
LEARNING TO GENERATE ARTIFICIAL FOVEATRAJECTORIES FOR TARGET DETECTION(International Journal of Neural Systems, 2(1 & 2):135{141, 1991. Figures not included!)J�URGEN SCHMIDHUBER �RUDOLF HUBERInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 2, Germanyschmidhu@tumult.informatik.tu-muenchen.deAbstractIt is shown how `static' neural approaches to adaptive target detection can be replaced by a moree�cient and more sequential alternative. The latter is inspired by the observation that biologicalsystems employ sequential eye-movements for pattern recognition. A system is described whichbuilds an adaptive model of the time-varying inputs of an arti�cial fovea controlled by an adaptiveneural controller. The controller uses the adaptive model for learning the sequential generation offovea trajectories causing the fovea to move to a target in a visual scene. The system also learns totrack moving targets. No teacher provides the desired activations of `eye-muscles' at various times.The only goal information is the shape of the target. Since the task is a `reward-only-at-goal' task ,it involves a complex temporal credit assignment problem. Some implications for adaptive attentivesystems in general are discussed.1 INTRODUCTIONWe study an aspect of adaptive vision with neural networks which has not been explored in this generalform before: The adaptive control of sequential physical fovea-movements for target detection.Consider the following target detection task: A two-dimensional object may be arbitrarily rotatedand translated on a pixel plane consisting of many pixels. Learn to give the position and the orientationof a prede�ned detail of the object (the target).Now consider the naive `neural' solution to this task: By providing a huge number of trainingexamples, train a feed-forward network with many input units (typically one for each pixel), manyhidden units and many (typically millions of) connections to emit a representation of the position andthe orientation of the target.The contribution of this paper is a system for target detection which can be more e�cient, moresequential, but also more complex than the naive approach. It is inspired by the observation thatbiological systems employ sequential fovea movements for target detection. The system is capable of`active perception': At a given time it can have an in
uence on what to perceive next. It learns toproduce sequences of fovea movements (rotations and translations) which lead the high-resolution partof an arti�cial fovea from arbitrary starting points in the environment of a randomly placed object to aprede�ned detail of the object (the externally de�ned target). In particular, we show how techiques foradaptive neuro-control can be used for learning target detection without an informed teacher (the task is�Research supported by a scholarship from SIEMENS AG1

a `reward-only-at-goal' task). The system solves its target detection task solely by being given the shapeof the target, but without being told how to get there. It learns to focus on those domain-dependent partsof the visual scene which are relevant for the target detection process. The system is e�cient in thesense that it uses only a fraction of the input units and connections of the naive approach, still allowingmaximal resolution to be applied to each part of the pixel plane.The remainder of this paper is structured as follows: First we describe and motivate our 2-networkapproach for solving the temporal credit assignment problem associated with the target detection task.Then experiments with target detection problems are described. It is demonstrated that the systemcan discover (in an unsupervised manner) target-directed trajectories (sequences of fovea translationsand rotations) by learning to sequentially focus on relevant cues in the visual scene. As a by-product,the system learns translation and rotation invariance, as well as target tracking. It is demonstrated thatan imperfect adaptive model of the environmental dynamics can contribute to perfect solutions. It isalso demonstrated that making a sequential task out of a static one can be very e�cient. Furthermore,a method for parallel on-line learning of both networks is experimentally shown to be feasible.Finally implications for more general attentive systems are discussed.2 THE SYSTEMSubsection 2.1 gives the rationale behind our system. Subsection 2.2 provides the formal details.2.1 Outline and Motivation of the SystemThere is an arti�cial movable fovea with prede�ned `receptive �elds'. At the beginning of a targetdetection process the fovea is placed somewhere on a pixel plane. The arti�cial fovea is coarsely modeledafter biological foveas: There are comparatively many comparatively small receptive �elds near thecenter of the fovea. There are comparatively few comparatively large receptive �elds in the periphery ofthe fovea. See �gure 1.Multiple resolutions o�er a potential for applying maximal resolution to each part of the pixel planeby simply moving the fovea center there. The low-resolution parts of the fovea are useful for detectingcoarse structure in the visual scene. The high-resolution parts are useful for detecting details. Lateron we will show that the low-resolution parts may trigger system actions which lead the high-resolutionparts of the fovea to potentially relevant parts of the plane. These actions may be viewed as attentionguiding actions.At each time step of a multi-step target detection process from each receptive �eld we extract oneinput value for our learning system. Such an input value is simply the average value of the pixelscurrently covered by the corresponding �eld (there is no sophisticated pre-processing).The goal is adaptive target detection. In our case the targets are pre-de�ned details of 2-dimensionalobjects which can be arbitrarily translated and/or rotated on the pixel plane. In the beginning of eachtarget detection task the fovea is placed on a randomly chosen part of the pixel plane. Then there is alimited number of time steps during which the system can generate a �nite sequence of fovea movements.At the end of the target detection process the fovea should be placed directly above the target (showingthe correct rotation). The �nal position and rotation of the fovea represent the desired information.During training, the only goal-speci�c information is given by prede�ned desired input values whichcorrespond to those input values obtained by placing the fovea directly on the target. The �nal inputvalues should match the desired input values. No informed teacher provides knowledge about usefulfovea movements, making the task is a `reward-only-at-goal' task.The �rst network of our learning system is called the controller C. The input values provided bythe retina are the inputs of C. At each time step of a multi-step target detection process C producesoutputs (actions) which serve to control movements of the arti�cial retina on the pixel plane. In general,a movement causes new input values. This kind of feedback is called external feedback. See �gure 2.The problem is to �nd a mapping from retina inputs to control actions making the system �nd thetarget at the end of each �nite target detection process. Note that we are not looking for a system that2

�nds the shortest path from the current position of the retina to the target. In fact, with many practicalproblems the current fovea input will not provide enough information for determining the direction tothe target. In such cases we want the system to learn to generate moves causing new inputs that allowto continue with `more informed' moves. This can be interpreted as active perception and attentionshifting.Our desired mapping has to be implemented by C. Note that C cannot be trained by simplesupervised learning. Simple supervised learning would require an external teacher providing the desiredoutput actions at each time step. In our case, however, the only external information is about `howthe target looks'. There only is one �nal desired input. (Control theory calls this a `terminal controlproblem'.)From the di�erence between the desired and the actual input at the end of a trajectory we somehowwould like to generate gradient information for the output units of the controller. This would require tosomehow propagate errors from the input units back `through the environment', which is not possible.The remedy is to consider C's output units as hidden units of a larger dynamic recurrent networkobtained by the following procedure:1. Introduce an additional model network M (with a separate learning procedure) for `bridging thegap' between the outputs of the controller and its inputs at the next time step: M is trained to emulatethe visible environmental dynamics by predicting the next input, given the current controller input andoutput. See �gure 2. M serves to approximate the environmental dynamics by a di�erentiable mappingwhich will be used for the temporal credit assignment process of C. (We will see that M need not be aperfect predictor to allow C to discover perfect solutions.) No informed teacher is required for M : Mcan be trained by generating random fovea movements and observing the consequences.2. Now identify C's output units with the corresponding input units of M and identify M 's ouputunits with the corresponding input units of C. See �gure 3. Gradient information for the weights ofthe control network now can be back-propagated from M 's �nal prediction through the model networkdown into the control network and back through the model network etc. according to the `unfolding intime' algorithm [18] [9]. An important di�erence to conventional `back-propagation through time' (witha single recurrent network) is that the weights of the model network remain �xed during this procedure.In di�erent contexts and with di�erent degrees of generality the basic principle for credit assignmentby system realization and `gradient descent through a frozen model network' has been previously describedby Werbos [19], Jordan [2], Munro [5], Robinson & Fallside [8], Nguyen & Widrow [6], and Schmidhuber[10] [11] [15].The only work by other authors that also addresses the problem of learning active perception inreactive environments (and that we are aware of) is the work of Whitehead and Ballard [20]. Theirsystem uses adaptive actions that can bind `markers' to certain features of an environmental state.Markers dynamically mask or emphasize inputs from the visible environment. This is analogous to ourfovea-guiding actions which dynamically change the input such that certain environmental details becomevisible, while others disappear. With Whitehead and Ballard's system the learning of active perceptionis based on an adaptive control technique for delayed reinforcement learning called `Q-learning' [16].Our approach implements an adaptive control technique for `reward-only-at-goal' tasks which is quitedi�erent from those reinforcement learning control architectures used by Whitehead and Ballard. Ourapproach is gradient-based. It tries to provide an error gradient for the controller outputs by propagatingthe �nal input error through time-varying instances of a di�erentiable approximation of the environment(namely the model network).If objects in a visual scene may occupy random positions then it will be impossible for the modelnetwork to predict exactly the future fovea inputs from previous ones. Unlike with e.g. the `truck backerupper' [6] both C and M never `see' the complete state of the environment, but only some local details.But this is what active perception is good for: The focus of attention should be shifted to parts ofthe scene allowing to acquire more detailed (domain-dependent) information about how to go on in thetarget detection process. The main task of the model network is to help the controller to move thefovea into regions of the plane which allow to continue with more informed moves. (Although one cannot exactly predict what one will see after moving one's eyes to the door, one is setting the stage for3

additional eye-movements that help to recognize an entering person.) If the things one attends to neverprovided unpredicted information, the concept of attention would make no sense. One might say thatif the situation was such that the model network could be trained to always make perfect predictions,there would be no need for a model network. In that case a single network would be able to store allinformation about the environment. Thus for all interesting cases the model network necessarily has toremain imperfect.So unlike with the `truck backer upper' problem [6] it is not intended to make M a perfect predictorwhose output could replace the input from the environment (in that case not much would be gainedcompared to the static approach to target detection). But, an imperfect model network still can captureenough of the environmental dynamics to allow the controller to learn perfect solutions, as will be seenin the experimental section. The reason is: It su�ces if the inner products of the approximated gradients(based on an inaccurate model) for C and the true gradients (according to a hypothetical perfect model)are always positive (see also [2]). Even if these inner products are not always positive but only `in mostcases', performance improvement can be expected.2.2 Formal DetailsIn the comparatively simple case considered here, the controller C is a standard back-propagation net-work. There are discrete time steps. Each fovea trajectory involves k discrete time steps 1 ... k. Attime step t of trajectory p, C's input is the real-valued vector xp(t) which is determined by sensoryperceptions from the arti�cial `fovea'. C's output at time step t of trajectory p is the vector cp(t). Ateach time step t motoric actions like `move fovea left', `rotate fovea' are based on cp(t). The actionscause a new input xp(t+ 1). The �nal desired input dpfin of the trajectory p is a prede�ned activationpattern corresponding to the target to be found in a static visual scene. The task is to sequentiallygenerate fovea trajectories such that for each trajectory p dpfin matches xp(k). The �nal input errorepfin at the end of trajectory p (externally interrupted at time step k) isepfin = (dpfin � xp(k))T (dpfin � xp(k)):Thus epfin is determined by the di�erences between the desired �nal inputs and the actual �nal inputs.In order to allow credit assignment to past output actions of the control network, we �rst train themodel network M (another standard back-propagation network) to emulate the visible environmentaldynamics. This is done by training M at a given time to predict C's next input, given the previousinput and output of C. The following discussion refers to the case where both M and C learn in parallel.In some of the experiments below we use two separate training phases for M and C. However, themodi�cations are straight-forward and mainly notational.M 's input vector at time t of trajectory p is the concatenation of cp(t) and xp(t). M 's real-valuedoutput vector at time t of trajectory p is mp(t), where j mp(t) j=j xp(t) j. (Here j x j is the dimensionof x, M has as many output units as there are input units for C.) mp(t) is M 's prediction of xp(t+ 1).The error of M 's prediction at time 0 < t < k of trajectory p isEp(t) = (xp(t + 1)�mp(t))T (xp(t+ 1)�mp(t)):M 's goal is to minimizePp;tEp(t), which is done by conventional back-propagation [17][7][4][9]:4W TM = ��M @Pp;tEp(t)@WM :Here WM is M 's weight vector, 4WM its change caused by the back-propagation procedure, and �Mis M 's constant learning rate. (In the experiments described below we will deviate from pure gradientdescent by changing M 's weights after each time step of each trajectory.)C's training phase is more complex than M 's. It is assumed thatPp epfin is a di�erentiable functionof WC , where WC is C's weight vector. To approximate@Pp epfin@WC ;4

it is assumed that M with �xed WM can substitute the environmental dynamics. As described below, Mis used to approximate the desired partial derivative, but only C's weights are allowed to change, WMremains �xed. The `unfolding in time' algorithm [9][18] is applied to the recurrent combination of Mand C (�gure 3) to compute4WTC = ��CXp �@mp(k)@WC �T (dpfin � xp(k)):Here 4WC is WC 's increment caused by the back-propagation procedure, and �C is the learningrate of the controller. Note that the di�erences between target inputs and actual �nal inputs at the endof each trajectory are used for computing error signals for the controller. We do not use the di�erencesbetween desired �nal inputs and predicted �nal inputs.To apply the `unfolding in time' algorithm [9][18] to the recurrent combination of M and C, do thefollowing:For all trajectories p:1. During the activation spreading phase of p, for each time step t of p create a copy of C (calledC(t)) and a copy of M (called M (t)).2. Construct a large `unfolded' feed-forward back-propagation network consisting of 2k sub-modulesby doing the following:2.a) For t > 1 replace each input unit u of C(t) by the unit in M (t�1) which predicted u's activation.2.b) For t � 1: Replace each input unit of M (t) whose activation was provided by an output unit uof C(t) by u.3. Propagate the di�erence (dpfin � xp(k)) back through the entire `unfolded' network constructed instep 2. Change each weight of C in proportion to the sum of the partial derivatives computed for thecorresponding k connection copies in the unfolded network. Do not change the weights of M .Since the weights remain constant during the activation spreading phase of one trajectory, the prac-tical algorithm used in the experiments does not really create copies of the weights. It is more e�cientto introduce one additional variable for each controller weight: This variable is used for accumulatingthe corresponding sum of weight changes. During trajectory execution, it is convenient to push thetime-varying activations of the units in M and C on stacks of activations, one for each unit. During theback-propagation phase these activations can be successively popped o� for the computation of errorsignals.2.3 Dynamic Equilibria Through the EnvironmentSince the task is to stop the fovea as soon as a certain detail of the environment is focussed, one can drawan interesting analogy to static equilibrium networks (like e.g. the Hop�eld network, or the Boltzmannmachine). To see this, consider the whole combined system consisting of retina, controller, and pixelplane: A given weight vector for C together with a given visual scene de�nes an `energy landscape' wherethe attractors should correspond to solutions for the target detection task.The main di�erence to conventional equilibrium networks is the fact that the dynamic equilibriumcorresponding to a certain attractor involves external feedback. A mathematical analysis of such energylandscapes seems to be di�cult, since it has to take domain-dependent details of the environment intoaccount. 5

3 EXPERIMENTS3.1 Target Detection Without RotationsConsider again �gure 1. A visual scene was made of a dark object on a white background which wasplaced on a 512 x 512 pixel �eld. Instead of using hundredthousands of input units (as in a straight-forward ine�cient static approach) only 40 input units for C were employed. These were sitting on thefovea (a two-dimensional arti�cial retina) which was controlled by the activations of four output units ofthe control network: There was one output unit for each of the directions `up', `down', `left', and `right'.At each time step the activation of each output node was mapped (by a multiplication operation) to theinterval between 0 pixels and 20 pixels. The result was interpreted as the length of a vector pointingin the corresponding direction. A move was computed by adding the four vectors. The fovea diameterwas about equal to the object size. Figure 1 shows a typical visual scene and the receptive �elds of the40 input units. At a given time step the activation of an input unit was computed by simply averagingthe values of the pixels (black = 1, white = 0) covered by its receptive �eld. All non-input units in thesystem employed the logistic activation function f(x) = 11+e�x . M had a layer of 40 + 4 = 44 inputunits, a layer of 40 hidden units, and a layer of 40 output units. C had a layer of 20 hidden units.Both C and M were fully forward-connected. Unlike with the more complicated situations describedin [8][12][10][11] we did not allow internal feedback within C or M . In the beginning all weights wererandomly initialized between -0.1 and 0.1. Both �C and �M were set equal to 0.1.With this experiment, there were two separate training phases for M and C. First M was trained:For 50000 training cycles the fovea was randomly placed in the environment of the object, and a movewas generated according to a uniform distribution of possible controller outputs. As mentioned above,we deviated from `real' gradient descent by changing M 's weights after each training cycle. After thetraining phase M 's average error was about 10 percent. Now M 's weights were �xed and C's trainingphase (involving 20000 `trials') began.In the beginning of each `trial' the object occupied a randomly chosen position in the pixel �eld.Again the fovea was randomly placed near the object such that the latter was partially overlapped bysome of the receptive �elds of the input units (�gure 1). Then C generated a fovea trajectory. Wheneverthe fovea left the pixel plane its receptive �elds received `white' zero input. C's �nal input error wasdetermined as described above, and the `unfolding in time' algorithm was applied. During training kwas set equal to 5 (this corresponds to 5� (2+2) = 20 `layers' in the `unfolded' network). After training,50 time steps per trajectory were allowed.The system described above was able to learn (without a teacher) correct sequences of fovea move-ments although the model network often made erroneous predictions. (The precondition for a successfultrajectory was a partial overlap between the area covered by the object and the area covered by the`retina' in the beginning of some trajectory.) At the end of a successful trajectory the fovea used to havemoved towards the target part of the object. (In �gure 4 the fovea center at some time step is given bythe center of some arrow.) The accuracy was nearly perfect: In most cases the di�erence between thedesired position and the actual position was not greater than one or two pixels.Note that the fovea typically did not �nd the shortest path to the target. It could not, because the itsaw just a part of the scene and usually did not receive enough information to determine the directionto the target. Instead it often developed a preference for edges. This is presumably due to the fact thatwith many of our training objects it is a good strategy to follow the outer boundary line until a newvisual cue comes into sight.Each of the 50-steps trajectories depicted in the �gures took about one second real time on a SUNSPARC station (including graphics output). Using a fully parallel approach for solving similar targetdetection problems (by considering all pixels at one single time step) would require orders of magnitudemore execution time (and probably much more training cycles for solving the problem of translationinvariance, however, due to limited computer time we were not able to test this experimentally).6

3.2 One Network for Various TargetsBy providing an additional constant controller input which remains time invariant during the generationof some fovea trajectory, various targets can be speci�ed for various trajectories.The number of C's input units was doubled: For each original input unit there was another inputunit whose constant activation de�ned the desired activation at the end of a fovea trajectory (the goal).(This goal-de�ning feature is also relevant for `higher-level' sub-goal generating processes to be addressedlater.) M remained unchanged, the same parameters as above were used for the training phase.The controller was able to learn to look for parts of a scene which matched the time invariant input.See �gure 5 for an illustration of trajectories leading to di�erent targets in the same scene.3.3 Target Detection Including RotationsTwo additional output units for C were introduced for controlling fovea rotations (around the foveacenter), one for each of the directions `clockwise' and `counter-clockwise'. Thus the number of M 'sinput units increased to 46. At a given time, a clockwise rotation was computed by mapping (througha multiplication operation) the current activation of the �rst additional output unit to a rotation anglebetween 0 and 50 degrees. The counter-clockwise rotation was computed by mapping the current ac-tivation of the second additional output unit to a rotation angle between -50 and 0 degrees. The �nalrotation was the sum of both rotations. The same initialization conditions and learning rates as withthe translation experiments were employed. As it was expected, the learning of fovea trajectories whichinclude rotations proved to be more di�cult than the learning of pure translation sequences. 100000training examples for M and 20000 training trajectories for C were employed.Consider �gures 6-9: In the beginning of some trajectory both the fovea and the test object (atriangle) were arbitrarily positioned and rotated in the pixel �eld. (However, the receptive �elds of theinput units partially overlapped the object.) The fovea rotation at each time step of some trajectory isindicated by the direction of an arrow. The task was to generate a fovea trajectory which lead the centerof the fovea to a prede�ned point near the center of the triangle such that the arrow pointed towardsthe corner with the smallest angle.The experiments show that the learning of successful fovea trajectories involving translations and ro-tations is possible, although M ususally makes erroneous predictions. See [1] for additional experiments.It should be noted that we currently cannot answer general questions like: How many input unitsand how many hidden units are necessary for which kind of visual scenes? What are the optimal learningrates?3.4 Target TrackingFurther experiments with the same objects as above showed that the system is well-suited for targettracking. The desired detail of the moving object soon is focussed and tracked, as long as the objectsvelocity does not excess the maximal fovea velocity. Note that this is just a by-product of the learningprocedure, there is no need for additional training.3.5 Parallel Learning of C and M : The Need for Probabilistic Output UnitsWith the experiments reported in the last sections there were separate training phases forM and C. Thesearch element that usually is incorporated within reinforcement learning systems by using probabilisticactivation rules was buried in the random search of the �rst phase.For realistic large scale applications it is highly desireable that M and C learn in parallel. In generalthe model network will not be able to explore all possible combinations of inputs and actions and theirconsequences. The control network should already start learning with an incomplete representationof the external dynamics in the model network. M should concentrate on those parts of the externaldynamics that are necessary for achieving C's goals. Just like Kohonen's self organizing feature maps[3] dedicate more storage capacity for �ne grained representation of common similar inputs, M should7

dedicate more storage capacity and time for �ne grained modeling of those aspects of the world that arelikely to be relevant for the system's main goal. (See [11] for more reasons for parallel on-line learningof M and C.)We conducted some experiments with on-line learning. It was found that two interacting conventionaldeterministic networks in the style of [2] and [6] were not appropriate. Usually a deterministic systemsoon became trapped in a state where the controller never shifted the fovea towards regions whichallowed the model network to collect new relevant information about the external world. This is calledthe deadlock problem.To attack the deadlock problem, we introduced some modi�cations for the controller, in order toprovide it with explicit search capabilities. Each of the output units was replaced by a little networkconsisting of two units, one giving the mean and the other one giving the variance for a random numbergenerator which produced random numbers according to a continuous distribution. (We approximated aGauss distribution by a Bernoulli distribution.) Weight gradients were computed by applying William'sconcept of `back-propagation through random number generators' [21].It was found that within 100000 trials such an on-line learning system was able to learn appropriatefovea trajectories (like e.g. in �gure 4). As it was expected, after training the model network was a goodpredictor only for those situations which the controller typically was confronted with.With these experiments, the on-line approach did not signi�cantly improve e�ciency. So the maincontribution of this section is the demonstration that the introduction of probabilistic output units canmake on-line learning possible.4 ONGOING AND FUTURE RESEARCHThe approach described above certainly does not solve all problems of adaptive attentive vision. So farour system has been tested only with fairly simple visual scenes involving objects with a rather simplegeometrical shape. It is not clear how well the system will do with more complicated scenes. However,there are some promising directions for future research.4.1 Scenes With Multiple ObjectsScenes with multiple objects or objects with rich internal details require either recurrent connections inbothM and C or some other mechanism for escaping certain cases of local minima. Local minima can becaused by parts of the pixel plane that look similar to the target input, while the nearby environment doesnot. In such cases the relevant external feedback through the environment becomes non-Markovian. Forsuch situations, additional experiments (not reported here) with a recurrent M and a recurrent C wereconducted. It turned out that internal feedback within M and C sometimes can lead to success in caseswhere the simple approach fails [1]. However, there is an approach which in the long run might prove tobe even more promising: The adaptive on-line generation of appropriate sub-goals. Some �rst work inthis direction already has been done [13]. By using the above-mentioned concept of goal-de�ning inputunits with time-invariant activations, we intend to apply adaptive sub-goal generators to the problemsof `local minima' that can arise during the target detection process.4.2 Methods of Temporal Invariances.To smoothen the error surface of an attentive vision system as described above, one can impose temporalsmoothness constraints on the input units. This can be done by constructing a new error function byadding di�erences in successive fovea inputs to the �nal input error observed at the end of a fovea trajec-tory. (The approach is reminiscent of Jordan's work [2], however, Jordan imposes temporal constraintson the output units.)The e�ect is that the system develops a preference for temporal invariances in input space. Forattentive vision, such temporal invariances can be caused e.g. by fovea movements that follow edges.Thus an unsupervised element (a search for regularities) is introduced into the learning process. (Trivial8

temporal invariances obtained by stopping the fovea are excluded by the goal directed part of thecomplete error function.)An empirical motivation for introducing an explicit preference for temporal invariances is given bythe experimentally observed fact that even without such a prede�ned preference the system liked togenerate fovea trajectories following edges.4.3 Implications for Learning Selective Attention in the General Case: AnOutlookThe system described above (which learns by using the principle of system realization) as well as White-head and Ballard's system (mentioned in section 1) can be viewed as implementing selective attention bysome sort of external feedback. The system described in [14], which implements `curiosity' and `boredom'by means of adaptive dynamic attention depending on the amount of a model network's ignorance aboutthe external dynamics, also is based on external feedback.A generalization of the method described above would work as follows. For each input unit of somecontroller introduce an output unit that gates the current activation of the corresponding input unit atevery time step. Train a model network to predict the context dependent e�ects of suppressing certaininput units and emphasizing others. Use system realization as above for learning dynamic selectiveattention to those input units that are relevant in the context of the current goal.5 CONCLUSIONSPrevious approaches to pattern recognition with neural networks emphasized the parallel `static' aspectsof information processing. However, even in apparently static domains as target detection in stationaryenvironments much can be gained by introducing sequential elements and dynamic selective attention.This paper demonstrates that the principle of system realization and gradient descent through amodel network can be used for learning certain cases of dynamic selective attention. The context isgiven by attentive vision: It is demonstrated that an imperfect model network which emulates the foveadynamics can contribute for learning perfect solutions to certain target detection problems. However, theconcept of system realization is general enough to allow less specialized approaches to selective attentionthan the one presented in this paper.References[1] R. Huber. Selektive visuelle Aufmerksamkeit: Untersuchungen zum Erlernen von Fokustrajekto-rien durch neuronale Netze, 1990. Diplomarbeit, Institut f�ur Informatik, Technische Universit�atM�unchen.[2] M. I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical ReportCOINS TR 88-27, Massachusetts Institute of Technology, 1988.[3] T. Kohonen. Self-Organization and Associative Memory. Springer, second edition, 1988.[4] Y. LeCun. Une proc�edure d'apprentissage pour r�eseau �a seuil asym�etrique. Proceedings of Cognitiva85, Paris, pages 599{604, 1985.[5] P. W. Munro. A dual back-propagation scheme for scalar reinforcement learning. Proceedings ofthe Ninth Annual Conference of the Cognitive Science Society, Seattle, WA, pages 165{176, 1987.[6] Nguyen and B. Widrow. The truck backer-upper: An example of self learning in neural networks.In IEEE/INNS International Joint Conference on Neural Networks, Washington, D.C., volume 1,pages 357{364, 1989. 9

[7] D. B. Parker. Learning-logic. Technical Report TR-47, Center for Comp. Research in Economicsand Management Sci., MIT, 1985.[8] T. Robinson and F. Fallside. Dynamic reinforcement driven error propagation networks with ap-plication to game playing. In Proceedings of the 11th Conference of the Cognitive Science Society,Ann Arbor, pages 836{843, 1989.[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by errorpropagation. In Parallel Distributed Processing, volume 1, pages 318{362. MIT Press, 1986.[10] J. H. Schmidhuber. Learning algorithms for networks with internal and external feedback. In D. S.Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, editors, Proc. of the 1990 ConnectionistModels Summer School, pages 52{61. San Mateo, CA: Morgan Kaufmann, 1990.[11] J. H. Schmidhuber. Making the world di�erentiable: On using fully recurrent self-supervised neuralnetworks for dynamic reinforcement learning and planning in non-stationary environments. Techni-cal Report FKI-126-90 (revised), Institut f�ur Informatik, Technische Universit�at M�unchen, Novem-ber 1990. (Revised and extended version of an earlier report from February.).[12] J. H. Schmidhuber. An on-line algorithm for dynamic reinforcement learning and planning inreactive environments. In Proc. IEEE/INNS International Joint Conference on Neural Networks,San Diego, volume 2, pages 253{258, 1990.[13] J. H. Schmidhuber. Towards compositional learning with dynamic neural networks. TechnicalReport FKI-129-90, Institut f�ur Informatik, Technische Universit�at M�unchen, 1990.[14] J. H. Schmidhuber. A possibility for implementing curiosity and boredom in model-building neuralcontrollers. In J. A. Meyer and S. W. Wilson, editors, Proc. of the International Conference onSimulation of Adaptive Behavior: From Animals to Animats, pages 222{227. MIT Press/BradfordBooks, 1991.[15] J. H. Schmidhuber. Reinforcement learning in markovian and non-markovian environments. In D. S.Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information ProcessingSystems 3, pages 500{506. San Mateo, CA: Morgan Kaufmann, 1991.[16] C. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, 1989.[17] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences.PhD thesis, Harvard University, 1974.[18] P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model.Neural Networks, 1, 1988.[19] P. J. Werbos. Backpropagation and neurocontrol: A review and prospectus. In IEEE/INNS In-ternational Joint Conference on Neural Networks, Washington, D.C., volume 1, pages 209{216,1989.[20] S.D. Whitehead and D. H. Ballard. Active perception and reinforcement learning. Technical Report331, University of Rochester, Dept. of Comp. Sci., 1990.[21] R. J. Williams. On the use of backpropagation in associative reinforcement learning. In IEEEInternational Conference on Neural Networks, San Diego, volume 2, pages 263{270, 1988.10

LIST OF FIGURE CAPTIONSFigure 1. A typical visual scene. The diameters of the receptive �elds of the retina's input units areindicated by circles.Figure 2. An arti�cial fovea provides inputs for a control network which is able to move the foveaaround. A model network is trained to predict the next input from the current input and the currentcontroller action.Figure 3. By `substituting the model network for the environment' we obtain a recurrent combinationof control network and model network. This new recurrent network is used for computing controllergradients by means of the `unfolding in time' algorithm.Figure 4. Translations: Examples of fovea trajectories leading from various start positions to thetarget, which is the center of the crossing point in the letter `4'. No teacher told the fovea how to dothat! Typically the system did not �nd the shortest path to the target. It developed a preference foredges.Figure 5. One controller for various targets speci�ed by an additional constant input: Examples offovea trajectories leading from various start positions to di�erent targets. The �rst target is near theleft corner of the triangle. The second target is near the lower corner.Figure 6. A triangle which may be arbitrarily rotated and translated in the pixel plane. The triangleis partly covered by some of the receptive �elds of the moving fovea.Figures 7 and 8. Examples of fovea trajectories leading from the outside of the object to the target.(For clarity, the fovea positions are indicated only for a fraction of all time steps.) No teacher told thesystem how to do that!Figure 9. The fovea pushing backwards to the target on a noisy pixel plane.
11

