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Abstract

In leptogenesis the evolution of a cosmological baryon asymmetry is usually studied

by means of momentum integrated Boltzmann equations. To investigate the validity of

this approach, we solve the full Boltzmann equations, without the assumption of kinetic

equilibrium and including all quantum statistical factors. Beginning with the full mode

equations, we derive the usual kinetic equations for the right-handed neutrino number

density and integrated lepton asymmetry, and show explicitly the impact of each assump-

tion on these quantities. We investigate also the effects ofscattering of the right-handed

neutrino with the top quark to leading order in the Yukawa couplings by means of the

full Boltzmann equations. On a later stage we extend our studies to an alternative sce-

nario in which the asymmetry is generated via decays of the next-to-lightest right-handed

neutrino. Here we provide a restriction on the valid parameter space.

Zusammenfassung

Die Entwicklung einer kosmologischen Baryonenasymmetriewird in der Leptoge-

nese üblicherweise mittels impulsintegrierter Boltzmanngleichungen untersucht. Zur

Überprüfung dieser Vorgehensweise lösen wir die vollen Boltzmanngleichungen,

ohne die Annahme kinetischen Gleichgewichts und unter Ber¨ucksichtigung aller

quantenstatistischen Faktoren. Wir leiten die integrierten kinetischen Gleichungen für

rechtshändige Neutrinos und die Leptonenasymmetrie her,und zeigen den Einfluss der

für die Integration gemachten Annahmen auf diese Größen.Des Weiteren untersuchen

wir die Auswirkungen von Streuprozessen rechtshändiger Neutrinos an Quarks in erster

Ordnung der Yukawakopplung mittels der vollen Boltzmanngleichungen. Zuletzt unter-

suchen wir ein alternatives Szenario, in dem eine Asymmetrie in Zerfällen des zweit-

leichtesten rechtshändigen Neutrinos erzeugt wird und schränken den gültigen Para-

meterbereich innerhalb dieses Szenarios ein.
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Chapter 1

Introduction

1.1 Matter-antimatter asymmetry

In the last years our knowledge of the history of the early universe has grown consid-

erably, and a cosmological standard picture, the Lambda Cold Dark Matter (�CDM)

Model has emerged. This model suggests the possibility thatshortly after the Big Bang

a period of exponential expansion, which is called inflation[1], took place. Immedi-

ately after the inflationary phase, the energy content of theuniverse was dominated by

radiation, i.e., all particles species were in chemical equilibrium contributing to the ther-

mal bath of the universe. Thereon the universe expanded and cooled down, entered the

phase of matter domination at a temperature of� 10eV, and finally began a stage of

accelerated expansion at a temperature of a few meV [2]. In Figure 1.1 today’s energy

budget of the universe is shown. Experimentally, the valuesof the various components

are determined by the angular distribution of the temperature fluctuations of the cosmic

microwave background (CMB) together with large scale structure and Supernova Type

Ia observations. The observation that the expansion of the universe is accelerating today

indicates that the dominant contribution to the overall energy budget, about 70%, is pro-

vided in the form of a yet unknown un-clustered component, called dark energy [3, 4].

The simplest way to explain dark energy is by adding an Einstein cosmological constant� in the Friedman equation. But also dynamical models motivated from particle physics

are considered [5, 6]. Another 23% of the energy density consist of a cold, non-baryonic

matter component that is called dark matter. Theories beyond the Standard Model of

particle physics (SM) provide several candidates: the lightest supersymmetric particle

(neutralino, gravitino), axion, sterile neutrino, lightest Kaluza–Klein boson, and many

other. Further, a part of 4% of the energy budget is made up by SM baryons and a small

fraction of� (0:1� 2)% is contributed by the (dark) neutrino background. It is remark-

able that there is no antimatter contributing to the the total energy budget. In general,
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Figure 1.1: The energy budget of the universe.

one could think that the universe in total is matter-antimatter symmetric and that there

exist distinct regions that are entirely made of antimatter. Then one would expect matter-

antimatter annihilations to occur at the border regions with an emission of high energy

photons. The absence of such a photon flux indicates that nearby galaxy clusters consist

of matter. Nevertheless, there remains the possibility of abaryon symmetric universe

on scales larger than clusters of galaxies (tens of Mpc), which requires a mechanism to

explain the segregation on these scales [7, 8].

The observed excess of matter over antimatter in the universe can be conveniently

expressed as the net baryon to photon number ratio. The most accurate measurement for

this value comes from the CMB by the WMAP satellite [11]:�CMBB = nB � nBn
 = (6:225 � 0:17) � 10�10: (1.1)

About 380 000 years after the Big Bang, when the temperature of the universe wasT � 0:3eV, electrons and protons combined to form neutral hydrogenand, in turn, pho-

tons decoupled from the thermal bath forming the nowadays observed CMB. In the

angular power spectrum of the CMB the amount of baryons can beseen due to their

gravitational interactions with photons: the attractive gravitational force pulls baryons

together, but the radiation pressure of the thermal bath, onthe other hand, drives them

apart. These acoustic oscillations of the photon-baryon fluid at the time of decoupling

are observed in the temperature anisotropies of the CMB. In Figure 1.2 we show the de-
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Figure 1.2: Temperature anisotropies of the CMB [9]. The solid black line shows

the best fit in the�CDM–Model compared to data, whereas variations of the bary-

onic matter content lead to the dashed blue and pointed red lines.

pendence of the CMB temperature anisotropies on the baryon asymmetry�B compared

to data.

Another powerful test of the standard cosmological pictureis the formation of light

elements in Big Bang Nucleosynthesis (BBN) [12] taking place atT � 1MeV in the first

3 minutes after the Big Bang. The formation and resulting abundances of light elements

can be calculated using well-known SM physics and the dependence of the abundances

on�B is shown in Figure 1.3. The consistency of BBN predictions indeed confirms that

the thermal bath of the universe has had a temperatureT > MeV.

From BBN the following value of the baryon asymmetry can be deduced [13]:4:7 � 10�10 � �BBNB � 6:5 � 10�10 at 95%CL: (1.2)

Thus, two independent observations taking place at different energy scales point to a

baryon asymmetry of the same order of magnitude.

The explanation of this baryon asymmetry is one of the challenging problems of

modern cosmology and particle physics and will be the subject of the present thesis.

Of course, one could simply impose a baryon asymmetry as an initial condition of the

universe. The observed flatness and homogeneity of the universe however, strongly sug-

gest that the earliest epochs were governed by an inflationary period. Thereby, any pre-

existing asymmetry would have been strongly diluted. As a consequence of this it is nec-
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Figure 1.3: Observed abundances of light elements compared to BBN/CMB pre-

dictions that depend on the baryonic matter content of the universe [10]. The larger

boxes indicate�2� statistical and systematical errors, the smaller yellow boxes2�
statistical errors.

essary to create the baryon asymmetry dynamically after thereheating process, what is

called baryogenesis. In general, any baryogenesis mechanism should start from a matter-

antimatter symmetric state and lead to an universe with a netbaryon number.

In the SM one could consider the annihilations of baryons andanti-baryons into

pions at around22MeV. The annihilation rate is given by� ' neqb h�jvi, whereneqb
is the equilibrium number density of baryons,v corresponds to the relative velocities

of the involved baryons and anti-baryons, andh�jvi � 1=m2� , m� ' 135MeV, is the

thermally-averaged annihilation cross-section. After the freeze-out of the annihilation

process, the baryon to photon ratio is given bynbn
 = nbn
 ' 10�18;
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which is far below the measured value. On the other hand, thisprocess does not explain

the excess of baryons over anti-baryons since the annihilations freeze-out, leaving the

same abundances for baryons and anti-baryons. From this perspective, the standard Big

Bang cosmology is unable to explain the baryon asymmetry of the universe and partic-

ular baryogenesis models have to be considered in its context. In 1967 Sakharov set up

three conditions [14] that have to be satisfied by a baryogenesis model:

1. Violation of baryon number (B) conservation

Beginning at a state withB = 0, it is instantaneously clear that in order to end up

with aB 6= 0 state,B has to be violated.

2. Violation of charge conjugation (C) and the combined charge and parity

symmetries (CP )

If i denotes the state following aCP transformation of the statei, andM (i! b)
is the matrix element for the processi! b, then the principle of detailed balance

applies if a theory is invariant underCP andT transformations,M (i! b) =M �i! b� =M (b! i) :
Hence, it is impossible to reach an universe withB 6= 0, i.e.,nb 6= nb, starting

with a matter-antimatter symmetric state whereni = ni.
3. Departure from thermal equilibrium

The time evolution of a system in thermal equilibrium can be expressed with the

help of a density matrix�(t) = e��H :hB(t)i = tr �e��H B(t)� = tr �e��H e�i�HtB(0) ei�Ht� = hB(0)i;
i.e., an initial state with vanishingB that remains in thermal equilibrium cannot

produce any baryon numberB 6= 0.

1.2 Baryogenesis in the SM

All three Sakharov conditions are fulfilled in the SM of particle physics.

1. Baryon number is violated in anomalous processes. These anomalies are due to

the chiral nature of the electroweak theory [15]. There, gauge field configurations

exist that represent saddle-point solutions (sphalerons)[16] of the equations of

motion. The sphalerons carry topological charges, corresponding to the Chern–

Simons numbers. In the SMSU(2) sphalerons lead to an effective 12-fermion
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interaction OB+L = Yi=1���3(qLi qLi qLi lLi):
The sphaleron energy, Esph = 8�g v(T );
wherev(T ) is the temperature dependent vacuum expectation value (vev) of the

Higgs field, separates the topologically different vacua ofthe theory. Transitions

from one vacuum to another violate lepton numberL and baryon numberB,

but preserveB � L. The tunnelling rate between different vacua is determined

by the instanton actionSinst, and is highly suppressed at zero temperature [15]:� � e�Sinst = e� 4�� = O �10�165�. This rate is so small thatB andL are sep-

arately conserved to a very good approximation in accelerator experiments [17].

However, if the system is coupled to a thermal bath, the transitions between differ-

ent gauge vacua do not happen by tunneling but rather throughthermal fluctuations

over the energy barrier [18]. For temperatures higher than� 100 GeV, the elec-

troweak symmetry is restored, i.e., the Higgs vacuum expectation value vanishes.

Hence, the barrier separating different vacua disappears and sphaleron transitions

are no longer suppressed. Therefore, in the expanding universe theB+L violating

reactions can be in equilibrium and occur with a significant rate. By a combina-

tion of analytical and lattice techniques [19], the sphaleron transition rate has been

calculated for the symmetric phase of the SM. Here, we will only give the temper-

ature range in which the sphaleron processes are in thermal equilibrium [19–23]:TEW � 100 GeV� T � 1012 GeV:
This seems to imply that for temperaturesT > TEW any existingB+L asymmetry

will be washed out. But, since only left-handed fields coupleto sphalerons, in the

symmetric, high-energy phase a non-zero value ofB + L can persist if there is a

non-vanishingB � L asymmetry.

2. In the electroweak theory charge conjugationC is violated. Furthermore, in the

quark sector of the SM the combined charge and parity conjugation CP is vi-

olated in the K and B meson systems. ThisCP violation is due to a complex

phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix [24, 25], which gives

the couplings of the charged currentsW� to the left-handed up-and down-type

quarks. The CKM matrix connects the electroweak eigenstates of down, strange,

and bottom quarks with their mass-eigenstates. It is a3 � 3 unitary matrix that
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can be parametrized by three mixing angles and the CP-violating phase. TheCP
violation in theK0 �K0

-system is measured to be tiny [13],j"CKMj ' 2:33� 10�3:
3. Departure from thermal equilibrium can occur during the electroweak phase tran-

sition. For baryogenesis within the SM it is important that this phase transition

is strongly first order. First order means that a thermodynamic quantity, the or-

der parameter, changes discontinuously. In the electroweak theory this leads to a

condition on the change of the Higgs vev at the critical temperaturesT
,�v(T
)T
 > 1:
During the transition, two separate thermodynamical phases co-exist in thermo-

dynamical equilibrium. This means that two ground states ofthe theory exist: a

high temperature ground state, described by a vacuum expectation value of the

SM Higgs fieldv = 0, and a low temperature state withv 6= 0. These states

are separated by an energy barrier. At the critical temperatureT
, both states are

equally favored energetically. But when the temperature drops belowT
, the state

described byv 6= 0 becomes the global vacuum of the theory and quantum tun-

nelling from the false vacuum (v = 0) to the true vacuum (v 6= 0) begins. This

leads to the nucleation of bubbles of thev 6= 0 state in a sea described by thev = 0
vacuum. Eventually, these bubbles grow until they fill up allspace, completing the

phase transition. When the bubble walls pass each point in space, the order param-

eterv changes rapidly leading to a departure from thermal equilibrium.

Putting all three ingredients together leads to a baryogenesis mechanism dubbed

electroweak baryogenesis[26, 27]. Here,CP violation occurs in the transitions from the

false vacuum to the true vacuum during the bubble nucleation. Since the sphaleron pro-

cesses are in equilibrium forT � TEW, a baryon numberB in the false vacuum (v = 0)

can lead to a net baryon number in the true vacuum (v 6= 0) when the phase transition

is faster than the sphaleron transition rate. However, it turns out that this mechanism

does not work for two reasons. First, theCP violation in the quark sector is not large

enough [28] to account for the observed value of the baryon asymmetry. The second

reason is that in the SM a Higgs particle massm� . 45GeV [29] is needed in order to

have a strong enough first order phase transition. This is clearly not compatible with the

lower bound on the Higgs massm� & 114GeV [13] coming from the LEP II experi-

ment. Therefore, a successful baryogenesis is not possiblewithin the framework of the

SM.
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1.3 Beyond the SM

In order to achieve successful baryogenesis, a potential extension of the SM must in-

troduce new sources ofCP violation and provide a departure from thermal equilibrium

during the expansion history of the universe. A possibilityis to modify the electroweak

phase transition. To achieve this, a two Higgs doublet model[30] can be considered.

Here, the Higgs potential has additional parameters, introducing additional sources ofCP violation. Another well motivated model is the minimal supersymmetric standard

model (MSSM). In the MSSM there exists a supersymmetric partner for each particle

of the SM. These superpartners are of bosonic type for SM fermions and of fermionic

type for SM bosons. Hence, the field content of the MSSM is doubled compared to

the SM. Consequently, this demands a second Higgs doublet with its supersymmetric

partner to achieve an anomaly free theory. If one allows for complex parameters, there

are, in turn, additional sources ofCP violation. A strong first order phase transition is

then provided if a light scalar particle couples strongly tothe Higgs boson whose mass

is constrainedm� . 130 : : : 150GeV [31]. In the MSSM the stop, the superpartner of

the top quark, couples with the strength of the top Yukawa coupling to the Higgs and

provides a strong enough first order phase transition if its mass is not larger than the top

mass [32]. Combined with conditions on the Higgs mass andtan�, i.e., the ratio of the

vacuum expectation values of the two Higgs doublets, this leads to a narrow window

in the MSSM parameter space that allows for successful electroweak baryogenesis and

might be tested experimentally at the Large Hadron Collider(LHC) soon. However,

going beyond the field content of the MSSM, e.g., the next to minimal supersymmetric

standard model (nMSSM) with an additional singlet superfield, the parameter space

broadens up leaving more possibilities for successfulsupersymmetric electroweak

baryogenesis[33–35].

Another baryogenesis model relying on supersymmetry as extension of the SM is

Affleck–Dine baryogenesis[36, 37]. In unbroken supersymmetry some combinations

of scalar slepton, quark, or Higgs fields might not contribute to the scalar potential,

describing so-called flat directions of the potential. These fields can develop large

vacuum expectation values during inflation. After inflationhas come to an end, these

fields and their combinations start coherent oscillations around the potential minimum

when the expansion rate of the universeH becomes comparable to their masses. If these

scalar fields carry baryon or lepton number, a baryon asymmetry can be produced in

these oscillations when the fields decay to lighter degrees of freedom.1

1A lepton asymmetry produced by lepton number carrying fieldscould be transformed to a baryon

asymmetry via sphaleron processes, cf. Section 1.2.



1.4 Neutrinos and the see-saw 9

A more general class of baryogenesis models relies on grand unified theories

(GUTs). These theories provide an elegant way to unify the gauge theories of the elec-

troweak and strong interactions of particle physics at highenergies. The gauge group

of the SM, SU(3)C � SU(2)L � U(1)Y , is then incorporated in a higher dimensional

gauge group, which, in the minimal case, is of rank 5, i.e., anSU(5). An impor-

tant prediction of grand unified models is the decay of the proton. TheSU(5)–GUT

models are nearly ruled out because they cannot explain the longevity of the proton,�p � 2:1� 1029 years [38]. To dynamically generate the observed baryon asymmetry in

GUTs, the first attempts relied on the (out-of-equilibrium)baryon and lepton number vi-

olating decays of heavy colored triplets of Higgs particles[39–41]. These particles have

to be heavier than about1012 GeV to explain the long proton lifetime, which makes

their production very difficult in the post-inflationary universe [42]. Another problem

comes from theB + L violating nature of the simplest GUTs, whereasB � L is con-

served. Hence, the SM sphaleron processes would wash-out any produced asymmetry at

temperatures below1012 GeV where sphalerons are in equilibrium.

Generally,SO(10) is one of the most promising GUT candidates since it contains, in

addition to the15 Weyl fermions of the SM, right-handed neutrinos that can give rise to

the small neutrino masses via thesee-sawmechanism [43]. They are the main ingredient

in the baryogenesis framework based onleptogenesis[42], which is the main subject

of this investigation. Typically, in thoseSO(10) models the gauge group is broken at

an energy scale of� 1016 GeV. This finally leads, potentially after several steps of

symmetry breaking, to the SM gauge group with an additionalU(1) symmetry, whose

breaking at a scale of108�1013 GeV gives rise to Majorana masses for the heavy-right-

handed neutrinos.

1.4 Neutrinos and the see-saw

We mentioned the see-saw mechanism as the origin of neutrinomasses in the context

of GUTs at the end of the last section. Since leptogenesis as amechanism to create

the baryon asymmetry in the early universe is a natural consequence of the see-saw

mechanism, we will discuss the see-saw mechanism and neutrino masses in more detail.

1.4.1 Experimental results

Neutrino oscillation experiments give clear evidence for neutrino masses. These oscilla-

tions stem from the fact that in electroweak processes gaugeeigenstates��, � = e; �; � ,

and not mass eigenstates�i, i = 1; 2; 3, are involved. A unitary transformation relates



10 Chap. 1: Introduction

the two eigenstate bases: j��i = 3Xi=1 U��i j�ii; (1.3)

i.e., each gauge eigenstate is a linear combination of the three mass eigenstates. The

unitary lepton mixing matrixU is a3 � 3 matrix consisting of three real mixing angles

and six phases. It is known as thePontecorvo–Maki–Nakagawa–Sakata(PMNS) matrix.

If the neutrinos are Majorana fermions, three of these phases can be rotated away by a

redefinition of the fields. The PMNS matrix is usually expressed as the product of three

rotation matrices and a diagonal factor,U = 0B�1 0 00 
23 s230 �s23 
231CA 0B� 
13 0 s13 e�iÆ0 1 0�s13 eiÆ 0 
13 1CA�0B� 
12 s12 0�s12 
12 00 0 11CA� diag�e�i�12 ; e�i�22 ; 1� ; (1.4)

wheresij = sin �ij, 
ij = 
os �ij . Here,�ij are the real mixing angles,Æ is the so-

called Dirac phase, and�1;2 are the Majorana phases that, in contrast toÆ, are only

different from zero if neutrinos are Majorana fermions. Allthree phases are sources ofCP violation. Thus, one can write for the transition probability of a neutrino travelling

a distanceL with an energyE from a flavor state� to a flavor state�P (�� ! ��) = Æ�� � 4 Xi>j Re �U��i U�j U�i U��j�� sin2 �m2ij L4E !+ 2 Xi>j Im �U��i U�j U�i U��j�� sin2 �m2ij L4E ! ; (1.5)

where�m2ij = m2i �m2j .
The parameters measured by oscillation experiments are summarized in Table 1.1,

completed by data received from non-oscillation experiments and cosmology [45]. We

will shortly explain these parameters.

Solar anomaly:

In the 1960’s R. Davis led the first experiment detecting neutrinos coming from the sun

in the Homestake mine in South Dakota [46]. This experiment,which had an energy

thresholdE� > 0:814MeV, was based on a radiochemical technique using Chlorine.

In contradiction to the electron neutrino flux predicted by Bahcall [47], the observed
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Table 1.1: Summary of present information on neutrino masses and mixings; h
accounts for the use of a different nuclear matrix element than the one calculated

in [44].

oscillation parameter central value

solar mass splitting �m212 = (8:0 � 0:3) 10�5 eV2
atmospheric mass splitting j�m223j = (2:5 � 0:2) 10�3 eV2
solar mixing angle tan2 �12 = 0:45 � 0:05
atmospheric mixing angle sin2 2�23 = 1:02 � 0:04
‘CHOOZ’ mixing angle sin2 2�13 = 0� 0:05
non-oscillation parameter probed by experimental limit(mym)1=2ee �-decay m�e < 2:0 eVee-entry ofm 0�2� mee < 0:38h eV3Pi=1mi cosmology m
osmo < 0:6 eV

flux was about three times smaller. Later, radiochemical experiments using Gallium, as

SAGE [48] (located in Baksan, Russia) and GALLEX/SNO [49, 50] (Gran Sasso, Italy),

both having an energy thresholdE� > 0:233MeV, confirmed this deficit. The water

Čerenkov experiments Kamiokande [51, 52] and Super–Kamiokande (Kamioka, Japan)

also measured the disappearance of electron neutrinos coming from the sun. In both

experiments solar neutrinos are detected via scatterings off electrons,�e;�;� e! �e;�;� e,
where the kinetic energyTe and the direction of the scattered electrons are measured;

it could be verified that the counted neutrinos come from the sun. Due to background

radiation, the energy cut-off is set atTe > 5MeV. In the SNO experiment [53, 54]

(Sudbury, Canada), a waterČerenkov detector using heavy water with additional salt,

where neutrinos interact via elastic scatterings, chargedcurrent, and neutral current

interactions, the�e and ��;� fluxes were measured separately and the Standard Solar

Model was consistently tested. In the Borexino experiment [55] (Gran Sasso, Italy),

the real time flux of7Be neutrinos has been measured in agreement with the Solar

Standard Model for the first time. That the disappearance of electron neutrinos is

indeed caused by the transitions�e ! ��;� was shown by the scintillator experiment

KamLAND [56, 57], measuring�e with an energy thresholdE� > 2:6MeV emitted by

nuclear reactors. Together with the solar neutrino experiments the best fit parameters,

shown in Table 1.1, are derived.
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Atmospheric anomaly:

Atmospheric neutrinos are generated in charged pion decayswhich themselves are

produced when primary cosmic rays hit the upper part of the earth’s atmosphere.

Atmospheric neutrinos gave rise to the first neutrino oscillation evidence in 1998 in

the Super–Kamiokande experiment [58] that has originally been designed to measure

the proton lifetime. It uses a cylindrical 50 kiloton water detector surrounded by

photon multipliers to measure atmospheric neutrinos in charged current scatterings

off nucleons. In addition to a deficit in the muon neutrino flux, it measured a zenith

angle dependence rendering the�� ! �� oscillation with quasi-maximal angle the

most convincing explanation. This has been confirmed by the K2K experiment where

a pulsed�� beam has been sent from the KEK collider in Japan to the 250 km distant

Super–Kamiokande detector. Super–Kamiokande can distinguish between atmospheric

neutrinos and neutrinos produced at KEK. Together with water Čerenkov detectors close

to the neutrino source at KEK, the neutrino oscillation interpretation, i.e., the transition�� ! �� , was confirmed [59]. The similarly designed NUM I experiment (Fermilab)

measures pulsed�� produced at Fermilab with the MINOS detector that is located at a

distance of 735 km in the Soudan mine in Minnesota, pointing again to the oscillation

explanation [60]. The best-fit parameters of K2K and NUM I are shown in Table 1.1.

‘CHOOZ’ mixing angle :

The CHOOZ experiment looked at the disappearance of�e produced in nuclear reactors

in France at a distance of L� 1 km from the detector. CHOOZ gives the most stringent

upper limit on the angle�13 [61] that, together with atmospheric and K2K data, gives

the value shown in Table 1.1.�-decay:

Since oscillation experiments only measure mass-squared differences, they are insensi-

tive to the absolute neutrino mass scale. On the other hand,�-decay experiments looking

at the tail of the energy spectrum in the Kurie-plot give a direct handle on the absolute

neutrino mass scale, probingm2�e = �m �my�ee =Pi jV 2eijm2i . The most stringent limits

are derived from the tritium�-decay:3H! 3He + e� + �e with Q = 18:6 keV; (1.6)

whereQ is the total energy released in the�-decay. For this process the most recent

results are obtained by the MAINZ experiment [62] and the TROITSK experiment [63,
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64]: m2�e = �0:6� 2:2 � 2:1eV2 MAINZm2�e = �2:3� 2:5 � 2:0eV2 TROITSK: (1.7)

A combination of these constraints leads to the value shown in Table 1.1. The approved

upcoming experiment KATRIN [65], having an energy resolution of1eV, is expected to

reach a sensitivity down tom�e ' 0:35eV.0�2�-decay:

Double�-decay of76Ge has been observed with a lifetime of about1021 years. If neutri-

nos are Majorana particles, the observation of neutrinoless double-� decay (0�2�-decay)

seems feasible. The rate for0�2�-decay can be expressed as�0�2� = G � jM0j2 � jmee=hj2; (1.8)

whereG is a known phase space factor,M0 is the nuclear matrix element, see e.g. [44],

andmee =Pi V 2eimi. The factorh =M0=M accounts for the uncertainty in the calcu-

lation ofM and isO(few). To test the0�2�-decay rate, in the Heidelberg–Moscow [66]

and the IGEX [67, 68] experiment76Ge has been used. The most stringent bound comes

from the CUORICINO experiment, which uses130Te, giving the value formee shown

in Table 1.1. In a reanalysis of the Heidelberg–Moscow data parts of the collaboration

claim a 4� discovery signal [69, 70], corresponding tomee < 0:19 � 0:68eV, with

the uncertainty due the nuclear matrix element calculation. Future experiments like

GERDA [71], MAJORANA [72], and CUORE [73] will have a sensitivity in the50meV range.

Cosmology:

The observation of the CMB and the data from large scale structure formation imply a

bound on the total energy density
� contained in neutrinos. Both probes are sensitive

to the free-streaming character of relativistic particles. This gives the dominant upper

bound on the sum of the neutrino mass. However, this bound varies with the data sets

included in the analysis. In Table 1.1 we take the somewhat conservative bound derived

in [74].

Conclusion:

Both, direct and indirect measurements indicate a neutrinomass-scale in the sub-eV

range, i.e., six orders of magnitude smaller than the electron mass. From a theoretical

perspective, it cannot be understood why the Yukawa couplings of neutrinos should be
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that small (to get a neutrino massm� � 0:01eV the coupling should be of the orderh � 10�13).
1.5 The see-saw explanation

The see-saw mechanism provides a natural explanation for the smallness of neutrino

masses in grand unification theories at high energies [43, 75–78]. As already mentioned

in Section 1.3, anSO(10)–GUT contains right-handed neutrinos as part of a16spinorial

representation and is anomaly free. The unification gauge group is then broken down to

the SM gauge group at some high scale of order1012 � 1016 GeV. The right-handed

neutrinos obtain Majorana masses since they are not singlets under theSO(10) gauge

group and couple to some Higgs representation that developsa vacuum expectation value

during this phase transition. Furthermore, as SM gauge singlets their masses are not

protected by the SM gauge symmetries, i.e., they can naturally be significantly larger

than the SM symmetry breaking scale.

In the minimal (type-I) see-saw model, gauge singlet fermions with Majorana massesM couple to the massless lepton doublet and the Higgs doublet of the SM through

Yukawa couplings. These Yukawa couplings then generate a Dirac mass relating the

heavy singlets to SM neutrinos upon spontaneous symmetry breaking of the electroweak

gauge symmetry. The weakly-interacting neutrinos developsmall masses� m2D=M as

we will explain in the following. For the type-I see-saw mechanism the most general

gauge invariant renormalizable Lagrangian is given byL = LSM + i�Ri =��Ri � lL�����Ri�� 12�
RiMMi�Ri + h:
: (1.9)

Here, we addedi = 1; 2; 3 right-handed neutrinos�Ri to the SM with three (� = e; �; � )

light generations. The LagrangianL contains in addition to the SM Lagrangian the ki-

netic energy and Majorana mass term for the right-handed neutrinos as well as Yukawa

interactions���, between right-handed neutrino singlets�Ri, left-handed lepton dou-

bletslL�, and the Higgs boson scalar doublet� = (�0;��). The covariant derivative in

the kinetic energy term for the right-handed neutrinos reduces toD� = �� because these

are SM singlets. Lepton number violating Majorana mass terms are additionally allowed

by the gauge symmetries. The Majorana mass matrixMMi is a3�3 complex symmetric

matrix and has eigenvalues ofO(M). The charge conjugate of the chiral fermion field,

which appears in the Majorana mass term, is defined by�
Ri � C�RiT . Furthermore,��
is the3 � 3 matrix of neutrino Yukawa couplings. (Note, that one could just put in the

Majorana mass term by hand and does not necessarily need a GUTembedding.) After

electroweak symmetry breaking the term containing the Yukawa couplings between left-

and right-handed neutrino states provides a Dirac mass termfor neutrinos,mD = � v,
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wherev = 174GeV is the vacuum expectation value of the Higgs field. The part in the

Lagrangian containing Yukawa couplings and the right-handed neutrino Majorana mass

term can then be written asLM = �12 (�L; �
R) 0 mDmTD MM! �
L�R! : (1.10)

The typical see-saw mechanism assumes that the elements of the Majorana mass matrix

are much larger than the Dirac mass matrix entriesMMi � mDi . The mass matrix in

Eq. (1.10) can then be block-diagonalized and, at leading order, one can distinguish two

neutrino mass eigenstates:

a right-handed state:R = �R + �
R
and a left-handed state:� = �L + �
L: (1.11)

The mass matrix of the left-handed state is suppressed by thehigh-energy scaleM,m�ij = v2�ikM�1Mk�jk: (1.12)

Thus, with the above mentioned mass scaleM � 1012�1014 GeV one gets light neutrino

masses in the sub-eV range without demanding particularly small Yukawa couplings.

Adding a fermionic singlet representation (type-I) however, is not the only extension

of the SM that leads to a successful see-saw mechanism. In thetype-II see-saw [78–80]

a scalar triplet and in the type-III see-saw [81, 82] a fermionic triplet is added. All of

these mechanisms have in common that the resulting neutrinomasses are suppressed by

a higher mass scale.

In this thesis we concentrate on the right-handed neutrinosadded in a type-I see-saw

setting. In the next chapter we introduce the leptogenesis framework as a mechanism

that creates the matter-antimatter asymmetry of the universe. In Chapter 3 we provide a

calculation of the lepton asymmetry generated in heavy neutrino decays using a network

of momentum mode equations. The use of single mode equationswill lead to signifi-

cant differences in the final asymmetry compared to the use ofmomentum integrated

Boltzmann equations that are conventionally used in leptogenesis calculations. In Chap-

ter 4 we include scattering of right-handed neutrinos via Yukawa couplings off quarks in

our calculation. In leptogenesis these scatterings are important since, on the one hand,

they provide an additional production channel for right-handed neutrinos and lead to a

more efficient equilibration of their distribution functions. On the other hand, as an ad-

ditional lepton number violating interaction, they contribute to the wash-out of the pro-

duced asymmetry. Finally, in Chapter 5 we apply the calculation of the matter-antimatter
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asymmetry with our treatment of complete Boltzmann equations to an alternative sce-

nario of leptogenesis in which the lepton asymmetry is generated in the decays of the

next-to-lightest right-handed neutrino.

In Appendix A we show how scattering processes can be implemented in the mo-

mentum integrated Boltzmann equations, whereas in Appendix B we provide a method

to implement scattering processes in the complete mode equations. In Appendix C the

evolution of the top Yukawa coupling from high scales to low scales is calculated.

The main results of Chapters 3 and 4 are based on the research paper [83], whereas

in Chapter 5 we present unpublished material.



Chapter 2

Baryogenesis via leptogenesis

Relying on the type-I see-saw mechanism to create small masses for the SM neutrinos,

leptogenesis [42] provides an attractive explanation of the baryon asymmetry of the uni-

verse. The ingredients of this mechanism are simple: the out-of-equilibrium decay of the

heavy neutrino states into leptons and Higgs particles violatesCP , from whence a lepton

asymmetry can be generated. This lepton asymmetry is then partially transformed into a

baryon asymmetry by anomalous processes of the SM called sphalerons [16], introduced

earlier in Section 1.2. In this way the three Sakharov conditions are fulfilled and leptoge-

nesis turns out as a consequence of the see-saw mechanism. Atthis point we will shortly

sketch how to calculate theCP asymmetry in the decays of a heavy neutrino stateNi.
We will continue with the discussion of the out-of-equilibrium condition and at the end

of this section summarize the ideas of the standard thermal leptogenesis scenario.

2.1 CP asymmetry

Ni
l�
�

Ni Nj;kl�
� �

l�
Ni �

l�

l�
�

Nj;k

Figure 2.1: CP violation in interference of tree-level with one-loop diagrams.

In general, the total decay width of a right-handed neutrinogenerationNi at tree-

level is given by:�Di =X� ��(Ni ! �+ lL�) + �(Ni ! �+ lL�)� = 18� ��y��iiMi; (2.1)



18 Chap. 2: Baryogenesis via leptogenesis

where the sum is taken over the single decay rates into leptonflavor�. The CP asymme-

try in lepton flavor� is then defined as"i� � �(Ni ! �+ lL�)� �(Ni ! �+ lL�)�(Ni ! �+ lL) + �(Ni ! �+ lL) : (2.2)

This asymmetry is due to the interference of the tree-level amplitude and the one-loop

vertex and self-energy contributions shown in Figure 2.1. The indicesi and� denote

the generation of the decaying right-handed neutrino and the flavor of the produced

lepton, respectively. Accounting for different lepton generations, theCP asymmetry is

a diagonal matrix in flavor space [84]:"i� = 316� (�y�)iiXj 6=i ( Im

����i ��y��ij ��j� � (xj=xi)pxj=xi (2.3)+ 23 (xj=xi � 1) Im

����i ��y��ji ��j�) ; (2.4)

wherexi =M2i =M21 and the function� is defined as [85]� = 23 x �(1 + x) log�1 + xx �� 2� x1� x� : (2.5)

For simplicity, we will assume a hierarchical mass spectrumfor the heavy right-

handed neutrinos with a diagonal mass matrixMM , i.e.,M1 � M2;M3, called theN1-dominated scenario. With this assumption theCP asymmetry can be calculated to

be [84, 86]: "1� = 316� M1(�y�)11 v2 Im f���1 (m���)�1g : (2.6)

Neglecting the lepton-flavor structure of theCP asymmetry, i.e., summing over all lep-

ton flavors,"1 = P� "1�, one can derive an upper bound on the totalCP asymme-

try [87, 88]:"max1 (M1; ~m1;mmin;mmax) = "max1 (M1)� ( ~m1;mmax) ; (2.7)

with � ( ~m1;mmin;mmax) = �mmax �mminq1 + m2atm~m1 �matm � 1; (2.8)

wherematm = p�m223 ��m212 = mmax � mmin [85]. The quantity~m1 is the ef-

fective neutrino mass and we will discuss it later on. The maximal value for the asym-

metry, i.e.,� = 1, is reached for fully hierarchical neutrinos withmmin = 0, implying



2.2 Deviation from thermal equilibrium 19mmax =pm2
atm and is given by:"max1 = 316� M1matmv2 � 10�6� M11010GeV

�� matm0:05eV

� : (2.9)

2.2 Deviation from thermal equilibrium

The out-of-equilibrium dynamic that is necessary for successful leptogenesis is provided

by the expansion of the universe. Interactions are classified to be in (or out-of) equilib-

rium by comparing their rates to the expansion rate of the universeH. Concerning lep-

togenesis, one usually compares the total decay rate of the right-handed neutrino state

given in Eq. (2.1) to the expansion rate at temperaturesT �Mi,H(T =Mi) =p4�3g�=45 (Mi=MPl) ; (2.10)

whereMPl = 1:221 � 1019 GeV is the Planck mass, andg� = 106:75 corresponds to

the number of relativistic degrees of freedom in the SM at temperatures higher than the

electroweak scale. For this purpose one introduces the decay parameter as the ratio of

the decay rate, Eq. (2.1), over the expansion rate of the universe Eq. (2.10)Ki � �DiH(Mi) = ~mim� : (2.11)

It proves useful to introduce at this point two dimensionless variables to connect the

decay parameter to the neutrino mass scale:

Theeffective neutrino mass[89]: ~mi = (myDmD)iiMi ; (2.12)

wheremDij = ��ij v, cf. Eq. (1.10). And theequilibrium neutrino mass:m� = 16� 52pg�3p5 v2MPl � 1:08 � 10�3 eV: (2.13)

It has been shown [90] that the effective neutrino mass for the lightest right-handed state

is always larger than the mass of the lightest SM neutrino state, i.e., ~m1 > mmin.
The decay parameter controls whether the right-handed neutrino decays in equilibrium

(Ki > 1) or out of equilibrium (Ki < 1) and is a key quantity for the dynamics of

leptogenesis.
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2.3 Thermal leptogenesis

In the standard scenario of thermal leptogenesis the right-handed neutrinos are produced

in the early universe via inverse decays and2 $ 2 scatterings with the top quark and

electroweak gauge bosons. As initial condition one supposes that after the period of in-

flation the thermal bath of the universe is produced in the reheating process when the

heavy scalar field responsible for inflation decays into light degrees of freedom. The

temperature of the thermal bath at the beginning of the radiation dominated phase of the

universe is denoted as the reheating temperatureTRH. Restricting the discussion to theN1-dominated scenario, it has been shown in [90, 91] that the Yukawa coupling that de-

scribes the right-handed neutrino decay via the decay parameter, Eq. (2.11), alone leads

to a sufficient abundance of heavy neutrinos for leptogenesis to be successful. Inverse de-

cays and lepton number violating2 $ 2 scatterings, on the other side, contribute to the

total wash-out of the lepton asymmetry that was produced in the heavy neutrino decays.

This makes the dynamics of leptogenesis more involved and studies by means of Boltz-

mann equations are needed. In general, the baryon asymmetryproduced by leptogenesis

can be written as [92]�B = 34 �sphf "1 �f � d "1 �f ' 0:96 � 10�2 "1 �f : (2.14)

Here,�f is the final efficiency factor that parametrizes the amount ofasymmetry that

survives the competing production and wash-out processes.It is a direct result of solving

the relevant Boltzmann equations for leptogenesis. In the limit of vanishing wash-out

and a thermal initial abundance for the right-handed neutrino, the efficiency factor has

a final value�f = 1. The factorf = 2387=86 accounts for the dilution of the baryon

asymmetry due to photon production from the onset of leptogenesis till recombination

and the quantity�sph = 28=79 is the conversion factor of theB � L asymmetry into a

baryon asymmetry by the sphalerons processes, see Section 1.2.

Note that, using the maximal CP asymmetry Eq. (2.9), one can derive a lower bound

on the heavy neutrino massM1 since the produced baryon asymmetry has to be larger

(equal) to the observed value,�maxB � �CMBB , yielding the constraintM1 > Mmin1 = 1d 16�3 v2matm

�CMBB�f� 6:5� 108 GeV

� �CMBB6� 1010��0:05 eVmatm

���1f : (2.15)

For a successful production of the baryon asymmetry this corresponds to a lower bound

on the initial temperature of leptogenesis [92], i.e.,TRH & 1:5� 109 GeV: (2.16)
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In the context of supersymmetric theories this might lead tothe so-called gravitino prob-

lem. The gravitino is the gauge field of local supersymmetry and its thermal production

rate [93, 94] is increasing with the reheating temperatureTRH. If the gravitino is not the

lightest supersymmetric particle, a too large abundance ofgravitinos might lead to prob-

lems with BBN since the decay products of the gravitino can destroy the light nuclei

produced in BBN, cf. Figure 1.3. If the gravitino mass is smaller then20TeV, this leads

to an upper bound on the reheating temperature [95]TRH . 106 GeV: (2.17)

On the other hand, if the gravitino is the lightest supersymmetric particle, its abundance

is limited by the amount of observed dark matter in the universe, cf. Figure 1.1, leading

again to an upper bound onTRH[93, 96, 97]TRH . 107 � 109 GeV: (2.18)

From this perspective, it seems very challenging to realizestandard thermal leptoge-

nesis in the local supersymmetric framework. Within thermal leptogenesis the bound

in Eq. (2.15) can be circumvented assuming a quasi degenerate mass spectrum for the

right-handed neutrinos, i.e.,M1 'M2 'M3. For such a degeneracy theCP asymmetry

exhibits a resonance and is remarkably enhanced. As a consequence, the production of

the observed value of the baryon asymmetry in this so-calledresonant leptogenesis[98–

100] scenario is possible down to the TeV scale.

Another possibility to reduce the lower bound onTRH is provided innon-thermal lep-

togenesis[87, 101–104], where the right-handed neutrinos are produced in the decays

of some heavy scalar field, e.g., the inflaton. The right-handed neutrino contribute then

the dominant part of the energy budget of the universe, called a dominant initial abun-

dance [105]. Depending on the coupling of the scalar field andthe right-handed neutrino

Yukawa coupling, successful leptogenesis in this scenarios demands [106]TRH & 106 GeV: (2.19)

Finally, we want to mention the supersymmetric scenario ofsoft leptogenesis[107–109],

where theCP violation is not due to flavor physics but to the supersymmetry-breaking

terms. ACP violation is induced in the mixing of two neutral sneutrino states. For a

certain choice of parameters the lower bound on the reheating temperatures is again

given by Eq. (2.19) [105].





Chapter 3

Mode equations for leptogenesis

In the recent past a huge step forward has been made towards understanding in detail

the processes of leptogenesis that have been introduced in the last section. Relevant

studies include leptogenesis in a supersymmetric context [91], thermal effects [105, 110],

analytic formulae for the final efficiency factor [92], the role of flavor [111–114], as well

as leptogenesis withCP violation coming only from the measurable low-scale PMNS

matrix [115]. Furthermore, it has been pointed out that the classical Boltzmann equations

are insufficient to describe the transition region between the flavored and the unflavored

regimes [116]; a full quantum-mechanical description in terms of density matrices is

necessary. On this front, the quantum-mechanical Kadanoff–Baym equations have been

investigated for toy models in extreme out-of-equilibriumsituations [117, 118].

On a different front, the classical Boltzmann equations have been solved for the first

time for single momentum modes [119]. As one of Sakharov’s conditions [14], departure

from thermal equilibrium is crucial for the dynamic creation of a baryon asymmetry. In

the leptogenesis scenario, out-of-equilibrium conditions are achieved when interactions

are no longer able to maintain the momentum distribution function of the right-handed

neutrino at its equilibrium value as the universe expands. To simplify the calculation,

this non-equilibrium process is traditionally studied by means of the integrated Boltz-

mann equations [89, 105, 120, 121], whereby the equations ofmotion for the distribution

functions of all particle species involved are integrated over momentum such that only

the evolution of thenumber densitiesis tracked. However, in order for the integrated

equations to be in a closed form, it is necessary to neglect quantum statistical behaviors

(e.g., Pauli blocking) and assume kinetic equilibrium for all particle species, including

the right-handed neutrino. For particle species with gaugeinteractions these assumptions

seem justifiable. For the right-handed neutrino however, their validity is not immediately

obvious.

To estimate the effects of kinetic equilibrium and quantum statistics, the Boltzmann
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equations for the individual momentum modes have been solved in [119], taking into

account only the decay and inverse decay of the right-handedneutrino within the unfla-

vored framework. More recently, the mode equations have been used to study the effect

of a pre-existing asymmetry and the soft leptogenesis scenario, again including only

decays and inverse decays [122]. In the present thesis, we extend on these previous stud-

ies by considering also scattering processes of the right-handed neutrino with the top

quark [83].

3.1 Particle kinematics

Boltzmann equations encode the time evolution of the distribution function of parti-

cle species. Here, we will give a short derivation of the Boltzmann equation for a par-

ticle species	 in an isotropic and spatially homogeneous universe described by the

Robertson–Walker–Metric [2],ds2 = dt2 � a(t)2� dr21� kr2 + r2d#2 + r2 sin2 #d�2� ; (3.1)

wherea(t) is the cosmic scale factor, which describes the expansion ofthe universe,k = �1; 0 specifies the curvature, and(t; r; #; �) are the comoving coordinates.

The trajectory of a particle	 with massm	 � 0 moving in a gravitational field is

given by the geodesic equations of motion [123]:dp�	d� + ���� p�	 p�	 = 0; (3.2)dx�	d� = p�	: (3.3)

Sinces = m	� is the eigen-time of the particle,� is fixed andp� is the momentum of a

particle	.

In the Robertson–Walker–Metric the� = 0 component of Eq (3.2) is given as:dp0	d� + _aap2	 = 0; with _a = �a�t : (3.4)

Writing p0	 dp0	 = jp	j djp	j, this leads to:j _p	ja+ _ajp	j = 0, ddt(jp	ja) = 0,jp	j = 
onst:� 1a: (3.5)
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Therefore the 3-momentum scales as1=a.

In general, the Liouville operator describing the evolution of a point particle’s phase

space in a gravitational field is given by,L = p� ��x� � ���
p�p
 ��p� : (3.6)

With this operator the equations of motion (3.2) and (3.3) can be written for the momen-

tum as dp�d� = L [p�℄ ; (3.7)

and for the space-time one has dx�d� = L [x�℄ : (3.8)

Furthermore, it is known that the time derivative of the phase space distribution of a

non-interacting gas vanishes, i.e.,df(x; p)d� = 0: (3.9)

Using now the equations of motion for the particle one obtains the Boltzmann equations

for the non-interacting particle species	:L [f	(x; p)℄ = 0: (3.10)

Since we are assuming a Robertson–Walker universe, which isisotropic and homoge-

neous, the distribution functionf	 depends only ont and jp	j. Therefore, the Boltz-

mann equation can be written as [2]L [f	℄ = E	�f	�t �Hjp	j2 �f	�E	 = 0; (3.11)

where we have not written all the arguments to keep the notation clearer.

Sincep2	 = m2	 and because of the spatial isotropy of the Robertson–Walker–

Metric, one has jp	j2 �f	�E	 = E	 jp	j �f	�jp	j : (3.12)

After dividing byE	, Eq. (3.11) gets the following formL0 [f	℄ = �f	�t �H jp	j �f	�jp	j : (3.13)
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Interactions can now be introduced on the right-hand side bya collision termC [f	℄
which drives the distribution function towards its equilibrium. Now, the complete Boltz-

mann equation readsL0 [f	℄ = �f	�t �H jp	j �f	�jp	j = C [f	℄ : (3.14)

Thus, the Boltzmann equation in a Robertson–Walker universe has the form of a par-

tial differential equation. However, in the radiation dominated phase of the universe, in

which leptogenesis takes place, Eq. (3.14) can be written asan ordinary differential equa-

tion by transforming to the dimensionless coordinatesz = m	=T andy	 = jp	j=T .

Using the relationdT=dt = �HT , the differential operator�t � jp	jH�jpij becomeszH�z, and consequently [124]�f	(z; y)�z = zH(m	) CD [f	(z; y)℄ ; (3.15)

with H (m	) given in Eq. (2.10). Now, the Boltzmann equation can be easily solved

numerically on a grid for specific rescaled momentay.

3.2 Leptogenesis set-up

In this thesis we concentrate mainly on the simplest case of “vanilla leptogenesis”, in

which a lepton asymmetry is established from the decay and scattering of the lightest

heavy right-handed neutrinoN1. We neglect the decay of the two heavier neutrino statesN2;3 [125], assuming that any lepton asymmetry produced from these decays will be

efficiently washed out by theN1 interactions. This is called theN1-dominated scenario.1

Therefore we will drop the subscript “1”, and refer to the lightest right-handed neutrino

simply asN in the following. Furthermore, we will work in the one-flavorapproximation

since flavor effects do not change the kinetic considerationfor the mode equations.

As shown in the previous section, the Boltzmann equation fora right-handed neu-

trino (RHN) in a Friedman–Lemaı̂tre–Robertson–Walker framework can be written as�fN (z; y)�z = zH(M) (CD[fN (z; y)℄ + CS [fN (z; y)℄) : (3.16)

On the right-hand side, the collision integralsCD [fN ℄ andCS [fN ℄ encode respectively

the interactions of the RHN due to decays into leptons and Higgs (D) and scattering

processes via Yukawa interactions with the top quark (S).

The Boltzmann equation for leptons (anti-leptons) with phase space distributionfl
(fl) has a similar form to Eq. (3.16), save for the replacementsfN ! fl (fN ! fl)

1For a different scenario,N2-dominated leptogenesis, see Chapter 5.
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andyN ! yl (yN ! yl). Since we are interested in the asymmetry between leptons and

antileptons, it is convenient to definefl�l � fl � fl; (3.17)

and the corresponding Boltzmann equation�fl�l(z; y)�z = zH(M) �CD[fl�l(z; y)℄ + CS[fl�l(z; y)℄� ; (3.18)

whereCD;S �fl�l� � CD;S [fl℄�CD;S �fl�. Integratingfl�l over the lepton phase space,

i.e., nl�l � gl(2�)3 Z d3pl fl�l; (3.19)

with gl = 2, gives us the lepton asymmetry per comoving photon,Nl�l � nl�lneq
 ; (3.20)

whereneq
 = (�(3)=�2)g
T 3, with g
 = 2, is the equilibrium photon density.

This lepton asymmetry is translated into a baryon asymmetryin sphaleron processes,

cf. Section 1.2, giving [126]NB = �sphNB�L = �sph�sph � 1 Nl�l; (3.21)

with �sph = 28=79. The Boltzmann equations (3.16) and (3.18) encode how a lepton

asymmetry is generated and washed out in an expanding universe given some specific

particle interactions.

3.3 Decay and inverse decay

In this section, which is based on the research paper [83], weconsider the simplest

possible scenario of thermal leptogenesis, in which only the decay and inverse decay of

the RHN into leptonl and Higgs� pairs contribute to the evolution offN , i.e., we setCS = 0 in Eqs. (3.16) and (3.18). The decay and inverse decay of the RHN violateCP
through interference of the tree-level and the one-loop diagrams (cf. Figure 2.1).

The collision integral for the RHN in the decay–inverse decay picture has the fol-

lowing form:CD [fN ℄ = 12EN Z d3pl2El(2�)3 d3p�2E�(2�)3 (2�)4 Æ4 (pN � pl � p�) (3.22)� �f� fl (1� fN ) �jM�l!N j2 + jM�l!N j2��fN (1� fl) (1 + f�) �jMN!�lj2 + jMN!�lj2� � ;
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whereEi andpi are, respectively, the energy and 4-momenta of the particlespeciesi,
andMA denotes the matrix element for the processA. At tree-level, the squared matrix

element summed over all internal degrees of freedom for the decay of the RHN into a

pair of lepton and Higgs particles is given byjMN!�lj2 = 2 (myDmD)11v2 plpN ; (3.23)

where the neutrino mass matrixmD has been defined in Section 1.5.

The integral (3.22) can be readily reduced to a one dimensional form [127]CD [fN ℄ = M �DEN jpN j Z (EN+pN )=2(EN�pN )=2 dp� [f�fl(1� fN)� fN (1� fl)(1 + f�)℄ ; (3.24)

where �D = ~m1M28�v2 (3.25)

is the total decay rate in the RHN’s rest frame written in terms of the effective neutrino

mass (cf. Eq. (2.12)).

For leptons participating in the same decay and inverse decay processes, the collision

integral is given byCD [fl℄ = 12El Z d3pN2EN (2�)3 d3p�2E�(2�)3 (2�)4 Æ4 (pN � pl � p�) (3.26)� �fN (1� fl) (1 + f�) jMN!�lj2� f� fl (1� fN ) jM�l!N j2 ℄ :
An analogous expression for the anti-leptons can be derivedby replacingfl ! fl,MN!�l ! MN!�l, andM�l!N ! M�l!N . Some useful relations exist between

the matrix elements following fromCPT -invariance [120]:jMN!�lj2 = jM�l!N j2 = jM0j2 (1 + "); (3.27)jMN!�lj2 = jM�l!N j2 = jM0j2 (1� "); (3.28)

wherejM0j2 is the tree-level matrix element given in Eq. (3.23).

The collision integral (3.26) suffers from the problem thata lepton asymmetry is

produced even in thermal equilibrium. This can be remedied by including contributions

from the resonant part of the�L = 2 scattering processl� $ l� [105, 120]. We

implement this remedy following the method developed in [92], and add to the collision

integral (3.26) the termf�fl (1� fN )jM�l!N j2sub � f�fl (1� fN )jM�l!N j2sub; (3.29)
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Table 3.1: Scenarios considered in the decay/inverse decay picture and their as-

sociated assumptions. Case D1 corresponds to the conventional integrated Boltz-

mann approach, while Case D4 was previously investigated byBasbøll and Hannes-

tad [119].

Case Assumption of kinetic equilibrium Including quantum statistics Section

D1 Yes No 3.3.1

D2 No No 3.3.2

D3 Yes Yes 3.3.3

D4 No Yes 3.3.4

with jM�l!N j2sub = jMj2�L=2 � " jM0j2; (3.30)jM�l!N j2sub = jMj2�L=2 + " jM0j2; (3.31)

wherejMj2�L=2 is negligible forM � 1014 GeV [128].2

In the following subsections, we review first the derivationof the conventional in-

tegrated Boltzmann equations, which neglects quantum statistics and assumes kinetic

equilibrium for the RHN. We then remove step by step these assumptions, in order to

examine their effects on the efficiency factor�. The scenarios to be examined and their

associated assumptions are summarized in Table 3.1.

3.3.1 Case D1: integrated Boltzmann equations

In the integrated approach conventionally used in the literature [92, 105, 120], the time

evolution of number densitiesni are tracked in favor of the phase space distributionsfi. This is achieved by integrating the Boltzmann equations (3.16) and (3.18) over mo-

mentum. However, the integrated equations have no closed forms unless we make cer-

tain simplifying assumptions: First, we neglect factors stemming from Pauli blocking

for fermions and induced emission for bosons, i.e., we approximate1 � fi � 1 [120].

Second, all SM particles are taken to be in thermal equilibrium due to their gauge inter-

actions and their distribution functions approximated by aMaxwell–Boltzmann distri-

bution,f eqi = e�Ei=T .

2Reference [122] includes terms in addition to Eq. (3.29) in order to avoid asymmetry production in

thermal equilibrium. However, the same analysis also showsthat the quantitative difference between this

and our approach is negligible.



30 Chap. 3: Mode equations for leptogenesis

With these assumptions and using energy conservation, we findf�fl = e�(E�+El)=T = e�EN=T = f eqN ; (3.32)

so that the collision integral (3.24) simplifies toCD[fN ℄ = M�DEN pN Z (EN+pN )=2(EN�pN )=2 dp� �f eqN � fN� : (3.33)

Integrating (3.33) overp� and inserting into Eq. (3.16), the Boltzmann equation for the

RHN distribution function becomes�fN�z = z �DMH(M)EN �f eqN � fN� : (3.34)

To make further inroads, we assume kinetic equilibrium holds for the RHN, i.e., its

distribution functionfN can be expressed asfN=f eqN � nN=neqN , wherenN is the RHN

number density. Then one can easily integrate Eq. (3.34) over the RHN phase space to

obtain �nN�z = z K � MEN ��neqN � nN� ; (3.35)

where K � �D=H(M) (cf. Eq. (2.11)), and �DhM=EN i �(�D=neqN ) R d3pN=(2�)3 f eqN (M=EN ) is the thermal average of the decay rate [120].

The thermally averaged dilation factor is given by the ratioof the modified Bessel

functions of the second kind of first and second order,hM=EN i = K1(z)=K2(z).
Dividing Eq. (3.35) by the equilibrium photon densityneq
 , we obtain the Boltzmann

equation for the quantityNN � nN=neq
 [92],�NN�z = �D �NN �N eqN � ; (3.36)

with D � z K � MEN � ; (3.37)

and N eqN (z) = 38 z2K2 (z): (3.38)

Here, an inconsistency in the integrated approach is visible: all particles, i.e.,N , l
and �, are assumed to follow the Maxwell–Boltzmann distributionfunction. How-

ever, when calculatingN eqN , we must use a Fermi–Dirac distribution for the RHN,neqN = [3 �(3) gNTM2=(8�2)℄K2(z), with �(3) � 1:202 and gN = 2, in order to

reproduce a realistic equilibrium RHN to photon density ratio. This leads to an extra
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prefactor(3=4)�(3) in the definition ofN eqN compared to a strictly Maxwell–Boltzmann

approach.

For the lepton asymmetry, Eqs. (3.18), (3.26) and (3.29) combine to give the Boltz-

mann equation for the lepton distribution functions,�fl�l�z = � z2K2 y2l Z 1z2�4y2l4yl dyN yNEN �f� fl�l � 2 " �fN � f eqN �� ; (3.39)

whereEN � EN=T . Using energy conservation and assuming kinetic equilibrium for

the RHN, Eq. (3.39) can be integrated overyN to give [119]�fl�l�z = �z2K2 y2l e� z2+4y2l4yl �eyl fl�l � 2 "�nN � neqNneqN �� : (3.40)

We further assume that kinetic equilibrium prevails for theleptons such thatf eql�l = e�(El��)=T � e�(El+�)=T � 2 (�=T ) e�El=T ; (3.41)neql�l � 2 (�=T )neql ; (3.42)fl�l � nl�lneql e�yl ; (3.43)

with chemical potential� � 1 andneql the lepton equilibrium number density. Thus,

integrating over the lepton phase space, we obtain the equation of motion for the number

density �nl�l�z = �z3K T 32�2 K1(z) �nl�lneql � 2 "�nN � neqNneqN �� ; (3.44)

whereK1(z) is the modified Bessel function of first kind. Following [92] we rewrite

Eq. (3.44) in terms of the lepton asymmetry per comoving photon ,�Nl�l�z = �WIDNl�l + "D �NN �N eqN � ; (3.45)

where WID � 14 Kz3K1(z) = 12 D N eqNN eql (3.46)

quantifies the strength of the wash-out due to inverse decays, andN eql = 3=4. Note that,

as with the RHN, when evaluatingN eql it is necessary to use a Fermi–Dirac distribution

for the leptons,neql = (3=4) (�(3)=�2)glT 3, with gl = 2, to ensure a realistic lepton to

photon density ratio.

Figure 3.1 shows the final efficiency factor�f , defined in Eq. (2.14), as a function ofK for several different initial RHN abundances [106].
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Figure 3.1: Final efficiency factor for different scenarios of thermal and non-

thermal leptogenesis. Shown are�f for a thermal (dashed/red), a vanishing (dot-dot-

dash/light green), and several cases of dominant initial RHN abundance. A dominant

initial abundance is realized if a scalar field responsible for inflation decays exclu-

sively into the RHN, which then dominates the energy densityof the universe. The

coupling strength between the scalar field and the RHN can be connected to an en-

ergy scale:109 GeV (solid/blue),5�108 GeV (dashed/dark green),3:75�108 GeV

(dot-dash/purple) and108 GeV (dot-dash-dash/taupe). The RHN mass has been set

toM = 109 GeV [106].

It can be seen that thermal leptogenesis is independent of the initial conditions on

the RHN abundance in the strong wash-out regime (K > 1). Actually, this statement

holds even for scenarios of non-thermal leptogenesis, where the RHN abundance is es-

tablished in the decays of a heavy scalar field, e.g., the inflaton which is responsible for

the exponential expansion at the beginning of the universe.After the decay of the scalar

field, the RHN dominates the energy density of the universe, realizing a dominant initial

abundance. The thermal bath of the radiation dominated phase of the universe is then

established in the subsequent decays of the RHN into light degrees of freedom. If the

coupling between the RHN and the scalar field, correspondingto an energy scale, is not

too weak to account for efficient wash-out, non-thermal leptogenesis yields the same ef-
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ficiency factor as thermal leptogenesis forK & 4. This is true for couplings between the

RHN and the inflaton corresponding to energy scales larger than the RHN mass [106].

In the weak wash-out regime, however, different initial conditions on the RHN lead to

final efficiency factors varying by several orders of magnitude between the different sce-

narios. Therefore, we will focus from now on on the case of a vanishing initial RHN

abundance.

3.3.2 Case D2: dropping the assumption of kinetic equilibrium

Since the RHN is very heavy—its mass scale corresponds to thetemperature of the ther-

mal bath during the period of leptogenesis—it is nota priori obvious that decays and

inverse decays would occur fast enough to establish kineticequilibrium. Thus the as-

sumption of kinetic equilibrium for the RHN might lead to sizable deviations from an

exact treatment. In this section we drop this assumption in our calculation of the effi-

ciency factor. We retain however our other assumptions: that all equilibrium distribution

functions are of the Maxwell–Boltzmann form, and quantum statistical factors are neg-

ligible.

Dropping the assumption of kinetic equilibrium for the RHN means that it is now

necessary to solve Eq. (3.34), rewritten here as�fN�z = z2KEN �f eqN � fN� ; (3.47)

individually for all possible values of the dimensionless RHN energyEN . For the calcu-

lation of the lepton asymmetry, the relevant equation is Eq.(3.39) which we reproduce

here: �fl�l�z = � z2K2 y2l Z 1z2�4y2l4yl dyN yNEN �f� fl�l � 2 " �fN � f eqN �� : (3.48)

Again, this equation must be solved for all possible values of the lepton momentumyl,
and the resultingfl�l(yl) summed according to Eq. (3.20) to giveNl�l. Alternatively,

using energy conservation and assuming kinetic and chemical equilibrium for the SM

particles, we can integrate Eq. (3.48) over the lepton phasespace to obtain a single

equation of motion forNl�l,�Nl�l�z = �z2K4 Z 10 dyl Z 1z2�4y2l4yl dyN yNEN �Nl�l f eqN � 2 " �fN � f eqN �� : (3.49)

We find the second approach to yield more stable results.
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3.3.3 Case D3: Boltzmann equations with quantum statistical factors

In Case D3 we reinstate Pauli blocking factors for fermions and factors due to induced

emission for bosons, but adopt again the assumption of kinetic equilibrium for the RHN.

Consistency requires that we use the Fermi–Dirac and the Bose–Einstein distribution

functions respectively for fermions and bosons in thermal equilibrium, instead of the

classical Maxwell–Boltzmann distribution function.

With these assumptions in mind, we integrate the collision integral (3.24) overp� to

obtain the Boltzmann equation for the RHN,�fN�z = z2KEN yN nN � neqNneqN f eqN log �sinh ((EN � yN ) =2)sinh ((EN + yN ) =2)� ; (3.50)

where we have usedfN=f eqN = (1 + eEN )fN � nN=neqN . Integrating over the RHN

phase space and normalizing to the photon number density yields�NN�z = KK2(z) �NN �N eqN � Z 10 dyN yNEN f eqN log �sinh ((EN � yN ) =2)sinh ((EN + yN ) =2)� : (3.51)

We note that the integral over the RHN phase space has no simple analytic form. There-

fore it remains necessary to perform the integration numerically.

The Boltzmann equation for the lepton asymmetry including all quantum statistical

factors and assuming kinetic equilibrium for all particle species has the following form:�fl�l�z = �z2K2y2l Z 1z2�4y2l4yl dyN yNEN �(f� + nNneqN f eqN )(fl�l + "F+)� 2" nNneqN f eqN (1 + f�)� ;
(3.52)

whereF+ � fl + fl � 2 f eql . After integrating over the lepton phase space and normal-

izing to the photon number density we arrive at�Nl�l�z =� z2K4 Z 10 dyl (3.53)� Z 1z2�4y2l4yl dyN yNEN �(f� + NNN eqN f eqN )�43Nl�l + 2"� f eql � 2" NNN eqN f eqN (1 + f�)� ;
with N eqN given in Eq. (3.38).

3.3.4 Case D4: complete mode equations

Here we include all statistical factors and make no assumption of kinetic equilibrium for

the RHN. Integrating Eq. (3.24) overp� gives the Boltzmann equation for the RHN,�fN�z = K z2EN yN f eqN ��1 + fN + eEN fN� log �sinh((EN � yN )=2)sinh((EN + yN )=2)� : (3.54)
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The numerical integration of Eq. (3.54) over the RHN phase space results in the time

evolution of the number densityNN . The equation for the lepton asymmetry in this case

is similar to Eq. (3.52), except we do not assume kinetic equilibrium for the RHN,�fl�l�z = �z2K2y2l Z 1z2�4y2l4yl dyN yNEN �(f� + fN )(fl�l + "F+)� 2" fN (1 + f�)� :
(3.55)

Integrating over the lepton momentum yields�Nl�l�z =� z2K4 Z 10 dyl (3.56)� Z 1z2�4y2l4yl dyN yNEN �(f� + fN ) �43 Nl�l + 2 "� f eql � 2" fN (1 + f�)� ;
where we have assumed, as usual, thermal equilibrium for theSM particles.

3.3.5 Results and discussions

Right-handed neutrino

Figure 3.2 shows the time evolution of the comoving number densities of the RHN for

the four different cases described above, assuming a vanishing initial RHN abundance.

We have picked three values for the decay parameter: (i)K = 0:1, lying in the weak

wash-out regime, is shown on the upper panel, (ii)K = 1, marking the transition regime

between the weak and the strong wash-out regime, is shown on the middle panel, and

(iii) K = 10, lying in the strong wash-out regime, is shown on the lower panel. For

reference, we also plot the time evolution of the RHN equilibrium number densityN eqN .

The general behavior of the RHN abundance evolution is similar for all four cases.

In the weak wash-out regime, there is a net production of RHN by inverse decays at

high temperaturesz < 1. At z � 4, the RHN abundance overshoots the equilibrium

density and continues to grow untilz � 5, when a net destruction of RHN by decays

into l� pairs begins to push its abundance slowly back down to the equilibrium value.

Equilibrium is reached finally atz � 20, beyond which the RHN abundance falls off

exponentially withz, as expected for all non-relativistic particle species in thermal equi-

librium. In the transition regime, all RHN number densitiesbecome nearly identical atz � 3. At the same point they overshoot the equilibrium density. However, RHN de-

cays force the number densities back to their equilibrium value already atz � 10 from

whence the RHN abundances fall off exponentially again. Contrastingly, in the strong

wash-out regime, the stronger coupling brings the RHN abundance to its equilibrium
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Figure 3.2: Time evolution of the comoving RHN number densityNN and of the

absolute value of the lepton asymmetryNl�l, assuming three different coupling

strengthsK = 0:1; 1; 10, and " = 10�6. The four scenarios within the decay–

inverse decay only framework are shown: Solid/red line denotes Case D1, long

dashed/green D2, dotted/blue D3, and short dashed/magentaD4. See Table 3.1 for

a short summary of each scenario. For reference, we also indicate the equilibrium

RHN number densityN eqN in dot-dash/cyan.
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value already atz � 1. Its subsequent evolution is then simply governed by equilib-

rium statistics: atz � 4 the RHN becomes nonrelativistic and hence its abundance is

suppressed byexp(�M=T ).
In all three cases, the weak wash-out, the transition, and the strong wash-out regimes,

the difference between Cases D1 and D2, which exclude quantum statistical factors, and

their counterparts Cases D3 and D4, which include quantum statistics, is most visible

at z . 1. The RHN abundance is almost an order of magnitude larger in the latter two

cases than in the former. This is because during the high temperature RHN production

phase, using the correct Bose–Einstein equilibrium distribution function for the Higgs

bosonf� substantially enlarges the phase space available for the inverse decay process�l ! N at lowE�. This effect is far stronger than the phase space restriction due to

Pauli blocking by the final-state RHN, as can be seen from the phase space factors in

Eq. (3.24). As the temperature drops and the RHN becomes nonrelativistic, the effects

of quantum statistics also diminish, since kinematics now prevents the low energy� andl states from contributing to the collision integrals.

Interestingly, the assumption of kinetic equilibrium leads to no visible effects in ei-

ther the weak, the transition or strong wash-out regime. Comparing Cases D1 and D2

(both assume Maxwell–Boltzmann statistics), their RHN abundances are virtually iden-

tical. The same is true for Cases D3 and D4, which include quantum statistical factors.

Lepton asymmetry

The time evolution of the corresponding absolute value of the lepton asymmetry is shown

in the right panel of Figure 3.2. A negative lepton asymmetryis produced at high temper-

atures by RHN production from inverse decays. Atz � 5 in the weak wash-out regime

(z � 1 if strong wash-out), decays come to dominate over inverse decays, thus revers-

ing the direction of the asymmetry production, and eventually flipping the sign of the

asymmetry to positive. When the RHN abundance begins to falloff exponentially, the

asymmetry also asymptotes to a final, constant value.

In the weak wash-out regime (K = 0:1) the asymmetries produced in Cases D3 and

D4 which include quantum statistical factors are always larger in magnitude than those

produced in Cases D1 and D2 which assume Maxwell–Boltzmann statistics throughout

the whole temperature range considered. The change of sign also occurs slightly earlier

in D3 and D4. These effects can be understood as follows. From, e.g., Eq. (3.55), we

see that the production of a negative lepton asymmetry at high temperatures by inverse

RHN decays is significantly enhanced when we take proper account of the Bose–Einstein

statistics for the Higgs boson. Like the case of the RHN abundance, this effect dominates

over the phase space suppression due to the Fermi–Dirac statistics of the lepton and the
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Figure 3.3: The final efficiency factor�f as a function ofK for the four scenarios

within the decay–inverse decay picture, assuming a vanishing initial RHN abun-

dance. Solid/red line denotes Case D1, long dashed/green D2, dotted/blue D3, and

short dashed/magenta D4.

RHN. As we progress to lower temperatures, RHN decays begin to dominate over in-

verse decays, thereby reversing the direction of the leptonasymmetry evolution. Since

quantum statistics speeds up RHN production and brings its abundance up to the equi-

librium threshold earlier, the transition from decay to inverse decay domination—and

hence the turning point in the asymmetry evolution—also happens earlier. As a result,

the asymmetry flips sign a little earlier in Cases D3 and D4 than in D1 and D2, and has

more time to grow to a larger positive value before the exponential fall-off of the RHN

abundance shuts down the asymmetry production.

In the transition regime (K = 1) the asymmetry in Cases D3 and D4, where quantum

statistics is used, is again always larger than in Cases D1 and D2; however, with a smaller

difference than forK = 0:1 The change of sign is slightly moved to higher temperatures

due to the wash-out becoming more efficient.

In the strong wash-out regime (K = 10), a similar behavior is also visible atz . 1.

As we progress to lower temperatures, however, Cases D3 and D4 end up producing less
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asymmetry than Cases D1 and D2. This is because forK > 1, the wash-out rate plays

a dominant role in determining the final asymmetry. Here, quantum statistics enlarges

the phase space of the wash-out term fromf�fl�l in Eq. (3.48) to(f� + fN)fl�l in

Eq. (3.55), thus forcing the lepton asymmetry to flip sign even earlier than forK = 1,

and continuing on to dampen it to a slightly smaller positivevalue.

Again, as with the RHN, the assumption of kinetic equilibrium has virtually no effect

on the asymmetry evolution: the differences between Cases D1 and D2, and between

Cases D3 and D4 are generally at the percent level, only visible in the middle panel of

Figure 3.2 in the transition regime forK = 1.

Finally, Figure 3.3 summarizes the lepton asymmetry produced in the four cases, in

terms of the final efficiency factor�f defined in Eq. (2.14), as a function of the decay

parameterK. For all values ofK considered, the assumption of kinetic equilibrium

can be seen to produce a minute (< 5%) difference in�f between Cases D1 and D2

and between Cases D3 and D4. Quantum statistics, on the otherhand, has a generally

stronger effect on the final lepton asymmetry. In the weak wash-out regime (K . 1),

inclusion of quantum statistical factors (Cases D3 and D4) enhances�f by a factor of� 1:5 relative to Cases D1 and D2 which assume Maxwell–Boltzmann statistics. In the

strong wash-out regime (K & 1), the effect of quantum statistics is to suppress�f by up

to 20% atK � 10, but reduces to the percent level atK � 100.





Chapter 4

Mode equations with scattering

4.1 Scattering processes

In this chapter we enlarge our picture of thermal leptogenesis to include tree-level scat-

tering processes of the RHN with the top quark, e.g.,Nl ! qt, shown in Figure 4.1,

which are ofO �h2t�2�. These interactions lead to an additional production channel for

the RHN and contribute to the wash-out processes. Until recently, these scattering pro-

cesses have only been considered using the integrated Boltzmann equations [92, 105].

In [83] we provided for the first time a solution of the full setof Boltzmann equations at

the mode level taking into account the full energy spectrum of the interactions. This leads

to sizable effects on the final asymmetry since small momentum modes can be produced

disproportionally compared with an equilibrium distribution, in turn leading to differ-

ences in the number densities after integration over the momentum phase space. Fur-

thermore, the inclusion of quantum statistical Pauli-blocking factors modifies the phase

space accessible for the scattering interactions. We will confront our findings with the

results obtained with mode equations in the decay–inverse decay picture in Section 3.3.4

and with the integrated treatment including scatterings, discussed in the following sec-

tion.

p1 p3
p2 p4 qN1

tl � �
p1 p3
p2 p4

l
t

N1
q

Figure 4.1: Scattering processes with the top quark

We do not consider�L = 1 violating interactions with gauge bosons (in spite of



42 Chap. 4: Mode equations with scatteringg2 > ht at1010 GeV), nor includeCP violation in2! 2 or 1(2)! 3 processes, which

are of higher order in the Yukawa couplings.CP violation from these processes was

considered in [100, 112, 129, 130], where it was shown that athigh temperaturesCP
violation from scattering is the main source of lepton asymmetry production. However,

the final asymmetry depends also on the strength of the wash-out processes; it turns out

that in the weak wash-out regime (K < 1) CP violation in the scattering processes

tends to suppress the asymmetry production, while in the transition (K ' 1) and strong

(K > 1) wash-out regimes its contribution is small to negligible.We do concentrate our

considerations in this thesis on the tree-level Yukawa couplings in order to distinguish

in detail the effects of quantum statistics and kinetic equilibrium on the final asymmetry.

Since the inclusion of several new phenomena would dilute these effects, we compare

our results with the findings obtained in [92] providing a consistent study of Yukawa

interactions at tree-level.

Including scattering processes based on the Yukawa coupling with the top quark, the

basic Boltzmann equation for the distribution function of the RHN is given byH(M)z �fN�z = CD [fN ℄ + 2CS;s [fN ℄ + 4CS;t [fN ℄ : (4.1)

The right-hand side of Eq. (4.1) contains two collision integrals from scattering pro-

cesses coming respectively from scattering in thes-channel and in thet-channel. One

factor of 2 stems from contribution from processes involving anti-particles, and another

factor of 2 in thet-channel term originates from theu-channel diagram. The decay–

inverse decay collision integralCD is given in Eq. (3.22), thes-channel scattering inte-

gral isCS;s [fN ℄ = 12EN Z Yi=l;q;t dp3i(2�)32Ei (2�)4Æ4(pN + pl � pt � pq) jMsj2� [(1� fN)(1 � fl)ftfq � fNfl(1� ft)(1� fq)℄ ; (4.2)

and a similar expression exists for thet-channel scattering integralCS;t [fN ℄, but with the

appropriate matrix elementMt, and the replacementsfl $ fq. The explicit expressions

of the squared matrix elementsjMs;tj2 can be found in the Appendices B.1 and B.2.

The analogous equation for the lepton asymmetry isH(M)z �fl�l�z = CD �fl�l�+ 2CS;s �fl�l�+ 4CS;t �fl�l� ; (4.3)

whereCD �fl�l� � CD [fl℄� CD �fl� can be constructed from Eq. (3.26), andCS;s �fl�l� = 12El Z Yi=N;q;t dp3i(2�)3 2Ei (2�)4Æ4(pl + pN � pq � pt) jMsj2� fl�l (fN (ft + fq � 1)� ftfq) : (4.4)
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Table 4.1: Scenarios including scattering with the top quark and theirassociated

assumptions. Case S1 corresponds to the conventional integrated Boltzmann ap-

proach, while Case S2 involves solving the full set of Boltzmann equations at the

mode level.

Case Assumption of kinetic equilibrium Including quantum statistics Section

S1 Yes No 4.1.1

S2 No Yes 4.1.2

ReplacingMs withMt andfq $ fN in Eq. (4.4) yields the integralCS;t �fl�l�.
In the following we first recall the treatment of scattering processes in the integrated

picture, before we proceed to write down the full set of mode equations including the

relevant scattering terms. Table 4.1 summarizes the assumptions of these two scenarios.

4.1.1 Case S1: scattering in the integrated picture

As done in section 3.3.1 when considering decays and inversedecays only, we derive

here the integrated Boltzmann equations for leptogenesis neglecting in the collision in-

tegrals, Eqs. (4.2) and (4.4), quantum statistical effectsand assuming kinetic equilibrium

for all particle species.

Along the lines of a general derivation of scattering rates shown in Appendix A, the

integrated Boltzmann equations can be recast in the following form [92],�NN�z = � (D + S) �NN �N eqN � ; (4.5)�Nl�l�z = "D �NN �N eqN ��W Nl�l; (4.6)

whereS accounts for the production of RHNs from scattering processes, and the wash-

out rateW contains also a contribution from these processes. The scattering rateS itself

consists of two terms,S = 2Ss + 4St, coming respectively from scattering in thes-
channel and in thet-channel.

The scattering rates for thes- andt-channel, respectively, are defined asSs;t = �s;tH z ; (4.7)

where �s;t = M24 �(3) gN �2 Is;tK2(z) z3 : (4.8)



44 Chap. 4: Mode equations with scattering

Note that an additional factor of4=(3) �(3) appears in this definition compared to the

definition of reference [92]. This is due to the Fermi–Dirac statistics used for the equi-

librium number density in our derivation. The quantityIs;t is an integral, defined in

Eq. (A.9), Is;t = Z 1z2 d	 �̂s;t(	)p	 K1 �p	� ; (4.9)

of the reduced cross-section̂�s;t, given by [91]�̂s;t = 3h2t4� M ~m1v2 �s;t(x); (4.10)

wherex = 	=z2, andht = ht(T ) is the top Yukawa coupling, to be evaluated at the

relevant energy scale (or temperature)T by solving the renormalization group equation,

cf. Appendix C. Taking the value of the Yukawa coupling at thescalemZ = 90GeV

overestimates the general influence of the scattering processes by about a factor 2 as we

show later in Section 4.2. The functions�s;t(x) are part of the reduced cross-section,

Eq. (4.10), see also Eq. (A.8), and for the RHN scattering offtop quarks they are calcu-

lated to be [91]�s(x) = �x� 1x �2 ; (4.11)�t(x) = x� 1x �x� 2 + 2ahx� 1 + ah + 1� 2ahx� 1 log�x� 1 + ahah �� ; (4.12)

using the explicit expressions for the squared matrix elements for thes- andt-channel

scatterings given in Eqs. (B.3) and (B.69). We have introduced ah = m�=M as an

infrared cut-off for thet-channel diagram, wherem� is the mass of the Higgs boson

which presumably receives contributions from interactions with the thermal bath, i.e., its

value does not correspond to that potentially measured at the LHC. The value ofm� can

in principle be deduced from a thermal field theoretic treatment of leptogenesis, and the

analysis of [105] foundm�(T ) ' 0:4T . However, some open questions still remain and

hence in the present work we prefer to adopt a value ofah = 10�5, used first by Luty

in [131].

It is convenient to rewrite thes- andt-channel scattering ratesSs;t in terms of the

functionsfs;t defined asfs;t(z) = R1z2 d	 �s;t �	=z2� p	 K1 �p	�z2K2(z) ; (4.13)

such that Ss;t = Ks9 �(3) fs;t; (4.14)
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Figure 4.2:The decayD, scatteringS, and wash-out ratesW andWID as functions

of z in the integrated approach, assumingK = 0:1 andah = 10�5.
and the total scattering rate is given byS = 2Ks9 �(3) (fs(z) + 2 ft(z)) ; (4.15)

where Ks = ~m1ms� ; (4.16)

with ~m1 given by Eqs. (2.12), and [92]ms� = 4�29 gNh2t m�; (4.17)

wherem� has been defined in Eq. (2.13).

Since the scattering processes with the top quark change thelepton number by one

unit, they contribute also to the wash-out of the asymmetry.The total wash-out rate is

given by W =WID +W�L=1; (4.18)
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whereWID denotes the contribution from inverse decay defined in Eq. (3.46), andW�L=1 from scattering in thes- andt- channels,W�L=1 =Ws + 2Wt; (4.19)

with Ws = NNN eqN �lsH z = N eqNN eql NNN eqN Ss; (4.20)

and Wt = �ltH z = N eqNN eql St: (4.21)

The lepton scattering rates are given by�ls;t = N eqN =N eql �s;t. Using Eq. (3.46), the two

contributionsWID andW�L=1 are related byW�L=1 = 2WID 1D �NNN eqN Ss + 2St� ; (4.22)

so that W =WID �1 + 1D �2 NNN eqN Ss + 4St�� (4.23)

gives the total wash-out rate.

Figure 4.2 shows the various ratesD, S, W , andWID as functions ofz assumingK = 0:1. For other choices ofK, the corresponding rates evolve withz in a similar

fashion, but with magnitudes scaling withK.

4.1.2 Case S2: complete mode equations including scattering

In this section, which is based on the work done in [83], we derive the complete set of

mode equations for leptogenesis, including the tree-levelscattering processes with the

top quark. On that account, we shall solve the collision integrals given in Eqs. (4.2) and

(4.4).

The collision integrals are nine-dimensional and can be reduced analytically down

to two dimensions. Since this is a rather formal and technical procedure, we provide in

Appendix B the full reduction scheme, following the method of [93, 94], as well as the

final reduced integrals1. The resulting two-dimensional integrals have the generalformCS;(s;t) [fN ℄ =X� 3T26�3 ~EN yN h2t M ~m1v2� Z u( ~EN;l;q;t)w( ~EN;l;q;t) d ~El Z k( ~EN;l;t;q)l( ~EN;l;q;t) d ~E(t;q) �(N)(s;t) I(�)(s;t) (4.24)

1A general treatment of scattering kernels in kinetic equations can be found in [132].
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for the RHN andCS;(s;t) �fl�l� =X� 3T26�3 ~E2l h2t M ~m1v2� Z u( ~EN;l;q;t)w( ~EN;l;q;t) d ~EN Z k( ~EN;l;t;q)l( ~EN;l;q;t) d ~E(t;q) �(l�l)(s;t) I(�)(s;t); (4.25)

for the asymmetry. The functions�N(s;t) and�(l�l)(s;t) denote the phase space factors for

the RHN (lepton) scatterings in thes- andt-channel, respectively. The integration limitsu;w; k, andl depend on the energies of the particles involved in the interactions and give

the distinct integration ranges for each integrand in the sums of Eqs. (4.24) and (4.25).

The integrands consist of the phase space factors and the analytical functionsI�(s;t). Both

depend on the energies of the particles involved in the process. For thes-channel diagram

the sum contains six terms for the RHN and the lepton asymmetry and for thet-channel

diagram one counts four terms each. As mentioned above, all explicit expressions can be

found in Appendix B. Inserting Eqs. (4.24) and (4.25) in the Boltzmann equations (4.1)

and (4.3) yields the complete set of differential equationsto be integrated numerically.

Once the Boltzmann equations for the distribution functions are solved, one can perform

the integration over the RHN (lepton) phase space to obtain the number densities and, in

turn, the final efficiency factor�f .

Numerical implementation

Since the direct integration of Eqs. (4.1) and (4.3) is very time-consuming, we briefly

outline our strategy. In order to receive the distribution functions in dependence of mo-

mentum and temperature, we solve the Boltzmann equations ona two-dimensional grid

consisting of 500 momentum (yi) and 5000 temperature (z) bins, respectively. The large

number ofz-bins is necessary in order to obtain stable results for large values of the

decay parameterK at low temperatures (largez). For each momentum bin we use a

Runge–Kutta algorithm to integrate the 5000 differential equations between the differ-

entz-bins. The most time consuming part is now the two-dimensional integration of the

collision integrals Eqs. (4.24) and (4.25) that have to be performed for each step in the

Runge–Kutta integration. In order to reduce the run-time, we therefore first integrate all

parts of Eqs. (4.24) and (4.25) that do not depend onfN or fl�l, respectively, for each

point on the (yi; z)-grid and store the result in a separate file. When solving the differ-

ential equations with the Runge–Kutta algorithm, we then read-in the solutions of the

collision integrals corresponding to the specific point on the (yi; z)-grid. In order to find

the exact (z) position in the Runge–Kutta algorithm, we interpolate theread-in solutions

between the twoz-bins corresponding to the explicit initial and final temperature of the
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Figure 4.3:Snapshots of the RHN distribution functionfN=f eqN atz = 0:2; 1; 5, and

the RHN abundanceNN=N eqN as a function ofz, assumingK = 0:1. Solid/red line

denotes Case D1, long dashed/green D4, dotted/blue S1, and short dashed/magenta

S2. See tables 3.1 and 4.1 for a summary of the scenarios.

Boltzmann equations. Doing so, instead of solving 20 two-dimensional integrals during

the integration of the differential equations, we only haveto read-in the files containing

the solution of the collision integrals once and perform theinterpolation for each step in

the Runge–Kutta algorithm.

4.1.3 Results and discussions

Scattering vs decay–inverse decay

Figure 4.3 shows snapshots of the RHN distribution functionin Case S2 relative to an

equilibrium Fermi–Dirac distribution at timez = 0:2; 1; 5, as well as the RHN number

density normalized to its equilibrium value as a function ofz for an interaction strength
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Figure 4.4: Same as Figure 4.3, but forK = 1.

of K = 0:1. These are compared with their counterparts assuming decayand inverse

decay only (Case D4). Figures 4.4 and 4.5 are similar, exceptfor K = 1 andK = 10,

respectively. Clearly, including scattering processes speeds up the equilibration of the

RHN distribution function, especially at high temperatures (z < 1). This effect is more

significant for small values ofK since for largeK values decays and inverse decays are

already fast enough to establish equilibrium.

Looking at the time evolution of the RHN number density, we see a corresponding

increase inNN at high temperatures when scattering is included (Case S2),compared

to the case with decays and inverse decays only (Case D4). Theequilibrium density is

also reached at an earlier time (or higher temperature). Theintegrated approach shows a

similar behavior, with Case S1 predicting a large RHN abundance at high temperatures

and hence faster equilibration than Case D1.

Figure 4.6 shows the time evolution of the lepton asymmetry,again for the three
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Figure 4.5: Same as Figure 4.3, but forK = 10.

characteristic values of the decay parameterK = 0:1; 1; 10. As discussed earlier, we

have explicitly ignoredCP violation in the scattering processes, so that they have no

direct influence on the lepton asymmetry. This assumption isthe reason why, in the weak

wash-out regime (K = 0:1), the asymmetry evolution at high temperatures (z < 1) in

Case S2 is virtually identical to that in its decay–inverse decay only counterpart Case D4.

The same behavior can also be seen when comparing Cases S1 andD1. Here, decays and

inverse decays of the RHN alone source the creation of a lepton asymmetry. Since forK < 1 the asymmetry evolution at high temperatures hinges primarily on inverse decays

and is as yet unaffected by such external factors as the RHN abundance and wash-out

processes, the inclusion of scattering processes has no visible effect onNl�l.
However, scattering can still affect the asymmetry production in two indirect and

competing ways: (i) the larger RHN abundance produced via scattering processes at high

temperatures forces the lepton asymmetry to flip sign earlier, thereby generating a larger
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Figure 4.6: Time evolution of the absolute value of the lepton asymmetryjNl�lj for

three different coupling strengthsK. Shown are the two cases including scattering

processes S1 (dotted/blue) and S2 (short dashed/magenta),and two scenarios D1

(solid/red) and D4 (long dashed/green) within the decay–inverse decay only frame-

work. For reference we also plot the RHN equilibrium abundance (dot-dash/cyan).
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positive lepton asymmetry, and (ii) scattering leads to additional wash-out of the lepton

asymmetry. The first effect dominates for coupling strengths lying in the weak wash-out

regime (K < 1), eventually leading to a larger asymmetry in Cases S1 and S2, compared

with their decay–inverse decay only counterparts D1 and D4 as shown in Figure 4.6. For

stronger couplings (K > 1), the second effect dominates; in fact, Figure 4.6 shows that

the additional wash-out due to scattering suppresses the lepton asymmetry production in

Cases S1 and S2 already at high temperaturesz < 1, compared with the decay–inverse

decay only scenarios D1 and D4. In the transition regime between weak and strong wash-

out, forK = 1, the two effects compete with each other: the lepton asymmetry in the

Cases D4, S1 and S2 reach almost an identical final value. In the Cases S1 and S2 this is

due to the sign flip happening at the same time, earlier than inthe decay–inverse decay

only scenarios D1 and D4. In Case D4, however, the change of sign occurs only slightly

later and the asymmetry grows later on to nearly the same value, since it is not altered

by wash-out due to scatterings.

Complete treatment vs integrated approach

The complete treatment differs from the integrated approach in that in the latter case we

assume kinetic equilibrium for the RHN and neglect all quantum statistical factors. As

we saw in Section 3.3.5, the assumption of kinetic equilibrium tends to underestimate

by a tiny amount the RHN abundance atz < 1. This can be understood from Figures 4.3

to 4.5 as a result of the more efficient production of low momentum RHN states, which

in turn contribute more to the momentum integral.

Quantum statistics, on the other hand, has very different effects on the scattering

and the decay–inverse decay collision terms. As we saw in Section 3.3.5, in the decay–

inverse decay scenario, quantum statistics always enhances the interaction rates through

the enlarged Higgs boson phase space densityf� at lowE�. For the scattering processes,

since all participants are fermions, the role of quantum statistics is to reduce the phase

space and hence suppress the interaction rates. In general,however, we expect quantum

statistics to be more important for decay/inverse decay than for scattering. This is be-

cause in the decay–inverse decay case the enhanced phase space due tof� at low E�
can in principle be infinite, while Pauli blocking for fermions participating in scattering,

e.g.,1� fl, suppresses the phase space by at most a factor of1=2.

The difference between the RHN abundance and the lepton asymmetry evolution in

the complete and the integrated treatments can then be understood in terms of a compe-

tition between the three aforementioned effects.

Consider first the RHN abundance. Atz � 1 the dominant RHN production chan-

nel is scattering. Here, suppression of the production ratedue to quantum statistical
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factors competes with the small enhancement due to our dropping the assumption of

kinetic equilibrium. The net result is that both Cases S1 andS2 give very similar RHN

abundances as shown in Figures 4.3 to 4.6. Atz � 0:3, decay/inverse decay becomes

comparable to scattering (see Figure 4.2). Here, the enhanced decay rate due to quantum

statistics in Case S2 pushes up RHN production relative to Case S1. This effect is more

prominent in the weak wash-out regime than in the strong wash-out region since in the

former case the RHN abundance is further away from equilibrium. Progressing further

in z, we see that the RHN abundances in Cases S1 and S2 become virtually identical

already before reaching the equilibrium value. This is in stark contrast with the decay–

inverse decay only scenarios, where the RHN abundances in Cases D1 and D4 clearly

cross the equilibrium threshold at different times.

Consider now the evolution of the lepton asymmetry (right panel of Figure 4.6).

Comparing Cases S1 and S2 in the weak wash-out regime (K = 0:1), quantum statistics

in the latter scenario enhances the production of a negativelepton asymmetry at high

temperatures. This effect is due solely to phase space enhancements in the inverse decay

term since we have assumed explicitly that scattering does not violateCP . At z � 4,

the production of lepton asymmetry reverses direction as RHN decays begin to dominate

over inverse decays. As mentioned earlier, quantum statistics causes this reversal to hap-

pen earlier in the decay–inverse decay only scenario by bringing the RHN abundance

to the equilibrium threshold at an earlier time. When including scattering, however, the

RHN abundances in both Cases S1 and S2 cross the equilibrium threshold at almost the

same time, as discussed in the previous paragraph. This means that the evolution of their

corresponding lepton asymmetries also turns around at roughly the same time. Since at

the time of the turn-around Case S2 has a more negative asymmetry than Case S1, the

net effect is that the asymmetry in Case S2 flips sign at a slightly later time than in Case

S1, and subsequently grows to a smaller positive value.

The effects of quantum statistics on the lepton asymmetry evolution in the strong

wash-out regime (K = 10) can be similarly understood, except that we must consider

also the role of the wash-out terms. Atz . 1, the wash-out rate is dominated by scat-

tering. However, as shown in Figure 4.2, decay/inverse decay becomes comparable to

scattering atz � 0:3 and is the dominant wash-out process atz & 1. Thus, fromz � 1
onwards, the net effect of quantum statistics is to enhance the wash-out rate. This effect

can be seen at the turn-around of the lepton asymmetry evolution: the stronger wash-out

rate in Case S2 forces the lepton asymmetry evolution to reverse direction at a slightly

earlier time than in Case S1. However, since at the time of theturn-around Case S2 has

a more negative asymmetry than S1, the asymmetries in both cases end up flipping signs

at almost the same time and grow to nearly identical values.
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Figure 4.7: The final efficiency factor�f without and with scattering terms: D1

(solid), D4 (long dashed), S1 (dotted), and S2 (short dashed).

Having discussed the evolution of the lepton asymmetry in the weak and in the strong

wash-out regime, its evolution in the transition regime (K = 1) can be understood in a

similar fashion. Fromz � 1 on the same argumentation than in the strong wash-out is

viable: the stronger wash-out in Case S2 forces the lepton asymmetry to turn around at

an earlier time than in Case S1. But since it has grown to a larger value, the change of

sign happens at almost the same time leading to nearly identical final values.

Finally, Figure 4.7 shows the final efficiency factors as a function ofK for the inte-

grated approach and the complete mode treatment, both, including and excluding scatter-

ing. For Cases S1 and S2 which include scattering, we note that their difference is rather

large in the weak wash-out regime (K < 1), with the integrated approach overestimating�f by up to a factor� 1:5 atK � 0:01 compared to solving the complete mode equa-

tions. But this difference decreases as we increaseK. At K & 3 the integrated approach

underestimates�f by less than� 10%.

It is also interesting to note that the relative contribution of scattering processes to the

final efficiency factor is smaller in the complete mode calculation than in the integrated

approach. In the weak wash-out regime, including scattering enhances the final efficiency
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Figure 4.8: The evolution of the top Yukawa coupling from the electroweak scale

up to the GUT scale.

factor from decays and inverse decays by up to a factor of� 30 in the integrated scenario.

In the complete mode calculation, however, the enhancementis only a factor of� 15.

Similarly, in the strong wash-out regime, scattering reduces �f by up to 20% in the

integrated picture, compared to below10% in the complete treatment.

4.2 Influence of energy dependent top Yukawa coupling

In this section we will discuss the influence of the evolutionof the top Yukawa coupling

on the final efficiency factor. For this purpose, the renormalization group equation for

the top Yukawa coupling is set up in Appendix C and the resulting evolution ofht(T ) is

shown in Figure 4.8 from the electroweak scale up to the GUT scale.

As the top Yukawa coupling is a function of temperature, its inclusion in the cal-

culation of the efficiency factor depends on the RHN mass M since in the Boltzmann

equations the dimensionless variablez = M=T is used to parametrize the time evolu-

tion 2. The dynamics relevant for leptogenesis take place in the intervalz 2 [0:01; 100℄.
2For valuesM � 1014 GeV, the efficiency factor� ( ~m1; z) is a function of ~m1 and z only since
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Figure 4.9:Effect of the evolution of the top Yukawa coupling on the finalefficiency

factor�f : ht fixed atT = mZ (point-point-dashed/red),ht(T ) withM = 1010 GeV

(dashed/cyan) andht(T ) with M = 1012 GeV (pointed/grey). For reference,�f is

shown for Case D4 (long-dashed/green).

Supposing the RHN mass to be in the range108 GeV � M � 1012 GeV, this implies106 GeV � T � 1014 GeV. For the calculations in the previous sections we choosea

valueM = 1010 GeV. As can be clearly seen in Figure 4.8, the coupling at the scaleT = 1010 GeV has only about half the strength than at the electroweak scale. In turn,

the difference at the initial valuez = 0:01 can be as large as� 20% when changingM
by four orders of magnitude. These differences imply that itis important to include the

overall evolution of the top Yukawa coupling from the electroweak scale up to the scale

where thermal leptogenesis is viable, i.e.,T & 106 GeV.

To study the effects of the evolution of the coupling on the final asymmetry, we

performed different calculations in the Case S2, using the complete set of Boltzmann

equations. In Figure 4.9 we compare the final efficiency factor calculated with the top

Yukawa coupling fixed at the electroweak scaleT = mZ with the efficiency factor ob-

the wash-out due to�L = 2 scatterings with a heavy neutrinoN1;2;3 in the s- and t-channel can be

neglected [128].
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tained with a running coupling for chosen values ofM = 1010 GeV andM = 1012 GeV,

respectively, in dependence of the decay parameterK. For reference, the decays/inverse

scenario D4 is shown as well.

The final efficiency factor calculated with a coupling constant fixed at the elec-

troweak scale is a factor� 3 larger in the regime of weak wash-out compared to the

scenarios where the evolution of the coupling is accounted for. This is due to the more

effective RHN production for stronger couplings. For larger values of the decay param-

eter, however, the influence of the coupling evolution becomes less important and atK � 1 the final efficiency factors become virtually identical in all scenarios. Then, in

the regime of strong wash-out�f is reduced by less than� 10% when the evolution ofht is neglected. This is due to the additional wash-out in the scattering processes that be-

comes sizable for larger values ofht. Concentrating on more realistic scenarios in which

the coupling strength depends on the energy scale, we see that changing the RHN mas

by two orders of magnitude fromM = 1010 GeV toM = 1012 GeV leads to a reduction

of �f of 15% in the regime of weak wash-out. However, already atK � 0:3 the effi-

ciency factors in both cases become virtually identical. Inthe strong wash-out regime,

for K > 1, the difference is below the percent level. Overall, this discussion shows that

it is important, especially in the regime of weak wash-out, to take the evolution of the

top Yukawa coupling into account. Whereas, changing the explicit value ofM and hence

the explicit leptogenesis scale by two orders of magnitude only leads to minor (< 15%)

changes in the final efficiency factor.
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5.1 The
 matrix and different scenarios of leptogenesis

In this thesis we considered up to now leptogenesis exclusively in theN1-dominated

scenario. Qualitatively, this scenario can be realized assumingM1 � M2;M3. By im-

plication, theCP asymmetries produced in the decays of the heavier statesN2;3 are

small, i.e.,j"2;3j � j"1j, as a consequence of light particles running in the loop of the

self-energy and vertex corrections to the tree-level decaydiagram. This can be seen ex-

pressing theCP asymmetry, Eq. (2.3), summed over flavor as [84, 133]"i � � 18� Xj=1;2;3j 6=i Im
h��y��2iji(�y�)ii � "fV  M2jM2i !+ fS  M2jM2i !# ; (5.1)

where the functionsfV andfS describe, respectively, the vertex and self-energy contri-

butions. Indeed, in the limit of massless particles runningin the loop, the correspondingCP asymmetry vanishes. Furthermore, due toN1 interactions following the decay of

the heavier right-handed statesN2;3, a substantial part of the produced lepton asymme-

try will presumably be washed-out, especially in the regimeof strong wash-out.

To understand how specific scenarios can be realized, we go back to the see-saw

mechanism, cf. Section 1.5, and recast the light neutrino mass matrix, Eq. (1.12),m� = �mD 1MmTD;
withmD = � v. Here, it is always possible to choose a basis in which the heavy neutrino

mass matrix is diagonal,DM = diag(M1;M2;M3). Using an unitary matrixU , one can

simultaneously diagonalize the light neutrino mass matrixDm = �U ym� U�; (5.2)
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whereDm = diag(m1;m2;m3). If one does not account for the running of neutrino

parameters from the electroweak scale to the see-saw scale [134, 135], the matrixU
corresponds to the PMNS matrix, earlier introduced in Eq. (1.4). With the help of an

orthogonal matrix
, the Dirac neutrino mass matrix can be written in the so-called

Casas–Ibarra parametrization[136],mD = UpDm 
pDM : (5.3)

The Dirac neutrino mass matrix is fully described by 18 parameters: the mixing matrixU contains six parameters (three mixing angles and three phases), the diagonal matri-

cesDm andDM contain three neutrino masses each, and the orthogonal matrix 
 is

described by six real (three complex) parameters. It can be written as a product of three

rotational matrices [125, 137]
(!21; !31; !32) = R12 (!21) R13 (!31) R23 (!32) ; (5.4)

with R12 = 0B�p1� !221 �!21 0!21 p1� !221 00 0 11CA ; (5.5)

R13 = 0B�p1� !231 0 �!310 1 0!31 0 p1� !2311CA ; (5.6)

and R23 = 0B�1 0 00 p1� !232 �!320 !32 p1� !2321CA : (5.7)

In general, one can state that Eq. (5.3) is divided into two parts: (i) a measurable low-

energy part, containing the PMNS matrixU and the light neutrino massesDm (cf. Sec-

tion 1.4.1), and (ii) a high-scale part, consisting of the orthogonal
matrix and the heavy

neutrino massesDM , which is not accessible by current experiments.

TheN1-dominated scenario can now be realized assuming the heavy neutrino mass

matrix to be hierarchical, i.e.M1 � M2;3, together with a specific choice of theCP
asymmetries implemented by a special form of the
 matrix [125, 137]:� For
 = R13, theCP asymmetry inN2 decays vanishes, i.e.,"2 = 0, while "1 is

maximal.
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 = R12, theCP asymmetry"1 is suppressed compared to its maximal value,

Eq. (2.7), andj"2j / (M1=M2) j"1j is negligible within a strong mass hierarchy1.

In Figure 3.1 we have seen that theN1-dominated scenario proves independent of the

initial conditions in the regime of strong wash-out. However, in the weak wash-out

regime the final asymmetry production depends sensibly on the initial conditions on

theN1 abundance. Furthermore, as discussed in Section 2.3, thermal leptogenesis sets a

lower limit of M1 & 109 GeV, cf. Eq. (2.15), on the mass of the lightest right-handed

neutrino in order to explain successfully the observed value of the baryon asymmetry

of the universe. This bound is consequently translated intoa lower bound on the re-

heating temperature after inflation, cf. Eq. (2.16). These lower bounds not only have

an issue with the cosmological abundance of gravitinos, mentioned in Section 2.3, but

also cause some specific problems in GUTs based on flavor models. Some of these

models assume a grand unified symmetry between up-quarks andneutrinos. The neu-

trino Yukawa couplings are then connected with the up-quarkYukawa matrices leading

to right-handed neutrino masses which are proportional to the square of the up-quark

masses [138, 139]. Typical values for the mass of the lightest right-handed state fall in

the range106�107 GeV, see e.g., [140, 141], and massesM1 � 109 GeV need a specific

choice of parameters [142, 143]. This makes thermal leptogenesis difficult to reconcile

with this class of models.

In order to circumvent these issues, theN2-dominated scenario was proposed

in [137]. Indeed, for
 = R23 one can have a maximalCP asymmetry"2 coming

from N2 decays while"1 vanishes. This means thatN1 is totally decoupled from the

heavier states while in theN2 decay the heavy third state,N3, is running in the loop. To-

gether with a mass hierarchy in the heavy neutrinos,N2-dominated leptogenesis can be

realized if the wash-out fromN1 interactions does not deplete the produced asymmetry.

With the above choice of
 the effective neutrino mass of the lightest right-handed state

is fixed to ~m1 = m1. Thus, for hierarchical light neutrino masses theN1 interactions can

be forced to be in the weak wash-out regime where~m1 . m� � 10�3 eV. It is worth

noticing that, if theN1 interactions are in the weak wash-out regime, i.e.,~m1 < m�, then

theN2 interactions are constrained to be in the strong wash-out regime, i.e.,~m2 > m�.
This is due to the orthogonality of the
 matrix [137]. Therefore,N2-dominated lep-

togenesis is independent of the initial conditions onN2 but might still be down to the

initial conditions onN1. In order to achieve a large enoughCP asymmetry, the lower

bound on the massM1 can be directly translated into a bound on the massM2, whereas

the lower bound on the reheating temperature remains unchanged. The bound onM1 is

then obsolete andM1 can be remarkably smaller. However, allowing for small complex

1If M1 �M2, bothCP asymmetries should be taken into account.
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rotationsR12 andR13, both of these bounds become increasingly more stringent leading

to a point beyond which theN2-dominated scenario is not viable anymore.

5.1.1 Note on flavor

Including flavor effects may substantially change the parameter ranges in which the

scenarios discussed above are valid. It has been shown that,when the flavor structure

of the lepton asymmetry and the wash-out is tracked, it is possible to generate a large

enough lepton asymmetry inN2 decays even ifN1 interactions are effective [143, 144].

The general idea here is that asymmetries in different lepton flavors� , �, ande do not

mix through interactions in the thermal bath before the wash-out due toN1 interac-

tions becomes effective. The asymmetries in different lepton flavors will then only be

washed-out by theN1 interactions in the corresponding flavor. When theN1 decays

in the two-flavor regime at temperatures109 GeV . T . 1012 GeV, where only the� Yukawa interactions are in equilibrium, or in the unflavoredregime at temperaturesT & 1012 GeV, parts of the lepton asymmetry in a distinct flavor are protected fromN1 wash-out [9, 144, 145]. Furthermore, in the first section of this chapter we did not

mention the effect of flavor on theCP asymmetry. In Eq. (2.3) we wrote theCP asym-

metry as a matrix in flavor space. Indeed, the hierarchy ofCP asymmetries, following a

mass hierarchy of particles running in the loop, does not necessarily hold when flavored

asymmetries are considered [114]. In contrast to the unflavored scenario, where"2 is sup-

pressed byM1=M2 compared to"1, there is the possibility of having a non-negligible

asymmetry"2� that, in turn, eventually extends the range of theN2-dominated scenario.

5.2 Mode equations inN2-dominated leptogenesis

In the last section we discussed the possibility of going beyond the usually consideredN1-dominated scenario of leptogenesis. We have shown that, with a special choice of

the
 matrix, the possibility of aN2-dominated scenario exists. In this section we want

to discuss the effect the complete set of mode equations (Case S2) have in theN2-
dominated scenario. Here, the wash-out due toN1 interactions is (i) enhanced using

mode-equations with decays/inverse decays alone and (ii) enhanced considering scat-

terings with the top quark. For theN2-dominated scenario to be realized we will take

the following working assumptions [146]: First, a sizableCP asymmetry"2 has been

generated at the scaleT � M2 that is not altered by"1 generated at the later stageT �M1 when the lightest right-handed state decays2. Second, the wash-out due toN1
interactions does not erase the asymmetry produced inN2 decays.

2For clarity we keep track of indices corresponding toN1 andN2 in this section
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Figure 5.1: Lepton asymmetry generated inN2 decays for maximalCP violation

and different values ofM2: (i) M2 = 1013 GeV, solid line, (ii)M2 = 1012 GeV,

long-dashed line, (iii)M2 = 1011 GeV, dashed line, (iv)M2 = 1010 GeV, point-

point-dashed line, and (v)M2 = 1:9� 109 GeV, point-dashed line. Within the con-

sidered scenario, the shaded region indicates where the produced baryon asymmetry

exceeds�CMBB .

We will not focus on the first point of an exact evaluation of flavoredCP asymme-

tries within special choices of the
 matrix but rather discuss the second point within

our treatment of complete kinetic equations. The lepton asymmetry that can be gener-

ated inN2 decays is shown in Figure 5.1 in dependence of the decay parameterK2 for

values ofM2 varying between1:9� 109 GeV and1013 GeV. The shaded area marks the

region where the final asymmetry exceeds the measured value�CMBB , given in Eq. (1.1).

ForM2 . 2 � 109 GeV theCP asymmetry generated inN2 decays is too small to ac-

count for the observed value of the matter–antimatter asymmetry. 3 On the other hand,

for M2 & 1013 GeV one has to account for�L = 2 violating scattering processes with

theN2 in thes- andt-channel. Being an additional contribution to the wash-out, these

processes tend to reduce the final amount of asymmetry [128].The two vertical lines in

3This bound differs from Eq. (2.15) since for a vanishing initial abundance�f < 1.
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Figure 5.2: Time evolution of the absolute value of the normalized RHN num-

ber densityNN1=N eqN1 and the lepton asymmetryjNl�lj for three different coupling

strengthsK1 in the N2-dominated scenario for an initial asymmetryjNN2l�ljin =10�7 andM1 = 107 GeV. Shown are the two cases including scattering processes

S1 (dotted/blue) and S2 (short dashed/magenta), and two scenarios D1 (solid/red)

and D4 (long dashed/green) within the decay–inverse decay only framework.
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Figure 5.1 correspond to the solar and atmospherics neutrino scale, respectively. Con-

sidering theN2 interactions to be in the strong wash-out regime in the window preferred

by neutrino oscillation data demandsM2 & 1011 GeV to explain the observed value of

the baryon asymmetry, Eq. (1.1).

The lepton asymmetry generated inN2 decays is altered by the subsequent wash-out

due to interactions of the lightest right-handed neutrinoN1. According to the consid-

erations of [122], whereN2-dominated leptogenesis has been addressed by means of

mode equations within the decay–inverse decay only scenario (Case D4), we choose the

following initial conditions atz1 = M1=T to calculate the effect of wash-out on an ini-

tially produced asymmetry: (i) We takejNN2l�ljin = 10�7 as initial value of the lepton

asymmetry generated inN2 decays, (ii) assume a zero initialN1 abundance, and (iii) set"1 � 0. The third condition can be achieved by supposing a small value of theN1 mass.

Anyway, smallCP asymmetries stemming from different generations add up linearly

and an additional asymmetry"1 would not modify our consideration on theN1-induced

wash-out effects. We chooseM1 = 107 GeV in the numerical implementation in order

to fix the evolution of the top Yukawa coupling.

Figure 5.2 shows on the left panel the time evolution of the normalizedN1 number

density for the Cases D1, D4, S1, and S2 in dependence ofz1. These plots correspond

to the lower right plots in Figures 4.3 to 4.5 save for the difference that for the Cases S1

and S2 we chooseM1 = 107 GeV here, instead ofM1 = 1010 GeV as in Section 4.1.2.

On the right panel the time evolution of the lepton asymmetryduringN1 wash-out is

shown for the same scenarios. Thus, in addition to the discussion in [122], we include

Cases S1 and S2 here. In the weak wash-out regime (K1 = 0:1), the asymmetry is only

slightly reduced in the Cases D4, S1, and S2 compared to the integrated approach in the

decay/inverse decay only scenario, Case D1. The net wash-out of the initial asymmetry

is less than 10%. However, already atK1 � 1 the strength of the wash-out in the dif-

ferent scenarios becomes distinguishable. Atz1 � 1 wash-out becomes effective and is

strongest in Case S2 where the complete set of Boltzmann equations including scatter-

ings with the top quark is considered. The difference in the lepton asymmetry between

Case D4 and Case S2, both using mode equations, is about a factor of two. However, the

net reduction of the initial asymmetry is still less than oneorder of magnitude. Compar-

ing Case S2 with Case S1, we see that the influence of the additional wash-out factorfN1 , present in the mode equation, cf. Eq. (3.55), is larger thanthe wash-out due to

scatterings in the integrated approach that is present in Case S1. In the strong wash-out

regime, forK1 = 10, the initial asymmetry is depleted by up to six orders of magnitude,

with the strongest wash-out again in Case S2. Considering the momentum integrated

scenarios, the reduction in Case S1 is two orders of magnitude larger than in Case D1.



66 Chap. 5:N2-dominated leptogenesis

K1
jNN 2 l� lj in

1010:1

10:10:010:00110�410�510�610�710�810�9 K1
jNN 2 l� lj in

1010:1

10:10:010:00110�410�510�610�710�810�9 K1
jNN 2 l� lj in

1010:1

10:10:010:00110�410�510�610�710�810�9 K1
jNN 2 l� lj in

1010:1

10:10:010:00110�410�510�610�710�810�9
Figure 5.3: Amount of initial asymmetry that has to be generated inN2 decays

in order to survive the subsequent wash-out byN1 interactions. The mass of the

lightest right-handed neutrino was set toM1 = 107 GeV and theCP asymmetry

generated inN1 decays was set"1 = 0. The asymmetry in the grey shaded region

cannot be generated inN2 decays and the area right of the arrow is excluded due toN1 wash-out.

Concerning the scenarios in which mode equations are used, the contribution of the scat-

terings amounts to one order of magnitude as can be seen by comparing Case S2 with

Case D4. In general, it can be stated that the wash-out is enhanced more by the use of

mode equation than by the inclusion of scattering processesthat become important only

for valuesK1 � 1.

Figure 5.3 shows the amount of initial asymmetry generated in N2 decays that is

needed to account for the observed value of the baryon asymmetry after wash-out due

to N1 interactions in dependence ofK1. The green colored region corresponds to the

value of the baryon asymmetry deduced in BBN within 95% confidence level, Eq. (1.2),

and the dashed-line within this region represents the valueof the baryon asymmetry

deduced from CMB measurements, Eq. (1.1). WhenN1 interactions fall into the weak-

wash-out regime (K1 < 1), almost all of the initial generated asymmetry survives giving
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the strength of theN1 interactions, wash-out becomes more and more effective andforK1 = 10 an initial valuejNN2l�ljin � 1 is needed to account for the observed value of the

baryon asymmetry. Though, as can be seen in Figure 5.1, values of the asymmetry lying

in the shaded area above the horizontal dashed line atjNN2l�ljin = 1:7 � 104 cannot be

generated inN2 decays. Therefore, for theN2-dominated scenario to be successful, theN1 interactions are restricted toK1 . 5. The upper bound on the initial asymmetry cor-

responds to valuesM2 = 1013 GeV andK2 � 0:3. For values ofK2 lying in the strong

wash-out regime that is preferred by neutrino oscillation data, the generated asymmetry

is roughly one order of magnitude smaller, leading toK1 . 3. When choosing conserva-

tive values,M2 � 1011 GeV and�2f � 10�2, the scenarios are forced toK1 . 2. 4 This

corresponds to values ofK1 typically needed inSO(10) inspired GUTs where flavor

effects are included. For the limiting scenario,M2 � 2 � 109 GeV, theN1 interactions

strengthK1 has to vanish [147].

4Using typical assumptions, the study in [122] found a limitK1 < 3.
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Conclusions

The absence of antimatter in the universe provides one of themost intriguing problems of

particle physics and cosmology. In leptogenesis the explanation of the matter–antimatter

asymmetry is connected with the nature of observed neutrinomasses via the see-saw

mechanism. Here, heavy right-handed neutrino states give rise to light-neutrino masses

in the sub-eV range. At the same time a lepton asymmetry may begenerated in their

decays. This lepton asymmetry is then partially transformed into a baryon asymmetry

by so-called sphaleron processes, an anomaly present in theStandard Model of particle

physics. The creation and subsequent partial depletion of alepton asymmetry is usually

studied by means of momentum integrated Boltzmann equations since the processes

involved in leptogenesis are typically close-to-equilibrium.

In this thesis we have studied leptogenesis by means of the full Boltzmann equa-

tions incorporating all quantum statistical terms withoutthe assumption of kinetic equi-

librium, and including scatterings of the right-handed neutrino with quarks. This is of

particular relevance for the creation of the cosmological baryon asymmetry due to the

required deviation from thermal equilibrium and the energydependence of all interac-

tions. As the simplest possible set-up to study these effects, we have first considered only

an asymmetry being created by the lightest right-handed neutrino and have neglected po-

tentially important flavor effects. To this end, in Chapter 3we provided a thorough study

of leptogenesis taking into account exclusively decays andinverse decays where one

Yukawa coupling alone controls the production and later decays of right-handed neutri-

nos.

In the conventional approach, i.e., neglecting quantum statistical factors and assum-

ing kinetic equilibrium, considering only decays and inverse decays is known to give

a rather precise approximation of the final baryon asymmetryin the interesting strong

wash-out regime. At the same time, this case also offers the possibility to study the in-

fluence of various effects separately and in detail.
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Interestingly enough, dropping the assumption of kinetic equilibrium has almost no

effect on the evolution of the right-handed neutrino numberdensity and the lepton asym-

metry. Taking the full energy dependence of interactions into account changes the final

efficiency factor by 5% at the most.

Including all quantum statistical factors has somewhat larger effects. These factors

tend to enlarge the phase space available for neutrino production by inverse decays, thus

significantly boosting the right-handed neutrino abundance and the “wrong-sign” asym-

metry being produced at high temperatures. Further, they lead to an earlier domination

of decays over inverse decays, thus speeding up the production of the final asymmetry.

In the weak wash-out regime this leaves more time for the production of an asymmetry,

thus leading to a boost in the final asymmetry by�50%.

In the strong wash-out regime, on the other hand, the final asymmetry is suppressed

by between 20% atK = 10 and 1% atK = 100. This is again due to the enlarged

phase space of inverse decay processes which act as wash-outterms, thus reducing the

asymmetry compared to the case where quantum statistical factors are neglected.

In the case of scatterings of right-handed neutrinos off quarks, considered in Chap-

ter 4, in contrast to decays and inverse decays, quantum statistical factors reduce the

phase space available, since all external particles in these processes are fermions. Hence,

quantum effects generally tend to reduce the importance of these scatterings.

Nonetheless, at high temperatures (z < 1) scattering processes increase the amount

of right-handed neutrinos being produced, thus making leptogenesis more efficient. On

the other hand, at low temperatures (z > 1) they act as wash-out terms thereby re-

ducing the produced asymmetry. The first effect, i.e., the more efficient production of

right-handed neutrinos dominates in the weak wash-out regime, thus leading to a larger

final lepton asymmetry compared to the case where only decaysand inverse decays are

included. In the strong wash-out regime the effect from increased wash-out dominates,

i.e., including scatterings leads to a somewhat reduced asymmetry here.

This is qualitatively in line with results obtained in the integrated picture, i.e., ne-

glecting quantum statistical factors and assuming kineticequilibrium. However, since

quantum statistical factor enhance decays and inverse decays while suppressing scatter-

ings of right-handed neutrinos with quarks, the net influence of these scattering processes

is reduced when quantum factors are included. This significantly reduces the spread of

results for the final efficiency factor, particularly in the weak wash-out regime.

In general, when including scattering processes of right-handed neutrinos with

quarks, it is important to account for the evolution of the top Yukawa coupling from the

electroweak scale to the scale of baryogenesis. This energydependence might change

the coupling strength by a factor� 2, which, in turn, changes the final asymmetry by
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a factor� 3. However, changing the right-handed neutrino mass, which determines the

precise energy scale of baryogenesis, by up to four orders ofmagnitude leads only to

minor (< 15%) changes in the final asymmetry.

Finally, in Chapter 5, we studied leptogenesis in an alternative scenario in which the

lepton asymmetry is created in the decays of the next-to-lightest right-handed neutrino

stateN2. Here, the additional wash-out present in the complete set of mode equations

leads to a more efficient depletion of the lepton asymmetry ininteractions of the lightest

right-handed neutrinoN1; these interactions follow the asymmetry generation in the

decays of the heavier state. In order to account for the observed value of the matter-

antimatter asymmetry, the possible values of the decay parametersK1 andK2 of the

two right-handed states can be restricted. From the maximalamount of asymmetry that

is achievable inN2 decays, the decay parameter of the lightest right-handed neutrino is

forced toK1 . 5. Furthermore, demanding the decay parameterK2 to be in the strong

wash-out regime favored by neutrino oscillation data, where the asymmetry generation

is independent of the initial conditions onN2, sets the more stringent limitK1 . 2.





Appendix A

Scattering reaction rates in the

integrated approach

In this section we derive the integrated Boltzmann equationfor a heavy particle species	 interacting via the scattering process	+a$ b+
 with light degrees of freedom that

are supposed to be in thermal equilibrium. The Boltzmann equation for the distribution

function in the radiation dominated epoch is given as (cf. Eq. (3.15))H(m	)z �f	�z = C [f	℄ ; (A.1)

wherez = m	=T andC [f	℄ = 12E	 Z Yi=a;b;
 dp3i(2�)32Ei (2�)4Æ4(p	 + pa � pb � p
) jM (	 + a$ b+ 
) j2� [(1� f	) (1� fa) fbf
 � f	fa (1� fb) (1� f
)℄ : (A.2)

Here the ’+’ sign corresponds to bosonic and the ’-’ sign to fermionic type of particles.

In order to receive the Boltzmann equation for the number density, an integration of

Eq. (A.1) over the phase space of the particle	 has to be performed. For this purpose it

proves useful to introduce the reaction density, which is defined as the number of reac-

tions per time and volume element. The reaction density for the process	+ a! b+ 
,
then reads1
 (	 + a! b+ 
) = Z Yi=	;a;b;
 dp3i(2�)32Ei (2�)4Æ4(p	 + pa � pb � p
)� jM (	 + a! b+ 
) j2f	fa: (A.3)

1Since herejMj2 is summed over all internal degrees of freedom, the factorg	 is included in the

definition (A.2).
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Here, we already neglected phase space factors stemming from Pauli blocking and Bose

emission, assuming(1� fi) � 1. The reaction density for the inverse process can anal-

ogously be recast by the replacementsf	fa ! fbf
. Assuming kinetic equilibrium for

the heavy species	, the reaction density can be written in terms of the equilibrium

reaction density and the heavy particle’s number density,
 = n	=neq	 
eq, with
eq (	 + a! b+ 
) = Z Yi=	;a;b;
 dp3i(2�)32Ei (2�)4Æ4(p	 + pa � pb � p
)� jM (	 + a! b+ 
) j2f eq	 f eqa= Z Yi=	;a dp3i(2�)32Ei f eq	 f eqa 4q(p	 � pa)2 �m2	m2a �(s);
(A.4)

wheres = (p	 + pa)2 and the zero temperature cross-section is denoted by�(s). For

the flux-factor one can write [148]4q(p	 � pa)2 �m2	m2a = 2r�s� (m	 +ma)2��s� (m	 �ma)2�= 2q� �s;m2	;m2a�: (A.5)

With the help of the flux factor and the auxiliary variables = Q2, we can write for the

equilibrium reaction density [149]
eq (	 + a! b+ 
) = Z Yi=	;a dp3i(2�)32Ei e�(E	+Ea)=T 2q� �s;m2	;m2a� �(s)= Z d4Q(2�)4 (2�)4 Æ (Q� p	 � pa) ��s� (m	 +ma)2�� Z Yi=	;a dp3i(2�)32Ei e�(E	+Ea)=T 2q� �s;m2	;m2a� �(s)= Z d4Q(2�)4 (2�)4� �s� (m	 +ma)2�� e�Q0=T 2q� �s;m2	;m2a��(s)�(s): (A.6)

Here we introduced the phase space volume element�(s) that is accessible for particles

in the entrance channel,�(s) = Z Yi= ;a dp3i(2�)32Ei (2�)4 Æ (Q� p	 � pa) (A.7)= 18�sr�s� (m	 +ma)2��s� (m	 �ma)2� = 18�sp� (s;m	;m2a):



75

With the help of�(s), the cross-section�(s) can be related to the reduced cross-section�̂(s) = 8��(s)Z Yi=b;
 dp3i(2�)32Ei (2�)4 Æ (p	 + pa � pb � p
) jM (	 + a! b+ 
) j2= 8��(s) 2q� �s;m2	;m2a��(s) = 2� �s;m2	;m2a�s �(s): (A.8)

Thus one finds, after introducing another auxiliary variable � = p1 +Q2=s, for the

equilibrium reaction density the 1-dimensional integral
eq (	 + a! b+ 
) = 18� Z d4Q(2�)4 ��s� (m	 +ma)2� e�Q0=T �̂(s)= 164�4 1Z(m	+ma)2 ds �̂(s) s 1Z1 d�p�2 � 1 e��ps=T (A.9)= T 464�4 1Z(m2	+m2a)=T d	 �̂(	)p	K1 �p	� = T 464�4 I;
where	 = s=T 2 andI contains the integral expression. Eq. (A.9) is valid also for

the inverse processb + 
 ! 	 + a because there is no preferred direction in thermal

equilibrium. Furthermore, the reaction density for the inverse process is as well given by

Eq. (A.9), i.e.,
 (b+ 
! 	+ a) = 
eq (b+ 
! 	+ a), since, when integrating over

the phase space of the incoming particles in Eq. (A.3), the particle speciesb and
 are

assumed to be in thermal equilibrium.

Then the Boltzmann equation for the time evolution of the number density of the

particle species	 readsdn	dz = zH(m	) �n	neq	 
eq � 
eq� = zH(m	) 
eqneq	 �n	 � neq	 �= zH(m	) �eq �n	 � neq	 � = �eqHz �n	 � neq	 � ; (A.10)

where we used the relations� = 
=n	 to relate the reaction density to the reaction rate

andH(m	) = H=z2. The Boltzmann equation for the comoving number densityN	
can be recast dividing Eq. (A.10) by the equilibrium photon number density.





Appendix B

Reduction of the scattering collision

integrals

B.1 s-channel

B.1.1 Right-handed neutrino

The full collision term for thes-channel in Eq. (4.1) isCS;s[fN ℄ = 12EN Z Yi=l;q;t d3pi(2�)32Ei (2�)4Æ4(pN + pl � pt � pq) jMsj2 �(N)s (fN ; fl; ft; fq) ;
(B.1)

with phase space factor�(N)s given by�(N)s (fN ; fl; ft; fq) = [(1� fN)(1 � fl)ftfq � fNfl(1� ft)(1� fq)℄ : (B.2)

The matrix elementMs is summed over all internal degrees of freedom of the particles

in the initial and final states, including color and isospin,and is given byjMsj2 = 24h2t M ~m1v2 pNpl ptpqs2 ; (B.3)

where ~m1 = �myDmD� =M is the effective neutrino mass [89],v = 174 GeV the

vacuum expectation value of the Higgs field andh2t the top Yukawa coupling given in

Appendix C.

We work in the center-of-mass frame, i.e.,pN + pl = pt + pq � q: (B.4)
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In general, the 4-vector delta function can dealt with usingthe relationÆ �p2i �M2i � = Æ �E2i � �jpij2 +M2i ��= 0B�Æ �Ei �qjpij2 +M2i �2qjpij2 +M2i + Æ �Ei +qjpij2 +M2i �2qjpij2 +M2i 1CA : (B.5)

Using this relation, and the fact that we consider all particles except the RHN to be

massless, i.e., El;t;q = jpl;t;qj;EN =pjpN j2 +M2; (B.6)

we can integrate over the quark energy,Z d3pq2Eq Æ4(pN + pl � pt � pq) = Z dEq d3 pq Æ (Eq � jpqj)2jpqj �(Eq) Æ(EN +El �Et �Eq)� Æ3 (pN + pl � pt � pq)= Æ (EN +El �Et � jpN + pl � ptj)2 jpN + pl � ptj �(EN +El �Et)= Æ (EN +El �Et � jq� ptj)2 jq � ptj �(EN +El �Et)= Æ �(EN +El �Et)2 � jq� ptj2� �(EN +El �Et):
(B.7)

Similarly, we can rewrited3pl2El = Z dEl Æ (El � jplj)2jplj �(El) d3pl= Z dEl Æ �E2l � jplj2� �(El) d3pl= Z dEl Æ �E2l � jq� pN j2� �(El) d3q; (B.8)

where the last equality follows from changing the variable frompl to q = pN +pl, and

henced3pl to d3q, and the integration is over the lepton energyEl.
We choose an explicit coordinate system,q = jqj (0; 0; 1);pN = jpN j (0; sin �; 
os �);pt = Et(
os� sin#; sin� sin#; 
os#); (B.9)
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and obtain the following quantities:s = (pN + pl)2 = (pt + pq)2 = (EN +El)2 � jqj2;pNpl = s�M22 ;pqpt = s2 ;jq� ptj2 = jqj2 + jptj2 � 2q � pt = jqj2 +E2t � 2jqjEt 
os#;jq� pN j2 = jqj2 + jpN j2 � 2q � pN = jqj2 + jpN j2 � 2 jqj jpN j 
os �: (B.10)

The matrix element in these coordinates readsjMsj2 = 6h2t M ~m1v2 (EN +El)2 �M2 � jqj2(EN +El)2 � jqj2 ; (B.11)

and the delta functions are given byÆ �(EN +El �Et)2 � jq� ptj2� = Æ �(EN +El �Et)2 � jqj2 �E2t + 2jqjEt 
os#�= 12jqjEt Æ 
os#� E2t � (EN +El �Et)2 + jqj22jqjEt ! ;Æ �E2l � jq� pN j2� = Æ �E2l � jqj2 � jpN j2 + 2jqjjpN j 
os ��= 12jqjjpN j Æ�
os � � jpN j2 �E2l + jqj22jqj jpN j � :
(B.12)

Collecting all terms, we get for the collision integralCS;s[fN ℄ = 12EN (2�)5 Z d
N4� d 
os#d� E2t2Et dEt dEl d3q 12jqj jpN j 12jqjEt jMsj2� Æ�
os � � jpN j2 �E2l + jqj22jqj jpN j � Æ�
os#� E2t � (El +EN �Et)2 + jqj22jqjEt �� �(N)s (fN ; fl; ft; fq) �(El)�(Et)�(El +EN �Et)= 127�3EN jpN j Z d 
os #d 
os � dEt dEl djqj jMsj2� Æ�
os � � jpN j2 �E2l + jqj22jqj jpN j � Æ 
os#� E2t � (El +EN �Et)2 + jqj22jqjEt !� �(N)s (fN ; fl; ft; fq) �(El)�(Et)�(El +EN �Et):
(B.13)

Here, in the first equality, we taked3pt = E2t dEt d 
os#d�, and average over the di-

rection of the incoming RHN by integrating overd
N=(4�), whered
N = d� d 
os �,
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because of rotational invariance (cf. Eq (B.9)). In the second equality, we taked3q = 4� jqj2djqj, and integrate over all azimuthal angles.

The two remaining angles# and� run in the range
os#; 
os � 2 [�1; 1℄: (B.14)

Since apart from the delta functions the integrand does not depend on either angle, inte-

grating over these ranges effectively lead to new integration limits for theq-integral:
os# = 1 ) q 2 [El +EN ;�El �EN + 2Et℄;
os# = �1 ) q 2 [�El �EN ; El +EN � 2Et℄;
os � = 1 ) q 2 [�El + pN ; El + pN ℄;
os � = �1 ) q 2 [�El � pN ; El � pN ℄; (B.15)

wherepN � jpN j, andq � jqj. Putting these conditions together we getsup [j2Et �El �EN j; jEl � pN j℄ � q � inf [El +EN ; El + pN ℄ : (B.16)

SinceEl +EN > El + pN this reduces tosup [j2Et �El �EN j; jEl � pN j℄ � q � El + pN : (B.17)

Thus, the integration over
os � and
os# effectively gives rise to a combination of�
functions in the remaining3-dimensional integral. Together with existing� functions in

Eq. (B.13), we define
 � �(q � j2Et �El �EN j) � (q � jEl � pN j) � (El + pN � q)�(El +EN �Et)
(B.18)

to collectively denote all� functions appearing in the remaining integral. Note that we

have omitted writing out�(El)�(Et), since positive particle energies are understood.

Next, we use the relations�(q � j2Et �El �EN j) = 1��(j2Et �El �EN j � q) ; (B.19)

and�(j2Et �El �EN j � q) � (El + pN � q) = � (j2Et �El �EN j � q) ; (B.20)

the latter following from the fact that
 in Eq. (B.18) vanishes unlessj2Et �El �EN j < El + pN . With these we split the function
 into two parts (i.e.,
 = 
1 +
2):
1 = �(El +EN �Et) � (q � jEl � pN j) � (El + pN � q) ; (B.21)
2 = � �(El +EN �Et) � (q � jEl � pN j) � (j2Et �El �EN j � q) : (B.22)
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Equation (B.21) can be further split into two parts at�(q � jEl � pN j) using the relation�(El � pN ) + � (pN �El) = 1; (B.23)

from which we find
1a = �(El +EN �Et) � (q � (El � pN )) � (El + pN � q) � (El � pN ) ;
(B.24)
1b = �(El +EN �Et) � (q � (pN �El)) � (El + pN � q) � (pN �El) ;
(B.25)

so that
1 = 
1a +
1b.
Similarly, Eq. (B.22) can be split at�(q � jEl � pN j) into two parts,
2 = 
2a +
2b, by way of the relation (B.23):
2a = � �(El +EN �Et) � (q � (El � pN )) � (j2Et �El �EN j � q) � (El � pN ) ;

(B.26)
2b = � �(El +EN �Et) � (q � (pN �El)) � (j2Et �El �EN j � q) � (pN �El) :
(B.27)

One further split is possible at�(j2Et �El �EN j � q) using�(El +EN � 2Et) + � (2Et �El �EN ) = 1: (B.28)

Putting this relation in Eqs. (B.26) and (B.27), we find the combinations�(q � (El � pN )) �(El +EN � 2Et � q)) Et � 12 (EN + pN ) ;�(q � (El � pN )) �(2Et �El �EN � q)) Et � 12 (2El + (EN � pN )) ;�(q � (pN �El)) �(El +EN � 2Et � q)) Et � 12 (2El + (EN � pN )) ;�(q � (pN �El)) �(2Et �EN �El � q)) Et � 12 (EN + pN ) ;
(B.29)
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with which we can write down the four parts of
2:
2a;i = � ��12(EN + pN )�Et� �(q � (El � pN )) � (El +EN � 2Et � q)��(El � pN ); (B.30)
2a;ii = � �(El +EN �Et) ��Et � 12(2El +EN � pN )� �(2Et �El �EN � q)��(q � (El � pN )) �(El � pN ); (B.31)
2b;i = � ��12(2El +EN � pN )�Et��(El +EN � 2Et � q)��(q � (pN �El)) �(pN �El) ; (B.32)
2b;ii = � �(El +EN �Et) ��Et � 12(EN + pN )� �(2Et �El �EN � q)��(q � (pN �El)) �(pN �El); (B.33)

such that
2a = 
2a;i +
2a;ii and
2b = 
2b;i +
2b;ii.
Finally, collecting all terms we obtain the relation
 =X� 
� = 
1a +
1b +
2a;i +
2a;ii +
2b;i +
2b;ii; (B.34)

so that the remaining3-dimensional integration in the collision integral (B.13)can be

equivalently written asCS;s[fN ℄ =X� 127�3EN jpN j Z dEt dEl dq jMsj2 �(N)s (fN ; fl; ft; fq) 
�: (B.35)

The phase space factor reads�(N)s (fN ; fl; ft; fq) = � eEl+Et ��1 + fN + eEN fN�(1 + eEl) (1 + eEt) (eEl+EN + eEt) ; (B.36)

where we have used energy conservation, and Fermi–Dirac statistics for the leptons and

quarks.

The integration overq can now be performed analytically, reducing the dimensions

of the collision integrals to two. These final integrals mustbe evaluated numerically and

then summed to giveCS;s[fN ℄,CS;s[fN ℄ = C(1)s + C(2)s + C(3)s + C(4)s + C(5)s + C(6)s : (B.37)

The integralsC(1;::: ;6)S;s are as follows:
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1a, and we have defined~q � q=T :C(1)S;s = 3T26�3 EN yN h2t M ~m1v2 Z 1yN dEl Z El+EN0 dEt �(N)s I(1)s ; (B.38)I(1)s = Z El+yNEl�yN d~q (EN + El)2 � z2 � ~q2(EN + El)2 � ~q2= 4 yN (El + EN ) + z2 log h (EN�yN ) (2El+EN�yN )(EN+yN ) (2El+EN+yN )i2 (El + EN ) : (B.39)� The second integral comes from evaluation of
1b:C(2)S;s = 3T26�3 EN yN h2t M ~m1v2 Z yN0 dEl Z El+EN0 dEt �(N)s I(2)s ; (B.40)I(2)s = Z El+yNyN�El d~q (EN + El)2 � z2 � ~q2(EN + El)2 � ~q2= 4 El (El + EN ) + z2 log h E2N�y2N(2El+EN )2�y2N i2 (El + EN ) : (B.41)� The third integral comes from the
2a;i term:C(3)S;s = 3T26�3 EN yN h2t M ~m1v2 Z 1yN dEl Z 12 (EN+yN )0 dEt �(N)s I(3)s ; (B.42)I(3)s = � Z El+EN�2EtEl�yN d~q (EN + El)2 � z2 � ~q2(EN + El)2 � ~q2= � 2 (El + EN ) (EN � 2 Et + yN ) + z2 log h Et (2 El+EN�yN )(El+EN�Et) (EN+yN )i2 (El + EN ) :
(B.43)� Integral four originates from the
2a;ii term:C(4)S;s = 3T26�3 EN yN h2t M ~m1v2 Z 1yN dEl Z El+EN12 (2 El+EN�yN ) dEt �(N)s I(4)s ; (B.44)I(4)s = � Z 2Et�El�ENEl�yN d~q (EN + El)2 � z2 � ~q2(EN + El)2 � ~q2= 2 (El + EN ) (2 El + EN � 2 Et � yN )� z2 log h (El+EN�Et) (2 El+EN�yN )Et (EN+yN ) i2 (El + EN ) :
(B.45)
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2b;i:C(5)S;s = 3T26�3 EN yN h2t M ~m1v2 Z yN0 dEl Z 12 (2 El+EN�yN )0 dEt �(N)s I(5)s ;
(B.46)I(5)s = � Z El+EN�2EtyN�El d~q (EN + El)2 � z2 � ~q2(EN + El)2 � ~q2= � 2 (El + EN ) (2 El + EN � 2 Et � yN )� z2 log h (El+EN�Et) (2 El+EN�yN )Et (EN+yN ) i2 (El + EN ) :
(B.47)� Finally, the sixth integral derives from
2b;ii:C(6)S;s = 3T26�3 EN yN h2t M ~m1v2 Z yN0 dEl Z El+EN12 (EN+yN ) dEt �(N)s I(6)s ; (B.48)I(6)s = � Z 2Et�El�ENyN�El d~q (EN + El)2 � z2 � ~q2(EN + El)2 � ~q2= 2 (El + EN ) (EN � 2 Et + yN )� z2 log h (El+EN�Et) (EN+yN )Et (2 El+EN�yN ) i2 (El + EN ) :
(B.49)

B.1.2 Lepton asymmetry

Thes-channel collision term in Eq. (4.3) for tracking the leptonasymmetry isCS;s[fl�l℄ = 12El Z Yi=N;q;t dp3i(2�)3 2Ei (2�)4Æ4(pl + pN � pq � pt)jMsj2�(l�l)s �fl�l; fN ; ft; tq� ;
(B.50)

with phase space factor�(l�l)s �fl�l; fN ; ft; tq� = fl�l (fN (ft + fq � 1)� ftfq) ; (B.51)

and matrix elementMs given by Eq. (B.11). As in Section B.1.2 we work in the center-

of-mass frame Eq. (B.4) pN + pl = pt + pq � q: (B.52)
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and integrate first over the quark energyEq as in Eq. (B.7) and rewrited3pN2EN = Z dEN Æ �EN �qp2N +M2�2qp2N +M2 �(EN ) d3pN= Z dEN Æ �EN � �p2N +M2�� �(EN ) d3pN= Z dEN Æ �E2N � jq� plj2 �M2� �(EN ) d3q; (B.53)

where the last equality follows from changing the variable from pN to q = pN + pl,
and henced3pN to d3q, and the integration is over the RHN energyEN .

Again we choose an explicit coordinate system and use rotational invarianceq = jqj (0; 0; 1);pl = El (0; sin �; 
os �);pt = Et(
os� sin#; sin� sin#; 
os#): (B.54)

In Eq. (B.10) we have the modificationsjq� ptj2 = jqj2 + jptj2 � 2q � pt = jqj2 +E2t � 2jqjEt 
os#jq� plj2 = jqj2 + jplj2 � 2q � pl = jqj2 +E2l � 2 jqjEl 
os �: (B.55)

The matrix element in theses coordinates is still given in Eq. (B.11) and for the delta

function in Eq. (B.53) one gets:Æ �E2N � jq� plj2 �M2� = Æ �E2N � jqj2 �E2l + 2jqjEl 
os � �M2�= 12jqjEl Æ�
os � � E2l �E2N +M2 + jqj22jqjEl � : (B.56)

Following the same procedure as in Section B.1.1, we reduce the collision inte-

gral (B.50) toCS;s[fl�l℄ = 127�3E2l Z d 
os #d 
os � dEt dEN dq jMsj2 (B.57)� Æ�
os �� E2l �E2N +M + jqj22jqjEl � Æ 
os#� E2t � (El +EN �Et)2 + jqj22jqjEt !� �(l�l)s �fl�l; fN ; ft; tq��(EN ) � (Et) � (El +EN �Et) ;
with phase space element�(l�l)s �fl�l; fN ; ft; tq� = � fl�l eEt �1 + �eEl+EN � 1� fN�(1 + eEt) (eEl+EN + eEt) ; (B.58)
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using as usual energy conservation, and Fermi–Dirac statistics for the leptons and quarks.

In analogy to Section B.1.1, we further reduce the collisionintegral (B.57) to a sum

of six integrals with distinct integration ranges,CS;s[fl�l℄ = C(1)S;s + C(2)S;s + C(3)S;s + C(4)S;s + C(5)S;s + C(6)S;s; (B.59)

to be integrated numerically over two remaining degrees of freedom. To account for the

difference to Section B.1.1, we have to replace the integration overdEl by an integration

overdEN which leads to El � pN ) EN �qE2l +M2
and El � pN ) EN �qE2l +M2: (B.60)

The explicit integrals in Eq. (B.59) are:� First integralC(1)S;s = 3T26�3 E2l h2t M ~m1v2 Z pE2l +z2z dEN Z El+EN0 dEt �(l�l)s I(1)s ; (B.61)

whereI(1)s is given by Eq. (B.39).� Second integral withI(2)s given by Eq. (B.41):C(2)S;s = 3T26�3 E2l h2t M ~m1v2 Z 1pE2l +z2 dEN Z El+EN0 dEt �(l�l)s I(2)s : (B.62)� Third integral (I(3)s given by Eq. (B.43)):C(3)S;s = 3T26�3 E2l h2t M ~m1v2 Z pE2l +z2z dEN Z 12 (EN+yN )0 dEt �(l�l)s I(3)s : (B.63)� Fourth integral (I(4)s given by Eq. (B.45)):C(4)S;s = 3T26�3 E2l h2t M ~m1v2 Z pE2l +z2z dEN Z El+EN12 (2 El+EN�yN ) dEt �(l�l)s I(4)s :
(B.64)� Fifth integral (I(5)s given by Eq. (B.47)):C(5)S;s = 3T26�3 E2l h2t M ~m1v2 Z 1pE2l +z2 dEN Z 12 (2 El+ EN�yN )0 dEt �(l�l)s I(5)s :
(B.65)� sixth integral (I(6)s given by Eq. (B.49)):C(6)S;s = 3T26�3 E2l h2t M ~m1v2 Z 1pE2l +z2 dEN Z El+EN12 (EN+yN ) dEt �(l�l)s I(6)s : (B.66)
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B.2 t-channel

B.2.1 Right-handed neutrino

The collision integral for thet-channel process appearing in Eq. (4.1) is given byCS;t[fN ℄ = 12EN Z Yi=l;q;t dp3i(2�)32Ei (2�)4Æ4(pN + pq � pt � pl) jMtj2 �(N)t (fN ; fq; fl; ft) ;
(B.67)

with phase space factor�(N)t (fN ; fq; fl; ft) = [(1� fN )(1� fq)ftfl � fNfq(1� ft)(1 � fl)℄ ; (B.68)

and jMtj2 = 24h2t M ~m1v2 pNpl pqptt2 (B.69)

is the matrix element.

The reduction of the collision integral proceeds in the sameway as for the analogouss-channel collision integral in Section B.1. We use the momentumk � pN � pl = pq � pt; (B.70)

and integrate over the quark energy,Z d3pt2Et Æ4(pN + pq � pl � pt) = Z dEt d3 pt Æ (Et � jptj)2jptj �(Et) Æ(EN +Eq �El �Et)� Æ3 (pN + pq � pl � pt)= Æ (EN +Eq �El � jpN + pq � plj)2 jpN + pq � plj �(EN +Eq �El)= Æ (EN +Eq �El � jk+ pqj)2 jk+ pqj �(EN +Eq �El)= Æ �(EN +Eq �El)2 � jk+ pqj2� �(EN +Eq �El):
(B.71)

Similarly, we can rewrited3pl2El = Z dEl Æ (El � jplj)2jplj �(El) d3pl= Z dEl Æ �E2l � jplj2� �(El) d3pl= Z dEl Æ �E2l � jpN � kj2� �(El) d3k; (B.72)
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where the last equality follows from changing the variable frompl to k = pN �pl, and

henced3pl to d3k, and the integration is over the lepton energyEl.
As for the s-channel we stick to a specific coordinate systemk = jkj (0; 0; 1);pq = Eq (0; sin �; 
os �);pN = jpN j(
os � sin#; sin� sin#; 
os#); (B.73)

and obtain the following quantities:t = (pN � pl)2 = (pq � pt)2 = (EN �El)2 � jkj2;pNpl = � t�M22 ;pqpt = � t2 ;jk+ pqj2 = jkj2 + jpqj2 + 2k � pq = jkj2 +E2q + 2jkjEq 
os �;jk� pN j2 = jkj2 + jpN j2 � 2k � pN = jkj2 + jpN j2 � 2 jkj jpN j 
os#: (B.74)

The matrix element in these coordinates readsjMtj2 = 6h2t M ~m1v2 (EN �El)2 �M2 � jkj2(EN �El)2 � jkj2 : (B.75)

Averaging over the incoming RHN direction and integrating over all azimuthal angles

leads to the following 5-dimensional integral:CS;t[fN ℄ = 127�3EN pN Z d 
os#d 
os � dEq dEl djkj jMtj2� Æ 
os � � (EN +Eq �El)2 �E2q � jk2j2jkjEq ! Æ�
os#� E2l �E2N +M � jk2j2jkj jpN j �� �(N)t (fN ; fq; fl; ft) � (Eq) � (El) � (EN +Eq �El) ;
(B.76)

with �(N)t (fN ; fq; fl; ft) = � eEl+Eq ��1 + fN + eEN fN�(1 + eEl) (1 + eEq ) (eEl + eEl+Eq ) ; (B.77)

assuming thermal equilibrium for the standard model particles.

The two remaining angles# and� run in the range
os#; 
os � 2 [�1; 1℄; (B.78)
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and the integrals over
os � and 
os# in Eq. (B.76) can be readily performed. In the

process, integration limits are derived for the integral overk = jkj:
os � = 1 ) k 2 [EN �El; El �EN � 2Eq℄;
os � = �1 ) k 2 [�EN +El; 2Eq +EN �El℄;
os# = 1 ) k 2 [�El + pN ; El + pN ℄;
os# = �1 ) k 2 [El � pN ;�El � pN ℄; (B.79)

wherepN � jpN j, andk � jkj. Putting these conditions together we getsup [jEN �Elj; jEl � pN j℄ � k � inf [j2Eq +EN �Elj; El + pN ℄ : (B.80)

Since Et = EN +Eq �El > 0) �EN �Eq +El < 0) �EN � 2Eq +El < 0;
this reduces tosup [jEN �Elj; jEl � pN j℄ � k � inf [2Eq +EN �El; El + pN ℄ : (B.81)

Thus, the integration over
os � and
os# effectively gives rise to a combination of�
functions in the remaining3-dimensional integral. Together with existing� functions in

Eq. (B.76), we define
 � �(EN +Eq �El) � (2El � (EN � pN )) � (2Eq +EN �El � jpN �Elj)��(k � jEN �Elj) � (k � jpN �Elj) (B.82)��(El + pN � k) �(2Eq +EN �El � k)
to collectively denote all� functions appearing in the remaining integral. Note that we

have omitted writing out�(El)�(Eq), since positive particle energies are understood.

The functions�(2El � (EN � pN )) and �(2Eq +EN �El � jpN �Elj)
have been introduced to assure that the upper limit onk is always larger than the lower

limit.

Now we use the following relations to eliminate the absolutevalues1 = � (EN �El) + � (El �EN ) ; 1 = � (pN �El) + � (El � pN ) ; (B.83)
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and can now write
 = 
1 +
2 +
3 +
4, with:
1 = �(EN +Eq �El) � (EN �El) � (pN �El) � (2El � (EN � pN ))��(2Eq +EN �El � (pN �El)) � (El + pN � k)� �(2Eq +EN �El � k) � (k � (EN �El)) � (k � (pN �El))= � (pN �El) � (2El � (EN � pN )) � (3pN �EN )��(El + pN � k) � (2Eq +EN �El � k) � (k � (EN �El)) :
(B.84)

At this point we introduced�(3pN �EN ) to assure that2pN > EN � pN and used�(EN �El) � (pN �El) = � (pN �El) :
Further we have
2 = �(EN +Eq �El) � (EN �El) � (El � pN ) � (2El � (EN � pN ))��(2Eq +EN �El � (El � pN )) � (El + pN � k)� �(2Eq +EN �El � k) � (k � (EN �El)) � (k � (El � pN ))= � (EN �El) � (El � pN ) � (2El � (EN � pN ))��(2Eq +EN �El � (El � pN )) � (El + pN � k)� �(2Eq +EN �El � k) � (k � (EN �El)) � (k � (El � pN )) ; (B.85)


3 = �(EN +Eq �El) � (El �EN ) � (pN �El) � (2El � (EN � pN ))��(2Eq +EN �El � (pN �El)) � (El + pN � k)� �(2Eq +EN �El � k) � (k � (El �EN )) � (k � (pN �El)) ; (B.86)

and
4 = �(EN +Eq �El) � (El �EN ) � (El � pN ) � (2El � (EN � pN ))��(2Eq +EN �El � (El � pN )) � (El + pN � k)� �(2Eq +EN �El � k) � (k � (El �EN )) � (k � (El � pN ))= � (El �EN ) � (Eq � (El �EN )) � (2Eq � (2El �EN � pN ))� �(El + pN � k) � (2Eq +EN �El � k) � (k � (El � pN ))= � (El �EN ) � (2Eq � (2El �EN � pN )) � (El + pN � k)��(2Eq +EN �El � k) � (k � (El � pN )) : (B.87)

Here we used �(El �EN ) � (El � pN ) = � (El �EN ) :
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We see instantaneously that
3 gives no contributions since its�-functions lead to the

wrong conditionEN < El < pN .

In 
1 to
4 we encounter for the upper limit onk the function�(El + pN � k) � (2Eq +EN �El � k) :
With a short calculation El + pN 7 2Eq +EN �El2El �EN + pN 7 2Eq; (B.88)

follow the combinations�(2Eq +EN �El � k) � (2El �EN + pN � 2Eq) (B.89)

and �(El + pN � k) � (2Eq � (2El �EN + pN )) : (B.90)

So we can split the
-functions further up:

First
1:
1a = �(3pN �EN ) � (pN �El) � (2El � (EN � pN )) (B.91)��(2Eq � (2El �EN + pN )) � (k � (EN �El)) � (El + pN � k)
1b = �(3pN �EN ) � (pN �El) � (2El � (EN � pN )) (B.92)��(2El �EN + pN � 2Eq) � (k � (EN �El)) � (2Eq +EN �El � k) :
In 
2 the situation is slightly more involved since we have to careabout the lower limit

onk, finding�(k � (EN �El)) � (k � (El � pN)) � (EN �El) � (El � pN ) (B.93)= 8><>: �(k � (EN �El)) � (EN + pN � 2El) � (El � pN )+ � (k � (El � pN )) � (2El � (EN + pN )) � (EN �El) :
Using Eq. (B.93), we split
2 for the lowerk-limit into two parts
2;i = �(EN + pN � 2El) � (El � pN ) � (2El � (EN � pN ))��(2Eq � (2El �EN � pN )) � (El + pN � k)��(2Eq +EN �El � k) � (k � (EN �El)) (B.94)
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and
2;ii = �(EN �El) � (2El � (EN + pN )) � (2Eq � (2El �EN � pN ))� �(El + pN � k) � (2Eq +EN �El � k) � (k � (El � pN )) : (B.95)

In 
2;i we encounter �(El � pN ) � (2El � (EN � pN )) ;
leading with the conditions2pN 7 EN � pN to the two combinations
I2;i = �(3pN �EN ) � (El � pN ) � (EN + pN � 2El)��(2Eq � (2El �EN � pN )) � (El + pN � k)��(2Eq +EN �El � k) � (k � (EN �El))= � (3pN �EN ) � (El � pN ) � (EN + pN � 2El)��(El + pN � k) � (2Eq +EN �El � k) � (k � (EN �El)) (B.96)

and
II2;i = �(EN � 3pN ) � (2El � (EN � pN )) � (EN + pN � 2El)��(2Eq � (2El �EN � pN )) � (El + pN � k)��(2Eq +EN �El � k) � (k � (EN �El))= � (EN � 3pN ) � (2El � (EN � pN )) � (EN + pN � 2El)��(El + pN � k) � (2Eq +EN �El � k) � (k � (EN �El)) : (B.97)

Now we can use Eqs. (B.89) and (B.90) to specify the upper integration limits onk for
2:
I2;1a = �(3pN �EN ) � (El � pN ) � (EN + pN � 2El) (B.98)��(2Eq � (2El �EN + pN )) � (k � (EN �El)) � (El + pN � k)= � (3pN �EN ) � (El � pN ) � (EN + pN � 2El)��(k � (EN �El)) � (El + pN � k)
I2;ib = �(3pN �EN ) � (El � pN ) � (EN + pN � 2El) (B.99)��(2El �EN + pN � 2Eq) � (k � (EN �El)) � (2Eq +EN �El � k) :
and
II2;ia = �(EN � 3pN ) � (EN + pN � 2El) � (2El � (EN � pN )) (B.100)��(2Eq � (2El �EN + pN )) � (k � (EN �El)) � (El + pN � k)
II2;ib = �(EN � 3pN ) � (EN + pN � 2El) � (2El � (EN � pN )) (B.101)��(2El �EN + pN � 2Eq) � (k � (EN �El)) � (2Eq +EN �El � k) :
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Then with Eqs. (B.89) and (B.90) we split
2;ii to get
2;iia = �(EN �El) � (2El � (EN + pN )) � (2Eq � (2El �EN + pN ))��(2Eq � (2El �EN � pN )) � (k � (El � pN )) � (El + pN � k)= � (EN �El) � (2El � (EN + pN )) � (2Eq � (2El �EN + pN ))��(k � (El � pN )) � (El + pN � k) (B.102)
2;iib = �(EN �El) � (2El � (EN + pN )) � (2El �EN + pN � 2Eq) (B.103)��(2Eq � (2El �EN � pN )) � (k � (El � pN )) � (2Eq +EN �El � k) :
For
4 we use again directly Eqs. (B.89) and (B.90) for specifying the upper limit onk
4a = �(El �EN ) � (2Eq � (2El �EN � pN )) (B.104)��(2Eq � (2El �EN + pN )) � (k � (El � pN )) � (El + pN � k)= � (El �EN ) � (2Eq � (2El �EN + pN )) � (k � (El � pN )) � (El + pN � k)
4b = �(El �EN ) � (2Eq � (2El �EN � pN )) � (2El �EN + pN � 2Eq)��(k � (El � pN )) � (2Eq +EN �El � k) : (B.105)

Several of these equations are equal apart of the limit onEl, so we can write
1 = 
1a +
I2;ia +
II2;ia= f�(3pN �EN )� [� (pN �El) � (2El � (EN � pN )) + � (EN + pN � 2El) � (El � pN )℄+ � (EN � 3pN ) � (2El � (EN � pN )) � (EN + pN � 2El)g��(2Eq � (2El �EN + pN )) � (k � (EN �El)) � (El + pN � k)= f�(3pN �EN ) � (2El � (EN � pN )) � (EN + pN � 2El)+ � (EN � 3pN ) � (2El � (EN � pN )) � (EN + pN � 2El)g��(2Eq � (2El �EN + pN )) � (k � (EN �El)) � (El + pN � k)= � (2El � (EN � pN )) � (EN + pN � 2El)��(2Eq � (2El �EN + pN ))� (k � (EN �El)) � (El + pN � k) ;
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2 = 
1;b +
I2;ib +
II2;ib (B.106)= f�(3pN �EN )� [� (pN �El) � (2El � (EN � pN )) + � (EN + pN � 2El) � (El � pN )℄+ � (EN � 3pN ) � (2El � (EN � pN )) � (EN + pN � 2El)g��(2El �EN + pN � 2Eq)� (k � (EN �El)) � (2Eq +EN �El � k)= f�(3pN �EN ) � (2El � (EN � pN )) � (EN + pN � 2El)+ � (EN � 3pN ) � (2El � (EN � pN )) � (EN + pN � 2El)g��(2El �EN + pN � 2Eq)� (k � (EN �El)) � (2Eq +EN �El � k)= � (2El � (EN � pN )) � (EN + pN � 2El)��(2El �EN + pN � 2Eq)� (k � (EN �El)) � (2Eq +EN �El � k) ;
3 = 
2;iia +
4a (B.107)= [� (EN �El) � (2El � (EN + pN )) + � (El �EN )℄��(2Eq � (2El �EN + pN )) � (k � (El � pN )) � (El + pN � k)= � (2El � (EN + pN ))��(2Eq � (2El �EN + pN )) � (k � (El � pN )) � (El + pN � k) ;
and finally
4 = 
2;iib +
4b (B.108)= [� (EN �El) � (2El � (EN + pN )) + � (El �EN )℄��(2El �EN + pN � 2Eq) � (2Eq � (2El �EN � pN ))��(k � (El � pN )) � (2Eq +EN �El � k)= � (2El � (EN + pN ))��(2El �EN + pN � 2Eq) � (2Eq � (2El �EN � pN ))��(k � (El � pN )) � (2Eq +EN �El � k) :
Summing all these terms up, we obtain
 =X� 
� = 
1 +
2 +
3 +
4 (B.109)

and the collision integral (B.76) can equivalently be written asCS;t[fN ℄ =X� 127�3EN jpN j Z dEq dEl djkj jMtj2 � (fN ; fq; fl; ft) 
�: (B.110)
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As it turns out, there are two possible lower limits for thek-integration:kmin;1 = EN �El andkmin;2 = El � pN . Here, a comment on the infrared cut-off is

in order. In the integrated picture, a divergence occurs in the integral overt at t = 0,

whose regulation requires the introduction of a Higgs mass in the propagator, i.e.,jMtj2 / 1=t ! jMtj2 / 1=(t � m2�). In the full treatment, the matrix element has

the form jMtj2 / 1=((EN �El)2 � jk2), so that the equivalent divergence occurs in

the integration overk at k = EN � El, i.e., atk = kmin;1. This divergence can be

avoided simply by modifying by hand the integration limit
Rkmin;1 ! Rkmin;1+m� . There

are no changes for those integrals withkmin = kmin;2.
It is also possible to regulate the divergence by introducing a Higgs mass in the

propagator, such as in the integrated picture. This modifiesthe integration overk not only

forEN > El (i.e.,kmin = kmin;1), but also forEl > pN (i.e.,kmin = kmin;2). In physical

terms this procedure corresponds to giving the Higgs particle a mass whose magnitude

can vary from zero up to possible thermal contributions, i.e., 0 � m�=M . 0:4T=M ,

wherem�(T ) � 0:4T is the thermal Higgs mass [105]. In the temperature regime

relevant to leptogenesis, electroweak symmetry is unbroken and therefore leptons are

massless.

Since we have so far not included thermal corrections in the present work, for con-

sistency we prefer not to use the thermal Higgs mass. Furthermore, in a full thermal

treatment, RHN decay into a lepton and Higgs pairs become kinematically forbidden at

high enough temperatures, and the decay of a Higgs particle into a neutrino and lepton

pair becomes viable [105]. Thus, in addition to determiningthe value of the infrared cut-

off there is also the question of its interpretation. In viewof these issues, we choose to

deal with the infrared divergence using the simpler method of cutting off the integration

overk atkmin = kmin;1 +m�, with ah = m�=M = 10�5. In turn one has to addah in

the corresponding conditions forEq andEl, where the changes inkmin;1 are propagated.

After integrating over
os � and
os#, the original integral (B.76) is now split into

four parts

CS;t[fN ℄ = C(1)S;t + C(2)S;t + C(3)S;t + C(4)S;t ; (B.111)

where the constituent integrals are as follows:



96 App. B: Reduction of the scattering collision integrals� First integral (with~k � k=T ):C(1)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 12 (EN+yN )12 (EN�yN+ahz) dEl Z 12 (2El�EN+yN )12ahz dEq �(N)t I(1)t ;
(B.112)I(1)t = Z 2Eq+EN�ElEN�El+ahz d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 2 (EN � El) (2Eq � ahz)� z2 log h (EN+Eq�El) ahzEq(2(EN�El)+ahz)i2 (EN � El) :� Second integral:C(2)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 12 (EN+yN )12 (EN�yN+ahz) dEl Z 112 (2El�EN+yN ) dEq �(N)t I(2)t ;
(B.113)I(2)t = Z El+yNEN�El+ahz d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 2 (EN � El) (2El � EN + yN � ahz)� z2 �log h �ahz (EN+yN )(EN�2El�yN ) (2(EN�El)+ahz)i�2 (EN � El) :� Third integral:C(3)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 112 (EN+yN ) dEl Z 12 (2El�EN+yN )12 (2El�EN�yN ) dEq �(N)t I(3)t ;
(B.114)I(3)t = Z 2Eq+EN�ElEl�yN d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 2 (EN � El) (EN + yN + 2 (Eq � El)) + z2 �log h� �Eq(EN�yN )(EN+Eq�El) (EN�2El+yN )i�2 (EN � El) :� Fourth integral:C(4)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 112 (EN+yN ) dEl Z 112 (El�EN+yN ) dEq �(N)t I(4)t ;
(B.115)I(4)t = Z El+yNEl�yN d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 4 (EN � El) yN + z2 log h (EN�yN ) (EN�yN�2El)(EN+yN ) (EN+yN�2El)i2 (EN � El) :
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B.2.2 Lepton asymmetry

Thet-channel collision integral for the lepton asymmetry evolution isCS;t[fl�l℄ = 12El Z Yi=N;q;t dp3i(2�)3 2Ei (2�)4Æ4(pl + pq � pN � pt)jMtj2�(l�l)t �fl�l; ft; fN ; fq� ;
(B.116)

with �(l�l)t �fl�l; ft; fN ; fq� = fl�l (fq (ft + fN � 1)� ftfN) : (B.117)

The matrix element is the same as for the RHN given in Eq. (B.69), and we use the

momentum k � pl � pN = pq � pt; (B.118)

and Eq.(B.5) to integrate over the top-energy. We rewrite the integration over now the

RHN energy, respectively:Z d3pt2Et Æ4(pl + pq � pN � pt) = Z dEt d3 pt Æ (Et � jptj)2jptj �(Et) Æ(El +Eq �EN �Et)� Æ3 (pl + pq � pN � pt)= Æ (El +Eq �EN � jpl + pq � pN j)2 jpl + pq � pN j �(El +Eq �EN )= Æ (El +Eq �EN � jk+ pqj)2 jk+ pqj �(El +Eq �EN )= Æ �(El +Eq �EN )2 � jk+ pqj2� �(El +Eq �EN ):
(B.119)

Similarly, we can rewrited3pN2EN = Z dEN Æ �EN �pjpN j2 +M2�2pjpN j2 +M2 �(EN ) d3pN= Z dEN Æ �E2N � jpN j2 �M2� �(EN ) d3pN= Z dENÆ �E2N � jpl � kj2 �M2� dEN d3k; (B.120)

where the last equality follows from changing the variable from pN to k = pl � pN ,

and henced3pN to d3k, and the integration is over the RHN energyEN .
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We specify an explicit coordinate systemk = jkj (0; 0; 1); (B.121)pq = Eq (0; sin �; 
os �);pl = El (
os� sin#; sin� sin#; 
os#);
to get the absolute values of the momentum differences (we only quote quantities that

differ from that in Eq. (B.74) )jk+ pqj2 = jkj2 + jpqj2 + 2kpq = jkj2 +E2q + 2jkjEq 
os �jpl � kj2 = jkj2 + jplj2 � 2kpl = jkj2 +E2l � 2 jkjEl 
os# (B.122)

and the delta-functions:Æ �(El +Eq �EN )2 � jk+ pqj2� = Æ �(El +Eq �EN )2 �E2q � jkj2 � 2jkjEq 
os ��= 12jkjEq Æ 
os � � (El +Eq �EN )2 �E2q � jkj22jkjEq !Æ �E2N �M2 � jpl � kj2� = Æ �E2N �M2 �E2l � jkj2 + 2jkjEl 
os#�= 12jkjEl Æ�
os#+ E2N �E2l �M2 � jkj22jkjEl � :
(B.123)

Following the method of the previous sections, we reduce theintegral (B.116) toCS;t[fl�l℄ = 127�3E2l Z d 
os #d 
os � dEq dEN djkj jMtj2� Æ 
os � � (El +Eq �EN )2 �E2q � jk2j2jkjEq ! Æ�
os#+ E2N �E2l �M2 � jk2j2jkjEl �� �(l�l)t �fl�l; ft; fN ; fq� �(Eq) � (EN ) � (El +Eq �EN ) ;
(B.124)

with �(l�l)t �fl�l; ft; fN ; fq� = fl�l eEq �eEl (�1 + fN )� eEN fN�(1 + eEq ) (eEN + eEq+El) (B.125)

as the phase space factor.

In analogy to Section B.2.1, we integrate over
os � and
os# to get the integration

ranges onk, but compared to Section B.1.2 here the situation is more involved.

Again, the two angles# and� run in the range
os#; 
os � 2 [�1; 1℄; (B.126)
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and the explicit derived integration limits for the integral overk = jkj are:
os � = 1 ) k 2 [El �EN ; EN �El � 2Eq℄;
os � = �1 ) k 2 [EN �El; 2Eq +El �EN ℄;
os# = 1 ) k 2 [El � pN ; El + pN ℄;
os# = �1 ) k 2 [�El + pN ;�El � pN ℄; (B.127)

wherepN � jpN j, andk � jkj. Putting these conditions together and demandingk � 0
andEt � 0 we getsup [jEN �Elj; jEl � pN j℄ � k � inf [2Eq �EN �EN ; El + pN ℄ : (B.128)

Compared to Eq. (B.81) one of the upper integration limits onk has changed since we

interchangedEl andEN in the final and initial state, respectively. Together with existing� functions in Eq. (B.124), we now define
 � �(El +Eq �EN ) � (2El � (EN � pN )) � (2Eq +El �EN � jpN �Elj)��(k � jEN �Elj) � (k � jpN �Elj) (B.129)��(El + pN � k) �(2Eq +El �EN � k);
to collectively denote all� functions appearing in the remaining integral. Note again,

that we have omitted writing out�(EN )�(Eq), since positive particle energies are un-

derstood. The functions�(2El � (EN � pN )) and �(2Eq +El �EN � jpN �Elj)
have been introduced to assure that the upper limit onk is always larger than the lower

limit.

Heron, the reduction of Eq. (B.129) goes in analogy to Section B.2.1 with some modifi-

cations:� �(2Eq +El �EN � jpN �Elj) reduces to�(2Eq � (EN � pN )) ; (B.130)

wheneverEl > pN .� For the upper limit we encounter now�(El + pN � k) � (2Eq +El �EN � k) ; (B.131)
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leading to the combinations�(2Eq +El �EN � k) � (EN + pN � 2Eq) (B.132)

and �(El + pN � k) � (2Eq � (EN + pN )) : (B.133)� With the above modifications we arrive again at for cases for
1 � 
4. Now, we

have to change the integration limits onEl to limits onEN , where we find�(2El � (EN � pN )) � (EN + pN � 2El) = ��4E2l +M24El �EN�
(B.134)

and �(EN + pN � 2El) = ��EN � 4E2l +M24El � : (B.135)

At this point we can write down the four parts of
� =P� = 
1 +
2 +
3 +
4:
1 =��EN � 4E2l +M24El � �(2Eq � (EN + pN ))��(k � (EN �El)) � (El + pN � k) ; (B.136)
2 =��EN � 4E2l +M24El � �(Eq � (EN �El)) � (EN + pN � 2Eq)��(k � (EN �El)) � (2Eq +El �EN � k) ; (B.137)
3 =��4E2l +M24El �EN� �(2Eq � (EN + pN ))��(k � (El � pN )) � (El + pN � k) (B.138)

and 
4 =��4E2l +M24El �EN� �(2Eq � (EN � pN )) � (EN + pN � 2Eq)��(k � (El � pN )) � (El + pN � k) : (B.139)

As in Section B.2.1 we cut-off the integrand inC(1)S;t andC(2)S:t by addingah in the lower

integration limit ofk ( modifying the limits ofEq andEN accordingly) .

The collision integral (B.124) can then equivalently be written asCS;t �fl�l� =X� 127�3E2l Z dEq dEN djkj jMtj2 � (fl; fq; fN ; ft) 
�: (B.140)
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The four integrals have again to be integrated numerically and the summed up to giveCS;t[fl�l℄ = C(1)S;t + C(2)S;t + C(3)S;t + C(4)S;t ; (B.141)

with:� First integral:C(1)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 1(2El�ahz)2+z22(2El�ahz) dEN Z 12 (EN+yN )EN�El+ 12ahz dEq �(l�l)t I(1)t ;
(B.142)I(1)t = Z 2Eq+El�ENEN�El+ahz d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= � 2 (EN � El) (2 (EN � Eq � El) + ahz) + z2 log h Eq ahz(Eq�EN+El) (2(EN�El)+ahz)i2 (EN � El) :� Second integral:C(2)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 1(2El�ahz)2+z22(2El�ahz) dEN Z 112 (EN+yN ) dEq �(l�l)t I(2)t ;
(B.143)I(2)t = Z El+yNEN�El+ahz d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 2 (EN � El) (2El � EN + yN � ahz)� z2 log h (EN+yN ) ahz(2El�EN+yN ) (2(EN�El)+ahz)i2 (EN � El) :� Third integral:C(3)S;t = 3T26�3 ENyN h2t M ~m1v2 Z 4E2l +z24Elz dEN Z 12 (EN+yN )12 (EN�yN ) dEq �(l�l)t I(3)t ;
(B.144)I(3)t = Z 2Eq+El�ENEl�yN d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 2 (EN � El) (2Eq � EN + yN) + z2 log h (EN�Eq�El) (EN�yN )Eq (EN�2El+yN ) i2 (EN � El) :
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(B.145)I(4)t = Z El+yNEl�yN d~k (EN � El)2 � z2 � ~k2(EN � El)2 � ~k2= 4 (EN � El) yN + z2 log h (EN�2El�yN ) (EN�yN )(EN�2El+yN ) (EN+yN )i2 (EN � El) :



Appendix C

Evolution of the top Yukawa

coupling

To determine the gauge and Yukawa couplings at some energy scale� � log (T=mZ),
we use the renormalisation group equationdg2id� = 
18�2 g4i ; (C.1)

wherei denotes the corresponding gauge group of the Standard Model. The constants

for the gauge couplings are(
1; 
2; 
3) = �4110 � 53 ; 169 ;�7� : (C.2)

At one loop the solution of (C.1) for the gauge couplings yieldsgi =vuut g2i (� = 0)1� g2i (�=0)8�2 �: (C.3)

Neglecting contributions from the bottom and charm Yukawa couplings, the renormal-

ization group equation for the top Yukawa coupling at one loop is given by [150]h2td� = 
t8�2 h2t �h2t � 1754 � 53 g21 � 12 g22 � 169 g23� : (C.4)

The evolution ofht from the electroweak scale up to the GUT scale is shown in Fig-

ure 4.8.

A detailed study of the evolution of quantities relevant forleptogenesis can be found

in [151].
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