
An On-Line Algorithm for Dynamic Reinforcement Learning and
Planning in Reactive Environments

Jiirgen Schmidhu ber *
Inst i t ut fur Informatik

Technische Universitat Munchen
Arcisstr. 21, 8000 Munchen 2, Germany

schmidhuetumult .informatik.tu-muenchen.de

Abstract
An on-line learning algorithm for reinforcement learning with continually running recurrent networks

in non-stationary reactive environments is described. Various kinds of reinforcement are considered as
special types of input to an agent living in the environment. The agent’s only goal is to maximize
the amount of reinforcement received over time. Supervised learning techniques for recurrent networks
serve to construct a differentiable model of the environmental dynamics which includes a model of future
reinforcement. This model is used for learning goal directed behavior in an on-line fashion. The method
extends work done by Munro, Robinson and Fallside, Werbos, Widrow, and Jordan.

The possibility of using the system for planning future action sequences is investigated, and this
approach is compared to approaches based on temporal difference methods. A connection to ‘met&
learning’ (learning how to learn) is noted.

Introduction
Consider an agent whose movements are controlled by the output units of a neural network, called the
control network, which also receives the agent’s sensory perception by means of its input units. The agent
potentially is able to produce actions that may change the environmental input (external feedback caused by
the ‘reactive’ environment). By means of recurrent connections in the network the agent is also potentially
able to internally represent past events (internal feedback).

The agent is able to experience different types of negative reinforcement or ‘pain’ by means of so-called
reinforcement units or pain units that become activated in moments of ‘pain’ (e.g. the experience of bumping
against an obstacle with an extremity). The agent’s only goal is to minimize cumulative pain. The agent
is autonomous in the sense that no intelligent external teacher is required to provide additional goals or
subgoals for it.

A pain unit is treated as a special type of input unit which possesses conventional outgoing connections
to other units. Unlike normal input units pain units can have desired activation values at every time. For the
purpose of this paper we say that the desireable activation of a pain unit is zero for all times. In the sequel
we assume a discrete time environment with ‘time ticks’. At a given time the quantity to be minimized is

y i (t) where y i (t) is the activation of the ith pain unit a t time t , and t ranges over all remaining time
ticks still to come.

Pain corresponds to negative reinforcement. The reinforcement learning agent faces a very general spatio-
temporal credit assignment task: No external teacher provides knowledge about e.g. desired outputs or
‘episode boundaries’. In this paper we demonstrate how the agent can employ a combination of two recurrent
self-supervised learning networks in order to satisfy its goal.

As Munro [3] has pointed out in the case of stationary environments and feedforward networks, one does
not necessarily have to employ a ‘pure’ reinforcement learning algorithm for reinforcement learning. (‘Pure’
reinforcement learning algorithms (or reinforcement comparison algorithms) for temporal credit assignment

*This work was supported by a scholarship from SIEMENS AG

I1 - 253

http://informatik.tu-muenchen.de

WWL9

U

Figure 1: A control network wiih internal and external feedback is shown. For simplicity, only one normal
input unit (IN), one reinforcem,ent input unit (R), one hidden unit and one output unit (OUT) are depicted.
A model network (only one hidden unit is shown.) is trained t o simulate the environmental dynamics b y pre-
dicting the control network’s input (PREDIN and PREDR). The model network provides credit assignment
paths f o r the control network.

in non-stationary environments have been described i n [l], [12], [7] and [SI.) A supervised learning algorithm
can be applied to build a model of tlie rela.tionships between environmental inputs, output actions of the
agent, and corresponding reinforcement. An adaptive model network representing the model can be used to
propagate gradient information back into the control network in order to maimize reinforcement.

Robiiison and Fallside described an extension of Munro’s static approach to dynamic recurrent networks
in time-varying environment,s [SI. As in Munro’s approach, tlie only aspect of the external world which is
explicitly described by Robinson and Fallside’s recurrent model network is the reinforcement’s dependency
on past inputs and outputs. There is no model for tlie dependency of (non-reinforcement) inputs on past
outputs (or on past inputs which again may have been caused by past outputs). This makes tlie model for
tlie reinforcement itself incomplete: Paths for credit assignment leading ‘through the environment’ can not
be considered.

Nguyen and Widrow [4], Jordan [2] , and Werbos [l l] a.lso use model networks for constructing a mapping
from output actions of a control network to their effects i n in ‘task space’ [2]. The same principle as used in
Munro’s work serves to provide error signals for the control network, in order to improve performance on a
given control task.

The system described i n the nest section (see also [9]) employs an adaptive model of the environmental
dynamics for computing gradients of the con(.rol network’s pain. Both the control network and the model
network are fully recurrent.

In Jordan’s terminology we may say that t,he purpose of tlie model network’s ‘task units’ is to predict
activations partly of tlie convent,ional input unit,s and partly of the pain or reinforcement units. Unlike
Robinson and Fallside’s approach our approach includes credit assignnlent passes that lead from pain nnits
back to output units Imck to all input units and so on. There are also credit assignment paths that lead from

I1 - 254

input units back to the input units themselves, and from there to the output units. The latter paths are
important in the common case when the environment can change even if there are no recent output actions.

The Algorithm
We describe the discrete time version of an on-line learning algorithm for reinforcement learning agents.
The algorithm concurrently adjusts the model network and the control network. We concentrate on the
case where Williams and Zipser’s on-line version [13] of Robinson and Fallside’s Infinite-Input-Duration
learning algorithm for fully recurrent networks [5] is used for training both the model network and the
control network. The following algorithm is a particular instantiation of a more general form and is based
on the logistic activation function for all non-input units.

Notation (the reader may find it convenient to compare with [13]):

C is the set of all units of the control network, A is the set of all output units of the control network, I is
the set of all ‘normal’ input units of the control network, P i s the set of all pain units of the control network,
M is the set of all units of the model network, 0 is the set of all output units of the model network, Op c 0
is the set of all units that predict pain, H = M U C\(I U P) , WM is the set of variables for the weights of
the model network, Wc is the set of variables f o r the weights of the control network, i s the variable
fo r the updated activation of the k t h unit f rom M Uc, Ykold is the variable f o r the last value of yk,,,, wij i s
the variable f o r the weight of the directed connection f r o m unit j t o unit i , pfjn,, i s the variable which gives
the current (approximated) valve of ’z;~, pfjold i s the variable which gives the last value of pfjne,, QC i s a
positive constant, the learning rate f o r the control network, QM i s a positive constant, the learning rate fo r
the model network.

I I U P [=I 0 1, I O p [=I P 1. For each k E O\Op there is exactly one i E I such that Yk,., predicts
the value of yinew, which also i s called Xk,., . For each k E Op there is exactly one i E P such that Yk,,,
predicts the value of yinew , which also as called xk,,, . Each unit f rom I U P U A has one forward connection
t o each unit f rom H . Each unit f rom M is connected t o each other unit f rom M . Each unit f rom C\(IU P)
is connected t o each other unit f rom this set. Each weight of a connection leading t o a unit in M is said t o
belong to WM. Each weight of a connection leading to a unit i n C\(I U P) i s said t o belong t o We. Each
weight wij 6 WM needs pfj-values f o r all k E M . Each weight wij E WC needs pfj-values f o r all k E H .

First we will describe the algorithm, then some comments will be given.

T I - 255

General comments on the algorithm. 1. In step 2 the model network is updated in order to better predict
the input (including pain) for the controller. Since the control network continues activation spreading based
on the actual inputs instead of using the predictions of the model network, ‘teacher forcing’ [13] is used in
the model network (step 3.A).

2. In step 3 the weights of the control network are updated in order to minimize the cumulative activations
of the pain units. In the version above no teacher forcing is used for the control network. Here the philosophy
is that a little pain may be informative for the agent, and may have an explicit influence on future actions.

3. The algorithm assumes that from one time tick to the next the environment changes in a fashion that
is predictable by linearily separable mappings from past states. If there is a ‘higher degree of environmental
non-linearity’ then the algorithm has to be modified in a trivial manner such that the involved networks
tick at a higher frequency than the environment. In any case it suffices if there are four network ticks for
each environmental tick. This is due to the fact that 4-layer-operations in principle are enough to arbitrarily
approximate any desired mapping.

Comments on the on-line nature of the algorithm. Since we want an on-line learning procedure we deviate
from true gradient descent in several respects:

1. Instead of accumulating contributions to weight changes over time and actually changing the weights
after activation spreading, the weights are changed immediately. According to the experiments described in
[13] this is no serious limitation. On the contrary, immediate weight changes allow to renounce on information
about ‘episode boundaries’.

2. The weight changing mechanism of the controller acts as if the model network already was a perfect
predictor (with fixed weights) which could replace the environment. However, the model may be imperfect.
What should we expect to happen if the weights of the control network start changing inappropriately
because of an inaccurate model?

2A. Jordan as well as Robinson and Fallside note that a model network does not need to be perfect
to allow increasing performance of a control network. If the error for the control network is not given
by the difference of the desired input for the control network and the model output but by the difference
of the desired input and the actual input of the control network, then the minima of this difference still
are fixpoints of the weight changing mechanism, as long as the model network already has reached a local
minimum. The zero-points of the controller’s error are fixpoints even if the model network has not yet found
a local minimum. The minima of the error for the control network can be found if the inner products of
the approximated gradients for the control network’s weights and the exact gradients (according to a perfect
model) are positive.

2B. Note that the p&’s of the model network change independently from the p t ’ s of the control network.
A situation where the control network experiences pain and where its weights are based on an inaccurate
model will not remain stable, as long as not both the model network and the control network are trapped
in local minima. If we assume that the model network always finds a zero-point of its error function (which
means that it sooner or later always will correctly predict future inputs no matter how the controller behaves),
then over time we can expect the control network to perform gradient descent in pain according to a perfect
model of the visible parts of the real world. As long as the model is inaccurate the controller partly functions
as a random explorer who rather uninformedly causes situations that help the model network to collect new
data about the environmental dynamics, in order to ‘make the relevant dynamics of the world differentiable’.

To repeat, as long as the control network experiences pain and the model network is not accurate over the
‘sub-domains’ chosen by the controller, the latter cannot be guaranteed to converge immediately. However,
since the model changes independently from the control network, it makes sense to expect the model to
converge as long as the environment does not behave chaotically.

Experiments with a diflcult control task. The algorithm is currently being tested on a complicated pole
balancing problem (the differential equations modelling the cart-pole system described in [l] are employed).
Unlike with previous pole balancing tasks no prewired decoder is used to pre-process the inputs from the
environment. Additionally, unlike with previous pole balancing tasks no information is provided about
temporal derivatives of the environment’s state variables (pole velocity, etc.). The agent is forced to extract
this kind of information by itself, by means of the recurrent connections of its model network. An additional
difficulty is that no external teacher provides information about ‘trial boundaries’. Thus the agent faces a
complex and realistic spatio-temporal credit assignment task. The results of preliminary test runs are very
encouraging, however, the experiments have not yet been completed.

I1 - 256

Using the Model Network for Planning Action Sequences
Robinson and Fallside state that their approach corresponds to Barto, Sutton, and Anderson’s ‘Adaptive
Heuristic Critic’ (AHC) algorithm [l]. They say that the model network corresponds to the adaptive heuristic
critic.

A major difference, however, between the AHC and the model network is that the AHC has the potential
to immediately look far into the future, while the model network usually looks forward just for one time
tick. The AHC’s evaluation of a system’s state at time t can become overwritten by its evaluation at time
t + 1. Thus during successive training episodes expectations about future events can be transported ‘back
into time’ for arbitrary numbers of time ticks.

However, it is also possible to use the model network for predicting events that are ‘hidden deeper in the
future’. The model network, as long as it is perfect, contains all information about future reinforcement.
By letting the combination of model network and control network ‘run forward in time’ one can perform a
mental simulation of future events. If such a run predicts pain then the system can perform gradient descent
in predicted pain, without actually experiencing pain. This means that an immediate decision can be taken
about how to change future behavior.

The disadvantage is that a lot of computation is required to extract this information. With on-line
learning, the consequences are high peak computation times. For instance, if the system at certain time ticks
plans future actions by looking 10 time ticks into the future, without neglecting its usual credit assignment
tasks, then it consumes about 10 * m + 1 times the amount of computation time per tick as without mental
simulation (using essentially the same algorithm for simulation based weight changing as for normal weight
changing). (Here m is the number of successive simulation repititions required for convergence of the gradient
descent procedure.)

The method of the adaptive critic is more sympathetic: The AHC, based on Sutton’s TD-methods [lo],
does not represent a perfect model of all possible events but only of some relevant aspects of the world.
During successive learning trials it trys to ‘cache’ expectations about relevant events by omitting to model
irrelevant events between the relevant ones. (In [7] an application of Sutton’s TD-methods to the evolution
of recurrent networks is described.)

On the other side, the relevant events have to be predefined by the programmer. For instance, in case
of the AHC only one aspect of the environment is modeled, namely, the future cumulative (discounted)
reinforcement.

The problem is, of course, to decide in the general case which future events will be relevant for credit
assignment, and which will not. (This leads to the old frame problem from conventional AI.) The more
informed gradient descent procedures based on mental simulation are on the safe side in the sense that they
consider every future action for credit assignment. TD-like algorithms can require less amounts of peak
computation if it is a priori known that it suffices to concentrate on a small subset of all future events.

We may say that for reinforcement learning a main purpose of a world model as used in this paper is
to make the world differentiable, although it is possible to use the model for planning future actions. In
contrast, a main purpose of models based on TD-methods is immediate on-line planning by bridging long
time delays by ‘caching’ expectations about future events. It remains to be seen whether the advantages of
both approaches can be fruitfully combined.

A connection t o meta-learning. We want to mention a very interesting aspect of the notion of a ‘model
network’. A perfect model that also predicts the controller’s output predicts the changes of the control
network. This means that the model network models the evolution of the controller’s weights, it models the
effects of the gradient descent procedure itself. Activation flow models weight changes. This in turn comes
close to the notion of ‘learning how to learn’. Although such concepts from ‘metalearning’ are interesting
by themselves and also potentially useful for systems with introspective capabilities, their consequences are
beyond the scope of this paper.

Concluding Remarks
Let us view the weights of a network with fixed topology as its program. One of the most interesting aspects of
many connectionist algorithms is that program outputs are differentiable with respect to programs. A simple
program generator (the gradient descent procedure) allows to produce increasingly successful programs, if
the desired outputs are known.

I1 - 257

In typical reinforcement learning situations the environment is not a priori represented in a differentiable
form. So the main reason for connectionist world models in the style above can be seen in ‘making the world
differentiable’. Thus even program inputs can become differentiable with respect to programs. A differentiable
world model allows the program generator an informed search for better goal directed programs.

The degree of informedness of this search for suitable programs is a main difference between the very
general approach presented in this paper and other reinforcement learning algorithms. The approach is
based on the idea that understanding the world can greatly reduce the complexity of the search for adequate
goal directed behavior. All potentially relevant information about the environment should be taken into
consideration for credit assignment.

References
[l] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 834-846, 1983.

[a] M.I. Jordan. Supervised learning and systems with excess degrees of freedom. Technical Report COINS
T R 88-27, Massachusetts Institute of Technology, 1988.

[3] P.W. Munro. A dual back-propagation scheme for scalar reinforcement learning. Proceedings of Ninth
Annual Conference of the Cognitive Science Society, Seattle, WA, 1987.

[4] Nguyen and B. Widrow. The truck backer-upper: An example of self learning in neural networks. In
IJCNN International Joint Conference on Neural Networks, Vol 2, 1989.

[5] A. J . Robinson and F. Fallside. Static and dynamic error propagation networks with application to speech
coding. Proceedings of Neural Information Processing Systems, American Institute of Physics, 1987.

[6] T . Robinson and F. Fallside. Dynamic reinforcement driven error propagation networks with application
to game playing. In Proceedings of the 11th Conference of the Cognitive Science Society, Ann Arbor, 1989.

[7] J . H. Schmidhuber. The neural bucket brigade. In R. Pfeifer, Z. Schreter, Z. Fogelman, and L. Steels,
editors, Connectionism in Perspective, Amsterdam: Elsevier, 1988.

[8] J . H. Schmidhuber. Recurrent networks adjusted by adaptive critics. In IJCNN International Joint
Conference on Neural Networks, Washington, 1990.

[9] J. H. Schmidhuber. Making the world differentiable: On using supervised learning recurrent neural
networks for dynamic reinforcement learning and planning in non-stationary environments. FKI-Report,
Institut fur Informatik, Technische Universitat Miinchen, 1990.

[lo] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3, 9-44,
1988.

[ll] P. J . Werbos. Building and understanding adaptive systems: A statistical/numerical approach to factory
automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics, 17, 1987.

[12] R. J . Williams. Toward a theory of reinforcement-learning connectionist systems. Technical Report
NU-CCS-88-3, College of Comp. Sci., Northeastern University, Boston, MA, 1988.

[13] R. J . Williams and D. Zipser. A learning algorithm for continually running fully recurrent networks.
Technical Report ICs Report 8805, Univ. of California, San Diego, La Jolla, 1988.

I1 - 258

