In J. A. Meyer and S. W. Wilson, editors, Proc. of
the International Conference on Simulation of Adaptive Be-
havior: From Animals to Animats, pages 222-227. MIT
Press/Bradford Books, 1991.

A Possibility for Implementing Curiosity and Boredom in
Model-Building Neural Controllers

Jirgen Schmidhuber*

Institut fiir Informatik
Technische Universitat Miinchen
Arcisstr. 21, 8000 Miinchen 2, Germany
schmidhu@tumult.informatik.tu-muenchen.de

Abstract

This paper introduces a framework for ‘curious neural
controllers” which employ an adaptive world model for
goal directed on-line learning.

First an on-line reinforcement learning algorithm for
autonomous ‘animats’ is described. The algorithm is
based on two fully recurrent ‘self-supervised’ continually
running networks which learn in parallel. One of the net-
works learns to represent a complete model of the envi-
ronmental dynamics and is called the ‘model network’. It
provides complete ‘credit assignment paths’ into the past
for the second network which controls the animats phys-
ical actions in a possibly reactive environment. The an-
imats goal is to maximize cumulative reinforcement and
minimize cumulative ‘pain’.

The algorithm has properties which allow to implement
something like the desire to improve the model network’s
knowledge about the world. This is related to curios-
ity. It is described how the particular algorithm (as well
as similar model-building algorithms) may be augmented
by dynamic curiosity and boredom in a natural manner.
This may be done by introducing (delayed) reinforcement
for actions that increase the model network’s knowledge
about the world. This in turn requires the model network
to model its own ignorance, thus showing a rudimentary
form of self-introspective behavior.

1. Introduction

In the sequel first an on-line algorithm for reinforcement
learning in non-stationary reactive environments is de-
scribed. The algorithm heavily relies on an adaptive
model of the environmental dynamics. The main contri-
bution of this paper (see the second section) is to demon-
strate how the algorithm may be naturally augmented
by curiosity and boredom, in order to improve the world
model in an on-line manner.

Consider an ‘animat’ whose movements are controlled
by the output units of a neural network, called the control

*This work was supported by a scholarship from SIEMENS AG

network, which also receives the animat’s sensory percep-
tion by means of its input units. The animat potentially
is able to produce actions that may change the environ-
mental input (external feedback caused by the ‘reactive’
environment). By means of recurrent connections in the
network the animat is also potentially able to internally
represent past events (internal feedback).

The animat sometimes experiences different types of
reinforcement by means of so-called reinforcement units
or pain units that become activated in moments of re-
inforcement or ‘pain’ (e.g. the experience of bumping
against an obstacle with an extremity). The animat ’s
only goal is to minimize cumulative pain and maximize
cumulative reinforcement. The animat is autonomous in
the sense that no intelligent external teacher is required
to provide additional goals or subgoals for it.

Reinforcement units and pain units are similar to other
input units in the sense that they possess conventional
outgoing connections to other units. However, unlike nor-
mal input units they can have desired activation values at
every time. For the purpose of this paper we say that the
desired activation of a pain unit is zero for all times, other
reinforcement units may have positive desired values. In
the sequel we assume a discrete time environment with
‘time ticks’. At a given time the quantity to be minimized
by the learning algorithm is Y, ,(¢; — yi(t))? where y;(t)
is the activation of the ith pain or reinforcement unit at
time ¢, ¢t ranges over all remaining time ticks still to come,
and ¢; is the desired activation of the ith reinforcement
or pain unit for all times.

The reinforcement learning animat faces a very gen-
eral spatio-temporal credit assignment task: No external
teacher provides knowledge about e.g. desired outputs or
‘episode boundaries’ (externally defined temporal bound-
aries of training intervals). In the sequel it is demon-
strated how the animat may employ a combination of
two recurrent self-supervised learning networks in order
to satisfy its goal.

Munro [2], Jordan [1], Werbos [12], Robinson and Fall-
side [6], and Nguyen and Widrow [4] used ‘model net-
works’ for constructing a mapping from output actions

of a control network to their effects in in ‘task space’
[1]. The general system described below (an improved
version of the variants described in [8] and [10]) also em-
ploys an adaptive model of the environmental dynam-
ics for computing gradients of the control network’s in-
puts with respect to the controller weights. The model
network is trained to simulate the environment by mak-
ing predictions about future inputs, including pain and
reinforcement inputs. Training of the controller works
as follows: Since we cannot propagate input errors (e.g.
differences between actual pain signals and desired zero
pain signals) ‘through the environment’, we propagate
them through the combination of model network and
controller. Only the controller weights change during
this phase, the weights of the model network have to
remain fixed. (Actually, we do not really propagate er-
rors through the networks. We use an algorithm which
is functionally equivalent to ‘back-propagation through
time’ but uses only computations ‘going forward in time’.
So there is no need for storing past activations.)

Both the control network and the model network are
fully recurrent. The algorithm differs from algorithms by
other authors in at least some of the following issues: It
aims at on-line learning and locality in time, it does not
care for ‘epoch-boundaries’, it needs only reinforcement
information for learning, it allows different kinds of re-
inforcement (or pain), and it allows both internal and
external feedback with theoretically arbitrary time lags.
Unlike with Robinson and Fallside’s approach (which is
the one that bears the most relationships to the one de-
scribed here) ‘credit assignment paths’ are provided that
lead from pain units back to output units back to all input
units and so on. There are also credit assignment paths
that lead from input units back to the input units them-
selves, and from there to the output units. The latter
paths are important in the common case when the envi-
ronment can change even if there were no recent output
actions.

The discrete time algorithm below concurrently adjusts
the fully recurrent model network and the fully recurrent
control network. An on-line version of Robinson and Fall-
side’s Infinite-Input-Duration learning algorithm for fully
recurrent networks [5] (first implemented by Williams
and Zipser [14]) is used for training both the model net-
work and the combination of controller and model net-
work. The algorithm is a particular instantiation of a
more general form and is based on the logistic activation
function for all non-input units.

In step 1 of the main loop of the algorithm actions
in the external world are computed. Due to the inter-
nal feedback, these actions are based on previous inputs
and outputs. For all new activations, the correspond-
ing derivatives with respect to all controller weights are
updated.

In step 2 actions are executed in the external world,

and the effects of the current action and/or previous ac-
tions may become visible.

In step 3 the model network tries to predict these ef-
fects without seeing the new input. Again the relevant
gradient information is computed.

In step 4 the model network is updated in order to
better predict the input (including pain) for the con-
troller. Finally, the weights of the control network are
updated in order to minimize the cumulative differences
between desired and actual activations of the pain and
reinforcement units. Since the control network continues
activation spreading based on the actual inputs instead
of using the predictions of the model network, ‘teacher
forcing’ [14] is used in the model network.

One can find various improvements of the systems de-
scribed in [8] and [10]. For instance, the partial deriva-
tives of the controller’s inputs with respect to the con-
troller’s weights are approximated by the partial deriva-
tives of the corresponding predictions generated by the
model network. Furthermore, the model sees the last
input and current output of the controller at the same
time.

Notation (the reader may find it convenient to compare
with [14]):

C 1is the set of all non-input units of the control net-
work, A is the set of its output units, I is the set of its
‘normal’ input units, P is the set of its pain and rein-
forcement units, M is the set of all units of the model
network, O is the set of its output units, Op C O is the
set of all units that predict pain or reinforcement, Wy, is
the set of variables for the weights of the model network,
We is the set of variables for the weights of the control
network, yr., ... is the variable for the updated activation
of the kth unit from MUCUIUP, y;,_,, is the variable for
the last value of ys,, .., wij is the variable for the weight
of the directed connection from unit j to unit i, p%”w is
the variable which gives the current (approximated) value
of B'g’“T"], pfjold s the variable which gives the last value
of pf’jnw, if k € P then cy is k’s desired activation for
all times, ac is the learning rate for the control network,
aps 18 the learning rate for the model network.

| IUP |=| O |, | Op |=| P|. Ifk € IUP, then
kpred is the unit from O which predicts k. FEach unit
from I U P U A has one forward connection to each unit
from M U C. FEach unit from M is connected to each
other unit from M. Fach unit from C is connected to
each other unit from C. Fach weight of a connection
leading to a unit in M is said to belong to Wyr. FEach
weight of a connection leading to a unit in C is said to
belong to We. FEach weight w;; € Wy needs pi-"j—va,lues
for all k € M. FEach weight w;; € W¢ needs pi-"j—va,lues
forallke MUCUIUP.

INITIALIZATION:
For all w;; € Wy UWe:

begin w;; «— random,

for all possible k: pf; ——0,pf; 0 end.
Forallke MUC :yi,,, < 0,yx,.., < 0.
Forallke TUP :

Set yy_,. by environmental perception, yy.... <+ 0.

new

old

FOREVER REPEAT:
1. Forallie€ C:y; + ————.
yZn,ﬁ’u)]+67 z]‘ YijY5io14
For all w;; € We, ke C:
Pl Yhwew (1= Yo)2 wrably) + SikYjors)
For all k € C:
begin Ykota € Yknews
for all w;; € We - pfjold — p%mu end .
2. Execute all motoric actions based on activations of
units in A. Update the environment.
For alli e TUP:
Set y;.... by environmental perception.
3. Foralli€ M :y,, B «— ———.
1+e Z,- YiiViold
For all wy; € Wy UWe, k€ M:
P = Yo (1= Y) (2 0P, + O Ysra)-
For allk € M:
b(’(}””l Ykora € Yknew>
for all w;; € We UWyy - pf’jnld — pf’jnew end.
4. For all w;; € Wy
kpred
Wij — Wij + M D peropYknew — Ykpredoa)Pig gy -
For all w;; € We:
wij — wij + o Y e plcr
For allk e TU P:
b(’(}””l Ykora € Yknews Ykpredoia < Yknews
for all wi; € Wy - pfrree

ijold
ok kpred
for all wij € We 2 pgj; < Dijons

kpred
T Yknew)pijozd)

«— 0,

end.

By employing probabilistic output units for C' and by
using ‘gradient descent through random number gener-
ators’ [13] we can introduce explicit explorative random
search capabilities into the otherwise deterministic algo-
rithm. In the context of the IID algorithm, this works as
follows: A probabilistic output unit &k consists of a con-
ventional unit ku which acts as a mean generator and
a conventional unit ko which acts as a variance gener-
ator. At a given time, the probabilistic output v, ., is
computed by

Yhnew = Yhtinew T ZYkoncws

where z is distributed e.g. according to the normal dis-
tribution. The corresponding pf’jnw have to be updated
according to the following rule:

Yknew — Ykpnew ko

k ku
Pijnew < Pijno, T
’ Ykonew

Ynew "

By performing more than one iteration of step 1 and
step 3 at each time tick, one can adjust the algorithm
to environments that change in a manner which is not
predictable by semilinear operations (theoretically three
additional iterations are sufficient for any environment).

The algorithm is local in time, but not in space. See
[8] for a justification of certain deviations from ‘pure gra-
dient descent through time’, and for a description of how
the algorithm can be used for planning action sequences.
See [7] and [9] for two quite different entirely local meth-
ods.

2. Implementing Dynamic Curiosity and
Boredom

Only if the model network is a good predictor of the en-
vironmental dynamics we can expect the controller to
converge. In the current section we motivate the in-
troduction of the ‘explicit desire to improve the world
model’ and show a possibility for implementing it in on-
line model-building systems as the one described in the
last section.

Many biological learning systems, particularily the
more complex ones, show an interplay of goal-directed
learning and explorative learning. In addition to certain
permanent goals (like avoiding pain), goals are generated
whose immediate purpose solely is to increase knowledge
about the world. So far this interplay has not been ad-
dressed at all in the connectionist literature.

The explorative side of learning (related to something
that usually is called curiosity) is not completely unsu-
pervised, as it is sometimes assumed. Curiosity helps to
learn how the world works, which in turn helps to satisfy
certain goals. However, the goal-directedness of curiosity
is less obvious than the goal-directedness of the algorithm
described above (and of less general algorithms described
in other papers on goal-directed learning).

Curiosity is related to what one already knows about
the world. One gets curious as soon as one believes that
there is something that one does not know. However,
the goal of learning how the world works is dominated
by other goals (like avoiding pain): One does not know
exactly how it feels putting one’s hand into the meat
grinder. However, one does not want to know.

Since curiosity makes sense only for systems that can
have dynamic influence on what they learn, and since
curiosity aims at minimizing a dynamically changing
value, namely, the degree of ignorance about something,
it makes sense only in on-line learning situations where
there is some sort of dynamic attention.

Thus the precondition of curiosity is something like our
on-line learning algorithm described above. This algo-
rithm builds a world model in order to use the world
model for goal-directed learning of the controller. The
controller’s potential for dynamic attention is given by

the external feedback. The world model adapts itself to
whatever the controller focusses on (see [11] for an appli-
cation of similar adaptive control techniques to the prob-
lem of learning selective attention). The direct goal of cu-
riosity and boredom is to improve the world model. The
indirect goal is to ease the learning of new goal-directed
action sequences. The contribution of this section is to
show one possibility for augmenting the algorithm by cu-
riosity and by its counterpart, which is boredom.

The basic idea is simple: We introduce an additional
reinforcement unit for the controller (see figure 1.). This
unit, hereafter called the curiosity unit, gets activated by
a process which at every time step measures the Euclidian
distance between reality and prediction of the model net-
work. The activation of the curiosity unit is a function
of this distance. Its desired value is a positive number
corresponding to the ideal mismatch between belief and
reality. The effect of the algorithm described in the first
section is that there is positive reinforcement whenever
the model network fails to correctly predict the environ-
ment. Thus the usual credit assignment process for the
controller encourages certain past actions in order to re-
peat situations similar to the mismatch situation.

As soon as the model network has learned to correctly
predict the environment in former ‘mismatch situations’,
actions leading to such situations automatically are de-
reinforced. This is because the activation of the curiosity
unit goes back to zero. Boredom becomes associated with
the corresponding situations.

The important point is: The same complex mechanism
which is used for ‘normal’ goal-directed learning is used
for implementing curiosity and boredom. There is no
need for devising a separate system which aims at im-
proving the world model.

The controller’s credit assignment process is aimed at
repeatedly entering situations where the model network’s
performance is not optimal. It is important to observe
that this process itself makes use of the model network!
The model network has to predict the activations of the
curiosity unit. Thus the model network partly has to
model its own ignorance, it has to learn to know that it
does not know certain details.

What is the ideal mismatch mentioned above? In
conventional AT the saying goes that a system can not
learn something that it does not already almost know.
If we want to adopt this view, then a consequence is
that the function that translates mismatches into rein-
forcement is not a linear one. Zero reinforcement should
be given in case of perfect matches, high reinforcement
should be given in case of ‘near-misses’, and low rein-
forcement again should be given in case of strong mis-
matches. This corresponds to a notion from ‘esthetic in-
formation theory’ which tries to explain the feeling of
‘beauty’ by means of the quotient of ‘subjective com-
plexity’ and ‘subjective order’ or the quotient of ‘unfa-

miliarity’ and ‘familiarity’ (measured in an information-
theoretic manner). This quotient should achieve a certain
ideal value. (See Nake [3] for an overview of approaches
to formalizing ‘esthetic information’. Interestingly, the
number % plays a significant role in at least some of these
approaches.) However, at the moment the precise nature
of a good mapping between (mis)matches and reinforce-
ment is unclear and subject of ongoing research.

Currently some experimental research is going on in
order to answer the following questions: What are use-
ful learning rates (it is assumed that the model network
should learn clearly faster than the controller)? What
are useful relative strengths of pure goal-directed rein-
forcement and ‘curiosity reinforcement’? And what are
the properties of a good mapping from mismatches to
reinforcement?

Although these questions are still open, in some pre-
liminary experiments with a linear mapping from mis-
matches to reinforcement it already has been demon-
strated that errors of the model network can be reduced
by generating curiosity reinforcement in an on-line man-
ner.

Concluding Remarks

The basic idea of implementing curiosity and boredom is
not limited to the particular algorithm described in the
first section. FEwery model-dependent on-line algorithm
for learning goal directed behavior might be augmented
by a similar implementation of ‘the desire to improve the
world model’. The basic motivation is: Instead of us-
ing some separate mechanism for improving the world
model, we want to make use of the capabilities of the
goal-directed learning algorithm itself.

The interesting side effect is: Since the learning algo-
rithm depends on the model network, the model network
has to make a prediction about its own current predic-
tion capabilities. The activations of the model network
are (partly) interpreted as a statement about the current
weights of the model network. Note that this is already a
rudimentary form of self-introspective behavior! The au-
thor believes that extensions of these rudimentary forms
of introspective neural algorithms will be the key to learn-
ing systems which are much more sophisticated than the
ones we know so far.

Figure 1. An animat controlled by a recurrent control network is shown. For simplicity, only one ‘normal’ input
unit (IN), one ‘normal’ reinforcement input unit (R), one hidden unit and one output unit (OUT) are depicted. A
recurrent model network is trained to emulate the environmental dynamics by predicting the control network’s input
(PRED;N and PREDg).

An additional reinforcement unit CUR for the control network gets activated by ‘ideal mismatches’ between expec-
tations of the model network and reality. The model network needs an additional output unit (PREDcyg) for
predicting CUR. It models its own ignorance, thus showing a rudimentary form of self-introspective behavior. The
model network helps to encourage action sequences of the controller which lead to unfamiliar situations.

References

1]

9]

[10]

[11]

M. I. Jordan. Supervised learning and systems with
excess degrees of freedom. Technical Report COINS
TR 88-27, Massachusetts Institute of Technology,
1988.

P. W. Munro. A dual back-propagation scheme for
scalar reinforcement learning. Proceedings of the
Ninth Annual Conference of the Cognitive Science
Society, Seattle, WA, pages 165-176, 1987.

F. Nake. Asthetik als Informationsverarbeitung.
Springer, 1974.

Nguyen and B. Widrow. The truck backer-upper:
An example of self learning in neural networks. In
Proceedings of the International Joint Conference on
Neural Networks, pages 357-363. IEEE Press, 1989.

A. J. Robinson and F. Fallside. Static and dy-
namic error propagation networks with application
to speech coding. Proceedings of Neural Information

Processing Systems, American Institute of Physics,
1987.

T. Robinson and F. Fallside. Dynamic reinforcement
driven error propagation networks with application
to game playing. In Proceedings of the 11th Con-
ference of the Cognitive Science Society, Ann Arbor,
pages 836 843, 1989.

J. Schmidhuber. The Neural Bucket Brigade: A lo-
cal learning algorithm for dynamic feedforward and
recurrent networks. Connection Science, 1(4):403

412, 1989.

J. Schmidhuber. An on-line algorithm for dynamic
reinforcement learning and planning in reactive envi-
ronments. In Proc. IEEE/INNS International Joint
Conference on Neural Networks, San Diego, vol-
ume 2, pages 253-258, 1990.

J. Schmidhuber. Recurrent networks adjusted by
adaptive critics. In Proc. IEEE/INNS International
Joint Conference on Neural Networks, Washington,
D. C., volume 1, pages 719-722, 1990.

J. Schmidhuber. Reinforcement learning with inter-
acting continually running fully recurrent networks.
In Proc. INNC International Neural Network Con-
ference, Paris, volume 2, pages 817-820, 1990.

J. Schmidhuber and R. Huber. Learning to generate
focus trajectories for attentive vision. Technical Re-
port FKI-128-90, Institut fiir Informatik, Technische
Universitdt Miinchen, 1990.

[12]

[13]

[14]

P. J. Werbos. Backpropagation and neurocontrol: A
review and prospectus. In IEEE/INNS International
Joint Conference on Neural Networks, Washington,
D.C., volume 1, pages 209-216, 1989.

R. J. Williams. On the use of backpropagation in as-
sociative reinforcement learning. In IEEFE Interna-
tional Conference on Neural Networks, San Diego,

volume 2, pages 263 270, 1988.

R. J. Williams and D. Zipser. Experimental analysis
of the real-time recurrent learning algorithm. Con-
nection Science, 1(1):87-111, 1989.

