
A NOVEL UNSUPERVISED CLASSIFICATION METHODIn Proc. of the Intl. Conf. on Arti�cial Neural Networks, Brighton, pages 91-96. IEE, 1993.J. Schmidhuber and D. PrelingerTechnische Universit�at M�unchenGermanyAbstract. Assume we are given a set of pairs of pat-terns. We know that both patterns of each pair belongto the same class. We do not know in advance, how-ever, anything about the nature of the classes, whichfeatures are characteristic for each class, how manyclasses there are, and which patterns belong to whichclass. We present a novel unsupervised neural systemthat learns without a teacher to create distributed rep-resentations of classes such that patterns belonging tothe same class are represented by the same activationpattern while patterns belonging to di�erent classes arerepresented by di�erent activation patterns. The ap-proach can be related to the IMAX method of Hinton,Becker and Zemel (1989, 1991). Experiments includea stereo task proposed by Becker and Hinton, which canbe solved more readily by our system.BASIC IDEAAs an example, consider the following stereo task(Becker and Hinton [2]): There are two binary imagescalled the `left' image and the `right' image. Each im-age consists of two `strips' { each strip being a binaryvector. The right image is purely random. The leftimage is generated from the right image by choosing,at random, a single global shift to be applied to eachstrip of the right image. An input pattern is generatedby concatenating a strip from the right image with thecorresponding strip from the left image. The input canbe interpreted as a fronto-parallel surface at an inte-ger depth. The only local property that is invariantacross space is the stereoscopic depth or shift (Beckerand Hinton, [2]).With a given pair of di�erent input patterns, the�rst pattern can tell us something (but not everything)about the second pattern. Likewise, the second patterncan tell us something (but not everything) about the�rst pattern. Let us assume that with a given pairof di�erent input patterns, an unsupervised learningsystem is told only that both patterns in some waybelong to the same class. It is not told how many dif-

ferent classes there are. It is not told anything aboutthe concept of stereoscopic depth. The system's task isto classify each input pattern such that patterns fromthe same class (the ones with the same shift { but thesystem does not know that in advance) are representedby the same activation pattern. This activation patternshould be di�erent from activation patterns represent-ing input patterns with di�erent shifts (belonging todi�erent classes). Thus, after the training phase (afterexposure of the unsupervised system to a set of pairs ofinput patterns), di�erent output patterns should corre-spond to di�erent shifts (the only non-trivial commonproperties of both elements of a pair of input patterns).In other words, the system's task is to discover di�erentclasses of stereoscopic shift by seeing positive trainingexamples only.Our basic approach to unsupervised discovery ofclassi�cations from positive training examples only isbased on two neural networks called T1 and T2. Bothcan be implemented as standard back-prop networks[8]. With a given pair of input patterns, T1 sees the�rst pattern, T2 sees the second pattern. We force eachnetwork to convey information about its input { underthe constraint that each network has to emit the sameoutput in response to the two (in general) di�erent in-put patterns of each pair. Thus the output of both net-works can be regarded as a classi�cation of whatevernon-trivial properties are common to both patterns ofa pair.Both networks have q output units. Let p 2f1; : : : ;mg index the input patterns. T1 produces as anoutput the classi�cation yp;1 2 [0; : : : ; 1]q in responseto an input vector xp;1. T2 produces as an output theclassi�cation yp;2 2 [0; : : : ; 1]q in response to an inputvector xp;2. The con
icting goals are: (A) yp;1 shouldconvey information about xp;1, and yp;2 should con-vey information about xp;2. (B) But yp;1 and yp;2 alsoshould match.We express the trade-o� between (A) and (B) bymeans of two opposing costs.



(B) is expressed by an error term M (for `Match'):M = mXp=1 kyp;1 � yp;2k2: (1)Here kvk denotes the Euclidean norm.(A) is enforced by additional error terms Dl (l =f1; 2g) (for `Discrimination'). Dl will be designed toencourage signi�cant Euclidean distance between clas-si�cations of di�erent input patterns. As shown bySchmidhuber and Prelinger [7], Dl can be de�ned inmore than one reasonable way. The various alterna-tive de�nitions of Dl have mutual advantages and dis-advantages { in the context of a given problem, themost appropriate de�nition of Dl can be plugged intoequation (2) below. Due to limited space, however, wewill limit ourselves to a technique called `predictabilityminimization' recently introduced by Schmidhuber [6].See next section.Both Tl; l = 1; 2 minimize�M + (1� �)Dl: (2)The error functions are minimized by gradient de-scent. This forces the classi�cations to be more likeeach other, while at the same time forcing them notto be too general but to tell something about the cur-rent input. The procedure is unsupervised in the sensethat no teacher is required to tell the classi�ers how toclassify their inputs.PREDICTABILITY MINIMIZATIONFOR DEFINING DlSchmidhuber [6] shows how Dl can be de�ned with thehelp of intra-representational adaptive predictors thattry to predict each output unit of some Tl from its re-maining output units, while each output unit in turntries to extract properties of the environment that al-low it to escape predictability. This was called the prin-ciple of predictability minimization. This principle en-courages the output units to convey maximal informa-tion about the input patterns. Furthermore, each out-put unit of Tl is encouraged to represent environmentalproperties that are statistically independent from en-vironmental properties represented by the remainingoutput units. The procedure aims at generating bi-nary `factorial codes' [1]. Unlike the methods used byLinsker [3], Becker and Hinton [2], and Zemel and Hin-ton [9]) this method has a potential for removing evennon-linear statistical dependencies1 among the outputunits of some classi�er.1Steve Nowlan has described an alternative non-predictorbased approach for �nding non-redundant codes [4].

Let us de�ne�Dl = �12Xi (sp;li � yp;li )2; (3)where the sp;li are the outputs of Sil , the i-th additionalso-called intra-representational predictor network of Tl(one such additional predictor network is required foreach output unit of Tl). The Sil are trained to pre-dict the expected value of yp;li from fyp;lk ; k 6= ig bymaximizing �Dl.To encourage even distributions in output space, weslightly modify �Dl and obtainDl = �12Xi (sp;li � yp;li )2 + �2Xi (0:5� �yil)2: (4)This is the discriminating error term that goes intoequation (2).PREVIOUS WORKBecker and Hinton [2] solve the stereo problem by max-imizing the mutual information between the outputs ofT1 and T2. This corresponds to the notion of �ndingmutually predictable yet informative input transforma-tions. The method was called IMAX.The nice thing about IMAX is that it expresses thegoal of �nding mutually predictable yet informative in-put transformations in a principled way (in terms of asingle objective function).In contrast, our approach involves two separate ob-jective functions that have to be combined using a rel-ative weight factor. An interesting feature of our ap-proach is that it conceptually separates two issues: (A)the desire for information preserving mappings frominput to representation, and (B) the desire for mutu-ally predictable representations. There are many dif-ferent approaches (with mutual advantages and disad-vantages) for satisfying (A). As mentioned above, inthe context of a given problem, the most appropriatealternative approach can be `plugged into' the basicarchitecture.Another di�erence between IMAX and our approachis that our approach does not only enforce mutual pre-dictability but also equality of yp;1 and yp;2. This doesnot a�ect the generality of our system, however. Infact, one advantage of our simple approach is that itmakes it trivial to decide whether the outputs of bothclassi�er essentially represent the same thing. WithIMAX, this is in general more complicated.Finally, it turns out that certain problems canbe solved more easily using our approach instead ofIMAX. See next section.



STEREO EXPERIMENT: A COM-PARISON WITH IMAXSchmidhuber and Prelinger [7] describe a number ofsuccessful experiments with systems based on the �rstsection. Due to space limitations, this section focuseson an experiment that compares IMAX to our ap-proach.All networks used below were trained by Werbos'back-propagation algorithm [8]. In all cases we usedthe activation dynamics of Rumelhart et al. [5], aswell as `on-line' learning: Weight changes took placeimmediately after each presentation of some randomlychosen input pattern. Approximations of mean values�yli were updated by the formulaŷli  0:95ŷli + 0:05yli;where ŷli is the approximation of �yli after observing thecurrent input pattern yl. ŷli was initially set to 0.5.Details of the task. There are two binary imagescalled the `left' image and the `right' image. Each im-age consists of 2 `strips' { each strip being a binaryinput vector with 4 components. There are two classi-�ers with single output units and non-overlapping in-puts: Each classi�er has 8 input units and `sees' an8-dimensional input vector consisting of a strip fromthe right image and a corresponding strip from the leftimage generated as follows: The right image is purelyrandom. The left image is generated from the rightimage by choosing, at random, a single global shift tobe applied to each strip of the right image. The shiftcan be either one bit to the right or one bit to the left {`over
ow bits' generated by shifting some bit of a striptaken from the right image beyond the strip bound-aries reappear on the opposite side of the corresponding`shifted' strip of the left image (`wraparound'). Am-biguous shifts are excluded. The input may be inter-preted as a fronto-parallel surface at an integer depth.Since the right image is random, the only common non-trivial property of both classi�er inputs is the stereo-scopic depth or shift [2]. The goal is to classify eachinput pattern such that patterns from the same class(the ones with the same shift { but the system is nottold anything about shift) are represented by the sameactivation pattern. This activation pattern should bedi�erent from activation patterns representing patternsfrom di�erent classes (patterns with di�erent shifts).In other words, the only information about the inputof the second classi�er that is embedded in the inputof the �rst classi�er (and vice versa) is the informationabout the shift. The goal is to �nd classi�cations thatcan be viewed as an extracted representation of thisinformation.Since the feature to be extracted is one-dimensional,only one predictor per classi�er was necessary to pre-

dict the single output unit from a bias unit with con-stant activation (see the second section). It should benoted that for single output units predictability mini-mization degenerates to the procedure of maximizingthe variance of the unit, which (in the binary case) isequivalent to maximizing the entropy of the unit.The intra-representational predictors and the classi-�ers learned simultaneously. Each of the two classi�ersT1 and T2 had 12 hidden units { the predictors hadnone. The learning rate of the predictors was 1.0, theclassi�er's learning rate was 0.5. Parameter settingswere � = 0:5; � = 1:0: The task was considered to besolved (the shift was considered to be extracted; thepatterns were considered to be classi�ed correctly) if(1) the outputs of both classi�ers were always equal(with an error margin of 0.1) and (2) each classi�eremitted di�erent binary outputs (again with an errormargin of 0.1) in response to input patterns with dif-ferent shifts. This corresponds to 1 bit of mutual in-formation between the outputs and the shift.With a �rst experiment, we employed a separate setof weights for each classi�er. With ten test runs in-volving 100,000 training patterns, the classi�ers alwayslearned to extract the shift.Becker and Hinton report that their system (basedon binary probabilistic units) was able to extract theshift only if IMAX was applied in successive layer bylayer `bootstrap' stages. In addition, they heuristicallytuned the learning rate during learning. Finally theyintroduced a maximal weight change for each weightduring gradient ascent.In contrast, our method (based on continuous-valuedunits) does not rely on successive training stages, boot-strap learning, or learning rate adjustments. Once thelearning phase is started, no external mechanism in-
uences the behavior of the system. The performanceof our system, however, is comparable to the perfor-mance of Becker's and Hinton's bootstrapped system.(It should be noted that Becker and Hinton also de-vised learning procedures for continuous-valued unitsand for real-valued shifts. In this paper, however, we donot attempt to apply our technique to the real-valuedcase.)With a second experiment, we used only one set ofclassi�er weights shared by both classi�ers (this leadsto a reduction of free parameters). The result was asigni�cant decrease of learning time { with ten testruns the system needed only between 20,000 and 50,000training patterns to learn to extract the shift.No systematic attempt was made to optimize learn-ing speed.



CONCLUDING REMARKSIn contrast to IMAX, our method tends to be simpler.It does not require sequential layer by layer `bootstrap-ping' or learning rate adjustments. In the binary case,Becker's and Hinton's stereo task can be solved morereadily by our system. The classi�cations emitted byour networks are easier to analyze.It remains to be seen how well the method of thispaper scales to larger problems.
ACKNOWLEDGEMENTSThanks to Mike Mozer for fruitful discussions. Thanksto Sue Becker and Rich Zemel for helpful comments.This research was supported in part by a DFG fel-lowship to J. Schmidhuber, as well as by NSF awardIRI{9058450, grant 90{21 from the James S. McDon-nell Foundation.References[1] H. B. Barlow, T. P. Kaushal, and G. J. Mitchison.Finding minimum entropy codes. Neural Compu-tation, 1(3):412{423, 1989.[2] S. Becker and G. E. Hinton. Spatial coherence as aninternal teacher for a neural network. Technical Re-port CRG-TR-89-7, Department of Computer Sci-ence, University of Toronto, Ontario, 1989.[3] R. Linsker. Self-organization in a perceptual net-work. IEEE Computer, 21:105{117, 1988.[4] S. J. Nowlan. Auto-encoding with entropy con-straints. In Proceedings of INNS First AnnualMeeting, Boston, MA., 1988. Also published in spe-cial supplement to Neural Networks.[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.Learning internal representations by error propaga-tion. In Parallel Distributed Processing, volume 1,pages 318{362. MIT Press, 1986.[6] J. Schmidhuber. Learning factorial codes by pre-dictability minimization. Neural Computation,4(6):863{879, 1992.[7] J. Schmidhuber and D. Prelinger. Discovering pre-dictable classi�cations. Technical Report CU-CS-626-92, Dept. of Comp. Sci., University of Coloradoat Boulder, November 1992.[8] P. J. Werbos. Beyond Regression: New Tools forPrediction and Analysis in the Behavioral Sciences.PhD thesis, Harvard University, 1974.[9] R. S. Zemel and G. E. Hinton. Discoveringviewpoint-invariant relationships that characterizeobjects. In D. S. Lippman, J. E. Moody, and D. S.Touretzky, editors, Advances in Neural InformationProcessing Systems 3, pages 299{305. San Mateo,CA: Morgan Kaufmann, 1991.


