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Abstract. Assume we are given a set of pairs of pat-
terns. We know that both patterns of each pair belong
to the same class. We do not know in advance, how-
ever, anything about the nature of the classes, which
features are characteristic for each class, how many
classes there are, and which patterns belong to which
class. We present a novel unsupervised neural system
that learns without a teacher to create distributed rep-
resentations of classes such that patterns belonging to
the same class are represented by the same activation
pattern while patterns belonging to different classes are
represented by different activation patterns. The ap-
proach can be related to the IMAX method of Hinton,
Becker and Zemel (1989, 1991). Experiments include
a stereo task proposed by Becker and Hinton, which can
be solved more readily by our system.

BASIC IDEA

As an example, consider the following stereo task
(Becker and Hinton [2]): There are two binary images
called the ‘left’ image and the ‘right’ image. Each im-
age consists of two ‘strips’ each strip being a binary
vector. The right image is purely random. The left
image is generated from the right image by choosing,
at random, a single global shift to be applied to each
strip of the right image. An input pattern is generated
by concatenating a strip from the right image with the
corresponding strip from the left image. The input can
be interpreted as a fronto-parallel surface at an inte-
ger depth. The only local property that is invariant
across space is the stereoscopic depth or shift (Becker
and Hinton, [2]).

With a given pair of different input patterns, the
first pattern can tell us something (but not everything)
about the second pattern. Likewise, the second pattern
can tell us something (but not everything) about the
first pattern. Let us assume that with a given pair
of different input patterns, an unsupervised learning
system is told only that both patterns in some way
belong to the same class. It is not told how many dif-

ferent classes there are. It is not told anything about
the concept of stereoscopic depth. The system’s task is
to classify each input pattern such that patterns from
the same class (the ones with the same shift but the
system does not know that in advance) are represented
by the same activation pattern. This activation pattern
should be different from activation patterns represent-
ing input patterns with different shifts (belonging to
different classes). Thus, after the training phase (after
exposure of the unsupervised system to a set of pairs of
input patterns), different output patterns should corre-
spond to different shifts (the only non-trivial common
properties of both elements of a pair of input patterns).
In other words, the system’s task is to discover different
classes of stereoscopic shift by seeing positive training
examples only.

Our basic approach to unsupervised discovery of
classifications from positive training examples only is
based on two neural networks called 77 and 75. Both
can be implemented as standard back-prop networks
[8]. With a given pair of input patterns, T sees the
first pattern, 75 sees the second pattern. We force each
network to convey information about its input — under
the constraint that each network has to emit the same
output in response to the two (in general) different in-
put patterns of each pair. Thus the output of both net-
works can be regarded as a classification of whatever
non-trivial properties are common to both patterns of
a pair.

Both networks have ¢ output units. TLet p €
{1,...,m} index the input patterns. T} produces as an
output the classification y?' € [0,...,1]¢ in response
to an input vector zP'. Ty produces as an output the
classification yP2 € [0,...,1]? in response to an input
vector #P?. The conflicting goals are: (A) yP' should
convey information about zP', and yP2 should con-
vey information about 2P2. (B) But y?! and y?2? also
should match.

We express the trade-off between (A) and (B) by
means of two opposing costs.



(B) is expressed by an error term M (for ‘Match’):

M=yt -y (1)
p=1

Here ||v]| denotes the Euclidean norm.

(A) is enforced by additional error terms D; (I =
{1,2}) (for ‘Discrimination’). D, will be designed to
encourage significant Euclidean distance between clas-
sifications of different input patterns. As shown by
Schmidhuber and Prelinger [7], D; can be defined in
more than one reasonable way. The various alterna-
tive definitions of D; have mutual advantages and dis-
advantages in the context of a given problem, the
most appropriate definition of D; can be plugged into
equation (2) below. Due to limited space, however, we
will limit ourselves to a technique called ‘predictability
minimization’ recently introduced by Schmidhuber [6].
See next section.

Both 73,1 = 1,2 minimize

eM + (1 —¢€)D,. (2)

The error functions are minimized by gradient de-
scent. This forces the classifications to be more like
each other, while at the same time forcing them not
to be too general but to tell something about the cur-
rent input. The procedure is unsupervised in the sense
that no teacher is required to tell the classifiers how to
classify their inputs.

PREDICTABILITY MINIMIZATION
FOR DEFINING D,

Schmidhuber [6] shows how D; can be defined with the
help of intra-representational adaptive predictors that
try to predict each output unit of some 7; from its re-
maining output units, while each output unit in turn
tries to extract properties of the environment that al-
low it to escape predictability. This was called the prin-
ciple of predictability minimization. This principle en-
courages the output units to convey maximal informa-
tion about the input patterns. Furthermore, each out-
put unit of 7} is encouraged to represent environmental
properties that are statistically independent from en-
vironmental properties represented by the remaining
output units. The procedure aims at generating bi-
nary ‘factorial codes’ [1]. Unlike the methods used by
Linsker [3], Becker and Hinton [2], and Zemel and Hin-
ton [9]) this method has a potential for removing even
non-linear statistical dependencies' among the output
units of some classifier.

ISteve Nowlan has described an alternative non-predictor
based approach for finding non-redundant codes [4].

Let us define
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where the sf’l are the outputs of Sf7 the i-th additional
so-called intra-representational predictor network of T;
(one such additional predictor network is required for
each output unit of 7). The S} are trained to pre-
dict the expected value of yf’l from {yﬁ’l, k #i} by
maximizing D;.

To encourage even distributions in output space, we
slightly modify D; and obtain
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This is the discriminating error term that goes into
equation (2).

PREVIOUS WORK

Becker and Hinton [2] solve the stereo problem by max-
imizing the mutual information between the outputs of
Ty and Ty. This corresponds to the notion of finding
mutually predictable yet informative input transforma-
tions. The method was called IMAX.

The nice thing about IMAX is that it expresses the
goal of finding mutually predictable yet informative in-
put transformations in a principled way (in terms of a
single objective function).

In contrast, our approach involves two separate ob-
jective functions that have to be combined using a rel-
ative weight factor. An interesting feature of our ap-
proach is that it conceptually separates two issues: (A)
the desire for information preserving mappings from
input to representation, and (B) the desire for mutu-
ally predictable representations. There are many dif-
ferent approaches (with mutual advantages and disad-
vantages) for satisfying (A). As mentioned above, in
the context of a given problem, the most appropriate
alternative approach can be ‘plugged into’ the basic
architecture.

Another difference between IMAX and our approach
is that our approach does not only enforce mutual pre-
dictability but also equality of y?! and yP-2. This does
not affect the generality of our system, however. In
fact, one advantage of our simple approach is that it
makes it trivial to decide whether the outputs of both
classifier essentially represent the same thing. With
IMAX, this is in general more complicated.

Finally, it turns out that certain problems can
be solved more easily using our approach instead of
IMAX. See next section.



STEREO EXPERIMENT: A COM-
PARISON WITH IMAX

Schmidhuber and Prelinger [7] describe a number of
successful experiments with systems based on the first
section. Due to space limitations, this section focuses
on an experiment that compares IMAX to our ap-
proach.

All networks used below were trained by Werbos’
back-propagation algorithm [8]. In all cases we used
the activation dynamics of Rumelhart et al. [5], as
well as ‘on-line’ learning: Weight changes took place
immediately after each presentation of some randomly
chosen input pattern. Approximations of mean values
gl were updated by the formula

gt — 0.95g! + 0.05y!,

where 7! is the approximation of ¢! after observing the
current input pattern y'. §! was initially set to 0.5.

Details of the task. There are two binary images
called the ‘left’ image and the ‘right’ image. Each im-
age consists of 2 ‘strips’ — each strip being a binary
input vector with 4 components. There are two classi-
fiers with single output units and non-overlapping in-
puts: Each classifier has 8 input units and ‘sees’ an
8-dimensional input vector consisting of a strip from
the right image and a corresponding strip from the left
image generated as follows: The right image is purely
random. The left image is generated from the right
image by choosing, at random, a single global shift to
be applied to each strip of the right image. The shift
can be either one bit to the right or one bit to the left —
‘overflow bits’ generated by shifting some bit of a strip
taken from the right image beyond the strip bound-
aries reappear on the opposite side of the corresponding
‘shifted’ strip of the left image (‘wraparound’). Am-
biguous shifts are excluded. The input may be inter-
preted as a fronto-parallel surface at an integer depth.
Since the right image is random, the only common non-
trivial property of both classifier inputs is the stereo-
scopic depth or shift [2]. The goal is to classify each
input pattern such that patterns from the same class
(the ones with the same shift — but the system is not
told anything about shift) are represented by the same
activation pattern. This activation pattern should be
different from activation patterns representing patterns
from different classes (patterns with different shifts).
In other words, the only information about the input
of the second classifier that is embedded in the input
of the first classifier (and vice versa) is the information
about the shift. The goal is to find classifications that
can be viewed as an extracted representation of this
information.

Since the feature to be extracted is one-dimensional,
only one predictor per classifier was necessary to pre-

dict the single output unit from a bias unit with con-
stant activation (see the second section). It should be
noted that for single output units predictability mini-
mization degenerates to the procedure of maximizing
the variance of the unit, which (in the binary case) is
equivalent to maximizing the entropy of the unit.

The intra-representational predictors and the classi-
fiers learned simultaneously. Each of the two classifiers
T1 and T5 had 12 hidden units the predictors had
none. The learning rate of the predictors was 1.0, the
classifier’s learning rate was 0.5. Parameter settings
were € = 0.5, X = 1.0. The task was considered to be
solved (the shift was considered to be extracted; the
patterns were considered to be classified correctly) if
(1) the outputs of both classifiers were always equal
(with an error margin of 0.1) and (2) each classifier
emitted different binary outputs (again with an error
margin of 0.1) in response to input patterns with dif-
ferent shifts. This corresponds to 1 bit of mutual in-
formation between the outputs and the shift.

With a first experiment, we employed a separate set
of weights for each classifier. With ten test runs in-
volving 100,000 training patterns, the classifiers always
learned to extract the shift.

Becker and Hinton report that their system (based
on binary probabilistic units) was able to extract the
shift only if IMAX was applied in successive layer by
layer ‘bootstrap’ stages. In addition, they heuristically
tuned the learning rate during learning. Finally they
introduced a maximal weight change for each weight
during gradient ascent.

In contrast, our method (based on continuous-valued
units) does not rely on successive training stages, boot-
strap learning, or learning rate adjustments. Once the
learning phase is started, no external mechanism in-
fluences the behavior of the system. The performance
of our system, however, is comparable to the perfor-
mance of Becker’s and Hinton’s bootstrapped system.
(It should be noted that Becker and Hinton also de-
vised learning procedures for continuous-valued units
and for real-valued shifts. In this paper, however, we do
not attempt to apply our technique to the real-valued
case.)

With a second experiment, we used only one set of
classifier weights shared by both classifiers (this leads
to a reduction of free parameters). The result was a
significant decrease of learning time — with ten test
runs the system needed only between 20,000 and 50,000
training patterns to learn to extract the shift.

No systematic attempt was made to optimize learn-
ing speed.



CONCLUDING REMARKS

In contrast to IMAX, our method tends to be simpler.
It does not require sequential layer by layer ‘bootstrap-
ping’ or learning rate adjustments. In the binary case,
Becker’s and Hinton’s stereo task can be solved more
readily by our system. The classifications emitted by
our networks are easier to analyze.

It remains to be seen how well the method of this
paper scales to larger problems.
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