
REDUCING THE RATIO BETWEEN LEARNING COM-PLEXITY AND NUMBER OF TIME VARYING VARIABLESIN FULLY RECURRENT NETSIn Proceedings of the International Conference on Arti�cial Neural Networks ICANN'93, Amsterdam,pages 460-463. Springer, 1993.J. SchmidhuberInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, 8000 M�unchen 40, GermanyABSTRACT. Let m be the number of time-varying variables for storing temporal events in a fullyrecurrent sequence processing network. Let Rtime be the ratio between the number of operations pertime step (for an exact gradient based supervised sequence learning algorithm), and m. Let Rspace bethe ratio between the maximum number of storage cells necessary for learning arbitrary sequences,and m. With conventional recurrent nets, m equals the number of units. With the popular `real timerecurrent learning algorithm' (RTRL), Rtime = O(m3) and Rspace = O(m2). With `back-propagationthrough time' (BPTT), Rtime = O(m) (much better than with RTRL) and Rspace is in�nite (muchworse than with RTRL). The contribution of this paper is a novel fully recurrent network and acorresponding exact gradient based learning algorithm with Rtime = O(m) (as good as with BPTT)and Rspace = O(m2) (as good as with RTRL).1 INTRODUCTIONArchitecture. The basic architecture considered in this paper is the one of a traditional fully recurrentsequence processing network. The network has n non-input units and nx = O(n) input units. Eachinput unit has a directed connection to each non-input unit. Each non-input unit has a directedconnection to each non-input unit. Obviously there are (nx + n)n = nconn = O(n2) connectionsin the network. The k-th input unit is denoted by xk. The k-th non-input unit is denoted by yk.The k-th output unit is denoted by ok (the no output units are a subset of the non-input units).The connection from unit j to unit i is denoted by wij . For instance, one of the names of the theconnection from the j-th input unit to the the k-th output unit is wokxj .Dynamics of conventional recurrent nets. To save indices, I consider a single discrete sequenceof real-valued input vectors x(t), t = 1; : : : ; ntime, each with dimension nx. In what follows, if v(t)denotes a vector then vk(t) denotes the k-th component of v(t). If u denotes a unit, then u(t)denotes the activation of the unit at time t. wij 's real-valued weight at time t is denoted by wij(t).Throughout the remainder of this paper, unquantized variables are assumed to take on their maximalrange. The dynamic evolution of a traditional discrete time recurrent net (e.g. [2], [7]) is given byxk(t) environment; netyk(1) = 0; yk(t) = fyk(netyk(t)); netyk(t+ 1) = Xunits lwykl(t)l(t); (1)where fi denotes the semi-linear activation function of unit i, and where wykl(t) is constant for all t.Typical objective function. There may exist speci�ed target values dk(t) for certain outputs ok(t).We de�ne ek(t) = dk(t)� ok(t) if dk(t) exists; and 0 otherwise:



The supervised sequence learning task is to minimize (via gradient descent)Etotal(ntime); where Etotal(t) = tX�=1E(�); where E(t) = 12Xk (ek(t))2: (2)Complexity of traditional recurrent net algorithms. Letm be the number of time-varying variablesfor storing temporal events. Let Rtime be the ratio between the number of operations per time step(for an exact gradient based supervised sequence learning algorithm), andm. Let Rspace be the ratiobetween the maximum number of storage cells necessary for learning arbitrary sequences, and m.The fastest known exact gradient based learning algorithm for minimizing (2) with fully recurrentnetworks is `back-propagation through time' (BPTT, e.g. [3]). With BPTT, m = n, and Rtime =O(m). BPTT's disadvantage is that it requires O(ntime) storage { which means that Rspace isin�nite: BPTT is not a �xed-size storage algorithm. The most well-known �xed-size storage learningalgorithm for minimizing Etotal(ntime) with fully recurrent nets is RTRL [2][8]. With RTRL, m = n,Rtime = O(m3) (much worse than with BPTT) and Rspace = O(m2) (much better than with BPTT).1 Contribution of this paper. The contribution of this paper is an extension of the conventionaldynamics (as in equation (1)) plus a corresponding exact gradient based learning algorithm withRtime = O(m) (as good as with BPTT) and Rspace = O(m2) (as good as with RTRL). The basicidea is: The O(n2) weights themselves are included in the set of time-varying variables that can storetemporal information (m = n+O(n2) = O(n2)). Section 2 describes the novel network dynamics thatallow the network to actively and quickly manipulate its own weights (via so-called intra-sequenceweight changes) by creating certain appropriate internal activation patterns 2 during observation ofan input sequence3. Section 3 derives an exact supervised sequence learning algorithm (for creatinginter-sequence weight changes which a�ect only the initial weights at the beginning of each trainingsequence) forcing the network to use its association building capabilities to minimize Etotal(ntime).The gradient-based learning algorithm for inter-sequence weight changes takes into account thefact that intra-sequence weight changes at some point in time may in
uence both activations andintra-sequence weight changes at later points in time.2 NOVEL DYNAMICSI will keep the architecture and the objective function from section 1 but I will modify the systemdynamics. Recall that unquantized variables are assumed to take on their maximal range. For oursingle training sequence with ntime discrete time steps, the system dynamics (explanation followsbelow) are de�ned byxk(t) environment; netyk(1) = 0; yk(t) = fyk(netyk(t)); netyk(t+ 1) =Xl wykl(t)l(t); (3)1It should be noted that there is a �xed-size storage algorithm (a hybrid between BPTT and RTRL) with Rtime =O(m2) (better than with RTRL, worse than with BPTT) and Rspace = O(m2) (much better than with BPTT, sameas with RTRL) ([7][4]).2Certain biological evidence is consistent with the idea of fast weight changes (`dynamic links', see [6]). In [1], forinstance, it is shown that the e�ective connectivity between certain neurons may change drastically within a few 10msec.3The active weight changing capabilities represent a similarity to the system described in [5], which is based ontwo separate modules { one for learning to control fast weight changes of the other one. Unlike with this previousapproach, however, the system described herein does not require two separate modules. It can learn to manipulate itsown weights.



wij(1) initialization; wij(t+ 1) = �ij [wij(t) + g(j(t))h(i(t + 1))] ; (4)where �ij is a di�erentiable function (e.g. for limiting the weight on wij to a given interval), and gand h are di�erentiable monotonic functions (the `threshold approximators', to be explained below).Equation (3) is just the conventional recurrent net update rule (1). Unlike with conventional re-current nets, however, the weights do not remain constant during sequence processing : Equation (4)says that connections between units active at successive time steps are immediately strengthened orweakened essentially in proportion to pre-synaptic and post-synaptic activity. These intra-sequenceweight changes are modulated by the non-linear functions g and h and may be negative (anti-Hebb-like) or zero as well as positive. Let us assume that all input vectors and all fi are such that allunits can take on only activations between 0 and 1. g and h are meant to specify the upper andlower thresholds that determine how strongly units have to be excited or inhibited to contribute tointra-sequence weight changes. A reasonable choice for g and h is one where g and h are stronglynegative only if their argument is close to 0 and are strongly positive only if their argument is closeto 1. Both g and h should return values close to 0 for arguments from the largest part of the intervalbetween 0 and 1. This implies hardly any intra-sequence weight changes for connections betweenunits that have non-extreme activations during successive time steps.The overall e�ect is that only connections between units that are exceptionally active or excep-tionally inactive during successive time steps can be signi�cantly modi�ed. Intra-sequence weightchanges essentially occur only if the network `pays a lot of attention' to certain units by stronglyexciting them or strongly inhibiting them. Weights to units that are not `illuminated by adaptiveinternal spotlights of attention' essentially remain invariant and participate only in `automatic pro-cessing' as opposed to `active intra-sequence learning'. The remainder of this paper derives an exactgradient-based algorithm designed to adjust the system (via inter-sequence weight changes) suchthat it creates appropriate intra-sequence weight changes at appropriate time steps.3 SUPERVISED LEARNING ALGORITHMThe following algorithm for minimizing Etotal is partly inspired by conventional recurrent networkalgorithms (e.g. [2], [7]). The notation is partly inspired by [8].Derivation. Before training, all initial weights wab(1) are randomly initialized. The chain ruleserves to compute weight increments (to be performed after each training sequence) for all initialweights according to wab(1) wab(1)� �@Etotal(ntime)@wab(1) ; (5)where � is a constant positive `learning rate'. Thus we obtain an exact gradient-based algorithm forminimizing Etotal under the dynamics given by (3) and (4).We write qijab(t) = @wij(t)@wab(1) ; 8 units u : puab(t) = @u(t)@wab(1) : (6)(Recall that unquantized variables are assumed to take on their maximal range.)First note that@Etotal(1)@wab(1) = 0; 8t > 1 : @Etotal(t)@wab(1) = @Etotal(t� 1)@wab(1) �Xk ek(t)pokab(t): (7)Therefore, the remaining problem is to compute the pokab(t), which can be done by incrementallycomputing all pzkab(t) and qijab(t):



pzkab(1) = 0; pxkab (t+ 1) = 0; (8)pykab(t+ 1) = f 0yk(netyk(t+ 1))Xl @@wab(1) [l(t)wykl(t)] =f 0yk(netyk(t+ 1))Xl hwykl(t)plab(t) + l(t)qyklab (t)i ; (9)where qijab(1) = 1 if wab = wij ; and 0 otherwise; (10)qijab(t+ 1) = �0ij(wij(t+ 1)) hqijab(t) + h0(i(t+ 1))piab(t+ 1)g(j(t)) + h(i(t + 1))pjab(t)g0(j(t))i : (11)According to equations (8)-(11), variables holding the pjab(t) and qijab(t) values can be updatedincrementally at each time step. This implies that (5) can be updated incrementally, too. With non-degenerate networks, the algorithm's storage complexity is dominated by the number of variables forstoring the qijab(t) values. This number is independent of the sequence length and equals O(n2conn).Since m = O(nconn), Rspace = O(m2) (like with RTRL). The computational complexity per timestep also is O(n2conn) { essentially the same as the one of RTRL. Since m = O(nconn), however,Rtime = O(m) (like with time-e�cient BPTT and unlike with RTRL's much worse Rtime = O(m3)).4 CONCLUDING REMARKSI have described a novel fully recurrent network that may choose to behave like a conventional fullyrecurrent net. In addition, however, the novel net may choose to use its own weights for storingtemporal events. The network can do so by creating and directing `internal spotlights of attention'to cause intra-sequence weight changes that may help the system to achieve its goal (de�ned by aconventional objective function for supervised sequence learning). The corresponding exact gradientbased learning algorithm turns out to have the same ratio between number of learning operations pertime step and number of time-varying variables as the time-e�cient BPTT algorithm. In addition,it turns out to have the same ratio between maximum storage and number of time-varying variablesas the space-e�cient RTRL algorithm.Of course, since fast weights and unit activations are di�erent kinds of variables, I am subsumingdi�erent things under the expression `time-varying variable'. I expect that some problems may bemore naturally solved using information processing based on time-varying unit activations, otherproblems may be more naturally solved using information processing based on fast weights (e.g.certain kinds of temporal variable binding problems, see [5]). Careful experimental investigationsof the mutual advantages and disadvantages of both kinds of time-varying variables are needed(experiments are also needed for analyzing di�erent reasonable choices for functions like g, h, �) butare beyond the scope of this short paper and will be left for the future.5 ACKNOWLEDGEMENTSThis work was supported in part by a DFG fellowship to the author, as well as by NSF awardIRI{9058450, grant 90{21 from the James S. McDonnell Foundation, and DEC external researchgrant 1250.



References[1] A.M.H.J. Aertsen, G.L. Gerstein, M.K. Habib, and G. Palm. Dynamics of neuronal �ring corre-lation: Modulation of \e�ective connectivity". Journal of Neurophysiology, 61:900{917, 1989.[2] A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. TechnicalReport CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by errorpropagation. In Parallel Distributed Processing, volume 1, pages 318{362. MIT Press, 1986.[4] J. Schmidhuber. A �xed size storage O(n3) time complexity learning algorithm for fully recurrentcontinually running networks. Neural Computation, 4(2):243{248, 1992.[5] J. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets.Neural Computation, 4(1):131{139, 1992.[6] C. v.d. Malsburg. Technical Report 81-2, Abteilung f�ur Neurobiologie, Max-Planck Institut f�urBiophysik und Chemie, G�ottingen, 1981.[7] R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neural net-works. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern University,College of Computer Science, 1989.[8] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrentnetworks. Neural Computation, 1(2):270{280, 1989.


