TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Experimentelle Genetik

Charakterisierung von genetischen Varianten in den immunregulatorischen Transkriptionsfaktoren TBX21, HLX1 und GATA3 und deren funktionelle Rolle bei der Entstehung von Asthma bronchiale

Kathrin Lisa Suttner

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. J. J. Hauner
Prüfer der Dissertation: 1. apl. Prof. Dr. Dr. J. Adamski
2. Univ.-Prof. Dr. M. Klingenspor
3. Univ.-Prof. Dr. M. Kabesch
(Medizinische Hochschule Hannover)

Die Dissertation wurde am 30.11.2009 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 26.04.2010 angenommen.

Inhaltsverzeichnis

1	Einleitung1
1.1	Asthma bronchiale1
1.1.1	Asthma bronchiale – Definition2
1.1.2	Asthma bronchiale - eine multifaktorielle Erkrankung
1.2	Die Rolle von Transkriptionsfaktoren beim Differenzierungs-
	prozess von T-Zellen9
1.3	Die T-Zelldifferenzierung11
1.3.1	"Schlüssel-Transkriptionsfaktoren" der Th1-Zelldifferenzierung:
	TBX21 und HLX113
1.3.2	"Schlüssel-Transkriptionsfaktor" der Th2-Zelldifferenzierung:
	GATA3
1.3.3	Modell der T-Zelldifferenzierung: Wechselspiel zwischen den Th1- und
	Th2-spezifischen Transkriptionsfaktoren18
1.4	Die Transkriptionsfaktoren TBX21, HLX1 und GATA3 und ihr
	Einfluss auf die Entstehung von Asthma bronchiale
1.5	Zielsetzung der Arbeit22
2	Material und Methoden23
2.1	Material
2.1.1	Geräte
2.1.2	Verbrauchsmaterialien25
2.1.3	Puffer und Lösungen26
2.1.4	Reagenzien und Chemikalien27
2.1.5	Antikörper
2.1.6	Reaktionskits
2.1.7	Enzyme
2.1.8	Computerprogramme und Internetportale
2.1.9	Verwendete Organismen32
2.1.9.1	Jurkat T-Zellen
2.1.9.2	COS-7 Zellen
2.1.9.3	Bakterien

2.2	Methoden	
2.2.1	Die Studienpopulationen	
2.2.1.1	Kontrollpopulation für das Mutationsscreening	
2.2.1.2	Studienpopulation für die Assoziationsanalyse	
2.2.1.2.1	Querschnittspopulationen (München, Dresden, Leipzig)	
2.2.1.2.2	Fall-Kontroll-Population	
2.2.1.2.3	Fragebogen	
2.2.1.2.4	Atopiebestimmung mittels Haut-Prick-Test	
2.2.1.2.5	Messung des IgE-Spiegels	
2.2.2	DNA Extraktion	
2.2.3	Konzentrationsbestimmung von Nukleinsäuren	
2.2.4	Agarose-Gelelektrophorese	
2.2.5	DNA Extraktion aus Agarose	
2.2.6	Polymerase-Kettenreaktion (PCR)	
2.2.7	Aufreinigung von PCR-Produkten	
2.2.8	Sequenzierreaktion	
2.2.8.1	Fällung der Sequenzierreaktion	
2.2.8.2	Auswertung von Sequenzen	
2.2.9	Genotypisierung mittels iPLEX TM Assay	
2.2.9.1	Vorbereitung der Genotypisierungsplatten	
2.2.9.2	PCR für den iPLEX TM Assay	
2.2.9.3	Abbau überschüssiger dNTPs: SAP-Reaktion	
2.2.9.4	Primer-Extensions-Reaktion	
2.2.9.5	Aufreinigung von Primer-Extensions-Produkten	
2.2.9.6	MALDI-TOF Analyse	
2.2.10	Genotypisierung durch die TaqMan® Allelunterscheidung	
2.2.11	Genotypisierung mittels Restriktionsfragmentlängenpolymorphis	mus
	(RFLP)	54
2.2.12	Statistische Analysen	57
2.2.12.1	Hardy-Weinberg-Equilibrium (HWE)	
2.2.12.2	Odds Ratio und Signifikanztest	59
2.2.12.3	Rechenmodelle zur statistischen Analyse	59
2.2.12.4	Haplotypanalyse	60

2.2.12.5	Risikoanalyse	60
2.2.12.6	Äquivalenztest	61
2.2.13	In silico Analyse von Transkriptionsfaktorbindestellen	62
2.2.14	Electrophoretic Mobility Shift Assay (EMSA)	62
2.2.14.1	Herstellung von Nuklearextrakt	65
2.2.14.2	Proteinbestimmung von Nuklearextrakt	66
2.2.14.3	Herstellung von doppelsträngigen Oligonukleotiden	66
2.2.14.4	Reinigung von doppelsträngigen Oligonukleotiden	67
2.2.14.5	End-Labeling von doppelsträngigen Oligonukleotiden mit P ³²	69
2.2.14.6	Bindereaktion	69
2.2.14.7	Polyacrylamid-Gelelektrophorese (PAGE)	70
2.2.15	Luciferase-Reportergen-Analysen	71
2.2.15.1	Herstellung von HLX1 Promotorkonstrukten	
2.2.15.2	Mutagenese-Reaktion	
2.2.15.3	Durchführung von Luciferase-Reportergen-Analysen	
2.2.16	Biolumineszenz-Resonanz-Energie-Transfer (BRET)-Analysen	
2.2.16.1	Herstellung von BRET-Konstrukten mittels der Gateway®-Technologie	81
2.2.16.2	RNA Isolierung	84
2.2.16.3	Reverse Transkription und Aufreinigung von cDNA	85
2.2.16.4	Herstellung von attB-PCR-Produkten	85
2.2.16.5	BP-Reaktion: Herstellung eines Entryklons	87
2.2.16.6	LR-Reaktion: Herstellung eines Expressionvektors	88
2.2.16.7	Transiente Transfektion für BRET-Analysen	89
2.2.16.8	BRET-Messung	89
2.2.17	Immunhistochemie	90
2.2.17.1	Transiente Transfektion für Immunhistochemie	90
2.2.17.2	Immunfluoreszenz-Färbung	91
3	Ergebnisse	93
3.1	TBX21, HLX1 und GATA3: SNP Detektion und Assoziation	93
3.1.1	Ergebnisse für TBX21	
3.1.1.1	Mutationsscreening	
3.1.1.2	LD-Analyse in der Kontrollpopulation	97

3.1.1.3	Qualitätskontrolle der Genotypisierung	101
3.1.1.4	Verifizierung der LD-Analyse mittels der Studienpopulation	103
3.1.1.5	Assoziationen von TBX21 Tagging SNPs mit Asthma bronchiale	104
3.1.1.6	Assoziationen von TBX21 Haplotypen mit Asthma bronchiale	106
3.1.1.7	Assoziationen von TBX21 Tagging SNPs mit weiteren atopischer	1
	Erkrankungen	107
3.1.2	Ergebnisse für <i>HLX1</i>	108
3.1.2.1	Mutationsscreening	108
3.1.2.2	LD-Analyse in der Kontrollpopulation	110
3.1.2.3	Qualitätskontrolle der Genotypisierung	112
3.1.2.4	Verifizierung der LD-Analyse mittels der Studienpopulation	114
3.1.2.5	Assoziationen von HLX1 Tagging SNPs mit atopischen Erkrankungen	115
3.1.2.5.1	Homogenitätsanalyse	117
3.1.2.6	Assoziationen von HLX1 Haplotypen mit Asthma bronchiale	118
3.1.3	Ergebnisse für <i>GATA3</i>	119
3.1.3.1	SNP Detektion durch Verwendung der HapMap-Datenbank	119
3.1.3.2	LD-Analyse (basierend auf den Daten der HapMap-Datenbank)	120
3.1.3.3	Qualitätskontrolle der Genotypisierung	121
3.1.3.4	Verifizierung der LD-Analyse mittels der Studienpopulation	122
3.1.3.5	Assoziationen und Äquivalenztest zwischen GATA3 Tagging SNPs und	1
	atopischen Erkrankungen	123
3.2	SNP Auswahl für funktionelle Studien	126
3.3	Funktionelle Promotorstudien	128
3.3.1	TBX21: Promotorpolymorphismen beeinflussen die Promotoraktivität	
	signifikant	128
3.3.2	HLX1: Promotorpolymorphismen reduzieren die Promotoraktivitä	t
	signifikant	130
3.3.3	TBX21 und HLX1: In silico Analysen zur Charakterisierung vor	ı
	Transkriptionsfaktorbindungen an die Promotorregionen	131
3.3.4	HLX1: Einfluss von Promotorpolymorphismen auf das Bindeverhalter	ı
	von Transkriptionsfaktoren	133
3.3.4.1	Detektion von SP Transkriptionsfaktoren in Jurkat T Zellen	134

3.3.4.2	HLX1: Promotorpolymorphismen C-1407T und C-742G verhindern die	
	Bindung von SP Transkriptionsfaktoren an diese Promotorregionen	136
3.4	TBX21 und HLX1: Gen-Gen-Analysen	. 139
3.4.1	Charakterisierung des biologischen Interaktionsverhaltens von TBX21	
	und HLX1	141
3.4.1.1	Die Proteine TBX21 und HLX1 werden im Zellkern exprimiert	143
3.4.1.2	Detektion einer positiven Protein-Protein-Interaktion zwischen TBX21 und	
	HLX1	145
3.4.1.3	Exonische, nicht synonyme Polymorphismen in TBX21 und HLX1 haben	
	keinen Einfluss auf das Interaktionsverhalten	149
3.4.2	TBX21 und HLX1 SNP Kombinationen führen auf statistischer Ebene	
	zu synergistischen Effekten bei der Asthmaentstehung	151
4	Diskussion	.154
5	Literaturverzeichnis	. 186
6	Anhang: SNP Bezeichnungen	. 194
7	Zusammenfassung	. 197
8	Summary	. 199
9	Tabellenverzeichnis	. 201
10	Abbildungsverzeichnis	. 204
11	Abkürzungen	. 206
12	Publikationen	. 208
13	Präsentationen	. 209
14	Danksagung	. 210

1 Einleitung

1.1 Asthma bronchiale

Bei Asthma bronchiale handelt es sich um eine der häufigsten chronischen Erkrankungen im Kindesalter. Allein in Deutschland sind 8-10% der Kinder bis zum Alter von 10 Jahren davon betroffen ¹. In den letzten 20 Jahren ist die Asthma Prävalenz stark angestiegen ^{2, 3}, vor allem in den hoch industrialisierten Nationen hat sich die Prävalenz der atopischen Erkrankungen ungefähr verdoppelt ⁴. Die Häufigkeit des Asthma bronchiale schwankt dabei weltweit zwischen 2% und 20% abhängig von sozialökonomischen Lebensbedingungen und ethnischer Herkunft ⁵.

Asthma bronchiale stellt somit eines der größten gesundheitlichen Probleme der modernen Gesellschaft dar. Neben der starken Belastung für den Einzelnen (z.B. Schulausfall oder Arbeitsunfähigkeit) sind auch die sozialmedizinischen Aspekte des Asthma bronchiale beträchtlich, da immense Arzneimittel- und Krankenhauskosten für die Allgemeinheit anfallen.

Sowohl die Pathogenese als auch die Pathophysiologie des Asthma bronchiale sind bisher unzureichend verstanden, so dass viele Patienten weder diagnostiziert noch suffizient therapiert werden können. Forschungsbedarf besteht daher vor allem darin, Parameter zu identifizieren, die zum einen für die Prädiktion als auch für die Prävention von Asthma bronchiale herangezogen werden können, so dass die Erkrankung für den Einzelnen erträglicher wird und die Folgekosten einer Asthmatherapie eingedämmt werden können.

1.1.1 Asthma bronchiale – Definition

Definiert ist Asthma bronchiale als eine chronische, entzündliche Erkrankung der Bronchien, wodurch eine Verengung der Atemwege (Bronchialobstruktion) ausgelöst wird. Verursacht wird diese Atemwegsverengung durch eine erhöhte Schleimsekretion, Verkrampfung der Bronchialmuskulatur und Bildung von Ödemen der Bronchialschleimhaut (siehe Abbildung 1). Neben diesen Symptomen ist Asthma bronchiale geprägt durch eine bronchiale Hyperreaktivität oder auch Hyperreagibilität, die durch eine Vielzahl von exogenen und endogenen Reizen ausgelöst wird und zu einer gesteigerten Empfindlichkeit des Bronchialsystems führt ^{6, 7}. Bei fehlender Behandlung kann die chronische Entzündung zu einem Umbau der Lunge, dem sogenannten "Airway remodeling" führen, wodurch es langfristig zu einer irreversiblen Schädigung der Lunge kommen kann⁷.

Abbildung 1: Asthma bronchiale ist definiert als eine chronische, entzündliche Erkrankung der Bronchien. Bei einem Asthmaanfall verengen sich die glatten Muskeln der Bronchien. Zudem schwillt aufgrund der Entzündung die innere Schicht der Bronchien an und es kommt zu einer vermehrten Sekretion von Schleim, wodurch sich die Atemwege verengen. (http://www.asthma.msd.de/das_sollten_sie_wissen/ursachen/1220_entzuendung_der_atemweg e.html)

Als Auslöser des Asthma bronchiale werden zwei Formen unterschieden. Abhängig davon, ob ein allergischer Mechanismus als Auslöser des Asthma bronchiale verantwortlich ist, wird Asthma bronchiale in die atopische und die nicht-atopische Form unterteilt⁸. Das atopische Asthma ist gekennzeichnet durch eine überschießende Immunantwort des IgE-Systems, verbunden mit einem erhöhten IgE-Serumspiegel und einem positiven Haut-Prick-Test. Zudem weisen diese Patienten häufig eine positive Eigen- oder Familienanamnese atopischer Erkrankungen auf. Für die Entwicklung einer Allergie ist der frühe Kontakt mit Allergenen aus Nahrung und Umwelt von Bedeutung. Exemplarisch seien hierfür Allergene wie Hausstaubmilbe, Katzenepithelien sowie zahlreiche Baum- und Gräserpollen genannt. Man kann davon ausgehen, dass bis zu 70-90% der an Asthma erkrankten Kinder von dieser Form des atopischen Asthma bronchiale betroffen sind ^{9, 10}.

Auch andere Erkrankungen wie die allergische Rhinitis und die atopische Dermatitis zählen zu den atopischen Erkrankungen (siehe Abbildung 2), da sie durch eine verstärkte Abwehr gegen harmlose Substanzen und durch das Vorhandensein von allergenspezifischen IgE-Antikörpern gekennzeichnet sind. Fast 40% der Bevölkerung gelten aufgrund eines positiven Haut-Prick-Tests als atopisch, während circa 20% an allergischer Rhinitis und/oder an atopischer Dermatitis leiden¹¹.

Lässt sich beim Patienten keine allergische Reaktion nachweisen, so handelt es sich um das nicht-atopische Asthma. Virusinfektionen bei Säuglingen und Kleinkindern sind häufig mit dieser Form der Atemwegsüberempfindlichkeit assoziiert. Aber auch andere Triggermechanismen wie Kaltluft, Staub, Tabakrauch oder körperliche Anstrengung gelten als Auslöser des nicht-atopischen Asthmas⁷.

1.1.2 Asthma bronchiale - eine multifaktorielle Erkrankung

Auch wenn die zugrunde liegenden Mechanismen des Asthma bronchiale bisher nur unzureichend geklärt sind, so ist es doch unumstritten, dass es sich hierbei um eine multifaktorielle Erkrankung handelt, deren Entstehung sowohl durch genetische als auch durch umweltbedingte Faktoren beeinflusst wird. Zusätzlich wird die Komplexität dieser Erkrankung durch verschiedenste Gen-Gen- und/oder Gen-Umweltinteraktionen bedingt. Häufig wird die Grundlage für die Entwicklung von Asthma bronchiale durch eine genetische Prädisposition gebildet, während die Manifestation der Erkrankung durch verschiedene Umwelteinflüsse getriggert wird ⁷ (siehe Abbildung 3).

Abbildung 3: Mögliche Ursachen für die Entstehung einer komplexen genetischen Erkrankung wie Asthma bronchiale. a) Neben genetischer Prädisposition spielen b) Gen-Genund c) Gen-Umwelt-Interaktionen eine wichtige Rolle (modifiziert nach Bierbaum & Heinzmann¹²).

Der genetische Anteil bei der Entstehung von Asthma bronchiale wurde mittels Zwillingsstudien untersucht. Basierend auf diesen Ergebnissen wurde geschätzt, dass die genetische Komponente 75% betragen kann ¹³. Monozygote Zwillinge, deren Erbgut bis zu 100% identisch ist, stimmen hinsichtlich ihrer atopischen Erkrankungen deutlich stärker miteinander überein als dizygote Zwillinge ¹⁴. Zudem zeigen Familienstudien, dass das Risiko an Asthma bronchiale zu erkranken erheblich steigt, je mehr Familienmitglieder davon betroffen sind ¹⁵. Die hereditäre Komponente für Asthma bronchiale ist damit offensichtlich. Generell gilt, dass die Vererbung derart komplexer Erkrankungen wie Asthma bronchiale nicht nach der Vererbungslehre von Mendel (z.B. autosomal dominant oder rezessiv) erfolgt. Vielmehr handelt es sich um eine polygene Erkrankung deren Entwicklung durch zahlreiche Gene beeinflusst wird. Ein beeindruckendes Beispiel einer Gen-Gen-Interaktion bei der Pathogenese von Asthma bronchiale ist die Interaktion zwischen dem IL-13 und dem IL-4 Rezeptor. In beiden Genen wurden Polymorphismen identifiziert, die einzeln betrachtet wenig Einfluss auf die Asthmaentstehung haben. Liegt allerdings bei Probanden die Kombination aus mehreren Polymorphismen vor, so kann ein bis zu 16fach erhöhtes Asthmarisiko beobachtet werden ^{16, 17}.

Für den raschen Anstieg der Asthma Prävalenz in den westlichen Industrieländern kann allerdings nicht nur die Genetik alleine verantwortlich gemacht werden. Vielmehr demonstrieren zahlreiche Beispiele, dass eine genetische Prädisposition erst zum Tragen kommt, wenn bestimmte Umweltfaktoren gegeben sind. Beispielsweise reagieren Kinder, die an einem genetisch bedingten Mangel an Entgiftungsenzymen der GST-S-Transferasen) Klasse (Glutathion leiden. besonders empfindlich auf Schadstoffexposition wie Autoabgase oder Passivrauchen und sind dadurch einem erhöhten Asthmarisiko ausgesetzt¹⁸. Desweiteren demonstrieren epidemiologische Studien, dass neben den Umweltfaktoren auch die Lebensbedingungen das Asthmarisiko wesentlich beeinflussen können. In den letzten Jahrzehnten zeigte sich, dass der Anstieg atopischer Erkrankungen von einer Abnahme bakterieller und viraler Infektionen begleitet wird. Aus dieser Beobachtung heraus entwickelte sich die sogenannte Hygiene-Hypothese ¹⁹. Diese Hypothese besagt, dass der hohe Hygiene-Standard in den Industrienationen eine geradezu klinisch-reine Umgebung simuliert, was eine mangelnde Aktivierung des Immunsystems zur Folge hat und wodurch die Entstehung von atopischen Erkrankungen begünstigt wird. Weiter wird diese Hypothese durch die Beobachtung untermauert, dass Kinder, die mit vielen Geschwistern aufwachsen seltener an Asthma bronchiale leiden als gleichaltrige Einzelkinder. Dieser protektive Effekt in kinderreichen Familien scheint aus der quantitativ höheren Exposition gegenüber Keimen und Infektionen zu resultieren. Das gleiche Phänomen ist bei Kindern zu erkennen, die durch den frühen Besuch einer Kindergrippe oder dem Aufwachsen auf einem Bauernhof ebenfalls frühzeitig zahlreichen mikrobiellen Faktoren ausgesetzt sind ²⁰⁻²². Demnach scheint die frühe Exposition gegenüber mikrobiellen Reizen nicht nur für die Reifung des Immunsystems wichtig zu sein, sondern sie wirkt scheinbar zugleich einer frühen allergischen Sensibilisierung entgegen, wodurch die Wahrscheinlichkeit einer atopischen Erkrankung minimiert wird ^{21, 23}.

Wie bereits eingangs erwähnt, sind die Wirkungsmechanismen, die für die hier beschriebenen protektiven Effekte verantwortlich sind, kaum verstanden. Es gibt allerdings zahlreiche experimentelle Daten, die beweisen, dass T-Zellen im Mittelpunkt des asthmatischen Geschehens stehen. Bereits seit den 80er Jahren ist bekannt, dass T-Zellen in der Lage sind rasch auf verschiedene Stimuli aus der Umwelt zu reagieren und eine schnelle Immunantwort auszulösen, indem sie zu sogenannten T-Helferzellen (Th-Zellen) vom Typ 1 (Th1) oder Typ 2 (Th2) differenzieren ²⁴, und dadurch für die Freisetzung von spezifischen Zytokinmustern sorgen 25. Während Th1-Zellen maßgeblich an der zellvermittelten Immunantwort gegen Viren und intrazelluläre Bakterien beteiligt sind, steuern Th2-Zellen die humorale Immunantwort vorzugsweise gegen extrazelluläre Pathogene⁷. T-Zellen können aber auch eine pathogene Wirkung haben. werden Th1-Zellen für die Entwicklung organspezifischer so Autoimmunkrankheiten, und Th2-Zellen für die Pathogenese allergischer Erkrankungen verantwortlich gemacht. Zur Erklärung der Hygiene-Hypothese auf immunologischer Ebene wird ein Ungleichgewicht zwischen diesen T-Zellpopulationen angenommen. Das Vorhandensein mikrobieller Reize scheint dabei das Immunsystem in eine eher

Th1-gerichtete Immunantwort zu lenken, so dass der Entwicklung einer Th2-geprägten allergischen Erkrankung entgegen gewirkt wird.

Generell ist allerdings zu beachten, dass es sich bei der Einteilung der T-Zellpopulationen in die Dichotomie der Th1- und Th2-Zellen um eine stark vereinfachte Darstellung des T-Zellsystems handelt. Neben den Th1- und Th2-Zellen sind naive T-Zellen auch in der Lage zu anderen T-Zellen mit weiteren Effektorfunktionen zu differenzieren. So konnte gezeigt werden, dass nach Stimulation mit extrazellulären Bakterien und Pilzen eine Differenzierung naiver T-Zellen auch zu Helferzellen des Typs 17 (Th17) erfolgen kann. Diese Zellpopulation wurde erst kürzlich in Maus und Mensch identifiziert und erhielt ihren Namen aufgrund der Tatsache, dass sie in der Lage ist, das Zytokin IL-17a zu sezernieren 26-29. Th17-Zellen wurden mit einigen murinen Autoimmunerkrankungen wie experimenteller autoimmuner Encephalitis und Kollagen-induzierter Arthritis in Zusammenhang gebracht, die bisher den Th1-Zellen zugeschrieben worden sind 30, 31. Der genaue Differenzierungsprozess dieser T-Zellpopulation ist im Menschen noch ungeklärt. Man geht davon aus, dass es sich bei den Th1- und den Th17-Zellen um unterschiedliche Populationen mit verschiedenen phänotypischen und funktionellen Eigenschaften handelt ^{26, 27}. Eine weitere wichtige Population stellen die regulatorischen T-Zellen (Treg) dar. Diese Zellen kontrollieren Effektorzellen und sind in Lage, die Funktion einer Vielzahl an der Entzündungsreaktionen zu supprimieren. Dadurch leisten sie einen wesentlichen Beitrag zur Aufrechterhaltung der Homöostase und zur Regulation der Selbsttoleranz des Immunsystems ³².

Der Schwerpunkt der hier vorliegenden Arbeit lag in der Untersuchung von Mechanismen, die zur Steuerung der Th1/Th2-Dichotomie beitragen. Aus diesem Grund beschränken sich die nun folgenden Ausführungen, unter Vernachlässigung aller anderen T-Zellpopulationen, auf die Darstellung des Th1/Th2-Paradigmas. Diese Art der Betrachtung stellt zwar definitiv eine Vereinfachung des T-Zellsystems dar, bildet aber für die Klärung der bestehenden Fragestellung eine zunächst völlig ausreichende Grundlage.

1.2 Die Rolle von Transkriptionsfaktoren beim Differenzierungsprozess von T-Zellen

Beschränkt man sich bei der Darstellung des T-Zellsystems auf das Th1/Th2-Paradigma, so gilt die Th1-Zelle als Gegenspieler der Th2-Zelle. Die Fähigkeit naiver T-Zellen in Th1- und Th2-Zellen zu differenzieren, ermöglicht dem Immunsystem spezifisch auf Reize aus der Umwelt zu reagieren und sich damit optimal an vorliegende Bedingungen anzupassen. Basierend auf diesem vereinfachten Modell der T-Zelldifferenzierung wird nun als Ursache für die Entstehung von Asthma bronchiale angenommen, dass das Gleichgewicht zwischen den T-Zellpopulationen verschoben ist und ein Ungleichgewicht zu Gunsten der Th2-Zellen vorliegt. Der Überschuss der Th2-Zellen in Kombination mit einer geschwächten Th1-Antwort gilt als einer der Gründe für die Entwicklung allergischer Erkrankungen wie Asthma bronchiale ³³ (siehe Abbildung 4).

Abbildung 4: Das Th-Zell-Ungleichgewicht. Ein Ungleichgewicht der Th-Zellpopulationen zu Gunsten der Th2-Zellpopulation wird derzeit als eine mögliche immunologische Ursache für die Entstehung von Asthma bronchiale angenommen (in modifizierter Form aus Wahn et al., Pädiatrische Allergologie und Immunologie, Urban & Fischer Verlag⁷).

In einem funktionierenden Immunsystem muss daher der Differenzierungsprozess naiver T-Zellen einer strengen Kontrolle unterliegen, um eine derartige Fehlregulation und die daraus resultierende Entstehung schwerwiegender Erkrankungen wie Asthma bronchiale zu vermeiden. Bei diesen Kontrollmechanismen spielen häufig sogenannte Transkriptionsfaktoren eine tragende Rolle. Dabei handelt es sich um Proteine, die durch extrazelluläre Stimuli aktiviert werden und dann in der Lage sind an Promotorregionen von Genen zu binden, wodurch die Expression der jeweiligen Gene beeinflusst wird. Abhängig vom bindenden Transkriptionsfaktoren damit Signale aus der Umwelt auf Transkriptionsebene umsetzen können, werden sie auch als *"nuclear messengers"* bezeichnet ³⁴. Häufig interagieren Transkriptionsfaktoren dabei auch miteinander, um sich gegenseitig in ihren Effekten zu verstärken oder auch zu minimieren ³⁴.

Aufgrund der zentralen Rolle von Transkriptionsfaktoren können abweichende Funktionen dieser Proteine zu gravierenden Folgen führen ³⁵. Bezogen auf die Asthmaentstehung ist es daher nicht abwegig, dass genetische Veränderungen in Transkriptionsfaktoren, die in den Differenzierungsprozess der naiven T-Zellen involviert sind, zu abweichenden Genexpressionsleveln führen und dies möglicherweise eine gestörte Immunantwort zur Folge hat.

1.3 Die T-Zelldifferenzierung

Als Schlüssel-Transkriptionsfaktoren der T-Zelldifferenzierung gelten TBX21 (T-bet, T-box expressed in T-cells), HLX1 (H 2.0-like homeobox) und GATA3 (GATAbinding protein 3) ³⁶⁻³⁹. Die Stimulation des Immunsystems mit Bakterien oder viralen Faktoren führt über die Transkriptionsfaktoren TBX21 und HLX1 zur Ausbildung der Th1-vermittelten zellulären Immunantwort. Bei dieser Form der Immunantwort werden vor allem Makrophagen aktiviert, die eine Entzündungsreaktion auslösen und bei den betroffenen Zellen Apoptose induzieren, um den intrazellulären Erreger zu eliminieren. Zudem werden zahlreiche immunregulatorische und proinflammatorische Zytokine wie IL-2, IL-12, IFNγ und TNFα freigesetzt, die für die Rekrutierung weiterer Entzündungszellen wichtig sind und über einen positiven Rückkopplungsmechanismus die zelluläre Immunantwort verstärken ⁷. Im Gegensatz zur Th1-Zellantwort kann die Th2-gesteuerte humorale Immunantwort durch parasitäre Stimuli induziert werden und wird durch den Transkriptionsfaktor GATA3 gesteuert. Charakteristisch für die Th2-Zellen ist dabei die Interaktion mit B-Zellen, um den extrazellulären Erreger zu eliminieren. Durch die von GATA3 geregelte Ausschüttung der typischen Th2-Zytokine IL-4, IL-5, IL-6, IL-10, IL-13 und TGF β reifen B-Zellen zu Plasmazellen und werden zur Bildung von Immunglobulinen angeregt ⁷ (siehe Abbildung 5).

Abbildung 5: Übersicht des Differenzierungsprozesses naiver T-Zellen. Abhängig vom Stimulus differenzieren naive T-Zellen in Th1-und Th2-Zellen, wodurch die zelluläre bzw. die humorale Immunantwort induziert wird. Kontrolliert wird dieser Differenzierungsprozess durch Transkriptionsfaktoren. Während die Kombination aus TBX21 und HLX1 die Th1-Immunantwort steuert, ist GATA3 für die Th2-Antwort verantwortlich. Desweiteren sind die Transkriptionsfaktoren in der Lage, die Entstehung der jeweils anderen T-Zellpopulation zu unterdrücken (modifiziert nach Ho & Glimcher⁴⁰ und Rao & Avni⁴¹).

Zahlreiche Publikationen zeigen, dass die Expression der Transkriptionsfaktoren nur exklusiv in den jeweiligen Subpopulationen erfolgt. So konnte die Expression von TBX21 und HLX1 bisher nur in Th1-differenzierten Zellen detektiert werden, nicht aber in Th2-Zellen. Die retrovirale Transfektion naiver CD4⁺-Zellen mit TBX21 führte zu einer Th1-Differenzierung ³⁶, während TBX21^{-/-} Mäuse Defekte in der Th1-Entwicklung zeigten, die von einer gesteigerten Th2-Antwort begleitet wurden ^{42, 43}. Expressionsdaten zu GATA3 belegen hingegen, dass GATA3 zwar in Th2-Zellen stark, in Th1-Zellen jedoch kaum exprimiert wird ³⁸. Mittels konditionellen Knockout-Mäusen konnte gezeigt werden, dass GATA3 für die Entwicklung und Aufrechterhaltung der Th2-Entwicklung essentiell ist. Die Deletion von GATA3 führte im Mausmodell in bereits differenzierten Th2-Zellen zur Aufhebung der Th2-Zytokinproduktion und sogar in Abwesenheit der Th1-spezifischen Zytokine INFγ und IL-12 zur Initiierung der Th1-Antwort ^{44, 45}. In Übereinstimmung damit konnte sowohl für TBX21 als auch für GATA3 gezeigt werden, dass beide Transkriptionsfaktoren die Fähigkeit besitzen das Zytokinmuster der jeweils anderen T-Subpopulation zu inhibieren und damit die Entwicklung der eigenen Differenzierung zu fördern ^{36, 38, 46}.

1.3.1 "Schlüssel-Transkriptionsfaktoren" der Th1-Zelldifferenzierung: TBX21 und HLX1

Der Differenzierungsprozess der Th1-Zellen beginnt nach Stimulation mit der Freisetzung von IL-12 aus antigenpräsentierenden Zellen (siehe Abbildung 6). Durch die Bindung von IL-12 an seinen Rezeptor (IL-2R β 2) auf der Oberfläche von naiven T-Zellen wird die Phosphorylierung und damit die Aktivierung von STAT4 (signal transducer and activator of transcription) induziert. STAT4 wandert in den Zellkern und sorgt dort für den Beginn der Transkription von IFN γ , dem wichtigsten Zytokin der Th1-Zelldifferenzierung. Die erhöhte Expression von IFN γ führt über die Phosphorylierung der Janus-Tyrosin-Kinasen (JAK) 1 und 2 zur Induktion von STAT1. In homodimerisierten Zustand ist STAT1 fähig TBX21, den Haupt-Transkriptionsfaktor der Th1-Differenzierung zu aktivieren ^{41, 47}. Über einen positiven Rückkopplungsmechanismus wirkt TBX21 dann wiederum auf die Expression von IFNγ, wodurch die Differenzierung der Th1-Zellen stabilisiert und aufrechterhalten wird ⁴⁸⁻⁵¹. Zudem wird durch die Expression von TBX21 die Entwicklung der Th2-Zellen durch die Inhibierung von Th2-spezifischen Zytokinen unterdrückt ³⁶.

Die eigentlichen Effektormechanismen der Th1-Immunantwort werden durch Makrophagen ausgeführt, da diese den Erreger beseitigen. Aktivierte Makrophagen schütten die proinflamatorischen Zytokine IL-2, IL-5, Lymphotoxina und TNFa aus, wodurch weitere Entzündungsmediatoren rekrutiert werden. Desweiteren sezernieren sie auch IL-12 und IFN γ , um durch einen positiven Rückkopplungsmechanismus die Aufrechterhaltung der Th1-Zellpopulation zu gewährleisten⁷.

Kürzlich wurde gezeigt, dass TBX21 nicht alleine in der Lage ist, eine ausreichende IFNγ Expression auszulösen ³⁷. Vielmehr induziert TBX21 einen weiteren Transkriptionsfaktor, den Homeoboxfaktor, HLX1. Erst durch die Kombination beider Faktoren und durch das gegenseitige Wechselspiel zwischen TBX21 und seinem eigenen *Target* HLX1 kann eine maximale IFNγ Expression und damit eine optimale Th1-Antwort gewährleistet werden. HLX1 scheint demnach die Funktion von TBX21 zu maximieren. Bezeichnend für die Intensität des gemeinsamen Signals von TBX21 und HLX1 ist die Tatsache, dass sie zusammen in der Lage sind, in bereits polarisierten Th2-Zellen eine IFNγ Expression auszulösen, wie sie vergleichsweise in Th1-Zellen zu finden ist ³⁷.

Abbildung 6: Die Th1-Zelldifferenzierung. Die Bindung von IL-12 an seinen Rezeptor führt zur Aktivierung von STAT4 und zur Expression von IFNy. Der erhöhte IFNy-Spiegel aktiviert STAT1, wodurch die Expression von TBX21 in Gang gesetzt sind. Die Interaktion von TBX21 einem weiteren Transkriptionsfaktor, HLX1 führt in einer mit Art positiver Rückkopplungsschleife zu einer optimalen IFNy Expression und letztlich zur Rekrutierung von Makrophagen, die die Effektormechanismen der Th1-Antwort ausführen. Makrophagen sezernieren einerseits Zytokine, die für weitere Entzündungsprozesse entscheidend sind und zudem wird durch die Ausschüttung von IL-12 und IFNy die Aufrechterhaltung der Th1-Zellpopulation gewährleistet. Zusätzlich wird die Beibehaltung der Th1-Immunantwort durch TBX21 und HLX1 unterstützt, da diese in der Lage sind, die Th2-Differenzierung zu inhibieren (stark modifiziert nach Robinson & Llovd ⁵²).

Die Expression von HLX1 während der Th1-Differenzierung wurde in einer Studie von Zheng et al. untersucht ⁵³. Hierbei zeigte sich, dass sich die HLX1 Expression in drei Phasen einteilen lässt: in naiven CD4⁺Zellen erfolgt eine konstante, wenn auch schwache HLX1 Expression, zu Beginn der Th1/Th2-Differenzierung erfolgt zunächst eine Herunterregulation, während der Th1-Zelldifferenzierung erreicht die Expression ein Maximum. Zudem konnten Zheng und Mitarbeiter beobachten, dass die Expression von HLX1 alleine ausreicht, um eine IFNγ Expression auszulösen. Dies geschieht

allerdings nur, wenn HLX1 bereits zu einem sehr frühen Zeitpunkt während der Zelldifferenzierung überexprimiert wird. Interessanterweise ist HLX1 auch in der Lage die Expression des IL-4 Rezeptors (IL-4Rα) in naiven T-Zellen herunterzuregulieren ⁵⁴. Da IL-4 ein wichtiger Mediator der Th2-Differenzierung ist, wird durch die Suppression seines Rezeptors die Th1-Entwicklung begünstigt. Diese Daten verdeutlichen, wie eng HLX1, neben TBX21, mit der Steuerung der Th1-Zelldifferenzierung verknüpft ist.

1.3.2 "Schlüssel-Transkriptionsfaktor" der Th2-Zelldifferenzierung: GATA3

Gesteuert wird der Th2-Differenzierungsprozess hauptsächlich durch die Zytokine IL-4 und IL-13 (siehe Abbildung 7). Die Bindung dieses Zytokins an seinen Rezeptor auf den naiven T-Zellen führt über die Janus-Tyrosin-Kinasen (JAK) 1 und 3 zur Aktivierung des Transkriptionfaktors STAT6 (Signal transducer and activator of transcription protein 6). STAT6 interagiert dann direkt mit GATA3, um die Th2-Differenzierung in Gang zu setzen ^{41, 47}. Zudem besitzt GATA3 die Eigenschaft in einem Prozess der positiven Autoaktivierung die eigene Expression unabhängig von STAT6 anzuregen und damit die Th2-Zelldifferenzierung zu stabilisieren ^{38, 55}.

Abbildung 7: Die Th2-Zelldifferenzierung. Durch die Bindung von IL-4 an seinen Rezeptor erfolgt die Anregung von STAT6. In aktivierten Zustand induziert STAT6 den Transkriptionsfaktor GATA3, wodurch die Th2-Differenzierung eingeleitet und zugleich die Th1-Differenzierung unterdrückt wird. Desweiteren ist GATA3 in der Lage sich zu autoaktivieren und dadurch unabhängig von STAT6 die Th2-Zellprägung zu festigen. Die Effektormechanismen der Th2-Immunantwort werden hauptsächlich durch IL-4 eingeleitet. IL-4 bindet an naive B-Zellen und induziert dadurch die Bildung von allergenspezifischen IgE (stark modifiziert nach Robinson & Lloyd⁵²).

Vor allem durch die beiden Th2-spezifischen Zytokine IL-4 und IL-13 werden charakteristische asthmatische Reaktionen vermittelt, da sie für die Produktion von allergenspezifischen IgE aus B-Zellen verantwortlich sind. Die Kreuzvernetzung zweier IgE-Rezeptoren beim Allergen-Kontakt führt zur Aktivierung von Mastzellen und zur Sekretion verschiedener Mediatoren wie z.B. Histamin, Bradykinin, Leukotrienen, Prostaglandinen und Tryptasen. Diese Mediatoren induzieren innerhalb kürzester Zeit asthmatische Prozesse wie Bronchokonstriktion oder die Bildung von Ödemen⁷.

1.3.3 Modell der T-Zelldifferenzierung: Wechselspiel zwischen den Th1- und Th2-spezifischen Transkriptionsfaktoren

Um die Polarisation der T-Zellen in die Th1- bzw. Th2-Subpopulation zu gewährleisten, müssen die jeweils gegensätzlichen Zytokinmuster unterdrückt werden. Usui et al. haben hierzu kürzlich ein Modell vorgestellt, das das Wechselspiel zwischen TBX21 und GATA3 bei der T-Zelldifferenzierung beschreibt 56. Im Zentrum der T-Zellentwicklung steht hierbei GATA3. Laut ihrem Modell ist GATA3 nicht nur für die Induktion der Th2-Zelldifferenzierung verantwortlich, vielmehr scheint GATA3 auch an der Unterdrückung der STAT4 und der IL-12 Rezeptor (IL-12RB2) Expression beteiligt zu sein, und damit die Th1-Antwort zu blockieren. Naive T-Zellen werden von GATA3 solange Richtung Th2-Antwort getriggert bis schließlich eine adäquate TBX21 Expression erfolgt, wodurch der reprimierende Einfluss von GATA3 unterdrückt und ein Wechsel zur Th1-Differenzierung erfolgen kann. Dieser Hypothese nach scheint die Hauptfunktion von TBX21 nicht in der Induktion der IFNy Expression zu liegen, sondern vielmehr in der Suppression der GATA3 Aktivität. Eine Möglichkeit wie der Funktionsverlust von GATA3 erfolgen kann, stellt die Phosphorylierung von TBX21 durch Tec-Kinasen dar. Hwang und Kollegen zeigten, dass nur das phosphorylierte TBX21 Protein in der Lage ist mit GATA3 zu interagieren, wodurch die Bindung von GATA3 an weitere Targets unterbunden und die Aktivierung der Th2-Signalwege verhindert wird 57.

Dieses Modell verdeutlicht wie stark der T-Zelldifferenzierungsprozess von der Interaktion zwischen TBX21 und GATA3 abhängig ist. Betrachtet man dieses Modell im Zusammenhang mit der Entstehung von Asthma bronchiale so wird deutlich wie wichtig es ist, sich bei der Erforschung dieser Erkrankung nicht nur auf den Th2-Signalweg zu fokussieren, auch wenn angenommen wird, dass es sich bei Asthma bronchiale um eine eher Th2-assoziierte Erkrankung handelt. Vielmehr muss beachtet werden, dass auch Störungen innerhalb der Th1-Differenzierung das Gleichgewicht zu Gunsten der Th2-Zellen verschieben können.

1.4 Die Transkriptionsfaktoren TBX21, HLX1 und GATA3 und ihr Einfluss auf die Entstehung von Asthma bronchiale

Aufgrund der zentralen Rolle, die die Transkriptionsfaktoren TBX21 und GATA3 innerhalb der T-Zelldifferenzierung einnehmen, haben bereits zahlreiche Studien den Einfluss dieser Faktoren auf die Asthmaentstehung, beispielsweise im Mausmodell, untersucht. Desweiteren war auch die Analyse von genetischen Veränderungen sogenannten SNPs (*Single nucleotide polymorphism*) in diesen immunregulatorischen Genen von Interesse, da angenommen wird, dass Polymorphismen die Funktion dieser Transkriptionsfaktoren verändern und damit eine Störung der Immunantwort verursachen könnten. Definiert ist ein SNP als eine Mutation (Basenaustausch), die mit einer Häufigkeit \geq 3% in der Bevölkerung auftritt, andernfalls handelt es sich um eine Spontanmutation.

Die Rolle des Transkriptionsfaktors HLX1 konnte bisher *in vivo* kaum untersucht werden, da HLX1 Knockout Mäuse nicht lebensfähig sind und bereits während der Embryogenese um Tag 15 versterben ⁵⁸. Assoziationen zwischen *HLX1* Polymorphismen und der Entstehung von atopischen Erkrankungen sind bisher in der

Literatur noch nicht beschrieben. Allerdings untersuchte eine Studie kürzlich *HLX1* SNPs im Zusammenhang mit Therapie-bezogener akuter myeloischer Leukämie und identifizierte dabei einen *HLX1* SNP, der zu einem gesteigerten Leukämierisiko führte ⁵⁹.

Für TBX21 zeigte das Mausmodell, dass TBX21 die Entwicklung von Asthma bronchiale erheblich beeinflussen kann. Mittels Immunhistochemie demonstrierten Finotto et al. dass die Expression von TBX21 in Lungen von atopischen Asthmatikern signifikant geringer ist als bei gesunden Kontrollen⁴². Zudem wurden bei TBX21 Knockout Mäusen zahlreiche charakteristische Asthma-Symptome wie Atemwegs-Eosinophilie, Th2-Zytokinproduktion, bronchiale Hyperreaktivität und pulmonale Umbauprozesse beobachtet. Dies induziert, dass ein Mangel an TBX21 mit der Entstehung von Asthma assoziiert ist ⁴². In Übereinstimmung damit zeigte sich in einer weiteren Studie, pulmonale Umbauprozesse dass und eosinophile Atemwegsentzündungen nach Allergenstimulierung in TBX21 überexprimierenden Mäusen signifikant seltener sind als bei Mäusen in denen GATA3 überexprimiert wird 60 .

Auch wenn die hier dargestellten funktionellen Daten den immensen Einfluss von TBX21 demonstrieren, konnte dieser Eindruck in Assoziationsstudien dennoch nicht immer gewahrt werden, da in diesen Analysen unterschiedliche Effekte der *TBX21* Polymorphismen beobachtet wurden. Während in einigen Studien genetische Varianten in *TBX21* signifikant mit Asthma bronchiale assoziiert waren $^{61-63}$, konnten in anderen Studien keinerlei Assoziationen detektiert werden $^{64, 65}$.

20

Die funktionelle Relevanz des Th2-spezifischen Transkriptionsfaktors GATA3 im Zusammenhang mit Asthma zeigte sich in der bronchoalveolären Lavage (BAL) sowie in bronchialen Biopsie-Proben von Asthmatikern. Hierbei konnte ein signifikanter Anstieg der GATA3 mRNA Expression, verglichen mit gesunden Probanden detektiert werden ⁶⁶. Desweiteren hatte die Expression einer dominant-negativen GATA3-Mutante im Mausmodell eine Reduktion der Th2-spezifischen Zytokine IL-4, IL-5 und IL-13 zur Folge⁶⁷. Die intranasale Gabe und damit die lokale Anwendung von GATA3-Antisense-Oligonukleotiden führte zudem im Mausmodell zu einer Reduktion der Th2induzierten pulmonalen Entzündung sowie der bronchialen Hyperreaktivität⁶⁸. Auch die Verwendung einer neuen Klasse von Antisense-Oligonukleotiden, den sogenannten DNAzymen resultierte in einer kürzlich veröffentlichten Studie in einem ähnlichen Ergebnis⁶⁹. Hierbei konnte durch das *Silencing* von GATA3 sowohl in einem Modell der akuten allergischen Entzündung als auch in einem chronischen Asthma-Modell die charakteristischen Symptome des atopischen Asthmas unterdrückt werden. Demnach scheint der Transkriptionsfaktor GATA3 für zahlreiche Charakteristika des Asthma in vivo verantwortlich zu sein. Das selektive Ausschalten von GATA3 stellt damit einen interessanten Therapieansatz zur Behandlung des atopischen Asthmas dar⁶⁹.

Erstaunlicherweise konnte trotz dieser funktionellen Beobachtungen bisher kein direkter Zusammenhang zwischen *GATA3* Polymorphismen und der Entstehung von Asthma bronchiale in Assoziationsstudien nachgewiesen werden. Es konnte lediglich in drei unabhängigen Studien gezeigt werden, dass genetische Varianten in *GATA3* einen Einfluss auf andere atopische Phänotypen wie Heuschnupfen, atopische Dermatitis oder erhöhten Serum-IgE-Spiegel nehmen können⁷⁰⁻⁷².

1.5 Zielsetzung der Arbeit

Die Transkriptionsfaktoren TBX21, HLX1 und GATA3 sind wichtige Regulatoren der T-Zellprägung, da durch ihre spezifische Expression die Entwicklung und Erhaltung der Th1- bzw. Th2-Immunantwort gesteuert wird. Basierend auf der Hypothese, dass allergische Erkrankungen wie Asthma bronchiale mit einem Ungleichgewicht der T-Zelltypen zu Gunsten der Th2-Zellen assoziiert sind, wurden für TBX21 und GATA3 bereits einige Studien durchgeführt, um zu untersuchen, ob genetische Veränderungen in diesen Genen das Gleichgewicht der T-Zellpopulationen stören und damit einen Einfluss auf die Entstehung von atopischen Erkrankungen wie Asthma bronchiale haben. Allerdings ist in diesen Studien häufig kein einheitlicher Konsens zu beobachten. Aus diesem Grund sollten in der vorliegenden Arbeit folgende Fragen geklärt werden:

- 1) Welche Polymorphismen können in den Genen *TBX21*, *HLX1* und *GATA3* mittels eines systematischen Screenings detektiert werden?
- 2) Welchen Einfluss haben genetische Varianten in *TBX21, HLX1* und *GATA3* auf die Entstehung atopischer Erkrankungen wie Asthma bronchiale, Atopie, Heuschnupfen und atopische Dermatitis im Kindesalter?
- 3) Welche funktionelle Relevanz besitzen assoziierte Polymorphismen, d.h. welche biologischen Mechanismen könnten den beobachteten Assoziationen *in vitro* zu Grunde liegen?
- 4) Kommt es zu Gen-Gen-Interaktionen, die durch assoziierte Polymorphismen beeinflusst werden und das Krankheitsrisiko modifizieren?

2 Material und Methoden

2.1 Material

2.1.1 Geräte

ABI PRISM® 310 Genetic Analyzer TM	Applied Biosystems, Foster City, USA
ABI PRISM® 3730 Genetic Analyzer TM	Applied Biosystems, Foster City, USA
ABI PRISM® 7900 HT Sequence Detection	Applied Biosystems, Foster City,
System TM Endpoint Read	USA
Amaxa Nucleofector TM (96-well-Shuttle-System)	Lonza Cologne AG, Köln, Deutschland
Autoklav D-65	Systec GmbH, Wettenberg, Deutschland
Bakterienschüttler Excella E24/ Innova 4000	New Brunswick Scientific GmHB, Nürthingen. Deustchland
Beta Counter LS 6000IC	Beckman Coulter, Fullerton, USA
BioPhotometer	Eppendorf, Hamburg,
	Deutschland
Digitalcamera Kodak DC 290 Zoom	Kodak, Stuttgart, Deutschland
Dimple Plates (96-Well)	Sequenom, San Diego, USA
Elektrophorese Dokumentatios-	Kodak, Stuttgart; German
und Analyse System	
Feinwaage Sartorius	Sartorius, Göttingen, Deutschland
Filmentwicklerkassette Hypercassette TM	Amersham, Piscataway, USA
Filmentwicklermaschine CP100	AGFA, Mortsel, Belgum
Geigerzähler LB124	Berthold Technologies GmbH, Bad
	Wildbach, Deutschland
Geltrockner Modell 583	Biorad, Hercules, USA
Gelelektrophoresekammern	Biorad, Hercules, USA bzw.
	PeqLab, Erlangen, Deutschland
Genios Pro Luminometer	Tecan, Bubendorf, Schweiz
Elektroporationsgerät Genepulser Xcell	Biorad, Hercules, USA
EMSA Hoefer Kammer SE410 (18cm x 24cm)	Hoefer, San Francisco, USA
Heißsiegelmaschine Heat Sealer	Eppendorf, Hamburg,
	Deutschland
Inkubator Hera Cell 240 für Zellkultur	Hereus, Hanau, Deutschland
Küvetten (10mm)	Hellma, Müllheim, Deutschland
Lichtmikroskop Leica DMLI	Leica Microsystems Wetzlar GmbH,
	Frankfurt, Deutschland
LUMIstar	BMD Labtech, Offenburg,
	Deutschland
MassAKKAY ^{IM} MALDI-TOF MS	Sequenom, San Diego, USA,

Membran Vakuumpumpe

Micro Zentrifuge II Mikroskop Axiovert 135 mit Vorschaltgerät FluoArc Mikrowelle Mini-Laborpumpe LABOPORT Nanoliterspotter Spectro Point Nanoliter Pipetting SystemTM Neubauer Zählkammer Pipetten Research Pipettierhilfe EasyJet Pipettierroborter Multimek 96 Automated

Pipettierstation Genesis RSP150 Rotator Intelli Mixer RM-2M Sterilbank für Bakterien Faster BHA48

Sterilbank für Zellkultur Stromquelle Consort E844 Stromquelle Power Ease 500 (EMSA) Stromquelle PowerPac 300 T1 Thermocycler Thermocycler Eppendorf Mastercycler

Thermocycler PCR PTC 225 Tetrad Peltier Thermomixer 5436 Vortex Genie 2

Waagen 440-33 / 440-47N

Wasserbad

Zentrifugen 5810 R / 5417 R / 5415 D

Zentrifuge J2-21 Zentrifuge Rotanta 46RS Vacuubrand GmbH, Wertheim, Deutschland NeoLab, Heidelberg, Deutschland Carl Zeiss AG, Feldbach, Schweiz Bosch, Stuttgart, Deutschland KFN Neuberger GmbH, Freiburg, Sequenom, San Diego, USA Roth, Karlsruhe, Deutschland Eppendorf, Hamburg, Deutschland

Eppendorf, Hamburg, Deutschland Eppendorf, Hamburg, Deutschland Beckmann Coulter, Fullerton, USA Tecan, Crailsheim, Deutschland NeoLab, Heidelberg, Deutschland Reichertshausen, REWA. Deutschland Hereus, Hanau, Deutschland PeqLab, Erlangen, Deutschland Novex, San Diego, USA Biorad, Hercules, USA Biometra, Göttingen, Deutschland Eppendorf, Hamburg, Deutschland MJ Research, Boston, USA Eppendorf, Hamburg, Deutschland Scientific Industries, Bohemia, USA Kern & Sohn GmbH, Ballingen, Deutschland Gesellschaft für Labortechnik mbH (GFL), Burgwedel, Deutschland bzw. Köttermann GmbH, Uelze, Deutschland Eppendorf. Hamburg, Deutschland Beckman Coulter, Fullerton, USA Hettich, Tuttlingen, Deutschland

2.1.2 Verbrauchsmaterialien

Neben der Laborgrundausstattung wurden folgende Verbrauchsmaterialien verwendet:

1ml Einwegspritze 1,5 Schraubverschlußröhrchen

3mm-Dünnschichtchromatographieplatte
15ml Falcon tubes 2059
25cm² Zellkulturflaschen
75cm² Zellkulturflaschen (für Jurkat T-Zellen)
75cm² Zellkulturflaschen T-175
(für COS-7 Zellen)
96-Well Clusterplates (Mutterplatte)
384-Well Mikrotiter Platten (Tochterplatte)
Deckgläschen 22x22mm

HyperfimTM MP (Autoradiographie) Kryoröhrchen Küvetten (0,2cm; 0,4cm) MultiScreenTM PCR plate PCR Klebefolie PCR Schweißfolie (Peel-it lite thermo sealing-foil) Quick Spin® Oligo Columns Sequenzierplatte 96-Well half-skirted Plate

Sequenzierplatte 96-Well Low Profile Reaction Plate Siliziumchip 384-Well SpectroCHIP Bioarray Stericup (0,22µm) µ-Slide VI, ibiTreat

BD, Franklin Lakes, USA Nümbrecht, Sarstedt. Deutschland Whatman, Kent, UK Falcon, Bedford, USA Corning, Corning, USA Falcon, Bedford, USA Sarstedt, Nümbrecht, Deutschland Qiagen, Hilden, Deutschland ABgene, Epsom, UK Menzel-Glaser, Braunschweig, Deutschland Amersham, Piscataway, USA Corning, Corning, USA Biorad, Hercules, USA Millipore, Billerica, USA Eppendorf, Hamburg, Gemany Eppendorf, Hamburg, Gemany

Roche, Mannheim, Deutschland Applied Biosystems, Foster City, USA PeqLab, Erlangen, Deutschland

Sequenom, San Diego, USA Millipore Billerica, USA ibidi, Martinsried, Deutschland

2.1.3 Puffer und Lösungen

Transfektionspuffer für Amaxa-System	49,6mg Calciumnitrat-Tetrahydrat 199,8mg Kaliumchlorid 50,55mg Magnesiumsulfat- Heptahydrat 3,01g Natriumchlorid 1g Natriumhydrogencarbonat 0,5g Natriumhydrogenphosphat 1g Glucose 2,60g HEPES 0,5mg Gluthation
	pH 7,3 (1M HCl), Glutathion Zugabe unter N_2 -Begasung, ad 500ml dH ₂ O
5M Betain	11,71g Betain 20ml dH ₂ O
0,5M Benzamidin	60,08mg ad 1ml dH ₂ O
10mM dNTPs	100μl je dATP (100mM), dGTP (100mM), dTTP (100mM), dCTP (100mM) ad 600μl dH ₂ O
0 5M DTT	77 13mg in 1ml 10mM NaAc
0.5M EDTA (pH 8.0)	86 14g EDTA ad 11 dH ₂ O
Ethidiumbromid (500µg/ml)	100μ l Ethidiumbromid ad 1900 μ l dH ₂ O
0,5M β-Glycerophosphat	108,02mg ad 1ml dH ₂ O
100mM Kaliumchlorid	0.6g KCl ad 80ml dH ₂ O
LB-Medium	1% (w/v) Bacto-Trypton
	0,5% (w/v) Hefeextrakt
	1% (w/v) NaCl, pH 7,2
LB-Agarplatten	1,5% Baxto-Agar in LB-Medium
DNA Längenstandard	10µl 100bp oder 1kb
	Längenstandard
	80µl 0,5x TBE-Buffer
	10µl Loading Dye
Loading dye	0,25g Bromphenolblau
	0,25g Xylencynol
	30% Glycerol
100mM Magnagium ablanid	ad /0ml dH ₂ O 0.7(\approx MaCl ad 80ml dH O
0.5M Natriumfluorid	0,70g MgC1 ₂ ad 80ml dH ₂ O 20.005mg NoE ad1ml dH O
0,5M Natriumorthovanadat	$23,335$ ling Natr ad this d 1_2 O
10mM PMSE	1 74mg PMSE ad 1ml Isopropagal
5xTBF Puffer	54σ Triszma Rase
	27 So Borsäure
	20m 0 5M EDTA (nH 8 0)
	ad 11 H_2O bidest.

TE Puffer (pH 8,0)

10mM Tris-HCl (1M) 1mM EDTA (0,5M)

2.1.4 Reagenzien und Chemikalien

100bp,1kb Längenstandard (500µg/ml)	New England BioLabs, Ipswich, USA
30% Polyacrylamid (19:1)	Biorad, Hercules, USA
v[32P]-ATP	Hartmann Analytic.
,[]	Braunschweig Deutschland
B-Mercantoethanol	Sigma-Aldrich Steinheim
p mercuptoentanor	Deutschland
Δ garose	Biozym Hess Deutschland
A mmoniumpersulfat	Sigma Aldrich Steinheim
Ammomumpersunat	Deutschland
Ammoniumehlorid (NH,Cl)	Sigma Aldrich Steinheim
Ammomunemente (N114C1)	Doutschland
Amnicillin	Sigma Aldrich Stainhaim
Ampenni	Deutschland
Antibiotic Antimucotic Solution (COS 7 Zollon)	Deutsemanu DAA Dasahing Österreich
Antinoin Hydrochlorid	Sigma Aldrich Steinheim
Anupani Trydrocinoria	Doutschland
Aprotinin	Sigma Aldrich Stainhaim
Aprotinin	Deutschland
Donzomidin	Sigma Aldrich Stainhaim
Denzamium	Doutschland
Datain	Sigma Aldrich Stainhaim
Detaili	Doutschland
Doročuro	Sigma Aldrich Steinheim
Doisaule	Deutschland
Promphanalhlau	Deutschland Roth Vorlaguba Doutschland
	Sigma Aldrich Steinhoim
DSA	Deutschland
Calciumnitrat Tatrahydrat	Marala Darmatadt Dautaahland
DADL dilactoto	Sigma Aldrich Steinheim
DAPI, unaciale	Deutachland
Decouve democintrich combet $dATD(100m)$	Deutschland Deutschland
Desoxyadenosintripnosphat dATP (100mW)	MDL Formentag, St. Lean Dat
	MBI Fermentas, St. Leon-Kol,
$\mathbf{D}_{\mathbf{r}}$	Deutschland
Desoxycytidintripnosphat dCTP (100mM)	PeqLab, Erlangen, Deutschland
	NIBI Fermentas, St. Leon-Rot,
	Deutschland
Desoxyguanosintriphosphat dG1P (100mM)	PeqLab, Erlangen, Deutschland
	MBI Fermentas, St. Leon-Rot,
	Deutschland

Desoxythymidintriphosphat dTTP (100mM) PeqLab, Erlangen, Deutschland MBI Fermentas, St. Leon-Rot, Deutschland DTT Sigma-Aldrich, Steinheim, Deutschland Ethanol 100 % Merck, Darmstadt, Deutschland Ethidiumbromid (10mg/ml) Biorad, Hercules, USA EDTA (0,5 M) Sigma-Aldrich, Steinheim, Deutschland FCS (Jurkat T Zellen) Gibco, Carlsbad, USA FCS Gold (COS-7-Zellen) PAA, Pasching, Österreich Sigma-Aldrich, Steinheim, Formaldehyd Deutschland Glucose Merck, Darmstadt, Deutschland Gluthation Sigma-Aldrich, Steinheim, Deutschland Glycerol Merck, Darmstadt, Deutschland H₂O bidest. H. Kerndl GmbH, Weißenfeld, Deutschland Hepes Sigma-Aldrich, Steinheim, Deutschland Hydrogenchlorid (HCl) Sigma-Aldrich, Steinheim, Deutschland Ionomycin Sigma-Aldrich, Steinheim, Deutschland Isopropanol 100 % Merck, Darmstadt, Deutschland Kanamycin Sulfat SERVA Electrophoresis GmbH, Heidelberg, Deutschland Sigma-Aldrich, Steinheim, Kaliumchlorid Deutschland Kaliumhydrogencarbonat (KHCO₃) Merck, Darmstadt, Deutschland Leupeptin Sigma-Aldrich, Steinheim, Deutschland LiChrosolv H₂O (HPLC) Merck, Darmstadt, Deutschland Magnesiumchlorid Sigma-Aldrich, Steinheim, Deutschland Magnesiumsulfat-Heptahydrat Merck, Darmstadt, Deutschland molekulares H₂O Eppendorf, Hamburg, Deutschland Natriumchlorid (NaCl) Sigma-Aldrich, Steinheim, Deutschland Natriumfluorid (NaF) Sigma-Aldrich, Steinheim, Deutschland Natriumdodecylsulfat (SDS) Serva, Heidelberg, Deutschland Natriumhydrogencarbonat Sigma-Aldrich, Steinheim, Deutschland Sigma-Aldrich, Steinheim, Natriumhydrogenphosphat Deutschland
Natriumhydroxid (NaOH) Natriumorthovanadat (NaV)

Nonident P-40

PBS

Penicillin/Streptavidin (Jurkat T-Zellen)

Pepstatin A

Phenylmethansulfonylfluorid

Phorbol12-myristat 13-acetat (PMA)

Poly (dl-dC) Primerstocklösungen

RPMI 1640 Glutamax (Jurkat T-Zellen) RPMI 1640 with stable Glutamin mit/ohne Phenolrot (COS-7-Zellen) SpectroCLEAN Resin TEMED

TRIS-HCl (1M)

Triszma Base

Triton X-100

Trypsin-EDTA (10x) ViviRenTM Live Cell Substrate Xtreme Gene Xylencynol Sigma-Aldrich, Steinheim, Deutschland Amersham, Piscataway, USA Metabion, Martinsried, Deutschland Gibco, Carlsbad, USA PAA, Pasching, Österreich

Merck, Darmstadt, Deutschland

Sequenom, San Diego, USA Sigma-Aldrich, Steinheim, Deutschland Sigma-Aldrich, Steinheim, Deutschland Sigma-Aldrich, Steinheim, Deutschland Sigma-Aldrich, Steinheim, Deutschland PAA, Pasching, Österreich Promega, Madison, USA Roche, Mannheim, Deutschland Merck, Darmstadt, Deutschland

2.1.5 Antikörper

Anti-SP1/SP2/SP3/SP4 goat anti-rabbit

Anti-YB1 donkey anti-goat

Anti-Alpha-Tubulin goat anti-mouse

Anti-Renilla Luciferase goat anti-mouse

Santa Cruz Biotechnology, Santa Cruz, USA Santa Cruz Biotechnology, Santa Cruz, USA Acris Antibodies GmbH, Hiddenhausen, Deutschland Millipore (Chemicon), Billerica, USA Alexa Fluor® 555 F(ab')₂ fragment of goat anti-mouse

Invitrogen, Carlsbad, USA

2.1.6 Reaktionskits

3-Punkt Kalibrand BCA Protein Assay Kit BigDye® Terminator v3.1 Cycle Sequencing Kit BP ClonaseTM II Enzyme Mix

Dual-Luciferase® Reporter Assay Endo Free® Plasmid Maxi Kit FlexiGene DNA Kit Freeze N'SqueezeTM Spin Columns HotStar Taq® plusKit iPLEXTM Reagent Kit iScriptTM Select cDNA Synthesis Kit LR ClonaseTM II Enzyme Mix

Mycoplasmentest Venor®GeM pGL3-Basic Vector PhusionTM High Fidelty DNA Polymerase Kit Platinum® Taq High Fidelity Kit pRL-TK Renilla Reporter Plamid QIAPrep® Spin Mini Prep Kit QIAquick® Gel Extraction Kit/ PCR Purification Kit Quick Change® II Site-directed Mutagenesis Kit TaqMan® Pre-Developed Assay Reagents for Allelic Discrimination Versagene RNA Purification Kit

Sequenom, San Diego, USA Pierce, Rockford, USA Applied Biosystems, Foster City, USA Gateway® Technology, Invitrogen, Carlsbad, USA Promega, Madison, USA Qiagen, Hilden, Deutschland Qiagen, Hilden, Deutschland Biorad, Hercules, USA Qiagen, Hilden, Deutschland Sequenom, San Diego, USA Biorad, Hercules, USA Gateway® Technology, Invitrogen, Carlsbad, USA Minerva, Berlin, Deutschland Promega, Madison, USA Finnzymes Oy, Espoo, Finnland Invitrogen, Carlsbad, USA Promega, Madison, USA Qiagen, Hilden, Deutschland Qiagen, Hilden, Deutschland

Stratagene, La Jolla, USA Applied Biosystems, Foster City, USA Gentra, Minneapolis, USA

2.1.7 Enzyme

HindIII

HotStar Taq®-Polymerase (5U/µl) NEB Taq Polymerase (1U/µl)

PhusionTM High Fidelty DNA Polymerase Platinum[®] Taq High Fidelity PstI New England BioLabs, Ipswich, USA Qiagen, Hilden, Deutschland New England BioLabs, Ipswich, USA Finnzymes Oy, Espoo, Finnland Invitrogen, Carlsbad, USA New England Biolabs, Ipswich, USA

T4 DNA Ligase	New England Biolabs, Ipswich,
2	USA
T4 Polynukleotid Kinase	New England Biolabs, Ipswich,
	USA
VspI	Fermentas GmbH, St. Leon-Rot,
	Deutschland
XhoI	New England BioLabs, Ipswich,
	USA

2.1.8 Computerprogramme und Internetportale

ABI PRISM 3730 Data Collection Software v3.0	Applied Biosystems, Foster City, USA
Adobe Photoshop	Adobe Systems, Edinburgh, UK
AliBaba 2.1	http://darwin.nmsu.edu/~molb470/
	fall2003/Projects/
	solorz/aliBaba 2 1 htm
BioEdit Sequence Alignment Editor	Ibis Therapeutics Carlsbad USA
	http://www.mbio.ncsu.edu/BioEdit/
	bioedit.html
dbSNP Datenbank	http://www.ncbi.nlm.nih.gov/
	projects/SNP
DNA Sequencing Analysis Software	Applied Biosystems, Weiterstadt,
Version 3.6.1	Deutschland
EndNote X.0	ISI ResearchSoft, Berkeley, USA
Gemeni 3.5	Tecan, Crailsheim, Deutschland
GraphPad Prism 5.01	GraphPad Software, Inc. Ja Lolla,
1	USA
Haploview	http://www.broad.mit.edu/mpg/
•	haploview/
Insizer	http://zeon.well.ox.ac.uk/git-
bin/insizer	
International HapMap Project	http://www.hapmap.org
MassARRAY Assay Designer 3.0	Sequenom, San Diego, USA
MassARRAY Typer v3.4	Sequenom, San Diego, USA
MatInspector, Version 7.0	http://www.genomatix.de/
Microsoft Office	Microsoft, Redmont, USA
National Center for Biotechnology Information	http://www.ncbi.nlm.nih.gov/
NEB cutter 2.0	http://tools.neb.com/NEBcutter2/
	index.php
NetPrimer	http://www.premierbiosoft.com/
	netprimer/netprlaunch/netprlaunch.h
	tm
Power Kalkulationen	http://dceg.cancer.gov/bb/tools/nga
REBASE®	http://rebase neb com/rebase/
	rebase.html

SAS / Genetics software 9.1.3.	SAS, Cary, USA	
SNPper Datenbank - CHIP Bioinformatics Tools	s http://snpper.chip.org/bio/	
SpectroDESIGNER	Sequenom, San Diego, USA	
SpectroTYPER_RT 2.0.0.3	Sequenom, San Diego, USA,	
	Deutschland	
Test auf Hardy-Weinberg-Equilibrium	http://ihg2.helmholtz-	
	muenchen.de/cgi-bin/hw/hwa1.pl	
Vector NTI Software Version 10.1.1	Invitrogen, Carlsbad, USA	
Vista Genome Browser	http://pipeline.lbl.gov/cgi-	
bin/gateway2		
WatCut	http://www.watcut.uwaterloo.ca	
Wikipedia - Die freie Enzyklopädie	http:www.wikipedia.org	

2.1.9 Verwendete Organismen

2.1.9.1 Jurkat T-Zellen

Jurkat T-Zellen wurden von der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmBH (DSMZ, Braunschweig, Deutschland) bezogen. Dabei handelt es sich um eine Leukämie-Zelllinie, die von menschlichen T-Zellen abstammt. Die Zellen wurden in RPMI 1640 Glutamax (Gibco, Carlsbad, USA), angereichert mit 10% hitzeinaktiviertem FCS (Gibco, Carlsbad, USA) und Penicillin/Streptavidin (5µg/ml, Sigma-Aldrich. Steinheim, Deutschland) bei 37°C und 5% CO_2 in einer wasserdampfgesättigten Atmosphäre kultiviert. Die Zellen wurden dreimal wöchentlich zu 300.000 Zellen/ml passagiert. Für Experimente wurden die Jurkat T-Zellen zwischen Passage 5 und 10 verwendet.

2.1.9.2 COS-7 Zellen

COS-7 Zellen stammten von der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmBH (DSMZ, Braunschweig, Deutschland). Die Zellen wurden in RPMI 1640 (with stable Glutamin, PAA, Pasching, Österreich), angereichert mit 10% FCS Gold (PAA, Pasching, Österreich) und einer Antibiotic-Antimycotic-Lösung (10µg/ml, PAA, Pasching, Österreich) bei 37°C und 5% CO₂ in einer wasserdampfgesättigten Atmosphäre kultiviert. Bei diesen adhärenten Zellen fand die Zellpassage statt, sobald die Zellschicht annähernd 80% Konfluenz erreichte. Die Zellen wurden dann mit PBS (Sigma-Aldrich, Steinheim, Deutschland) gewaschen, abtrypsiniert (10x Trypsin-EDTA, PAA, Pasching Österreich), abzentrifugiert (200g, 5min) und in frischem Kulturmedium aufgenommen. Für Experimente wurden die COS-7 Zellen in den Passagen 12 bis 30 verwendet.

2.1.9.3 Bakterien

Zur DNA-Amplifikation wurde der elektro-kompetente Bakterienstamm *E.coli* DH10B verwendet. Im Rahmen der Gateway® Technologie wurden alle Transformationen mit chemisch kompetenten DH5α Zellen (Invitrogen, Carlsbad, USA) durchgeführt. Bakterienflüssigkulturen wurden bei 37°C unter ständigem Schütteln in LB-Medium kultiviert, wobei grössere Volumina aus einer kleineren Startkultur angeimpft worden sind. Ausstriche auf LB-Agarplatten wurden über Nacht bei 37°C inkubiert.

Für die Mutagenese-Reaktion (siehe 2.2.15.2) wurde der Hitze-kompetente Bakterienstamm XL10-Gold ultrakompetent (Stratagene, La Jolla, USA) verwendet.

2.2 Methoden

Die im Folgenden aufgeführten Methoden sind in Zusammenarbeit mit sämtlichen Doktoranden der Arbeitsgruppe Allergogenetik von Prof. Michael Kabesch etabliert worden und werden fortlaufend aktualisiert. Die aktuelle Aufstellung aller Methoden kann auch unter www.asthmagene.de eingesehen werden.

2.2.1 Die Studienpopulationen

2.2.1.1 Kontrollpopulation für das Mutationsscreening

Für das Mutationsscreening der Gene *TBX21* und *HLX1* wurde eine Kontrollpopulation bestehend aus 40 nichtverwandten, freiwilligen, deutschstämmigen, zufällig ausgewählten, erwachsenen Personen verwendet. Die Auswahl der Probanden war von Geschlecht und möglichen Vorerkrankungen unabhängig. Für die DNA-Extraktion (2.2.2) wurde dieser Kontrollpopulation Blut entnommen und mit EDTA behandelt.

2.2.1.2 Studienpopulation für die Assoziationsanalyse

Im Rahmen der "International Study of Asthma and Allergy in Childhood Phase II" (ISAAC II), einer internationalen Studie zur Erforschung von Asthma und Allergie, wurden in den Jahren 1995/96 in den deutschen Städten München und Dresden Kinder der 4. Schulklasse (Altersstufe 9-11 Jahre) rekrutiert. Diese Kinder wurden dem ISAAC II Studienprotokoll entsprechend mittels standardisiertem Elternfragebogen, Hautuntersuchung, Haut-Prick-Test, Spirometrie und bronchialem Provokationstest sowie einer venösen Blutabnahme untersucht⁷³.

Desweiteren wurden im selben Zeitraum auch Schulkinder der 4. Klasse aus Leipzig für eine ähnliche Studie mit vergleichbarem Studienprotokoll rekrutiert ³.

2.2.1.2.1 Querschnittspopulationen (München, Dresden, Leipzig)

Die Querschnittspopulationen bestanden aus sämtlichen rekrutierten Kindern mit deutscher Abstammung aus den Städten München, Dresden und Leipzig, unabhängig von einer möglichen asthmatischen oder atopischen Erkrankung. Da in die Population nur die Kinder aufgenommen wurden, von denen DNA vorhanden war, ergaben sich für die Querschnittspopulationen folgende Fallzahlen: München (M) n=1159, Dresden (D) n=1940 und Leipzig (L) n=1165.

2.2.1.2.2 Fall-Kontroll-Population

Um die Aussagekraft bezüglich eines Effektes auf den Phänotyp Asthma kosteneffizient untersuchen zu können, wurde aus ISAAC II eine Asthma Fall-Kontroll-Population nach definierten Kriterien zusammengestellt. Diese Population umfasste insgesamt 1872 Kinder (N=1872, München n=690, Dresden n=789, Leipzig n=393). Als Fälle wurden alle Kinder mit der Arztdiagnose Asthma und/oder bronchialer Hyperreaktivität (BHR) (N=624, München n=230, Dresden n=263, Leipzig n=131) aus der unter 2.2.1.2.1 beschriebenen Querschnittspopulation ausgesucht. Diese Kinder wurden dann in einem Verhältnis von 1:2 mit einer zufällig ausgewählten Stichprobe von gesunden, nicht asthmatischen, nicht atopischen Kindern ohne BHR (N=1248, München n=460 Dresden n=526, Leipzig n=262) verglichen. Da sowohl die Probanden der Querschnitts- als auch der Fall-Kontroll-Population aus ISAAC II (München, Dresden) und Leipzig stammten, war eine Überschneidung der Probanden von Querschnitts- und Fall-Kontroll-Population nicht vermeidbar (siehe Abbildung 8).

Abbildung 8: Überblick der verwendeten Probanden aus der Querschnittspopulation und der Fall-Kontroll-Population. Die Kinder stammen aus der ISAAC II Population (München und Dresden) und Leipzig (modifiziert nach Kormann et al.⁷⁴).

2.2.1.2.3 Fragebogen

Die standardisierten Fragebögen wurden über die Schulen an die Eltern der Kinder ausgeteilt und beinhalteten detaillierte Fragen zum Auftreten und der Schwere von atopischen Symptomen, wie z.B. pfeifende Atmung, Luftnot, atopisches Ekzem, allergische Rhinitis. Kinder wurden als Asthmapatienten eingestuft, wenn die Eltern folgende Fragen bejahten: "Hat ein Arzt mindestens einmal Asthma bei ihrem Kind diagnostiziert?" bzw. "Hat ein Arzt öfter als einmal die Diagnose asthmatische, spastische oder obstruktive Bronchitis bei ihrem Kind gestellt?" Ob ein Kind an Heuschnupfen oder Neurodermitis erkrankt war, wurde entsprechend über die Frage: "Hat ein Arzt jemals Heuschnupfen bzw. Neurodermitis bei ihrem Kind diagnostiziert?", überprüft. Neben Angaben zur pulmonalen Krankengeschichte des Kindes und deren Behandlung wurden Informationen über weitere Erkrankungen im Kindesalter, Impfungen, Schwangerschaft, Geburt, Ernährung, Familienanamnese und Fragen zum früheren und jetzigen sozioökonomischen Status und Lebensstil erhoben.

2.2.1.2.4 Atopiebestimmung mittels Haut-Prick-Test

Für den Haut-Prick-Test wurden sechs häufige Aeroallergene sowie eine Positiv- und Negativkontrolle (Histamin; 10mg/ml bzw. NaCl) verwendet. Während Kinder in München und Dresden nach dem ISAAC II Protokoll auf *Dermatophagoides pteronyssinus, Dermatophagoides farinae, Alternaria tenuis*, Katzenhaare, gemischte Baum- und Gräserpollen unter Verwendung von Extrakten der Firma ALK (Horsholm, Dänemark) getestet wurden, beinhaltete das Studienprotokoll in Leipzig die Aeroallergene *Dermatophagoides pteronyssinus*, Gras, Birken- und Haselnusspollen, Katzen- und Hundehaare (Stallerkit, Stallergènes, Frankreich). Für die Auswertung des Prick-Tests war die Größe der jeweils entstandenen Quaddel an der Auftragsstelle verglichen mit der Negativkontrolle ausschlaggebend. Eine Hautquaddel > 3mm (nach Abzug der Negativ-Kontrolle) wurde als eine positive allergische Reaktion gewertet.

2.2.1.2.5 Messung des IgE-Spiegels

Die Messung des Gesamt-Serum-IgE-Spiegels erfolgte nach einer venösen Blutabnahme mit dem Imulite System (BPC Biermann, Bad Nauheim, Deutschland). Konzentrationen an spezifischen Serum-IgE wurden in einem Zentrallabor (Universität Berlin, Deutschland) mit einem Fluoreszenz Enzym Immuno-Assay (SX1 CAP, Pharmacia, Lund, Schweden) gemessen. Dabei wurden die spezifischen Serum-IgE Mengen die Aeroallergene Gräser-, Birken-Beifußpollen, gegen und Dermatophagoides pteronyssinus, Katzen- und Hundehaare und Clasdosporium herbarum sowie gegen die Nahrungsallergene Eiweiß, Milch, Dorsch, Weizenmehl, Erdnüsse und Sojamehl analysiert.

2.2.2 DNA Extraktion

Bei frischem EDTA-Vollblut erfolgte die Extraktion der DNA nach der Standardaussalzmethode von Miller⁷⁵. Bei Verwendung von eingefrorenem Blut (Lagerung bei -20 °C) wurde zur DNA Gewinnung der FlexiGene DNA Kit (Qiagen, Hilden, Deutschland) eingesetzt.

2.2.3 Konzentrationsbestimmung von Nukleinsäuren

Die Konzentration von Plasmid- oder genomischer DNA sowie von PCR Produkten wurde spektralphotometrisch bestimmt und nach dem Lambert-Beer'schen Gesetz berechnet. Die Messung der Extinktion erfolgte bei einer Wellenlänge von 260nm $(OD_{260nm} = Extinktion von DNA)$ und 280nm $(OD_{280nm} = Extinktion von Proteinen)$ in einem Eppendorf BioPhotometer (Hamburg, Deutschland). Beachtenswert war dabei das Verhältnis von OD_{260nm} / OD_{280nm} , da dieses Verhältnis den Grad der Verunreinigung widerspiegelt. Im Idealfall lag dieser Wert zwischen 1,7-2,0.

2.2.4 Agarose-Gelelektrophorese

DNA-Proben wurden mittels Agarose-Gelelektrophorese analysiert. Die Auftrennung erfolgte abhängig von der Grösse der DNA Proben in 1,5 – 3%igen Agarosegelen in 0,5%igen TBE Puffer bei 120V. Um die DNA Fragmente sichtbar zu machen, wurde der Farbstoff Ethidiumbromid verwendet. Dieser interkaliert in die DNA und kann aufgrund seiner Fluoreszenzeigenschaften mit UV-Licht nachgewiesen werden. Zur Abschätzung der DNA Grössen wurden Längenstandards definierter Fragmentlängen (100bp oder 1kb, NEB, Ipswich, USA) verwendet.

2.2.5 DNA Extraktion aus Agarose

DNA-Fragmente mit gewünschter Größe wurden unter UV-Licht mit einem Skalpell ausgeschnitten. Die Isolierung der DNA erfolgte mit dem PCR Purification Kit (Qiagen, Hilden, Deutschland).

2.2.6 **Polymerase-Kettenreaktion (PCR)**

Polymerase-Kettenreaktionen (PCR) wurden in der vorliegenden Arbeit bei verschiedenen Fragestellungen eingesetzt. Einerseits wurden Abschnitte genomischer DNA mittels PCR vervielfältigt, um diese Amplifikate bei Klonierungen verwenden zu können. Die Bedingungen dieser PCRs werden in den entsprechenden Abschnitten der Klonierungsarbeiten aufgeführt.

Andererseits wurden PCRs auch im Rahmen des Mutationsscreenings von TBX21 durchgeführt. Hierzu wurden 15199bp des TBX21 Gens (beinhaltet alle Exons und Introns sowie 2297bp upstream und 990bp downstream) mittels 36 überlappender Fragmente amplifiziert, so dass in einer anschließenden Sequenzierreaktion genetische Variationen in diesen Genfragmenten detektiert werden konnten. Beim Design der Fragmente wurde darauf geachtet, dass sie durchschnittlich eine Länge von 500bp aufwiesen. Zudem ermöglichte die Überlappung der Fragmente eine lückenlose Darstellung des Genlokus. Die für die PCR benötigen Primer wurden mittels der Software NetPrimer und Vector NTI Version 10.1.1 (Invitrogen, Carlsbad, USA) entworfen und wurden zusammen mit ihren optimalen PCR-Bedingungen in Tabelle 1 zusammengefasst. Die Komponenten einer Standard-PCR können Tabelle 2 entnommen werden. Abhängig von der verwendeten Taq-Polymerase (NEB Taq Polymerase, New England BioLabs, Ipswich, USA oder HotStar Tag® Polymerase, Qiagen, Hilden, Deutschland) variierten die Temperaturbedingungen der PCRs (Tabelle 3, Tabelle 4). Einzelne Fragmente wurden zudem mittels einer Touchdown-PCR (TD-PCR) amplifiziert. Die hierfür verwendeten Temperaturbedingungen sind in Tabelle 5 dargestellt. Alle PCRs wurden in einem Thermocyler der Firma Eppendorf (Hamburg, Deutschland) durchgeführt.

Trugh	Primer Par Amplification and the second seco				
	Primersequenzen* fwd rev	Länge	Annealing Temperatur (T°C)	Taq Polymerase	Betain (M)
1	GGGGATGAATCACTTGACC CCAGCTCTACATTTCTGTCCC	552	62,0	NEB	-
2	CCCCTAAGGGTGAAGCC CTCCATTTTCCTTTTATGTTAAC	558	60,0	NEB	-
3	CGGATAGTTTTCATCATAAAAGG CTGCATCTTGTAGCTCTAGCC	552	62,0	NEB	0,2
4	GTGCGCTTTAAGGAACATTTCC CCCACTCCGCCACCTCG	548	62,0	NEB	-
5	CTAGTATTAGCCACGAGAGGG CTCCAAGGAAGCGGCTCG	549	59,0	NEB	1
6	CGTCGCGGGGGGGGGGCAGC GCAACAGCCTGGGCACAGACG	544	64,5	NEB	1
7	CTGGTTCTTGTGAGTGGGAGG GGACAGAACCCTGGTGATGTAGG	548	64,5	NEB	0,5
8	CGTCTCGTCTGTTTTTCTGGCTCG CTCCCCCCGTACACACACACCAC	484	66,3	NEB	1
9	CCCCTGCGCCCACCTCC GGTTTCTGTTTCTTTCCTTGCGCAG	578	67,8	NEB	0,25
10	GGCTTCATGGCTCAGGGTTC GGTTGGGGGGGAGCAGAGAG	568	61,6	HotStar®	-
11	CTGGGATGAACCCAGGAAAGTTG GGCAGGAGGAGGCAGAGGC	605	60,7	NEB	1
12	GTGGGGCCTCTTAACCTTCC CTTTTCAGGTTTGCTAATGGTAATG	610	57,2	NEB	0,5
13	CTTCGCTTCTTCTGTCTGCAAC GGCTGTAGGCTGTAGGTGGG	607	62,6	NEB	-
14	CTTCCTGCTTTTGTGGGCTG CACACACCCACAGAGACACAGG	542	64,5	NEB	0,5
15	GTGTGGCAGTGTGTGTGTGTGTG GCTGGGCTTGGTGGCTTC	581	64,5	NEB	1
16	GACTTGAACCTCCCACATAGATAAC CAAGACAAATGAAACCAGTTAAGC	552	56,0	NEB	0,5
17	CTCCCGCCTCAGCCTCCC GACTATTGGTGTGGGCGTAAATTGG	526	62,6	HotStar®	-
18	GAGGTTGGTAAGACGAGGAGTTC GCAAATTAAAATAGCAAGGAGATAG ATAG	541	56,0	NEB	0,25
19	GATCCACCTGCCTCGGC CCGAGTCACCCGAGCG	547	64,5	NEB	0,25
20	CCTGTGTCTCCATTTCCCTCTACT CGGCTCACTGCAACCTCTG	558	62,6	HotStar®	-
21	GAGAATAATGGCGTGAACCTTG GGTGGGAGAGCAGAGGTGAG	334	60,7	NEB	0,5
22	TGAATATGAAGAAATGGGGACCAC GCCGAGGAGGGGGGGATTTC	398	60,7	NEB	0,5
23	GAGGAAAGATGGACAGGAGTTAGAC TCACTCTAACCTCCACCTTCCAG	281	58,8	NEB	1
24	CACCGCAACCTTCGCC CTCAAGTGGTCTACCCGCC	382	62,6	HotStar®	-
25	CCAACGTGAAACTCCATCTCTAC CTAACACAAGCAGGAAGAGCAG	547	61,5	NEB TD-PCR	0,25

Tabelle 1:Verwendete Primerpaare und die dazugehörigen PCR-Bedingungen derFragmente zur Amplifizierung des *TBX21* Gens.

26	GAGAGGAGGGGGGAAGTGTG CTCTATTGAACACGGGGGCTC	520	60,7	NEB	-
27	CACAACAGCGGAATCATACAGC GCATGGAGGAGGTACTAAATCACAG	558	60,7	NEB	0,5
28	CCCTGTGGTGTAAATACTCCTGC GGCGAAACCCCGTCTCTAC	412	62,0	NEB TD-PCR	0,25
29	GGGTTCAAGCCATTCTCCTGC CATCCTGTAGTGGCTGGTGGG	511	67,8	HotStar®	-
30	CCTTCCCTGCCTGGTCCTCC GCAATGGCAACCCATGATTTGG	551	64,5	NEB	0,5
31	GGACGGGGGGTCATATTCAGG CCCTCTTCTACCTCCAGATGTC	562	62,0	NEB	1
32	AAAGTGCCCTTGCCCTAAAG GGGAAATAGAGTCACCTGAGTCC	555	62,0	NEB	1
33	GGCCCACTGTCTTCCTTGG GCCTCATAGCTGTGGTCC	552	62,0	NEB	0,5
34	CTACCCCGACCTTCCTGGC CGGTGTCCTCCAACCTAATAACAC	549	59,0	NEB	0,5
35	CTATTTTCCCAACTGAGCAG CCACTGTGTTTGAGCAGG	558	56,0	NEB	0,2
36	CGTATGTTATAACCATCAGCC CAAGGGATTCTTCTCTGTCC	539	62,0	NEB	0,2

(1) Die angebenen Primer wurden zudem auch zur Sequenzierung der entsprechenden Fragmente verwendet (siehe 2.2.8).

Tabelle 2:Standard-PCR-Ansatz zur Amplifizierung der TBX21 Genfragmente.

Komponenten	Volumen	Konzentration
DNA	3,3µl	20ng/µl
PCR Puffer	5µl	10x
dNTP-Mix	1µl	je10mM
Sense-Primer	0,6µl	25µM
Antisense-Primer	0,6µl	25µM
Taq-Polymerase	0,17µl	1U/µl
Betain	siehe Tabelle 1	5M Betain
dH ₂ O	ad 50µ1	

Tabelle 3:Allgemeine Temperaturbedingungen der PCR zur Amplifizierung der TBX21Genfragmente bei Verwendung der NEB Taq Polymerase (New England BioLabs, Ipswich, USA).

Schritte	Temperatur	Zeit
1) Aktivierung	94°C	2min
2) Denaturierung	94°C	20sec
Annealing ¹	56°C – 67,8°C	20sec
Elongation	72°C	20sec
	Wiederholung von 2) 39x	
3) Letzte Elongation	72°C	7min

(1) Die Annealing Temperatur ist für jedes Fragment spezifisch und variierte zwischen 56,0°C und 67,8°C.

Tabelle 4:	Allgemeine	Temperaturbed	ingungen dei	PCR zur	Amplifizierung	der TBX21
Genfragmente	bei Verwendu	ing der HotStar	Taq®-Polym	erase (Qia	gen, Hilden, Deu	tschland).

Schritte	Temperatur	Zeit
1) Aktivierung	95°C	15min
2) Denaturierung	95°C	20sec
Annealing ¹	61,6°C – 67,8°C	30sec
Elongation	72°C	1min
	Wiederholung von 2) 39x	
3) Letzte Elongation	72°C	7min

(1) Die Annealing Temperatur ist für jedes Fragment spezifisch und variierte zwischen 61,6°C und 67,8°C.

Tabelle 5: Allgemeine Temperaturbedingungen einer Touchdown (TD)-PCR zur Amplifizierung der *TBX21* Genfragmente bei Verwendung der NEB Taq Polymerase (New England BioLabs, Ipswich, USA).

Schritte	Temperatur	Zeit
1) Aktivierung	95°C	2min
2) Denaturierung	95°C	20sec
schrittweise Annäherung an die	72°C	20sec
terminale Annealingtemperatur	bei jedem Zyklus -0,5°C	
Elongation	72°C	20sec
	Wiederholung von 2) 19x	
3) Denaturierung	95°C	20sec
Annealing ¹	61,5 bzw. 62°C	20sec
Elongation	72°C	20sec
_	Wiederholung von 3) 39x	
4) Letzte Elongation	72°C	7min

(1) Die Annealing Temperatur betrug für Fragment 25 61,5 °C und für Fragment 28 62,0°C.

2.2.7 Aufreinigung von PCR-Produkten

Zur Aufreinigung der PCR-Produkte wurden diese mit 250 μ l HPLC-H₂O versetzt und in MultiscreenTM PCR-Platten (Millipore, Billerica, USA) pipettiert. Nach Zentrifugation (3200g, 7min) der Platte wurden 30 μ l H₂O zugesetzt und die Platte für 5min gevortext, um das PCR-Produkt zu eluieren. Abschließend wurde die DNAhaltige Lösung abpipettiert und bei 4°C bis zur Sequenzierreaktion gelagert.

2.2.8 Sequenzierreaktion

Abhängig von der Fragestellung wurden entweder 500ng Plasmid-DNA oder 25-50ng PCR-Produkt für die Sequenzierreaktion eingesetzt und folgender Reaktionsansatz (Tabelle 6) verwendet:

Komponenten	Volumen	Konzentration
DNA-Matrize:	0,5-2,5µl	
Plasmid DNA		500ng
bzw.		
PCR-Produkt		25-50ng
Big Dye version 3.1	1,0µl	
Sequenzierpuffer	1,0µl	5x
Sequenzierprimer	0,5µl	10µM
HPLC-H ₂ O	ad 5µl	

 Tabelle 6:
 Standard-Ansatz einer Sequenzierreaktion

Die Sequenzierreaktion wurde in einem Thermocycler (Eppendorf, Hamburg, Deutschland) in 96-Well Low profil Platten (Peqlab, Erlangen, Deutschland) mit folgenden Temperaturbedingungen (Tabelle 7) durchgeführt:

 Tabelle 7:
 Allgemeine Temperaturbedingungen einer Sequenzierreaktion.

Schritte	Temperatur	Zeit
Denaturierung	95°C	30sec
Annealing	50°C	15sec
Elongation	60°C	4min
	28x Wiederholung	

Beim Mutationsscreening von *TBX21* wurden bei einigen Fragmenten neben den PCR-Primern (siehe Tabelle 1) noch weitere Primer zur Sequenzierung verwendet. Diese wurden in Tabelle 8 zusammengefasst.

Fragment	Sequenzierprimer	
15	fwd: CCTGTGTCTCTGTGGGTGTGTG	
	rev: GTAATGACTGTGAGGATAGCAAGGATAG	
17	rev: TGAGCCATAATCGCACCACTG	
21	fwd: CAGGCGCAGTGTTGGGTG	
	rev: GACAGAGTCTCGCTCTGTCCC	
23	fwd: CCAACGTGAAACTCCATCTCTAC	
26	fwd: ACTCTGCTCTTCCTGCTTGTGTTAG	
28	fwd: CTTGCTCTTGTCATCCAGGC	
	rev: CATCACTGCCCAGTTATTTTACG	

Tabelle 8:Zusätzliche Primer zur Sequenzierung der PCR-Fragmente des TBX21 Gens.

Alle anderen Sequenzierprimer die zur Überprüfung von Klonierungsarbeiten verwendet wurden, sind in den entsprechenden Abschnitten aufgeführt.

2.2.8.1 Fällung der Sequenzierreaktion

Nach der Sequenzierreaktion wurden die Produkte gefällt und aufgereinigt. Dazu wurde die Sequenzierreaktion mit je 100µl 70%igem EtOH versetzt und für 15min bei Raumtemperatur inkubiert. Nach einem Zentrifugationsschritt (3000g, 30min) wurde der Überstand verworfen und das DNA-Pellet mit je 150µl 70%igem EtOH gewaschen. Nach einem erneuten Zentrifugationsschritt (3000g, 10min) wurde der Überstand abgekippt und das verbleibende DNA-Pellet für 5min bei Raumtemperatur getrocknet. Die aufgereinigte Sequenzierreaktion wurde bis zur weiteren Verwendung bei – 20°C gelagert.

Die eigentliche Sequenzierreaktion wurde am Institut für Epidemiologie am Helmholtz Zentrum München (Neuherberg, Deutschland) an einem ABIPRISM® 310 oder 3730 Genetic AnalyzerTM (Applied Biosystems, Foster City, USA) durchgeführt. Dazu wurde das getrockenete DNA-Pellet in 50µl dH₂O wieder aufgelöst, wobei anschließend 25µl der Lösung auf spezielle Sequenzierplatten übertragen wurden. Die Datenverarbeitung erfolgte mit der ABI PRISM 3730 Data Collection Software Version 3.0 (Applied Biosystems, Foster City, USA).

2.2.8.2 Auswertung von Sequenzen

Die Auswertung der Sequenzen erfolgte entweder mit dem BioEdit Sequence Alignment Editor Version 7.0.5.3 (Ibis Therapeutics, Carlsbad, USA) oder der Vector NTI Software Version 10.1.1 (Invitrogen, Carlsbad, USA).

2.2.9 Genotypisierung mittels iPLEXTM Assay

Um im Hochdurchsatzverfahren DNA Variationen im Erbgut schnell und präzise detektieren zu können, wurden iPLEXTM Assays (Sequenom, San Diego, USA) am Institut für Epidemiologie am Helmholtz Zentrum München (Neuherberg, Deutschland) durch eine medizinische-technische Assistentin der Arbeitsgruppe Allergogenetik durchgeführt.

2.2.9.1 Vorbereitung der Genotypisierungsplatten

Für die Genotypisierung wurden die DNA-Proben der Studienpopulationen nach einem vorgegebenen Schema (siehe Abbildung 9) in 96er Platten (Peqlab, Erlangen, Deutschland) pipettiert. Zur Qualitätssicherung wurden pro Platte vier Negativkontrollen eingefügt, um Kontaminationen oder Drehungen der Platten ausschliessen zu können.

	1	2	3	4	5	6	7	8	9	10	11	12
Α												
в			NC									
С												
D					NC							
Е							NC					
F												
G											NC	
н												

Abbildung 9: Anordnungsmuster der DNA-Proben auf einer 96er-Platte (Mutterplatte). NC = Negativkontrolle. (Freundlicherweise zur Verfügung gestellt von Dr. H. Gohlke, Helmholtz-Zentrum München, Deutschland).

Anschließend wurden die einzelnen DNA-Proben auf eine Konzentration von 1ng/µl verdünnt und unter Beibehaltung des oben aufgeführten Verteilungsmusters auf 96er Clusterplatten (Qiagen, Hilden, Deutschland), sog. Mutterplatten überführt. Mittels der Pipettierstation Genesis RSP150 (Tecan, Crailsheim, Deutschland) wurden vier dieser Mutterplatten zu einer 384er Platte (ABgene, Surrey, England), einer sog. Tochterplatte zusammengefasst (siehe Abbildung 10).

Abbildung 10: Verteilungsmuster von vier 96er-Mutterplatten auf einer 384er-Tochterplatte. NC = Negativkontrolle. (Freundlicherweise zur Verfügung gestellt von Dr. H. Gohlke, Helmholtz-Zentrum München, Deutschland).

Die DNA (5µl) in der Tochterplatte wurde anschließend über Nacht luftgetrocknet und mit einer Gesamtkonzentration von 5ng für weitere Genotypisierungschritte verwendet.

2.2.9.2 PCR für den iPLEXTM Assay

Um die Genotypen der Studienpopulation bestimmen zu können, wurde der genomische Bereich, der den zu untersuchenden SNP enthielt (ca. 100bp) zunächst mittels des HotStar Taq® plus Kits (Qiagen, Hilden, Deutschland) amplifiziert. Dafür wurden zu den getrockneten DNA-Proben jeweils 5µl des in Tabelle 9 beschriebenen 480fachen Mastermixes mit der Pipettierstation der Firma Tecan zugefügt. Die Amplifikation der einzelnen Fragmente erfolgte mit einem Standard-Protokoll (siehe Tabelle 10) in einem Thermocycler MJ research (Boston, USA). Die dafür benötigten Primer wurden mittels des Programms MassARRAY Assay Designer 3.0 (Sequenom, San Diego, USA) entworfen und sind in Tabelle 11 aufgeführt. Um den Erfolg der PCR zu überprüfen, wurden anschließend Proben stichprobenartig ausgewählt und auf ein 3%-Agarosegel aufgetragen.

Tabelle 9:Standard-Mastermix für die PCR einer iPLEXTMReaktion bezogen auf eine384er Platte.

Komponenten	Volumen im	Konzentration
	480x Mastermix	
PCR Puffer	300µl	10x
dNTP-Mix	48µl	25mM
Primer Mix	480µl	je 500nM
MgCl ₂	156µl	25mM
HotStar Taq®	48µl	5U/µl
dH ₂ O	ad 2400µl	

Tabelle 10: AllgemeineTemperaturbedingungeneinerStandard-PCRder $iPLEX^{TM}$ Reaktion.

Schritte	Temperatur	Zeit
1) Aktivierung	94°C	15min
2) Denaturierung	94°C	20sec
Annealing	56°C	30sec
Elongation	72°C	1min
	Wiederholung von 2) 45x	
3) letzte Elongation	72°C	3min
_	20°C	1min

SNP ²		Sense- und Antisense-Primer	Extensionsprimer
TBX21 (MD	L')		
T-1993C	2nd	ACGTTGGATGTACCAGAAACACAGGACTGG	TCCCCAACACCTTACCC
	1st	ACGTTGGATGAGGCAGAAACTTCCCTGTTC	
	150		
T-1514C	2nd	ACGTTGGATGTTCAGTGAACACCCTCTGAG	TCTGTCTCTGTCTTTTGCACAC
	1st	ACGTTGGATGTTCCATGACACCTTGTGGAG	
G-999A		Restriktionsassay: durchgeführt von Dr. Wilfried	
		Peters	
A 380G	2nd	ACGTTGGATGTGGACCACAACAGGTGGTTG	TTTCCCCGACACCTCCAG
AJOOU	211u	ACCITECATOTOCACCACACACOCOCTACO	THECCEOACACCICCAO
G1 ((=)	Ist	ACGITGGATGGTGAGGACTACGCGCTACC	
C1667A	2nd	ACGTTGGATGCAAGCCCCACGTTTGGTATC	TGGTATCCACACCTCTC
	1st	ACGTTGGATGTGGAAGGGCTGTTGTCATTG	
G2844A	2nd	ACGTTGGATGCTAATATAGTTGCAGACAG	TAGTTGCAGACAGAAGAAG
	1st	ACGTTGGATGTAACAGACTTCCATCCCAG	
G8766C		_4	_4
C0002T	2nd	ACGTTGGATGGAGAAACAGCCAGAGTTTAG	
099021	2nu 1at		ACAUCCAUAUTTAUUAAUUAA
T101540			
T10154C	2nd	ACGIIGGAIGIGCCGAGIIICICIAGGIIG	CCCTTGCTGGCTGGGTG
	1st	ACGTTGGATGAAGTGCTGGGATTATGGGTG	
C11271T	2nd	ACGTTGGATGTGACTGGTTCTGCTTGTGAC	TGCTTGTGACCCGTTTTC
	1st	ACGTTGGATGGATGCTGGTGTCAACAGATG	
T12080C	2nd	ACGTTGGATGTCTCAGGTTTCATCGTGGGC	TCATCGTGGGCCAGGAAGC
	1st	ACGTTGGATGGGCCCTTCTCTGTTTAGTAG	
A 12406C	150	Kit spazifische Drimerkombination	SDOL 4
TDX21 (D3	N #3	Kit spezifische i fillerkomoniation	SIOLA
1BA21(D'),	WI [*])		
T-1514C	2nd	ACGTIGGATGCTCTGAGACCTCACTCCTTA	GGCICIGICITITIGCACAC
	1st	ACGTTGGATGATAAAGCAGCATGTGTAGTG	
C9902T	2nd	ACGTTGGATGCATCTCATCTTCCTCCCAAG	GGGCCAGAGTTTAGGAAGGA
	1st	ACGTTGGATGGGTTCGTTTTTCTTCTGTCC	
THE WA (D ³ A	-3		
$HLXI(D^{\circ}, N)$	/ I °)		
C-1486G	2nd	ACGTTGGATGTAGAACGCAGGGTAGTGGTG	TAGTGGTGGTGGAGGTTTT
	1st	ACGTTGGATGGTGGGGGAAATTCATTCTGAC	
C-1407T	2nd	ACGTTGGATGTTCTAAAGACCCAAGGCACG	ACCACCACGCAGCTCCTC
	1st	ACGTTGGATGAATTCTGTGACAGCTTCCCC	
C-796A	2nd	ACGTTGGATGAAGAGTGAGATTACCGTCCC	GTGAGATTACCGTCCCTTCCCCA
	1st	ACGTTGGATGTTTCCTGAAGCGCTTGTCAC	
C 742C	2nd		
C-7420	2110		ATUAAAUCTECTUTUATEAAC
	Ist	ACGIIGGAIGIICIAACIICIGCAGCICCG	
C-559T	2nd	ACGTTGGATGTCATCCTCGTGACCAATGGG	GGAGGGGAATTAGGAAC
	1st	ACGTTGGATGGCAAAAACTTTGGCGTGGCCG	
T346C	2nd	ACGTTGGATGTCCGAAGTCCCGGCTGGCTT	GCGGCTGTCTCCGCTC
	1st	ACGTTGGATGTGTTGTTGTTGCGGGTGATG	
G2256A	2nd	ACGTTGGATGGAGCCAGAGGGAAGAAGAC	AGAAAGACAAGAGGGC
0220011	1 st		
T2192A	2nd	ACGTTCCATCCACCACGTTCTCCCTATTTC	
13183A	200		ATAGGAAATGTATTGTGGCTGAA
	Ist	ACGIIGGAIGGGGAAGCCCAGIICIIAAAI	
C3958T	2nd	ACGTTGGATGGACCCCCAACATACTCTCTC	TTTTTTTATGCCAGGACCCCCAT
	1st	ACGTTGGATGCTGGGCTAGGAGTCCATAAC	
G4447A	2nd	ACGTTGGATGTCTCAGCCTCGCCTTCAGAAC	GGCTCCTCTCGTCCTG
	1st	ACGTTGGATGAGAAGCCATCAGGTGGAGCC	
GATA3 (D ³ ,	M^3 , L	3)	
rs1300180	2nd		CCAGTACCACCTCTTTC (M.D)
131377100	1 of		
2701002	151		
rs3/81093	2nd	ACGIIGGAIGIAICIIGCCICCGCIGICIC	ACGUIGICICICIACAGAICCIATA (M, D)
	lst	ACGITGGATGTCAAGGCTGCTCATCTCATC	TGTCTCTCTACAGATCCTATA (L)
rs3802604	2nd	ACGTTGGATGTTAGGCTGACAGAAGAACCC	TTCAGTACATGAAAGTAGGCAG (M, D)
	1st	ACGTTGGATGTTTGACTCCACCAGCTAGCC	AGTACATGAAAGTAGGCAG (L)
rs3824662	2nd	ACGTTGGATGAGAACTGAGAAGAGCCGTTG	AGCCTTTGGCATGCACTG (M. D)
	1st	ACGTTGGATGGAACCCCTGAGATTAAACAC	CCTTTGGCATGCACTG (L)

Tabelle 11:Verwendete Sense-, Antisense- und Extensionprimer¹ der Gene TBX21, HLX1und GATA3 für die iPLEXTMReaktion.

rs10752126	2nd	ACGTTGGATGTCCTCCTTTCTTGGTCTCAG	GGGAAACGTCGTGTGA (M, D)
	1st	ACGTTGGATGAAGACCAAATGCCAGGTATG	AAAGGGGAAACGTCGTGTGA (L)
rs3802600	2nd	ACGTTGGATGTTGAGAGACCCTAAGTTCCC	AAAGTTTGTAGTACTGGAAGC (M, D)
	1st	ACGTTGGATGGCAGTCTATTGACAGCAATC	TCTAAATAAAAGCAAAGGAAGA (L)
rs406103	2nd	ACGTTGGATGCACAATGTAAGTGGACTGGG	GACTGATGGTGACCAGCAAACAG (M, D)
	1st	ACGTTGGATGTGAGCGATTCACTTGGAGAG	GGTGACCAGCAAACAG (L)
rs11567931	2nd	ACGTTGGATGGCTTGCTGACTACAGTAGAG	GCTGACTACAGTAGAGATAGAGATT (M, D)
	1st	ACGTTGGATGGCTTATAAGCCCAAGCCTTC	GACTACAGTAGAGATAGAGATT (L)
rs1058240	2nd	ACGTTGGATGAGGCCTAGAAAAAGGCTCTC	CTCTCTGAAACCCTCAA (M, D)
	1st	ACGTTGGATGAGGAAATACCAGTTCTGGGC	AAACGGCTCTCTGAAACCCTCAA (L)

(1) Extensionprimer wurden in der Primer-Extensions-Reaktion (siehe 2.2.9.4) benötigt.
 (2) Eine Übersicht der SNP Bezeichnungen (rs Nummer vs. Position innerhalb des Gens) befindet sich im Anhang in den Tabellen 58, 59 und 60.

(3) Abhängig von der Population (Querschnittspopulationen: Dresden D, München M, Leipzig L, oder Fall-Kontroll-Population MDL), die für die Genotypisierung verwendet wurde, können die Primer für die SNPs variieren.

(4) SNP G8766C konnte sowohl bei Anwendung der MALDI-TOF MS Technologie als auch mit dem TaqManTM Assay aufgrund technischer Probleme nicht genotypisiert werden.

2.2.9.3 Abbau überschüssiger dNTPs: SAP-Reaktion

Nach erfolgter PCR wurden überschüssige, nicht in das Amplifikat eingebaute dNTPs durch die katalytische Shrimp Alkaline Phosphatase (SAP; iPLEXTM Reagent Kit, Sequenom, San Diego, USA) abgebaut. Dazu wurden mittels des Pipettierroboters Multimek 96 Automated (Beckman Coulter, Fullerton, USA) je 2µl Mastermix (siehe Tabelle 12) zum PCR-Produkt gegeben und das Gemisch bei 37°C für 20min in einem Thermocycler MJ research (Boston, USA) inkubiert. Anschließend wurde die SAP bei 85°C für 5min Hitze-inaktiviert.

Komponenten	Volumen im 520x Mastermix	Konzentration
SAP-Puffer	88,4µl	10x
SAP	156µl	1U/µl
dH ₂ O	ad 1040µl	

 Tabelle 12:
 Mastermix einer SAP-Reaktion.

2.2.9.4 **Primer-Extensions-Reaktion**

Für die Primer-Extensions-Reaktion wurde der iPLEXTMReagent Kit (Sequenom, San Diego, USA) verwendet. Die dafür benötigten Extensionsprimer (siehe Tabelle 11) wurden analog zu den PCR-Primern mit dem Programm MassARRAY Assay Designer 3.0 (Sequenom, San Diego, USA) entworfen. Für die Reaktion wurden je 2µl Mastermix (siehe Tabelle 13) jeder Probe zugesetzt. Alle erforderlichen Pipettierschritte erfolgten dabei mit dem Pipettierroborter Multimek 96 Automated (Beckman Coulter, Fullerton, USA). Die Primer-Extensions-Reaktion wurde in einem Thermocycler MJ research (Boston, USA) mit den Temperaturbedingungen aus Tabelle 14 durchgeführt.

Komponenten	Volumen im 520x Mastermix	Konzentration	
iPLEX TM Puffer	104µl	10x	
iPLEX TM Termination Mix	104µl		
PrimerMix	418,08µl	7µM-14µM	
iPLEX TM Enzym	21,32µl	· · ·	
dH ₂ O	ad 1040µl		

Tabelle 14: Allgemeine Temperaturbedingungen einer Primer-Extensions-Reaktion.

Schritte	Temperatur	Zeit
1) Aktivierung	94°C	30sec
2) Denaturierung	94°C	5sec
Annealing	52°C	5sec
Elongation	80°C	5sec
	Wiederholung von 2) 44x	
3) letzte Elongation	72°C	3min
	20°C	1min

2.2.9.5 Aufreinigung von Primer-Extensions-Produkten

Zur Aufreinigung der Primer-Extensions-Produkte wurde ein Kationenaustauschharz (SpectroCLEAN, Sequenom, San Diego, USA) verwendet. Dazu wurden zu jeder Primer-Extensions-Reaktion mit dem Pipettierroborter Multimek 96 Automated (Beckman Coulter, Fullerton, USA) 6mg des Kationenaustauschharzes und 18μl HPLC-H₂O zupipettiert. Abschließend wurde diese Lösung 10min geschüttelt und danach abzentrifugiert (3000g, 5min).

2.2.9.6 MALDI-TOF Analyse

Nach Aufreinigung der Primer-Extensions-Produkte wurden 8-12nl (abhängig von der Viskosität) der Reaktionslösung mittels des Nanoliterspotter Spectro Point Nanoliter Pipetting SystemsTM (Sequenom, San Diego, USA) auf einen 384er Siliziumchip (Sequenom, San Diego, USA) übertragen, der mit einer kristallinen Matrix (3-Hydroxypicolinsäure) beladen war. Zusätzlich zu den analysierenden Proben wurden noch 10 weitere Matrixspots mit einem Kalibrator (Mischung von Oligonukleotiden bekannter Masse; Sequenom, San Diego, USA) versehen. Anschließend wurde der beladene Chip auf einen metallischen Probenträger überführt und die Daten mittels eines Bruker Biflex Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometer (Sequenom, San Diego, USA) erfasst. Die Genotypisierung erfolgte mit der MASSARRAY RT Software (Sequenom, San Diego, USA).

2.2.10 Genotypisierung durch die TaqMan® Allelunterscheidung

Bei einigen Polymorphismen des *TBX21* Gens war eine Genotypisierung mittels des iPLEXTM Assays nicht möglich. Die Genotypisierung dieser SNPs erfolgte daher mit dem TaqMan® Pre-Developed Assay (Applied Biosystems, Foster City, USA) im Rahmen einer Kooperation am Institut für Klinische Molekularbiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland.

53

Die hierbei verwendeten Primer wurden von Applied Biosystems (Foster City, USA) synthetisiert und sind in Tabelle 15 zusammengefasst. Die PCR-Reaktionen erfolgten in Biometra T1 Thermocyclern (Göttingen, Deutschland) und die Fluoreszenzaktivität wurde durch ein ABI PRISM® 7900 HT Sequence Detection System[™] (Applied Biosystems, Foster City, USA) dargestellt.

Tabelle 15:Primer für die TaqMan® PCR des *TBX21* Gens.

SNP ¹		Primersequenzen	
TBX21_A4704T	fwd	GCATGCTTAACTGGTTTCATTTGTCT	
	rev	GGTGACAGAGCAAGACCATGT	
TBX21_A8385T	fwd	GAGCAACTGACCCTCTGAAAGAA	
	rev	CCACAGGGATCAGCAAACACTAC	
TBX21 T7729C		Assay-on-demand HCV: 2545053	

⁽¹⁾ Eine Übersicht der *TBX21* SNP Bezeichnungen (rs Nummer vs. Position innerhalb des Gens) befindet sich im Anhang in Tabelle 58.

2.2.11 Genotypisierung mittels Restriktionsfragmentlängenpolymorphismus (RFLP)

Die Genotypisierung zweier *HLX1* Polymorphismen mittels MALDI-TOF MS hatte zu einer Abweichung vom HWE geführt (siehe 2.2.12.1). Um technische Fehler bei diesen Genotypisierungen ausschliessen zu können, wurden die Genotypisierungen dieser SNPs stichprobenartig anhand von ausgewählten Probanden aus der Studienpopulation mittels Restriktionsfragmentlängenpolymorphismus (RFLP) repliziert.

Das Prinzip des RFLPs besteht darin, dass ein Restriktionsenzym ausgewählt wird, dessen Erkennungssequenz den zu untersuchenden SNP umfasst. Da das Restriktionsenzym nur bei Vorhandensein seiner spezifischen Erkennungssequenz schneidet, entstehen somit, abhängig vom Vorhandensein des Polymorphismus geschnittene oder ungeschnittene DNA-Fragmente, die mittels AgaroseGelelektrophorese detektiert werden können. Als Kontrolle ist zudem eine konstitutive Restriktionsenzymschnittstelle notwendig, um die Aktivität des Restriktionsenzyms überprüfen zu können.

In dieser Arbeit wurden für die Polymorphismen C-1486G und T3182A des *HLX1* Gens RFLPs durchgeführt. Dafür wurde die genomische DNA ausgewählter Probanden zunächst mittels PCR (siehe Tabelle 16, Tabelle 17) amplifiziert. Um die Suche nach passenden Restriktionsenzymen zu erleichtern, wurden die Internetprogramme WatCut und Insizer verwendet. Für den SNP T3182A wurde das Restriktionsenzym VspI ausgewählt, welches nur bei Vorhandensein des Wildtyp-Allels schneidet. Im Falle von SNP C-1486G konnte kein Enzym gefunden werden, welches zwischen Wildtyp- und polymorphen Allel unterscheiden konnte. Es wurde daher mittels des PCR-Primers eine Schnittstelle generiert, so dass PstI im Falle des polymorphen Allels schneiden konnte. Die für die PCR verwendeten Primer sind in Tabelle 18 dargestellt.

Tabelle 16:Standard-PCR-Ansatz für einen RFLP bei Verwendung der NEB TaqPolymerase (New England BioLabs, Ipswich, USA).

Komponenten	Volumen	Konzentration
DNA Matrize	3,3µl	20ng/µl
dNTP-Mix	1,0µl	10mM
PCR Puffer	5,0µl	10x
Sense-Primer	0,6µl	25µM
Antisense-Primer	0,6µl	25µM
NEB Taq Polymerase	0,17µl	1U/µl
dH ₂ O	ad 50µl	

Schritte	Temperatur	Zeit
1) Aktivierung	94°C	2min
2) Denaturierung	94°C	20sec
Annealing	64,5°C (T3182A)	20sec
_	bzw.	
	56°C (C-1486G)	
Elongation	72°C	20sec
	Wiederholung von 2) 34x	
3) letzte Elongation	72°C	7min

Tabelle 17:Allgemeine Temperaturbedingungen der PCR für den RFLP bei Verwendung
der NEB Taq Polymerase (New England BioLabs, Ipswich, USA).

Tabelle 18:Verwendete Sense- und Antisense-Primer für die PCRs des RFLP.

Primer	Primersequenzen
HLX_RE-A_T3182A_fwd	GTCTGCTTGGAGTGGCCACACATTAATAGG
HLX_RE-A_T3182A_rev	CAGCAATTTGGGGACCAAGGAGC
HLX_RE-A_C-1486G_fwd	GAGAAGAAATTCTTAAAATAGATATGTCGATGCTGC
HLX_RE-A_C-1486G_rev	GTTTTGCAAGTGCCCACAACTGCAG

Nach der PCR wurden die Ansätze mit den entsprechenden Restriktionsenzymen (siehe Tabelle 19, Tabelle 20) für 3h bei 37°C verdaut und anschließend auf ein 3% Agarosegel aufgetragen, um die entstandenen Fragmentgrössen (siehe Abbildung 11, Abbildung 12) auswerten zu können.

Komponenten	Volumen	Konzentration
PCR Ansatz	10µ1	
Puffer O	2µl	10x
VspI	0,25µl	1U/µl
HPLC-H ₂ O	ad 20µ1	

Tabelle 20:	Restriktionsverdau-Ansatz für die Genotypisierung von SNP C-1486G mittels
RFLP.	

Komponenten	Volumen	Konzentration
PCR Ansatz	15µl	
Puffer 3	3µl	10x
PstI	0,25µl	1U/µl
BSA	3µl	10mg/ml
HPLC-H ₂ O	ad 30µ1	

	Genotyp			
Erwartete Fragmentgrösse	unverdaut	Homozygot Wildtyp	heterozygot	Homozygot polymorph
367bp 344bp				
189bp 155bp				
23bp				

Abbildung 11: RFLP für SNP T3182A. Erwartete Fragmentgrössen nach Verdau des PCR-Produkts mit VspI in Abhängigkeit des Genotyps von T3182A.

_	Genotyp			
Erwartete Fragmentgrösse	unverdaut	Homozygot Wildtyp	heterozygot	Homozygot polymorph
213bp 193bp				
156bp				
37bp 20bp				

Abbildung 12: RFLP für SNP C-1486G. Erwartete Fragmentgrössen nach Verdau des PCR-Produkts mit PstI in Abhängigkeit des Genotyps von C-1486G.

2.2.12 Statistische Analysen

Statistische Analysen wurden in dieser Arbeit durchgeführt, um Assoziationen zwischen einzelnen SNPs oder Haplotypen in den Genen *TBX21*, *HLX1* und *GATA3* und den atopischen Hauptphänotypen Asthma, atopische Dermatitis, Heuschnupfen, Atopie (gemessen mittels Haut-Prick-Test) und dem Gesamt-IgE-Serum-Spiegel zu ermitteln.

Die Programmierung der statistischen Analysen erfolgte durch Herrn Dr. Martin Depner mit der SAS / Genetics Software 9.1.3. Die eigene Auswertung der statistischen Berechnungen erfolgte unter seiner Anleitung und der Supervision von Prof. Michael Kabesch.

2.2.12.1 Hardy-Weinberg-Equilibrium (HWE)

Das Hardy-Weinberg-Equilibrium (HWE) ist ein mathematisches Modell zur Berechnung von Allelverteilungen in einer fiktiven, idealen Population. In dieser Population wird davon ausgegangen, dass die Allel- und Genotypfrequenzen nicht von Evolutionsfaktoren beeinflusst werden, sondern vielmehr stets in folgendem genetischen Gleichgewicht vorliegen:

$$p^2 + 2pq + q^2 = 1.$$

Dabei beschreiben p und q die Frequenzen der möglichen Allelzustände eines Genlokus (AA = dominant bzw. aa = rezessiv). Ist das Hardy-Weinberg-Equilibrium nicht erfüllt, so kennzeichnet dies eine Verletzung der Modellannahmen.

Die aus der Genotypisierung gewonnenen Daten wurden auf Abweichungen vom Hardy- Weinberg-Equilibrium mit dem Chi-Quadrat-Test untersucht. Dabei wurden die beobachteten Allelfrequenzen der Genotypisierung mit den zu erwarteten Häufigkeiten verglichen. Signifikante Abweichungen vom HWE ($p \le 0,05$) können zum einen biologische Ursachen haben, andererseits deuten sie in der Praxis meist auf ein technisches Problem bei der Genotypisierung hin. Die Überprüfung des HWE wurde in dieser Arbeit daher zur Qualitätsprüfung der Genotypisierungsergebnisse herangezogen.

2.2.12.2 Odds Ratio und Signifikanztest

Mittels der Odds Ratio (OR) kann das Chancenverhältnis zwischen zwei Gruppen abgeschätzt werden, eine bestimmte Krankheit zu entwickeln. Eine Odds Ratio von 1,0 drückt aus, dass sich das Risiko für die Ausprägung einer Krankheit zwischen zwei Gruppen mit unterschiedlicher Allelausprägung nicht unterscheidet. Eine Odds Ratio > 1 bedeutet ein erhöhtes, eine Odds Ratio < 1 ein erniedrigtes Risiko hinsichtlich der Krankheitsentstehung. Odds Ratios werden stets mit 95%igem Konfidenzintervall angegeben. Dieses Intervall besagt, dass in 95% aller Ziehungen die Odds Ratios innerhalb der Intervallgrenzen liegen würden. Demnach kann ein Ergebnis als signifikant interpretiert werden, wenn der p-Wert \leq 0,05 ist, d.h. die Fehlerwahrscheinlichkeit 5% nicht übersteigt.

2.2.12.3 Rechenmodelle zur statistischen Analyse

Der Zusammenhang zwischen Polymorphismen der Gene *TBX21*, *HLX1* und *GATA3* und bestimmten atopischen Phänotypen wurden mit verschiedenen statistischen Modellen analysiert ⁷⁶. Beim linearen Modell wird angenommen, dass die Wahrscheinlichkeit einer Krankheitsentwicklung mit wachsender Allelanzahl zu- oder abnimmt. Im Vergleich dazu werden beim allelischen Modell die Häufigkeiten der Allele zwischen Patienten und gesunden Probanden verglichen. Das dominante Modell (dominant auf dem seltenen Allel) fasst heterozygote und homozygot polymorphe Individuen zusammen und vergleicht diese mit homozygoten Trägern des Wildtyp-Allels. Dementsprechend werden im rezessiven Modell homozygote Träger des polymorphen Allels mit der Kombination der anderen beiden allelischen Zustände verglichen. Um eine Assoziation zwischen Genotyp und Phänotyp zu berechnen, wurde

für das lineare Modell der Armitage-Trend-Test verwendet. Die übrigen Modelle beziehen sich auf den Chi-Quadrat-Test. Für die Korrektur des multiplen Testens wurde eine konservative Variante der Bonferroni Korrektur gewählt, wobei die Abhängigkeit der SNPs und die Abhängigkeit der Phänotypen berücksichtigt wurden.

2.2.12.4 Haplotypanalyse

Als Haplotyp wird eine Gruppe von Polymorphismen bezeichnet, die alle gemeinsam in die nächste Generation vererbt werden. Im Vergleich zum Genotyp sind diese Polymorphismen auf einem "Einzelchromatid" lokalisiert und können nicht auf beiden Strängen des Chromosoms detektiert werden. Die Haplotyp-Frequenzen wurden mit dem EM ("expectation-maximization") Algorithmus berechnet und alle Haplotyp-Analysen wurden mit SAS/Genetics durchgeführt. Um Assoziationen zwischen atopischen Phänotypen und den Haplotypen beurteilen zu können, wurde ein Haplotyp-Regressions-Modell verwendet. Dabei wurde die Wahrscheinlichkeit mit der der Haplotyp gebildet wurde, als unabhängige Variable in das Modell eingesetzt.

2.2.12.5 Risikoanalyse

Mittels einer Risikoanalyse wurde untersucht, welchen Einfluss verschiedene Kombinationen von TBX21 und HLX1 Polymorphismen auf die Asthma Entstehung haben. Dazu wurden Polymorphismen ausgewählt, die in den Einzelanalysen eine signifikante Assoziation mit Asthma bronchiale gezeigt hatten. Diejenigen Allele, die zu einer Erhöhung des Asthmarisikos in den Analysen beigetragen hatten, wurden mit einem fiktiven Risikowert = 1 versehen. Allele, die keinen Einfluss auf die

Krankheitsentwicklung hatten, erhielten einen Risikowert = 0. In einem nächsten Schritt wurden verschiedene Kombinationen von Risikogruppen mit unterschiedlichen Risikowerten gebildet und mit einer Referenzgruppe mit einem Gesamtrisiko = 0 verglichen. Die Effekte wurden mittels logistischer Regression unter Verwendung der SAS Software (Version 9.13) berechnet.

2.2.12.6 Äquivalenztest

Der Äquivalenztest stellt eine Möglichkeit dar, um negative Assoziationen statistisch abzusichern. Da das Fehlen einer signifikant positiven Assoziation nicht das Fehlen einer jeglichen Assoziation beweist, wurde in dieser Arbeit ein Äquivalenztest durchgeführt, um die Null-Hypothese H_0 "Assoziation ist vorhanden" gegen die Hypothese H_1 "Assoziation ist nicht vorhanden" zu testen. Äquivalenz liegt per Definition vor, wenn die Odds Ratio ρ in einer definierten, mit einer gewissen Fehlerwahrscheinlichkeit versehenen Indifferenzzone liegt.

$$H_0: \rho \le 1/(1+\varepsilon) \text{ or } \rho \ge (1+\varepsilon) \text{ und } H_1: 1/(1+\varepsilon) < \rho < (1+\varepsilon)$$

wobei ρ die Odds Ratio und ε einen definierten Wert für den Bereich der Indifferenzzone widerspiegeln⁷⁷.

Beruhend auf bisherigen Publikationen wurden in dieser Arbeit als Schwellenwert von ρ eine Odds Ratio von 0,8 oder 1,25 und für ε ein Wert von 0,25 definiert. Die Signifikanz wird bei diesem Test nicht durch einen p-Wert definiert, sondern dadurch, dass die kalkulierte Testgrösse innerhalb eines bestimmten Intervalls [C1, C2] liegt. Der Äquivalenztest fällt genau dann positiv aus, wenn eine zu berechnende Testgrösse X in

diesen Bereich fällt, während im Fall von $X \le C1(s)$ oder $X \ge C2(s)$ die Null-Hypothese einer signifikanten Assoziation angenommen werden muss. Unter http://www.zimannheim.de/wktsheq ist ein SAS Verfahren für diesen Test (*bi2st*) erhältlich.

2.2.13 In silico Analyse von Transkriptionsfaktorbindestellen

Polymorphismen, die im Promotorbereich oder in intronischen Bereichen eines Gens lokalisiert sind, können generell einen Einfluss auf die Bindung von Transkriptionsfaktoren haben und damit die Expression und Funktion eines Gens verändern. Für die Analyse von Transkriptionsfaktorbindungen in Abhängigkeit vom vorliegenden Genotyp in diesen Bereichen wurden die Internetprogramme MatInspector, Version 7.0⁷⁸ und Alibaba 2.1⁷⁹ verwendet.

2.2.14 Electrophoretic Mobility Shift Assay (EMSA)

Electrophoretic Mobility Shift Assays (EMSA) wurden durchgeführt, um DNA-Protein Interaktionen zu untersuchen. Diese Methode basiert auf der Tatsache, dass DNA-Protein-Komplexe in einem nicht-denaturierenden Polyacrylamidgel langsamer wandern als ungebundene, freie DNA.

In dieser Arbeit wurden EMSAs angewendet, um die Bindung von Transkriptionsfaktoren an den *HLX1* Promotor in Abhängigkeit vom vorliegenden Genotyp zu untersuchen.

62

Bei dieser Technik werden zunächst doppelsträngige Oligonukleotide (30-40bp), die die interessierende Promotorsequenz enthalten, radioaktiv mit P³² gelabelt und anschließend mit Nuklearextrakt, der eine Vielzahl von Kernproteinen, darunter auch Transkriptionsfaktoren enthält, inkubiert. Bindet nun ein Transkriptionsfaktor aus dem Nuklearextrakt an die vorgelegte Promotorsequenz so können die gebildeten DNA-Protein-Komplexe in einem nicht-denaturierenden Polyacrylamidgel detektiert werden, da ein Komplex aus DNA und Protein langsamer wandert als ungebundene DNA. Um das gebundene Protein zu identifizieren, werden spezifische Antikörper zugesetzt. Findet eine Bindung zwischen dem Protein und dem Antikörper statt, so entsteht ein noch grösserer Komplex. Da dieser Komplex bestehend aus DNA, Protein und Antikörper ein noch langsameres Laufverhalten aufweist als der DNA-Protein-Komplex an sich, wird dieses Phänomen auch als "Super-Shiff" bezeichnet.

Abbildung 13: Schematische Darstellung eines Electrophoretic Mobility Shift Assays (EMSA). 1: Das Auftragen eines mit P³² *gelabelten* doppelsträngigen Oligonukleotids auf einem nichtdenaturierenden Polyacrylamidgel liefert keine detektierbare Bande, da das Oligo aufgrund seiner geringen Größe (30-40bp) aus dem Gel herausläuft.

2: Die Inkubation des Oligos mit Nuklearextrakt führt zu einem DNA-Protein-Komplex und liefert eine detektierbare Bande auf einem nicht-denaturierenden Polyacrylamidgel.

3: Wird ein für das Protein spezifischer Antikörper zugesetzt, so entsteht ein sogenannter "*Super-Shift*", da durch die Bindung des Antikörpers an das Protein ein noch grösserer Komplex mit noch langsameren Laufverhalten entsteht

(in modifizierter Form aus Geoffrey M. Cooper, The Cell: A molecular approach, Second Edition, Boston University, ASM Press Washington D.C. Sinauer Associates, Inc. Sunderland, Massachusetts⁸⁰).

Um die Spezifität der Bindung zwischen Oligonukleotid und Protein nachzuweisen, werden "*Competition*-Experimente" durchgeführt. Dabei wird zunächst das *ungelabelte* Oligonukleotid in 100fachem molaren Überschuss mit dem Nuklearextrakt inkubiert bevor das *gelabelte* Oligonukleotid zugesetzt wird. Im Falle einer spezifischen Bindung zwischen DNA und Protein werden alle potentiellen Bindungsstellen des Transkriptionsfaktors bereits durch das *ungelabelte* Oligonukleotid abgesättigt. Dadurch kann eine Bindung zwischen *gelabelten* Oligonukleotid und Protein nicht mehr
stattfinden und es kann kein DNA-Protein-Komplex autoradiographisch detektiert werden.

2.2.14.1 Herstellung von Nuklearextrakt

Zur Herstellung des benötigten Nuklearextrakts wurden Jurkat T-Zellen verwendet und 24h vor Herstellung des Nuklearextrakts zu 300.000 Zellen/ml gesplittet. Sowohl für den unstimulierten als auch für den stimulierten Ansatz wurden 14 x 10⁶ Zellen abzentrifugiert (300g, 10min, 4°C) und in 7ml kaltem RPMI 1640 Glutamax resuspendiert. Anschließend wurden die Zellen in Babyflaschen (25cm²) ausgesät und entweder unstimuliert belassen oder mit PMA (50ng/ml)/Ionomycin (1µM) für 3h inkubiert. Nach der Stimulation erfolgten alle weiteren Schritte auf Eis. Die Zellen wurden zunächst dreimal mit 5ml kaltem PBS gewaschen und abzentrifugiert (300g, 10min, 4°C). Anschließend wurde das Zellpellet in 1ml kaltem PBS aufgenommen und das Zellgemisch in ein 1,5ml Eppendorfgefäß überführt und erneut abzentrifugiert (14000g, 2min, 4°C). Um die Membran zu permeabilisieren, wurde das Zellpellet in 120µl Puffer A (10mM HEPES, 3mM Magnesiumchlorid, 40mM Kaliumchlorid, 1mM DTT, 5% Glycerol, 0,2% NP-40, 1mM PMSF, 10µg/ml Aprotinin,10µg/ml Leupeptin, 10µg/ml Antipain, 10µg/ml Pepstatin, 1mM Benzamidin, 1mM Natriumorthovanadat, 1mM Natriumfluorid, 5mM β-Glycerophosphat) aufgenommen. Nach 5minütiger Inkubation wurde der Permeabilitätszustand der Zellen (5µl) mittels einer Färbung mit Trypanblau (10µl) unter dem Lichtmikroskop überprüft. In einem weiteren Schritt wurden die Zellen erneut zentrifugiert (14000g, 2min, 4°C), um die Zellkerne (Pellet) von sämtlichen anderen Zellkomponenten (Überstand) zu trennen. Zur Freisetzung der Proteine aus den Zellkernen wurde das verbleibende Pellet in 60-100µl Puffer C

(Protease- und Phosphatase Inhibitoren wie in Puffer A, zudem 20mM HEPES, 1,5mM Magnesiumchlorid, 420mM Natriumchlorid, 0,2mM EDTA, 1mM DTT, 25% Glycerol) aufgenommen und inkubiert (30min, auf Eis). Nach einem weiteren Zentrifugationsschritt (14000g, 20min, 4°C) wurde der Nuklearextrakt (Überstand) zu je 10µl aliquotiert, in flüssigem Stickstoff Schock-gefroren und bei -80°C bis zur weiteren Verwendung gelagert.

2.2.14.2 Proteinbestimmung von Nuklearextrakt

Die Proteinkonzentration des Nuklearextrakts wurde mit dem BCA Protein Assay von Pierce (Rockford, USA) bestimmt.

2.2.14.3 Herstellung von doppelsträngigen Oligonukleotiden

Die einzelsträngigen Oligonukleotide wurden von Metabion (Martinsried, Deutschland) bezogen und mit TE-Puffer (pH 8,0) auf eine Konzentration von 1µg/µl eingestellt. Es wurden je 10µl des einzelsträngigen Sense- und des Antisense-Oligonukleotids mit 180µl Annealingpuffer (TE pH 8,0; 100mM NaCl) versetzt und 5min in der Mikrowelle gekocht. Anschließend wurde der Ansatz bei Raumtemperatur auf 37°C abgekühlt, um das *Annealing* der Oligonukleotide zu gewährleisten. Die doppelsträngigen Oligonukleotide wurden dann bis zur weiteren Aufreinigung bei 4°C gelagert.

Alle verwendeten einzelsträngigen Oligonukleotide sind in nachfolgender Tabelle 21 zusammengefasst.

Oligonukleotid	Oligonukleotid Sequenz (5'-3')
SP Consensus Sequenz fwd	ATTCGATCGGGGGGGGGGGGGGGG
SP Consensus Sequenz rev	GCTCGCCCCGCCCCGATCGAAT
HLX1 C-1407 fwd	ACCACGCAGCTCCTCCTGCAACCAGGCCCAA
HLX1 C-1407 rev	TTGGGCCTGGTTGCAGGAGGAGCTGCGTGGT
HLX1 -1407T fwd	ACCACGCAGCTCCTCTTGCAACCAGGCCCAA
HLX1 -1407T rev	TTGGGCCTGGTTGCAAGAGGAGCTGCGTGGT
HLX1 C-742 fwd	GCTCCTGTGATCAACCCTCCTTGCCCCGTGG
HLX1 C-742 rev	CCACGGGGCAAGGAGGGTTGATCACAGGAGC
HLX1 -742G fwd	GCTCCTGTGATCAACGCTCCTTGCCCCGTGG
HLX1 -742G rev	CCACGGGGCAAGGAGCGTTGATCACAGGAGC

Tabelle 21:Verwendete einzelsträngige Oligonukleotide für die Annealingreaktion desEMSAs.

2.2.14.4 Reinigung von doppelsträngigen Oligonukleotiden

Zur Aufreinigung der doppelsträngigen Oligonukleotide wurde ein 15%iges Polyacrylamidgel, bestehend aus 30ml 30%igem Polyacrylamid (19:1, Biorad, Hercules, USA), 12ml 5x TBE, 18ml HPLC-H₂O, 30µl TEMED und 450µl 10%igen APS hergestellt. 30µl TEMED wurden in ein extra Eppendorfgefäß pipettiert und mit 1ml der 15%igen Gel-Lösung vermischt. Dieses Aliquot wurde zur Abdichtung der Glasplatten verwendet. Erst nachdem dieses Aliquot auspolymerisiert war, wurde das restliche Gel zwischen die Platten gegossen. Zum Equilibrieren aller Gelkomponenten wurde das Gel vor dem Auftragen der Proben für 20min bei 18mA und 4°C in 600ml 0,5x TBE-Puffer laufen gelassen.

Anschließend wurden zu jedem Ansatz doppelsträngiger Oligonukleotide (siehe 2.2.14.3) 40µl 80% Glycerol gegeben. Die Proben wurden gemischt und je 120µl wurden in eine Tasche des 15% Gels pipettiert. Um die Laufgeschwindigkeit der Proben abschätzen zu können, wurde zudem in einer Tasche des Gels 50µl Längenstandard aufgetragen. 3-4 Stunden später wurde das Gel abgebaut und die doppelsträngigen Oligonukleotide wurden unter UV-Licht mittels einer Chromatographie Platte

(Whatman, Kent, UK) detektiert und aus dem Gel ausgeschnitten. Anschließend wurden die Gelstückchen mit dem Stempel einer 1ml Einwegspritze (BD, Franklin Lakes, USA) zerdrückt. Zur Elution der Oligonukleotide aus dem Gel wurde der Freeze'n Squeeze Kit (Biorad, Hercules, USA) verwendet. Dazu wurde das zerstückelte Gel in ein Säulchen überführt und 5min bei -20°C inkubiert. Anschließend wurden die Säulchen abzentrifugiert (13000rpm, 3min). Zudem wurden 100µl TE-Puffer nochmals auf das Säulchen pipettiert, gefolgt von einem weiteren Zentrifugationsschritt (13000rpm, 3min). Die Eluate beider Zentrifugationsschritte wurden bei 4°C gelagert. Um die gesamte Probe aus dem Säulchen zu eluieren wurden weitere 200µl TE-Puffer auf das Säulchen pipettiert und das Säulchen für 2h bei 37°C unter Schütteln inkubiert. Nach einer weiteren Zentrifugation (13000rpm, 10min) wurden alle Eluate vereint und mit einem Volumen von 0,3 NaAc (3M, pH 5,2) und 3 Volumen an eiskaltem 100% Ethanol gefällt. Dazu wurden die Proben über Nacht bei -20°C gelagert. Maximal 48h später wurden die Proben zentrifugiert (13000rpm, 30min, 4°C), mit 1ml 70% Ethanol gewaschen und die Pellets dann luftgetrocknet. Anschließend wurden die Pellets in 10µl TE-Puffer aufgenommen und die Konzentration in einem Eppendorf BioPhotometer (siehe 2.2.3) bestimmt. In einem letzten Schritt wurden die doppelsträngigen Oligonukleptide auf eine Konzentration von 50ng/µl eingestellt, aliquotiert und bei -20°C gelagert. Zur Qualitätskontrolle wurden zudem noch 100ng Probe auf ein 3%iges Agarosegel (siehe 2.2.4) aufgetragen.

2.2.14.5 End-*Labeling* von doppelsträngigen Oligonukleotiden mit P³²

Für die Bindereaktion des γ [³²P]-ATP an die aufgereingten doppelsträngigen Oligonukleotide (siehe 2.2.14.3) wurde untenstehender Ansatz (Tabelle 22) 15min bei 37°C inkubiert.

 Tabelle 22:
 Ansatz f
 ür das End-Labeling der doppelstr
 ängigen EMSA-Oligos mit P³².

Komponenten	Volumen	Konzentration
Doppelsträngiges Oligonukleotid	2µl	(50ng/µl)
T4 Polynukleotid Kinase Puffer	2,5µl	10x
T4 Polynukleotid Kinase	2µ1	10U/µl
γ [³² P]-ATP	5µl	(250µCi)
HPLC-H ₂ O	ad 25µl	

Um die Aktivität der T4 Polynukleotid Kinase (New England Biolabs, Ipswich, USA) zu stoppen wurde der Ansatz mit Hitze inaktiviert (68°C, 10min). Anschließend wurden 25µl HPLC-H₂O zum Reaktionsansatz gegeben. Freie Radioaktivität wurde durch Mini-Quick-Spin Oligo Columns (Roche, Mannheim, Deutschland) entfernt. Dazu wurde zunächst die Matrix der Seqhadex Säulchen resuspendiert und überschüssiger Puffer abzentrifugiert (1000g, 1min). Der Reaktionsansatz wurde anschließend sofort auf die Säulchen pipettiert und zentrifugiert (1000g, 4min). Das Eluat wurde zu 25µl aliquotiert und bei -20°C gelagert. Um die Ausbeute des *Labelings* zu bestimmen, wurden 5ml Scintillationsflüssigkeit mit 1µl Probe versetzt und das Gemisch in einem Beta Counter LS 6000IC (Beckman Coulter, Fullerton, USA) vermessen.

2.2.14.6 Bindereaktion

Die Pufferbedingungen für die Bindereaktion (20µl-Ansätze) zwischen Protein und DNA sind in Tabelle 23 zusammengefasst.

bene 25:	- Fullefoedingungen für die Bindereaktion eines EMSAS.	
	Komponenten	Endkonzentration
	Nuklearextrakt	5µg
	Tris HCl (pH 8,0)	10mM
	EDTA (0,5M)	1mM
	β-Mercaptoethanol	0,1mM
	NaCl (1M)	80mM
	Glycerol	4%
	Poly(dI-dC)-Poly(dI-dC)	1µg/reaction

 Tabelle 23:
 Pufferbedingungen f
 ür die Bindereaktion eines EMSAs.

Bei *Super-Shift*-Experimenten wurden zusätzlich 4µg des entsprechenden Antikörpers zugesetzt, während bei den *Competition*-Experimenten die *ungelabelte* Probe in jeweils 100fachen molaren Überschuß mit dem Reaktionsansatz für 30min auf Eis inkubiert wurde. In beiden Fällen wurden anschließend 1µl der *gelabelten* Probe dem Reaktionsansatz zugefügt. Nach einer erneuten Inkubation (30min, auf Eis) wurden die DNA-Protein-Komplexe in einem 5% nicht-denaturierenden Polyacrylamidgel aufgelöst.

2.2.14.7 Polyacrylamid-Gelelektrophorese (PAGE)

Für die Polyacrylamid-Gelelektrophorese wurde ein 5% nicht-denaturierendes Polyacrylamidgel verwendet. Dieses wurde einen Tag vor der Bindereaktion gegossen und bestand aus den Komponenten, die in Tabelle 24 beschrieben sind.

· .	Alisatz zulli Olebeli e	filles 5 /orgen r oryaery	lannugers fur den EMS
	Komponenten	Volumen	Konzentration
	TBE	6ml	5x
	Glycerol	3ml	80%
	Polyacrylamid	10ml	30% (19:1, filtriert)
	TEMED	30µl	10mg/ml
	APS	450µl	10%
	HPLC-H ₂ O	41ml	

 Tabelle 24:
 Ansatz zum Gießen eines 5%igen Polyacrylamidgels für den EMSA.

Die Ansätze der Bindereaktion wurden dann in die Taschen des Gels pipettiert und das Gel wurde für 6-8h bei 4°C und 18mA in 0,5x TBE Puffer laufen gelassen. Anschließend wurde das Gel zwischen 2 Whatman Papieren bei 80°C für 60min in einem Geltrockner (Biorad, Hercelus, USA) getrocknet. Nach der Trocknung wurde auf das Gel ein Film (Amersham, Piscataway, USA) aufgelegt und in einer Kassette (Kodak, Biomax MS, Amersham, Piscataway, USA) bei -80°C unterschiedlich lang (je nach Intensität) belichtet.

2.2.15 Luciferase-Reportergen-Analysen

Genetische Varianten, die im Promotorbereich eines Gens liegen, können potentiell einen Einfluss auf die Regulation der Transkription ausüben. In dieser Arbeit wurden daher Luciferase-Reportergen-Analysen durchgeführt, um die Auswirkung von Promotorpolymorphismen in den Genen *TBX21* und *HLX1* auf deren Genexpression in Jurkat T-Zellen zu untersuchen.

Um die Effekte der *HLX1* Promotorpolymorphismen abschätzen zu können, wurden die Konstrukte wie im Folgenden unter 2.2.15.1 beschrieben, generiert.

Promotorkonstrukte des *TBX21* Gens sind, wenn nicht anders erwähnt, von Herrn Dr. Peters hergestellt worden. In der vorliegenden Arbeit wurden diese Konstrukte als *Templates* für Mutagenese-Reaktionen (siehe 2.2.15.2) eingesetzt, um *TBX21* Promotorkonstrukte mit weiteren Genotypen zu erzeugen.

2.2.15.1 Herstellung von HLX1 Promotorkonstrukten

Zur Herstellung der benötigten Luciferase-Reportergen-Plasmide wurde der kommerziell erhältliche pGL3-Basic Vektor (Promega, Madison, USA, Abbildung 14) verwendet. Dieser Vektor besitzt ein Luciferase-Gen (aus dem Glühwürmchen), aber es fehlen sowohl ein eukaryontischer Promotor als auch *Enhancer* Sequenzen. Daher kann die Expression der Luciferase erst nach Einfügen eines Promotors erfolgen.

Abbildung 14: Vektorkarte des pGL3-Basic Vektors⁸¹.

Die *"multiple cloning site"* des pGL3-Basic Vektors mit acht verschiedenen Restriktionsschnittstellen (KpnI, SacI, MluI, NheI, SmaI, XhoI, BglII, HindIII) vor dem Luciferase-Gen erlaubt eine präzise Insertion des gewünschten Promotors.

Für die Klonierung des *HLX1* Promotorkonstrukts wurden die Restriktionsenzyme XhoI und HindIII ausgewählt. Mittels einer PCR wurden 1764bp des *HLX1* Promotors amplifiziert. Da eine natürliche XhoI-Schnittstelle am 5'-Ende der *HLX1* Promotorsequenz vorhanden war, musste nur die HindIII-Schnittstelle mittels eines mutierten Antisense-Primers eingebaut werden. In den nachstehenden Tabellen sind die verwendeten Primer (Tabelle 25), der PCR-Ansatz (Tabelle 26) sowie die Temperaturbedingungen (Tabelle 27) für die PCR zur *HLX1* Promotoramplifizierung aufgelistet.

Primer	Sequenz	
HLX_653fwd	CCCTGAACTCGAGATAGGCATGGC	
HLX_2416rev	CCGGGGTAAGCTTCGCGGCTG	

Tabelle 26:Komponenten einesPCR-AnsatzeszurAmplifizierungdes*HLX1*Promotorbereichs.

Komponenten	Volumen	Konzentration
DNA	3,3µl	20ng/µl
dNTP-Mix (Long Range,	1,75µl	je10mM
Peqlab)		
Expand long Template	5µl	10x
PCR System Puffer 1		
(Roche)		
HLX_653fwd	0,6µl	25μΜ
HLX_2416rev	0,6µl	25μΜ
Platinum® Taq High	0,17µl	1U/µl
Fidelity		
dH ₂ O	ad 50µl	

Tabelle 27:AllgemeineTemperaturbedingungenzurAmplifizierungdes*HLX1*Promotorbereichs.

Schritte	Temperatur	Zeit
1) Aktivierung	94°C	2min
2) Denaturierung	94°C	30sec
Annealing	60,7°C	30sec
Elongation	68°C	2min
	Wiederholung von 2) 39x	
3) Letzte Elongation	68°C	7min

Da unter diesen PCR-Bedingungen mehrere PCR-Produkte entstanden sind, wurde das DNA-Fragment mit der richtigen Größe (1764bp) aus dem Agarosegel ausgeschnitten und mit dem PCR Purification Kit (Qiagen, Hilden, Deutschland) aus dem Gel aufgereinigt (siehe 2.2.5). Anschließend wurde sowohl mit dem pGL3-Basic Vektor als auch mit dem aufgereinigten PCR-Produkt ein Doppelverdau mit den Enzymen XhoI und HindIII durchgeführt (siehe Tabelle 28), um für die Ligation zwischen Vektor und Insert kompatible Enden zu erzeugen.

Tabelle 28:Ansatz für einen Doppel-Restriktionsverdau mit den Restriktionsenzymen XhoIund HindIII.

Komponenten ¹	Volumen	Konzentration
DNA		
pGL3-Basic Vektor	12µl	500ng/µl
bzw.		
PCR-Produkt	20µl	33ng/µl
Puffer R	3µ1	10x
XhoI	1µl	1U/µl
HindIII	1µl	1U/µl
HPLC-H ₂ O	ad 30µl	

(1) Der pGL3-Basic Vektor und das PCR-Produkt wurden in zwei getrennten Ansätzen mit je 30µl Endvolumen bei 37°C über Nacht verdaut.

Die beiden Doppelverdau-Ansätze wurden bei 37°C über Nacht inkubiert. Anschließend wurden die Restriktionsenzyme bei 80°C für 20min inaktiviert und beide Restriktionsansätze mit dem PCR Purification Kit (Qiagen, Hilden, Deutschland) aufgereinigt. Die Ligation des linearisierten Vektors und des geschnittenen PCR-Produkts erfolgte in einem Verhältnis von 1:8 mit dem T4 DNA Ligase Kit (New England Biolabs, Ipswich, USA) bei 16°C über Nacht.

Mittels einer Sequenzierreaktion (siehe 2.2.8) wurde die Sequenz der *HLX1* Promotorkonstrukte auf Richtigkeit überprüft. Die hierfür verwendeten Sequenzierprimer sind in Tabelle 29 aufgelistet.

Primer	Sequenz
RVprimer3	CTAGCAAAATAGGCTGTCCC
HLX_1014fwd	GACCACCACGCAGCTCCTCC
HLX_1431fwd	GGACGCGGTGCTGAGTTGG
GLprimer2	CTTTATGTTTTTGGCGTCTTCCA

 Tabelle 29:
 Verwendete Primer zur Sequenzierung der HLX1 Promotorkonstrukte.

Die Sequenzierung der *HLX1* Promotorkonstrukte hatte gezeigt, dass alle geprüften Klone spontane Mutationen enthielten, die aufgrund von Lesefehlern der verwendeten Platinum® Taq High Fidelity Polymerase während der PCR Amplifizierung entstanden sind. Da diese Punktmutationen an Positionen lagen, bei denen eine Mutagenese-Reaktion (siehe 2.2.15.2) schwierig war, wurde eine andere Strategie gewählt, um ein positives *HLX1* Wildtyp-Promotorkonstrukt zu erzeugen (siehe Abbildung 15).

Abbildung 15: Strategie zur Herstellung des *HLX1* Wildtyp-Promotorkonstrukts. Hierbei wurden zwei Klone, die Punktmutationen an verschiedenen Stellen aufwiesen mit den Restriktionsenzymen XhoI und PstI verdaut und in einer Ligation so miteinander kombiniert, dass ein Klon ohne Mutation entstand.

Für diese Strategie wurden zwei Klone ausgewählt, die jeweils eine Mutation aufwiesen, jedoch an zwei unterschiedlichen Stellen. In einem Doppelverdau mit den Enzymen XhoI und PstI (analog zu Tabelle 28) wurden die beiden Klone, getrennt voneinander verdaut und anschließend auf ein 1.5% Agarose-Gel aufgetragen. Durch den Verdau wurden die Klone so geschnitten, dass bei beiden Klonen jeweils zwei Fragmente entstanden sind, wobei aber nur jeweils eines der beiden Fragmente eines Klons eine Mutation enthielt. Zudem war der Verdau so konstruiert, dass anhand der Grösse der entstandenen Fragmente unterschieden werden konnte, in welchem Fragment sich die Mutation befand. Dadurch konnte das mutationsfreie Fragment eines jeden Klons mit dem PCR Purification Kit (Qiagen, Hilden, Deutschland) aus dem Gel aufgereingt werden. Anschließend wurde mit dem T4 DNA Ligase Kit (New England Biolabs, Ipswich, USA) das mutationsfreie Fragment von Klon 1 mit dem mutationsfreien Fragment von Klon 2 in einer Ligationsreaktion so miteinander kombiniert, dass letztlich ein Klon entstand, der keine Mutation mehr enthielt und dem HLX1 Wildtyp-Promotorkonstrukt entsprach. Die Richtigkeit der Sequenz des HLX1 Wildtyp-Promotorkonstrukts wurde in einer Sequenzierreaktion (siehe 2.2.8) mit den Primern aus Tabelle 29 überprüft.

2.2.15.2 Mutagenese-Reaktion

Das unter 2.2.15.1 hergestellte *HLX1* Promotorkonstrukt entsprach der Sequenz des *HLX1* Wildtyp-Promotors. Um die *HLX1* Promotoraktivität in Abhängigkeit der *HLX1* Promotorpolymorphismen bestimmen zu können, wurden mittels ortsspezifischer Mutagenese die polymorphen Allele (-1407T und/oder -742G) in das *HLX1* Wildtyp-

Promotorkonstrukt eingefügt. Analog dazu wurden mit dieser Technik auch die polymorphen *TBX21* Promotorkonstrukte hergestellt (-1514C und/oder -999A).

Für die Mutagenese-Reaktion wurde der Quik Change® II Site-directed Mutagenesis Kit (Stratagene, La Jolla, USA) verwendet. Die spezifischen Mutagenese-Primer für die *HLX1* als auch für die *TBX21* Konstrukte sind in Tabelle 30 zusammengefasst.

Tabelle 30:Verwendete Mutagenese-Primer für die *HLX1* und *TBX21* Konstrukte.

Primer	Sequenz
HLX_C-1407T_MG	CCACGCAGCTCCTCTTGCAACCAGGCCCAAG
HLX_C-742G_2_MG	GAAAGCTCCTGTGATCAACGCTCCTTGCCCCGTGG
TBX_G-999A_3_MG	GTGAGGTTGACTTTCAAGCAAGGAAAATGACTTGCC

Ein Standard-Ansatz als auch die Temperaturbedingungen für die Mutagenese-Reaktion sind in Tabelle 31 und Tabelle 32 dargestellt.

Tabene 51. Standard-Ansatz für eine Midtagenese-Reaktion.		
Template-Grösse	<5kb	>5kb
10x QuickChange Multi	2,5µl	2,5µl
Reaktionspuffer		
Quick Solution		0,75µl
ds-DNA Template	xµl (50ng)	xµl (100ng)
100ng Mutagenese-Primer	xμl	xμl
dNTP Mix	1 µl	1µl
Quick change Multi	1µl	1µl
enzyme blend		
HPLC-H ₂ O	ad 25µl	ad 25µl

 Tabelle 31:
 Standard-Ansatz f
 ür eine Mutagenese-Reaktion.

Tabelle 32: Allgemeine Temperaturbedingungen für eine Mutagenese-Reaktion.

Schritt	Temperatur	Zeit
1) Aktivierung	95°C	1min
2) Denaturierung	95°C	1min
Annealing	55°C	1min
Elongation	65°C	2min/kb
_	Wiederholung von 2) 29x	

Um die Ausgangs-DNA, die als *Template* für die Reaktion verwendet wurde, aus dem Reaktionsansatz zu entfernen, wurde der Ansatz mit 1µl Endonuklease DpnI (10U/µl) für 1h bei 37°C verdaut. Anschließend erfolgte die Transformation der mutierten DNA. Hierfür wurden pro Mutagenese-Reaktion 45µl XL10-Gold ultra-kompetente Bakterien in vorgekühlte Polypropylen-Tubes (Falcon 2059, Falcon, Bedford, USA) pipettiert und für 10min mit 2µl β-Mercaptoethanol auf Eis inkubiert. Im nächsten Schritt wurden 3µl des mit DpnI-verdauten Reaktionansatzes zugesetzt und die Bakterien erneut 30min auf Eis inkubiert. Es folgte dann der Hitzeschock bei 42°C für 30sec, gefolgt von einer 2minütigen Inkubation auf Eis. Anschließend wurde 0,5ml NZY⁺ Medium zugesetzt und die Bakterien für 1h bei 37°C geschüttelt. Nach dieser Erholungsphase wurden die Bakterien auf Ampicillin-haltigen Agarplatten (50mg/ml) ausplattiert.

Für die *HLX1* Konstrukte wurde der Erfolg der durchgeführten Mutagenese-Reaktion mittels einer Sequenzierreaktion (siehe 2.2.8) mit dem Primern aus Tabelle 29 überprüft. Zur Überprüfung der Richtigkeit der *TBX21* Promotorkonstrukte wurden die Primer aus Tabelle 33 verwendet.

	1 0
Primer	Sequenz
RVprimer3	CTAGCAAAATAGGCTGTCCC
TBX_20887fwd	GGGGATGAATCACTTGACC
TBX_21391fwd	CCCCTAAGGGTGAAGCC
TBX_21891fwd	CGGATAGTTTTCATCATAAAAGG
TBX_22369fwd	GTGCGCTTTAAGGAACATTTCC
GLprimer2	CTTTATGTTTTTGGCGTCTTCCA

 Tabelle 33:
 Verwendete Primer zur Sequenzierung der TBX21 Promotorkonstrukte.

2.2.15.3 Durchführung von Luciferase-Reportergen-Analysen

Die Luciferase-Reportergen-Analysen wurden in Kooperation mit Dr. Philip Rosenstiel, am Institut für Klinische Molekularbiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Deutschland durchgeführt.

Dafür wurden Jurkat T-Zellen in 96er Platten mit einer Dichte von 8 x 10⁴/ well ausgesät. Die Transfektion erfolgte 24h später, wobei 35ng der *HLX1*- bzw. *TBX21*-Promotorkonstrukte mit 15ng pRL-TK Renilla Reporter Plasmid (Promega, Madison, USA) cotransfiziert wurden. Als Transfektionsreagenz wurde Xtreme Gene (Roche, Mannheim, Deutschland) laut Herstellerangaben verwendet. 8h nach Transfekion wurde das Medium gewechselt und die Zellen entweder mit Ionomycin (2 bzw. 50ng/ml) versetzt oder unstimuliert belassen und für weitere 18h inkubiert. Anschließend wurden die Zellen mit PBS gewaschen und in 1x Lysepuffer (Promega, Madison, USA) lysiert. Die Luciferase-Aktivität wurde den Herstellerangaben (Promega, Madison, USA) entsprechend in einem Genios Pro Luminometer (Tecan, Bubendorf, Schweiz) gemessen.

2.2.16 Biolumineszenz-Resonanz-Energie-Transfer (BRET)-Analysen

Biolumineszenz-Resonanz-Energie-Transfer (BRET)-Analysen bieten eine Möglichkeit um Protein-Protein-Interaktionen in lebenden Zellen zu untersuchen. Diese Technik beruht auf dem Förster-Resonanz-Energietransfer, bei dem Energie von einer Lumineszenzquelle (Donor) auf einen Fluoreszenzfarbstoff (Akzeptor) übertragen wird. Voraussetzung für den Energietransfer ist die räumliche Nähe zwischen Donor und Akzeptor innerhalb des Försterradius (100Å). Als Donor wurde in dieser Arbeit das Renilla Luciferasegen (hRluc) und als Akzeptor die gelbe Variante des GFP, nämlich das Venus-Yellow-fluorescent Protein (Venus) verwendet. Da das Interaktionsverhalten zwischen TBX21 und HLX1 untersucht werden sollte, wurden Fusionsproteine hergestellt, bei denen die Proteine entweder mit dem Luciferase- oder mit dem Venus-*Tag* versehen waren.

Interagieren nun TBX21 und HLX1 miteinander, d.h. die beiden Proteine sind weniger als 100Å (innerhalb des Försterradius) voneinander entfernt, so kommen auch die beiden BRET-Partner in räumliche Nähe, so dass ein Energietransfer zwischen der Luciferase und dem Venus nach Zugabe des Luciferasesubtrats (Coelentarazin) stattfinden kann. In diesem Fall kann das Emissionsmaximum des Akzeptors (Venus) bei 535nm gemessen werden. Findet keine Interaktion zwischen TBX21 und HLX1 statt, so erfolgt auch kein Energietransfer und die Luciferase emittiert Energie mit einem Emissionsmaximum von 475nm (siehe Abbildung 16).

Abbildung 16: Biolumineszenz-Resonanz-Energie-Transfer (BRET)-Analysen zur Detektion von Protein-Protein-Interaktionen (modifiziert nach Counturier et al.⁸²).

2.2.16.1 Herstellung von BRET-Konstrukten mittels der Gateway®-Technologie

Zur Herstellung der Fusionsproteine für die BRET-Assays wurde die Gateway®-Technologie von Invitrogen (Carlsbad, USA) verwendet. Diese Methode beruht auf den Rekombinationseigenschaften des Bakteriophagen Lambda, wodurch der Bakteriophage in der Lage ist sein Genom in das Wirtsgenom zu integrieren. Diese reversible Integration wird durch "site-specific attachment sites", kurz att-Sites ermöglicht. Die Gateway®-Technologie bedient sich nun dieses Phänomens, wodurch eine hocheffiziente Rekombination, in vitro unabhängig von vorhandenen Restriktionsschnittstellen, ermöglicht wird. Für ein erfolgreiches Klonieren werden insgesamt drei Reaktionen benötigt:

1. mittels einer PCR wird die zu klonierende cDNA an ihren Enden mit *attB-Sites* versehen

2. BP-Reaktion: unter Verwendung des BP ClonaseTM II-Mix rekombinieren die *att*B-*Sites* der cDNA spezifisch mit den *att*P-*Sites* eines Donorvektors wobei ein EntryKlon entsteht (siehe Abbildung 17).

Abbildung 17: Übersicht der BP-Reaktion. Die *attB-Sites* eines PCR-Produkts rekombinieren mit den *attP-Sites* eines Donorvektors, wobei ein EntryKlon mit *attL-Sites* entsteht. Katalysiert wird diese Reaktion durch den BP ClonaseTM II Enzym-Mix (in modifizierter Form nach Gateway® Technology with ClonaseTM II Manual, Invitrogen, Carlsbad, USA⁸³).

Als Donorvektor wurde in der hier vorliegenden Arbeit der Vektor pDONRTM221 (Invitrogen, Carlsbad, USA) verwendet (siehe Abbildung 18).

Abbildung 18: Vektorkarte des Donorvektors pDONRTM221⁸³.

Die Selektion positiver EntryKlone erfolgt dabei durch zwei unterschiedliche Strategien. Zum einen wird bei der BP-Reaktion das im Donorvektor enthaltene *ccdB*-Gen gegen das PCR-Produkt ausgetauscht. Da es sich bei dem *ccdB*-Gen um ein Selbstmordgen handelt, wirken diejenigen Donorvektoren bei denen die Rekombination nicht funktioniert hat, toxisch. Desweiteren enthält der Donorvektor pDONRTM221 zusätzlich eine Kanamycin-Resistenz. Dieses doppelte Selektionsverfahren trägt erheblich zu der hohen Effektivität dieses Klonierungsverfahrens bei.

3. LR-Reaktion: unter Verwendung des LR ClonaseTM II-Mix rekombinieren die *att*L-*Sites* des Entryklons mit den *att*R-*Sites* des Destinationvektors, so dass letztlich der gewünschte Expressionsvektor entsteht (siehe Abbildung 19).

Abbildung 19: Übersicht der LR-Reaktion. Die *attL-Sites* eines EntryKlons rekombinieren mit den *att*R-*Sites* eines Destinationsvektors, wobei der gewünschte Expressionsvektor mit *att*B-*Sites* entsteht. Katalysiert wird diese Reaktion durch den LR ClonaseTM II Enzym-Mix (in modifizierter Form nach Gateway® Technology with ClonaseTM II Manual, Invitrogen, Carlsbad, USA⁸³).

Da beim BRET-Experiment die Effizienz des Energietransfers nicht nur vom Abstand der Proteine zueinander, sondern auch von deren Orientierung abhängig ist, wurden Expressionsvektoren benötigt, die sowohl die Herstellung von N- als auch von Cterminalen Fusionsproteinen erlauben. Aus diesem Grund wurden für die LR-Reaktion insgesamt vier verschiedenen Destinationsvektoren verwendet (siehe Abbildung 20).

Abbildung 20: Vektorkarten der Destinationsvektoren (in modifizierter Form nach Gateway® Technology with ClonaseTM II Manual, Invitrogen, Carlsbad, USA⁸³). Für die LR-Reaktion wurden vier verschiedene Destinationsvektoren verwendet, die den Venus bzw. hRluc-*Tag* entweder N- oder C-terminal aufwiesen.

Um auch für die LR-Reaktion eine doppelte Selektion zu gewährleisten, besitzt der Destinationsvektor neben dem *ccdB*-Gen einen anderen Selektionsmarker (Ampicillin) als der EntryKlon.

Im Folgenden sind die für die Gateway® Klonierung notwendigen Vorbereitungsschritte sowie die einzelnen Schritte der Gateway® Klonierung an sich ausführlich dargestellt.

2.2.16.2 RNA Isolierung

Um die für TBX21 bzw. HLX1 codierende cDNA zu erhalten, musste zunächst RNA aus EDTA-Vollblut isoliert werden. Dies erfolgte mit dem Versagene RNA Purification Kit (Gentra, Minnepolis, USA) nach Herstellerangaben. Die aufgereinigte RNA wurde

Die Destinationsvekoren wurden von Herrn Dr. Ulrich Schatz (Molekulare Pädriatrie, Dr. von Haunersches Kinderspital, LMU München) kloniert und freundlicherweise zur Verfügung gestellt. Als Ausgangsvektor für die Klonierung verwendete Herr Dr. Ulrich Schatz den pcDNATM 6.2/N- bzw. C-YFP-DEST-Vektor (Invitrogen, Carlsbad, USA) und tauschte dabei die für YFP codierende Sequenz durch die Venus bzw. hRluc-Sequenz aus.

aliquotiert und bis zur Verwendung bei -80°C gelagert. Die Konzentrationsbestimmung wurde wie unter 2.2.3 beschrieben, durchgeführt.

2.2.16.3 Reverse Transkription und Aufreinigung von cDNA

Für die reverse Transkription der RNA in cDNA wurde der iScriptTM Select cDNA Synthesis Kit (Biorad, Hercules, USA) verwendet. Anschließend wurde die cDNA mit dem PCR Purification Kit (Qiagen, Hilden, Deutschland) aufgereinigt und bis zur weiteren Verwendung bei -20°C gelagert.

2.2.16.4 Herstellung von attB-PCR-Produkten

Wie unter 2.2.16.1 beschrieben, musste für die *in vitro* Rekombination mit dem Gateway® System zunächst die für das Protein codierende cDNA mittels PCR mit *att*B-*Sites* versehen werden. Für die PCR wurden daher Primer designt, die *att*B-*Sites* an ihren Enden trugen. Desweiteren enthielt der Sense-Primer eine Kozak-Sequenz ((G/A)NNATG), um die Expressionseffizienz des Vektors zu steigern. Da sowohl N-als auch C-terminale Fusionsproteine hergestellt werden sollten, war die Herstellung eines weiteren Konstrukts notwendig, bei dem durch den Antisense-Primer das Stoppcodon deletiert wurde, um zu gewährleisten, dass bei C-terminaler Klonierung der Leserahmen nicht unterbrochen wird und somit auch der nachstehende *Tag* (Venus oder hRluc) transkribiert werden kann. Die Primer zur Herstellung der *HLX1* und *TBX21 att*B-PCR-Produkte sind in Tabelle 34 zusammengefasst. Die Komponenten der PCRs sowie die Temperaturbedingungen sind in den Tabelle 35, 36, 37 und 38 dargestellt.

Produkte.	
Oligo	Oligo Sequenz (5'-3') ¹
HLX1_attB_fwd	GGGGACAAGTTTGTACAAAAAGCAGGCTTC <u>AGGATG</u> ttcgcagccggg
HLX1attB-stoprev	GGGGACCACTTTGTACAAGAAAGCTGGGTC <u>CTA</u> taagcagccaagcgcgcc
HLX1attB-	GGGGACCACTTTGTACAAGAAAGCTGGGTC <u>CCC</u> taagcagccaagcgcg
deltastoprev	
TBX-attB_fwd	GGGGACAAGTTTGTACAAAAAGCAGGCTTC <u>GGGATG</u> ggcatcgtggag
TBXattB-stoprev	GGGGACCACTTTGTACAAGAAAGCTGGGTC <u>CTA</u> gttgggaaaatagttataaaactgtccttc
TBXattB-	GGGGACCACTTTGTACAAGAAAGCTGGGTC <u>TCC</u> gttgggaaaatagttataaaactgtccttc
deltastoprev	

 Tabelle 34:
 Verwendete
 Sense- und
 Antisense-Primer
 zur
 Herstellung
 der
 attB-PCR

 Produkte.

(1) Fett gedruckt: *attB-sites*, kursiv gedruckt: eingefügte Basen, um Leseraster zu erhalten, unterstrichen: Kozak-Sequenz bei Sense-Primern bzw. Stop/NichtStop-Codon bei Antisense-Primern, klein und kursiv gedruckt: Gen-spezifische Sequenz

 Tabelle 35:
 Komponenten einer PCR zur Herstellung der *HLX1 att*B-PCR-Produkte unter

 Verwendung des Platinum® Taq High Fidelity Kits (Invitrogen, Carlsbad, USA).

Komponenten	Volumen	Konzentration
cDNA	1µl	
dNTP-Mix	0,3µl	je10mM
PCR Puffer	1,5µl	10x
HLX_attB_fwd	0,15µl	25μΜ
HLX_attB_stoprev	0,15µl	25µM
bzw.		
HLX_attB_deltastoprev		
Platinum® Taq High	0,05µl	5U/µl
Fidelity		
MgSO ₄	0,6µl	50mM
dH2O	ad 15µl	

Tabelle 36: Komponenten einer PCR zur Herstellung der *TBX21 att*B-PCR-Produkte unter Verwendung des PhusionTM High Fidelty DNA Polymerase Kits (Finnzymes Oy, Espoo, Finnland).

Komponenten	Volumen	Konzentration		
cDNA	1µl			
dNTP-Mix	0,4µl	je10mM		
PCR Puffer (HF)	4µ1	5x		
TBX_attB_fwd	1µ1	25μΜ		
TBX_attB_stoprev	1µl	25μΜ		
bzw.				
TBX_attB_deltastoprev				
Phusion TM High Fidelty	0.21	2U///1		
Taq	0,2μ1	20/µ1		
DMSO	0,6µl			
dH2O	ad 20µl			

Tabelle 37:	Allger	meine T	emperatu	rbedi	ingungen fi	ür die	PCR	zur Hers	tellun	g der <i>HLX1</i>
attB-PCR-Prod	lukte b	ei Verv	vendung	des	Platinum®	Taq	High	Fidelity	Kits	(Invitrogen,
Carlsbad, USA).									

Schritte	Temperatur	Zeit		
1) Aktivierung	94°C	2min		
2) Denaturierung	94°C	45sec		
Annealing ¹	58,8 bzw. 47,8°C	45sec		
Elongation	68°C	2min		
	Wiederholung von 2) 39x			
3) Letzte Elongation	68°C	7min		

(1) Für die N-terminalen Konstrukte wurde eine Annealingtemperatur von 58,8°C gewählt, bei Deletion des Stoppcodons (C-terminale Konstrukte) wurde eine Annealingtemperatur von 47,8°C verwendet.

Tabelle 38: Allgemeine Temperaturbedingungen für die PCR zur Herstellung der *TBX21 attB*-PCR-Produkte bei Verwendung des PhusionTM High Fidelty DNA Polymerase Kits (Finnzymes Oy, Espoo, Finnland).

Schritte	Temperatur	Zeit		
1) Aktivierung	98°C	30sec		
2) Denaturierung	98°C	10sec		
Annealing ¹	47,8°C	30sec		
Elongation	72°C	1min		
	Wiederholung von 2) 34x			
3) Letzte Elongation	72°C	10min		

(1) Sowohl für die N- als auch die C-terminalen Konstrukte wurde eine Annealingtemperatur von 47,8°C verwendet.

2.2.16.5 BP-Reaktion: Herstellung eines Entryklons

Nach Generierung der *att*-PCR-Produkte erfolgte die BP-Reaktion zur Herstellung des Entryklons. Für die BP-Reaktion wurden 50fmol PCR-Produkt und 150ng des Donorvektors pDONRTM221 (Invitrogen, Carlsbad, USA, siehe Abbildung 18) eingesetzt und mit TE-Puffer, pH 8,0 auf ein Gesamtvolumen von 5µl eingestellt. Zu diesem Ansatz wurden 1µl BP ClonaseTM II Enzym-Mix (Invitrogen, Carlsbad, USA) gegeben und bei 25°C über Nacht inkubiert. Anschließend wurden 1µl Proteinase K zugesetzt und bei 37°C für 10min inkubiert. 1µl dieser BP-Reaktion wurden dann in DH5 α -Zellen (Invitrogen, Carlsbad, USA) transformiert. Dazu wurden die Zellen zunächst 30min auf Eis inkubiert und anschließend einem Hitzeschock bei 42°C für 90sec ausgesetzt. Nach einer erneuten Inkubation auf Eis für 2min, wurden 250µl SOC-Medium zugesetzt und die Bakterien bei 37°C für 1h geschüttelt. Nach dieser Erholungsphase wurden die Bakterien auf Kanamycin-haltigen LB-Platten ausplattiert.

Da die Entryklone als Ausgangsmaterial für sämtliche andere LR-Reaktionen verwendet wurden, wurde die Sequenz der HLX1 bzw. TBX21 Entryklone mit den nachfolgenden Sequenzierprimern (Tabelle 39) auf Richtigkeit überprüft.

Tabelle 39:Sequenzierprimer für die HLX1 bzw. TBX21 Entryklone.

Oligo	Sequenz
M13fwd ¹	GTAAAACGACGGCCAG
HLX_230fwd	GTTCACCCGCACGCCTCTTTC
HLX_339fwd	CTCTCAGCCGCCTACCAC
HLX_588fwd	GATCTCACTTCCCTGCTAACCG
HLX_742fwd	CAGCATCAGTTCCAAGACACG
HLX_1071fwd	GATGGCGAGCAGGACGAGAG
TBX_23580fwd	GGTGTCGGGGGAAACTGAGG
TBX_23682rev	CACAGTAAATGACAGGAATGGGAAC
TBX_23770fwd	GCCGCTTCCTTGGAGCCTAC
TBX_24031fwd	GCCTGCAACGCTTCCAACAC
TBX_24708fwd	CTACTACCGAGGCCAGGAGGTC
M13rev ¹	CAGGAAACAGCTATGAC

(1) Da die Primer M13fwd/rev im Donorvektor binden, konnten die beiden Primer sowohl für die HLX1 als auch für die TBX21 Konstrukte verwendet werden, um die Übergänge zwischen Vekor und PCR-Produkt zu überprüfen.

2.2.16.6 LR-Reaktion: Herstellung eines Expressionvektors

Für die LR-Reaktion wurden 150ng des Entryklons und 150ng des jeweiligen Destinationvektors eingesetzt und das Gesamtvolumen des Ansatzes mit TE-Puffer, pH 8,0 auf 4 μ l eingestellt. Zu diesem Ansatz wurden 1 μ LR ClonaseTM II Enzym-Mix (Invitrogen, Carlsbad, USA) gegeben und bei 25°C über Nacht inkubiert. Anschließend wurden 1 μ l Proteinase K zugesetzt und bei 37°C für 10min inkubiert. Die Transformation der LR-Reaktion erfolgte wie unter 2.2.16.5 beschrieben.

2.2.16.7 Transiente Transfektion für BRET-Analysen

Die transiente Transfektion der COS-7-Zellen erfolgte mit dem Amaxa NucleofectorTM, 96-well-Shuttle-System (Lonza Cologne AG, Köln, Deutschland) mit dem Programm FP-100. Für die Transfektion wurden 200.000 Zellen/well verwendet und in 20µl Transfektionspuffer resupendiert. Um das Interaktionsverhalten zwischen TBX21 und HLX1 zu bestimmen, wurde eine Gesamtmenge von 0,8µg DNA transfiziert, wobei das Verhältnis zwischen Donor- und Akzeptormolekül 1:3 betrug. Bei den Sättigungsassays wurde eine Gesamt-DNA-Menge von 2µg eingesetzt, wobei das Donor/Akzeptorverhältnis anstieg. Nach Transfektion wurde den Zellen 80µl Medium zugesetzt, um den Transfektionspuffer zu neutralisieren. Anschließend wurden 100.000 Zellen/well (d.h. 50µl der transfizierten Zellen) in eine 96-well-Kulturplatte ausgesät, in der bereits 150µl Kulturmedium vorgelegt waren. Jeder Ansatz wurde in Dreifachbestimmungen durchgeführt.

2.2.16.8 BRET-Messung

Die BRET-Messung erfolgte 24h nach Transfektion an einem Lumineszenz-Plattenlesegerät, dem LUMIStar (BMD Labtech, Offenburg, Deutschland). Die Zellen wurden vor der Messung zweimal mit 200µl PBS gewaschen und anschließend in 30µl RPMI 1640 ohne Phenolrot (PAA, Pasching, Österreich) aufgenommen. Als Substrat für die Luciferase wurden 70µM ViviRenTM (Promega, Madison, USA) zugesetzt. Die Emission wurde über eine Zeitspanne von 60sec bei einer Wellenlänge von 475nm (hRluc-Signal) und 535nm (BRET-Signal) gemessen. Die BRET-Ratio wurde nach folgender Formel berechnet:

wobei $cf = BRET_{Kontrolle}/hRluc_{Kontrolle}$ ein Korrekturfaktor ist.

Da das Emissionsmaximum des hRluc-Signals mit dem Emissionsmaximum des Venus-Signals überlappt, wird durch cf das Durchbluten des hRluc-Signals in das Venus-Signal in Abhängkeit von der gemessenen hRluc-Intensität korrigiert.

Die Protein-Protein Interaktionen wurden mit folgender Formel charakterisiert:

$$\mathbf{Y} = \mathbf{B}_{\max} * \mathbf{X} / (\mathbf{BRET}_{50} + \mathbf{X}),$$

wobei B_{max} die maximale BRET-Ratio widerspiegelt und BRET₅₀ derjenigen Akzeptor/Donor-Ratio entspricht, bei der das halbmaximale BRET Signal erreicht wird.

2.2.17 Immunhistochemie

Bei der Immunfluoreszenz-Färbung handelt es sich um eine Methode bei der mit Hilfe von Antikörpern verschiedenste Zellbestandteile angefärbt und damit sichtbar gemacht werden können. In der vorliegenden Arbeit wurde die Immunfluoreszenz-Färbung verwendet, um die intrazelluläre Lokalisation von exogenem TBX21 und HLX1 in COS-7-Zellen zu untersuchen.

2.2.17.1 Transiente Transfektion für Immunhistochemie

Die transiente Transfektion der COS-7-Zellen erfolgte mit dem Amaxa Nucleofector^{1M} (Lonza Cologne AG, Köln, Deutschland) mit dem Programm W0-01. Für die Transfektion wurden 1x10⁶ Zellen/Ansatz verwendet, in 100µl Amaxa-Puffer aufgenommen und mit einer Gesamtmenge von 3µg DNA transfiziert. Nach Transfektion wurde den Zellen 800µl Medium zugesetzt, um den Transfektionspuffer zu neutralisieren. Anschließend wurden davon 27µl (entspricht 30.000 Zellen) pro Well eines µ-Slide VI, ibiTreat (ibidi, Martinsried, Deutschland) ausgesät. Im Falle von untransfizierten Zellen wurden entsprechend 30.000 Zellen/well verteilt. Sowohl untransfizierte als auch transfizierte Zellen wurden nach dem Aussäen für 60min bei 37°C inkubiert. Anschließend wurde jedes Well mit Medium auf ein Gesamtvolumen von 90µl aufgefüllt und über Nacht bei 37°C im Brutschrank gelagert.

2.2.17.2 Immunfluoreszenz-Färbung

Für die Immunfluoreszenz-Färbung wurden zunächst alle Wells zweimal mit 200µl vorgewärmten PBS gewaschen. Anschließend wurden die Zellen durch Zugabe von 100µl 3,7% Formaldehyd in PBS für 10min bei Raumtemperatur fixiert. Nach erneutem zweimaligem Waschen mit 200µl PBS wurden die Zellen mit 100µl 0,1%Triton X-100 in PBS für 5min permeabilisiert. Es erfolgte ein erneuter zweimaliger Waschschritt mit 200µl PBS. Mittels dem Zusatz von 100µl 1% BSA in PBS wurden die Zellen für 20min geblockt. Nach einem weiteren zweimaligen Waschschritt mit 200µl PBS wurden die Zellen für 4h bei Raumtemperatur mit 25µl des primären Antikörper inkubiert, wobei der Antikörper in 1% BSA in PBS verdünnt wurde. Danach wurden die Zellen wiederum zweimal mit 200µl PBS gewaschen und anschließend für 1h in 25µl des sekundären Antikörpers inkubiert. Da der sekundäre Antikörper an ein Fluorophor gekoppelt ist, wurde darauf geachtet, die Zellen möglichst vor Lichteinfluss zu schützen. Nach zweimaligem Waschen mit 200µl PBS wurde die Kernfärbung durch Zugabe von 25µl einer 0,1mg/ml DAPI-Lösung für 5min durchgeführt. Anschließend

wurden die gefärbten Zellen ein letztes Mal mit 200µl PBS gewaschen und dann mit einem Fluoreszenzmikroskop (Axiovert 135, Carl Zeiss AG, Feldbach, Schweiz) mikroskopiert.

3 Ergebnisse

3.1 TBX21, HLX1 und GATA3: SNP Detektion und Assoziation

Da bisher keine systematische Suche nach Polymorphismen in den Genen *TBX21* und *HLX1* in der Literatur beschrieben war, musste ein Mutationsscreening durchgeführt werden, um genetische Varianten in diesen Genen systematisch zu identifizieren. Im Falle von *TBX21* und *HLX1* wurden die Gene in überlappende PCR-Fragmente unterteilt und diese anhand von mindestens 37 (max. 40) Kontrollprobanden einer Zufallsstichprobe sequenziert. Polymorphismen, die im Rahmen dieses Screenings neu identifiziert wurden, wurden anschließend in die dbSNP Datenbank eingereicht, um sie mit einer gültigen rs-Nummer zu versehen. Für die Auswahl der *GATA3* SNPs für die Assoziationsstudie wurde die Datenbank des *"International HapMap Projects"* verwendet.

Im Anschluß an die SNP Detektion wurde das Kopplungsungleichgewicht (=Linkage Disequilibrium, LD) der identifizierten SNPs analysiert. Das LD spiegelt das Kopplungsverhältnis der SNPs untereinander wider und ist damit ein Maß für die Wahrscheinlichkeit, dass bestimmte Allelausprägungen in einem Individuum gleichzeitig vererbt werden. Das LD kann Werte zwischen 0 (keine Kopplung) und 1,0 (Kopplung zu 100%) annehmen. In der vorliegenden Arbeit wurden Polymorphismen mit einem LD von $r^2 \ge 0.8$ in Blöcken zusammengefasst, der durch jeweils einen *Tagging* SNP repräsentiert wird. Da man bei gekoppelten SNPs mit der Kenntnis des einen Genotyps indirekt auf den Genotypen des gekoppelten SNPs schließen kann, ist es meist ausreichend, den *Tagging* SNP, stellvertretend für alle anderen SNPs im LD, zu genotypisieren. Polymorphismen, die keinem LD Block zugeordnet werden konnten, wurden in der vorliegenden Arbeit als Einzel-SNPs bezeichnet. Um effizient möglichst viel genetische Information der einzelnen Gene abzudecken, wurden für die Genotypisierung jeweils die *Tagging* SNPs sowie die Einzel-SNPs ausgewählt.

Nach der Genotypisierung wurden Qualitätsparameter der Genotypisierung überprüft. Im Rahmen dieser Qualitätskontrolle wurden die aus der Genotypisierung gewonnenen Daten auf Abweichungen vom Hardy-Weinberg-Equilibrium untersucht. Bei diesem Test werden die tatsächlich bei der MALDI-TOF MS beobachteten Genotyp-Frequenzen mit den laut dem Hardy-Weinberg-Gesetz zu erwarteten Werten verglichen. Als weiteres Qualitätskriterium wurden zudem auch die *Callrates* der Genotypisierung kontrolliert, wobei dies entweder automatisch durch die MassARRAY RT Software oder manuell durch Betrachtung der einzelnen Spektren erfolgte. Generell versteht man unter der *Callrate* die relative Anzahl aller erfolgreich genotypisierter Probanden, d.h. die *Callrate* spiegelt den Prozentsatz der Probanden wider, denen ein Genotyp zugeordnet werden konnte. Bei einer technisch validen Genotypisierung sollte die *Callrate* mindestens einen Wert von 90% erreichen.

Ausserdem erfolgte eine LD-Analyse der genotypisierten SNPs, da durch die Verwendung der grösseren Studienpopulationen eine validere LD-Analyse im Vergleich zur kleineren Kontrollpopulation möglich ist.

Anschließend wurden Assoziationsstudien und Haplotypanalysen durchgeführt, um den Zusammenhang zwischen den genotypisierten SNPs der Gene TBX21, HLX1 und *GATA3* und atopischen Phänotypen zu analysieren. Dabei wurden die Assoziationen jeweils als Odds Ratios (OR) mit dazugehörigen Konfidenzintervall (CI) und p-Wert dargestellt.

3.1.1 Ergebnisse für TBX21

3.1.1.1 Mutationsscreening

Für das Mutationsscreening von *TBX21* wurden die exonischen und die intronischen Regionen des gesamten Gens (11912bp) anhand einer Kontrollpopulation ($n \ge 37$) sequenziert. Um auch den Promotorbereich sowie die 5' bzw. 3' UTR von *TBX21* abzudecken, wurden zudem 2297bp in Richtung 5' Ende (ausgehend vom ATG des ersten Exons) und 990bp in Richtung 3' Ende (ausgehend von der letzten Base des sechsten Exons) sequenziert. Somit ergab sich für *TBX21* ein zu sequenzierender Bereich von insgesamt 15199bp.

Anfänglich wurde das Gen in überlappende Fragmente mit je ca. 500bp eingeteilt. Da einzelne Fragmente Schwierigkeiten bei der Sequenzierung bereiteten, mussten betroffene Fragmente erneut unterteilt und neue Primer generiert werden. Damit ergaben sich insgesamt 36 zu analysierende Fragmente, die abhängig von ihrer Struktur in Richtung 3' und/oder 5' Ende sequenziert wurden. Die Einteilung der Fragmente ist aus Abbildung 21 ersichtlich.

Ergebnisse

Abbildung 21: Schematische Darstellung des *TBX21* Genlokus und die Einteilung der PCR-Fragmente. Das Gen wurde in insgesamt 36 Fragmente eingeteilt anhand derer das gesamte *TBX21* Gen sequenziert wurde.

Die Auswertung der Sequenzen erfolgte durch den direkten Vergleich mit der Referenzsequenz aus der SNPper Datenbank, wobei nur eindeutig analysierbare Sequenzen ausgewertet wurden. Innerhalb von Intron 1 befanden sich allerdings insgesamt fünf Bereiche, die durch Repeatelemente gekennzeichnet waren (GT-Repeat: 70bp, vier T- bzw. A-Repeats: á 13-16bp). Da diese Repeatelemente zu einem Abbruch der Sequenzierreaktion führten, konnten diese Bereiche nicht analysiert werden und wurden bei der Auswertung der Sequenzen nicht berücksichtigt.

Insgesamt wurden mittels des Mutationsscreenings 43 Polymorphismen mit einer Allelfrequenz (MAF) \geq 3% im gesamten *TBX21* Gen identifiziert (siehe Abbildung 22). Alle anderen Mutationen mit einer MAF < 3% wurden nicht in die weiteren Analysen miteinbezogen, da es sich hierbei, laut Definition, nicht um ausreichend häufige Polymorphismen handelt.

Abbildung 22: Schematische Darstellung der im *TBX21* Gen identifizierten Polymorphismen. Eine Übersicht der *TBX21* SNP Bezeichnungen (rs Nummer vs. Position innerhalb des Gens) befindet sich im Anhang in Tabelle 58.

Dreizehn der identifizierten Polymorphismen (C533G, G2011A, T2473A, G2761A, C3075T, G3078A, T4716A, C5287T, A6618G, T6902C, G8760A, T10386C, delT12564) waren bisher nicht in der dbSNP Datenbank beschrieben und wurden daher an die Datenbank weitergeleitet. Im Promotorbereich von *TBX21* waren insgesamt drei Polymorphismen lokalisiert, während in der 5'UTR ein SNP gefunden wurde. Einunddreißig SNPs wurden in den intronischen Bereichen identifiziert, und fünf SNPs in der 3'UTR. In den exonischen Regionen wurden insgesamt drei SNPs detektiert, wobei ein SNP (C98G) zu einem Aminosäureaustausch im TBX21 Protein führte.

3.1.1.2 LD-Analyse in der Kontrollpopulation

In die Analyse des Linkage Disequilibrium für *TBX21* wurden alle SNPs einbezogen, die eine MAF \geq 10% aufwiesen (siehe Tabelle 40). Im Falle von *TBX21* wurde dieser Schwellenwert für die MAF aufgrund von Power Kalkulationen gewählt. Diese Analysen hatten gezeigt, dass die Untersuchung von SNPs mit einer MAF < 10% nur dann notwendig ist, wenn sehr starke Effekte hinsichtlich der Krankheitsentstehung zu erwarten sind, was aber bei einer derart häufigen und vielfältigen Erkrankung wie Asthma bronchiale eher unwahrscheinlich ist. Aufgrund dieser Einschränkung reduzierte sich die Anzahl der zu analysierenden *TBX21* SNPs von 43 auf 26 (siehe Tabelle 40). Für diese Polymorphismen wurde kein gemeinsamer LD Plot erstellt, da für das Mutationsscreening von Intron 1 eine andere Kontrollpopulation verwendet wurde, als für die restlichen *TBX21* Genbereiche. In den folgenden Abbildungen sind daher die LD Plots der jeweiligen Genbereiche getrennt voneinander dargestellt (siehe Abbildung 23 und Abbildung 24).

Zudem ist bei Betrachtung der LD Plots zu berücksichtigen, dass das LD zwischen den Polymorphismen T-1514C und G-999A bereits im Rahmen eines Pilotprojekts (n=711) zu $r^2 = 0,93$ bestimmt wurde, so dass SNP G-999A nicht in die im folgenden dargestellte LD-Analyse einbezogen wurde.

Abbildung 23: Graphische Darstellung des *TBX21* Gens und des Linkage Disequilibrium (r²-Plot) der in der Kontrollpopulation (n \geq 37) identifizierten *TBX21* Polymorphismen ausserhalb von Intron 1. Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss r²=0, Grauschattierungen 0<r²<1, schwarz r²=1.

Abbildung 24: Graphische Darstellung des *TBX21* Gens und des Linkage Disequilibrium (r² Plot) der in der Kontrollpopulation (n \geq 37) identifizierten *TBX21* Polymorphismen in Intron 1. Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss r²=0, Grauschattierungen 0<r²<1, schwarz r²=1.

In Tabelle 40 sind zusammenfassend alle identifizierten *TBX21* Polymorphismen, ihre Lokalisation innerhalb des Gens, die MAF sowie die Auswertung der LD-Analysen in der Kontrollpopulation dargestellt.

Tabelle 40: Übersicht der in der Kontrollpopulation identifizierten *TBX21* Polymorphismen (MAF \geq 3%), deren Lokalisation innerhalb des Gens, ihre MAF in der Kontrollpopulation und die Zusammenfassung der LD-Analyse.

SNP	rs Nummer	Position	Basen-	Lokalisation	SNP	$LD(r^2)$	Tagging SNP
		bzgl. ATG	aus-	im Gen	Häufigkeit	mit	(Block) ²
		im 1. Exon ¹	tausch		(MAF)	Tagging	
1	47040(7	1002	T/O	D (0.20	SNP 1.0	T 1002C
1	rs4/9406/	-1993	1/C	Promotor	0,29	1,0	T-1993C
2	rs17250932	-1514	1/C	Promotor	0,17	1,0	T-1514C (1)
3	rs11650451	-999	G/A	Promotor	0,15	0,935	(1)
4	rs17244544	-79	C/T	5'-UTR	0,07	-	
5	rs2240017	<u>98</u> ³	C/G	Exon 1	0,04	-*	
6	rs2074190	389	A/G	Exon 1	0,33	1,0	A389G
7	rs41444548°	533	C/G	Intron 1	0,07	-4	
8	rs41519545	728	G/T	Intron 1	0,13	1,0	(3)
9	rs57781320	1167	G/T	Intron 1	0,44	1,0	(4)
10	rs10514934	1303	T/C	Intron 1	0,18	0,91	(5)
11	rs8081095	1667	C/A	Intron 1	0,14	1,0	C1667A (6)
12	rs72648865 ⁶	2011	G/A	Intron 1	0,04	-4	
13	rs11079787	2404	A/C	Intron 1	0,44	0,89	(4)
14	rs72648866 ⁶	2473	T/A	Intron 1	0,04	-4	
15	rs16946264	2613	G/A	Intron 1	0,14	1,0	(6)
16	rs72648867 ⁶	2761	G/A	Intron 1	0,09	_4	
17	rs41321047	2844	G/A	Intron 1	0,14	1,0	G2844A (3)
18	rs72648868 ⁶	3075	C/T	Intron 1	0,09	-4	
19	rs72648869 ⁶	3078	G/A	Intron 1	0,09	_4	
20	rs8078974	4704	A/T	Intron 1	0,42	1,0	A4704T (4)
21	rs11653146	4708	A/T	Intron 1	0,12	1,0	(3)
22	rs72648870 ⁶	4716	T/A	Intron 1	0,14	1,0	(6)
23	rs72648871 ⁶	5287	C/T	Intron 1	0,08	_4	
24	rs11652969	6546	G/A	Intron 1	0,44	1,0	(4)
25	rs72667004 ⁶	6618	A/G	Intron 1	0,05	_4	
26	rs66490177 ⁶	6902	T/C	Intron 1	0,16	0,82	(3)
27	rs2158079	7729	T/C	Intron 1	0,14	1,0	Т7729С
28	rs56308324	8385	A/T	Intron 1	0,19	1.0	A8385T (5)
29	rs72648872 ⁶	8760	G/A	Intron 1	0,13	1.0	(6)
30	rs58067360	8766	G/C	Intron 1	0.28	1.0	G8766C
31	rs11657388	9886	C/G	Intron 3	0.25	1.0	(2)
32	rs11079788	9902	C/T	Intron 3	0.25	1.0	C9902T (2)
33	rs12451801	10154	T/C	Intron 3	0.26	1.0	T10154C
34	rs41407050 ⁶	10386	T/C	Intron 3	0.08	_4	1202010
35	rs16946878	10689	T/C	Intron 3	0.09	_4	
36	rs17250953	11023	C/G	Intron 4	0.08	_4	
37	rs11650354	11271	C/T	Intron 5	0.18	1.0	C11271T
38	rs12721470	11758	G/A	Exon 6	0.08	_4	
39	rs11657479	12080	T/C	3'-UTR	0.30	1.0	T12080C
40	rs17244587	12214	G/A	3'-UTR	0,07	_4	
-------	-------------------------	----------	-------	--------	------	-----	---------
41	rs7502875	12406	A/C	3'-UTR	0,30	1,0	A12406C
42	rs41447544 ⁶	12564	DEL/T	3'-UTR	0,07	_4	
43	rs17250967	12641	T/C	3'-UTR	0,03	_4	
(1) D	. 1 0.1	TDUA 1 C	1		1 1		

(1) Basierend auf der TBX21 Sequenz aus der SNPper Datenbank.

(2) SNPs, die fett gedruckt und grau hinterlegt sind, wurden für die Genotypisierung ausgewählt.

(3) Das LD zwischen den SNPs T-1514C und G-999A wurde im Rahmen eines Pilotprojekts unter Verwendung einer Querschnittspopulation (N=711) bestimmt.

(4) In die LD-Analyse wurden nur *TBX21* SNPs mit einer MAF \geq 10% miteinbezogen.

(6) SNP, die im Rahmen dieser Arbeit neu identifiziert worden sind, wurden in die dbSNP Datenbank eingereicht und mit einer gültigen rs-Nummer versehen.

Aus Tabelle 40 ist ersichtlich, dass die *TBX21* Polymorphismen (MAF \geq 10%) durch die sechs *Tagging* SNPs T-1514C (Block 1), C9902T (Block 2), G2844A (Block 3), A4704T (Block 4), A8385T (Block 5), C1667A (Block 6) und acht Einzel-SNPs T-1993C, A389G, T7729C, G8766C, T10154C, C11271T, T12080C, A12406C repräsentiert werden. Diese SNPs wurden für die Genotypisierung des *TBX21* Genlokus ausgewählt.

3.1.1.3 Qualitätskontrolle der Genotypisierung

Die Genotypisierung der *TBX21* Polymorphismen erfolgte zunächst in der Asthma Fall-Kontroll-Population (MDL, N=1872). Polymorphismen, die sich in dieser Population als signifikant assoziiert erwiesen, wurden zudem noch in den Querschnittspopulationen Dresden und München (N=3099) genotypisiert und analysiert. In Tabelle 41 sind die Qualitätsparameter der *TBX21* Genotypisierung zusammengefasst. Zusätzlich ist in dieser Übersicht auch die in den Studienpopulationen ermittelte MAF angegeben.

⁽⁵⁾ SNP führt zu einer Aminosäureänderung im TBX21 Protein.

Ergebnisse

Da der Einzel-SNP G8766C sowohl bei Anwendung der MALDI-TOF MS Technologie als auch mit dem TaqManTM Assay aufgrund technischer Probleme nicht genotypisiert werden konnte, wurde dieser SNP in keine der weiteren Analysen miteinbezogen.

Tabelle 41:	Bestimmung	der	Callrate	und	der	Abweichung	vom	HWE	als
Qualitätskontro	olle der TB <u>X21</u>	Genoty	pisierung.						

			MDL^1		MD^1				
SNP	Bezeichnung	Callrate	HWE ²	MAF	Callrate	HWE ²	MAF		
		(%)			(%)				
1	T-1993C	93,86	0,0863	0,26					
2	T-1514C	93,54	0,1242	0,16	96,70	0,1038	0,17		
3	A389G	93,80	0,0710	0,26					
4	C1667A	90,76	0,3514	0,10					
5	G2844A	91,35	0,0555	0,16					
6	A4704T	96,53	0,7296	0,39	96,13	0,7752	0,39		
7	T7729C	95,25	0,0895	0,11					
8	A8385T	97,54	$0,0175^3$	0,13					
9	G8766C	4	4	4					
10	C9902T	94,60	0,0704	0,22	96,34	0,1876	0,23		
11	T10154C	94,55	0,0499	0,22					
12	C11271T	94,93	0,1109	0,16					
13	T12080C	93,54	0,0616	0,23					
14	A12406C	96,85	0,0452	0,22					

(1) *TBX21* SNPs wurden zunächst in der Asthma Fall-Kontroll-Population (MDL, N=1872) genotypisiert. SNPs, die in dieser Population eine signifikante Assoziation gezeigt hatten, wurden in den Querschnittspopulationen München und Dresden (MD, N=3088) repliziert. Zudem sind auch die in der Studienpopulation bestimmten MAFs angegeben.

(2) Bei pHWE < 0,05 liegt eine signifikante Abweichung vom HWE vor.

(3) SNP A8385T zeigte bei der Genotypisierung in zwei unabhängigen Ansätzen Abweichungen vom HWE. Daher wurde ein technisches Problem bei der Genotypisierung ausgeschlossen und eine biologische Ursache für die Abweichung vom HWE angenommen.
 (4) SNP G8766C konnte sowohl bei Anwendung der MALDI-TOF MS Technologie als auch mit dem TaqManTM Assay aufgrund technischer Probleme nicht genotypisiert werden.

Alle genotypisierten *TBX21* Polymorphismen zeigten eine *Callrate* von mindestens 90% und wiesen mit Ausnahme von SNP A8385T keine signifikanten Abweichungen vom HWE auf. Da der SNP A8385T aber in zwei unabhängigen Genotypisierungen mit unterschiedlichen Genotypisierungsmethoden (MALDI-TOF MS Technologie und TaqManTM Assay) vom HWE abwich, konnte davon ausgegangen werden, dass es sich

hierbei um kein technisches Genotypisierungsproblem handelt, sondern die Abweichung vielmehr biologisch/statistisch begründet ist.

3.1.1.4 Verifizierung der LD-Analyse mittels der Studienpopulation

Die Neu-Berechnung des LDs unter Verwendung der in der Asthma Fall-Kontroll-Population (N=1872) genotypisierten *TBX21* Polymorphismen verdeutlichte das LD der *TBX21* SNPs untereinander und zeigte, dass sich die genotypisierten *TBX21* Polymorphismen in fünf LD-Blöcke und einen Einzel-SNP einteilen lassen (siehe Abbildung 25).

Abbildung 25: Graphische Darstellung des *TBX21* Gens und des Linkage Disequilibrium (r²-Plot) der *TBX21* Polymorphismen in der Asthma Fall-Kontroll-Population (MDL, N=1872). Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss $r^2=0$, Grauschattierungen $0 < r^2 < 1$, schwarz $r^2=1$.

Zusammenfasssend kann daher festgehalten werden, dass die genetische Information der insgesamt 25 *TBX21* Polymorphismen (MAF \geq 10%) durch insgesamt sechs SNPs abgedeckt werden kann: T-1514C (Block 1: G-999A, G728T, G2844A, A4708T, T6902C, C11271T), C1667A (Block 3: G2613A, T4716A, G8760A), A4704T (Block 4: G1167T, A2404C, G6546A), A8385T (Block 5: T1303C), C9902T (Block 2: T-1993C, A389G, C9886G, T10154C, T12080C, A12406C) und SNP T7729C (Einzel-SNP).

3.1.1.5 Assoziationen von *TBX21 Tagging* SNPs mit Asthma bronchiale

Nach Genotypisierung der unter 3.1.1.4 identifizierten *TBX21 Tagging* SNPs in der Asthma Fall-Kontroll-Population (MDL, N=1872) wurden deren Effekte auf die Entstehung von Asthma bronchiale analysiert (siehe Tabelle 42).

Tabelle 42:	<i>TBX21</i> Assoziationsanalyse in der Asthma Fall-Kontroll-Population (N=1872).
Assoziationen	der TBX21 Tagging SNPs mit Asthma bronchiale unter Annahme eines
rezessiven Mo	dells angegeben als Odds Ratio, 95% Konfidenz Intervall (CI) und p-Wert.
Signifikante As	soziationen sind fett gedruckt (p≤0,05).

T-1514C	Asthma N=369 Asthmatiker N=1248 Kontrollen 1477/37 ²	Atopisches Asthma N=171 Asthmatiker ¹ N=1248 Kontrollen 1299/29 ²	Nicht atopisches Asthma N=171 Asthmatiker ¹ N=1248 Kontrollen 1294/29 ²
(Block 1)	2,60 (1,34-5,03) p=0,0034 ³	2,77 (1,21-6,36) p=0,0123	2,86 (1,25-6,58) p=0,0097
C1667A (Block 3)	1453/18 ² 1,29 (0,46-3,65) p=0,6262	1273/16 ² 1,69 (0,48-6,00) p=0,4120	1275/15 ² 1,11 (0,25-4,97) p=0,8898
A4704T (Block 4)	1329/234 ² 1,39 (1,02-1,90) p=0,0389	1168/202 ² 1,59 (1,05-2,40) p=0,0261	1170/200 ² 1,47 (0,97-2,24) p=0,0686
Т7729С	$ \begin{array}{r} 1534/10^{2} \\ 0,37 (0,05-2,90) \\ p=0,3215 \end{array} $	1343/10 ² 0,79 (0,10-6,26) p=0,8211	1341/9 ² - p=0,2630
A8385T (Block 5)	$1566/16^{2}$ 2,03 (0,73-5,63) p=0,1640	1374/14 ² 2,93 (0,91-9,45) p=0,0594	1374/12 ² 1,47 (0,32-6,75) p=0,6226
C9902T (Block 2)	1468/66 ² 1,97 (1,18-3,30) p=0,0088	1292/54 ² 2,11 (1,09-4,10) p=0,0241	1288/54 ² 2,17 (1,12-4,21) p=0,0194

(1) Aufgrund fehlender Daten zur Atopie summieren sich atopische und nicht atopische Asthmatiker nicht zu N=369 auf.

(2) Auflistung der Genotypanzahl: Kein Risikoallel/Risikoallel, wobei kein Risikoallel = homozygot Wildtyp + heterozygot und Risikoallel = homozygot polymorph bedeutet.
 (3) Signifikant nach Korrektur für multiples Testen.

Die Auswertung der Assoziationen der *TBX21 Tagging* SNPs zeigte, dass bei Verwendung des rezessiven Rechenmodells drei *Tagging* SNPs T-1514C (Block 1), A4704T (Block 4) und C9902T (Block 2) signifikant mit Asthma assoziiert sind. In allen der drei Fälle führte das polymorphe Allel jeweils zu einem erhöhten Asthmarisiko.

3.1.1.6 Assoziationen von TBX21 Haplotypen mit Asthma bronchiale

Haplotypanalysen wurden für *TBX21* SNPs durchgeführt, um Information darüber zu erhalten, inwieweit Kombinationen verschiedener Allele (Haplotypen) die Entstehung von Asthma bronchiale beeinflussen. Dargestellt wurden die am häufigsten vorkommenden Kombinationen (H_a – H_f) der identifizierten *TBX21 Tagging* SNPs in Wildtyp- bzw. polymorpher Form und deren Assoziation zu Asthma bronchiale in der Asthma Fall-Kontroll-Population MDL (N=1872) (siehe Tabelle 43).

Tabelle 43: *TBX21* Haplotypanalyse. *TBX21* Haplotypfrequenzen in der Asthma Fall-Kontroll-Population (N=1872), gebildet aus den sechs *Tagging* SNPs (T-1514C, C1667A, A4704T, T7729C, A8385T, C9902T) und deren Assoziation mit Asthma bronchiale angegeben als Odds Ratio (OR), 95% Konfidenz Intervall (CI) und p-Wert der Haplotyp Trend Regression (HTR).

	T-1514C	C1667A	A4704T	T7729C	A8385T	C9902T	Kontrollen (Kein Asthma)	Fälle (Asthma)	OR (95%CI) HTR	p-Wert HTR
H_a	Т	С	Α	Т	Α	С	51,27%	47,37%	0,72 (0,50-1,03)	0,0718
H_b	С	С	Т	Т	Α	Т	15,33%	17,80%	1,45 (0,90-2,33)	0,1275
H_c	Т	С	Т	Т	Т	С	12,61%	14,24%	1,37 (0,81-2,32)	0,2457
H_d	Т	С	Α	С	Α	С	11,05%	9,90%	0,77 (0,42-1,41)	0,3984
H_e	Т	Α	Т	Т	Α	Т	5,72%	6,50%	1,31 (0,64-2,68)	0,4668
H_f	Т	Α	Т	Т	Α	C	3,60%	3,87%	1,16 (0,47-2,89)	0,7474
	alle anderen mit MAF < 3%					3%	0,43%	0,31%		

Wie aus Tabelle 43 zu erkennen ist, war keiner der *TBX21* Haplotypen signifikant mit Asthma bronchiale assoziiert. Auch die Haplotypen zeigten keine signifikanten Assoziationen mit den Subphänotypen atopisches und nicht atopisches Asthma (Daten nicht gezeigt).

3.1.1.7 Assoziationen von *TBX21 Tagging* SNPs mit weiteren atopischen Erkrankungen

Die Verwendung einer Asthma Fall-Kontroll-Population ermöglicht nur verlässliche Aussagen über die Assoziationen mit Asthma bronchiale, da die Analyse anderer atopischer Phänotypen in einem derartigen Studien-Design durch die Häufung von Asthma-Fällen beeinflusst wird. Aus diesem Grund wurden die signifikant assoziierten *TBX21 Tagging* SNPs auch in den Querschnittspopulationen Dresden und München genotypisiert, um ihren Effekt hinsichlich anderer atopischer Phänotypen wie atopische Dermatitis, Heuschnupfen und Atopie untersuchen zu können. Bei der Auswertung der Assoziationssanalyse unter Verwendung des rezessiven Rechenmodells zeigte allerdings keiner der *TBX21* SNPs eine signifikante Assoziation mit einem der untersuchten Phänotypen, wenn auch durchaus ein Trend für eine Assoziation zwischen SNP T-1514C und anderen atopischen Phänotypen angedeutet ist (siehe Tabelle 44).

Tabelle 44:*TBX21* Assoziationsanalyse in der gepoolten Querschnittspopulation Dresdenund München (N=3099).Assoziationen der *TBX21 Tagging* SNPs mit atopischer Dermatitis,Heuschnupfen und Atopie unter Annahme eines rezessiven Modells angegeben als Odds Ratio,95% Konfidenz Intervall (CI) und p-Wert.

SNP	Atopische Dermatitis	Heuschnupfen	Atopie
T-1514C	1,43 (0,89-2,31)	1,64 (0,92-2,93)	1,41 (0,92-2,16)
(Block 1)	p=0,1409	p=0,0903	p=0,1177
A4704T	1,137 (0,88-1,46)	1,27 (0,92-1,76)	1,10 (0,88-1,37)
(Block 4)	p=0,3156	p=0,1420	p=0,4098
C9902T	1,09 (0,73-1,62)	1,28 (0,78-2,10)	1,26 (0,90-1,78)
(Block 2)	p=0,6674	p=0,3242	p=0,1848

An dieser Stelle sollte zudem noch auf den *TBX21* Polymorphismus C98G hingewiesen werden. Dieser SNP ist im 1. Exon von *TBX21* lokalisiert und führt an Position 33 des TBX21 Proteins zu einer Aminosäureänderung (Histidin zu Glutamin, H33Q). Da dieser SNP im Mutationsscreening von *TBX21* nur eine MAF von knapp 4% aufwies,

wurde er in den bisherigen Analysen nicht berücksichtigt. Aufgrund seiner potentiellen funktionellen Relevanz wurden für diesen SNP aber gesondert Assoziationsstudien in der gepoolten Population von Dresden und München (MD, N=3099) durchgeführt, wobei die Assoziationen allerdings nicht im rezessiven Rechenmodell analysiert werden konnten, da für diesen SNP in der Population keine homozygot polymorphen Probanden vorhanden waren. Bei Verwendung des dominanten Modells zeigte dieser SNP ein grenzwertig signifikantes Riskio für Asthma bronchiale (OR 1,71; 95%CI 0,99-2,94; p=0,0518).

3.1.2 Ergebnisse für *HLX1*

3.1.2.1 Mutationsscreening

Das Mutationsscreening von *HLX1* wurde bereits im Vorfeld der hier vorliegenden Arbeit im Rahmen einer medizinischen Doktorarbeit von Frau Dr. Isabell Ruoß durchgeführt ⁸⁴. Die Analyse beinhaltete die Sequenzierung aller exonischen und intronischen Bereiche. Zudem wurden 1495bp des Promotors (ausgehend vom ATG des ersten Exons), die 5' UTR und die 3' UTR sowie 805bp des *downstream* flankierenden Bereichs sequenziert, wodurch sich eine Gengesamtlänge von 7919bp ergab. Insgesamt wurden in dem zu untersuchenden Bereich 19 *HLX1* Polymorphismen mit einer Allelfrequenz (MAF) \geq 3% detektiert (siehe Abbildung 26).

Abbildung 26: Schematische Darstellung der von Dr. Isabell Ruoß identifizierten Polymorphismen im *HLX1* Gen. Eine Übersicht der *HLX1* SNP Bezeichnungen (rs Nummer vs. Position innerhalb des Gens) befindet sich im Anhang in Tabelle 59.

Drei dieser Polymorphismen (A-1663G, C-796A, C3958T) waren in keiner SNP Datenbank beschrieben und wurden daher der dbSNP Datenbank gemeldet. Sechs der SNPs waren im *HLX1* Promotorbereich lokalisiert, drei in der 5'UTR, fünf weitere in den intronischen Bereichen von *HLX1* und ein SNP befand sich in der 3'UTR. In den exonischen Bereichen wurden insgesamt vier Polymorphismen detektiert, wobei drei dieser SNPs (T346C, C4431T, C4524G) zu einer Aminosäureänderung im HLX1 Protein führen. Eine weitere detaillierte Auflistung aller identifizierter *HLX1* Polymorphismen ist Tabelle 45 zu entnehmen.

Weitere Analysen zu den *HLX1* Polymorphismen wurden im Verlauf dieser Doktorarbeit durchgeführt.

109

3.1.2.2 LD-Analyse in der Kontrollpopulation

In die Analyse des Linkage Disequilibriums von *HLX1* wurden alle 19 im Mutationsscreening identifizierten *HLX1* SNPs einbezogen (siehe Abbildung 27).

Abbildung 27: Graphische Darstellung des *HLX1* Gens und des Linkage Disequilibrium (r²-Plot) der in der Kontrollpopulation identifizierten *HLX1* Polymorphismen (MAF \geq 3%). Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss r²=0, Grauschattierungen 0<r²<1, schwarz r²=1.

In der nachfolgenden Tabelle 45 findet sich eine detaillierte Aufstellung aller identifizierter *HLX1* Polymorphismen, ihre Lokalisation innerhalb des Gens, ihre MAF innerhalb der Kontrollpopulation sowie eine Zusammenfassung der LD-Analyse.

SNP	rs Nummer	Position	Basen-	Lokalisation	SNP	$LD(r^2)$ mit	Tagging
		bzgl. ATG	aus-	im Gen	Häufigkeit	Tagging	SNP
		im 1. Exon ¹	tausch		(MAF)	SNP	(Block) ²
1	rs41369048 ³	-1633	A/G	Promotor	0,09	0,86	(1)
2	rs2738751	-1486	C/G	Promotor	0,10	1,0	C-1486G (1)
3	rs3806325	-1407	C/T	Promotor	0,24	1,0	С-1407Т
4	rs41441946 ³	-796	C/A	Promotor	0,05	1,0	C-796A
5	rs2184658	-742	C/G	Promotor	0,05	1,0	C-742G
6	rs2807857	-559	C/T	Promotor	0,31	1,0	С-559Т
7	rs2738752	-434	A/G	5'UTR	0,32	0,83	(4)
8	rs12730158	-429	T/G	5'UTR	0,21	1,00	(2)
9	rs2738754	-263	C/A	5'UTR	0,25	0,87	(5)
10	rs12141189	346 ⁴	T/C	Exon 1	0,41	1,0	T346C (3)
11	rs17597773	1562	C/G	Intron 2	0,36	0,81	(3)
12	rs2247213	2256	G/A	Intron 2	0,35	1,0	G2256A (4)
13	rs1317189	3009	T/C	Intron 3	0,30	0,88	(4)
14	rs868058	3183	T/A	Intron 3	0,35	1,0	T3183A (5)
15	rs34180575 ³	3958	C/T	Intron 3	0,21	0,98	C3958T (2)
16	rs2738755	4431 ⁴	C/T	Exon 4	0,31	0,94	(2)
17	rs3738182	4447	G/A	Exon 4	0,18	1,0	G4447A
18	rs11578466	4524 ⁴	C/G	Exon 4	0,09	0,86	(1)
19	rs2738756	4844	C/T	3'UTR	0,09	0,86	(1)

Tabelle 45: Übersicht der von Dr. Isabell Ruoß identifizierten *HLX1* Polymorphismen (MAF \geq 3%), deren Lokalisation innerhalb des Gens, ihre MAF in der Kontrollpopulation und die Zusammenfassung der LD-Analyse.

(1) Basierend auf der NCBI Datenbank Sequenz (Accession Number AF217621).

(2) SNPs, die fett gedruckt und grau hinterlegt sind, wurden für die Genotypisierung ausgewählt.

(3) SNPs, die im Rahmen dieser Arbeit neu identifiziert worden sind, wurden in die dbSNP Datenbank eingereicht und mit einer gültigen rs-Nummer versehen.

(4) SNP führt zu einer Aminosäureänderung im HLX1 Protein.

Basierend auf der Information aus der Kontrollpopulation konnten die 19 *HLX1* Polymorphismen in fünf LD Blöcke eingeteilt werden, die durch folgende *Tagging* SNPs vertreten wurden: C-1486G, T346C, G2256A, T3183A, G3958T. Fünf weitere SNPs C-1407T, C-796A, C-742G, C-559T, G4447A waren in der Kontrollpopulation nicht mit einem anderen SNP gelinkt und konnten daher keinem der LD Blöcke zugeordnet werden. Aufgrund dieser LD-Analyse wurden für die Genotypisierung von *HLX1* die oben genannten fünf *Tagging* sowie die fünf Einzel-SNPs ausgewählt (siehe auch Tabelle 45).

3.1.2.3 Qualitätskontrolle der Genotypisierung

HLX1 Polymorphismen wurden zunächst in der Dresdner Querschnittspopulation (n=1940) genotypisiert. Polymorphismen, die nach der erneuten LD-Analyse (siehe 3.1.2.4) unter Verwendung der Dresdner Studienpopulation als *Tagging* SNPs festgelegt wurden, wurden anschließend auch in der Münchner Querschnittspopulation (n=1159) genotypisiert.

SNP C-796A wurde hingegen von allen weiteren Analysen ausgeschlossen, da dieser Polymorphismus in der Dresdner Population eine MAF < 3% aufwies und daher nicht weiter als SNP definiert werden konnte.

Tabelle 46:	Bestimmung	der	Callrate	und	der	Abweichung	vom	HWE	als
Qualitätskontr	olle der <i>HLX1</i> C	Benoty	pisierung.			_			
			1					1	

			Dresden ¹			München ¹	
SNP	Bezeichnung	Callrate	HWE ²	MAF	Callrate	HWE ²	MAF
		(%)			(%)		
1	C-1486G	99,6	$0,0015^3$	0,14	92,8	$0,0015^3$	0,14
2	C-1407T	97,5	0,3215	0,19	91,6	0,6545	0,20
3	C-796A ⁴	99,0	0,4095	$0,02^{4}$			
4	C-742G	95,2	0,0410	0,18			
5	C-559T	98,8	$0,0018^3$	0,34			
6	T346C	97,4	0,225	0,25	94,6	0,1137	0,22
7	G2256A	98,2	0,5513	0,33	95,4	0,7049	0,35
8	T3183A	99,3	$< 0,0001^3$	0,34	90,5	$0,0012^3$	0,35
9	G3958T	98,7	0,2734	0,19			
10	G4447A	97,3	0,3893	0,19			

(1) *HLX1* SNPs wurden zunächst in der Dresdner Querschnittspopulation (n=1940) genotypisiert. SNPs, die sich in dieser Population als *Tagging* SNPs herausstellten, wurden anschließend in der Münchner Querschnittspopulation (n=1159) repliziert. Zudem sind auch die in der Studienpopulation bestimmten MAFs angegeben.

(2) Bei pHWE < 0.05 liegt eine signifikante Abweichung vom HWE vor.

(3) SNPs zeigen Abweichungen vom HWE.

(4) SNP C-796A wurde aufgrund seiner geringen MAF (< 3%) von weiteren Analysen ausgeschlossen.

Aus Tabelle 46 ist zu erkennen, dass mindestens 90% der Genotypen erfolgreich gecallt werden konnten. Allerdings zeigten die drei SNPs C-1486G, C-559T und T3183A eine signifikante Abweichung vom HWE. Da die LD-Analyse in der Dresdner Population (siehe 3.1.2.4) gezeigt hatte, dass C-559T und T3183A dem gleichen LD-Block angehören, war es ausreichend bei der Überprüfung des HWEs nur den *Tagging* SNP T3183A zu berücksichtigen.

In Tabelle 47 wurden die bei der Genotypisierung beobachteten und die laut dem Hardy-Weinberg-Gesetz zu erwartenden Genotypfrequenzen gegenübergestellt.

Tabelle 47: *HLX1* Genotypfrequenzen. Gegenüberstellung der beobachteten und der zu erwartenden Genotypfrequenzen. Es werden die Genotypfrequenzen von zwei *HLX1 Tagging* SNPs, die eine signifikante Abweichung vom HWE (pHWE < 0,05) in der Dresdner Querschnittspopulation (n=1940) gezeigt hatten, verglichen.

SNP		Beobachtet	Erwartet	pHWE
C-1486G	CC	1455	1438	0,0015
	CG	425	458	
	GG	53	36	
	Missings	7		
T3183A	TT	852	810	< 0,0001
	ТА	766	851	
	AA	266	224	
	Missings	56		

Um zu gewährleisten, dass die Abweichung vom HWE auf Populationsebene beruht und nicht ein methodisches Problem vorliegt, wurde die MALDI-TOF MS Genotypisierung mittels eines Restriktionsfragmentlängenpolymorphismus (siehe 2.2.11) anhand von ausgewählten Proben überprüft. Da bei der Genotypisierung beider Polymorphismen ein Mangel an heterozygoten, kombiniert mit einem Überschuß an homozygot polymorphen Genotypen für die Abweichung vom HWE verantwortlich war (siehe Tabelle 47), wurden mittels des Restriktionsassays zum einen die homozygot polymorphen Proben regenotypisiert. Desweiteren wurden auch die als *Missings* bezeichneten Proben ausgewählt, da sich möglicherweise darunter die fehlenden heterozygoten Genotypen befinden könnten.

Im Falle von C-1486G wurden 46 Proben (43x homozygot polymorph und 3x *Missing*) und für T3183A wurden 175 Proben (175x homozygot polymorph und 44x *Missing*) regenotypisiert. Für beide Polymorphismen konnten die Ergebnisse der MALDI-TOF Genotypisierung verifziert werden. Als Ursache für die Abweichung vom HWE konnte daher eine technische Fehlerquelle ausgeschlossen werden. Vielmehr musste eine biologische oder populationsbedingte Ursache für die Abweichung vom HWE in Betracht gezogen werden.

3.1.2.4 Verifizierung der LD-Analyse mittels der Studienpopulation

Die Neuberechnung des LDs unter Verwendung der Dresdner Population (n=1940) zeigte, dass die genetische Information des *HLX1* Lokus durch insgesamt fünf *Tagging* SNPs C-1486G (Block 1), C-1407T (Block 2), T346C (Block 3), G2256A (Block 4), T3183A (Block 5) abgedeckt werden kann, da sich in der grösseren Studienpopulation die bisherigen Einzel-SNPs in die bereits bestehenden LD Blöcke einteilen ließen (Abbildung 28).

Abbildung 28: Graphische Darstellung des *HLX1* Gens und des Linkage Disequilibrium (r²-Plot) der *HLX1* SNPs in der Dresdner Querschnittspopulation (n=1940). Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss $r^2=0$, Grauschattierungen $0 < r^2 < 1$, schwarz $r^2 = 1$.

Aufgrund dieser Information konnte die Genotypisierung in der Münchner Population auf die fünf oben genannten *HLX1 Tagging* SNPs reduziert werden.

3.1.2.5 Assoziationen von *HLX1 Tagging* SNPs mit atopischen Erkrankungen

HLX1 Tagging SNPs wurden in den Querschnittspopulationen Dresden (n=1940) und München (n=1159) genotypisiert. Die in der Assoziationsanalyse untersuchten Phänotypen umfassten Asthma bronchiale, atopisches und nicht atopisches Asthma, atopische Dermatitis sowie Heuschnupfen und Atopie. Für die *HLX1* Assoziationsanalysen (siehe Tabelle 48) wurde das dominante Rechenmodell verwendet und die Daten aus den Populationen Dresden und München gepoolt betrachtet (N=3099).

Tabelle 48: *HLX1* Assoziationen in der gepoolten Querschnittspopulation Dresden und München (N=3099). Assoziationen der *HLX1 Tagging* SNPs mit Asthma bronchiale, atopischen und nicht atopischen Asthma, atopischer Dermatitis, Heuschnupfen und Atopie unter Annahme eines dominanten Modells angegeben als Odds Ratio, 95% Konfidenz Intervall (CI) und p-Wert. Signifikante Assoziationen sind fett gedruckt (p<0.05).

SNP	Asthma	Atopisches	Nicht	Atopische	Heu-	Atopie
		Asthma	atopisches	Dermatitis	schnupfen	-
			Asthma			
C-1486G	0,77	0,85	0,64	0,99	1,02	1,00
(Block 1)	(0,57-1,05)	(0,55-1,29)	(0,41-1,00)	(0,80-1,24)	(0,76-1,35)	(0,83-1,21)
	p=0,0936	p=0,4364	p=0,0502	p=0,9654	p=0,9201	p=0,9680
C-1407T	1,44	1,39	1,45	1,11	0,95	1,01
(Block 2)	(1,11-1,86)	(0,95-2,02)	(1,01-2,08)	(0,91-1,36)	(0,73-1,24)	(0,85-1,21)
	p=0,0061 ¹	p=0,0870	p=0,0441	p=0,3030	p=0,7050	p=0,8755
T346C	0,73	0,77	0,67	0,93	1,11	0,91
(Block 3)	(0,56-0,95)	(0,53-1,13)	(0,46-0,97)	(0,77-1,13)	(0,86-1,43)	(0,77-1,08)
	p=0,0172	p=0,1807	p=0,0343	p=0,4841	p=0,4239	p=0,2617
G2256A	1,16	1,15	1,10	1,10	1,00	1,08
(Block 4)	(0,90-1,50)	(0,79-1,67)	(0,77-1,56)	(0,91-1,33)	(0,78-1,29)	(0,92-1,28)
	p=0,2586	p=0,4716	p=0,6189	p=0,3382	p=0,9825	p=0,3479
T3183A	0,98	0,96	1,10	0,98	1,04	1,14
(Block 5)	(0,76-1,26)	(0,67-1,38)	(0,77-1,58)	(0,81-1,19)	(0,81-1,34)	(0,97-1,35)
-	p=0,8591	p=0,8191	p=0,6061	p=0,8413	p=0,7545	p=0,1213

(1) Signifikant nach Korrektur für multiples Testen.

Aus Tabelle 48 ist ersichtlich, dass zwei der *HLX1 Tagging* SNPs in der gepoolten Population aus Dresden und München (N=3099) signifikant mit Asthma bronchiale assoziiert waren. Das polymorphe Allel von SNP C-1407T (Block 2) führte zu einem signifikant erhöhten Asthmarisiko, während das polymorphe Allel des *Tagging* SNPs T346C (Block 3) in einem protektiven Effekt hinsichtlich der Asthmaentstehung resultierte. Interessanterweise führte dieser SNP auch zu einer Aminosäureänderung im Exon 1 des HLX1 Proteins. Für beide *Tagging* SNPs waren die beobachteten Effekte für nicht atopisches Asthma stärker. Bei der Assoziationsanalyse für SNP C-1486G konnte zudem ein grenzwertig signifikantes Risiko für nicht atopisches Asthma beobachtet werden. Interessanterweise zeigte keiner der *HLX1 Tagging* SNPs eine Assoziation mit anderen atopischen Phänotypen wie Heuschnupfen, atopischer Dermatitis oder Atopie.

3.1.2.5.1 Homogenitätsanalyse

Die Assoziationen der *HLX1* Polymorphismen wurden im vorherigen Abschnitt (siehe 3.1.2.5) in der gepoolten Population aus Dresden und München dargestellt. Um zu überprüfen, in wie weit die Assoziationen in den beiden Städten einheitlich sind, wurde eine Homogenitätsanalyse durchgeführt. Dabei wurden die Effekte der *HLX1 Tagging* SNPs auf die Entstehung von Asthma sowie auf die Subphänotypen atopisches und nicht atopisches Asthma in den Städten Dresden (D) und München (M) getrennt voneinander untersucht (Tabelle 49).

Tabelle 49: Homogenitätsanalyse der *HLX1 Tagging* SNPs. Assoziationen der *HLX1 Tagging* SNPs mit Asthma, atopischen und nicht atopischen Asthma in der Homogenitätsanalyse unter Annahme eines dominanten Modells für die gepoolte Population (MD, N=3099) und die Städte Dresden (D, n=1940) und München (M, n=1159) getrennt voneinander, angegeben als Odds Ratio (OR), 95% Konfidenz Intervall (CI) und p-Wert. Signifikante Assoziationen sind fett gedruckt ($p \le 0.05$).

SNP	Рор	Asthma		Atopisches As	sthma	Nicht atopisches Asthma	
		OR (95% Cl)	p-Wert	OR (95% Cl)	p-Wert	OR (95% Cl)	p-Wert
C-1486G	MD	0,77 (0,57-1,05)	0,0936	0,85 (0,55-1,29)	0,4364	0,64 (0,41-1,00)	0,0502
(Block 1)	D	0,99 (0,67-1,48)	0,9766	0,95 (0,53-1,71)	0,8638	0,95 (0,54-1,69)	0,8702
	М	0,54 (0,33-0,86)	0,0087	0,70 (0,38-1,29)	0,2511	0,36 (0,17-0,76)	0,0051
C-1407T	MD	1,44 (1,11-1,86)	0,0061	1,39 (0,95-2,02)	0,0870	1,45 (1,01-2,08)	0,0441
(Block 2)	D	1,45 (1,02-2,05)	0,0379	1,71 (1,03-2,84)	0,0348	1,15 (0,69-1,91)	0,5969
	М	1,42 (0,96-2,10)	0,0777	1,07 (0,60-1,90)	0,8170	1,84 (1,09-3,12)	0,0204
T346C	MD	0,73 (0,56-0,95)	0,0172	0,77 (0,53-1,13)	0,1807	0,67 (0,46-0,97)	0,0343
(Block 3)	D	0,62 (0,43-0,89)	0,0097	0,72 (0,42-1,21)	0,2108	0,50 (0,29-0,86)	0,0113
	М	0,91 (0,62-1,35)	0,6436	0,89 (0,51-1,54)	0,6692	0,95 (0,55-1,62)	0,8350
G2256A	MD	1,16 (0,90-1,50)	0,2586	1,15 (0,79-1,67)	0,4716	1,10 (0,77-1,56)	0,6189
(Block 4)	D	1,28 (0,90-1,82)	0,1639	1,47 (0,87-2,47)	0,1463	1,01 (0,62-1,66)	0,9578
	М	1,00 (0,68-1,46)	0,9987	0,85 (0,49-1,45)	0,5418	1,14 (0,68-1,92)	0,6131
T3183A	MD	0,98 (0,76-1,26)	0,8591	0,96 (0,67-1,38)	0,8191	1,10 (0,77-1,58)	0,6061
(Block 5)	D	0,89 (0,63-1,25)	0,4932	0,67 (0,41-1,12)	0,1235	1,35 (0,81-2,26)	0,2488
	М	1,12 (0,76-1,64)	0,5688	1,44 (0,84-2,49)	0,1839	0,92 (0,55-1,53)	0,7358

Die Homogenitätsanalyse (Tabelle 49) zeigte, dass in beiden Städten die Assoziationen der *Tagging* SNPs C-1486T, C-1407T und T346C stets in die gleiche Richtung wiesen, auch wenn der beobachtete Effekt nicht immer Signifikanz erreichte. Als mögliche

Ursache sei hierfür zu nennen, dass die Anzahl der Asthmatiker in den Städten einzeln zu niedrig war, um wie in der gepoolten Population (MD), signifikante Werte für die ORs zu erhalten.

3.1.2.6 Assoziationen von *HLX1* Haplotypen mit Asthma bronchiale

In einem nächsten Schritt wurde eine Haplotypanalyse durchgeführt, um abschätzen zu können, inwieweit die Kombination verschiedener *HLX1* Allele (Haplotypen) die Entstehung von Asthma bronchiale beeinflusst. Diese Analyse beschränkte sich nur auf Asthma bronchiale, da die vorherigen Assoziationsanalysen gezeigt hatten, dass *HLX1* Polymorphismen ausschließlich mit Asthma bronchiale assoziiert sind und keinen Einfluss auf die Entstehung von anderen atopischen Phänotypen haben. Untersucht wurden dabei die am häufigsten vorkommenden Kombinationen der identifizierten *HLX1 Tagging* SNPs in Wildtyp- bzw. polymorpher Form (Tabelle 50) in der gepoolten Population aus Dresden und München (N=3009).

Tabelle 50: *HLX1* Haplotypanalyse. Haplotypfrequenzen der fünf *HLX1 Tagging* SNPs in der gepoolten Studienpopulation (N=3009) und die Assoziationen der Haplotypen mit Asthma bronchiale angegeben als Odds Ratio (OR), 95% Konfidenz Intervall (CI) und p-Wert der Haplotyp Trend Regression (HTR). Signifikante Werte sind fett gedruckt ($p \le 0,05$).

	C-1486G	C-1407T	T346C	G2256A	T3183A	Nicht Asthmatiker	Asthmatiker	OR (Cl) HTR	p-Wert HTR
H_a	С	С	Т	G	Α	34,30%	34,49%	1,02 (0,70-1,48)	0,935
H_b	С	С	С	G	Т	24,56%	20,61%	0,64 (0,40-1,00)	0,052
H_c	С	Т	Т	Α	Т	18,75%	24,08%	1,86 (1,21-2,87)	0,005 ¹
H_d	G	С	Т	Α	Т	14,35%	12,65%	0,76 (0,44-1,30)	0,315
H_e	С	С	Т	G	Т	7,26%	7,14%	0,97 (0,48-1,96)	0,929
	alle	ande	eren			0,78%	1,02%		

(1) Signifikant nach Korrektur für multiples Testen.

Die Haplotypanalyse der fünf *HLX1 Tagging* SNPs führte zur Detektion von fünf Haplotypen (H_a bis H_e), die eine Häufigkeit von > 3% aufwiesen. Der Haplotyp H_b zeigte einen leicht signifikant protektiven Effekt, während der Haplotyp H_c zu einem stark signifikant erhöhtem Asthmarisiko führte.

3.1.3 Ergebnisse für GATA3

3.1.3.1 SNP Detektion durch Verwendung der HapMap-Datenbank

Für die Identifikation der *GATA3* Polymorphismen wurde die Information aus der Datenbank des *International HapMap Projects* verwendet. Aus dieser Datenbank wurden alle validierten *GATA3* Polymorphismen mit einer Allelfrequenz (MAF) von mindestens 3% ausgewählt, so dass insgesamt 19 *GATA3* Polymorphismen detektiert werden konnten. Alle SNPs mit Ausnahme von rs1058240 (3'UTR) waren in den intronischen Regionen von *GATA3* lokalisiert (siehe Abbildung 29).

Abbildung 29: Schematische Darstellung der aus der HapMap-Datenbank erhaltenen *GATA3* Polymorphismen. Eine Übersicht der *GATA3* SNP Bezeichnungen (rs Nummer vs. Position innerhalb des Gens) befindet sich im Anhang in Tabelle 60.

3.1.3.2 LD-Analyse (basierend auf den Daten der HapMap-Datenbank)

Für die LD-Analyse der *GATA3* Polymorphismen wurden die LD-Informationen aus der HapMap-Datenbank verwendet und die Daten in das Programm Haploview eingespeist (siehe Abbildung 30).

Abbildung 30: Graphische Darstellung des *GATA3* Gens und des Linkage Disequilibrium (r²-Plot) der aus der HapMap-Datenbank identifizierten *GATA3* SNPs (MAF \geq 3%). Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss r²=0, Grauschattierungen 0<r²<1, schwarz r²=1.

Detaillierte Informationen zu den verwendeten *GATA3* Polymorphismen sowie die Zusammenfassung der LD-Analyse sind in Tabelle 51 dargestellt.

Tabelle 51:	Übersicht der	r aus der Hap	Map-Datenb	ank erhalten	en GATA3	Polymorphis	men
$(MAF \ge 3\%),$	deren Lokalisa	ation innerhal	b des Gens,	ihre MAF l	bezogen au	If Angaben in	der
SNPper Daten	bank sowie d	ie Zusammen	fassung der	LD-Analyse	e bezogen	auf Angaben	der
HapMap-Date	nbank.						

SNP	rs Nummer	Position	Basen-	Lokalisation	SNP	$LD(r^2)$	Tagging SNP
		bzgl. ATG	aus-	im Gen	Häufigkeit	mit	(Block) ²
		im	tausch		(MAF)	Tagging	
		1. Exon ¹				SNP	
1	rs1399180	1101	C/T	Intron 1	0,18	1,0	rs1399180 (1)
2	rs369421	1559	T/C	Intron 1	0,17	1,0	(1)
3	rs3781093	4309	T/C	Intron 2	0,10	1,0	rs3781093
4	rs3802604	4654	A/G	Intron 2	0,33	1,0	rs3802604 (2)
5	rs376397	5680	G/A	Intron 2	0,32	0,92	(2)
6	rs3824662	6590	C/A	Intron 2	0,10	1,0	rs3824662
7	rs2277228	8127	A/G	Intron 2	0,41	1,0	(3)
8	rs3781092	8735	G/A	Intron 3	0,14	0,88	(4)
9	rs570613	8884	T/C	Intron 3	0,35	0,89	(3)
10	rs568727	9083	C/A	Intron 3	0,34	0,91	(3)
11	rs10752126	9129	C/G	Intron 3	0,39	1,0	rs10752126 (3)
12	rs569421	10974	T/C	Intron 3	0,19	0,82	(5)
13	rs3802600	11194	A/T	Intron 3	0,12	1,0	rs3802600 (4)
14	rs444929	12406	T/C	Intron 3	0,21	0,89	(6)
15	rs422628	13791	T/C	Intron 3	0,22	0,85	(6)
16	rs406103	14003	C/T	Intron 4	$0,30^{3}$	1,0	rs406103 (5)
17	rs528778	14525	C/T	Intron 4	0,19	0,94	(6)
18	rs11567931	15313	C/T	Intron 4	0,03	1,0	rs11567931
19	rs1058240	18980	A/G	3'UTR	0,18	1,0	rs1058240 (6)

(1) Basierend auf der GATA3 Sequenz aus der SNPper Datenbank.

(2) SNPs, die fett gedruckt und grau hinterlegt sind, wurden für die Genotypisierung ausgewählt.

(3) MAF bezieht sich nicht auf eine Population kaukasischen Ursprungs, sondern auf eine japanische Population.

Die Auswertung der Haploview-Analyse (siehe Tabelle 51) zeigte, dass die genetische Information der 19 *GATA3* Polymorphismen durch Genotypisierung der sechs *Tagging* SNPs rs1399180, rs3802604, rs10752126, rs3802600, rs406103 und rs1058240 und der drei Einzel-SNPs rs3781093, rs3824662 und rs11567931 abgedeckt werden kann.

3.1.3.3 Qualitätskontrolle der Genotypisierung

Die Genotypisierung der *GATA3* Polymorphismen erfolgte in den Querschnittspopulationen Dresden (D, n=1940), München (M, n=1159) und Leipzig (L, n=1165). Auch im Falle von *GATA3* wurden für die Qualitätskontrolle der Genotypisierung die *Callrates* überprüft und die genotypisierten Polymorphismen auf Abweichungen vom Hardy-Weinberg-Equilibrium unter Verwendung der gepoolten Querschnittspopulation (DLM, N=4264) untersucht. Alle *GATA3* SNPs wiesen eine *Callrate* von mindestens 90% auf. Zudem zeigte keiner der *GATA3* Polymorphismen eine signifikante Abweichung vom HWE (siehe Tabelle 52).

Tabelle 52: Bestimmung der *Callrate* und der Abweichung vom HWE als Qualitätskontrolle der *GATA3* Genotypisierung. Die Paramter beziehen sich auf die gepoolte Population aus Dresden, Leipzig und München (DLM, N=4264).

~,	P 0).
SNP	rs Nummer	Callrate	pHWE ¹
		(%)	
1	rs1399180	95,8	0,8452
2	rs3802604	94,9	0,3336
3	rs10752126	95,1	0,1432
4	rs406103	95,2	0,8088
5	rs3802600	95,0	0,6629
6	rs1058240	95,2	0,4765
7	rs3781093	95,0	0,4860
8	rs3824662	95,0	0,3107
9	rs11567931	95,1	0,2622

(1) Bei pHWE < 0.05 liegt eine signifikante Abweichung vom HWE vor.

3.1.3.4 Verifizierung der LD-Analyse mittels der Studienpopulation

Für die Verifizierung des LDs der genotypisierten *GATA3* Polymorphismen wurden die Informationen der drei Städte Dresden, München und Leipzig (N=4264) gepoolt. Wie aus Abbildung 31 ersichtlich, konnten keine neuen LD Blöcke gebildet werden, vielmehr wurden die aus HapMap gewonnenen Einteilungen der *GATA3* LD Blöcke bestätigt (siehe 3.1.3.2).

Abbildung 31: Graphische Darstellung des *GATA3* Gens und des Linkage Disequilibrium (r²-Plot) der *GATA3* SNPs in der gepoolten Querschnittspopulation aus Dresden, München und Leipzig (N=4264). Die Farbkodierung des LD-Plots wurde durch Haploview gegeben: weiss $r^2 = 0$, Grauschattierungen $0 < r^2 < 1$, schwarz $r^2 = 1$.

3.1.3.5 Assoziationen und Äquivalenztest zwischen *GATA3 Tagging* SNPs und atopischen Erkrankungen

Die Assoziationen zwischen den genotypisierten *GATA3* Polymorphismen und Asthma bronchiale, Heuschnupfen, atopischer Dermatitis und Atopie wurde in der gepoolten Querschnittspopulation aus Dresden, München und Leipzig (N=4264) untersucht. In nachfolgender Tabelle 53 (linke Seite) sind die Assoziationen in einem allelischen Modell berechnet worden. Wie aus den Assoziationsanalysen ersichtlich, war keiner der untersuchten *GATA3* SNPs mit Asthma bronchiale oder einem anderen atopischen Phänotypen wie Heuschnupfen, atopischer Dermatitis oder Atopie assoziiert. Da das Fehlen einer signifikanten Assoziation aber nicht generell beweist, dass keine Assoziation vorhanden ist, wurde anschließend ein Äquivalenztest durchgeführt. Ziel dieses Tests war es, falsch negative Ergebnisse auszuschliessen und somit das Fehlen von signifikanten Assoziationen zwischen *GATA3* und atopischen Phänotypen statistisch abzusichern. Die Signifikanz wird bei diesem Test nicht durch einen p-Wert definiert, sondern dadurch, dass eine kalkulierte Testgrösse X innerhalb des Äquivalenzbereichs [C1, C2] liegt. Wie aus Tabelle 53 (rechte Seite) ersichtlich, befand sich die Testgrösse X in den meisten Fällen innerhalb des Intervalls [C1, C2], so dass die Entscheidungsfrage des Äquivalenztests mit "ja" beantwortet werden konnte und somit für die meisten der gestesteten *GATA3* SNPs das Fehlen der signifikanten Assoziationen bestätigt werden konnte.

Tabelle 53: *GATA3* Assoziationsanalyse und Äquivalenztest. Assoziationen und Äquivalenztest der *GATA3 Tagging* SNPs mit Asthma bronchiale, Heuschnupfen, atopischer Dermatitis und Atopie unter Annahme eines allelischen Modells für die gepoolte Population aus Dresden, München und Leipzig (N=4264).

		Odds	ls Konfidenz-			Äquivalenz-			
		Ratio	intervall		p-Wert	bereich		Entscheidung	
						C1(s)	C2(s)	Х	
Asthma	rs1399180	1,18	0,97	1,44	0,0954	114	123	134	nein
	rs3781093	0,97	0,78	1,22	0,8061	97	104	98	ja
	rs3802604	1,03	0,87	1,21	0,7457	233	256	248	ja
	rs3824662	1,03	0,83	1,26	0,8171	114	123	120	ja
	rs10752126	1,00	0,85	1,18	0,9881	262	288	275	ja
	rs3802600	1,02	0,84	1,25	0,8222	120	131	127	ja
	rs406103	0,97	0,80	1,18	0,7505	132	144	134	ja
	rs11567931	1,06	0,69	1,63	0,7812	22	23	24	nein
	rs1058240	1,12	0,92	1,36	0,2589	125	136	141	nein
Heu-	rs1399180	1,02	0,83	1,26	0,8614	110	119	116	ja
schnupfen	rs3781093	1,04	0,83	1,30	0,7475	94	101	100	ja
	rs3802604	1,02	0,87	1,21	0,7790	225	247	239	ja
	rs3824662	1,12	0,92	1,38	0,2637	110	118	124	nein
	rs10752126	1,03	0,87	1,21	0,7240	250	274	266	ja
	rs3802600	1,08	0,88	1,32	0,4800	116	126	127	nein
	rs406103	0,97	0,80	1,19	0,7983	126	138	129	ja
	rs11567931	1,29	0,87	1,93	0,2073	22	23	28	nein
	rs1058240	1,06	0,87	1,29	0,5772	121	131	131	ja
Ekzema ¹	rs1399180	0,89	0,75	1,04	0,1354	216	245	211	nein
	rs3781093	1,04	0,88	1,22	0,6857	188	212	204	ja
	rs3802604	0,90	0,80	1,02	0,1152	450	509	454	ja
	rs3824662	1,08	0,92	1,26	0,3427	218	247	244	ja
	rs10752126	0,92	0,82	1,05	0,2078	501	564	512	ja
	rs3802600	1,00	0,86	1,17	0,9872	230	261	245	ja
	rs406103	0,93	0,80	1,08	0,3328	252	287	256	ja
	rs11567931	1,34	0,99	1,82	0,0545	44	46	56	nein
	rs1058240	1,01	0,87	1,18	0,8691	239	272	257	ja
Atopie	rs1399180	1,00	0,88	1,14	0,9994	333	381	356	ja
	rs3781093	1,00	0,86	1,15	0,9455	289	330	308	ja
	rs3802604	1,02	0,92	1,13	0,7161	691	784	744	ja
	rs3824662	1,04	0,91	1,19	0,5575	336	385	368	ja
	rs10752126	1,05	0,95	1,16	0,3742	778	877	844	ja
	rs3802600	1,03	0,91	1,17	0,6568	357	410	389	ja
	rs406103	1,01	0,89	1,14	0,8940	389	447	419	ja
	rs11567931	1,10	0,84	1,45	0,5007	67	70	73	nein
	rs1058240	1,12	0,99	1,27	0,0705	366	420	420	ja

(1): bei Ekzema handelt es ich um eine gepoolte Variable, die sich zusammensetzt aus: Arztdiagnose atopische Dermatitis in Dresden und München und jemals Ekzem und jemals juckende Hautveränderungen in Leipzig. Da das hier verwendete allelische Modell dem dominanten Rechenmodell in seiner Endaussage sehr ähnelt, wurden zusätzlich noch die Effekte von *GATA3* Polymorphismen im gegenteiligen Modell, dem rezessiven Modell analysiert. Hierbei wies der SNP rs3824662 eine grenzwertige Assoziation mit atopischer Dermatitis (OR 1,61; 95%CI 1,07-2,42; p=0,0214) und Heuschnupfen (OR 1,69; 95%CI 1,00-2,84; p=0,0474) auf. Da in einer kürzlich erschienenen Publikation Assoziationen zwischen *GATA3* Polymorphismen und erhöhtem Serum IgE beobachtet worden sind ⁷², wurde auch im Rahmen dieser Arbeit der Zusammenhang zwischen *GATA3* Polymorphismen und Gesamt-IgE Werten untersucht. Dabei zeigte sich, dass die Polymorphismen rs1399180 (OR 1,27; 95%CI 1,06-1,52; p=0,0085) und rs11567931 (OR 1,55; 95%CI 1,10-2,19; p=0,0114) zu einem signifikant erhöhtem Serum IgE-Spiegel über der 90. Perzentile (> 457IU/ml) führen. Allerdings konnten sowohl für die Assoziationen im rezessiven Modell als auch für die IgE-Bestimmungen nach der Korrektur für multiples Testen keine signifikanten Werte mehr erreicht werden.

3.2 SNP Auswahl für funktionelle Studien

Die Assoziationsstudien hatten gezeigt, dass Polymorphismen in den Genen *TBX21* und *HLX1* das Asthmarisiko signifikant beeinflussen, während genetische Varianten in *GATA3* keinen Einfluß auf die Entstehung zu haben scheinen. Ziel der weiteren Arbeit war es daher zu untersuchen, durch welche biologischen Mechanismen die assoziierten *TBX21* und *HLX1* Polymorphismen das Asthmarisiko modifizieren. *GATA3* Polymorphismen wurden aufgrund der fehlenden Assoziationen nicht weiter auf funktioneller Ebene charakterisiert.

Im Vorfeld der Genotypisierungen wurden alle SNPs mit $r^2 \ge 0.8$ zu einem LD Block zusammengefasst, um die Genotypisierung möglichst kosteneffizient zu gestalten. Allerdings befanden sich innerhalb dieser LD Blöcke auch SNPs, die in einem weitaus höheren LD zueinander standen. Da also Risikoallele aufgrund der starken Kopplung bei fast allen Individuen gemeinsam vererbt werden, konnte auf Populationsebene nicht diskriminiert werden, welcher dieser SNPs funktionell und kausal für den beobachteten Effekt verantwortlich ist. Als Auswahlkriterium für die zu untersuchenden SNPs wurde daher ihre Lokalisation innerhalb des Gens verwendet. Von besonderem Interesse waren dabei Promotorpolymorphismen, da diese aufgrund ihrer Lage potentiell die Transkription und damit die Expression eines Gens maßgeblich beeinflussen könnten. Desweiteren stellten auch exonische Polymorphismen, die zu einer Aminosäureänderung innerhalb eines Proteins führen, einen interessanten Ansatzpunkt für funktionelle Studien dar, da diese SNPs wegen des Aminosäureaustausches Einfluss auf die Struktur oder die Funktion des jeweiligen Proteins nehmen könnten. Aufgrund dieser Kriterien wurden in der vorliegenden Arbeit aus den signifikant assoziierten LD Blöcken der Gene TBX21 und HLX1 zunächst Promotorpolymorphismen ausgewählt, um deren Einfluss auf die Promotoraktivität und die daraus resultierende Genexpression zu untersuchen. In einem nächsten Schritt wurde zudem analysiert, ob sich durch das Vorhandensein der polymorphen Promotorallele das Bindungsverhalten von Transkriptionsfaktoren an die entsprechende Promotorregion verändert. Anschließend erfolgte die Charakterisierung der funktionellen Rolle von exonischen, nicht synonymen Polymorphismen auf Proteinebene (siehe 3.4.1).

3.3 Funktionelle Promotorstudien

Um zu prüfen, ob die TBX21 bzw. HLX1 Promotorpolymorphismen einen Einfluss auf die Promotoraktivität des jeweiligen Gens haben, wurden Luciferase-Reportergen-Analysen durchgeführt. Anschließend wurde durch in silico Analysen untersucht, ob die veränderte Promotoraktivität durch ein verändertes Bindeverhalten von Transkriptionsfaktoren an die polymorphen Promotorbereiche verursacht werden könnte. Die Ergebnisse dieser Computer-basierten Analyse wurden für HLX1 mittels Electrophoretic mobility shift assays (EMSA) überprüft, da mit dieser Methode allelspezifische Bindungen von Transkriptionsfaktoren an den Promotor charakterisiert werden können. Da es sich bei TBX21 und HLX1 um T-Zell spezifische Transkriptionsfaktoren handelt, wurden die Transfektionen und die EMSAs mit Jurkat T-Zellen durchgeführt.

3.3.1 *TBX21:* Promotorpolymorphismen beeinflussen die Promotoraktivität signifikant

Das Mutationsscreening TBX21 hatte Identifikation von zur von drei Promotorpolymorphismen geführt: T-1514C, G-999A (Block 1) und T-1993C (Block 2). Alle drei Polymorphismen waren in LD Blöcken enthalten, die eine signifikante Assoziation mit Asthma bronchiale gezeigt hatten. Um den Einfluss des Haplotypen von Block 1 auf die Promotoraktivität messen zu können, wurde ein Luciferase-Konstrukt hergestellt, das circa 2kbp (ausgehend vom 1.ATG des Exon 1) des TBX21 Promotors umspannte und die polymorphen Promotor Allele an Position -1514C und -999A enthielt. Zudem wurde ein weiteres Konstrukt hergestellt, welches das polymorphe Allel an Position -1993C (Block 2) beinhaltete. Als Referenz wurde ein Konstrukt mit der *TBX21* Wildtyp-Promotorsequenz verwendet. Diese Konstrukte wurden transient in Jurkat T-Zellen transfiziert und die Allel-abhängige relative Luciferase-Aktivität wurde in unstimulierten und stimulierten (50ng/µl Ionomycin) Zellen gemessen.

Aus Abbildung 32 ist zu erkennen, dass die Promotorpolymorphismen aus beiden Blöcken die *TBX21* Promotoraktivität signifikant beeinflussen. Allerdings wiesen die Effekte der Polymorphismen in entgegengesetzte Richtungen. Während die Kombination der polymorphen Allele -1514C und -999A (Block 1) zu einem signifikanten Anstieg der *TBX21* Genexpression führte, wurde bei Vorhandensein des polymorphen Allels von SNP -1993C (Block 2) eine signifikante Reduktion der *TBX21* Promotoraktivität im Vergleich zum Referenzkonstrukt beobachtet.

Abbildung 32: Luciferase Assays zur Bestimmung des Einflusses von *TBX21* Promotorpolymorphismen auf die *TBX21* Promotoraktivität. Dazu wurden Jurkat T-Zellen transient mit *TBX21* Promotorkonstrukten transfiziert (n=3). Die Promotoraktivität wurde 18h nach Transfektion in unstimulierten oder stimulierten (50ng/ml Ionomycin) Zellen gemessen. Die Luciferase-Aktivität wurde mit dem pRL-TK Renilla Kontrollplasmid hinsichtlich der Transfektionseffizienz normalisiert. Die relative Luciferase-Aktivität wurde in Relative Light Units (RLU) gemessen.

3.3.2 *HLX1:* Promotorpolymorphismen reduzieren die Promotoraktivität signifikant

Im Falle von HLX1 wurden insgesamt fünf Promotorpolymorphismen (A-1633G, C-1486G, C-1407T, C-742G, C-559T) detektiert. Allerdings befanden sich nur die Polymorphismen C-1407T und C-742G in einem LD Block (Block 2), der eine signifikante Assoziation mit Asthma bronchiale gezeigt hatte. Luciferase-Assays wurden daher mit diesen zwei Promotorpolymorphismen durchgeführt. Dafür wurden Luciferase-Konstrukte hergestellt, die zum einen circa 1,8kbp der HLX1 Wildtyp-Promotorsequenz enthielten, als auch Konstrukte die entweder das polymorphe Allel an Position -1407T oder an Position -742G aufwiesen. Aufgrund des hohen LDs zwischen diesen beiden Promotorpolymorphismen wurde zudem noch ein weiteres Konstrukt generiert, welches die Kombination aus -1407T und -742G beinhaltete. Analog zu den TBX21 Luciferase-Konstrukten Experimenten mit den wurden die HLX1 Promotorkonstrukte transient in Jurkat T-Zellen transfiziert und anschließend wurde die relative Luciferase-Aktivität in unstimulierten wie auch in stimulierten Zellen bestimmt.

Abbildung 33: Luciferase Assays zur Bestimmung des Einflusses von *HLX1* Promotorpolymorphismen auf die *HLX1* Promotoraktivität. Dazu wurden Jurkat T-Zellen transient mit *HLX1* Promotorkonstrukten transfiziert (n=3). Die Promotoraktivität wurde 18h nach Transfektion in unstimulierten oder stimulierten (2ng/ml bzw. 50ng/ml Ionomycin) Zellen gemessen. Die Luciferase-Aktivität wurde mit dem pRL-TK Renilla Kontrollplasmid hinsichtlich der Transfektionseffizienz normalisiert. Die relative Luciferase-Aktivität wurde in Relative Light Units (RLU) gemessen.

Die Auswertung des Luciferase-Assays (Abbildung 33) zeigte, dass die polymorphen *HLX1* Promotorkonstrukte im Vergleich zum *HLX1* Wildtyp-Promotor in stimulierten Zellen (50ng/µl Ionomycin) zu einer signifikanten Reduktion der Promotoraktivität führten, jedes Konstrukt an sich (-1407T, p = 0,003; -742G, p = 0,006) sowie die Kombination aus beiden polymorphen Allelen (-1407T/ -742G, p = 0,0002).

3.3.3 *TBX21* und *HLX1: In silico* Analysen zur Charakterisierung von Transkriptionsfaktorbindungen an die Promotorregionen

Luciferase-Assays hatten gezeigt, dass sowohl *TBX21* als auch *HLX1* Promotorpolymorphismen einen signifikanten Einfluss auf die Promotoraktivität des jeweiligen Gens ausüben. Im Folgenden wurden daher weitere Analysen durchgeführt, um zu untersuchen, welche Mechanismen dieser veränderten Genexpression zu Grunde liegen könnten.

Die Promotoraktivität wird primär durch die spezifische Interaktion mit Transkriptionsfaktoren gesteuert. Transkriptionsfaktoren besitzen die Eigenschaft an genau definierte DNA-Sequenzen innerhalb eines Promotors zu binden und dadurch die Transkription des Gens zu initieren oder zu inhibieren. Durch das Vorhandensein eines Allels im Promotorbereich können diese polymorphen spezifischen Transkriptionsfaktor-Bindungsmotive nun derart verändert werden, dass dies entweder zu einer zusätzlichen Transkriptionsfaktor-Bindungsstelle führt oder den Wegfall der Bindungsstelle zur Folge hat.

Um Bindungsstellen von Transkriptionsfaktoren zu identifizieren, erfolgte eine computerbasierte Sequenzanalyse mittels des Programmes Alibaba 2.1. Durch diese *in silico* Analyse konnten in Abhängigkeit des Genotyps potentielle Transkriptionsfaktorbindestellen für die interessierenden Promotorbereiche von *TBX21* (T-1514C, G-999A, T-1993C) und *HLX1* (C-1407T, C-742G) detektiert werden. Aus Tabelle 54 wird deutlich, dass sowohl bei *TBX21* (oben) als auch bei *HLX1* (unten) das Bindungsverhalten von Transkriptionsfaktoren je nach Vorliegen von Wildtyp- bzw. polymorphen Allel erheblich variieren kann.

132

	Wildtyp-Allel	polymorphes Allel		
TBX21 T-1514C	NF-1	USF		
		AP-2a		
		C/EBPa		
TBX21 G-999A	-	C/EBPy		
TBX21 T-1993C	-	-		
HLX1 C-1407T	SP1	YY1		
	C/EBPa	C/EBPa		
HLX1 C-742G	NF-1	NF-1		

Tabelle 54: In silicoAnalysefür das allelspezifischeBindeverhalten vonTranskriptionsfaktoren unter Verwendung des InternetprogrammsAlibaba 2.1.

Um die *in silico* getroffene Vorhersage des Bindungsverhaltens von Transkriptionsfaktoren zu überprüfen, wurden Electrophoretic mobility shift Assays (EMSA) durchgeführt, da durch diese Technik die tatsächliche Bindung von Transkriptionsfaktoren an die Promotorregion auf einem Gel sichtbar gemacht werden kann.

Da die EMSAs für *TBX21* allerdings ausserhalb dieser Doktorarbeit von einem weiteren Mitarbeiter der Arbeitsgruppe Allergogenetik, Herrn Dr. Peters, durchgeführt wurden, wird auf diese Ergebnisse nicht weiter eingegangen. Im Gegensatz dazu erfolgten jedoch die EMSAs zu *HLX1* im Rahmen dieser Arbeit und werden daher im Folgenden ausführlich dargestellt.

3.3.4 *HLX1*: Einfluss von Promotorpolymorphismen auf das Bindeverhalten von Transkriptionsfaktoren

Die *in silico* Analyse für den *HLX1* Promotorpolymorphismus C-1407T hatte unabhängig vom Genotyp die Bindung des C/EBPα Transkriptionsfaktors vorhergesagt. Zudem wurde bei Vorliegen des Wildtyp-Allels eine SP1 Bindestelle postuliert,

133

während sich für das polymorphe Allel die Bindung des Transkriptionsfaktors YY1 andeutete (siehe Tabelle 54).

3.3.4.1 Detektion von SP Transkriptionsfaktoren in Jurkat T Zellen

Um mittels EMSA untersuchen zu können, ob die prädiktierten Transkriptionsfaktoren tatsächlich an den *HLX1* Promotor binden, muss zunächst überprüft werden, ob der zu testende Transkriptionsfaktor generell im experimentellen System exprimiert wird und unter den gewählten Pufferbedingungen detektiert werden kann.

Aus diesem Grund wurde zunächst in einem Vorversuch das Vorhandensein der SP Transkriptionsfaktoren in Jurkat T-Zellen anhand einer bereits in der Literatur beschriebenen SP Consensus *Site* überprüft⁸⁵. Mittels *Competition*-Experimenten sollte zudem ein erster Eindruck gewonnen werden, ob Mitglieder der SP Familie spezifisch an den *HLX1* Promotor an Position -1407 binden. Da ausserdem aus einem weiteren EMSA Vorversuch bekannt war, dass die *HLX1* Promotorregion um Position -742 ein sehr ähnliches DNA-Protein-Bindemuster im EMSA wie Position -1407 liefert, war es nahe liegend, in einem weiteren *Competition*-Experiment auch die potentielle Bindung von SP Transkriptionsfaktoren an Position -742 des *HLX1* Promotors zu untersuchen.

Nach Inkubation der SP Consensus *Site* mit unstimulierten als auch mit stimulierten (3h PMA/Ionomycin) Nuklearextrakt von Jurkat T-Zellen konnte in beiden Fällen die Bindung von vier Komplexen an die SP-Consensus *Site* detektiert werden, wobei kein Unterschied im Bandenmuster zwischen unstimulierten (Abbildung 34, Spur 1) und stimulierten Nuklearextrakt (Abbildung 34, Spur 2) zu erkennen war. Die Bildung

dieser Komplexe war spezifisch, da sie durch den 100fachen molaren Überschuß an unmarkiertem SP Oligo verdrängt werden konnte (Abbildung 34, Spur 3). Weitere Competition- Experimente mit den HLX1 spezifischen Oligos für den SNP C-1407T zeigten, dass nur die Competition mit ungelabelten Wildtyp-Oligo C-1407 (Abbildung 34, Spur 4) die Entstehung der vier Komplexe erheblich verringern konnte, während das polymorphe Allel -1407T (Abbildung 34, Spur 5) diese Eigenschaft nicht aufwies. Auch der zweite HLX1 Promotorpolymorphismus C-742G führte im Competition-Experiment zu einem ähnlichen Ergebnis. Während das Wildtyp-Allel C-742 (Abbildung 34, Spur 6) die Entstehung der Komplexe kompetitieren konnte, hatte die Inkubation mit dem polymorphen Allel -742G (Abbildung 34, Spur 7) keinen Einfluss auf die Komplexbildung. In Super-Shift-Experimenten konnten die einzelnen Bestandteile der Komplexe identifiziert werden. Die Zugabe von spezifischen SP1 Antikörper induzierte einen Super-Shift von Komplex 1, allerdings blieb eine schwache Bande auf der Höhe von Komplex 1 zurück (Abbildung 34, Spur 9). Erst durch die Doppelinkubation von SP1 und SP4 Antikörper (Abbildung 34, Spur 13) konnte ein Super-Shift des gesamten Komplex 1 erzielt werden, wodurch die Transkriptionsfaktoren SP1 und SP4 als Komponenten des Komplex 1 identifiziert werden konnten. Durch die Inkubation mit spezifischen SP3 Antikörper (Abbildung 34, Spur 10) wurden die Komplexe 2, 3 und 4 in den oberen Gelbereich verschoben, was induzierte, dass diese Komplexe auf den Transkriptionsfaktor SP3 zurückzuführen sind.

Abbildung 34: EMSA mit der SP Consensus *Site*. Der Nuklearextrakt stammte aus unstimulierten oder stimulierten (PMA/Ionomycin (50ng/ml, 1 μ M)) Jurkat T-Zellen. (1) Um die Spezifität der *Competition*- und der *Super-Shift*-Experimente zu zeigen, wurden ein sequenzfremdes Oligo (Position -1127/-1097 der *IL13* 5'UTR) sowie ein unabhängiger Kontrollantikörper verwendet (YB1-Antikörper).

3.3.4.2 *HLX1*: Promotorpolymorphismen C-1407T und C-742G verhindern die Bindung von SP Transkriptionsfaktoren an diese Promotorregionen

Die *Competition*-Experimente in Abbildung 34 (Spur 4-7) legten die Vermutung nahe, dass Mitglieder der SP Transkriptionsfaktorfamilie ausschließlich bei Vorhandensein der Wildtyp-Allele an die Positionen -1407 und -742 des *HLX1* Promotors binden. Um diese Aussage zu verifizieren, wurden im Folgenden für beide *HLX1* Promotorpolymorphismen C-1407T und C-742G EMSAs durchgeführt.
Als Proteinquelle diente hierbei Nuklearextrakt von unstimulierten Jurkat T-Zellen. Auf die Versuche mit stimuliertem Nuklearextrakt konnte verzichtet werden, da der EMSA mit der SP Consensus Site gezeigt hatte, dass die Stimulation der Zellen keinen Einfluss auf das DNA-Protein-Bindungsverhalten hat (Abbildung 34, Spur 1 und 2). Abbildung 35 und Abbildung 36 demonstrieren, dass in Abhängigkeit des vorliegenden Genotypes ein deutlicher Unterschied in den DNA/Protein Bindungsmustern detektiert werden kann. Sowohl für SNP C-1407T (Abbildung 35) als auch für C-742G (Abbildung 36) konnte nur bei Vorliegen des Wildtyp-Allels (Abbildung 35, Abbildung 36 je Spur 1) die Bindung von vier Komplexen nachgewiesen werden. Bei Verwendung der polymorphen Allele konnte hingegen keine Bindung an -1407T (Abbildung 35, Spur 2) sowie nur eine im Vergleich zum Wildtyp sehr schwache Bindung im Falle von -742G beobachtet werden (Abbildung 36, Spur 2). Die Spezifität der Bindungen konnte mittels Competition-Experimenten bestätigt werden. Während der 100fach molare Überschuss an unmarkiertem Wildtyp-Oligos (Abbildung 35, Abbildung 36, je Spur 3) die Entstehung der Komplexe verhindern konnte, waren die Oligos mit den polymorphen Allelen (Abbildung 35, Abbildung 36, je Spur 4) dazu nicht in der Lage. Die Verwendung der SP Consensus Site (Abbildung 35, Abbildung 36, je Spur 5) als Competitor führte zum Verschwinden der Komplexe, was erneut die Bindung der SP Transkriptionsfaktoren an den entsprechenden HLX1 Promotorbereich bewies. In Spur 6 wurde jeweils das inverse Experiment durchgeführt, wobei die SP Consensus Site als Oligo eingesetzt wurde. Während die Verwendung des Oligos C-1407 (siehe Abbildung 35, Spur 6) als Competitor zu einer fast vollständigen Auflösung der Komplexe führte, zeigte das Wildtyp-Oligo C-742 (Abbildung 36, Spur 6) kaum einen Effekt. Mittels Super-Shift-Experimente konnten die einzelnen Komponenten der bindenden Komplexe

identifiziert werden. Analog zu den Experimenten mit der SP Consensus *Site* zeigte sich, dass sich Komplex 1 aus den Transkriptionsfaktoren SP1 und SP4 zusammensetzt, während die Komplexe 2, 3 und 4 durch die Bindung des Transkriptionsfaktor SP3 entstehen.

Abbildung 35: EMSA zu dem *HLX1* SNP C-1407T. Der Nuklearextrakt stammte aus unstimulierten Jurkat T-Zellen.

(1) Um die Spezifität der *Competition-* und der *Super-Shift-*Experimente zu zeigen, wurden ein sequenzfremdes Oligo (Position -1127/-1097 der *IL13* 5'UTR) sowie ein unabhängiger Kontrollantikörper verwendet (YB1-Antikörper).

Abbildung 36: EMSA zu dem *HLX1* SNP C-742G. Der Nuklearextrakt stammte aus unstimulierten Jurkat T-Zellen.

(1) Um die Spezifität der *Competition-* und der *Super-Shift-*Experimente zu zeigen, wurden ein sequenzfremdes Oligo (Position -1127/-1097 der *IL13* 5'UTR) sowie ein unabhängiger Kontrollantikörper verwendet (YB1-Antikörper).

3.4 TBX21 und HLX1: Gen-Gen-Analysen

Die unter 3.1 und 3.3 beschriebenen Analysen hatten demonstriert, dass Promotorpolymorphismen in den Genen *TBX21* und *HLX1*, die eine signifikante Assoziation mit Asthma bronchiale gezeigt hatten, die Genexpression des jeweiligen Gens signifikant beeinflussen. Generell sollten aber bei der Untersuchung einer derartig komplexen Erkrankung wie Asthma bronchiale die Auswirkungen von Polymorphismen nicht nur im jeweiligen Gen isoliert betrachtet werden. Vielmehr muss berücksichtigt werden, dass die Pathogenese von Asthma bronchiale durch das Zusammenspiel vieler Faktoren geprägt ist und das Vorliegen mehrerer genetischer Veränderungen zu einer potenzierenden Wirkung führen kann. Im Falle der Transkriptionsfaktoren TBX21 und HLX1 ist die Untersuchung von SNP Kombinationen aus beiden Genen besonders interessant, da bekannt ist, dass diese Transkriptionsfaktoren ihre volle Funktion innerhalb der T-Zelldifferenzierung nur gemeinsam mittels einer positiven Rückkopplungsschleife entfalten können und damit eine optimale Th1-Antwort nur durch das Zusammenspiel beider Transkriptionsfaktoren erreicht werden kann ³⁷. Aus diesem Grund war es in diesem Zusammenhang besonders interessant zu untersuchen, wie sich SNP Kombinationen in diesen zwei Genen auf das Asthmarisiko auswirken.

Die Gen-Gen-Analyse zwischen *TBX21* und *HLX1* erfolgte in der vorliegenden Arbeit auf zwei Ebenen. Zunächst wurde der Einfluss von verschiedenen SNP Kombinationen auf das asthmatische Geschehen auf funktionelle Weise charakterisiert. Aus einer kürzlich erschienenen Publikation ging hervor, dass sich TBX21 und HLX1 nicht nur funktionell ergänzen, sondern dass sie bei Verwendung eines *in vitro* Yeast-Two-Hybrid-Systems in der Lage sind physikalisch miteinander zu interagieren ⁸⁶. Um diese Aussage *in vivo* zu bestätigen, wurde zunächst mittels Immunfluoreszenz-Mikroskopie untersucht, ob die Proteine TBX21 und HLX1 im selben Kompartment der Zelle lokalisiert sind, so dass generell eine Interaktion zwischen den beiden Proteinen stattfinden kann. Zur Charakterisierung des Interaktionsverhaltens der Proteine TBX21 und HLX1 wurde anschließend die BRET (Biolumineszenz Resonanz Energie Transfer) Technik angewendet. Im Zuge der kombinierenden SNP Analyse wurde mit der BRET-Technik untersucht, ob exonische *TBX21* bzw. *HLX1* Polymorphismen, die zu einer Aminosäureänderung führen, möglicherweise einen Einfluss auf die Struktur des jeweiligen Proteins haben und damit das Interaktionsverhalten zwischen TBX21 und HLX1 beeinflussen können. Anschließend wurde in einem nächsten Schritt der Einfluss von verschiedenen SNP Kombinationen auf das asthmatische Geschehen auf Populationsebene im Rahmen eines Risiko-Modells statistisch untersucht.

3.4.1 Charakterisierung des biologischen Interaktionsverhaltens von TBX21 und HLX1

Bei der Charakterisierung des Interaktionsverhaltens von TBX21 und HLX1 auf biologischer Ebene waren zwei Fragestellungen von besonderem Interesse. Zum einen sollte mittels der BRET-Technik geklärt werden, ob TBX21 und HLX1 generell in der Lage sind in vivo zu interagieren. In einem weiteren Schritt sollte untersucht werden, ob diese Protein-Protein-Interaktion durch das Vorhandensein exonischen von TBX21 Polymorphismen, die in den Proteinen und HXL1 zu einer Aminosäureänderung führen, beeinflusst wird.

Für *TBX21* hatte das Mutationsscreeing zur Identifikation von einem exonischen, nicht synonymen SNP geführt. Dieser SNP C98G ist im 1. Exon von *TBX21* lokalisiert und führt an Position 33 des TBX21 Proteins zu einem Austausch von Histidin zu Glutamin (H33Q). Aufgrund seiner geringen MAF von 4% wurde der SNP C98G in den systematischen Analysen von *TBX21* nicht berücksichtigt, da bei diesen Analysen der Grenzwert für die MAF bei \geq 10% lag. Basierend auf der Hypothese, dass dieser SNP aber aufgrund seiner Lokalisation im Gen, funktionell relevant sein könnte, wurden gesonderte Assoziationsanalysen in der gepoolten Querschnittspopulation von Dresden und München (N=3099) durchgeführt. Diese hatten gezeigt, dass der SNP C98G zu einem grenzwertig signifikanten Asthmarisiko führt (siehe 3.1.1.7). Desweiteren hatten

Tantisira et al. in ihrer Publikation demonstriert, dass bei Vorhandensein dieses SNP die Verwendung von inhalativen Kortikosteroiden in einer Verbesserung des asthmatischen Phänotyps resultiert⁸⁷. Demnach scheint der SNP C98G funktionelle Relevanz zu besitzen, auch wenn dessen Effekte in den beiden beschriebenen Populationen in verschiedene Richtungen weisen. Im Falle von *HLX1* erschien der *Tagging* SNP T346C für die BRET-Analysen besonders interessant, da dieser SNP an Position 116 des HLX1 Proteins einen Aminosäureaustausch von Serin zu Prolin zur Folge hat (S116P) und zudem in den bereits dargestellten Assoziationsstudien einen stark protektiven Effekt auf die Asthmaentstehung gezeigt hatte (siehe 3.1.2.5).

Um das Interaktionsverhalten von TBX21 und HLX1 mittels der BRET-Technik charakterisieren zu können, mussten verschiedene Fusionskonstrukte generiert werden. Da beim BRET-Experiment das Interaktionsvermögen zweier Proteine nicht nur vom Abstand der Proteine zueinander, sondern auch von der Orientierung der Markerproteine Renilla Luciferase (hRluc) und Venus-Yellow-fluorescent Protein (Venus) abhängig ist, wurden sowohl N- als auch C-terminale Fusionsproteine benötigt. Die verwendeten BRET-Fusionskonstrukte sind in Tabelle 55 zusammengefasst.

N-terminale Konstrukte ¹		C-terminale Konstrukte ¹		
N-hRluc-	TBX21_WT	TBX21_WT-	C-hRluc	
N-Venus-	TBX21_WT	TBX21_WT-	C-Venus	
N-hRluc-	TBX21_PO	TBX21_PO-	C-hRluc	
N-Venus-	TBX21_PO	TBX21_PO-	C-Venus	
N-hRluc-	HLX1_WT	HLX1_WT-	C-hRluc	
N-Venus-	HLX1_WT	HLX1_WT-	C-Venus	
N-hRluc-	HLX1_PO	HLX1_PO-	C-hRluc	
N-Venus-	HLX1 PO	HLX1 PO-	C-Venus	

 Tabelle 55:
 Übersicht der verwendeten BRET-Fusionskonstrukte.

(1) Da das Interaktionsverhalten der Proteine nicht nur vom Abstand der Proteine zueinander, sondern auch von deren Orientierung abhängig ist, wurden sowohl N- als auch C-terminale Fusionsproteine hergestellt. Zudem sollte mittels BRET auch der Einfluss von exonischen, nicht synonymen Polymorphismen auf das Interaktionsverhalten getestet werden. Aus diesem Grund wurden auch Konstrukte generiert, die für die varianten Proteine codierten. TBX21_WT = C98: codiert für Wildtyp-TBX21 Protein (Aminosäureposition 33: Histidin) TBX21_PO = 98G: codiert für variantes TBX21 Protein (Aminosäureposition 33: Glutamin) HLX1_WT = T346: codiert für Wildtyp-HLX1 Protein (Aminosäureposition 116: Serin) HLX1_PO = 346C: codiert für variantes HLX1 Protein (Aminosäureposition 116: Prolin)

3.4.1.1 Die Proteine TBX21 und HLX1 werden im Zellkern exprimiert

Um das Interaktionsverhalten zweier Proteine in vivo analysieren zu können, muss gewährleistet sein, dass die Proteine im selben Kompartiment der Zelle exprimiert werden, da ansonsten eine gegenseitige Bindung unmöglich ist. Aus diesem Grund wurde zunächst mittels Immunfluoreszenz-Mikroskopie die intrazelluläre Lokalisation der exogenen TBX21 und HLX1 Proteine ermittelt. Für diese Untersuchung wurden die N-terminalen BRET-Fusionskonstrukte mit dem Venus Fluoreszenzprotein verwendet, transient in COS-7 Zellen transfiziert und 24h später unter dem Fluoreszenzmikroskop analysiert. Hierbei zeigte sich, dass sowohl N-Venus-TBX21 als auch N-Venus-HLX1 im Zellkern exprimiert werden. Desweiteren konnte beobachtet werden, dass die Lokalisation der Proteine durch Vorhandensein des jeweiligen das Aminosäureaustausches (TBX21: H33Q; HLX1: S116P) nicht beeinflusst wird. Auch die varianten TBX21 und HLX1 Proteine konnten im Zellkern der COS-7 Zellen detektiert werden. Exemplarisch für alle anderen Konstrukte ist hierfür das Fusionsprotein N-Venus-TBX21_PO in Abbildung 37 dargestellt.

Abbildung 37: Detektion des Fusionsproteins N-Venus-TBX21_PO in COS-7 Zellen. Dazu wurden COS-7 Zellen transient mit N-Venus-TBX21_PO transfiziert. 24h nach Transfektion konnte das Konstrukt aufgrund der grünen Fluoreszenz des Venus-*Tags* im Zellkern detektiert werden. Um die Struktur der Zelle zu kennzeichnen, wurde der Zellkern blau (DAPI) und das Tubulingerüst rot (α -Tubulin +Alexa Fluor® 555) gefärbt.

TBX21_PO = 98G: codiert für variantes TBX21 Protein (Aminosäureposition 33: Glutamin)

Die Transfektion der Venus-markierten Fusionsproteine erlaubte jeweils nur die Detektion eines Proteins. Um nun zu zeigen, dass TBX21 und HLX1 tatsächlich gleichzeitig im Zellkern exprimiert werden, wurde eine Co-Transfektion von Venusund hRluc-markierten Fusionsproteinen durchgeführt. Dies ermöglichte die parallele Betrachtung der beiden Proteine unter dem Mikroskop, da die Venus-markierten Proteine grünes Licht emittierten und die hRluc-markierten Proteine durch die Kombination aus α-Luciferase Antikörper und dem sekundären Antikörper Alexa Fluor® 555 rot angefärbt wurden. In Abbildung 38 ist exemplarisch die Co-Transfektion von N-hRluc-TBX21_WT und N-Venus-HLX1_WT gezeigt.

Abbildung 38: Detektion der Co-Lokalisation der Fusionsproteine N-hRluc-TBX21_WT und N-Venus-HLX1_WT in COS-7 Zellen. Dazu wurden COS-7 Zellen transient mit N-hRluc-TBX21_WT und N-Venus-HLX1_WT co-transfiziert. 24h nach Transfektion wurde das hRluc-markierte Protein durch die Kombination aus α -Luciferase Antikörper und dem sekundären Antikörper Alexa Fluor® 555 rot markiert, während das Venus-markierte Konstrukt aufgrund der grünen Fluoreszenz detektiert werden konnte. Die Gegenfärbung des Zellkerns erfolgte mit DAPI (blau).

TBX21_WT = C98: codiert für Wildtyp-TBX21 Protein (Aminosäureposition 33: Histidin) HLX1_WT = T346: codiert für Wildtyp-HLX1 Protein (Aminosäureposition 116: Serin)

3.4.1.2 Detektion einer positiven Protein-Protein-Interaktion zwischen TBX21

und HLX1

Da aus bisherigen Arbeiten bekannt war, dass das Interaktionsverhalten von Proteinen durch die Orientierung der Luciferase- bzw- Venus-Markerproteine beeinflusst werden kann, wurden in einem ersten Schritt der BRET-Messung alle acht möglichen Kombinationen an N- und C-terminalen TBX21 und HLX1 Fusions-Konstrukten in COS-7 Zellen co-transfiziert. In Abbildung 39 sind die Ergebnisse der Wildtyp-Fusionsproteine dargestellt.

Abbildung 39: Untersuchung des Interaktionsverhaltens verschiedener Kombinationen an Nund C-terminalen TBX21 und HLX1 Wildtyp-Fusionskonstrukten mittels der BRET-Technik. Dazu wurden COS-7 Zellen transient mit verschiedenen Kombinationen von Donor- und Akzeptor-Fusionskonstrukten, die für die TBX21 und HLX1 Wildtyp-Proteine codierten, cotransfiziert (jeder Ansatz in Triplikaten). 24h nach Transfektion wurde die BRET Ratio gemessen, wobei eine positive Protein-Protein-Interaktion durch eine BRET-Ratio $\geq 0,05$ kennzeichnet ist. Dargestellt sind die Mittelwerte aus 3 unabhängigen Experimenten. TBX21_WT = C98: codiert für Wildtyp-TBX21 Protein (Aminosäureposition 33: Histidin) HLX1_WT = T346: codiert für Wildtyp-HLX1 Protein (Aminosäureposition 116: Serin)

Die Auswertung der BRET-Experimente (siehe Abbildung 39) demonstrierte, dass TBX21 und HLX1 tatsächlich in vivo zu einer positiven Protein-Protein-Interaktion in der Lage sind; fünf der getesteten Kombinationen erreichten den Schwellenwert für die BRET-Ratio von 0,05. Aus Abbildung 39 ist auch zu erkennen, dass abhängig von der Orientierung der Markerproteine das Interaktionsverhalten von TBX21 und HLX1 beeinflusst wird. Das Vorliegen der Kombination aus den C-terminalen Fusionsproteinen scheint das Interaktionsverhalten zu beeinträchtigen, während mitunter die Kombination der N-terminalen Konstrukte die Detektion der höchsten BRET-Ratios ermöglichte. Zudem scheint die Interaktion zwischen TBX21 und HLX1

begünstigt zu sein, wenn TBX21 an das Donormolekül, die Luciferase und HLX1 an das Akzeptormolekül, Venus gekoppelt ist.

In einem nächsten Schritt wurde nun untersucht, ob die, durch die exonischen, nicht synonymen Polymorphismen (TBX21: C98G; HLX1: T346C) verursachten Aminosäureänderungen (TBX21: H33Q; HLX1: S116P) in den Proteinen TBX21 und HLX1 einen Einfluss auf deren Interaktionsverhalten haben. Hierzu wurden alle möglichen Kombinationen an N- und C-terminalen Konstrukten, die für die Aminosäureänderungen in den Proteinen codierten, in COS-7 Zellen co-transfiziert und anschließend die BRET-Ratio gemessen (siehe Abbildung 40).

Abbildung 40: Untersuchung des Interaktionsverhaltens verschiedener Kombinationen an Nund C-terminalen TBX21 und HLX1 varianten Fusionskonstrukten mittels der BRET-Technik. Dazu wurden COS-7 Zellen transient mit verschiedenen Kombinationen von Donor- und Akzeptor-Fusionskonstrukten, die für die varianten TBX21 und HLX1 Proteine codierten, cotransfiziert (jeder Ansatz in Triplikaten). 24h nach Transfektion wurde die BRET-Ratio gemessen, wobei eine positive Protein-Protein-Interaktion durch eine BRET-Ratio $\geq 0,05$ kennzeichnet ist. Dargestellt sind die Mittelwerte aus 3 unabhängigen Experimenten. TBX21_PO = 98G: codiert für variantes TBX21 Protein (Aminosäureposition 33: Glutamin) HLX1_PO = 346C: codiert für variantes HLX1 Protein (Aminosäureposition 116: Prolin)

Abbildung 40 zeigt deutlich, dass auch die varianten TBX21 und HLX1 Proteine eine Protein-Protein-Interaktion miteinander eingehen. Bei zahlreichen Kombinationen erreichte bzw. überstieg die BRET-Ratio den Schwellenwert für den Nachweis einer positiven Interaktion von 0,05. Die höchste BRET-Ratio wurde bei Kombination des NhRluc-markierten TBX21 und N-Venus-markierten HLX1 Proteins gemessen. Das Interaktionsverhalten zwischen TBX21 und HLX1 scheint demnach nicht durch den Austausch der Aminosäuren beeinträchtigt zu werden. Vielmehr legte der Vergleich mit den BRET-Ratios der Wildtyp-Proteine die Vermutung nahe, dass bei Vorhandensein der varianten TBX21 und HLX1 Proteine eine geringfügig stärkere Interaktion zustande kommt.

3.4.1.3 Exonische, nicht synonyme Polymorphismen in *TBX21* und *HLX1* haben keinen Einfluss auf das Interaktionsverhalten

Um exakter bestimmen zu können, ob sich die Wildtyp- und die varianten Proteine in ihrer Bindungsaffinität unterscheiden, wurden sogenannte BRET-Sättigungsassays durchgeführt. Im Gegensatz zu den bisher gezeigten BRET-Messungen, bei denen das Donor: Akzeptor Verhältnis 1:3 betrug, wurden bei den BRET-Sättigungsassays steigende Akzeptorkonzentrationen eingesetzt. Handelt es sich um eine spezifische Interaktion zwischen den untersuchten Proteinen, so nähert sich die BRET-Ratio mit steigender Akzeptorkonzentration einem Sättigungs-Plateau und es ergibt sich ein asymptotischer Kurvenverlauf. Anhand dieser Kurve lässt sich dann die BRET₅₀-Konstante bestimmen. Der Wert dieser Konstante entspricht der Konzentration an Akzeptor, die benötigt wird, um die halbmaximale BRET-Ratio zu erreichen. Diese Konstante reflektiert somit die relative Affinität zwischen Donor und Akzeptor und ist damit ein Maß für das Interaktionsverhalten zweier Proteine. Je kleiner der Wert dieser Konstante, desto affiner die Proteine und desto stärker ihr Bindungsverhalten⁸⁸⁻⁹⁰. Da die in Abbildung 39 und Abbildung 40 dargestellten BRET-Messungen gezeigt hatten, dass die höchsten BRET-Ratios bei Kombination des N-hRluc-markierten TBX21 und des N-Venus-markierten HLX1 Proteins erzielt werden, wurde für die Erstellung der Sättigungskurven sowohl für die Wildtyp- als auch für die varianten Proteine diese Kombination gewählt.

Abbildung 41: BRET-Sättigungsassays zur Bestimmung der Bindungsaffinität zwischen den Wildtyp- bzw. den varianten TBX21 und HLX1 Proteinen. Zur Herstellung der BRET-Sättigungskurven wurden COS-7 Zellen transient mit Donorkonstrukten und steigenden Konzentrationen an Akzeptorkonstrukten co-transfiziert (jeder Ansatz in Triplikaten). 24h nach Transfektion wurde die BRET-Ratio gemessen. Zur Bestimmung der maximalen BRET-Ratio (B_{Max}) und der Affinität der Proteine (BRET₅₀) wurde eine nicht-lineare Regressionsanalyse durchgeführt. Dargestellt sind die Mittelwerte aus 3 unabhängigen Experimenten. TBX21_WT = C98: codiert für Wildtyp-TBX21 Protein (Aminosäureposition 33: Histidin) TBX21_PO = 98G: codiert für variantes TBX21 Protein (Aminosäureposition 116: Serin) HLX1_WT = T346: codiert für Wildtyp-HLX1 Protein (Aminosäureposition 116: Prolin)

Abbildung 41 zeigt, dass die BRET-Sättigungskurven von Wildtyp- und varianten Proteinen sehr ähnlich verlaufen. In Übereinstimmung mit den bisherigen Messungen konnte für die varianten Proteine (B_{MAX} = 0,2255 ± 0,005) eine geringfügig höhere maximale BRET-Ratio detektiert werden als für die Wildtyp-Proteine (B_{MAX} = 0,2084 ± 0,007). Ein Unterschied in der Affinität im Bindungsverhalten zwischen Wildtyp- und varianten Proteine konnte allerdings nicht detektiert werden. Das Interaktionsverhalten der varianten Proteine (BRET₅₀= 0,2159 ± 0,03) wurde zwar, verglichen mit den

Wildtyp-Proteinen (BRET₅₀= $0,2364 \pm 0,05$), durch einen niedrigeren BRET₅₀-Wert charakterisiert, allerdings erreichte dieser Unterschied keine statistische Signifikanz. Demnach üben die exonischen Polymorphismen keinen mit der BRET-Technologie messbaren Einfluss auf das Interaktionsverhalten zwischen TBX21 und HLX1 aus. Andere biologische Mechanismen könnten daher den beobachteten Assoziationen dieser Polymorphismen zu Grunde liegen.

3.4.2 *TBX21* und *HLX1* SNP Kombinationen führen auf statistischer Ebene zu synergistischen Effekten bei der Asthmaentstehung

Die BRET-Analysen hatten gezeigt, dass die Proteine TBX21 und HLX1 *in vivo* zwar miteinander interagieren, dieses biologische Interaktionsverhalten aber nicht durch das Vorhandensein von exonischen Polymorphismen in beiden Genen modifiziert wird. In einem nächsten Schritt wurde nun auf statistischem Wege mittels eines Risiko-Modells untersucht, ob SNP Kombinationen aus *TBX21* und *HLX1* auf Populationsebene einen Einfluss auf das asthmatische Geschehen haben.

Für das Risiko-Modell wurden die Ergebnisse der Assoziationsstudien (siehe 3.1) herangezogen, wobei alle *TBX21* (T-1514C, A4704T, C9902T) und *HLX1* (C-1407T, T346C) Polymorphismen in das Modell eingeschlossen wurden, die eine signifikante Assoziation mit Asthma bronchiale gezeigt hatten.

Zur Berechnung der Risikoanalyse wurde denjenigen Allelen, die das Asthmarisiko erhöhen ein Risikowert von 1 zugewiesen (siehe Tabelle 56). Da sich die *TBX21* Assoziationen auf ein rezessives Rechenmodell beziehen, entsteht dann ein Risiko, wenn das polymorphe Allel homozygot vorliegt. Im Gegensatz dazu wurden *HLX1* Polymorphismen nach einem dominanten Modell berechnet. Demnach liegt ein Risiko vor, wenn das polymorphe Allel hetero- oder homozygot vorkommt. Eine Ausnahme stellt dabei der *Tagging* SNP T346C dar, da dieser SNP zu einem protektiven Effekt hinsichtlich der Asthmaentstehung führt. Aufgrund der Dominanz des protektiven polymorphen Allels entsteht ein Risiko im Falle eines homozygoten Wildtyp-Allels.

Tabelle 56: Definition von *TBX21* und *HLX1* Risikoallelen. Die Bestimmung der Risikoallele basiert auf den Assoziationsstudien in der gepoolten Querschnittspopulation von Dresden und München (N=3099).

		Definition von Risikoallelen		Risiko	kein Risiko	
TBX21	T-1514C	TT	TC	CC	CC= 1	nicht CC= 0
	A4704T	AA	AT	ТТ	TT= 1	nicht TT = 0
	C9902T	CC	СТ	TT	TT= 1	nicht $TT = 0$
HLX1	C-1407T	CC	СТ	TT	CT oder $TT = 1$	CC = 0
	T346C	TT	TC	CC	TT = 1	nicht $TT = 0$

max. Wert = 5 min.Wert = 0

Anschließend wurden basierend auf den *TBX21* und *HLX1* Polymorphismen unterschiedliche Allelkombinationen gebildet. Den Allelkombinationen wurden dann die entsprechenden Risikowerte (Minimum = 0, Maximum = 5) zugeteilt (siehe Tabelle 57) und mit einer Referenzgruppe (Risiko = 0) verglichen. Die Auswertung verdeutlichte, dass Kinder mit zunehmender Anzahl an Risikoallelen einem steigenden Asthmarisiko ausgesetzt sind. So zeigten Kinder, die die maximale Anzahl von fünf Risikoallelen aufwiesen, ein mehr als dreifach erhöhtes Risiko an Asthma zu erkranken als die Referenzgruppe (OR 3,21; 95%CI 1,04-9,88; p=0,0420).

	N^1	OR	Konfidenzintervall		p-Wert (Wald-Test, logistische Regression)
Risikowert = 0	781	1			
Risikowert 1 vs 0	1134	1.27	0.90	1.81	0.1756
Risikowert 2 vs 0	704	1.77	1.23	2.54	0.0022
Risikowert 3 vs 0	129	1.44	0.74	2.77	0.2804
Risikowert 4 vs 0	65	1.98	0.90	4.38	0.0901
Risikowert 5 vs 0	22	3.21	1.04	9.88	0.0420

Tabelle 57:Odds Ratio (OR), 95% Konfidenzintervall und p-Werte der Risikowerte
basierend auf der Kombination von *TBX21* und *HLX1* Risikoallelen.

(1) N gibt die Anzahl der Kinder an, die sich in den jeweiligen Risikogruppen befinden.

4 Diskussion

Die genauen Mechanismen, die zur Entstehung von Asthma bronchiale führen, sind bisher unzureichend geklärt. Dennoch ist es unumstritten, dass T-Helferzellen eine zentrale Rolle in der Pathophysiologie des Asthma bronchiale spielen. Im Jahre 1986 hatten Mosmann und Coffman beschrieben, dass naive T-Zellen in Th1- bzw. Th2-Zellen differenzieren können, wobei die Th1-Zelle als Gegenspieler der Th2-Zelle galt ⁹¹. Zahlreiche anschließende Analysen hatten gezeigt, dass das Verhältnis der Th1- und Th2-Zellpopulationen zueinander einen wesentlichen Einfluss darauf hat, ob die daraus resultierende Immunantwort eine angemessene und schützende oder eine eher krankheitsrelevante Auswirkung hat. Vereinfacht dargestellt, führt eine Überproduktion an Th1-Zytokinen zur Entstehung von Autoimmunerkrankungen, während eine Überreaktion an Th2-Zytokinen für die Entwicklung atopischer Erkrankungen wie Asthma bronchiale verantwortlich sein kann. So finden sich beispielsweise in der bronchoalveolären Lavage und in bronchialen Biopsie-Proben von Asthmatikern verglichen mit gesunden Probanden erhöhte mRNA-Expressionen der Th2-spezifischen Zytokinen IL-13 ^{92, 93}.

Aktuelle Studien zeigen allerdings, dass das Th1/Th2-Paradigma eine starke Vereinfachung des T-Zellsystems darstellt. Mittlerweile sind andere T-Subpopulationen bekannt, die neben den Th1- und Th2-Zellen an der Entstehung und Manifestation von Asthma bronchiale beteiligt sind. So demonstrierten kürzlich veröffentlichte Studien, dass beispielsweise das von den Th17-Zellen sezernierte Zytokin IL-17 bei Asthmatikern verglichen mit Kontrollen stärker exprimiert wird ⁹⁴ und sich IL-17 auch im Sputum von Asthmatikern findet ⁹⁵. Desweiteren spielen auch die regulatorischen T-

Zellen (Treg) eine wichtige Rolle. Hartl et al. zeigten, dass sowohl die Anzahl als auch die Aktivität der Tregs in den Lungen asthmatischer Kinder im Vergleich zu gesunden Kontrollen vermindert ist, wobei durch die regelmäßige Gabe von Kortikosteroiden diese Unterschiede in den Tregs elimiert werden konnten ⁹⁶.

Die Reduzierung des T-Zellsystems auf die bipolare Th1/Th2-Komponente stellt, wie bereits erwähnt, eine drastische Vereinfachung der tatsächlichen Komplexität des Systems dar, bildete jedoch für die Fragestellung der hier vorliegenden Arbeit eine brauchbare Arbeitshypothese, da im Zentrum dieser Arbeit die drei hauptverantwortlichen Transkriptionsfaktoren der Th1- bzw. Th2-Zelldifferenzierung standen. Die Transkriptionsfaktoren TBX21, HLX1 und GATA3 steuern und kontrollieren die Expression der Th1- bzw. Th2- spezifischen Zytokine und beeinflussen dadurch den Differenzierungsprozess der naiven Zellen in Richtung Th1oder Th2-Zelle entscheidend ³⁶⁻³⁹. Jegliche Veränderungen, die die Funktion dieser Transkriptionsfaktoren modifizieren, können daher das Gleichgewicht zwischen den T-Zellpopulationen beeinflussen und somit zur Störung der Immunantwort beitragen, so dass die Entwicklung von atopischen Erkrankungen wie Asthma bronchiale begünstigt wird.

Aus diesem Grund wurde in der vorliegenden Arbeit der Einfluss von genetischen Varianten in den immunregulatorischen Transkriptionsfaktoren TBX21, HLX1 und GATA3 auf die Entstehung von Asthma bronchiale untersucht. Der Unterschied zu zahlreichen bisherigen Studien bestand darin, dass dabei die entscheidenden Transkriptionsfaktoren sowohl der Th1- als auch der Th2-Differenzierung systematisch

155

analysiert wurden, wodurch ein äusserst detaillierter Einblick in die Auswirkungen genetischer Varianten auf die Th1/Th2-Zellprägung gewonnen werden konnte.

Obwohl bereits einige Assoziationsstudien zu Polymorphismen in den Genen TBX21, HLX1 und GATA3 in der Literatur beschrieben waren, war über die genetische Struktur dieser Gene zu Beginn der hier vorliegenden Arbeit wenig bekannt. Aus diesem Grund wurde für TBX21 und HLX1 ein Mutationsscreening durchgeführt, um alle Polymorphismen in diesen Genen systematisch zu identifizieren (Daten zum HLX1 Mutationsscreening freundlicherweise von Dr. Isabell Ruoß zur Verfügung gestellt). Dabei wurde jeweils der gesamte Genlokus, d.h. die Promotorregion, alle Introns und Exons, sowie die 5' und 3' UTR anhand einer Kontrollpopulation ($n \ge 37$) sequenziert. Aufgrund der gewählten Anzahl an Probanden für das Mutationsscreening konnten Polymorphismen mit einer MAF \geq 3% mit einer Power > 80 detektiert werden. Es erscheint daher unwahrscheinlich, dass relevante Mutationen mit einer ausreichend häufigen Frequenz in der Population durch das Mutationsscreening nicht detektiert wurden. Für die Detektion der GATA3 Polymorphismen wurde auf die Durchführung eines Mutationsscreenings verzichtet, weil die Daten des International HapMap Projects bereits soweit fortgeschritten waren, dass die Informationen zu den GATA3 SNPs aus dieser Datenbank valide waren und für diese Studie verwendet werden konnten. Bei der HapMap-Datenbank handelt es sich um ein Projekt, das in Zusammenarbeit mit akademischen Forschern und Firmen in Japan, Großbritanien, Kanada, China, Nigeria und den USA im Jahr 2002 mit dem Ziel gestartet wurde, die Haplotypen des menschlichen Genoms zu kartographieren. Die Ergebnisse dieses

Projekts werden in Form einer Datenbank unter www.hapmap.org ständig aktualisiert und öffentlich zur Verfügung gestellt ⁹⁷.

Für TBX21 wurden mittels des Mutationsscreenings 46 SNPs mit einer MAF $\geq 3\%$ identifiziert. In weiteren Analysen wurden allerdings nur diejenigen TBX21 SNPs analysiert, die eine MAF ≥ 10% aufwiesen. Dieser Schwellenwert wurde für die MAF gewählt, da Power Kalkulationen gezeigt hatten, dass für die Analyse von SNPs mit einer Allelfrequenz < 10% bei mäßiger Effektgrösse (erwartete Odds Ratio von 2) sehr grosse Studienpopulationen für valide Ergebnisse benötigt werden (siehe Abbildung 42)⁹⁸. Basierend auf dieser Einschränkung bezüglich der MAF, konnten die identifizierten TBX21 SNPs in sechs LD Blöcke eingeteilt werden, deren Tagging SNPs zunächst in einer Asthma Fall-Kontroll-Population (MDL, N=1872) genotypisiert worden sind. Für drei TBX21 Tagging SNPs (T-1514C, A4704T und C9902T) konnte ein signifikant erhöhtes Asthmarisiko nachgewiesen werden. Zwei dieser Tagging SNPs (T-1514C und C9902T) zeigten auch nach Korrektur für multiples Testen signifikante Assoziationen (C9902T allerdings nur in der für Geschlecht und Passivrauchexposition adjustierten Analyse, Daten nicht gezeigt). Da das Studiendesign einer derartigen Asthma Fall-Kontroll-Population nur verläßliche Aussagen über Assoziationen mit Asthma bronchiale zulässt, wurden für die Analyse weiterer atopischer Phänotypen Querschnittspopulationen aus Dresden (n=1940) und München (n=1159) genotypisiert. Damit konnten Assoziationen der TBX21 Tagging SNPs mit anderen atopischen Erkrankungen analysiert werden, ohne einen Bias hinsichtlich Asthma in Kauf zu nehmen. Hierbei konnten allerdings keine weiteren Assoziationen beobachtet werden.

Vielmehr beschränkten sich die Effekte auch in der Querschnittspopulation (N=3099) auf Asthma bronchiale, was initial unerwartet ist.

Interessanterweise wurden auch in anderen Studien positive TBX21 Asssoziationen bisher hauptsächlich im Zusammenhang mit Asthma bronchiale, nicht aber mit anderen atopischen Phänotypen, beschrieben. So wurde beispielsweise in einer Studie von Akahoshi et al. für SNP T-1993C (Block 2) ein erhöhtes Risiko für Aspirin-induziertes Asthma detektiert ⁶². In einer weiteren Studie wurde ein TBX21 Haplotyp, bestehend aus 12 TBX21 Polymorphismen, beschrieben, der das Risiko ausschließlich für atopisches Asthma signifikant steigerte⁶¹. Diese Daten waren direkt mit den hier beschriebenen Ergebnissen vergleichbar, da die genetische Information des Haplotypen durch die zwei signifikant assoziierten Tagging SNPs T-1514C und C9902T grösstenteils abgedeckt werden konnte. Auch Raby et al. detektierten positive Assoziationen zwischen TBX21 SNPs und Asthma und bronchialer Hyperreaktivität (BHR)⁶³, allerdings war der direkte Vergleich mit diesen Daten nicht möglich, da die von Raby analysierten Polymorphismen weit ausserhalb der sequenzierten TBX21 Genbereiche lokalisiert waren. Desweiteren existieren Studien in Finnland⁶⁵ und Korea⁶⁴. Im Gegensatz zu den bisher beschriebenen Studien konnten allerdings sowohl in der finnischen als auch in der koreanischen Population keinerlei signifikanten TBX21 Assoziationen detektiert werden, obwohl in jeder der Studien mindestens einer der in der hier vorliegenden Studie signifikant assoziierten TBX21 Tagging SNPs genotypisiert worden ist. Während die finnische Population möglicherweise zu klein gewesen ist, um signifikante Effekte zu detektieren, könnte die Diskrepanz zur koreanischen Population dadurch erklärt werden, dass Asiaten und Kaukasier unterschiedliche genetische

Hintergründe aufweisen. Dies spiegelt sich auch darin wider, dass in der asiatischen Population andere Allelfrequenzen für die *TBX21* SNPs beobachtet wurden. Aus diesem Grund können die Ergebnisse der *TBX21* Assoziationen in der genetisch differenten asiatischen Population nicht direkt mit den Resultaten der hier verwendeten kaukasischen Population verglichen werden.

Im Falle von *HLX1* wurden mittels des Mutationsscreening 19 Polymorphismen detektiert, die in fünf LD Blöcke eingeteilt werden konnten. Initial wurden bei *HLX1* alle SNPs mit einer MAF \geq 3% für die Analysen verwendet, wobei allerdings die nachfolgenden Assoziationsstudien analog zu den *TBX21* Daten zeigten, dass alle *HLX1* SNPs, die einen Effekt hinsichtlich der Asthmaentstehung in der hier verwendeten Population ausüben, ebenfalls eine MAF > 10% aufweisen. Dies spricht dafür, dass Effekte von SNPs mit einer Allelfrequenz von > 10% in der hier verwendeten Populationsgrösse gut detektierbar sind, seltenere Polymorphismen aber eher nicht.

Die Genotypisierung der fünf HLX1 Tagging **SNPs** erfolgte in den Querschnittspopulationen Dresden (n=1940) und München (n=1159), wobei die Effekte in der gepoolten Population aus Dresden und München (N=3099) analysiert wurden. Hierbei zeigte sich, dass zwei der Tagging SNPs das Asthmarisiko signifikant beeinflussten. Während SNP C-1407T (Block 2) zu einem erhöhten Asthmarisiko führte, zeigte das seltenere Allel von SNP T346C (Block 3) einen protektiven Effekt auf die Asthmaentstehung. In beiden Fällen war der Effekt für nicht atopisches Asthma stärker. Der signifikante Effekt des Tagging SNPs C-1407T konnte auch nach Korrektur für multiples Testen in der gepoolten Population (N=3099) beobachtet werden. Analog zu den Ergebnissen der *TBX21* Polymorphismen, konnten auch für die *HLX1* SNPs neben Asthma bronchiale keine weiteren signifikanten Assoziationen mit anderen atopischen Phänotypen detektiert werden. Aufgrund dieser Beobachtung könnte vermutet werden, dass möglicherweise die Effekte dieser *TBX21* und *HLX1* Polymorphismen nicht durch atopische Sensibilisierung vermittelt werden, sondern die Asthma Pathogenese von Atopie-unabhängigen Mechanismen direkt beeinflusst wird. Aus epidemiologischen Studien geht zwar hervor, dass Atopie mit zu den grössten Risikofaktoren für die Asthmaentstehung gehört, häufig agieren Asthma und Atopie aber auch als zwei unabhängige Grössen. Dieses Phänomen ist bereits für andere Gene bekannt. So spielt IL-13 generell eine wichtige Rolle in der IgE-abhängigen Entzündungsreaktion. Wills-Karp et al. konnten allerdings zeigen, dass IL-13 auch unabhängig von der IgE Modulation Symptome des Asthma bronchiale hervorrufen kann⁹⁹.

Nachdem Assoziationsstudien den starken Einfluss genetischer Varianten der Th1spezifischen Transkriptionsfaktoren TBX21 und HLX1 auf die Entstehung von Asthma bronchiale gezeigt hatten, wurden anschließend Polymorphismen im Th2-assoziierten Transkriptionsfaktor GATA3 analysiert. Bei Verwendung der HapMap-Datenbank wurden 19 validierte Polymorphismen mit einer MAF \geq 3% im *GATA3* Genlokus detektiert, deren genetische Information durch sechs *Tagging* und drei Einzel SNPs abgedeckt werden konnte. Die Genotypisierung der *GATA3* Polymorphismen erfolgte in den Querschnittspopulationen Dresden (n=1940), München (n=1159) und Leipzig (n=1165). Im Gegensatz zu *TBX21* und *HLX1* konnte interessanterweise für keinen der *GATA3* SNPs eine signifikante Assoziation mit den atopischen Hauptphänotypen Asthma bronchiale, Heuschnupfen, atopische Dermatitis oder Atopie in der gepoolten Population (N=4264) detektiert werden. Auch die Analyse von *GATA3* Haplotypen (Daten nicht gezeigt) brachte keine signifikanten Assoziationen hervor. Die fehlende Signifikanz einer Assoziation beweisst allerdings nicht automatisch, dass keine Assoziation vorhanden ist. Aus diesem Grund wurde in der vorliegenden Arbeit ein Äquivalenztest durchgeführt, um das Fehlen von Assoziationen zwischen *GATA3* Polymorphismen und Asthma bronchiale auf statistischem Wege abzusichern ⁷⁷. Desweiteren wurde die fehlende Signifikanz von *GATA3* Assoziationen auch durch Daten einer kürzlich publizierten genomweiten-Assoziationsstudie (GWA) bestätigt ¹⁰⁰. Im Rahmen dieser GWA-Studie sind acht von den neun *GATA3* SNPs, die in dieser Arbeit analysiert worden sind, in weiteren 728 asthmatischen Kindern und 694 gesunden Kontrollen genotypisiert worden, wobei aber auch in dieser Population keine signifikanten Assoziationen nachgewiesen werden konnten.

Auch wenn diese Ergebnisse einen Einfluss von *GATA3* Polymorphismen auf das asthmatische Geschehen ausschließen, so wurden dennoch in anderen Studien Assoziationen zwischen *GATA3* SNPs und atopischen Phänotypen beobachtet. In einer finnischen Studie wurden *GATA3* Haplotypen beschrieben, die eine signifikante Assoziation mit erhöhten Gesamt-Serum IgE zeigten ⁷². Um diese Daten zu replizieren, wurden auch in der hier vorliegenden Arbeit Gesamt-Serum IgE-Werte in Abhängigkeit der vorliegenden Genotypen bestimmt. Hierbei zeigte sich, dass in der gepoolten Population aus Dresden, München und Leipzig (N=4264) zwei der *GATA3* Polymorphismen (rs1399180 und rs11567931) tatsächlich auch zu signifikant erhöhten Gesamt-Serum IgE-Spiegeln über der 90. Perzentile (> 457UI/ml) führten. Nach der

Korrektur für multiples Testen konnte diese Beobachtung allerdings nicht mehr als signifikant gewertet werden. In einer weiteren Studie wurden unter Verwendung einer britischen Geburtskohorte (n=923) *GATA3* SNPs in Kombination mit *IL-13* Polymorphismen untersucht, da GATA3 innerhalb der Th2-Immunantwort vor allem die Expression von *IL-13* induziert ⁷⁰. Interessanterweise war in dieser Analyse der *GATA3* SNP rs1058240 enthalten, der in der vorliegenden Arbeit keine signifikanten Assoziationen gezeigt hatte, in der britischen Kohorte aber sowohl alleine als auch in Kombination mit *IL-13* SNPs das Risiko für Heuschnupfen und Atopie signifikant steigerte.

Die kritische Betrachtung der Assoziationsstudien für die Gene TBX21, HLX1 und GATA3 demonstrierte, dass abhängig von den verwendeten Populationen unterschiedliche Assoziationen für die TBX21, HLX1 und GATA3 Polymorphismen beobachtet werden. Bei der Interpretation derartiger Assoziationsstudien wird häufig die Phänotypisierung der Probanden mittels Fragebogen und deren daraus resultierende Einteilung in die entsprechenden Phänotypgruppen als Schwachstelle des Studiendesigns angesehen. Zwar handelt es sich dabei um standardisierte Fragebögen, allerdings unterliegen diese der Subjektivität der ausfüllenden Eltern. So haben Hederos et al. in ihrer Studie Ergebnisse basierend auf Elternfragebögen bzw. objektiven Untersuchungsmethoden verglichen und dabei festgestellt, dass bei 40% der Kinder, die von ihren Eltern als Asthmatiker eingestuft wurden, kein klinischer Befund vorlag¹⁰¹. Um diese Ungenauigkeiten zu vermeiden, wurde in den hier verwendeten Fragebögen der ISAAC II Studie die Diagnose Asthma bronchiale nur dann gewertet, wenn angegeben wurde, dass diese Diagnose mindestens einmal von einem Arzt gestellt wurde oder Asthma Symptome mehrmals vorlagen. Desweiteren wurden die Angaben in den Fragebögen durch objektive Untersuchungsmethoden wie Lungenfunktionstest, Haut-Prick-Test und Serum IgE-Messungen ergänzt, so dass die den Assoziationen zugrunde liegenden Phänotypen als valide eingestuft werden können.

Für die Genotypisierung von *TBX21* wurde eine Fall-Kontroll-Population verwendet. Die Schwierigkeit beim Design einer Fall-Kontroll-Population liegt generell in der Auswahl der Kontrollen. Stammen Kontrollen und Fälle nicht aus einer gemeinsamen Grundpopulation, so können die Kontrollen verschiedenen Biasquellen ausgesetzt sein und zu einem verzerrten Ergebnis führen. In der hier verwendeten Fall-Kontroll-Population (MDL) ist allerdings eine Beeinträchtigung der Ergebnisse durch die Selektion der Kontrollen unwahrscheinlich, da sowohl die Fälle als auch die Kontrollen aus derselben Stichprobe, nämlich aus ISAAC II (München, Dresden) und der Leipziger Population gezogen wurden.

Ein weiterer Parameter, der im Vorfeld jeder Assoziationsstudie geklärt werden sollte, ist die Frage, welche Stichprobengröße notwendig ist, um Genotyp-Phänotyp-Korrelationen unter vorliegenden Studienbedingungen detektieren zu können ^{98, 102}. Unter Annahme einer bestimmten Power (=Wahrscheinlichkeit, einen vorhandenen Effekt auch aufzudecken) lässt sich durch bestimmte Rechenoperationen die notwendige Stichprobengröße einer Studie bestimmen. Menashe und Mitarbeiter haben für genetische Assoziationsstudien basierend auf einer Fall-Kontroll-Population einen Algorithmus entwickelt, mit dem das minimale detektierbare Risiko in Abhängigkeit der Minor Allelfrequenz der SNPs (MAF) unter Annahme verschiedener genetischer Modelle (Vererbungsgänge) berechnet werden kann (http://dceg.cancer.gov/bb/tools/pga) ⁹⁸. Eine Anwendung dieses Programms auf die Fall-Kontroll-Population (MDL), in der die Zusammenhänge zwischen *TBX21* SNPs und Asthma bronchiale untersucht wurden, ist in Abbildung 42 dargestellt. Hierbei wurde sowohl unter Annahme eines dominanten (schwarze Kurve) als auch eines rezessiven Modells (rote Kurve) berechnet, welche Effektgrössen bei einer Power von 80% und einer α -Fehlerwahrscheinlichkeit von 5% in Abhängigkeit der MAF in der Fall-Kontroll-Population MDL (N=1872, Anzahl Fälle n=624, Anzahl Kontrollen n=1248) detektiert werden können.

Abbildung 42: Power Kalkulationen für die *TBX21* Assoziationsstudie mittels des PGA (*Power for genetic association analyses*)-Algorithmus. Die Power Kalkulationen beziehen sich auf die Fall-Kontroll-Population MDL (N=1872, Anzahl Fälle n=624, Anzahl Kontrollen n=1248) unter der Voraussetzung einer Power von 80% und einer α -Fehlerwahrscheinlichkeit von 5% unter Annahme eines dominanten (schwarz) und eines rezessiven (rot) Modells.

Abbildung 42 zeigt, dass abhängig vom angenommenen genetischen Modell unterschiedliche Effektgrössen detektiert werden können, wobei in beiden Fällen das relative detektierbare Risiko mit zunehmender MAF sinkt. Im dominanten Modell liegt das detektierbare relative Risiko in der verwendeten Stichprobe bei Polymorphismen mit einer MAF ab circa 5% unterhalb von 1,5. Unter Annahme eines rezessiven Modells können hingegen nur deutlich stärkere Effekte detektiert werden. Assoziationen der *TBX21* Polymorphismen konnten in der vorliegenden Arbeit am besten durch das rezessive Modell repräsentiert werden. Aufgrund ihrer rezessiven Vererbung handelt es sich bei den *TBX21* SNPs um relativ selten vorkommende genetische Varianten, die allerdings in Übereinstimmung mit Abbildung 42 stärkere Effekte auf die Krankheitsentstehung ausüben (T-1514C: OR 2,6; A4704T: OR 1,39 und C9902T: OR 1,97). Bisher wird allerdings spekuliert, dass derartige Polymorphismen wegen ihrer rezessiven Vererbung und der daraus resultierenden Seltenheit nur geringfügigen Einfluss auf die Krankheitsentstehung auf Populationsebene haben könnten.

HLX1 Polymorphismen wurden im Gegensatz dazu in einer Querschnittspopulation genotypisiert, wobei die Ergebnisse der Assoziationen am besten mit einem dominanten Modell korrelieren. Man kann davon ausgehen, dass SNPs, die mit einem derartigen Vererbungsprofil relativ häufig in der Population vorkommen, das Krankheitsrisiko um maximal 50% modifizieren können. In Übereinstimmung mit dieser Annahme wurden für die in dieser Arbeit untersuchten *HLX1* Polymorphismen eher mäßige Effekte hinsichtlich der Asthmapathogenese (C-1407T: OR 1,44; T346C: OR 0,73) beobachtet. Bezogen auf die Allgemeinheit wird davon ausgegangen, dass derartige SNPs allerdings

einen grösseren Anteil am populationsbezogenen Risiko für genetisches Asthma haben, da sie in der Bevölkerung insgesamt häufiger auftreten ¹⁰³.

Die im Rahmen dieser Doktorarbeit dargestellten Assoziationsstudien zu *TBX21*, *HLX1* und *GATA3* beruhen auf einer hypothesengesteuerten Kandidatengenanalyse. Bei diesem sogenannten Kandidatengen-Ansatz werden jene Gene für Assoziationsstudien ausgewählt, die aufgrund verschiedener Überlegungen potentiell Einfluss auf die Krankheitsentstehung nehmen könnten. Im Falle der Asthmagenetik stammen diese Kandidatengene, wie auch in dieser Arbeit, meist aus einer der vier folgenden Gruppen: (1) Gene der angeborenen Immunität und der Immunregulation, (2) Gene der T-Helferzelldifferenzierung (meist Th2-assoziiert), (3) Gene, involviert in die Steuerung der epithelialen und mukosalen Immunität und (4) Gene, assoziiert mit Lungenfunktion und Atemwegsveränderungen¹⁰⁴.

In jüngster Zeit wird allerdings immer häufiger eine andere Strategie gewählt, um krankheitsrelevante Gene zu identifizieren. Dabei wird mittels genomweiter-Assoziationsstudien (GWA) frei von jeglicher Hypothese nach Assoziationen zwischen DNA-Abschnitten und der untersuchten Krankheit gesucht ¹⁰⁵. Die erste GWA-Studie zu Asthma bronchiale wurde 2007 von Moffatt et al. publiziert ¹⁰⁰. Im Rahmen dieser GWA-Studie wurden 317.000 SNPs anhand von 994 Asthmatikern und 1243 gesunden Kontrollen genotypisiert. Dabei wurde ein neuer Suszeptibilitäts Lokus für kindliches Asthma bronchiale auf Chromosom 17q21 identifiziert ¹⁰⁰, der bereits in einigen Studien repliziert werden konnte ¹⁰⁶⁻¹¹³. Polymorphismen aus diesem Genbereich führten zu einem stark erhöhten Risiko für Asthma bronchiale im Kindesalter.

Weiterführende Analysen demonstrierten, dass diese genetischen Varianten die Aktivität des *ORMDL3* Gens derartig signifikant beeinflussen, dass *ORMDL3* ein ausserordentlich interessantes Gen für weitere Untersuchungen des kindlichen Asthmas darstellt ¹⁰⁰. Bisher ist allerdings über die Funktion von ORMDL3 wenig bekannt.

Ein Risiko bei Kandidatengen-Analysen aber besonders bei GWA-Studien besteht darin, dass die beobachteten Effekte möglicherweise auf falsch positiven Ergebnissen beruhen. Um die Wahrscheinlichkeit dafür zu minimieren und die Wertigkeit eines Befundes richtig interpretieren zu können, gibt es verschiedene Ansatzpunkte. Eine Möglichkeit besteht zunächst darin, die beobachteten Assoziationen für multiples Testen zu korrigieren. Das Signifikanzniveau wird bei herkömmlichen Studien auf $p \le 0.05$ gesetzt. Mit dieser Festlegung ergibt sich, dass jeder Test auf Assoziation mit einer Wahrscheinlichkeit von 5% ein zufällig positives Ergebnis zeugen könnte. Werden bei einer Genotypisierung mehrere SNPs untersucht, so summiert sich diese Fehlerwahrscheinlichkeit auf. Aus diesem Grund wird bei der Korrektur für multiples Testen nach Bonferroni der p-Wert durch die Anzahl der durchgeführten Tests dividiert, um so die Wahrscheinlichkeit eines Zufallsereignisses zu minimieren. Im Falle der HLX1 Assoziationen wurde eine alternative Variante TBX21 und dieses Korrekturverfahrens angewendet, wobei nicht für die Anzahl aller untersuchter SNPs korrigiert wurde, sondern nur für die Anzahl der Tagging SNPs im jeweiligen Gen¹¹⁴. Dabei wurde deutlich, dass die Assoziationen von denjenigen SNPs (TBX21: T-1514C; HLX1: C-1407T), die auf funktioneller Ebene einen Effekt gezeigt hatten, auch nach der Korrektur noch als signifikant gewertet werden konnten, wodurch die Glaubwürdigkeit der signifikanten Assoziationen in mehrfacher Weise bekräftigt wurde.

Die Korrektur des multiplen Testens ist auch die Ursache dafür, dass für GWA-Studien im Vergleich zu Kandidatengenanalysen derartig niedrige Signifikanzniveaus wie $p < 10^{-7}$ für die Publikation gefordert werden ¹⁰⁰, um die Anzahl falsch positiver Resultate zu minimieren. Geht man davon aus, dass bei einer GWA-Studie bis zu 1x10⁶ SNPs untersucht werden, so würde sich bei einem p-Wert von 0,05 ergeben, dass 50.000 der genotypisierten SNPs ein falsch positives Ergebnis liefern ¹¹⁵. Die Korrektur ist demnach bei Genotypisierungsansätzen in diesen Grössenordnungen unumgänglich. Generell birgt das Korrigieren für multiples Testen aber immer die Gefahr, dass dadurch der Schwellenwert für die Signifikanz zu streng definiert wird und dadurch möglicherweise echte Assoziationen übersehen werden. Ebenso schützt auch ein p-Wert < 10⁻⁷ im Einzelfall nicht vor einem falsch positiven Ergebnis.

Neben der Möglichkeit sich statistisch abzusichern, bietet die Replikation eine weitere Möglichkeit, um beobachtete Assoziationen zu untermauern und falsch positive Assoziationen unwahrscheinlich zu machen. Die Wahrscheinlichkeit, dass eine durch Zufall entstandene Assoziation in einer weiteren Stichprobe repliziert werden kann, ist unwahrscheinlich. In der vorliegenden Arbeit ermöglichte das Vorhandensein des bereits genannten GWA-Datensatzes zu Asthma bronchiale eine Replikation der erhaltenen Daten in einer weiteren Studienpopulation. Für *GATA3* konnten, wie bereits erwähnt, die fehlenden Assoziationen nicht nur durch einen Äquivalenztest bestätigt werden, sondern auch in der Population der GWA-Studie wurden für die *GATA3* Polymorphismen keine signifikanten Assoziationen beobachtet. Desweiteren wurden auch *TBX21* Polymorphismen im Rahmen dieser GWA-Studie untersucht, wobei die dafür genotypisierten *TBX21* SNPs die genetische Information der *TBX21* LD Blöcke 1

168

und 2 abdeckten. Allerdings konnten im Rahmen der GWA-Studie keine signifikanten *TBX21* Effekte detektiert werden. *HLX1* Polymorphismen waren auf dem verwendeten Illumina 330K HapMap-Chip der GWA-Studie nicht vertreten, so dass hierzu keine Aussage getroffen werden kann. Die Tatsache, dass *HLX1* Polymorphismen sowohl in der Münchner als auch in der Dresdner Population genotypisiert worden sind, erlaubte jedoch die Durchführung einer Homogenitätsanalyse. Ähnlich zu einer Replikation lieferte die Homogenitätsanalyse einen Hinweis für die Reproduzierbarkeit der signifikanten *HLX1* Assoziationen, da in beiden Städten unabhängig voneinander die beobachteten Effekte stets in die gleiche Richtung wiesen, auch wenn die Effekte aufgrund der reduzierten Populationsgrösse nicht immer ganz das Signifikanzniveau erreichten.

Generell wird geschätzt, dass die verwendeten GWA-Plattformen, die 500.000 bis 1.000.000 SNPs umfassen, circa 67% - 89% der häufigsten Polymorphismen in Europa und Asien abdecken und 46% - 66% der SNPs mit afrikanischem Ursprung^{115, 116}. Damit ergibt sich für die Interpretation der GWA-Studien zwangsläufig, dass sich diese weniger dazu eignen bekannte Assoziationen zu bestätigen. Denn wie aus dem Beispiel mit HLX1 ersichtlich wird, sind manche Gene auf den verwendeten SNP Chips der GWA nur unzureichend oder gar nicht abgedeckt. Desweiteren kann, wie die Daten zu TBX21 zeigen, das Problem entstehen, dass Gene, die durch klassische Kandidatengenanalysen als krankheitsrelevant eingestuft wurden, in den GWA-Studien nach Korrektur für multiples Testen keine signifikanten p-Werte mehr aufweisen. Aus diesem Grund müssen Replikationen jeweils auf die vorliegende Fragestellung abgestimmt werden. In zahlreichen Publikationen ist kürzlich darüber diskutiert worden,

wie Replikationsstudien generell geplant sein müssen, um Assoziationsstudien zu bestätigen ^{117, 118}. Die Verwendung von kleinen Populationen für die Replikation birgt möglicherweise das Problem einer zu niedrigen Power, wodurch kleine Effekte nicht ausreichend detektiert werden können ¹¹⁸. Grössere Populationen haben oft den Nachteil, dass sowohl die Krankheitsdefinition als auch die Phänotypisierung der Probanden nicht eindeutig erfolgen kann ¹¹⁹. Hinzukommt, dass auch Gen-Umweltinteraktionen einen immensen Einfluss auf die Entstehung komplexer Erkrankungen wie Asthma bronchiale haben können. Eine fehlgeschlagene Replikation kann somit auch auf die unterschiedlichen Umwelteinflüsse in den verschiedenen Populationen zurückgeführt werden ¹¹⁹.

Folglich können Replikationen zwar prinzipiell die Glaubwürdigkeit von beobachteten Assoziationen untermauern, sie können aber nicht generell als Goldstandard für die Validierung von Assoziationen gewertet werden ¹¹⁷. Aufschluss darüber, inwieweit die durch Assoziationsstudien identifizierten genetischen Varianten tatsächlich krankheitsrelevant sind, können funktionelle Studien geben. Nur durch funktionelle Studien kann geklärt werden, wie Gene zur Krankheitsentstehung beitragen und durch welche biologischen Mechanismen die beobachteten Assoziationen der genetischen Varianten erklärt werden können. Daher sollten sowohl genomweite Assoziationsstudien als auch Kandidatengenanalysen durch gezielte funktionelle Studien komplementiert werden.

Auch in der hier vorliegenden Arbeit wurde diese Strategie gewählt. Neben dem systematischen Screening nach Polymorphismen wurden für TBX21 und HLX1

170

funktionelle Studien durchgeführt, um die biologischen Funktionen der signifikant assoziierten Polymorphismen besser verstehen zu können. Aufgrund des hohen LDs $(r^2 \ge 0,8)$ innerhalb der signifikant assoziierten LD Blöcke bestand zunächst eine Schwierigkeit darin, aus der Vielzahl der SNPs, diejenigen zu selektionieren, die potentiell für die detektierten Effekte verantwortlich sein könnten. Um zu entscheiden, welche SNPs funktionelle Relevanz besitzen könnten und daher primär funktionell charakterisert werden sollten, wurde als primäres Auswahlkriterium deren Lokalisation im Gen gewählt. Polymorphismen, die im Promotorbereich von Genen lokalisiert sind, besitzen generell das Potential einen Einfluss auf die Promotoraktivität zu nehmen und dadurch die Genexpression zu modifizieren. Aus diesem Grund wurden daher sowohl für *TBX21* als auch für *HLX1* funktionelle Promotorstudien durchgeführt, wobei die Promotorpolymorphismen zunächst mittels Luciferase-Assays in Jurkat T-Zellen charakterisiert wurden.

Bei *TBX21* waren in zwei assoziierten LD Blöcken, Block 1 (T-1514C und G-999A) und Block 2 (T-1993C) Promotorpolymorphismen enthalten. Die transiente Transfektion der jeweiligen Risikoallele führte erstaunlicherweise zu unterschiedlichen Ergebnissen: während die Kombination der Risikoallele aus Block 1 (-1514C und -999G) zu einem signifikanten Anstieg der *TBX21* Genexpression in Jurkat T-Zellen führte, konnte bei Vorliegen des polymorphen Allels von Block 2 (-1993C) eine signifikante Reduktion der *TBX21* Promotoraktivität beobachtet werden. Es war überraschend, dass die Effekte der Promotorpolymorphismen in entgegen gesetzte Richtungen zeigten, obwohl beide LD Blöcke in den Assoziationsstudien zu einem

Verwendung von HeLa und HEK293 Zellen eine gesteigerte Promotoraktivität für den SNP T-1993C gemessen werden ⁶². Bislang konnten die unterschiedlichen Effekte der TBX21 Polymorphismen nicht erklärt werden. Generell muss man sich bei der Interpretation von Luciferase-Assays bewusst sein, dass es sich hierbei um ein artifizielles System handelt, dass nur Aufschluss darüber geben kann, ob ein SNP die Promotoraktivität beeinflusst oder nicht. Die Interpretation von Richtung und Stärke der beobachteten Effekte ist nur bedingt möglich, denn Ergebnisse derartiger in vitro Experimente können nicht direkt auf die Situation in vivo übertragen werden. Aufgrund der hier vorliegenden Daten kann daher zusammenfassend festgehalten werden, dass TBX21 Polymorphismen in der Lage sind, die Genexpression signifikant zu beeinflussen, die Richtung des Effekts kann allerdings abhängig von der verwendeten Zelllinie, dem vorliegendem Zellstatus oder weiteren bisher unbekannten Parametern erheblich variieren. Eine ähnliche Beobachtung wurde kürzlich auch für Polymorphismen im IL-13 Gen beschrieben. Luciferase-Assays hatten gezeigt, dass IL-13 Promotorpolymorphismen die Genexpression in polarisierten Th2-Zellen signifikant steigern können, in unpolarisierten T-Helferzellen blieb dieser Effekt jedoch aus ¹²⁰.

Für die Luciferase-Assays von *HLX1* wurden die Promotorpolymorphismen (C-1407T und C-742G) aus Block 2 untersucht. Die transiente Transfektion der Promotorkonstrukte in Jurkat T-Zellen demonstrierte, dass das Vorliegen der polymorphen Allele (-1407T und -742G) zu einer signifikanten Reduktion der *HLX1* Promotoraktivität führt. Wie bereits erwähnt, können Luciferase-Assays keine Messdaten liefern, die eine eindeutige Interpretation für die Situation *in vivo* zulassen.

172
Allerdings könnte man im Falle von *HLX1* aufgrund der vorliegenden Daten spekulieren, dass eine verminderte *HLX1* Promotoraktivität zu einer geringeren HLX1 Protein-Expression führt. Da HLX1 zusammen mit TBX21 für die Induktion der Th1-Immunantwort verantwortlich ist, könnte eine geschmälerte HLX1 Expression eine geschwächte Th1-Antwort zur Folge haben. Dies könnte wiederum mit einer gestärkten Th2-Immunantwort einhergehen, wodurch dann die positiven Assoziationen der untersuchten *HLX1* Promotorpolymorphismen mit Asthma bronchiale erklärt werden könnten.

Im Falle von *HLX1* wurden desweiteren Electrophoretic mobility shift assays (EMSA) durchgeführt, um die Mechanismen zu untersuchen, die der veränderten *HLX1* Genexpression zu Grunde liegen könnten. Hierbei zeigte sich, dass das Vorhandensein der polymorphen Promotorallele (-1407T und -742G) im Vergleich zu den Wildtyp-Allelen (C-1407 und C-742) zu einem völlig veränderten DNA-Protein-Bindemuster führt: während an die Wildtyp-Sequenz des *HLX1* Promotors die Bindung von Mitgliedern der SP Transkriptionsfaktorfamilie erfolgt, konnte bei Vorliegen der polymorphen Allele keine Bindung (-1407T) bzw. nur noch eine schwache Bindung (-742G) an den *HLX1* Promotor detektiert werden. Demnach könnte die fehlende Bindung der SP Transkriptionsfaktoren an den *HLX1* Promotor für die verminderte *HLX1* Genexpression verantwortlich sein. Bei den SP-Transkriptionsfaktoren handelt es sich um eine ubiquitär vorkommende Familie von Transkriptionsfaktoren. SP Transkriptionsfaktoren verfügen über eine hoch konservierte DNA-Bindedomäne, wodurch sie GC- und GG-reiche DNA Motive in verschiedensten Promotoren erkennen¹²¹. Obwohl diese Faktoren eine starke Homologie untereinander aufweisen,

besitzen sie dennoch unterschiedliche funktionelle Eigenschaften ¹²¹. Bindet SP1 an einen Promotor, so führt dies generell zu einer Induktion der Promotoraktivität. SP3 spielt hingegen die Rolle eines eher bifunktionellen Regulators, da SP3 zum einen die Genexpression steigern kann, zugleich aber auch in der Lage ist, die aktivierende Funktion von SP1 zu unterdrücken ^{122, 123}. Da SP1 und SP3 dieselben Bindungsstellen erkennen, stellt das Verhältnis zwischen SP1 und SP3 einen entscheidenden Mechanismus zur Regulierung der Transkriptionsrate dar ¹²¹.

SP Transkriptionsfaktoren wurden kürzlich auch im Zusammenhang mit TBX21 beschrieben. So hatten Yu et al. demonstriert, dass die Bindung von SP1 an den *TBX21* Promotor die *TBX21* Genexpression wesentlich beeinflussen kann ¹²⁴. Desweiteren wurde auch für *CD14* der Einfluss der SP Transkriptionsfaktoren auf die Transkription beschrieben. Bei *CD14* handelt es sich um ein Gen, dass in die Regulation von IgE und der Entstehung von Atopie involviert ist. Promotorpolymorphismen in diesem Gen führten zu einer Reduktion der Bindung von SP Transkriptionsfaktoren und steigerten in diesem Fall die *CD14* Genexpression ⁸⁵.

Nachdem sich zahlreiche Studien bei der Untersuchung der T-Zelldifferenzierung im Zusammenhang mit der Entstehung von atopischen Erkrankungen hauptsächlich auf die Transkriptionsfaktoren TBX21 und GATA3 fokussiert haben, zeigten die hier dargestellten Daten, dass auch der Homoebox-Faktor HLX1 einen entscheidenden Einfluss auf die Asthmaentwicklung ausüben könnte. Zusammenfassend demonstrierten die funktionellen Promotorstudien, dass signifikant assoziierte *TBX21* und *HLX1* Polymorphismen die Genexpression erheblich beeinflussen. Allerdings kann mittels dieser Studien keine Aussage darüber getroffen werden, ob diese modifizierte Genexpression tatsächlich für die beobachtete Assoziation mit Asthma bronchiale verantwortlich ist.

In weiteren Studien wäre es nun interessant zu untersuchen, ob abhängig vom vorliegenden Genotypen die veränderte Genexpression von *TBX21* bzw. *HLX1* auch auf mRNA Ebene, z.B. mittels Real-time-PCR Assays *ex vivo* detektierbar ist. Bisher ist die Durchführung dieser Experimente allerdings daran gescheitert, dass die Anzahl an homozygoten Trägern der assoziierten Promotorallele mit vorhandener mRNA in der zur Verfügung stehenden Population zu gering gewesen ist (n < 3). Um dieses Problem zu umgehen, könnten alternativ Expressionsvektoren mit den entsprechenden Genotypen generiert werden. Nach Überexpression dieser Vektoren in Zellkultur könnte in Abhängigkeit der vorliegenden Genotypen deren Einfluss auf die Genexpression gemessen werden.

Asthma bronchiale ist eine derart komplexe Erkrankung, dass davon ausgegangen werden kann, dass die genetische Prädisposition für Asthma bronchiale nicht durch einzelne Gene verursacht wird, sondern sich durch eine Vielzahl an genetischen Veränderungen in unterschiedlichen Genen manifestiert. Um nun das Verständnis für die zugrundeliegenden Mechanismen des Asthma bronchiale weiter zu vertiefen, wurden daher in dieser Arbeit nicht nur SNP-Analysen anhand von einzelnen Genen durchgeführt, sondern auch Gen-Gen-Interaktionen betrachtet. Die kombinierende Analyse von *TBX21* und *HLX1* war in dieser Hinsicht besonders interessant, da diese

beiden Faktoren innerhalb der Th1-Zelldifferenzierung eng miteinander gekoppelt sind und eine optimale Th1-Antwort nur beim Vorhandensein beider Faktoren möglich ist ³⁷. Aus weiterführenden Arbeiten von Martin et al. ging zudem hervor, dass TBX21 und HLX1 bei Anwendung eines Yeast-Two-Hybrid-Systems in vitro miteinander interagieren⁸⁶. Um diese Aussage *in vivo* zu verifizieren und damit zu überprüfen, ob neben der funktionellen Interaktion auch eine physische Interaktion dieser beiden Transkriptionsfaktoren vorliegt, wurde in der vorliegenden Arbeit die BRET (Biolumineszenz Resonanz Energie Transfer) Technik angewendet. Diese Technik ermöglicht die Detektion von Protein-Protein-Interaktionen in lebenden Zellen. Im Falle von TBX21 und HLX1 konnte mittels BRET eine Interaktion der beiden Proteine in COS-7 Zellen nachgewiesen werden, wobei eine immunhistochemische Färbung zeigte, dass diese Interaktion im Zellkern der COS-7 Zellen erfolgt. Zudem stellten die Ergebnisse der BRET-Messungen einen ersten Anhaltspunkt dar, welche Bereiche der Proteine am Interaktionsverhalten beteiligt sind. Das Vorhandensein der Marker-Proteine am C-terminalen Ende resultierte sowohl bei der Fusion mit TBX21 als auch mit HLX1 in einem schwächeren BRET-Signal, so dass man davon ausgehen kann, dass durch die Modifikation der C-terminalen Regionen die Bindung der Proteine negativ beeinflusst wird und somit möglicherweise primär die C-terminalen Domänen beider Proteine zur Bindung beitragen.

Im Rahmen der kombinierenden SNP-Analyse war in einem nächsten Schritt von Interesse, ob das Interaktionsvermögen von TBX21 und HLX1 durch exonische SNPs, die zu einem Aminosäureaustausch führen, beeinflusst wird. Sowohl in *TBX21* als auch in *HLX1* waren SNPs vorhanden, die eine Assoziation mit Asthma bronchiale gezeigt hatten und zu einem Aminosäureaustausch führten und somit jeweils für ein variantes Protein codieren. SNP C98G ist in Exon 1 von *TBX21* lokalisiert und resultiert auf Proteinebene an Position 33 in einem Aminosäureaustausch von Histamin zu Glutamin. Aufgrund seiner damit potentiellen funktionellen Relevanz wurden mit diesem SNP, trotz seiner geringen MAF von nur knapp 4%, in der vorliegenden Arbeit Assoziationsstudien (MD, N=3009) durchgeführt, die ein grenzwertig signifikantes Asthmarisiko für diesen SNP detektierten. Aus einer weiteren Studie von Tantisira et al. war zudem bekannt, dass dieser SNP bei der Behandlung mit Kortikosteroiden zu einer Verbesserung des asthmatischen Phänotyps beiträgt⁸⁷.

Im Falle von *HLX1* führt der *Tagging* SNP T346C (Block 3) an Position 116 des HLX1 Proteins zu einer Aminosäureänderung von Serin und Prolin und präsentierte desweiteren in den Assoziationsstudien einen protektiven Effekt hinsichtlich der Asthmaentstehung. Das Bindungsverhalten der aus den exonischen SNPs resultierenden varianten TBX21 und HLX1 Proteine wurde ebenfalls in COS-7 Zellen mittels BRET untersucht. Hierbei zeigte sich, dass auch bei Vorliegen der Aminosäureaustäusche (TBX21: H33Q; HLX1: S116P) eine Interaktion der beiden Proteine erfolgt. Die Durchführung quantitativer BRET-Messungen in Form sogenannter Sättigungsassays demonstrierte, dass in den Bindungsaffinitäten zwischen Wildtyp- und varianten Proteinen kein signifikanter Unterschied vorliegt. Die beobachteten Assoziationen der untersuchten exonischen Polymorphismen C98G (*TBX21*) und T346C (*HLX1*) mit Asthma bronchiale konnten folglich nicht durch eine Änderung im direkten Bindungsverhalten der beiden Proteine erklärt werden. Möglicherweise könnten diese SNPs aber das Homooligomerisierungsverhalten von TBX21 und HLX1 oder die Bindung zu anderen Interaktionspartnern modifizieren und dadurch die anschließende Signaltransduktion und das Asthmarisiko beeinflussen. Desweiteren ist bei der Interpretation der BRET-Messungen zu berücksichtigen, dass die hier beschriebenen Experimente aus technischen Gründen bisher nur in COS-7 Zellen durchgeführt wurden. Dabei handelt es sich um eine Zelllinie aus Nieren-Fibroblasten des Affens. Da TBX21 und HLX1 aber immunregulatorische Transkriptionsfaktoren sind, wäre es sinnvoll, die BRET-Experimente auch in humanen Zellen des Immunsystem, z.B. Jurkat T-Zellen zu replizieren. Möglicherweise könnten in diesen humanen Zellen z.B. durch spezifische Stimulationen Unterschiede herausgearbeitet werden, die in den COS-7 Zellen nicht detektierbar gewesen sind.

Alternativ könnte es jedoch auch sein, dass die Polymorphismen C98G und T346C für Aminosäuren codieren, die in Proteinbereichen lokalisiert sind, die gar nicht am Bindungsverhalten der Proteine beteiligt sind. Vielmehr könnten sich diese SNPs in Proteindomänen befinden, die für weitere, bisher unbekannte Proteinfunktionen verantwortlich sind. Beispielsweise könnte die durch den *HLX1* SNP T346C verursachte Aminosäureänderung die Stabilität des HLX1 Proteins beeinflussen. Der Aminosäureaustausch von Serin zu Prolin führt zu einem Wechsel von einer polaren (Serin) zu einer unpolaren, heterozyklischen Aminosäure (Prolin), die aufgrund ihrer Ringstruktur auch als Helixbrecher bezeichnet wird. Die Durchführung von Protein-Stabilitätsassays könnte Aufschluss darüber geben, ob diese Aminosäureänderung z.B. einen Einfluss auf die Degradation des HLX1 Proteins hat, was wiederum die Expression von Komponenten der nachgeschalteten Signalwege, z.B. IFNγ modifizieren könnte. Desweiteren können Aminosäureänderungen auch einen Einfluss auf die Proteinstruktur haben. Aus diesem Grund wurden in Zusammenarbeit mit Dr. Philipp Pagel (Lehrstuhl für Genomorientierte Bioinformatik, Technische Universität München, Wissenschaftszentrum Weihenstephan) Sekundärstrukturvorhersagen für die Proteine TBX21 und HLX1 durchgeführt. Diese Analysen haben allerdings keinen Hinweis dafür geliefert, dass in Abhängigkeit der **SNPs** C98G und T346C Strukturveränderungen in diesen Proteinen auftreten. Zusammenfassend kann festgehalten werden, dass die beobachteten Assoziationen der exonischen TBX21 und HLX1 SNPs bisher nicht durch biologische Effekte erklärt werden konnten.

Während die bisher untersuchte Auswirkung von *TBX21* und *HLX1* Polymorphismen auf die biologische Funktion noch keine eindeutigen Ergebnisse und keine Hinweise auf den Einfluss der SNPs auf die physische Interaktion lieferte, sind die Ergebnisse von statistischen Interaktionsstudien im *TBX21* und *HLX1* System sehr interessant. Hier wurde der Einfluss verschiedener *TBX21* und *HLX1* SNP Kombinationen auf die Entstehung von Asthma bronchiale statistisch mittels eines Risiko-Modells auf Populationsebene untersucht. Die Auswertung des Risiko-Modells zeigte, dass *TBX21* und *HLX1* SNP Kombinationen zu einem synergistischen Effekt führen und Träger dieser SNP Kombinationen ein über dreifach erhöhtes Risiko haben an Asthma bronchiale zu erkranken verglichen mit einer Referenzgruppe. Da es sich bei diesem Risiko-Modell um ein statistisches Modell handelt, können allerdings keine Rückschlüsse auf die biologische Kausalität der untersuchten Polymorphismen gezogen werden.

179

Als Ausgangshypothese wurde in der vorliegenden Arbeit die Komplexität des T-Zellsystems bewußt auf die bipolare Th1/Th2-Komponente reduziert und davon ausgegangen, dass Asthma bronchiale mit einem Ungleichgewicht der T-Zellpopulationen zu Gunsten der Th2-Zellen verknüpft ist. Mittels dieser Einschränkung konnte im Rahmen dieser Arbeit ein Einblick in die Regulierung der Th1- und Th2-Differenzierung gewonnen werden. Die hier dargestellten Daten zeigen, dass genetische Veränderungen in den Th1-spezifischen Transkriptionsfaktoren TBX21 und HLX1 einen Einfluss auf das Asthmarisiko ausüben. Im Gegensatz dazu scheinen im Th2-assoziierten Transkriptionsfaktor GATA3 keinerlei Polymorphismen Auswirkungen auf die Asthmaentwicklung zu haben. Basierend auf der Annahme, dass der Pathogenese von Asthma bronchiale ein erhöhtes Th2-Signal zu Grunde liegt, könnte aus den vorliegenden Daten die Hypothese aufgestellt werden, dass eine gesteigerte Th2-Antwort nicht durch ein (genetisch bedingtes) verstärktes Th2-Signal an sich initiiert wird, sondern vielmehr durch ein (genetisch bedingtes) mangelhaftes oder fehlendes Th1-Signal ausgelöst wird. Im Mittelpunkt dieses Differenzierungsprozesses könnten TBX21 und HLX1 stehen. Bereits kleine genetische Veränderungen innerhalb der Th1-Signalkaskade, die das Th1-Signal abschwächen, scheinen die Entstehung und Ausprägung von Asthma bronchiale zu beeinflussen, während Modifikationen im Th2-Signal scheinbar keine Konsequenzen nach sich ziehen. Diese Hypothese wird durch die Beobachtung untermauert, dass bei Asthmapatienten eine erhöhte Th2-Zytokinproduktion mit einer reduzierten TBX21 Expression im bronchialen Gewebe einhergeht. Desweiteren entwickelten transgene TBX21 Mäuse bereits in heterozygoten Zustand einen asthmatischen Phänotypen wie er auch bei homozygoten TBX21 Knockout-Mäusen zu finden ist ⁴². Demnach bestätigt sich auch im Tiermodell, dass die

Stärke des Th1-Signals, gesteuert durch TBX21 und HLX1 das Ausmaß der T-Zelldifferenzierung und damit die Entstehung des asthmatischen Phänotyps kontrolliert. In diesem Zusammenhang scheinen auch die Zwillingsstudien von Höhler et al. besonders interessant, da hierbei gezeigt wurde, dass die Th1-Antwort primär durch genetische Faktoren geprägt wird, während dies für die Th2-Immunantwort nicht beobachtet werden konnte ¹²⁵.

Usui et al. hatten bereits 2006 ein Modell vorgestellt, dass das Wechselspiel der Th1und Th2-spezifischen Transkriptionsfaktoren TBX21 und GATA3 bei der T-Zelldifferenzierung beschreibt (siehe auch Einleitung 1.3.3). Laut ihrem Modell lenkt GATA3 die Differenzierung naiver T-Zellen solange in Richtung Th2-Zellpool bis eine ausreichende TBX21 Expression die Wirkung von GATA3 unterdrückt, so dass der Wechsel zur Th1-Antwort erfolgen kann ⁵⁶. Auch in diesem Modell ist die Intensität des Th1-Signals wiederum für die T-Zellprägung entscheidend, da durch eine verminderte TBX21 Expression die Inhibition von GATA3 ausbleibt und somit eine gesteigerte Th2-Antwort entstehen würde. Die hier vorliegenden Daten unterstützen dieses Modell und tragen zu einem besseren Verständnis der Th1/Th2-Zelldifferenzierung bei. Gleichzeitig werfen diese Erkenntnisse aber weitere Fragen auf, die es in naher Zukunft zu klären gilt, um das erhaltene Wissen in einen weitläufigeren Kontext zu stellen. Beispielsweise geht aus neueren Studien hervor, dass TBX21 nicht nur als Schaltstelle zwischen Th1und Th2-Zellen fungiert, sondern auch eine entscheidende Rolle bei der Differenzierung naiver T-Zellen in Richtung Th17-Zellen spielt. So führte die exogene Expression von TBX21 zur Sekretion des Th1-spezifischen Zytokins IFNy, reduzierte aber zeitgleich die IL-17 Expression¹²⁶. Da der Prozess der T-Zelldifferenzierung sehr komplex ist und nicht nur die Differenzierung naiver T-Zellen zu Th1- und Th2-Zellen, sondern auch die Entwicklung des Th17-Zellpools und der regulatorischen T-Zellen umfasst, stellt sich darauf aufbauend die Frage, welchen Einfluss Polymorphismen in den Haupttranskriptionsfaktoren dieser T-Zellpopulationen auf die Zelldifferenzierung und damit möglicherweise auf die Entstehung von Asthma bronchiale haben könnten. Assoziationsstudien zu RORyt, dem verantwortlichen Faktor der Th17-Differenzierung¹²⁷ und zu FOXP3, dem essentiellen Faktor der Treg-Subpopulation¹²⁸ sowie die Durchführung von BRET-Analysen unter Verwendung aller untersuchter Transkriptionsfaktoren könnten das Verständnis für das Zusammenspiel der Transkriptionsfaktoren vertiefen und weiteren Aufschluss über die Steuerung der T-Zelldifferenzierung geben.

Desweiteren wurde im Rahmen dieser Arbeit bereits eine Risiko-Analyse durchgeführt, die eine Gen-Gen-Interaktion zwischen *TBX21* und *HLX1* aufgezeigt hatte. Möglicherweise könnte mit der Detektion weiterer krankheitsrelevanter SNPs innerhalb der Th-Zell-spezifischen Transkriptionsfaktoren dieses Risiko-Modell auf weitere Gen-Gen-Interaktionen ausgeweitet werden, so dass Individuen mit einem gesteigerten Asthmarisiko frühzeitig erkannt und somit die Diagnostik verbessert werden könnte.

Zudem wäre es auch aufschlußreich, diese Faktoren in Bezug auf andere Erkrankungen zu analysieren. Neben Asthma bronchiale wird auch bei anderen chronischentzündlichen Erkrankungen eine fehlregulierte T-Zelldifferenzierung angenommen. Beispielsweise geht man davon aus, dass bei Morbus Crohn, einer chronischentzündlichen Darmerkrankung, Th1- und Th17-Zellen eine wichtige Rolle bei der

182

intestinalen Entzündung und damit der Pathogenese der Erkrankung spielen könnten ¹²⁹. Mittels genomweiter Assoziationsstudien konnten bereits Überlappungen zwischen Asthma bronchiale und Morbus Crohn detektiert werden: Polymorphismen in *ORMDL3* hatten sowohl die Suszeptibilität für kindliches Asthma ¹⁰⁰ als auch für Morbus Crohn ¹³⁰ signifikant beeinflusst. In Anlehnung an diese Erkenntnisse wäre es daher interessant, Assoziationen von genetischen Varianten in den T-Zell-spezifischen Transkriptionsfaktoren auch im Hinblick auf Morbus Crohn zu analysieren.

Häufig stellt sich bei derartigen Forschungsarbeiten auch die Frage nach der klinischen Relevanz, d.h. bezogen auf die vorliegende Arbeit, in wie weit sich TBX21, HLX1 und GATA3 als *Targets* bei der Suche nach neuen Präventionsmöglichkeiten von Asthma bronchiale eignen. In einer kürzlich erschienenen Publikation wurde spekuliert, dass Substanzen, die eine Steigerung der *TBX21* Expression oder Aktivität hervorrufen, eine vielversprechende Grundlage für die Entwicklung eines Asthma relevanten Therapeutikums darstellen würden ¹³¹. Aufgrund der hier vorliegenden Daten erscheint die Ableitung neuer Therapieformen für die Behandlung von Asthma bronchiale in Bezug auf TBX21, HLX1 und GATA3 allerdings verfrüht, da mit dem derzeitigen Wissensstand die Konsequenzen einer künstlichen Modifikation dieser Gene auf andere Mechanismen und Signalwege nicht abzusehen sind. Ausgehend von den hier dargestellten Daten könnte jedoch die Hypothese aufgestellt werden, dass bei der Suche nach neuen Behandlungsmethoden für Asthma bronchiale der Schwerpunkt weniger bei der Intervention der Th2-Immunantwort liegen sollte, sondern vielmehr bei der Steuerung des Th1-Signals. Die Generierung einer BAC-transgenen Maus für humanes TBX21 ist bereits geplant. Anhand dieser BAC-transgenen Maus soll die physiologische Rolle von TBX21 weiter eingehend charakterisiert werden.

Die vorliegende Arbeit hat eine solide Grundlage für die Aufarbeitung der hier aufgeführten Fragestellungen geschaffen. Zusammenfassend betrachtet, gewähren die vorliegenden Daten neue Einblicke in das Zusammenspiel der immunregulatorischen Faktoren TBX21, HLX1 und GATA3 innerhalb der Th1- und Th2-Zelldifferenzierung. Desweiteren fördern sie das Verständnis für die Wirkungsweise genetischer Varianten in TBX21 und HLX1, indem sie biologische Mechanismen aufzeigen, durch die die Assoziationen zwischen Promotorpolymorphismen in diesen Th1-spezifischen Transkriptionsfaktoren und der Entstehung von Asthma bronchiale auf biologischer Ebene *in vitro* erklärt werden könnten. Das Zusammenspiel von TBX21 und HLX1 innerhalb der Asthma Pathogenese konnte zudem durch die Analyse von Gen-Gen-Interaktionen untermauert werden. Es konnte gezeigt werden, dass TBX21 und HLX1 sowohl auf biologischer als auch auf statistischer Ebene miteinander wechselwirken. Der Vorteil dieser Arbeit bestand darin, dass sowohl die Faktoren der Th1- als auch der Th2-Differenzierung untersucht wurden und für die Genotypisierungen der TBX21, HLX1 und GATA3 Polymorphismen jeweils Populationen des gleichen Ursprungs verwendet wurden. Dies erlaubte einen direkten Vergleich der Ergebnisse und gewährte einen detaillierten Einblick in den Prozess genetischer Effekte auf die T-Zelldifferenzierung. Es zeigte sich, dass Polymorphismen in den Th1-assoziierten Transkriptionsfaktoren TBX21 und HLX1, vor allem in Kombination, einen starken Effekt auf das asthmatische Geschehen zu haben scheinen, während für SNPs im Th2spezifischen Transkriptionsfaktor GATA3 keine signifikanten Assoziationen beobachtet werden konnten. Demnach trägt scheinbar die erhöhte Variabilität in den Th1spezifischen Genen *TBX21* und *HLX1* verglichen mit *GATA3* verstärkt zur Entstehung von Asthma bronchiale bei.

5 Literaturverzeichnis

- 1. von Mutius E, Martinez FD, Fritzsch C, Nicolai T, Roell G, Thiemann HH. Prevalence of asthma and atopy in two areas of West and East Germany. Am J Respir Crit Care Med 1994; 149:358-64.
- 2. Worldwide variations in the prevalence of asthma symptoms: the International Study of Asthma and Allergies in Childhood (ISAAC). Eur Respir J 1998; 12:315-35.
- 3. von Mutius E, Weiland SK, Fritzsch C, Duhme H, Keil U. Increasing prevalence of hay fever and atopy among children in Leipzig, East Germany. Lancet 1998; 351:862-6.
- 4. Aberg N, Hesselmar B, Aberg B, Eriksson B. Increase of asthma, allergic rhinitis and eczema in Swedish schoolchildren between 1979 and 1991. Clin Exp Allergy 1995; 25:815-9.
- 5. Speer C, Gahr M. Pädriatrie. Springer Verlag Berlin 2001.
- 6. GINA-Globalinitiativeforasthma. Global strategy for asthma managment and prevention. GINA Workshop Protocol 2002.
- 7. Wahn U, Seger R, Wahn V, Holländer GA. Pädiatrische Allergologie und Immunologie. Urban & Fischer Verlag 2005.
- 8. Rackemann F. A clinical classification of asthma based upon a review of six hundred and forty-eight cases. Am J Med Sci 1921; 12:802-11.
- 9. Host A, Halken S. The role of allergy in childhood asthma. Allergy 2000; 55:600-8.
- 10. Sears MR, Burrows B, Herbison GP, Holdaway MD, Flannery EM. Atopy in childhood. II. Relationship to airway responsiveness, hay fever and asthma. Clin Exp Allergy 1993; 23:949-56.
- 11. Feijen M, Gerritsen J, Postma DS. Genetics of allergic disease. Br Med Bull 2000; 56:894-907.
- 12. Bierbaum S, Heinzmann A. The genetics of bronchial asthma in children. Respir Med 2007; 101:1369-75.
- 13. Harris JR, Magnus P, Samuelsen SO, Tambs K. No evidence for effects of family environment on asthma. A retrospective study of Norwegian twins. Am J Respir Crit Care Med 1997; 156:43-9.
- 14. Duffy DL, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins. Am Rev Respir Dis 1990; 142:1351-8.
- 15. Frischer T, Kuehr J, Meinert R, Karmaus W, Urbanek R. Risk factors for childhood asthma and recurrent wheezy bronchitis. Eur J Pediatr 1993; 152:771-5.
- 16. Howard TD, Koppelman GH, Xu J, Zheng SL, Postma DS, Meyers DA, et al. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am J Hum Genet 2002; 70:230-6.
- 17. Kabesch M, Schedel M, Carr D, Woitsch B, Fritzsch C, Weiland SK, et al. IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. J Allergy Clin Immunol 2006; 117:269-74.
- 18. Kabesch M, Hoefler C, Carr D, Leupold W, Weiland SK, von Mutius E. Glutathione S transferase deficiency and passive smoking increase childhood asthma. Thorax 2004; 59:569-73.

- 19. Strachan DP. Hay fever, hygiene, and household size. Bmj 1989; 299:1259-60.
- 20. Braun-Fahrlander C, Gassner M, Grize L, Neu U, Sennhauser FH, Varonier HS, et al. Prevalence of hay fever and allergic sensitization in farmer's children and their peers living in the same rural community. SCARPOL team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution. Clin Exp Allergy 1999; 29:28-34.
- 21. von Ehrenstein OS, von Mutius E, Illi S, Baumann L, Bohm O, von Kries R. Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy 2000; 30:187-93.
- 22. Riedler J, Eder W, Oberfeld G, Schreuer M. Austrian children living on a farm have less hay fever, asthma and allergic sensitization. Clin Exp Allergy 2000; 30:194-200.
- 23. Riedler J, Braun-Fahrlander C, Eder W, Schreuer M, Waser M, Maisch S, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001; 358:1129-33.
- 24. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145-73.
- 25. Ray A, Cohn L. Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation. J Clin Invest 1999; 104:985-93.
- 26. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 2006; 24:677-88.
- 27. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 2005; 6:1123-32.
- 28. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 2005; 6:1133-41.
- 29. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, et al. Phenotypic and functional features of human Th17 cells. J Exp Med 2007; 204:1849-61.
- 30. Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 1995; 181:381-6.
- 31. Segal BM, Dwyer BK, Shevach EM. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J Exp Med 1998; 187:537-46.
- 32. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic selftolerance and negative control of immune responses. Annu Rev Immunol 2004; 22:531-62.
- Romagnani S. Human TH1 and TH2 subsets: regulation of differentiation and role in protection and immunopathology. Int Arch Allergy Immunol 1992; 98:279-85.
- 34. Adcock I, Barnes P. Transcription factors. In: Crystal RG, West JB, Weibel WR, Barnes PJ, eds. The Lung: Scientific Foundations. Philadelphia, Lippincott-Raven 1996:255-76.

- 35. Latchman DS. Transcription-factor mutations and disease. N Engl J Med 1996; 334:28-33.
- 36. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000; 100:655-69.
- 37. Mullen AC, Hutchins AS, High FA, Lee HW, Sykes KJ, Chodosh LA, et al. Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction. Nat Immunol 2002; 3:652-8.
- 38. Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 1997; 89:587-96.
- 39. Zhang DH, Cohn L, Ray P, Bottomly K, Ray A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J Biol Chem 1997; 272:21597-603.
- 40. Ho IC, Glimcher LH. Transcription: tantalizing times for T cells. Cell 2002; 109 Suppl:S109-20.
- 41. Rao A, Avni O. Molecular aspects of T-cell differentiation. Br Med Bull 2000; 56:969-84.
- 42. Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002; 295:336-8.
- 43. Szabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 2002; 295:338-42.
- 44. Pai SY, Truitt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc Natl Acad Sci U S A 2004; 101:1993-8.
- 45. Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A, Wang Q, et al. Conditional deletion of Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat Immunol 2004; 5:1157-65.
- 46. Ferber IA, Lee HJ, Zonin F, Heath V, Mui A, Arai N, et al. GATA-3 significantly downregulates IFN-gamma production from developing Th1 cells in addition to inducing IL-4 and IL-5 levels. Clin Immunol 1999; 91:134-44.
- 47. Finotto S, Glimcher L. T cell directives for transcriptional regulation in asthma. Springer Semin Immunopathol 2004; 25:281-94.
- 48. Zhang Y, Apilado R, Coleman J, Ben-Sasson S, Tsang S, Hu-Li J, et al. Interferon gamma stabilizes the T helper cell type 1 phenotype. J Exp Med 2001; 194:165-72.
- 49. Hardy KJ, Manger B, Newton M, Stobo JD. Molecular events involved in regulating human interferon-gamma gene expression during T cell activation. J Immunol 1987; 138:2353-8.
- 50. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol 2003; 21:713-58.
- 51. Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 2002; 3:549-57.
- 52. Robinson DS, Lloyd CM. Asthma: T-bet--a master controller? Curr Biol 2002; 12:R322-4.

- 53. Zheng WP, Zhao Q, Zhao X, Li B, Hubank M, Schatz DG, et al. Up-regulation of Hlx in immature Th cells induces IFN-gamma expression. J Immunol 2004; 172:114-22.
- 54. Mikhalkevich N, Becknell B, Caligiuri MA, Bates MD, Harvey R, Zheng WP. Responsiveness of naive CD4 T cells to polarizing cytokine determines the ratio of Th1 and Th2 cell differentiation. J Immunol 2006; 176:1553-60.
- 55. Ouyang W, Lohning M, Gao Z, Assenmacher M, Ranganath S, Radbruch A, et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 2000; 12:27-37.
- 56. Usui T, Preiss JC, Kanno Y, Yao ZJ, Bream JH, O'Shea JJ, et al. T-bet regulates Th1 responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription. J Exp Med 2006; 203:755-66.
- 57. Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 2005; 307:430-3.
- 58. Hentsch B, Lyons I, Li R, Hartley L, Lints TJ, Adams JM, et al. Hlx homeo box gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev 1996; 10:70-9.
- 59. Jawad M, Seedhouse CH, Russell N, Plumb M. Polymorphisms in human homeobox HLX1 and DNA repair RAD51 genes increase the risk of therapy-related acute myeloid leukemia. Blood 2006; 108:3916-8.
- 60. Kiwamoto T, Ishii Y, Morishima Y, Yoh K, Maeda A, Ishizaki K, et al. Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am J Respir Crit Care Med 2006; 174:142-51.
- 61. Munthe-Kaas MC, Carlsen KH, Haland G, Devulapalli CS, Gervin K, Egeland T, et al. T cell-specific T-box transcription factor haplotype is associated with allergic asthma in children. J Allergy Clin Immunol 2007.
- 62. Akahoshi M, Obara K, Hirota T, Matsuda A, Hasegawa K, Takahashi N, et al. Functional promoter polymorphism in the TBX21 gene associated with aspirininduced asthma. Hum Genet 2005; 117:16-26.
- 63. Raby BA, Hwang ES, Van Steen K, Tantisira K, Peng S, Litonjua A, et al. T-bet polymorphisms are associated with asthma and airway hyperresponsiveness. Am J Respir Crit Care Med 2006; 173:64-70.
- 64. Chung HT, Kim LH, Park BL, Lee JH, Park HS, Choi BW, et al. Association analysis of novel TBX21 variants with asthma phenotypes. Hum Mutat 2003; 22:257.
- 65. Ylikoski E, Kinos R, Sirkkanen N, Pykalainen M, Savolainen J, Laitinen LA, et al. Association study of 15 novel single-nucleotide polymorphisms of the T-bet locus among Finnish asthma families. Clin Exp Allergy 2004; 34:1049-55.
- 66. Nakamura Y, Ghaffar O, Olivenstein R, Taha RA, Soussi-Gounni A, Zhang DH, et al. Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol 1999; 103:215-22.
- 67. Zhang DH, Yang L, Cohn L, Parkyn L, Homer R, Ray P, et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 1999; 11:473-82.
- 68. Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, et al. Treatment of allergic airway inflammation and hyperresponsiveness by

antisense-induced local blockade of GATA-3 expression. J Exp Med 2001; 193:1247-60.

- 69. Sel S, Wegmann M, Dicke T, Sel S, Henke W, Yildirim AO, et al. Effective prevention and therapy of experimental allergic asthma using a GATA-3-specific DNAzyme. J Allergy Clin Immunol 2008; 121:910-6 e5.
- 70. Huebner M, Kim DY, Ewart S, Karmaus W, Sadeghnejad A, Arshad SH. Patterns of GATA3 and IL13 gene polymorphisms associated with childhood rhinitis and atopy in a birth cohort. J Allergy Clin Immunol 2008; 121:408-14.
- 71. Arshad SH, Karmaus W, Kurukulaaratchy R, Sadeghnejad A, Huebner M, Ewart S. Polymorphisms in the interleukin 13 and GATA binding protein 3 genes and the development of eczema during childhood. Br J Dermatol 2008; 158:1315-22.
- 72. Pykalainen M, Kinos R, Valkonen S, Rydman P, Kilpelainen M, Laitinen LA, et al. Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high serum IgE phenotypes. J Allergy Clin Immunol 2005; 115:80-7.
- 73. Weiland SK, von Mutius E, Hirsch T, Duhme H, Fritzsch C, Werner B, et al. Prevalence of respiratory and atopic disorders among children in the East and West of Germany five years after unification. Eur Respir J 1999; 14:862-70.
- 74. Kormann MS, Depner M, Hartl D, Klopp N, Illig T, Adamski J, et al. Toll-like receptor heterodimer variants protect from childhood asthma. J Allergy Clin Immunol 2008; 122:86-92, e1-8.
- 75. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16:1215.
- 76. Sasieni PD. From genotypes to genes: doubling the sample size. Biometrics 1997; 53:1253-61.
- 77. Wellek S, Schumann G. Statistical confirmation of negative results of association studies in genetic epidemiology. Am J Med Genet B Neuropsychiatr Genet 2004; 128B:126-30.
- 78. Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23:4878-84.
- 79. Grabe N. AliBaba2: context specific identification of transcription factor binding sites. In Silico Biol 2002; 2:S1-15.
- 80. Cooper BUGM. The Cell: A molecular approach, Second Edition ASM Press Washington D.C. Sinauer Associates, Inc. Sunderland, Massachusetts.
- 81. Promega. pGL3 Luciferase Reporter Vector Manual. 2007.
- 82. Counturier C, Ayoub MA, Jockers R. BRET ermöglicht die Messung von Protein-Interaktionen in lebenden Zellen. BIOspektrum 2002; 5:612-5.
- 83. Invitrogen C, USA. Gateway Technology with Clonase II Manual. 2004.
- 84. Ruoß I. Neu identifizierte genetische Varianten im HLX1 Gen beeinflussen die Entstehung von Asthma bronchiale im Kindesalter. Dissertation am Dr. von Haunerschen Kinderspital der Ludwig-Maximilians-Universität München 2008.
- 85. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD, et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol 2001; 167:5838-44.

- 86. Martins GA, Hutchins AS, Reiner SL. Transcriptional activators of helper T cell fate are required for establishment but not maintenance of signature cytokine expression. J Immunol 2005; 175:5981-5.
- 87. Tantisira KG, Hwang ES, Raby BA, Silverman ES, Lake SL, Richter BG, et al. TBX21: a functional variant predicts improvement in asthma with the use of inhaled corticosteroids. Proc Natl Acad Sci U S A 2004; 101:18099-104.
- 88. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 2002; 277:44925-31.
- 89. Wilson S, Wilkinson G, Milligan G. The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem 2005; 280:28663-74.
- 90. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 2006; 3:1001-6.
- 91. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136:2348-57.
- 92. Robinson DS, Hamid Q, Ying S, Tsicopoulos A, Barkans J, Bentley AM, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med 1992; 326:298-304.
- 93. Ying S, Humbert M, Barkans J, Corrigan CJ, Pfister R, Menz G, et al. Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils, and mast cells in bronchial biopsies obtained from atopic and nonatopic (intrinsic) asthmatics. J Immunol 1997; 158:3539-44.
- 94. Wong CK, Ho CY, Ko FW, Chan CH, Ho AS, Hui DS, et al. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin Exp Immunol 2001; 125:177-83.
- 95. Bullens DM, Truyen E, Coteur L, Dilissen E, Hellings PW, Dupont LJ, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir Res 2006; 7:135.
- 96. Hartl D, Koller B, Mehlhorn AT, Reinhardt D, Nicolai T, Schendel DJ, et al. Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 2007; 119:1258-66.
- 97. The International HapMap Project. Nature 2003; 426:789-96.
- 98. Menashe I, Rosenberg PS, Chen BE. PGA: power calculator for case-control genetic association analyses. BMC Genet 2008; 9:36.
- 99. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, et al. Interleukin-13: central mediator of allergic asthma. Science 1998; 282:2258-61.
- 100. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 2007; 448:470-3.
- 101. Hederos CA, Hasselgren M, Hedlin G, Bornehag CG. Comparison of clinically diagnosed asthma with parental assessment of children's asthma in a questionnaire. Pediatr Allergy Immunol 2007; 18:135-41.

- 102. Gordon D, Finch SJ. Factors affecting statistical power in the detection of genetic association. J Clin Invest 2005; 115:1408-18.
- 103. Iles MM. What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet 2008; 4:e33.
- 104. Vercelli D. Discovering susceptibility genes for asthma and allergy. Nat Rev Immunol 2008; 8:169-82.
- 105. Illig T. Genetische Analysen komplexer Erkrankungen. Helmholtz Zentrum München Aktuelle Themen Jahresbericht 2005:39-46.
- 106. Tavendale R, Macgregor DF, Mukhopadhyay S, Palmer CN. A polymorphism controlling ORMDL3 expression is associated with asthma that is poorly controlled by current medications. J Allergy Clin Immunol 2008; 121:860-3.
- 107. Galanter J, Choudhry S, Eng C, Nazario S, Rodriguez-Santana JR, Casal J, et al. ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med 2008; 177:1194-200.
- 108. Madore AM, Tremblay K, Hudson TJ, Laprise C. Replication of an association between 17q21 SNPs and asthma in a French-Canadian familial collection. Hum Genet 2008; 123:93-5.
- 109. Sleiman PM, Annaiah K, Imielinski M, Bradfield JP, Kim CE, Frackelton EC, et al. ORMDL3 variants associated with asthma susceptibility in North Americans of European ancestry. J Allergy Clin Immunol 2008; 122:1225-7.
- 110. Bisgaard H, Bonnelykke K, Sleiman PM, Brasholt M, Chawes B, Kreiner-Moller E, et al. Chromosome 17q21 gene variants are associated with asthma and exacerbations but not atopy in early childhood. Am J Respir Crit Care Med 2009; 179:179-85.
- 111. Hirota T, Harada M, Sakashita M, Doi S, Miyatake A, Fujita K, et al. Genetic polymorphism regulating ORM1-like 3 (Saccharomyces cerevisiae) expression is associated with childhood atopic asthma in a Japanese population. J Allergy Clin Immunol 2008; 121:769-70.
- 112. Bouzigon E, Corda E, Aschard H, Dizier MH, Boland A, Bousquet J, et al. Effect of 17q21 variants and smoking exposure in early-onset asthma. N Engl J Med 2008; 359:1985-94.
- 113. Leung TF, Sy HY, Ng MC, Chan IH, Wong GW, Tang NL, et al. Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy 2009; 64:621-8.
- Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001; 125:279-84.
- 115. Pearson TA, Manolio TA. How to interpret a genome-wide association study. Jama 2008; 299:1335-44.
- 116. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449:851-61.
- 117. Liu YJ, Papasian CJ, Liu JF, Hamilton J, Deng HW. Is replication the gold standard for validating genome-wide association findings? PLoS ONE 2008; 3:e4037.
- 118. Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas G, et al. Replicating genotype-phenotype associations. Nature 2007; 447:655-60.
- 119. Kabesch M. The art of replication. Thorax 2009; 64:370-1.

- 120. Cameron L, Webster RB, Strempel JM, Kiesler P, Kabesch M, Ramachandran H, et al. Th2 cell-selective enhancement of human IL13 transcription by IL13-1112C>T, a polymorphism associated with allergic inflammation. J Immunol 2006; 177:8633-42.
- 121. Suske G. The Sp-family of transcription factors. Gene 1999; 238:291-300.
- 122. Birnbaum MJ, van Wijnen AJ, Odgren PR, Last TJ, Suske G, Stein GS, et al. Sp1 trans-activation of cell cycle regulated promoters is selectively repressed by Sp3. Biochemistry 1995; 34:16503-8.
- 123. Prowse DM, Bolgan L, Molnar A, Dotto GP. Involvement of the Sp3 transcription factor in induction of p21Cip1/WAF1 in keratinocyte differentiation. J Biol Chem 1997; 272:1308-14.
- 124. Yu J, Wei M, Boyd Z, Lehmann EB, Trotta R, Mao H, et al. Transcriptional control of human T-BET expression: the role of Sp1. Eur J Immunol 2007; 37:2549-61.
- 125. Hohler T, Reuss E, Adams P, Bartsch B, Weigmann B, Worns M, et al. A genetic basis for IFN-gamma production and T-bet expression in humans. J Immunol 2005; 175:5457-62.
- 126. Mathur AN, Chang HC, Zisoulis DG, Kapur R, Belladonna ML, Kansas GS, et al. T-bet is a critical determinant in the instability of the IL-17-secreting T-helper phenotype. Blood 2006; 108:1595-601.
- 127. Ivanov, II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126:1121-33.
- 128. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299:1057-61.
- 129. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 2008; 8:458-66.
- 130. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 2008; 40:955-62.
- 131. Park JW, Min HJ, Sohn JH, Kim JY, Hong JH, Sigrist KS, et al. Restoration of T-box-containing protein expressed in T cells protects against allergen-induced asthma. J Allergy Clin Immunol 2009; 123:479-85.

6 Anhang: SNP Bezeichnungen

Nachfolgende Tabellen geben eine Übersicht über die SNP Bezeichnungen (rs Nummer vs. Position innerhalb des Gens) in den Genen *TBX21, HLX1* und *GATA3*.

der SNP Bezeichnungen im TBX21 Gen.		
SNP	rs Nummer	Position bzgl.
		ATG im 1. Exon ¹
1	rs4794067	T-1993C
2	rs17250932	T-1514C
3	rs11650451	G-999A
4	rs17244544	C-79T
5	rs2240017	C98G
6	rs2074190	A389G
7	rs41444548 ²	C533G
8	rs41519545	G728T
9	rs57781320	G1167T
10	rs10514934	T1303C
11	rs8081095	C1667A
12	rs72648865 ²	G2011A
13	rs11079787	A2404C
14	rs72648866 ²	T2473A
15	rs16946264	G2613A
16	rs72648867 ²	G2761A
17	rs41321047	G2844A
18	rs72648868 ²	C3075T
19	rs72648869 ²	G3078A
20	rs8078974	A4704T
21	rs11653146	A4708T
22	rs72648870 ²	T4716A
23	rs72648871 ²	C5287T
24	rs11652969	G6546A
25	rs72667004 ²	A6618G
26	rs66490177 ²	T6902C
27	rs2158079	T7729C
28	rs56308324	A8385T
29	rs72648872 ²	G8760A
30	rs58067360	G8766C
31	rs11657388	C9886G
32	rs11079788	C9902T
33	rs12451801	T10154C
34	rs41407050 ²	T10386C
35	rs16946878	T10689C
36	rs17250953	C11023G
37	rs11650354	C11271T
38	rs12721470	G11758A
39	rs11657479	T12080C
40	rs17244587	G12214A
41	rs7502875	A12406C
42	rs41447544 ²	12564delT

Tabelle 58:Übersicht der SNP Bezeichnungen im TBX21 Gen.

	43	rs17250967	T12641C
v	1 Carry	and and day CNI)

(1) Basierend auf der TBX21 Sequenz aus der SNPper Datenbank.

(2) SNP, die im Rahmen dieser Arbeit neu identifiziert worden sind, wurden in die dbSNP Datenbank eingereicht und mit einer gültigen rs-Nummer versehen.

Tabelle 59:Übersicht der SNP Bezeichungen im HLX1 Gen.

SNP	rs Nummer	Position bzgl.
		ATG im 1. Exon ¹
1	rs41369048 ²	A-1633G
2	rs2738751	C-1486G
3	rs3806325	C-1407T
4	rs41441946 ²	C-796A
5	rs2184658	C-742G
6	rs2807857	C-559T
7	rs2738752	A-434G
8	rs12730158	T-429G
9	rs2738754	C-263A
10	rs12141189	T346C
11	rs17597773	C1562G
12	rs2247213	G2256A
13	rs1317189	T3009C
14	rs868058	T3183A
15	rs34180575 ²	C3958T
16	rs2738755	C4431T
17	rs3738182	G4447A
18	rs11578466	C4524G
19	rs2738756	C4844T

(1) Basierend auf der NCBI Datenbank Sequenz (Accession Number AF217621).

(2) SNPs, die im Rahmen dieser Arbeit neu identifiziert worden sind, wurden in die dbSNP Datenbank eingereicht und mit einer gültigen rs-Nummer versehen.

SNP	rs Nummer	Position bzgl.
		ATG im 1. Exon ¹
1	rs1399180	C1101T
2	rs369421	T1559C
3	rs3781093	T4309C
4	rs3802604	A4654G
5	rs376397	G5680A
6	rs3824662	C6590A
7	rs2277228	A8127G
8	rs3781092	G8735A
9	rs570613	T8884C
10	rs568727	C9083A
11	rs10752126	C9129G
12	rs569421	T10974C
13	rs3802600	A11194T
14	rs444929	T12406C
15	rs422628	T13791C
16	rs406103	C14003T
17	rs528778	C14525T
18	rs11567931	C15313T
19	rs1058240	A18980G

Tabelle 60:Übersicht der SNP Bezeichnungen im GATA3 Gen.

(1) Basierend auf der GATA3 Sequenz aus der SNPper Datenbank.

7 Zusammenfassung

Asthma bronchiale ist eine komplexe Erkrankung, deren zugrunde liegenden Mechanismen nicht geklärt sind. Man geht davon aus, dass Asthma mit einem Ungleichgewicht der T-Helferzellen zu Gunsten der Th2-Zellen assoziiert ist. Die Transkriptionsfaktoren TBX21, HLX1 und GATA3 sind die wichtigsten Regulatoren der T-Zell-Prägung: während das Zusammenspiel zwischen TBX21 und HLX1 zur Th1-Differenzierung führt, ist GATA3 für die Entstehung des Th2-Zellpools verantwortlich. Hier wurde untersucht, ob genetische Veränderungen in *TBX21, HLX1* und *GATA3* eine Störung des Immunsystems verursachen und damit die Entstehung von Asthma bronchiale beeinflussen.

Die Assoziationsstudien zeigten, dass Polymorphismen in den Th1-spezifischen Transkriptionsfaktoren TBX21 und HLX1 das kindliche Asthmarisiko signifikant beeinflussen. Vor allem bei der Kombination aus TBX21 und HLX1 SNPs konnten stark synergistische Effekte hinsichtlich der Asthmaentstehung beobachtet werden. Im für Gegensatz dazu wurden genetische Varianten im Th2-assoziierten Transkriptionsfaktor GATA3 keine signifikanten Assoziationen mit Asthma bronchiale detektiert, was mittels Äquivalenztest für die meisten Polymorphismen statistisch abgesichert werden konnte. Funktionelle Studien demonstrierten, dass sowohl TBX21 als auch HLX1 Promotorpolymorphismen, die maßgeblich zu den beobachteten Risikoeffekten in den Assoziatiotionsstudien beitrugen, einen signifikanten Einfluss auf die jeweilige Genexpression in Jurkat T-Zellen ausüben. Im Falle von HLX1 scheint der Effekt auf die Genexpression durch ein verändertes Bindungsverhalten von Mitgliedern der SP-Transkriptionsfaktor-Familie an den HLX1 Promotor zustande zu kommen. Mittels BRET-(Biolumineszenz Resonanz Energie Transfer) Analysen konnte in COS-7 Zellen gezeigt werden, dass TBX21 und HLX1 eine Protein-Protein-Interaktion eingehen. Exonische Polymorphismen in beiden Genen, die auf Proteinebene zu einer Aminosäureänderung führen, scheinen dieses Interaktionsverhalten jedoch nicht relevant zu beeinflussen.

Die vorliegenden Daten gewährten neue Einblicke in das Zusammenspiel und die Auswirkungen genetischer Varianten in den immunregulatorischen Faktoren TBX21, HLX1 und GATA3 und führten zu der Hypothese, dass nur genetische Varianten in den Th1-spezifischen Genen *TBX21* und *HLX1* einen signifikanten Beitrag zur Entstehung von Asthma bronchiale leisten, nicht jedoch solche im zentralen Th2-Transkriptionsfaktor GATA3.

8 Summary

Asthma is a complex disease and the underlying mechanisms are still not understood. However, there is some evidence that an imbalance of T helper cells towards an augmented Th2 population is associated with the development of asthma. The transcription factors TBX21, HLX1 and GATA3 play a crucial role in T cell commitment: while TBX21 and HLX1 induce the differentiation of naive T cells into Th1 cells, GATA3 drives Th2 commitment. Thus, this thesis addresses the question if genetic variations in these genes may lead to a deregulation of the immune system and thereby contributing to the development of asthma.

Association studies showed that polymorphisms in the Th1 associated transcription factors TBX21 and HLX1 influence the risk for childhood asthma significantly. Furthermore, synergistic effects on asthma risk could be identified when *TBX21* and *HLX1* polymorphisms were assessed in combination. In contrast, no significant associations were detected for polymorphisms in the Th2 specific transcription factor GATA3. For most of the *GATA3* SNPs the absence of an association signal was confirmed statistically using equivalence tests. Functional studies demonstrated that *TBX21* and *HLX1* promoter polymorphisms which contribute considerably to the observed associations with asthma alter gene expression levels in Jurkat T cells. For *HLX1* these effects seem to be due to disturbed binding of SP transcription factor family members to the *HLX1* promoter. Using BRET (bioluminescence resonance energy transfer) in COS-7 cells it was shown that TBX21 and HLX1 proteins interact. Exonic polymorphisms in both genes changing the amino acid sequence at the protein level do not alter this interaction significantly.

In summary, these data provided new insights into the effects of genetic variations in the immune regulatory transcription factors TBX21, HLX1 and GATA3. Based on this data one may hypothesise that only polymorphisms in the Th1 specific transcription factors TBX21 and HLX1 modify asthma risk significantly, while genetic modification of the Th2 signal via GATA3 has no such effect.

9 Tabellenverzeichnis

Tabelle 1:	Verwendete Primerpaare und die dazugehörigen PCR- Bedingungen der Fragmente zur Amplifizierung des TBX21	
T 1 11 0	Gens.	41
Tabelle 2:	Standard-PCR-Ansatz zur Amplifizierung der <i>TBX21</i> Genfragmente	12
Tabelle 3:	Allgemeine Temperaturbedingungen der PCR zur Amplifizierung der <i>TBX21</i> Genfragmente bei Verwendung der NEB Taq Polymerase (New England Piol abs. Inswich, USA)	+2
Tabelle 4:	Allgemeine Temperaturbedingungen der PCR zur Amplifizierung der <i>TBX21</i> Genfragmente bei Verwendung der HotStar Taq®-	72
Tabelle 5:	Allgemeine Temperaturbedingungen einer Touchdown (TD)- PCR zur Amplifizierung der <i>TBX21</i> Genfragmente bei Verwendung der NEB Taq Polymerase (New England BioLabs,	43
T 1 11 C	Ipswich, USA)	43
Tabelle 6:	Standard-Ansatz einer Sequenzierreaktion.	44
Tabelle 7.	Zusätzliche Primer zur Sequenzierung der PCP Fragmente des	44
Tabelle 8.	TBX21 Gens	45
Tabelle 9:	Standard-Mastermix für die PCR einer iPLEX TM Reaktion	. 15
	bezogen auf eine 384er Platte.	49
Tabelle 10:	Allgemeine Temperaturbedingungen einer Standard-PCR der iPLEX TM Reaktion.	49
Tabelle 11:	Verwendete Sense-, Antisense- und Extensionprimer der Gene <i>TBX21</i> , <i>HLX1</i> und <i>GATA3</i> für die iPLEX TM Reaktion	50
Tabelle 12:	Mastermix einer SAP-Reaktion.	51
Tabelle 13:	Mastermix einer Primer-Extensions-Reaktion	52
Tabelle 14:	Allgemeine Temperaturbedingungen einer Primer-Extensions- Reaktion.	52
Tabelle 15:	Primer für die TaqMan® PCR des TBX21 Gens.	54
Tabelle 16:	Standard-PCR-Ansatz für einen RFLP bei Verwendung der NEB	
	Taq Polymerase (New England BioLabs, Ipswich, USA).	55
Tabelle 17:	Allgemeine Temperaturbedingungen der PCR für den RFLP bei Verwendung der NEB Taq Polymerase (New England BioLabs,	
T 1 11 10	Ipswich, USA).	56
Tabelle 18:	Verwendete Sense- und Antisense-Primer für die PCRs des	56
Taballa 10:	RFLF.	30
Tabelle 19.	T3182 Δ mittels RELP	56
Tabelle 20 [.]	Restriktionsverdau-Ansatz für die Genotypisierung von SNP C-	50
1400110 20.	1486G mittels RFLP.	56
Tabelle 21:	Verwendete einzelsträngige Oligonukleotide für die	-
	Annealingreaktion des EMSAs.	67
Tabelle 22:	Ansatz für das End- <i>Labeling</i> der doppelsträngigen EMSA-Oligos mit P ³² .	69

Tabelle 23:	Pufferbedingungen für die Bindereaktion eines EMSAs	. 70
Tabelle 24:	Ansatz zum Gießen eines 5%igen Polyacrylamidgels für den EMSA.	. 70
Tabelle 25:	Verwendete Sense- und Antisense-Primer zur Amplifizierung des <i>HLX1</i> Promotorbereichs	. 73
Tabelle 26:	Komponenten eines PCR-Ansatzes zur Amplifizierung des <i>HLX1</i> Promotorbereichs.	. 73
Tabelle 27:	Allgemeine Temperaturbedingungen zur Amplifizierung des <i>HLX1</i> Promotorbereichs.	. 73
Tabelle 28:	Ansatz für einen Doppel-Restriktionsverdau mit den Restriktionsenzymen XhoI und HindIII.	. 74
Tabelle 29:	Verwendete Primer zur Sequenzierung der <i>HLX1</i> Promotorkonstrukte	. 75
Tabelle 30:	Verwendete Mutagenese-Primer für die <i>HLX1</i> und <i>TBX21</i> Konstrukte	. 77
Tabelle 31.	Standard-Ansatz für eine Mutagenese-Reaktion	77
Tabelle 32:	Allgemeine Temperaturbedingungen für eine Mutagenese- Reaktion.	. 77
Tabelle 33:	Verwendete Primer zur Sequenzierung der <i>TBX21</i> Promotorkonstrukte	. 78
Tabelle 34:	Verwendete Sense- und Antisense-Primer zur Herstellung der attB-PCR-Produkte.	. 86
Tabelle 35:	Komponenten einer PCR zur Herstellung der <i>HLX1 att</i> B-PCR- Produkte unter Verwendung des Platinum® Taq High Fidelity Kits (Invitrogen Carlsbad USA)	86
Tabelle 36:	Komponenten einer PCR zur Herstellung der <i>TBX21 att</i> B-PCR- Produkte unter Verwendung des Phusion TM High Fidelty DNA Polymerase Kits (Finnzymes Oy, Espoo, Finnland)	. 86
Tabelle 37:	Allgemeine Temperaturbedingungen für die PCR zur Herstellung der <i>HLX1 att</i> B-PCR-Produkte bei Verwendung des Platinum® Taq High Fidelity Kits (Invitrogen, Carlsbad, USA)	. 87
Tabelle 38:	Allgemeine Temperaturbedingungen für die PCR zur Herstellung der <i>TBX21 attB</i> -PCR-Produkte bei Verwendung des Phusion TM High Fidelty DNA Polymerase Kits (Finnzymes Oy, Espoo, Finnland).	. 87
Tabelle 39:	Sequenzierprimer für die HLX1 bzw. TBX21 Entryklone	. 88
Tabelle 40:	Übersicht der in der Kontrollpopulation identifizierten $TBX21$ Polymorphismen (MAF \geq 3%), deren Lokalisation innerhalb des Gens, ihre MAF in der Kontrollpopulation und die Zusammenfassung der LD-Analyse.	100
Tabelle 41:	Bestimmung der <i>Callrate</i> und der Abweichung vom HWE als Qualitätskontrolle der <i>TBX21</i> Genotypisierung.	102
Tabelle 42:	<i>TBX21</i> Assoziationsanalyse in der Asthma Fall-Kontroll- Population (N=1872)	105
Tabelle 43:	TBX21 Haplotypanalyse	106
Tabelle 44:	TBX21AssoziationsanalyseindergepooltenQuerschnittspopulationDresden undMünchen (N=3099)	107

Tabelle 45:	Übersicht der von Dr. Isabell Ruoß identifizierten HLX1	
	Polymorphismen (MAF \geq 3%), deren Lokalisation innerhalb des	
	Gens, ihre MAF in der Kontrollpopulation und die	
	Zusammenfassung der LD-Analyse.	111
Tabelle 46:	Bestimmung der Callrate und der Abweichung vom HWE als	
	Qualitätskontrolle der HLX1 Genotypisierung.	112
Tabelle 47:	HLX1 Genotypfrequenzen	113
Tabelle 48:	HLX1 Assoziationen in der gepoolten Querschnittspopulation	
	Dresden und München (N=3099).	116
Tabelle 49:	Homogenitätsanalyse der HLX1 Tagging SNPs.	117
Tabelle 50:	HLX1 Haplotypanalyse.	118
Tabelle 51:	Übersicht der aus der HapMap-Datenbank erhaltenen GATA3	
	Polymorphismen (MAF \geq 3%), deren Lokalisation innerhalb des	
	Gens, ihre MAF bezogen auf Angaben in der SNPper Datenbank	
	sowie die Zusammenfassung der LD-Analyse bezogen auf	
	Angaben der HapMap-Datenbank.	121
Tabelle 52:	Bestimmung der Callrate und der Abweichung vom HWE als	
	Qualitätskontrolle der GATA3 Genotypisierung	122
Tabelle 53:	GATA3 Assoziationsanalyse und Äquivalenztest.	125
Tabelle 54:	In silico Analyse für das allelspezifische Bindeverhalten von	
	Transkriptionsfaktoren unter Verwendung des Internetprogramms	
	Alibaba 2.1.	133
Tabelle 55:	Übersicht der verwendeten BRET-Fusionskonstrukte	143
Tabelle 56:	Definition von TBX21 und HLX1 Risikoallelen.	152
Tabelle 57:	Odds Ratio (OR), 95% Konfidenzintervall und p-Werte der	
	Risikowerte basierend auf der Kombination von TBX21 und	
	HLX1 Risikoallelen.	153
Tabelle 58:	Übersicht der SNP Bezeichnungen im TBX21 Gen.	194
Tabelle 59:	Übersicht der SNP Bezeichungen im HLX1 Gen	195
Tabelle 60:	Übersicht der SNP Bezeichnungen im GATA3 Gen.	196

10 Abbildungsverzeichnis

Abbildung 1:	Asthma bronchiale ist definiert als eine chronische, entzündliche Erkrankung der Bronchien	2
Abbildung 2.	Die phänotypische Heterogenität der Atopie	2
Abbildung 3	Mögliche Ursachen für die Entstehung einer komplexen	
	genetischen Erkrankung wie Asthma bronchiale.	5
Abbildung 4:	Das Th-Zell-Ungleichgewicht	. 10
Abbildung 5:	Übersicht des Differenzierungsprozesses naiver T-Zellen.	. 12
Abbildung 6:	Die Th1-Zelldifferenzierung	
Abbildung 7:	Die Th2-Zelldifferenzierung	
Abbildung 8:	Überblick der verwendeten Probanden aus der	
	Ouerschnittspopulation und der Fall-Kontroll-Population.	. 36
Abbildung 9:	Anordnungsmuster der DNA-Proben auf einer 96er-Platte	
01	(Mutterplatte).	47
Abbildung 10:	Verteilungsmuster von vier 96er-Mutterplatten auf einer 384er-	
	Tochterplatte	48
Abbildung 11:	RFLP für SNP T3182A	57
Abbildung 12:	RFLP für SNP C-1486G.	57
Abbildung 13:	Schematische Darstellung eines Electrophoretic Mobility Shift Assays (EMSA)	64
Abbildung 14:	Vektorkarte des pGL3-Basic Vektors.	72
Abbildung 15:	Strategie zur Herstellung des HLX1 Wildtyp-Promotorkonstrukts	75
Abbildung 16:	Biolumineszenz Resonanz Energie Transfer (BRET) Analysen	01
Abbildung 17.	Zur Detektion von Floteni-floteni-interaktionen	01 00
Abbildung 19:	Vaktorkarta das Donorvaktors nDOND TM 221	02 92
Abbildung 10:	Übersicht der LR Reaktion	02
Abbildung 20:	Vektorkarten der Destinationsvektoren	05 8/
Abbildung 21:	Schematische Darstellung des TRY21 Genlokus und die	04
Abbildung 21.	Einteilung der PCR-Fragmente.	96
Abbildung 22:	Schematische Darstellung der im TBX21 Gen identifizierten	
	Polymorphismen.	97
Abbildung 23:	Graphische Darstellung des TBX21 Gens und des Linkage	
	Disequilibrium (r^2 -Plot) der in der Kontrollpopulation ($n \ge 37$)	
	identifizierten TBX21 Polymorphismen ausserhalb von Intron 1	99
Abbildung 24:	Graphische Darstellung des TBX21 Gens und des Linkage	
	Disequilibrium (r ² Plot) der in der Kontrollpopulation (n \geq 37)	
	identifizierten TBX21 Polymorphismen in Intron 1	99
Abbildung 25:	Graphische Darstellung des TBX21 Gens und des Linkage	
	Disequilibrium (r^2 -Plot) der <i>TBX21</i> Polymorphismen in der	
	Asthma Fall-Kontroll-Population (MDL, N=1872)	103
Abbildung 26:	Schematische Darstellung der von Dr. Isabell Ruoß identifizierten	100
	Polymorphismen im <i>HLX1</i> Gen.	109
Abbildung 27:	Graphische Darstellung des <i>HLX1</i> Gens und des Linkage	
	Disequilibrium (r^{-} Plot) der in der Kontrollpopulation	110
	identifizierten <i>HLX1</i> Polymorphismen (MAF \geq 3%).	110

Abbildung 28:	Graphische Darstellung des <i>HLX1</i> Gens und des Linkage Disequilibrium $(r^2$ -Plot) der <i>HLX1</i> SNPs in der Dresdner	
	Ouerschnittspopulation (n=1940).	. 115
Abbildung 29:	Schematische Darstellung der aus der HapMap-Datenbank erhaltenen <i>GATA3</i> Polymorphismen	119
Abbildung 30:	Graphische Darstellung des <i>GATA3</i> Gens und des Linkage Disequilibrium (r^2 -Plot) der aus der HapMap-Datenbank	
	identifizierten <i>GATA3</i> SNPs (MAF \geq 3%).	. 120
Abbildung 31:	Graphische Darstellung des <i>GATA3</i> Gens und des Linkage Disequilibrium (r^2 -Plot) der <i>GATA3</i> SNPs in der gepoolten	
	Querschnittspopulation aus Dresden, Munchen und Leipzig $(N=4264)$	123
Abbildung 32.	Luciferase Assays zur Bestimmung des Finflusses von TRX21	. 123
Toondung 52.	Promotorpolymorphismen auf die <i>TBX21</i> Promotoraktivität.	. 129
Abbildung 33:	Luciferase Assays zur Bestimmung des Einflusses von <i>HLX1</i>	•
C	Promotorpolymorphismen auf die HLX1 Promotoraktivität	. 131
Abbildung 34:	EMSA mit der SP Consensus Site	. 136
Abbildung 35:	EMSA zu dem <i>HLX1</i> SNP C-1407T	. 138
Abbildung 36:	EMSA zu dem HLX1 SNP C-742G.	. 139
Abbildung 37:	Detektion des Fusionsproteins N-Venus-TBX21_PO in COS-7	
	Zellen.	. 144
Abbildung 38:	Detektion der Co-Lokalisation der Fusionsproteine N-hRluc- TBX21 WT und N-Venus-HI X1 WT in COS-7 Zellen	1/15
Abbildung 39:	Untersuchung des Interaktionsverhaltens verschiedener	. 143
	Kombinationen an N- und C-terminalen TBX21 und HLX1	
	Wildtyp-Fusionskonstrukten mittels der BRET-Technik.	. 146
Abbildung 40:	Untersuchung des Interaktionsverhaltens verschiedener	
	Kombinationen an N- und C-terminalen TBX21 und HLX1	
	varianten Fusionskonstrukten mittels der BRET-Technik	. 148
Abbildung 41:	BRET-Sättigungsassays zur Bestimmung der Bindungsaffinität	
	zwischen den Wildtyp- bzw. den varianten TBX21 und HLX1	
	Proteinen.	. 150
Abbildung 42:	Power Kalkulationen für die TBX21 Assoziationsstudie mittels	
	des PGA (Power for genetic association analyses)-Algorithmus	. 164

11 Abkürzungen

95% CI	95% Konfidenz Interval
APS	Ammoniumpersulfat
att	attachment sites
BCA	bicinchoninic acid
BHR	Bronchiale Hyperreaktivität
bp	Basenpaar
BRET	Biolumineszenz Resonanz Energie Transfer
BSA	Bovines Serumalbumin
$CD4^+$	Cluster of Differentation 4
cDNA	complementary DNA
C/EBP	CCAAT/enhancer binding protein
D	Dresden
DNA	deoxyribonucleic acid
dNTP	Deoxyribonukleosidtriphosphat
DSMZ	Deutsche Sammlung von Mikroorganismen und Zellkulturen
E.coli	Escherichia coli
EMSA	Electrophoretic Mobility Shift Assay
FCS	fetal calve serum
fwd	forward
GATA3	GATA-binding protein 3
GST	Glutathion S-Transferase
GWA	genomweite Assoziationsstudie
HLX1	H 2.0-like homeobox
hRluc	Renilla Luciferasegen
HWE	Hardy-Weinberg-Equilibrium
HTR	Haplotyp Trend Regression
IFNγ	Interferon gamma
IgE	Immunglobulin E
IL-2	Interleukin-2
IL-4	Interleukin-4
IL-5	Interleukin-5
IL-6	Interleukin-6
IL-10	Interleukin-10
IL-12	Interleukin-12
IL-13	Interleukin-13
IL-14	Interleukin-14
IL-15	Interleukin-15
IL-17	Interleukin-17
ISAAC	International Study of Asthma and Allergies in Children
JAK	Janus-Tyrosin-Kinase
L	Leipzig
LB-Medium	Luria-Bertani Medium
LD	linkage disequilibrium
М	München
MAF	minor allele frequency
	v A v

MALDI-TOF MS	Matrix Assisted Laser Desorption-Time of Flight Mass
	Spectrometry
mRNA	messenger RNA
OD	Optische Dichte
OR	odds ratio
р	p-Wert
P/I	PMA/Ionomycin
PAGE	Polyacrylamid-Gelelektrophorese
PBS	phosphate buffered saline
PCR	Polymerase Chain Reaction
PEP	Primer Extension Preamplification
PGA	power for genetic association analyses
PMA	Phorbol-12-myristat-13-acetat
PO	polymorphes Allel
rev	reverse
RFLP	Restriktionsfragmentlängenpolymorphismus
RLU	relative light units
RNA	ribonucleic acid
SAP	shrimp alkaline phosphatase
SNP	single nucleotide polymorphism
SP	Specificity Protein
STAT1	Signal Transducer and Activator of Transcription 1
STAT4	Signal Transducer and Activator of Transcription 4
STAT6	Signal Transducer and Activator of Transcription 6
TBX21	T-bet: T-box expressed in T-cells
TD-PCR	touchdown-PCR
Th-Zelle	T-Helferzelle
TGFß	Transforming growth factor
TNFα	Tumornekrosefaktor alpha
Treg	Regulatorische T-Zelle
USF	upstream transcription factor
UTR	untranslated region
UV-Licht	Ultraviolettes Licht
Venus	Venus-Yellow-fluorescent protein
WT	Wildtyp-Allel
YB1	Y-box binding protein 1
YY1	Ying-Yang 1

12 Publikationen

Suttner K, Ruoss I, Rosenstiel P, Depner M, Pinto LA, Schedel M, Adamski J, Illig T, Schreiber S, von Mutius E, Kabesch M. *HLX1* gene variants influence the development of childhood asthma. **J Allergy Clin Immunol** 2009;123:82-8

Suttner K, Rosenstiel P, Depner M, Schedel M, Pinto LA, Ruether A, Adamski J, Klopp N, Illig T, Vogelberg C, Schreiber S, von Mutius E, Kabesch M. *TBX21* gene variants increase childhood asthma risk in combination with *HLX1* variants. **J Allergy Clin Immunol** 2009;123:1062-8

Suttner K, Depner M, Klopp N, Illig T, Vogelberg C, Adamski J, von Mutius E, Kabesch M. Genetic variants in the *GATA3* gene are not associated with asthma and atopic diseases in German children. **J Allergy Clin Immunol** 2009;123:1179-81
13 Präsentationen

Posterpräsentation: **29. Jahrestagung der Gesellschaft für Kinderheilkunde**, 22.3.-24.3.07 München, Deutschland

Suttner K., Rouss I., Depner M., Peters W., Klopp N., Illig T., Vogelberg C., Weiland S.K., von Mutius E., Kabesch M. Charakterisierung von Genveränderungen in den immunregulatorischen Transkriptionsfaktoren T-bet und HLX1 und deren Rolle bei Asthma und Atopie

Vortrag: American Academy of Allergy, Asthma and Immunology, 14.3.-18.3.08 Philadelphia, USA

Suttner K., Rosenstiel P., Depner M., Rouss I., Peters W., Klopp N., Illig T., Vogelberg C., Weiland S.K., von Mutius E., Kabesch M. Characterisation of Gene Variations in the Transcription Factors T-bet and HLX1 and Their Functional Role in the Development of Asthma

Vortrag: **104.** Jahrestagung der deutschen Gesellschaft für Kinder- und Jugendmedizin, 11.9.-14.9.08 München, Deutschland

Suttner K., Ruoss I., Depner M., Klopp N., Illig T., Vogelberg C., Adamski J., von Mutius E., Kabesch M. Genetische Veränderungen in den immunregulatorischen Transkriptionsfaktoren T-bet, HLX1 und GATA3 und deren Einfluss auf die Allergieund Asthmaentstehung

Posterpräsentation: **European Respiratory Society**, 4.10.-8.10.08 Berlin, Deutschland Suttner K., Rosenstiel P., Depner M., Pinto L.A., Ruether A., Klopp N., Illig T., Vogelberg C., Schreiber S., von Mutius E., Kabesch M. Combinations of T-bet and HLX1 Gene Variants Significantly Increase Childhood Asthma Risk

Posterpreis: 1. Jahrestreffen NGFN-Plus und NGFN-Transfer, 12.12.-13.12.08 Neuherberg, Deutschland

Suttner K., Rosenstiel P., Depner M., Pinto L.A., Ruether A., Adamski J., Klopp N., Illig T., Vogelberg C., von Mutius E., Schreiber S., Kabesch M. Genetic variants in the transcription factors T-bet, HLX1 and GATA3 and their functional role in the development of asthma

14 Danksagung

Mein besonderer Dank geht an Herrn Prof. Dr. med. Michael Kabesch für die Vergabe des interessanten und spannenden Themas und die professionelle Betreuung sowohl während der praktischen Durchführung als auch während der schriftlichen Verfassung dieser Arbeit. Seine hilfreichen Diskussionen und Anregungen, sein Vertrauen in mich und meine Arbeit und sein Interesse an deren Fortgang haben mich stets sehr motiviert.

Bei Herrn apl. Prof. Dr. Dr. habil. Jerzy Adamski möchte ich mich bedanken für die freundliche Bereitschaft, die Betreuung meiner Arbeit von Seiten der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt zu übernehmen. Zudem möchte ich mich auch bei den anderen Mitgliedern des Prüfungskomitees Herrn Prof. Dr. Martin Klingenspor und Herrn Prof. Dr. med. habil Johann Josef Hauner bedanken.

Weiterhin gilt mein ausserordentlicher Dank Frau Dr. Michaela Schedel, die meine Arbeit all die Jahre unermüdlich unterstützt hat und mir bedingungslos mit Rat und Tat zur Seite stand. Ihr engagiertes und tatkräftiges Handeln hat mich immer tief beeindruckt und wird mir auch in Zukunft grosses Vorbild sein.

Ein grosses Dankeschön geht auch an Herrn Dr. Martin Depner für seine Hilfe und Geduld bei den statistischen Auswertungen und Sonja Zeilinger für die Durchführung der Sequenzierungen und der Genotypisierungen.

Ausserdem möchte ich mich ganz herzlich bei allen Arbeitskollegen der Arbeitsgruppe Allergogentik bedanken: Frau Ilona Dahmen, Herrn Sven Michel, Frau Dr. med. Isabell Ruoß, Frau Anja Pleiss, Herrn Dr. med. Leonardo A. Pinto, Frau Marie-Therese Rieger, Herrn Dierk Schmitt und Frau Lena Steudemann. Deren ständige Hilfsbereitschaft, deren offenes Ohr für tiefgründige Diskussionen und auch die gemeinsamen Unternehmungen ausserhalb des Labors haben ein sehr angenehmes Arbeitsklima entstehen lassen und mir viel Freude beim Arbeiten bereitet.

Darüber hinaus möchte ich mich bei allen weiteren Kooperationspartnern für die gute Zusammenarbeit bedanken; diese sind insbesondere die Mitarbeiter der Arbeitsgruppe Molekulare Pädriatrie von Frau Prof. Dr. med. Anja Muntau und Herrn Dr. med. Sören Gersting am Forschungszentrum (Kubus) der Universität München (BRET-Experimente), das Institut für Epidemiologie am Helmholtzzentrum München (Genotypisierung mittels des iPLEXTM Assays) sowie das Institut für Klinische Molekularbiologie am Universitätsklinikum Schleswig-Holstein, Campus Kiel (Genotypisierung mittels des TaqMan®Pre-Development Assays und die Durchführung der Luciferase-Assays).

Besonderer Dank geht auch an meine langjährigen Freundinnen Tina, Sandy, Kathrin und Anette für all die schönen Unternehmungen und ihre liebevolle Unterstützung in allen Lebenslagen.

Am meisten habe ich sicherlich meinen Eltern und meiner Schwester Christine zu danken, die mir immer Kraft und Halt geben, mich in allen Vorhaben unterstützen und mir bei allen kleinen und grossen Sorgen aufopfernd zur Seite stehen. Vielen, vielen Dank!!!

211