Observing ¹³C labelling kinetics in CO₂ respired by a temperate grassland ecosystem Ulrike Gamnitzer ¹, Rudi Schäufele ¹, Andrew B. Moyes ², David R. Bowling ², Hans Schnyder ¹ The kinetic characteristics of the main sources of ecosystem respiration are quite unknown, partly due to methodological constraints. We present a new open-top chamber (OTC) apparatus for continuous $^{13}\text{C}/^{12}\text{C}$ labelling and measurement of ecosystem CO_2 fluxes. It includes four dynamic flow-through OTCs, a unit mixing CO_2 -free air with ^{13}C -depleted CO_2 , and a CO_2 analyser and an online isotope ratio mass spectrometer. Two different methods were applied for observation of the tracer during nighttime respiration in the field: open dynamic and closed static chamber mode. The concentration ($367\pm6.5~\mu\text{mol}~\text{mol}^{-1}$) and $\delta^{13}\text{C}$ ($-46.9\pm0.4\%$) of CO₂ in the OTCs was stable during photosynthesis due to high air throughflux and minimal incursion through the buffered vent. Soil CO₂ efflux was not affected by pressure effects during respiration measurements. The labelling kinetics of respiratory CO₂ measured in the open dynamic mode in the field agreed with that of excised soil+vegetation blocks measured in a laboratory-based reference system. The kinetics fitted a two-source system, with a rapidly labelled source ($T_{1/2}$ 2.6 d) supplying 48% of respiration, and the other source (52%) releasing no tracer during 14 days of labelling. Measurements in the closed static mode resulted in a significantly larger fraction of observed tracer. This bias was largely explained by non-steady-state diffusion effects of labelling CO₂ stored in the soil gas and water pores during the preceeding labelling period. ¹ Technische Universität München, Lehrstuhl für Grünlandlehre, Am Hochanger 1, D-85350 Freising-Weihenstephan, Germany ² University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112, USA