
Synchronization Performance of the Precision Time Protocol: Effect of Clock
Frequency Drift on the Line Delay Computation

Ruxandra Lupas Scheiterer*, Dragan
Obradovic*, Chongning Na*, Günter

Steindl**, Franz-Josef Goetz***

* Siemens AG, Corporate Technology,
Information and Communications, Munich,

Germany
** Siemens AG, Automation and Drives,

Industrial Automation Systems, Amberg,
Germany

*** Siemens AG, Automation and Drives,
Advanced Technologies and Standards,

Nürnberg, Germany

(e-mails: {ruxandra.scheiterer,
dragan.obradovic, na.chongning.ext,
guenter.steindl, franz-josef.goetz}

@siemens.com)

Abstract

The Precision Time Protocol (PTP) of the IEEE 1588
standard relies on two processes: the timing propagation
process and the line delay estimation process. It is
important to study the factors that affect the quality of
these synchronization sub-processes, in order to expand
the limit on the number of slaves synchronizable within a
given synchronization precision. This short work-in-
progress paper analytically studies the sensitivity of the
line delay computation to linear clock frequency drift.

1. Introduction

Ethernet-based applications usually require the
networked clocks to be synchronized. The Standard
Network Time Protocol (NTP) [1], [2], executed over
Ethernet provides synchronization accuracy at the
millisecond level, which is appropriate for processes that
are not time critical. However, in many applications, for
example base station synchronization or motion control,
where only sub-microsecond level synchronization
errors are allowed, a more accurate synchronization
solution is needed. The Precision Time Protocol (PTP),
delivered by the IEEE 1588 standard [3] published in
2002 constitutes a promising Ethernet synchronization
protocol, in which messages carrying precise timing
information, obtained by the hardware time stamping in
the physical layer, are propagated in the network to
synchronize the slave clocks to a master clock. Boundary
clocks adjust their own clock to the master clock and
then serve as masters for the next network segment.
Authors of [4], [5] introduced the transparent clock (TC)
concept, in which intermediate bridges are treated as
network components with known delay. By doing this,
no control loop in the intermediate element is needed for
providing timing information to the next local clock and
hence the synchronization at the time client is not

dependent on the control loop design in the intermediate
bridges. The transparent clock concept has been adopted
in the new version of IEEE 1588 published in 2007
(http://ieee1588.nist.gov/: Balloting on IEEE 1588
version 2 began on July 5, 2007).

The current state of the art is to guarantee a
synchronization precision of 1µs for topologies with no
more than 30 consecutive slaves. To expand this limit it
is important to study the factors that influence the quality
of the synchronization process and find out methods to
minimize the effect of these factors.

An important factor that affects the synchronization
quality achievable by PTP is the stability of oscillators.
Besides the long-term frequency drifts caused by aging,
industrial environments are such that unpredictable and
independent temperature changes at each node are
commonly encountered, causing short-term frequency
drifts, unless precluded by expensive temperature
compensated (TCXO) or oven controlled (OCXO)
crystal oscillators. Even those are affected by frequency
drifts due to vibrations and shocks.

The peer-to-peer transparent clock implementation of
PTP relies on two processes: timing propagation and line
delay estimation. In this paper we analytically derive the
expression for the error in line delay computation
introduced by clock frequency drift.

The paper outline is as follows: Section 2 introduces
the system model and PTP protocol. Section 3 details the
line delay estimation process, whose sensitivity to
frequency drift is analyzed in Section 4. The embedding
within our work in progress is spelled out in Section 5.

2. System model of PTP with transparent
clocks and the timing propagation process

Since the standard leaves open the details, this section
introduces our system model and notation. Fig. 1 shows
a system with 1+N cascaded elements connected in a

978-1-4244-2350-7/08/$25.00 ©2008 IEEE.

Authorized licensed use limited to: T U MUENCHEN. Downloaded on September 3, 2009 at 03:43 from IEEE Xplore. Restrictions apply.

line topology. The PTP has a master/slave structure. The
(grand)master provides the reference time to the other
N elements, called slave elements, via time-aware
bridges (TCs).

(a) Network topology

(b) System parameters

Fig. 1: System Model

Fig. 2 illustrates the two pillars of the time
synchronization process, the process of propagation of
Sync messages and the line delay estimation process.

Fig. 2: PTP with transparent clocks

The master periodically sends Sync messages which

carry the counter state of the master clock iM , stamped
at the time of transmission, and are propagated along the
network. Quantities, certain or uncertain, linked with the
Sync message transmitted by the master at time it are

labeled by the superscript i . i
nS is the time stamped at

slave n upon arrival of Sync message i . A hat on a
symbol means “estimate”. The propagation time between

the nth slave and its uplink element, i
nLD , is called line

delay. The message is forwarded to slave 1+n after a

bridge delay i
nBD . Slave n estimates its incurred line

delay,)(ˆ i
nn LDS , and own bridge delay,)(ˆ i

nn BDS . Then
it updates the received (estimated) master counter value

i
nM 1

ˆ
− packaged in the Sync message by augmenting it

with its own local delay, in order to pass on the best
available estimate of the master time at the time of Sync

message forwarding. The local delay is calculated by
translating the sum of the own estimated line and bridge
delays into master time. Bridge delays are recorded at
each slave via the Sync message arrival and departure
time stamps, while the line delays are estimated by using
the line delay estimation process outlined in the next
section. To express line delay and bridge delay in master
time, each slave element needs to know its frequency
offset to the master. The rate compensation factor (RCF,
also called rate ratio, [6], [7]) is defined as the ratio
between the frequencies of two different clocks. We use

YXRCF / to denote the frequency ratio between X and Y,

i.e., ideally YXYX ffRCF =/ . The rate offset to the

master,
nSMRCF / , is calculated by using the estimated

master counter values in two Sync messages and the
local counter values at the time when these messages
arrive at slave n :

 1

1
11

/

ˆˆ
−

−
−−

−
−= i
n

i
n

i
n

i
n

SM SS
MMRCF

n
 (1)

Slave n then translates the delay measured in local
counter value to master counter value by multiplying it
with

nSMRCF / . Hence, the estimated current master

counter value is computed according to:

()






=

⋅++= −

ii

SM
i
nn

i
nn

i
n

i
n

MM

RCFBDSLDSMM
n

0

/1

ˆ
)(ˆ)(ˆˆˆ

 (2)

3. The line delay estimation process

The last ingredient necessary for eq. (2) is the local
estimate of the line delay to the predecessor. The line
delay estimation process is shown on the right in Fig. 2,
where j is the index of the line delay computation. This
process uses 4 time-stamps: node n (the requestor)
sends a delay request message to node 1−n and records

its time of departure, j
outreqnS _, (1st). Node 1−n (the

responder) replies with a delay response message which
reports the time-stamps of receiving the delay request
message and sending the reply, called “delay response

message”: j
inreqnS _,1− and j

outrespnS _,1− (2nd and 3rd). The

responder delay of node 1−n is j
nrespD 1− in absolute

time (see Fig. 3), and is in local time:

j
inreqn

j
outrespn

j
respDn SSS _,1_,1,1 −−− −= . (3)

Node n records the time when it receives the response

message, j
inrespnS _, (4th), which returned after a

requestor delay of j
nreqD in absolute time, and in node

n local time of:
j

outreqn
j

inrespn
j
reqDn SSS _,_,, −= . (4)

Authorized licensed use limited to: T U MUENCHEN. Downloaded on September 3, 2009 at 03:43 from IEEE Xplore. Restrictions apply.

1
_,

−j
outreqnS

1
_,1

−
−
j

inreqnS
j

inreqnS _,1−

j
outreqnS _,

j
inrespnS _,

1
_,

−j
inrespnS

1
_,1

−
−
j

outrespnS
j

outrespnS _,1−

j
nreqD

j
nrespD 1−

j
nrespI 1−

RreqI jn =

Fig. 3: Line delay and “RCF peer” computation

The responder delay is in counters of node 1−n and
the requestor delay in counters of node n . To be able to
subtract these time intervals, each element maintains an
“RCF peer” estimate, i.e. frequency ratio estimate to its
predecessor, which is obtained from two consecutive
delay request and response cycles, as shown in Fig. 3:

1
,1,1

1
,,

/ 1 −
−−

−

−

−
=

− j
inreqn

j
inreqn

j
outreqn

j
outreqnj

SS SS

SS
RCF

nn
, (5)

where the timeline is flipped to horizontal to gain
labeling space. Then the line delay is estimated as:

2
)(ˆ 1/,1, −

⋅−
= − nn SS

j
respDn

j
reqDnj

nn
RCFSS

LDS (6)

In the following section we will study the accuracy of
this formula in the face of frequency drift, in the absence
of other uncertainties. In this work we adopt the usual
isolation approach when it is desired to identify the
effect due entirely to one specific cause, and therefore
neglect jitters (random transmission and reception time
noise). Also, we assume zero delay skew, i.e. that the
uplink and downlink line delays are equal. The latter is
only a mild idealization, since the IEC61784-5-3
mandates stringent requirements for the Delay Skew.
E.g. for PROFINET it may not exceed 20ns/100m.

4. Effect of frequency drift on the accuracy
of the line delay estimate

We will repeatedly use the fact that in the absence of
jitter the requestor and the responder intervals are equal

in absolute time: j
n

j
n respIreqI = , see Fig. 3. Denoting

by)(Ifn the average frequency of node n in interval I,
(5) is equivalent to:

)(
)(

1
/ 1 j

nn

j
nnj

SS respIf
reqIfRCF

nn
−

=
−

 (7)

The Line Delay estimate is computed by each slave as a
counter value increase (number of quartz oscillations).
The responder delay from (3) is, in slave 1−n counters:

j
n

j
nn

j
respDn respDrespDfS 111,1)(−−−− ⋅= (8)

while without delay skew the requestor delay from (4) is,
in slave n counters:

()j
n

j
n

j
nn

j
reqDn respDLDreqDfS 1, 2)(−+⋅⋅= . (9)

Using (7)-(9), Slaven’s Line Delay estimate from (6)
becomes:











−⋅⋅+

+⋅=

−−

−−−

)(
)(

)(
)(

2
)(

)()(ˆ

11

111
j
nn

j
nn

j
nn

j
nn

j
nj

nn

j
n

j
nn

j
nn

respIf
respDf

reqIf
reqDfrespD

reqIf

LDreqDfLDS
 (10)

For constant frequencies all the average frequencies
equal nf respectively 1−nf , and (10) becomes:

j
nn

j
nn LDfLDS ⋅=)(ˆ (11)

This ideal case is distorted in the case of non-
constant frequencies during the estimation interval. To
assess the size of the average frequencies in each time
interval for changing clock frequencies, we assume a
linear drift. In the case where nonlinear frequency
changes occur, our analysis can be seen as a local first
order approximation. Let the slope of the frequency
change of clock k be k∆ :

)()()(1212 tttftf kkk −⋅∆+= (12)

or, equivalently:

)(/)(1)(/)(11212 tftttftf kkkk −⋅∆+= (13)

For linear frequency drift the average frequency in an
interval equals the frequency in the middle of the
interval. Otherwise this is a good approximation for
short time intervals. Hence, using (13), the quotients of
the last term if (10) can be expressed as:

)_(
21

)_(
__1

)_(
)_(

)(
)(

1

j
nn

j
n

j
n

n

j
nn

j
n

j
n

n

j
nn

j
nn

j
nn

j
nn

reqImidf

LD
respDR

reqImidf
reqImidreqDmid

reqImidf
reqDmidf

reqIf
reqDf

+
+

⋅∆+=

=−⋅∆+=

=≈

−

 (14)

For the 3rd line we have used Fig. 3 to express the
distance between the two interval middles. R is the
length of the requestor interval, which is one of the
design parameters of the synchronization algorithm.
Likewise:

)_(
21

)_(
__

1

)_(
)_(

)(
)(

11

1

1

11

11
1

11

11

11

11

j
nn

j
n

n

j
nn

j
n

j
n

n

j
nn

j
nn

j
nn

j
nn

respImidf

respDR

respImidf
respImidrespDmid

respImidf
respDmidf

respIf
respDf

−−

−

−

−−

−−
−

−−

−−

−−

−−

+

⋅∆+=

=
−

⋅∆+=

=≈

 (15)

The ith Sync message, generated by the master at time

it , arrives at slave n after a propagation time of i
nL ,

called latency. We introduce the “age”)(,
1

ijiA of the line
delay computation j valid for Sync Message i to be the

Authorized licensed use limited to: T U MUENCHEN. Downloaded on September 3, 2009 at 03:43 from IEEE Xplore. Restrictions apply.

time elapsed between the middle of the last line delay
computation interval and the arrival time of the current
Sync message:

IntervalDelayofRequestmiddle)(,
1 −+= i

ni
iji LtA . (16)

This enables us to write the frequency in the line
delay computation expression more transparently as:

).()_()()(, iji
n

i
nin

j
nn

j
nn ALtfreqDmidfreqDf −+=≈ (17)

Inserting (14), (15) and (17) into (10), we obtain:

]
)_(

)_(
2

2
[

2

)()(ˆ

11

1
1

11

)(,

j
nn

j
nn

j
n

n

j
n

j
n

n

j
n

j
n

iji
n

i
nin

j
nn

respImidf
reqImidfrespDR

LDrespDRrespD

LDALtfLDS

−−

−
−

−−

⋅
+

⋅∆−

−









+

+
⋅∆⋅+

+⋅−+≈

 (18)

For typical values: a response

delay msrespD j
n 1001 ≤− , a requestor interval of

msR 300≈ and line delays of nsLD j
n 100≈ , in the 2nd

line the line delay is smaller than the preceding term by

roughly a factor of 710− ; also, looking at the very last
term in (18), the frequency ratio of two identical quartzes

nS and mS with manufacturing tolerance p from the
common nominal frequency is contained in

]
1
1,

1
1[/

p
p

p
pff mn −

+
+
−∈]31,21[pp ⋅+⋅−∈ ; the relative

error by approximating it by 1 is O(410−) even for p as
high as 100ppm . Therefore we can closely

approximate)(ˆ j
nn LDS , the line delay estimate computed

by slave n , by neglecting both these terms, as:

)(
4

)()(ˆ

1
1

1

)(,

−
−

− ∆−∆⋅
+

⋅+

+⋅−+≈

nn

j
nj

n

j
n

iji
n

i
nin

j
nn

respDR
respD

LDALtfLDS
 (19)

The 1st term in this expression is the one that contains

the desired line delay component, however measured as
a clock counter increase that was driven by the slave
clock frequency present at the middle of the line delay
computation interval, which can be as far back from the
current Sync message as the maximal possible age of a
line delay computation. This expression also shows that,
if the two slaves engaged in a line delay estimation
process have drifting frequencies during the respective
time interval, the desired line delay estimate (given by
the 1st term) incurs an error, given by the 2nd term. This
error grows linearly with the relative drift of the two
clock frequencies; linearly with the requestor interval
size, i.e. the interval between two line delay estimations,
and quadratically with the duration of the responder

delay, i.e. the time it takes the responder to transmit the
response message.

5. Current and future work

This work is a first completed part of our work in
progress, whose goal is to make more precise our results
on synchronization accuracy obtained in [8]. There we
derived the error expression on the nth Slave’s master
counter estimate for the scenario of drifting master clock
frequency. The error caused by this drift to the 1st slave’s
line delay estimate was neglected at that time, an error
which is however passed down the line from slave to
slave. We are also using this result in our current
derivation of the error expression for drifting slave
clocks, where the above line delay error contributes one
additional synchronization error term for each clock pair
with a drifting partner; and we are using it in our
ongoing comparison of the relative importance of master
versus slave clock stability. We plan to report our
findings presently.

References

[1] D. L. Mills, “Internet time synchronization: The network
time protocol”, Network Working Group Request for
Comments, 1989.

[2] D. L. Mills, “Precision synchronization of computer
network clocks”, ACM SIGCOMM Computer
Communication Review, Vol. 24, pp. 28-43, 1994.

[3] IEEE, IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement
and Control Systems. IEEE, New York. ANSI/IEEE Std
1588-2002, 2002.

[4] J. Jasperneite, K. Shehab, K. Weber, “Enhancements to
the time synchronization standard IEEE-1588 for a
system of cascaded bridges”, in: Proc. of 2004 IEEE
International Workshop on Factory Communication
Systems, Vienna, 2004.

[5] J. Jasperneite, P. Neumann, “How to guarantee real-time
behaviour using Ethernet”, in: Proc. of 11th IFAC
Symposium on Information Control Problems in
Manufacturing (IN-COM2004), Salvador-Bahia, 2004.

[6] IEEE, IEEE P1588TM D2.2 Draft Standard for a
Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, IEEE, New York,
2007.

[7] D. Obradovic, R.L. Scheiterer, C. Na, G. Steindl and F. J.
Goetz, “Clock Synchronization in Industrial Automation
Networks: Comparison of different Syntonization
Methods”, accepted at: ICINCO 2008, Portugal.

[8] C. Na, D. Obradovic, R. L. Scheiterer, G. Steindl and F.
J. Goetz, “Synchronization Performance of the Precision
Time Protocol”, in: 2007 IEEE International Symposium
on Precision Clock Synchronization for Measurement,
Control and Communication, Vienna, 2007.

Authorized licensed use limited to: T U MUENCHEN. Downloaded on September 3, 2009 at 03:43 from IEEE Xplore. Restrictions apply.

