
ADAPTIVE DECOMPOSITION OF TIME

(To appear in O. Simula, editor, Proceedings of the International Conference

on Arti�cial Neural Networks ICANN'91. Elsevier Science Publishers B. V.,

1991. Submitted in January 1991.)

J�urgen Schmidhuber

Institut f�ur Informatik

Technische Universit�at M�unchen

M�unchen, Germany

Abstract: In this paper we introduce design principles for unsupervised de-

tection of regularities (like causal relationships) in temporal sequences. One

basic idea is to train an adaptive predictor module to predict future events from

past events, and to train an additional con�dence module to model the relia-

bility of the predictor's predictions. We select system states at those points

in time where there are changes in prediction reliability, and use them recur-

sively as inputs for higher-level predictors. This can be bene�cial for `adaptive

sub-goal generation' as well as for `conventional' goal-directed (supervised and

reinforcement) learning: Systems based on these design principles were success-

fully tested on tasks where conventional training algorithms for recurrent nets

fail. Finally we describe the principles of the �rst neural sequence `chunker'

which collapses a self-organizing multi-level predictor hierarchy into a single

recurrent network.

1 OUTLINE OF THE PAPER

This paper is based on the `principle of reduced history description': As long as

an adaptive sequence processing dynamic system is able to predict future envi-

ronmental inputs from previous ones, no additional knowledge can be obtained

by observing these inputs in reality. Only unpredicted inputs deserve attention

([7][4][9]). This paper demonstrates that it can be very e�cient to focus on

unexpected inputs and ignore expected ones.

First we motivate this work by describing a major problem of `conventional'

learning algorithms for time-varying inputs, namely, the problem of long time

lags between relevant inputs. Then we introduce a principle for unsupervised

detection of causal chains in streams of input events. Short representations

of `presumed causal chains' recursively serve as inputs for `higher-level' detec-

tors of presumed causal chains, thus contributing to a self-organizing hierarchy

of event sequences. It is shown how TD-methods (and a modi�cation of TD-

methods called `reverse TD-methods') can be used for `building bridges through

time' between events that are causally dependent. It is shown how unsupervised

causality detection can be bene�cial for supervised learning as well as for adap-

tive sub-goal generation. Finally we brie
y describe the principles of a 2-network

`chunking' system which collapses a self-organizing multi-level predictor hierar-

chy into a single recurrent network.

2 THE PROBLEM: LONG TIME LAGS

In what follows the ith component of a vector v(t) will be called v

i

(t).

A training sequence with discrete time steps (called an episode) consists of

n ordered pairs ((x(t); d(t)) 2 R

n

xR

m

, 0 < t � n, each x(t) being called an

input event. At time t of an episode a learning system receives x(t) as an input

and produces output y(t) 2 R

m

. The goal of the learning system is to minimize

E =

1

2

X

t

X

i

(d

i

(t)� y

i

(t))

2

:

In general the learner experiences many di�erent episodes during training. Since

the gradient of the error sum over all episodes is equal to the sum of the corre-

sponding gradients, for convenience we renounce on indices for di�erent episodes.

In general the task above requires to memorize past events. Previous ap-

proaches to solving this problem employed either gradient descent in recurrent

nets [1] [3] [11] [2] [12], `adaptive critic'-like methods [5] [6], or (more recently)

adaptive `fast weights' [8].

All these approaches have severe limitations when it comes to long time

lags between relevant input events. This can be seen e.g. with examples from

grammar learning:

With a given grammar G, the task of a learning system may be to observe

a string of terminals, one at a time, and �nally decide whether the string is

generated by G or not. To train the system, an additional grammar T is used to

generate terminal strings (examples and counter-examples for strings produced

by G) which become visible to the learner during training. T serves to de�ne

the environment of the learning system.

In what follows, capitals likeA andB denote non-terminals, and non-capitals

like a; x; b

1

; : : : ; b

100

denote terminals. A is always used as the start symbol. A

simple regular grammar G

1

(which produces only one sentence but is su�cient

to illustrate the basic problem) is given by

A! aB;B ! b

1

b

2

b

3

: : : b

100

:

Let the grammar for training examples T

1

be de�ned by

A! aB;A! xB;B ! b

1

b

2

b

3

: : : b

100

:

T

1

generates only two training examples, namely ab

1

b

2

b

3

: : : b

100

and xb

1

b

2

b

3

: : : b

100

.

With a conventional algorithm as described in [3] [12] it seems to be practically

impossible to learn to accept the �rst (legal) string and to reject the second

(illegal) string (see the subsection on experiments below). The problem is the

transport of error information `back into time' for a comparatively large number

of time steps (100 in this case).

We can make the task for the learning system easier by replacing G

1

by G

2

A! aB;B ! b

1

b

2

b

3

: : : b

100

; B ! b

100

and by replacing T

1

by T

2

:

A! aB;A! xB;B ! b

1

b

2

b

3

: : : b

100

; B ! b

100

:

Now a conventional algorithm can learn from short training examples (ab

100

and

xb

100

) that the occurrence of a or x is signi�cant and should be memorized (by

means of recurrent connections). From the short training sequences the algo-

rithm can `generalize' to di�cult sequences like xb

1

b

2

: : : b

100

. All examples of

grammar learning known to the author seem to work only because the grammar

to be learned is comparatively `easy' in the sense that it generates helpful short

training sequences.

In general there will not be any helpful short training sequences. In what

follows we will describe a system which tries to decompose long time sequences

into blocks of shorter sequences which, in a certain sense, `belong together'. For

instance, with T

1

as above the sequence b

1

: : : b

100

`belongs together'.

We de�ne presumed causal chains relative to the current state of a learning

system: A presumed causal chain is a sequence of events where each event is

predictable from the current internal state of the learner which has seen previous

events. For convenience we de�ne a single event to be a presumed causal chain,

too.

We will be interested in maximal presumed causal chains: A maximal pre-

sumed causal chain is a presumed causal chain whose event sequence is not

contained in a longer presumed causal chain.

Although this paper does not provide a solution to all problems of tempo-

ral structure �nding, we can demonstrate that certain cases of unsupervised

detection of causal chains can be bene�cial for goal-directed learning.

3 THEMETHOD:UNSUPERVISEDCAUSAL-

ITY DETECTION

3.1 THE BASIC MODULES: PREDICTOR AND CON-

FIDENCE NET

The �rst of our two basic network modules is a `conventional' predictor network

P. At time t, P receives x(t) as input and produces p(t) as n-dimensional output

(j p(t) j=j x(t + 1) j). After the output has been generated, the vector of all

activations of all units in P is now called P (t). If P is recurrent, then P (t) and

p(t) can depend on times < t. The contribution of time t to P 's error function

is

E

P

=

1

2

X

i

(p

i

(t) � x

i

(t+ 1))

2

:

The second basic module is a `con�dence network' C whose input at time t

is P (t) and whose output is called c(t). c(t) is interpreted as a measure of the

system's con�dence in its own predictions. We consider two variations.

Variation 1: j c(t) j= 1. C's error-function is

E

C

=

1

2

X

t

(d(t)� c(t))

2

;

where d(t) is 1 if p(t) matches x(t + 1) (within a certain tolerance), and 0

otherwise.

Variation 2: j c(t) j=j p(t) j. C's error-function is

E

C

=

1

2

X

t

X

i

(d

i

(t)� c

i

(t))

2

;

where d

i

(t) is 1 if p

i

(t) matches x

i

(t + 1), and 0 otherwise.

With variation 1, C's one-dimensional output is trained to be high (inter-

preted as high con�dence) for situations where the predictor usually works and

to be low (interpreted as low con�dence) for situations where the predictor usu-

ally fails. Variation 2 is similar, however, con�dence is selective with respect to

parts of the predictions.

If P is recurrent, note that C need not be so. The non-input units of P

provide a potential for making representations of the past available to C.

After some training, changes in predictability can be recognized by observ-

ing the temporal derivative of c(t). In what follows we will limit ourselves to

variation 1 and the special case that C's output changes from a value below 1 to

the value of 1. (A forthcoming paper will be concerned with the more general

case).

We use C for building `bridges through time' and for selecting relevant points

in time. After some training in a given environment, whenever P produces a

sequence of predictions p(t

0

); p(t

0

+ 1); : : : ; p(t

0

+ k) such that

c(t

0

) = c(t

0

+ 1) = : : : = c(t

0

+ k) = 1;

this is interpreted as the recognition of a causal chain which is already known to

the system. (In practical applications, it will su�ce if C's outputs are `close to'

1.) The causal chain can be represented in an abbreviating manner by the state

which marks the beginning of the period with high con�dence, namely P (t

0

).

The information contained in P (t

0

+ 1); P (t

0

+ 2); : : : ; P (t

0

+ k) is redundant,

because it can be derived by P from P (t

0

) (assuming that C is reliable).

Note that if we had no con�dence net, but just considered the changes in

prediction error observed over time, we would not be able to distinguish between

`good' predictions and predictions that were correct just by chance. This justi�es

the existence of C.

3.2 A CONFIDENCE NET FOR THE PAST

With T as above (1) both event sequences ab

1

b

2

b

3

: : : b

100

and xb

1

b

2

b

3

: : : b

100

are causal chains (in the sense of the last subsection). Both event sequences

overlap in the sense that they have a common su�x of length 100. Just by

looking at b

25

we cannot tell whether the corresponding chain started with a

or x. The second token certainly was b

1

, however. When decomposing event

sequences we sometimes will be interested in such certain information. This can

be done by a system analogous to the one above: We use a network PB which

learns to look back into time by being trained at each time step to produce the

input of the last time step. A network CB is trained analogously to C above:

It learns to model the reliability of PB's `backward predictions'. Whenever

CB's output changes from a value below 1 to the value of 1, this indicates the

beginning of a presumed causal chain which does not have overlaps with other

presumed causal chains.

3.3 INTRODUCING HIGHER-LEVELPREDICTOR HI-

ERARCHIES

This section is concerned with using abbreviating representations of causal

chains as inputs for predictions on a `higher level', to cover longer and longer

time spans.

In addition to P and C we introduce a third (in general recurrent) network

P

1

. P

1

's input units is the set of units in P . P

1

's activation vector, however, is

updated only at those time steps t where c(t) 6= 1, since steps t with c(t) = 1

indicate the presence of a causal chain. Thus a new time scale for P

1

is de�ned

with the help of C (in general, P

1

is updated rarely compared to P which is

updated at every time step).

Now we may introduce a `higher-level' con�dence networkC

1

which is trained

to model the reliability of P

1

just like C models the reliability of P . This allows

us to use a next-level predictor P

2

which receives representations of `presumed

causal chains of presumed causal chains' as input, and so on.

The motivation for predictor hierarchies is to keep credit assignment paths

short: With a given level k , at each `kth-order time step' credit assignment

is performed only for a small number of kth-order time steps. With increasing

level number k, the corresponding time steps on the rede�ned time scales may

contain more and more `primitive time steps', and therefore longer and longer

`credit assignment bridges' through time may be established. Note, however,

that at each level a causal chain may consist of the representation of the input

at a single primitive time step: There is nothing like a pre-wired length of a

kth-order time step. We obtain a self-organizing temporal hierarchy.

The scheme described above makes sense only in environments where event

sequences are structured in a hierarchical fashion. One assumption is that events

which are nearby in time are stronger correlated than events which are separated

by long temporal distances. One can construct environments where this assump-

tion is not true. But, with many `real-world' tasks the assumption seems to be

realistic. Below we describe a grammar learning experiment where a system

based on the ideas above performs much better than a conventional approach.

3.4 USING TD-LIKE-METHODS FOR TRANSPORT-

ING CAUSALITY INFORMATION

We can use an additional network E with output e(t) at time t (with j e(t) j=j

p(t) j) for associating the states of each time step of a presumed causal chain

P (t

0

); P (t

0

+ 1); : : : ; P (t

0

+ k) with a prediction of its end P (t

0

+ k). This

can be done with `Temporal Di�erence'(TD-)methods [10]: If c(t) = 1 then the

contribution of time t to E's error is

X

i

(e

i

(t) � e

i

(t + 1))

2

:

Otherwise this contribution is

X

i

(e

i

(t) � p

i

(t))

2

:

Similarily, we can use an additional network F whose output f(t) at time t

(with j f(t) j=j PB(t) j, where PB(t) is the output at time t of the backward

predictor from section 2.2) for associating the states of each time step of a

maximal presumed causal chain (which does not overlap with other such chains)

P (t

0

); P (t

0

+1); : : : ; P (t

0

+k) with a backward-prediction of its beginning P (t

0

).

This can be done with `Reverse TD-Methods' (called RTD-Methods from now

on): If the output cb(t) of CB at time t is cb(t) = 1 then the contribution of

time t to F 's error function is

X

i

(f

i

(t) � f

i

(t � 1))

2

:

Otherwise this contribution is

X

i

(f

i

(t)� P

i

(t))

2

:

Note that RTD-Methods can transport information much faster than TD-

methods: With TD-methods we need to repeat a training episode n times for

`pushing an expectation back into time' for n time steps. With RTD-methods

we are only going `forward in time': In principle, one episode may be enough

for transporting information about the beginning of a presumed causal chain to

its end.

4 ALTERNATIVE EMBEDDINGSOF THEBA-

SICMODULES INGOAL-DIRECTED LEARN-

ING SYSTEMS

In this section we describe various ways of embedding predictor and con�dence

modules in goal directed (supervised or reinforcement learning) systems.

4.1 USING BLOCK REPRESENTATIONS AS INPUT

FOR SUPERVISED LEARNERS

With a given predictor hierarchy, at a given time step we simply take the rep-

resentation of each currently active presumed causal chain (one for each level

of the hierarchy) as an input for a supervised learning (in general recurrent)

network M . A conventional learning algorithm (e.g. [3]) can be used for train-

ing M to produce externally given target values. Below we use this method for

grammar learning.

4.2 COMBINING CAUSALITY DETECTIONANDADAP-

TIVE SUB-GOALING

A causality detector like the one mentioned above can provide names for sub-

programs (beginnings and ends of causal chains) for an adaptive sub-goal gen-

erating system as described in [7].

It should be noted that for typical goal-directed learners future research

needs to explore additional ways for providing `relevant points in time'. Simple

unsupervised causality detection often will not be the only thing to do: With

typical goal-directed learning tasks `relevant points in time' are highly dependent

on the current goals. Nonetheless, causality detection can ease certain goal-

directed learning tasks, as will be seen next.

4.3 AN EXPERIMENT: LEARNING A SIMPLE TASK

WHERE CONVENTIONAL RECURRENTNETS FAIL

To illustrate the advantages of unsupervised causality detection, Josef Hochre-

iter (a student at TUM) tested variants of the scheme on the grammar learning

task of section 2 (based on G

1

and T

1

) and compared the results to the results

obtained with the IID-algorithm for fully recurrent continually running networks

[3][12]. Local representations of terminal input symbols were employed: There

were as many input units as there were terminal symbols, and each terminal

was represented by a bit-vector with only one non-zero component. No episode

boundaries were used: strings generated by the training grammar were fed to

the learning systems without providing information about their beginnings and

their ends.

With various numbers of hidden units and various learning rates it was not

possible to obtain signi�cant performance improvement with the conventional

algorithm (the test runs were interrupted after 100000 training examples). This

indicates that time lags of as few as 100 time steps are already too much for

methods based on `back-propagation through time' (provided that there are no

short helpful training sequences).

With unsupervised causality detection only a few hundred training examples

were necessary to solve the task. Since the task was comparatively simple, only

one level of the predictor hierarchy was needed. None of the involved networks

P , C and M needed any hidden units, all learning rates were equal to 1.0. (The

TD-variant and the RTD-variant were also successfully tested.)

Additional successful experiments with more complicated grammars were

conducted. These will be reported at the conference.

5 COLLAPSING A SELF-ORGANIZING PRE-

DICTORHIERARCHY INTOA SINGLE RE-

CURRENT NET

This section brie
y describes a 2-network `chunking' system whose details are

provided in [9]. The system collapses a self-organizing multi-level predictor

hierarchy into a single recurrent network. One term of the �rst net's error

function forces it to behave like a conventional supervised learning dynamic

recurrent network. Another term of its error function forces it to predict its

next input. Only if it makes an error, its current state plus the unpredicted

input is transferred to the second net, where it contributes to a higher level

internal representation of the input history. Note that the second net receives

all necessary information about the input history: The information which is

deducable by means of the predictions of the �rst net is redundant.

Let us now assume that the second net in certain situations learns to predict

the next critical state and input of the �rst net (or to generate the externally de-

�ned desired output). Given this assumption, the second net will develop useful

internal representations of previous unexpected input events. The �nal term of

the �rst net's error function forces it to reproduce these internal representations,

by predicting the internal states of the second net. This means that the �rst net

will learn to create useful internal representations on its own. After some time,

it will be able to use its own internal representations for making fewer and fewer

errors. Therefore, the second net will receive fewer and fewer inputs and will

be able to learn to build longer and longer `bridges through time', etc. Ideally,

in deterministic environments the second net will become obsolete after some

time.

The chunking system has already been tested on tasks where conventional

recurrent nets fail [9].

References

[1] M. I. Jordan. Serial order: A parallel distributed processing approach.

Technical Report ICS Report 8604, Institute for Cognitive Science, Uni-

versity of California, San Diego, 1986.

[2] B. A. Pearlmutter. Learning state space trajectories in recurrent neural

networks. Neural Computation, 1:263{269, 1989.

[3] A. J. Robinson and F. Fallside. The utility driven dynamic error prop-

agation network. Technical Report CUED/F-INFENG/TR.1, Cambridge

University Engineering Department, 1987.

[4] J. H. Schmidhuber. Dynamische neuronale Netze und das fundamentale

raumzeitliche Lernproblem. Dissertation, Institut f�ur Informatik, Technis-

che Universit�at M�unchen, 1990.

[5] J. H. Schmidhuber. A local learning algorithm for dynamic feedforward

and recurrent networks. Connection Science, 1(4):403{412, 1990.

[6] J. H. Schmidhuber. Recurrent networks adjusted by adaptive critics. In

Proc. IEEE/INNS International Joint Conference on Neural Networks,

Washington, D. C., volume 1, pages 719{722, 1990.

[7] J. H. Schmidhuber. Towards compositional learning with dynamic neural

networks. Technical Report FKI-129-90, Institut f�ur Informatik, Technische

Universit�at M�unchen, 1990.

[8] J. H. Schmidhuber. Learning to control fast-weight memories: An alter-

native to recurrent nets. Technical Report FKI, Institut f�ur Informatik,

Technische Universit�at M�unchen, March 1991.

[9] J. H. Schmidhuber. A neural sequence chunker. Technical Report FKI,

Institut f�ur Informatik, Technische Universit�at M�unchen, 1991.

[10] R. S. Sutton. Learning to predict by the methods of temporal di�erences.

Machine Learning, 3:9{44, 1988.

[11] R. J. Williams. Toward a theory of reinforcement-learning connectionist

systems. Technical Report NU-CCS-88-3, College of Comp. Sci., North-

eastern University, Boston, MA, 1988.

[12] R. J. Williams and D. Zipser. Experimental analysis of the real-time re-

current learning algorithm. Connection Science, 1(1):87{111, 1989.

