Water use efficiency of temperate semi-natural grassland has increased since 1857: an analysis of the carbon isotope composition of herbage from the Park Grass Experiment

*Iris Köhler*¹, Paul Poulton², Karl Auerswald¹, Hans Schnyder¹ Lehrstuhl für Grünlandlehre, TU München

A 150 years-long record of intrinsic water use efficiency (W_i) was derived from communitylevel carbon isotope discrimination ($^{13}\Delta$) in the herbage of the unfertilized, unlimed control treatment (plot 3) of the Park Grass Experiment at Rothamsted (England) between 1857 and 2007. $^{13}\Delta$ during spring growth has not shown a long-term trend (P = 0.5) since 1857. $^{13}\Delta$ of summer / autumn growth increased between 1875 and 2007. W_i during spring growth has therefore increased by 33% since the beginning of the experiment, and W_i of summer / autumn growth has increased by 18%. The variation in $^{13}\Delta$ was mainly related to weather conditions. Plant available soil water explained 51% and 39% of the variation in spring growth $^{13}\Delta$ and summer / autumn growth $^{13}\Delta$, respectively. In the 1857-2007 period yields have not increased, suggesting that community-level photosynthesis has not increased either. Therefore, the increased W_i probably resulted from a decreased stomatal conductance. Vapour pressure deficit (VPD) during spring growth has not changed since 1915, meaning that instantaneous water use efficiency (W_t) in spring time has increased and transpiration has probably decreased. Conversely, VPD in the months between the first and second cut has increased since 1915, offsetting the effect of increased W_i on W_i during summer and early autumn. Our results suggest that vegetation has adjusted physiologically to elevated CO₂ by decreasing stomatal conductance in this nutrient limited grassland.

² Rothamsted Research, Harpenden, United Kingdom