp Jr. Nucl. Med. Biol. 2000, 27, 83.
- [145] M. T. Hays, M. Berman. J. Nucl. Med. 1977, 18(9), 898.
- [146] H. Kallman. *Phys.* **1950**, *78*, 621.
- [147] G. T. Reynolds, F. B. Harrison, G. Salvini. Phys. Rev. 1950, 78, 488.
- [148] P. A. Čerenkov. Bull. Ac. Sci. U.S.S.R 1933, 7, 919.
- [149] P. A. Čerenkov. Phys. Rev. 1937, 52, 378.
- [150] R. M. Smith, A. E. Martell. *NIST Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes*, Version 8.0, Gaithersbourg, 2004.

- [151] F. H. Firsching, J. Mohammadzadei. J. Chem. Eng. Data 1986, 31(1), 40.
- [152] E. Pidcock, G. R. Moore. J. Biol. Inorg. Chem. 2001, 6, 479.
- [153] R. H. Betts, O. F. Dahlinger, D. M. Munro. Radioisotopes in Scientific Research 1958, 2.
- [154] D. W. Margerum. Rec. Chem. Prog. 1963, 24, 237.
- [155] P. Glentworth, B. Wiseall, C. L. Wright, A. J. Mahmood. J. Inorg. Nucl Chem. 1968, 30(4), 967.
- [156] P. Glentworth, D. A. Newton. J. Nucl. Inorg. Chem. 1971, 33(6), 1701.
- [157] E. Brücher, P. Szarvas. Inorg. Chim. Acta 1970, 4, 632.
- [158] T. Asano, S. Okada, S. Taniguchi. J. Inorg. Nucl. Chem. 1970, 32, 1287.
- [159] T. Ryhl. Acta. Chem. Scand. 1972, 26, 3955.
- [160] W. D'Olieslager, G. R. Choppin. J. Inorg. Nucl. Chem. 1971, 33, 127.
- [161] E. Brücher, G. Laurenczy. J. Inorg. Nucl. Chem. 1981, 43, 2089.
- [162] E. Brücher, G. Laurenczy. Inorg. Chem. 1983, 22, 338.
- [163] G. Laurenczy, L. Radics, E. Brücher. Inorg. Chim. Acta 1983, 75, 219.
- [164] E. Brücher. Top. Curr. Chem. 2002, 221, 103.
- [165] T. J. McMurry, C. J. Pippin, C. Wu, K. A. Deal, M. W. Brechbiel, S. Mirzadeh, O. A. Gansow. J. Med. Chem. 1998, 41, 3546.
- [166] A. Rauk, C. A. Leland, K. Mislow. Angew. Chem., Int. Ed. Engl. 1970, 9, 400.
- [167] B. G. Jenkins, R. B. Lauffer. Inorg. Chem. 1988, 27, 4730.
- [168] H. Stetter, W. Frank. Angew. Chem., Int. Ed. Engl. 1976, 15(11), 686.
- [169] J. F. Desreux. Inorg. Chem. 1980, 19(5), 1319.
- [170] J. F. Desreux, E. Merciny, M. E. Loncin. *Inorg. Chem.* **1981**, *20*, 987.
- [171] J. F. Desreux, M. E. Loncin, E. Merciny. Inorg. Chem. 1986, 25, 2646.
- [172] É. Tóth, E. Brücher, I. Lázár, I. Tóth. Inorg. Chem. 1994, 33, 4070.
- [173] K. P. Pulukkody, T. J. Norman, D. Parker, L. Royle, C. J. Broan. J. Chem. Soc. Perkin Trans. 1993, 2, 605.
- [174] M. Försterová, I. Svobodová, P. Lubal, P. Táborský, J. Kotek, P. Hermann, I. Lukeš. *Dalton Trans.* **2007**, 535.
- [175] P. Wedeking, K. Kumar, M. F. Tweedle. Magn. Reson. Imaging 1992, 10, 641.
- [176] X. Wang, T. Jin, V. Comblin, A. Lopez-Mut, E. Merciny, J. F. Desreux. *Inorg. Chem.* 1992, 31, 1095.
- [177] E. Brücher, G. Laurenczy, Zs. Makra. Inorg. Chim. Acta 1987, 139.
- [178] C. J. Broan, J. P. L. Cox, A. S. Craig, R. Kataky, D. Parker, A. Harrison, A. M. Randall, G. Ferguson. J. Chem. Soc. Perkin Trans. 1991, 2, 87.
- [179] K. Kumar, T. Jin, X. Wang, J. F. Desreux, M. F. Tweedle. *Inorg Chem.* 1994, 33, 3823.
- [180] L. Burai, R. Király, I. Lázár, E. Brücher. Eur. J. Inorg. Chem. 2001, 813.
- [181] E. T. Clarke, A. E. Martell. Inorg. Chim. Acta. 1991, 190, 37.
- [182] M. Kodama, T. Koike, A. B. Mahatma, E. Kimura. *Inorg. Chem.* **1991**, *30*(6), 1270.
- [183] S. L. Wu, W. D. Horrocks. Inorg. Chem. 1995, 34, 3724.
- [184] L. Burai, I, Fabian, R. Király, E. Szilagyi, E. Brücher. J. Chem. Soc., Dalton Trans. 1998, 243.
- [185] S. P. Kasprzyk, R. G. Wilkins. Inorg. Chem. 1982, 21, 3349.

- [186] K. Kumar, M. F. Tweedle. Inorg. Chem. 1993, 32, 4193.
- [187] W. A. P. Breeman, M. de Jong, T. J. Visser, J. L. Erion, E. P. Krenning. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 917.
- [188] A. D. Sherry, R. D. Brown III, C. F. G. C. Geraldes, S. H. Koenig, K.-T. Kuan, M. Spiller. *Inorg. Chem.* **1989**, 28, 620.
- [189] S. Aime, M. Botta, G. Ermondi. Inorg. Chem. 1992, 31, 4291.
- [190] S. Aime, M. Botta, M. Fasano, M. P. M. Marques, C. F. G. C. Geraldes, D. Pubanz, A. E. Merbach. *Inorg. Chem.* **1997**, *36*, 2059.
- [191] V. Jacques, J. F. Desreux. Inorg. Chem. 1994, 33, 4048.
- [192] M. V. Deshmukh, G. Voll, A. Kühlewein, H. Mäcke, J. Schmitt, H. Kessler, G. Gemmecker. *J. Med. Chem.* **2005**, *48*, 1506.
- [193] A. F. Holleman, E. Wiberg. *Lehrbuch der anorganischen Chemie*. 101. Ausgabe, de Gruyter, Berlin, 1995.
- [194] E. Deutsch, K. Libson, J.-L. Vanderheyden, A. R. Ketring, H. R. Maxon. Nucl. Med. Biol. 1986, 13(4), 465.
- [195] G. Liu, D. J. Hnatowich. Anticancer Agents Med. Chem. 2007, 7(3), 367.
- [196] R. Alberto, R. Schibli, A. Egli, P. A. Schubiger, W. A. Herrmann, G. Artus, U. Abram, T. A. Kaden. J. Organomet. Chem. 1995, 492, 217.
- [197] A. Egli, K. Hegetschweiler, R. Alberto, U. Abram, R. Schibli, R. Hedinger, V. Gramlich, R. Kissner, P. A. Schubiger. *Organometallics* **1997**, *16*, 1833.
- [198] R. Alberto, R. Schibli, A. Egli, P. A. Schubiger, U. Abram, T. A. Kaden. J. Am. Chem. Soc. 1998, 120, 7987.
- [199] R. Schibli, R. Schwarzbach, R. Alberto, K. Ortner, H. Schmalle, C. Dumas, A. Egli, P. A. Schubiger. *Bioconjugate Chem.* **2002**, *13*, 750.
- [200] R. Alberto, K. Ortner, N. Wheatley, R. Schibli, P. A. Schubiger. J. Am. Chem. Soc. 2001, 123, 3135.
- [201] S. H. Park, S. Seifert, H.-J. Pietzsch. Bioconjugate Chem. 2006, 17, 223.
- [202] H. W. Gibson, F. C. Bailey. J. Chem. Soc., Chem. Comm. 1977, 815a.
- [203] R. Alberto, R. Schibli, R. Waibel, U. Abram, P. A. Schubiger. Coord. Chem. Rev. 1999, 190-192, 901.
- [204] S. Malja, K. Schomacker, E. Malja. J. Radioanal. Nucl. Chem. 2000, 245(2), 403.
- [205] S. Lehenberger, K. Zhernosekov. Unveröffentlichte Ergebnisse.
- [206] IDEX Health & Science *Rheodyne PEEK Sample Loops* (<u>http://www.idex-hs.com/products/default.aspx?ProductID=4173&ProductTypeContextID=21</u>)
- [207] W. P. Silva, C. M. D. P. S. Silva. *LAB Fit Curve Fitting Software Nonlinear Regression and Treatment of Data Program,* Version 7.2.33, (http://www.labfit.net).
- [208] Microsoft Excel 2007, Version 12.0. (http://office.microsoft.com)
- [209] OriginLab OriginPro 8G SR1, Version 8.0773(B773). (<u>http://www.originlab.com</u>)
- [210] Z. M. Anwar, H. A. Azab. J. Chem. Eng. Data 2001, 46, 613.
- [211] M. K. Moi, C. F. Meares, S. J. DeNardo. J. Am. Chem. Soc. 1988, 110, 6267.
- [212] M. F. Loncin, J. F. Desreux, E. Merciny. Inorg. Chem. 1986, 25(15), 2646.
- [213] W. P. Cacheris, S. K. Nickle, A. D. Sherry. Inorg. Chem. 1987, 26(6), 958.

- [214] K. Kumar, C. A. Chang, L. C. Francesconi, D. D. Dischino, M. F. Malley, J. Z. Gougoutas, M. F. Tweedle. *Inorg. Chem.* **1994**, *33*(16), 3567.
- [215] K. Kumar, M. F. Tweedle. Pure Appl. Chem. 1993, 65(3), 515.
- [216] G. Gasser, L. Tjioe, B. Graham, M. J. Belousoff, S. Juran, M. Walther, J.-U. Künstler, R. Bergmann, H. Stephan, L. Spiccia. *Bioconjugate Chem.* 2008, 19(3), 719.
- [217] P. A. Schubiger, R. Alberto, A. Smith. *Bioconjugate Chem.* 1996, 7(2), 165.
- [218] D. E. Milenic, E. D. Brady, M. W. Brechbiel. *Nature Rev. Drug Discov.* 2004, 3, 488.
- [219] S. Supiot, F. Thillays, E. Rio, M.-A. Mahé, F.-J. Barbet, F. Kraeber-Bodéré, M. Chérel. *Cancer/Radiothérapie* **2007**, *11*(5), 252.
- [220] S. Scally, W. Davison, H. Zhang. *Environ. Sci. Technol.* 2003, 37(7), 1379.