LEARNING TO GENERATE ARTIFICIAL FOVEA
TRAJECTORIES FOR TARGET DETECTION

(International Journal of Neural Systems, 2(1 & 2):135-141, 1991. Figures not included!)

JURGEN SCHMIDHUBER *
RUDOLF HUBER
Institut fir Informatik
Technische Universitat Munchen
Arcisstr. 21, 8000 Minchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Abstract

It is shown how ‘static’ neural approaches to adaptive target detection can be replaced by a more
efficient and more sequential alternative. The latter is inspired by the observation that biological
systems employ sequential eye-movements for pattern recognition. A system is described which
builds an adaptive model of the time-varying inputs of an artificial fovea controlled by an adaptive
neural controller. The controller uses the adaptive model for learning the sequential generation of
fovea trajectories causing the fovea to move to a target in a visual scene. The system also learns to
track moving targets. No teacher provides the desired activations of ‘eye-muscles’ at various times.
The only goal information is the shape of the target. Since the task is a ‘reward-only-at-goal’ task ,
it involves a complex temporal credit assignment problem. Some implications for adaptive attentive
systems in general are discussed.

1 INTRODUCTION

We study an aspect of adaptive vision with neural networks which has not been explored in this general
form before: The adaptive control of sequential physical fovea-movements for target detection.

Consider the following target detection task: A two-dimensional object may be arbitrarily rotated
and translated on a pixel plane consisting of many pixels. Learn to give the position and the orientation
of a predefined detail of the object (the target).

Now consider the naive ‘neural’ solution to this task: By providing a huge number of training
examples, train a feed-forward network with many input units (typically one for each pixel), many
hidden units and many (typically millions of) connections to emit a representation of the position and
the orientation of the target.

The contribution of this paper is a system for target detection which can be more efficient, more
sequential, but also more complex than the naive approach. It is inspired by the observation that
biological systems employ sequential fovea movements for target detection. The system is capable of
‘active perception” At a given time it can have an influence on what to perceive next. It learns to
produce sequences of fovea movements (rotations and translations) which lead the high-resolution part
of an artificial fovea from arbitrary starting points in the environment of a randomly placed object to a
predefined detail of the object (the externally defined target). In particular, we show how techiques for
adaptive neuro-control can be used for learning target detection without an informed teacher (the task is

*Research supported by a scholarship from SIEMENS AG

a ‘reward-only-at-goal’ task). The system solves its target detection task solely by being given the shape
of the target, but without being told how to get there. It learns to focus on those domain-dependent parts
of the visual scene which are relevant for the target detection process. The system is efficient in the
sense that it uses only a fraction of the input units and connections of the naive approach, still allowing
maximal resolution to be applied to each part of the pixel plane.

The remainder of this paper is structured as follows: First we describe and motivate our 2-network
approach for solving the temporal credit assignment problem associated with the target detection task.

Then experiments with target detection problems are described. It is demonstrated that the system
can discover (in an unsupervised manner) target-directed trajectories (sequences of fovea translations
and rotations) by learning to sequentially focus on relevant cues in the visual scene. As a by-product,
the system learns translation and rotation invariance, as well as target tracking. It is demonstrated that
an imperfect adaptive model of the environmental dynamics can contribute to perfect solutions. It is
also demonstrated that making a sequential task out of a static one can be very efficient. Furthermore,
a method for parallel on-line learning of both networks is experimentally shown to be feasible.

Finally implications for more general attentive systems are discussed.

2 THE SYSTEM

Subsection 2.1 gives the rationale behind our system. Subsection 2.2 provides the formal details.

2.1 Outline and Motivation of the System

There is an artificial movable fovea with predefined ‘receptive fields’. At the beginning of a target
detection process the fovea is placed somewhere on a pixel plane. The artificial fovea is coarsely modeled
after biological foveas: There are comparatively many comparatively small receptive fields near the
center of the fovea. There are comparatively few comparatively large receptive fields in the periphery of
the fovea. See figure 1.

Multiple resolutions offer a potential for applying maximal resolution to each part of the pixel plane
by simply moving the fovea center there. The low-resolution parts of the fovea are useful for detecting
coarse structure in the visual scene. The high-resolution parts are useful for detecting details. Later
on we will show that the low-resolution parts may trigger system actions which lead the high-resolution
parts of the fovea to potentially relevant parts of the plane. These actions may be viewed as attention
guiding actions.

At each time step of a multi-step target detection process from each receptive field we extract one
input value for our learning system. Such an input value is simply the average value of the pixels
currently covered by the corresponding field (there is no sophisticated pre-processing).

The goal is adaptive target detection. In our case the targets are pre-defined details of 2-dimensional
objects which can be arbitrarily translated and/or rotated on the pixel plane. In the beginning of each
target detection task the fovea is placed on a randomly chosen part of the pixel plane. Then there is a
limited number of time steps during which the system can generate a finite sequence of fovea movements.
At the end of the target detection process the fovea should be placed directly above the target (showing
the correct rotation). The final position and rotation of the fovea represent the desired information.
During training, the only goal-specific information is given by predefined desired input values which
correspond to those input values obtained by placing the fovea directly on the target. The final input
values should match the desired input values. No informed teacher provides knowledge about useful
fovea movements, making the task is a ‘reward-only-at-goal’ task.

The first network of our learning system is called the controller C'. The input values provided by
the retina are the inputs of C'. At each time step of a multi-step target detection process C' produces
outputs (actions) which serve to control movements of the artificial retina on the pixel plane. In general,
a movement causes new input values. This kind of feedback is called ezternal feedback. See figure 2.

The problem is to find a mapping from retina inputs to control actions making the system find the
target at the end of each finite target detection process. Note that we are not looking for a system that

finds the shortest path from the current position of the retina to the target. In fact, with many practical
problems the current fovea input will not provide enough information for determining the direction to
the target. In such cases we want the system to learn to generate moves causing new inputs that allow
to continue with ‘more informed’ moves. This can be interpreted as active perception and attention
shifting.

Our desired mapping has to be implemented by C'. Note that C' cannot be trained by simple
supervised learning. Simple supervised learning would require an external teacher providing the desired
output actions at each time step. In our case, however, the only external information is about ‘how
the target looks’. There only is one final desired input. (Control theory calls this a ‘terminal control
problem’.)

From the difference between the desired and the actual input at the end of a trajectory we somehow
would like to generate gradient information for the output units of the controller. This would require to
somehow propagate errors from the input units back ‘through the environment’, which is not possible.
The remedy 1s to consider C’s output units as hidden units of a larger dynamic recurrent network
obtained by the following procedure:

1. Introduce an additional model network M (with a separate learning procedure) for ‘bridging the
gap’ between the outputs of the controller and its inputs at the next time step: M is trained to emulate
the visible environmental dynamics by predicting the next input, given the current controller input and
output. See figure 2. M serves to approximate the environmental dynamics by a differentiable mapping
which will be used for the temporal credit assignment process of C'. (We will see that M need not be a
perfect predictor to allow C' to discover perfect solutions.) No informed teacher is required for M: M
can be trained by generating random fovea movements and observing the consequences.

2. Now identify C’s output units with the corresponding input units of M and identify M’s ouput
units with the corresponding input units of C'. See figure 3. Gradient information for the weights of
the control network now can be back-propagated from M’s final prediction through the model network
down into the control network and back through the model network etc. according to the ‘unfolding in
time’ algorithm [18] [9]. An important difference to conventional ‘back-propagation through time’ (with
a single recurrent network) is that the weights of the model network remain fixed during this procedure.

In different contexts and with different degrees of generality the basic principle for credit assignment
by system realization and ‘gradient descent through a frozen model network’has been previously described
by Werbos [19], Jordan [2], Munro [5], Robinson & Fallside [8], Nguyen & Widrow [6], and Schmidhuber
[10] [11] [15].

The only work by other authors that also addresses the problem of learning active perception in
reactive environments (and that we are aware of) is the work of Whitehead and Ballard [20]. Their
system uses adaptive actions that can bind ‘markers’ to certain features of an environmental state.
Markers dynamically mask or emphasize inputs from the visible environment. This is analogous to our
fovea-guiding actions which dynamically change the input such that certain environmental details become
visible, while others disappear. With Whitehead and Ballard’s system the learning of active perception
is based on an adaptive control technique for delayed reinforcement learning called ‘Q-learning’ [16].

Our approach implements an adaptive control technique for ‘reward-only-at-goal’ tasks which is quite
different from those reinforcement learning control architectures used by Whitehead and Ballard. Our
approach 1s gradient-based. It tries to provide an error gradient for the controller outputs by propagating
the final input error through time-varying instances of a differentiable approximation of the environment
(namely the model network).

If objects in a visual scene may occupy random positions then it will be impossible for the model
network to predict exactly the future fovea inputs from previous ones. Unlike with e.g. the ‘truck backer
upper’ [6] both C" and M never ‘see’ the complete state of the environment, but only some local details.
But this is what active perception is good for: The focus of attention should be shifted to parts of
the scene allowing to acquire more detailed (domain-dependent) information about how to go on in the
target detection process. The main task of the model network is to help the controller to move the
fovea into regions of the plane which allow to continue with more informed moves. (Although one can
not exactly predict what one will see after moving one’s eyes to the door, one is setting the stage for

additional eye-movements that help to recognize an entering person.) If the things one attends to never
provided unpredicted information, the concept of attention would make no sense. One might say that
if the situation was such that the model network could be trained to always make perfect predictions,
there would be no need for a model network. In that case a single network would be able to store all
information about the environment. Thus for all interesting cases the model network necessarily has to
remain imperfect.

So unlike with the ‘truck backer upper’ problem [6] it is not intended to make M a perfect predictor
whose output could replace the input from the environment (in that case not much would be gained
compared to the static approach to target detection). But, an imperfect model network still can capture
enough of the environmental dynamics to allow the controller to learn perfect solutions, as will be seen
in the experimental section. The reason is: [t suffices if the inner products of the approzimated gradients
(based on an inaccurate model) for C' and the true gradients (according to a hypothetical perfect model)
are always positive (see also [2]). Even if these inner products are not always positive but only ‘in most
cases’, performance improvement can be expected.

2.2 Formal Details

In the comparatively simple case considered here; the controller C' is a standard back-propagation net-
work. There are discrete time steps. Each fovea trajectory involves k discrete time steps 1 ... k. At
time step ¢ of trajectory p, C’s input is the real-valued vector z,(t) which is determined by sensory
perceptions from the artificial ‘fovea’. C’s output at time step t of trajectory p is the vector ¢,(t). At
each time step ¢ motoric actions like ‘move fovea left’, ‘rotate fovea’ are based on ¢,(t). The actions
cause a new input z,(¢ + 1). The final desired input dpf;, of the trajectory p is a predefined activation
pattern corresponding to the target to be found in a static visual scene. The task is to sequentially
generate fovea trajectories such that for each trajectory p d,pin matches z,(k). The final input error
eprin at the end of trajectory p (externally interrupted at time step k) is

eppin = (dpgin — 2p (k)T (dpgin — 2 (k).

Thus ep¢ip 15 determined by the differences between the desired final inputs and the actual final inputs.

In order to allow credit assignment to past output actions of the control network, we first train the
model network M (another standard back-propagation network) to emulate the visible environmental
dynamics. This is done by training M at a given time to predict C’s next input, given the previous
input and output of C'. The following discussion refers to the case where both M and C'learn in parallel.
In some of the experiments below we use two separate training phases for M and C'. However, the
modifications are straight-forward and mainly notational.

M’s input vector at time ¢ of trajectory p is the concatenation of ¢,(t) and x,(¢). M’s real-valued
output vector at time ¢ of trajectory p is my(t), where | my(t) |=| z,(¢) |. (Here | 2 | is the dimension
of #, M has as many output units as there are input units for C'.) m,(¢) is M’s prediction of z,(t + 1).
The error of M’s prediction at time 0 < ¢ < k of trajectory p is

Ey(t) = (ap(t +1) = mp(0)" (xp(L + 1) = mp(1)).
M’s goal is to minimize »_ , Ey(t), which is done by conventional back-propagation [17][7][4][9]:

03 Ep(t)
M oW
Here Wiy is M’s weight vector, AWy its change caused by the back-propagation procedure, and «py
is M’s constant learning rate. (In the experiments described below we will deviate from pure gradient
descent by changing M’s weights after each time step of each trajectory.)
(s training phase is more complex than M’s. It is assumed that Zp epfin 18 a differentiable function
of W¢, where W is C’s weight vector. To approximate

93 p epfin
oWe

AWJ\E = —«

it is assumed that M with fired Wyr can substitute the environmental dynamics. As described below, M
is used to approximate the desired partial derivative, but only C’s weights are allowed to change, Wy,
remains fixed. The ‘unfolding in time’ algorithm [9][18] is applied to the recurrent combination of M
and C (figure 3) to compute

a2 = e Y (2 (4 i)

Here AWe is We's increment caused by the back-propagation procedure, and «¢ is the learning
rate of the controller. Note that the differences between target inputs and actual final inputs at the end
of each trajectory are used for computing error signals for the controller. We do not use the differences
between desired final inputs and predicted final inputs.

To apply the ‘unfolding in time’ algorithm [9][18] to the recurrent combination of M and C, do the
following:

For all trajectories p:

1. During the activation spreading phase of p, for each time step t of p create a copy of C (called
C(t)) and a copy of M (called M(t)).

2. Construct a large ‘unfolded’ feed-forward back-propagation network consisting of 2k sub-modules
by doing the following:

2.a) Fort > 1 replace each input unit u of C(t) by the unit in M(t —1) which predicted u’s activation.

2.b) Fort > 1: Replace each input unit of M(t) whose activation was provided by an output unit u
of C(t) by u.

3. Propagate the difference (dppin — xp(k)) back through the entire ‘unfolded’ network constructed in
step 2. Change each weight of C' in proportion to the sum of the partial derivatives computed for the
corresponding k connection copies in the unfolded network. Do not change the weights of M.

Since the weights remain constant during the activation spreading phase of one trajectory, the prac-
tical algorithm used in the experiments does not really create copies of the weights. It 1s more efficient
to introduce one additional variable for each controller weight: This variable i1s used for accumulating
the corresponding sum of weight changes. During trajectory execution, it is convenient to push the
time-varying activations of the units in M and C' on stacks of activations, one for each unit. During the
back-propagation phase these activations can be successively popped off for the computation of error
signals.

2.3 Dynamic Equilibria Through the Environment

Since the task is to stop the fovea as soon as a certain detail of the environment is focussed, one can draw
an interesting analogy to static equilibrium networks (like e.g. the Hopfield network, or the Boltzmann
machine). To see this, consider the whole combined system consisting of retina, controller, and pixel
plane: A given weight vector for C' together with a given visual scene defines an ‘energy landscape’ where
the attractors should correspond to solutions for the target detection task.

The main difference to conventional equilibrium networks is the fact that the dynamic equilibrium
corresponding to a certain attractor involves external feedback. A mathematical analysis of such energy
landscapes seems to be difficult, since it has to take domain-dependent details of the environment into
account.

3 EXPERIMENTS

3.1 Target Detection Without Rotations

Consider again figure 1. A visual scene was made of a dark object on a white background which was
placed on a 512 x 512 pixel field. Instead of using hundredthousands of input units (as in a straight-
forward inefficient static approach) only 40 input units for C' were employed. These were sitting on the
fovea (a two-dimensional artificial retina) which was controlled by the activations of four output units of
the control network: There was one output unit for each of the directions ‘up’, ‘down’, ‘left’, and ‘right’.
At each time step the activation of each output node was mapped (by a multiplication operation) to the
interval between 0 pixels and 20 pixels. The result was interpreted as the length of a vector pointing
in the corresponding direction. A move was computed by adding the four vectors. The fovea diameter
was about equal to the object size. Figure 1 shows a typical visual scene and the receptive fields of the
40 input units. At a given time step the activation of an input unit was computed by simply averaging
the values of the pixels (black = 1, white = 0) covered by its receptive field. All non-input units in the
system employed the logistic activation function f(z) = % M had a layer of 40 + 4 = 44 input
units, a layer of 40 hidden units, and a layer of 40 output units. C' had a layer of 20 hidden units.
Both ¢ and M were fully forward-connected. Unlike with the more complicated situations described
in [8][12][10][11] we did not allow internal feedback within C' or M. In the beginning all weights were
randomly initialized between -0.1 and 0.1. Both a¢ and aj; were set equal to 0.1.

With this experiment, there were two separate training phases for M and C'. First M was trained:
For 50000 training cycles the fovea was randomly placed in the environment of the object, and a move
was generated according to a uniform distribution of possible controller outputs. As mentioned above,
we deviated from ‘real’ gradient descent by changing M’s weights after each training cycle. After the
training phase M’s average error was about 10 percent. Now M’s weights were fixed and C’s training
phase (involving 20000 ‘trials’) began.

In the beginning of each ‘trial” the object occupied a randomly chosen position in the pixel field.
Again the fovea was randomly placed near the object such that the latter was partially overlapped by
some of the receptive fields of the input units (figure 1). Then C' generated a fovea trajectory. Whenever
the fovea left the pixel plane its receptive fields received ‘white’ zero input. C"s final input error was
determined as described above, and the ‘unfolding in time’ algorithm was applied. During training &
was set equal to 5 (this corresponds to 5 (24 2) = 20 ‘layers’ in the ‘unfolded’ network). After training,
50 time steps per trajectory were allowed.

The system described above was able to learn (without a teacher) correct sequences of fovea move-
ments although the model network often made erroneous predictions. (The precondition for a successful
trajectory was a partial overlap between the area covered by the object and the area covered by the
‘retina’ in the beginning of some trajectory.) At the end of a successful trajectory the fovea used to have
moved towards the target part of the object. (In figure 4 the fovea center at some time step is given by
the center of some arrow.) The accuracy was nearly perfect: In most cases the difference between the
desired position and the actual position was not greater than one or two pixels.

Note that the fovea typically did not find the shortest path to the target. It could not, because the it
saw just a part of the scene and usually did not receive enough information to determine the direction
to the target. Instead it often developed a preference for edges. This is presumably due to the fact that
with many of our training objects it is a good strategy to follow the outer boundary line until a new
visual cue comes into sight.

Each of the 50-steps trajectories depicted in the figures took about one second real time on a SUN
SPARC station (including graphics output). Using a fully parallel approach for solving similar target
detection problems (by considering all pixels at one single time step) would require orders of magnitude
more execution time (and probably much more training cycles for solving the problem of translation
invariance, however, due to limited computer time we were not able to test this experimentally).

3.2 One Network for Various Targets

By providing an additional constant controller input which remains time invariant during the generation
of some fovea trajectory, various targets can be specified for various trajectories.

The number of C’s input units was doubled: For each original input unit there was another input
unit whose constant activation defined the desired activation at the end of a fovea trajectory (the goal).
(This goal-defining feature is also relevant for ‘higher-level’ sub-goal generating processes to be addressed
later.) M remained unchanged, the same parameters as above were used for the training phase.

The controller was able to learn to look for parts of a scene which matched the time tnvartant input.
See figure 5 for an illustration of trajectories leading to different targets in the same scene.

3.3 Target Detection Including Rotations

Two additional output units for C' were introduced for controlling fovea rotations (around the fovea
center), one for each of the directions ‘clockwise’ and ‘counter-clockwise’. Thus the number of M’s
input units increased to 46. At a given time, a clockwise rotation was computed by mapping (through
a multiplication operation) the current activation of the first additional output unit to a rotation angle
between 0 and 50 degrees. The counter-clockwise rotation was computed by mapping the current ac-
tivation of the second additional output unit to a rotation angle between -50 and 0 degrees. The final
rotation was the sum of both rotations. The same initialization conditions and learning rates as with
the translation experiments were employed. As it was expected, the learning of fovea trajectories which
include rotations proved to be more difficult than the learning of pure translation sequences. 100000
training examples for M and 20000 training trajectories for ' were employed.

Consider figures 6-9: In the beginning of some trajectory both the fovea and the test object (a
triangle) were arbitrarily positioned and rotated in the pixel field. (However, the receptive fields of the
input units partially overlapped the object.) The fovea rotation at each time step of some trajectory is
indicated by the direction of an arrow. The task was to generate a fovea trajectory which lead the center
of the fovea to a predefined point near the center of the triangle such that the arrow pointed towards
the corner with the smallest angle.

The expertments show that the learning of successful fovea trajectories involving translations and ro-
tations is possible, although M ususally makes erroncous predictions. See [1] for additional experiments.

It should be noted that we currently cannot answer general questions like: How many input units
and how many hidden units are necessary for which kind of visual scenes? What are the optimal learning
rates?

3.4 Target Tracking

Further experiments with the same objects as above showed that the system is well-suited for target
tracking. The desired detail of the moving object soon is focussed and tracked, as long as the objects
velocity does not excess the maximal fovea velocity. Note that this is just a by-product of the learning
procedure, there is no need for additional training.

3.5 Parallel Learning of (' and M: The Need for Probabilistic Output Units

With the experiments reported in the last sections there were separate training phases for M and C'. The
search element that usually is incorporated within reinforcement learning systems by using probabilistic
activation rules was buried in the random search of the first phase.

For realistic large scale applications it is highly desireable that A/ and C' learn in parallel. In general
the model network will not be able to explore all possible combinations of inputs and actions and their
consequences. The control network should already start learning with an incomplete representation
of the external dynamics in the model network. M should concentrate on those parts of the external
dynamics that are necessary for achieving C’s goals. Just like Kohonen’s self organizing feature maps
[3] dedicate more storage capacity for fine grained representation of common similar inputs, A should

dedicate more storage capacity and time for fine grained modeling of those aspects of the world that are
likely to be relevant for the system’s main goal. (See [11] for more reasons for parallel on-line learning
of M and C.)

We conducted some experiments with on-line learning. It was found that two interacting conventional
deterministic networks in the style of [2] and [6] were not appropriate. Usually a deterministic system
soon became trapped in a state where the controller never shifted the fovea towards regions which
allowed the model network to collect new relevant information about the external world. This is called
the deadlock problem.

To attack the deadlock problem, we introduced some modifications for the controller, in order to
provide it with ezplicit search capabilities. FEach of the output units was replaced by a little network
consisting of two units, one giving the mean and the other one giving the variance for a random number
generator which produced random numbers according to a continuous distribution. (We approximated a
Gauss distribution by a Bernoulli distribution.) Weight gradients were computed by applying William’s
concept of ‘back-propagation through random number generators’ [21].

It was found that within 100000 trials such an on-line learning system was able to learn appropriate
fovea trajectories (like e.g. in figure 4). As it was expected, after training the model network was a good
predictor only for those situations which the controller typically was confronted with.

With these experiments, the on-line approach did not significantly improve efficiency. So the main
contribution of this section i1s the demonstration that the introduction of probabilistic output units can
make on-line learning possible.

4 ONGOING AND FUTURE RESEARCH

The approach described above certainly does not solve all problems of adaptive attentive vision. So far
our system has been tested only with fairly simple visual scenes involving objects with a rather simple
geometrical shape. It is not clear how well the system will do with more complicated scenes. However,
there are some promising directions for future research.

4.1 Scenes With Multiple Objects

Scenes with multiple objects or objects with rich internal details require either recurrent connections in
both M and C' or some other mechanism for escaping certain cases of local minima. Local minima can be
caused by parts of the pixel plane that look similar to the target input, while the nearby environment does
not. In such cases the relevant external feedback through the environment becomes non-Markovian. For
such situations, additional experiments (not reported here) with a recurrent M and a recurrent C' were
conducted. It turned out that internal feedback within M and C' sometimes can lead to success in cases
where the simple approach fails [1]. However, there is an approach which in the long run might prove to
be even more promising: The adaptive on-line generation of appropriate sub-goals. Some first work in
this direction already has been done [13]. By using the above-mentioned concept of goal-defining input
units with time-invariant activations, we intend to apply adaptive sub-goal generators to the problems
of ‘local minima’ that can arise during the target detection process.

4.2 Methods of Temporal Invariances.

To smoothen the error surface of an attentive vision system as described above, one can impose temporal
smoothness constraints on the input units. This can be done by constructing a new error function by
adding differences in successive fovea tnputs to the final input error observed at the end of a fovea trajec-
tory. (The approach is reminiscent of Jordan’s work [2], however, Jordan imposes temporal constraints
on the output units.)

The effect is that the system develops a preference for temporal invariances in input space. For
attentive vision, such temporal invariances can be caused e.g. by fovea movements that follow edges.
Thus an unsupervised element (a search for regularities) is introduced into the learning process. (Trivial

temporal invariances obtained by stopping the fovea are excluded by the goal directed part of the
complete error function.)

An empirical motivation for introducing an explicit preference for temporal invariances is given by
the experimentally observed fact that even without such a predefined preference the system liked to
generate fovea trajectories following edges.

4.3 Implications for Learning Selective Attention in the General Case: An
Outlook

The system described above (which learns by using the principle of system realization) as well as White-
head and Ballard’s system (mentioned in section 1) can be viewed as implementing selective attention by
some sort of external feedback. The system described in [14], which implements ‘curiosity”and ‘boredom’
by means of adaptive dynamic attention depending on the amount of a model network’s ignorance about
the external dynamics, also is based on external feedback.

A generalization of the method described above would work as follows. For each input unit of some
controller introduce an output unit that gates the current activation of the corresponding input unit at
every time step. Train a model network to predict the context dependent effects of suppressing certain
wmput units and emphasizing others. Use system realization as above for learning dynamic selective
attention to those input units that are relevant in the context of the current goal.

5 CONCLUSIONS

Previous approaches to pattern recognition with neural networks emphasized the parallel ‘static’ aspects
of information processing. However, even in apparently static domains as target detection in stationary
environments much can be gained by introducing sequential elements and dynamic selective attention.

This paper demonstrates that the principle of system realization and gradient descent through a
model network can be used for learning certain cases of dynamic selective attention. The context is
given by attentive vision: It is demonstrated that an imperfect model network which emulates the fovea
dynamics can contribute for learning perfect solutions to certain target detection problems. However, the
concept of system realization is general enough to allow less specialized approaches to selective attention
than the one presented in this paper.

References

[1] R. Huber. Selektive visuelle Aufmerksamkeit: Untersuchungen zum Erlernen von Fokustrajekto-
rien durch neuronale Netze, 1990. Diplomarbeit, Institut fur Informatik, Technische Universitat
Minchen.

[2] M. I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical Report
COINS TR 88-27, Massachusetts Institute of Technology, 1988.

[3] T. Kohonen. Self-Organization and Associative Memory. Springer, second edition, 1988.

[4] Y. LeCun. Une procédure d’apprentissage pour réseau a seuil asymétrique. Proceedings of Cognitiva

85, Paris, pages 599-604, 1985.

[5] P. W. Munro. A dual back-propagation scheme for scalar reinforcement learning. Proceedings of
the Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, pages 165-176, 1987.

[6] Nguyen and B. Widrow. The truck backer-upper: An example of self learning in neural networks.
In IEEE/INNS International Joint Conference on Neural Networks, Washington, D.C., volume 1,
pages 357-364, 1989.

[7]

(8]

[9]

[10]

[11]

D. B. Parker. Learning-logic. Technical Report TR-47, Center for Comp. Research in Economics
and Management Sci., MIT, 1985.

T. Robinson and F. Fallside. Dynamic reinforcement driven error propagation networks with ap-
plication to game playing. In Proceedings of the 11th Conference of the Cognitive Science Society,
Ann Arbor, pages 836-843, 1989.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by error
propagation. In Parallel Distributed Processing, volume 1, pages 318-362. MIT Press, 1986.

J. H. Schmidhuber. Learning algorithms for networks with internal and external feedback. In D. S.
Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990 Connectionist
Models Summer School pages 52-61. San Mateo, CA: Morgan Kaufmann, 1990.

J. H. Schmidhuber. Making the world differentiable: On using fully recurrent self-supervised neural
networks for dynamic reinforcement learning and planning in non-stationary environments. Techni-
cal Report FKI-126-90 (revised), Institut fiir Informatik, Technische Universitat Miinchen, Novem-
ber 1990. (Revised and extended version of an earlier report from February.).

J. H. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning in
reactive environments. In Proc. IEEE/INNS International Joint Conference on Neural Networks,
San Diego, volume 2, pages 253-258, 1990.

J. H. Schmidhuber. Towards compositional learning with dynamic neural networks. Technical
Report FKI-129-90, Institut fur Informatik, Technische Universitat Minchen, 1990.

J. H. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In J. A. Meyer and S. W. Wilson, editors, Proc. of the International Conference on
Simulation of Adaptive Behavior: From Animals to Animatls, pages 222-227. MIT Press/Bradford
Books, 1991.

J. H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In D. S.
Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing
Systems 3, pages 500-506. San Mateo, CA: Morgan Kaufmann, 1991.

C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, 1989.

P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.
PhD thesis, Harvard University, 1974.

P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model.
Neural Networks, 1, 1988.

P. J. Werbos. Backpropagation and neurocontrol: A review and prospectus. In IEEE/INNS In-
ternational Jownt Conference on Neural Networks, Washington, D.C., volume 1, pages 209-216,
1989.

S.D. Whitehead and D. H. Ballard. Active perception and reinforcement learning. Technical Report
331, University of Rochester, Dept. of Comp. Sci., 1990.

R. J. Williams. On the use of backpropagation in associative reinforcement learning. In IFEE
International Conference on Neural Networks, San Diego, volume 2, pages 263-270, 1988.

10

LIST OF FIGURE CAPTIONS

Figure 1. A typical visual scene. The diameters of the receptive fields of the retina’s input units are
indicated by circles.

Figure 2. An artificial fovea provides inputs for a control network which is able to move the fovea
around. A model network is trained to predict the next input from the current input and the current
controller action.

Figure 3. By ‘substituting the model network for the environment’ we obtain a recurrent combination
of control network and model network. This new recurrent network is used for computing controller
gradients by means of the ‘unfolding in time’ algorithm.

Figure 4. Translations: Examples of fovea trajectories leading from various start positions to the
target, which is the center of the crossing point in the letter ‘4’. No teacher told the fovea how to do
that! Typically the system did not find the shortest path to the target. It developed a preference for
edges.

Figure 5. One controller for various targets specified by an additional constant input: Examples of
fovea trajectories leading from various start positions to different targets. The first target is near the
left corner of the triangle. The second target is near the lower corner.

Figure 6. A triangle which may be arbitrarily rotated and translated in the pixel plane. The triangle
is partly covered by some of the receptive fields of the moving fovea.

Figures 7 and 8. Examples of fovea trajectories leading from the outside of the object to the target.
(For clarity, the fovea positions are indicated only for a fraction of all time steps.) No teacher told the
system how to do that!

Figure 9. The fovea pushing backwards to the target on a noisy pixel plane.

11

