
AN `INTROSPECTIVE' NETWORK THAT CAN LEARN TO RUN ITS OWN WEIGHTCHANGE ALGORITHMIn Proc. of the Intl. Conf. on Arti�cial Neural Networks, Brighton, pages 191-195. IEE, 1993.J. SchmidhuberTechnische Universit�at M�unchenGermanyAbstract. Usually weight changes in neural networksare exclusively caused by some hard-wired learning al-gorithm with many speci�c limitations. I show thatit is in principle possible to let the network run andimprove its own weight change algorithm (without sig-ni�cant theoretical limits). I derive an initial gradient-based supervised sequence learning algorithm for an `in-trospective' recurrent network that can `speak' about itsown weight matrix in terms of activations. It uses spe-cial subsets of its input and output units for observingits own errors and for explicitly analyzing and manipu-lating all of its own weights, including those weights re-sponsible for analyzing and manipulating weights. Theresult is the �rst `self-referential' neural network withexplicit potential control over all adaptive parametersgoverning its behavior.
INTRODUCTIONUsually weight changes in arti�cial neural networks areexclusively caused by some �xed hard-wired learningalgorithm with many speci�c limitations. In contrast,humans can re
ect about their own learning behaviorand modify it and tailor it to the needs of various typesof learning problems.The thought experiment in this paper is intended toshow the theoretical possibility of `self-referential' neu-ral networks that can learn to run and improve theirown weight change algorithm. The �rst step is thedesign of a general �nite-size hard-wired `introspec-tive' architecture with access to performance evalua-tions and with the potential to analyze and modifyits own weight matrix. The second step is the de-sign of an initial learning algorithm that �nds usefulself-manipulating algorithms (weight matrices) for thearchitecture, where `usefulness' is strictly de�ned byperformance evaluations provided by the environment.The paper is structured as follows: Section 2 startswith a general �nite, `self-referential' architecture in-volving a sequence-processing recurrent neural-net (seee.g. Robinson and Fallside [2], Williams and Zipser [8],and Schmidhuber [3]) that can potentially implementany computable function that maps input sequencesto output sequences | the only limitations being un-avoidable time and storage constraints imposed by thearchitecture's �niteness. These constraints can be ex-

tended by simply adding storage and/or allowing formore processing time. The major novel aspect of thesystem is its `self-referential' capability. The network isprovided with special input units for explicitly observ-ing performance evaluations (external error signals arevisible through these special input units). In addition,it is provided with the basic tools for explicitly read-ing and quickly changing all of its own adaptive com-ponents (weights). This is achieved by (1) introduc-ing an address for each connection of the network, (2)providing the network with output units for (sequen-tially) addressing all of its own connections (includingthose connections responsible for addressing connec-tions) by means of time-varying activation patterns,(3) providing special input units whose activations be-come the weights of connections currently addressedby the network, and (4) providing special output unitswhose time-varying activations serve to quickly changethe weights of connections addressed by the network.It is possible to show that these unconventional fea-tures allow the network (in principle) to compute anycomputable function mapping algorithm components(weights) and performance evaluations (e.g., error sig-nals) to algorithm modi�cations (weight changes) { theonly limitations again being unavoidable time and stor-age constraints. This implies that algorithms runningon that architecture (in principle) can change not onlythemselves but also the way they change themselves,and the way they change the way they change them-selves, etc., essentially without theoretical limits tothe sophistication (computational power) of the self-modifying algorithms.Connections are addressed, analyzed, and manipu-lated with the help of di�erentiable functions of acti-vation patterns across special output units. This al-lows the derivation of an exact gradient-based initialweight change algorithm for `introspective' supervisedsequence learning. The system starts out as tabularasa. The initial weight change procedure serves to �ndimproved weight change procedures { it favors algo-rithms (weight matrices) that make sensible use of the`introspective' potential of the hard-wired architecture,where `usefulness' is solely de�ned by conventional per-formance evaluations (the performance measure we useis the sum of all error signals over all time steps of alltraining sequences).A disadvantage of the algorithm is its high computa-tional complexity per time step which is independent

of the sequence length and equals O(nconnlognconn),where nconn is the number of connections. Anotherdisadvantage is the high number of local minima of theunusually complex error surface. The purpose of thispaper, however, is not to come up with the most e�-cient `introspective' or `self-referential' weight changealgorithm, but to show that such algorithms are possi-ble at all.THE `INTROSPECTIVE' NETWORKThroughout the remainder of this paper, to save in-dices, I consider a single limited pre-speci�ed time-interval of discrete time-steps during which our net-work interacts with its environment. An interactionsequence actually may be the concatenation of many`conventional' training sequences for conventional re-current networks. This will (in theory) help our `self-referential' net to �nd regularities among solutions fordi�erent tasks.The network's output vector at time t, o(t), is com-puted from previous input vectors x(�); � < t, by a dis-crete time recurrent network with nI input units andny non-input units. A subset of the non-input units,the `normal' output units, has a cardinality of no < ny.zk is the k-th unit in the network. yk is the k-thnon-input unit in the network. xk is the k-th `nor-mal' input unit in the network. ok is the k-th `normal'output unit. If u stands for a unit, then fu is its di�er-entiable activation function and u's activation at timet is denoted by u(t). If v(t) stands for a vector, thenvk(t) is the k-th component of v(t).Each input unit has a directed connection to eachnon-input unit. Each non-input unit has a directedconnection to each non-input unit. There are (nI +ny)ny = nconn connections in the network. The con-nection from unit j to unit i is denoted by wij . Forinstance, one of the names of the connection from thej-th `normal' input unit to the the k-th `normal' out-put unit is wokxj . wij 's real-valued weight at time t isdenoted by wij(t). Before training, all weights wij(1)are randomly initialized.The following features are needed to obtain `self-reference'. Details of the network dynamics follow inthe next section.1. The network receives performance informationthrough the eval units. The eval units are special inputunits which are not `normal' input units. evalk is thek-th eval unit (of neval such units) in the network.2. Each connection of the net gets an address. Oneway of doing this is to introduce a binary address,adr(wij), for each connection wij . This will help thenetwork to do computations concerning its own weightsin terms of activations, as will be seen later.3. anak is the k-th analyzing unit (of nana =ceil(log2nconn) such units, where ceil(x) returns the�rst integer � x). The analyzing units are special non-

input units which are not `normal' output units. Theyserve to indicate which connections the current algo-rithm of the network (de�ned by the current weightmatrix plus the current activations) will access next(see next section). A special input unit for readingcurrent weight values that is used in conjunction withthe analyzing units is called val.The network may modify any of its weights. Somenon-input units that are not `normal' output units oranalyzing units are called the modifying units. modkis the k-th modifying unit (of nmod = ceil(log2nconn)such units). The modifying units serve to address con-nections to be modi�ed. A special output unit for mod-ifying weights (used in conjunction with the modifyingunits, see next section) is called 4. f4 should allowboth positive and negative activations of 4(t).`SELF-REFERENTIAL' DYNAMICS ANDOBJECTIVE FUNCTIONI assume that the input sequence observed by the net-work has length ntime = nsnr (where ns; nr 2 N) andcan be divided into ns equal-sized blocks of length nrduring which the input pattern x(t) does not change.This does not imply a loss of generality | it just meansspeeding up the network's hardware such that each in-put pattern is presented for nr time-steps before thenext pattern can be observed. This gives the archi-tecture nr time-steps to do some sequential processing(including immediate weight changes) before seeing anew pattern of the input sequence.In what follows, unquantized variables are assumedto take on their maximal range. The network dynamicsare speci�ed as follows:netyk(1) = 0;8t � 1 : xk(t) environment;yk(t) = fyk(netyk(t));8t > 1 : netyk(t) =Xl wykl(t� 1)l(t� 1); (1)The network can quickly read information about itscurrent weights into the special val input unit accord-ing to val(1) = 0; 8t � 1 :val(t+ 1) =Xi;j g[kana(t)� adr(wij)k2]wij(t); (2)where k : : : k denotes Euclidean length, and g is a dif-ferentiable function emitting values between 0 and 1that determines how close a connection address has tobe to the activations of the analyzing units in orderfor its weight to contribute to val at that time. Sucha function g might have a narrow peak at 1 aroundthe origin and be zero (or nearly zero) everywhere else.This essentially allows the network to pick out a sin-gle connection at a time and obtain its current weightvalue without receiving `cross-talk' from other weights.

The network can quickly modify its current weightsusing mod(t) and 4(t) according to8t � 1 : wij(t+ 1) == wij(t) +4(t) g[kadr(wij)�mod(t)k2]: (3)Again, if g has a narrow peak at 1 around the origin andis zero (or nearly zero) everywhere else, the networkwill be able to pick out a single connection at a timeand change its weight without a�ecting other weights.Objective function and dynamics of the eval units.As with typical supervised sequence-learning tasks, wewant to minimize Etotal(nrns);where Etotal(t) = tX�=1E(�);where E(t) = 12Xk (evalk(t+ 1))2;where evalk(1) = 0; 8t � 1 : evalk(t+ 1) == dk(t)� ok(t) if dk(t) exists; and 0 else: (4)Here dk(t) may be a desired target value for the k-thoutput unit at time step t.INITIAL LEARNING ALGORITHMThe following algorithm1 for minimizing Etotal ispartly inspired by (but more complex than) conven-tional recurrent network algorithms (e.g. Robinson andFallside [2]).Derivation of the algorithm. We use the chain ruleto compute weight increments (to be performed aftereach training sequence) for all initial weights wab(1)according towab(1) wab(1)� � @Etotal(nrns)@wab(1) ; (5)where � is a constant positive `learning rate'. Thus weobtain an exact gradient-based algorithm for minimiz-ing Etotal under the `self-referential' dynamics givenby (1)-(4). To reduce writing e�ort, I introduce someshort-hand notation partly inspired by Williams [7].For all units u and all weights wab, wij we writepuab(t) = @u(t)@wab(1) ; qijab(t) = @wij(t)@wab(1) : (6)1It should be noted that in quite di�erent contexts, previouspapers have shown how `controller nets' may learn to performappropriate lasting weight changes for a second net (see Schmid-huber [4] and M�oller and Thrun [1]). However, these previousapproaches could not be called `self-referential' | they all in-volve at least some weights that can not be manipulated otherthan by conventional gradient descent.

To begin with, note that@Etotal(1)@wab(1) = 0;8t > 1 : @Etotal(t)@wab(1) == @Etotal(t� 1)@wab(1) �Xk evalk(t+ 1)pokab(t): (7)Therefore, the remaining problem is to compute thepokab(t), which can be done by incrementally computingall pzkab(t) and qijab(t), as we will see. At time step 1 wehave pzkab(1) = 0: (8)For t � 1 we obtain the recursionpxkab (t+ 1) = 0;pevalkab (t+ 1) == �pokab(t); if dk(t) exists; and 0 otherwise; (9)pvalab (t+ 1) =Xi;j f qijab(t)g[kana(t)� adr(wij)k2)] ++wij(t) [g0(kana(t)� adr(wij)k2)��2Xm (anam(t)� adrm(wij))panamab (t)] g (10)(where adrm(wij) is the m-th bit of wij 's address),pykab(t+ 1) =f 0yk(netyk(t+ 1))Xl wykl(t)plab(t) + l(t)qyklab (t); (11)whereqijab(1) = 1 if wab = wij ; and 0 otherwise; (12)8t > 1 : qijab(t) = qijab(t� 1)++p4ab(t� 1)g(kmod(t� 1)� adr(wij)k2)++24 (t� 1) g0(kmod(t� 1)� adr(wij)k2)��Xm [modm(t� 1)� adrm(wij)]pmodmab (t� 1): (13)According to equations (8)-(13), the pjab(t) and qijab(t)can be updated incrementally at each time step. Thisimplies that (5) can be updated incrementally at eachtime step, too. The storage complexity is independentof the sequence length and equals O(n2conn). The com-putational complexity per time step (of sequences witharbitrary length) is O(n2connlognconn).

CONCLUDING REMARKSThe network I have described can, besides learning tosolve problems posed by the environment, also use itsown weights as input data and can learn new algo-rithms for modifying its weights in response to theenvironmental input and evaluations. This e�ectivelyembeds a chain of `meta-networks' and `meta-meta-...-networks' into the network itself.Due to the complexity of the activation dynam-ics of the `self-referential' network, one would expectthe above error function to have many local minima.Schmidhuber [6] describes a variant of the basic idea(involving a biologically more plausible weight manipu-lating strategy) which is less plagued by the problem oflocal minima (and whose initial learning algorithm haslower computational complexity than the one above).[5] describes a more general but less informed and lesscomplex reinforcement learning algorithm.This paper does not focus on experimental evalua-tions; the thought experiment presented in this paperis intended only to show the theoretical possibility ofcertain kinds of `self-referential' weight change algo-rithms. Experimental evaluations of alternative `self-referential' architectures will be left for the future.ACKNOWLEDGEMENTSThanks to Mark Ring, Mike Mozer, Daniel Prelinger,Don Mathis, and Bruce Tesar, for helpful comments.This research was supported in part by a DFG fel-lowship to the author, as well as by NSF award IRI{9058450, grant 90{21 from the James S. McDonnellFoundation, and DEC external research grant 1250.References[1] K. M�oller and S. Thrun. Task modularization bynetwork modulation. In J. Rault, editor, Proceed-ings of Neuro-Nimes '90, pages 419{432, November1990.[2] A. J. Robinson and F. Fallside. The utility drivendynamic error propagation network. Technical Re-port CUED/F-INFENG/TR.1, Cambridge Univer-sity Engineering Department, 1987.[3] J. Schmidhuber. A �xed size storage O(n3) timecomplexity learning algorithm for fully recurrentcontinually running networks. Neural Computation,4(2):243{248, 1992.[4] J. Schmidhuber. Learning to control fast-weightmemories: An alternative to recurrent nets. NeuralComputation, 4(1):131{139, 1992.[5] J. Schmidhuber. Steps towards \self-referential"learning. Technical Report CU-CS-627-92, Dept.

of Comp. Sci., University of Colorado at Boulder,November 1992.[6] J. Schmidhuber. On decreasing the ratio betweenlearning complexity and number of time varyingvariables in fully recurrent nets. Technical re-port, Institut f�ur Informatik, Technische Univer-sit�at M�unchen, 1993. In preparation.[7] R. J. Williams. Complexity of exact gradient com-putation algorithms for recurrent neural networks.Technical Report Technical Report NU-CCS-89-27,Boston: Northeastern University, College of Com-puter Science, 1989.[8] R. J. Williams and D. Zipser. A learning algo-rithm for continually running fully recurrent net-works. Neural Computation, 1(2):270{280, 1989.

