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Abstract

Covariant density functional theory is used to analyze the nuclear response in the
external multipole fields. The investigations are based on modern functionals with
zero range and density dependent coupling constants. After a self-consistent solution
of the Relativistic Mean Field (RMF) equations for the nuclear ground states multipole
giant resonances are studied within the Relativistic Random Phase Approximation
(RRPA), the small amplitude limit of the time-dependent RMF. The coupling to the
continuum is treated precisely by calculating the single particle Greens-function of the
corresponding Dirac equation. In conventional methods based on a discretization of
the continuum this was not possible. The residual interaction is derived from the same
RMF Lagrangian. This guarantees current conservation and a precise decoupling of
the Goldstone modes. For nuclei with open shells pairing correlations are taken into
account in the framework of BCS theory and relativistic quasiparticle RPA. Continuum
RPA (CRPA) presents a robust method connected with an astonishing reduction of the
numerical effort as compared to conventional methods. Modes of various multipolarities
and isospin are investigated, in particular also the newly discovered Pygmy modes in
the vicinity of the neutron evaporation threshold. The results are compared with
conventional discrete RPA calculations as well as with experimental data. We find
that the full treatment of the continuum is essential for light nuclei and the study of
resonances in the neighborhood of the threshold.
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Kovariante Dichtefunktionaltheorie wird herangezogen um den nuklearen Response von
Kernen in dusseren Multipol-Feldern zu untersuchen. Ausgangspunkt dazu bilden mod-
erne Funktionale mit verschwindender Reichweite und dichteabhangigen Kopplungskon-
stanten. Zunachst wird der Grundszustand im Rahmen der relativistischen Mittelfeld-
Néherung (RMF) behandelt. Darauf aufbauend werden elektrische Multipole-Resonanzen
im Rahmen der relativistischen Random-Phase-Naherung (RPA) untersucht, der sich
im Limes kleiner Amplituden aus der zeitabhéngigen RMF-Theorie ergibt. Entschei-
dend ist dabei die Kopplung an das Kontinuum, die durch die Berechnung der Greens-
Funktion der zugehorigen Dirac-Gleichung exakt behandelt wird. Dies war in den
konventionellen Methoden, die auf einer Diskretisierung des Kontinuums beruhten,
nicht moglich. Die Restwechselwirkung in den RPA-Rechnungen wird selbst-konsistent
aus dem Dichtefunktional abgeleitet. Das garantiert Strom-Erhaltung und eine ex-
akte Entkopplung der Goldstone-Moden. Zur Behandlung von Kernen mit offenen
Schalen wird die BCS-Methode und die entsprechende Quasiteilchen-RPA herangezo-
gen. Kontinuum-RPA (CRPA) stellt eine sehr robuste Methode dar, die im Vergleich
zu den bisher iiblichen Methoden der diskreten RPA zu einer erheblichen Reduktion
des numerischen Aufwands fiihrt. Moden mit verschiedenem Drehimpuls und Isospin
werden untersucht, insbesondere auch die kiirzlich gefundene Pygmy-Resonanz an der
Neutronen-Schwelle. Die Resultate werden mit Rechnungen im Rahmen der diskreten
RPA und mit Experimenten verglichen. Es ergibt sich, dass eine exakte Behandlung
des Kontinuums zur Beschreibung leichter Kerne und an der Schwelle zum Teilchen-
Kontinuum von entscheidender Bedeutung ist.

vi
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Chapter 1

Introduction

With the construction of new facilities using radioactive beams the investigation of
nuclei far from stability has gained considerable interest in recent years. Knowledge of
such exotic nuclei may improve our present insight, not only into the origin of element
abundances on the earth, but also into the processes leading to the formation of matter
in the universe. The most prospective paths for the formation of heavy elements are
the s-process (slow neutron capture), the r-process (rapid neutron capture) and the
rp-process(rapid proton capture). It is assumed that the rapid processes run in envi-
ronments with high isospin asymmetry, and that the subsequent-decays are slower than
the captures, resulting in the production of elements heavier than iron. Complex nu-
clear reaction networks used in the study of these phenomena need the input of nuclear
data, as far as possible from experiment but in most of the cases, where experiments
are not available, from calculations based on the theory of nuclear structure.

The majority of theories of nuclear structure which have been developed so far are based
on the simple argument that the nucleus consists of point-like protons and neutrons.
For a long time, this assumption was also the only one available since, after their
discovery, these two particles were identified as the elementary constituents of the
nucleus.

Today we know, of course, that this is not true and that these two kind of nucleons -
unlike the electron - do have inner structure, created by combinations of quarks, gluons,
and anti-quarks. Therefore, it is legitimate to think that a theory that includes quarks
and gluons as the main degrees of freedom in a unique way should be the starting
point towards a description of the nuclear phenomena over the entire nuclear chart.
Indeed, such an idea has turned into one of the most successful theories, the Quantum
Chromodynamics (QCD).

However, the link between QCD and the bare nucleon-nucleon force remains one of
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the long-term goals of nuclear theory. The difficulty in describing quantitatively the
structure of the interaction between nucleons in this way is due to its non-perturbation
character at low energies. Even though, to date, only a qualitative understanding of
nucleons in terms of full QCD has been possible. Efforts that take the underlying
symmetries as a basis and exploit the separation of scales in terms of the relevant
degrees of freedom in the framework of effective field theories (EFT) [I] look very
promising. Other new approaches start with phenomenological two-nucleon potentials
adjusted to the nucleon-nucleon scattering data and take advantage of the relatively
low energy dynamics of the nucleus to extract a universal potential that cuts out the
high momentum part of the interaction.

Our main goal is, of course, to achieve a global description of nuclear systems ranging in
size from the deuteron to nuclear matter and to neutron stars using a single parameter-
ization of the nuclear forces. Historically, the idea of employing a bare nucleon-nucleon
interaction from ab-initio calculations had always been in quest. Improvements in this
direction through the last decades have been able to provide us with a series of quite
remarkable realistic two- and three-nucleon potential models, such as Argonne v18 [2],
Mlinois 112 [3, 4], or N3LO [5]. Several methods have been developed upon these forces
to perform exact solutions of the nuclear many-body problem for very light nuclei, such
as the Green’s Function Monte Carlo (GFMC) method [3], the No-core Shell Model
(NCSM) [6], or Coupled Cluster (CC) methods [7]. One also hopes to calculate satura-
tion properties of dense nuclear matter. However, the complexity of these calculations
renders the method practically unfeasible for cases beyond p-shell nuclei.

For somewhat heavier nuclei configuration mixing (CI) calculations are possible. In
nuclear physics they are usually called Shell Model (SM) calculations. In this case one
concentrates on a limited configuration space, as for instance the sd-shell in an har-
monic oscillator basis and diagonalizes the full nuclear hamiltonian within this limited
basis [§]. Of course the corresponding hamiltonian is an effective one. It depends on
the underlying configuration space and the matrix elements are usually adjusted to
experimental data. For nuclei beyond A=40 the configuration spaces grow quickly to
astronomical numbers. By now, one has techniques to diagonalize matrices of dimen-
sion 10'% which corresponds to the full pf-shell [9]. Such calculations are also possible
for heavier nuclei, but only in the vicinity of closed shells.

For that purpose, alternative methods have been developed, usually in the form of
self-consistent mean field theories. Their starting point is the assumption that, in
first order, the nucleons inside the nucleus can be considered as independent particles
moving in an average field generated by the other nucleons. Phenomenological in
nature, these methods are very successful in describing bulk nuclear properties all
across the nuclear chart, which makes them a very powerful tool for the study of
nuclear phenomena.

Their principles are based on the Density Functional Theory (DFT), which is widely
used in many-body systems dominated by the Coulomb force, such as atomic physics,



molecular physics, quantum chemistry, or solid state physics. It has been introduced
by Kohn and Sham [10, (1] in the sixties and is based on an energy functional F|[p] [12]
which depends on the local single particle density which is in principle exact. It avoids
the use of complicated many-body wave functions and explicit matrix elements of the
underlying hamiltonian.

A few years after DFT had been known in other areas of physics, a similar idea was
introduced in nuclear physics. It was based on the idea of Brueckner that, due to
the Pauli principle and the uncertainty relation, the nuclear interaction is considerably
modified in the nuclear interior [I3},[T4]. In particular it depends strongly on the density.
This effective density-dependent interaction was used for density dependent Hartree-
Fock (DDHF) calculations [I5, [T6]. It was quickly recognized that this method is more
or less equivalent to density functional theory in the sense of Kohn and Sham where the
energy density E[p] is the HF-energy calculated with these density dependent forces.

Nuclear density functional theory does not depend on any bare two-nucleon or three-
nucleon-interaction, rather it uses effective density-dependent forces, which are ad-
justed to experimental data in nuclear matter and finite nuclei. It has turned out that
these phenomenological methods are extremely successful in describing many nuclear
properties all over the periodic table.

The first approaches of this type used a non-relativistic framework. This can be un-
derstood, if one considers that nuclear structure phenomena were limited to nucleon
velocities small compared to the speed of light and to energy scales considerably smaller
than the nucleon rest mass.

It is evident that one does not have to consider relativistic kinematics in the nuclear
system. However, during the last decades [I7, I8, [19], it has turned out that even
without relativistic kinematics there are several properties which can be understood
only in terms of very strong relativistic potentials in the nucleus and that a relativistic
description has many advantages. Within this framework, the average nuclear potential
in the nuclear interior is a sum of a very strong attractive scalar potential S(r) of
roughly 400 MeV depth and a nearly as strong repulsive vector potential V(r) of
roughly 350 MeV. The size of both potentials is no longer small against the rest mass
of the nucleons, but in the nuclear interior they cancel more or less and one is left with
a slightly attractive potential of roughly 50 MeV leading to relatively small momenta
and allowing a non-relativistic approximation. On the other side these two strong
potentials add up in the spin orbit term, leading to the very strong spin-orbit splitting
which was well known (but not understood) since the early days of the nuclear shell
model [20].

The idea to describe the nucleus as a relativistic system has been pushed much by
Walecka [21], who developed a relativistic quantum field theory Quantum Hadrody-
namics (QHD) based on the Lagrangian description of the nuclear systems rather than
on the NN-potentials. In the framework of this unique approach, the nuclear proper-
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ties are described by point-like nucleons interacting through the exchange of mesons.
QHD puts nuclear theory on a qualitatively new level, at which it can be regarded
as a relativistic quantum field theory. Of course, the exact relativistic quantum-field
description corresponding to Walecka Lagrangian is very complicated. In particular,
despite the fact that it can be shown formally by power counting that it is a renor-
malisable model [19], one meets serious problems using perturbation theory in practice
because of the large values of the coupling constants. For example, it has been shown
that loop expansions do not converge [22]. Therefore the idea of a fully fledged quantum
field theory has been given up.

However, it turns out that in the framework of this model it is possible to obtain many
important results by using the mean-field approximation, i.e. by treating the meson
fields that occur in the Walecka approach as classical fieldd]. So the Lagrangian of the
relativistic mean-field theory (RMF) may be considered as an effective Lagrangian for
relativistic calculations in the same sense as the Skyrme potential is an effective force
for classical non-relativistic mean-field calculations.

In the basis of RMF, one considers that the meson fields are purely phenomenological.
By adjusting only a few model parameters (coupling constants and effective masses)
to global properties of spherical nuclei, it has been possible to describe many nuclear
structure phenomena, not only in nuclei along the valley of stability, but also in exotic
nuclei with extreme isospin values and nuclei close to the particle drip lines. The theory
is based on the following assumptions: i) nucleons are treated as point particles, ii)
relativity is fully taken into account and iii) nucleons move as independent particles in
the corresponding mean fields. The nuclear many body problem is described by Dirac
equations containing a mass operator and including meson fields with different spin,
parity and isospin properties. In almost all implementations for nuclear matter and
finite nuclei, RMF is treated in the no-sea approximation: the Dirac sea is assumed to
be empty, hence the negative energy states do not contribute to the calculation of the
local densities and currents.

Besides the proper treatment of the spin-orbit splitting, relativistic mean field mod-
els have a number of additional advantages as compared to the corresponding non-
relativistic methods, as for instance the interpretation of pseudo-spin symmetry in the
nuclei [23), 24, 25, 26], or the proper description of currents and nuclear magnetism in
nuclear systems with time-reversal breaking in the intrinsic frame as in odd-mass nuclei
or in rotating nuclei [27, 28, 29, B0]. Already, the relativistic treatment provides good
description of the experimental data for the total binding energy of nuclei, the charge
distribution radii and the separation energies, competing successfully the Skyrme and
Gogny forces. The binding energies and the charge radii are reproduced to an accuracy
of less than a percent. Finally, kink effect in the r.m.s. charge radii behavior in the
Ph-isotopic chain appears also to be an inherent feature of a relativistic treatment of

! Although this approximation was provided by Walecka only in the limit of high densities, its use
also at observed nuclear densities is justified by the large number of experimental results that are
nicely reproduced.



the system [31], since they cannot be predicted by the conventional non-relativistic
models.

After it had been realized that the Walecka model [I8] with all its nice properties was
not able to reproduce the surface properties of nuclei in a satisfactory way, Boguta and
Bodmer [32] introduced a density dependence by non-linear meson couplings. This was
the real break through for the relativistic description of high precision of many nuclear
properties. It was recognized that this density dependent version of the Walecka model
was a covariant version of nuclear density functional theory [33, B4l 35, 36, 37, 38]. The
mesonic degrees of freedom have little to do with mesons in free space. They only are
considered in the framework of fields with relativistic quantum numbers. The classical
Lagrangians of such models provide a Lorentz-invariant framework for a relativistic
density functional theory and the resulting Dirac-equations are equivalent to the non-
relativistic effective potential of Kohn and Sham.

In recent years, an alternative RMF model has appeared, the flexibility of which has
gained many credits, as compared to non-linear models. Firstly introduced by Brock-
mann and Toki [39], it is based on the ansatz that no higher order terms are needed,
once the meson coupling constants are density dependent. This idea had good reasons
to succeed, since it is consistent with the relativistic approaches constrained by QCD
and chiral symmetries [40]. Of course, the credibility of this model relies on the form
of this density dependance and on the correct choice of the required parameters. The
DD-ME1 [T, 42] and even more the DD-ME2 3] parameter sets have reached the
highest level of accuracy even on exotic nuclei and nuclei close to the drip lines.

A question arises on whether one can do better than that. The answer can be positive
if we proceed not only in terms of quantitative agreement with experimental data, but
also in terms of simplicity and efficiency of the equations. All the previous approaches
have in common finite-range meson fields. However, a zero-range or point coupling
model, which has to be seen as the relativistic equivalent to the non-relativistic Skyrme
interaction, has been proven to reach the same level of accuracy by using a very simple
zero-range Lagrangian. This point coupling RMF had been introduced by Manakos
et.al. [4, 45] and later on by Biirvenich et. al. [46], who also proposed a new
phenomenological set, capable of achieving a very nice agreement with the experimental
data.

The above RMF approaches should be able to give a quantitative agreement with
the ground state properties of wide majority of nuclei. In practice, in their initial
form, they are restricted to spherical double-closed nuclei. In spherical open shell
nuclei and in particular in nuclei where spherical symmetry is not preserved, pairing
between nucleons play a very important role and certain correlations must be taken
into account. In this direction, the BCS approximation which reconstructs the single
particle spectrum by applying finite occupation probabilities, has been a very simple
and successful scheme for treating those correlations 47, 48]. However, it faces severe
problems in nuclei close to the drip lines, where the Fermi level is very close to the
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continuum. In these cases, one has to use the Relativistic Hartree (RHB) model [49,
h(), B7] that treats pairing correlations in a more consistent way. In the latter model,
an explicit pairing channel is included and often expressed by a non-relativistic Gogny
interaction. Since this force has a finite range, one obtains a natural cutoff, avoiding
in this way one of the most important problems that plague BCS and other schemes
involving artificial pairing windows.

Summarizing, the relativistic mean field approaches are effective models that give a
very nice overview of the ground state properties of light and heavy nuclei, such as
binding energies, radii, density distributions, deformation parameters, moments of in-
ertia, and with some restrictions [51] also to single particle energies. However, static
single particle models fail to describe collective phenomena of nuclei, such as rotations
or surface and multipole oscillations, known as giant resonances. We call them collec-
tive because many nucleons are participating in these excitations in a coherent way. In
order to investigate these nuclear properties, one needs to go beyond the ground state
and consider oscillations around the self-consistent static solution. This can be done
by solving the time-dependent relativistic mean field equations (TDRMF) [52] or the
relativistic Random Phase Approximation (RRPA) [53, b4, b5, b6] that is the small
amplitude limit of the time-dependent [RMH. [REPAl and H has proven itself as
a very powerful tool in providing high level of quantitative agreement. In addition, it
is based on a fully self-consistent solution of the time-dependent mean field equations
and therefore one does not need any additional parameter to describe the dynamical
problem.

The concept of resonance appears everywhere in the dynamics of physical systems. All
isolated multi-particle systems have natural vibrational frequencies, and the resonance
phenomenon describes how these modes couple to the surrounding environment. There
is such a mode in almost any multipolarity and isospin channel. The most prominent
resonances are the Isovector Giant Dipole Resonance (IVGDR) which to a first ap-
proximation is a collective vibration of protons against neutrons, the Isoscalar Giant
Monopole Resonance (ISGMR), which describes an isoscalar breathing of the nucleus
as a whole, and the Isoscalar Giant Quadrupole Resonance (ISQR) which corresponds
to small collective quadrupole oscillations with T=0. These modes show up in an en-
ergy range of 10 — 30 MeV and they exhaust a dominant portion of the corresponding
sum rule.

There is a long standing history of microscopic calculations of giant resonances and
nowadays, one faces a world of valuable information in the resonance excitation spectra
[52, B9, 60, 61]. For instance, it is known that the asymmetry parameter oy, of the
empirical mass formula, as well as the sum rule enhancement x are closely related to
the excitation energy of the GDR. In addition, the nuclear matter incompressibility
is proportional to the position of the isoscalar monopole resonance, where the correct
position of the quadrupole resonance is an indication of an effective mass of the field

*Relativistic Quasiparticle RPA (RQRPA) [57, B8] is a straightforward generalization of the RPA
to include pairing correlations



close to m*/m = 0.8 etc.

The position and the transition strength of the giant resonances can be determined
either by diagonalizing the [RRPAl equations in an appropriate basis or by solving the
linear response equations in a time-dependent external field. However, these models
treat another important quantity in a very different way, namely the coupling to the
continuum inducing a width to the resonances. The treatment of the continuum is a
very important issue, particularly for the study of exotic nuclei, where the Fermi level
is close to the continuum limit. Almost all the successful REPAl and RQRPA methods,
so far, have been treating the continuum by expansion of the ph-wave functions in an
appropriate basis, given for instance by a finite number of eigenfunctions of a harmonic
oscillator [62] or of a Saxon-Woods potential in a finite box [63]. In such a way, [RPAlfails
to provide a mechanism to produce continuous spectrum of the strength distribution.

In non-relativistic systems a solution to those problems has been achieved with the
exact coupling to the continuum. Already in the seventies a series of non-relativistic
models has been developed to include this mechanism. They are usually known under
the name continuum RPA (CRPA) [64, 65].The treatment of the continuum single-
particle states as scattering waves is clearly a more realistic picture and in addition, it
is capable of reproducing that part of the width of the resonances, which comes form
coupling to the continuum and which was missing in the former [RPAl approaches.

Unfortunately, in many of these these models, important facts, such as full self-consistency
have been neglected, due to their complexity. Thus, the explicit treatment of the con-
tinuum for modern relativistic point coupling models with density dependent coupling
constants in the framework of [RRPA] is a challenging work and will be attempted in
this thesis.

Therefore, it is the aim of this work to formulate the general framework, under which
the coupling to the continuum is properly included in the relativistic models which
study nuclear collective phenomena and at the same time compare with other methods
which treat the continuum approximately by discretization.

This work is organized as follows: In the Chapter ] we give a short introduction to the
basic ideas of Density Functional Theory in general and to the concept of covariant [DET]
for nuclear systems in particular. This method provides a very powerful framework in
revealing the static properties of nuclei. The basic equations of Relativistic Mean Field
theory are formulated, where we pay attention to non-linear, density dependent and
point coupling forces, which are three alternative approaches within [RMF. In the
next Chapter B, the Random Phase Approximation in terms of relativistic and non-
relativistic considerations is presented. The mechanism of the continuum coupling, as
well as some of the key points of its numerical implementation is described in details in
the same chapter. In Chapter @l we present some results of this method with a direct
comparison to discrete method and, of course, to experimental data. The extension
of the model to include pairing correlations allows us to describe spherical open shell
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nuclei. It is discussed together with several applications in Chapter We end the
thesis with some conclusive remarks and a brief outlook for future investigations and
improvements in Chapter



Chapter 2

Nuclear Density Functional
Theories

2.1 Basic concepts of DFT

Density Functional Theory (DFT) is a quantum mechanical method used in many areas
of physics to investigate many-body systems. DFT is among the most popular and
versatile methods available in condensed matter physics, computational chemistry, and,
of course, nuclear physics. Novel applications relevant to fields traditionally considered
more distant from quantum mechanics, like biology and mineralogy, are beginning to
appear.

DF'T owes this versatility to the generality of its fundamental concepts and the flexibil-
ity with which it can be implemented, despite being based on quite a rigid conceptual
framework. Traditional methods in many-body quantum theory are based on com-
plicated many-particle wave functions W(ry,...,r4). DFT promotes the local particle
density p(r) from just one of many observables to the status of a key variable, on which
the calculation of all the other observables can be based. In principle, it is a simpler
quantity to deal with, both conceptually and practically.

2.1.1 Hohenberg Kohn Theorems

The idea of expressing the expectation values of observables, such as energy, as a
function of the ground state density of the system is not new. Already by the year 1927,
Thomas and Fermi developed a simple atomic model, under which the total energy of
the system could be described by the knowledge of the density alone. However, the
Fermi model could no longer give quantitative results, when attempting to move to

9
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Nuclear Density Functional Theories

nuclear dimensions, thus being practically unusable. Only forty years later by the work
of Kohn and Sham, this was finally possible. Based on two fundamental theorems,
Hohenberg and Kohn [T2] proved that it is possible to replace the N-particle wave
function by the ground state density po(r), or in other words, from a quantity of 4N
degrees of freedom (three spatial coordinates and one spin) to a quantity of only three
degree of freedom. In first glance, this looks impossible, but one needs to keep in mind
that the ground state density is not just a simple density of the system but has rather
unique properties. More analytically, the two theorems indicated that:

e Theorem 1: Fvery observable quantity of a stationary quantum mechanical sys-
tem is determined by the ground-state density alone.

In other words, the aim of [DET]is not to obtain a good approximation for the ground
state wave function of the system, but rather to find the energy of the system as a
functional of the density, without any reference to the wave function. In a sense, this
argument transforms the initial idea of Thomas and Fermi from a simple model into a
basic theorem. The argument that all observables of a many-body system are unique
functionals of the density, provides the theoretical basis for [DETl For the first theorem,
referring always to an electron system in an external potential v, (r), one can write:

Eufp(r)] = Flp(r)] + Veu[p(r)] (2.1)
with

Vislpl = [ 1 v}, (2.2)

F[p(r)] is an unknown, but otherwise universal functional of the electron density p(r)
only, including kinetic and interaction terms.

e Theorem 2: The ezact ground-state density po(r) of a system in a particular
external potential can be found by minimization of the energy functional.

This was a rather important statement, since until that time, the total energy, which
is the most important property of an electronic ground state could only be calcu-
lated by means of wave function methods, e.g. either by the direct solution of the
Schrodinger equation HV = EWV or by means of the Reyleigh Ritz variational principle
E = ming (¥, HY).

In the present case however, the minimization procedure is done in a similar fashion,
but with respect to a trial density:

E = min;E,[p(r)], (2.3)
where the structure of E,[p] is described in Eq. (210).
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Therefore, the general idea of the second theorem can be summarized in the inequality:

Elp(r)] > Elpo(r)] (2.4)

which can be easily proven [I0]. In other words, the above theorem indicates that one
can use a simple variational principle with respect to the density in order to derive the
ground state energy.

However it was soon realized that the situation was little improved. Suppose for in-
stance that one starts with an energy functional in the simple form (21]) with:

Flp(r)] = Tlp(r)] + Vialp(r)] + Ere[p(r)] (2.5)
where T[p] is the kinetic energy and Vi [p] the Hartree term

/d3 /d3 Px)p(r) (2.6)

and the exchange-correlation term E,.[p(r)] contains all the rest. Of course, the knowl-
edge of these terms as functions of p would immediately solve the problem since the
variational principle, applied on the sum (1) would lead to the exact density po,
according to the second Hohenberg-Kohn theorem:

_ OElp] _ 6Tilp] | Vulpl | 0Vearlp] | 0Euc[p]
op(r)  op(r) ~ dp(r) ~ dp(r) — dp(r)

But obviously we do not know the functional dependence of all these terms. Despite
the fact that the density dependent terms V..[p] in Eq. (Z2) and Vy[p] in Eq. ([Z4)
are explicit functions of p this is unfortunately not true for the other two terms. For
the kinetic term, the expression:

Trelp) = 1567 [ )i (2.7)

of Thomas and Fermi would in principle be a good choice, specially for infinite parti-
cle systems, but as Kohn recognized, this functional is problematic and incapable of
reproducing shell effects, an important phenomenon with a single-particle origin. In
addition, the exchange-correlation F,.[p], which was defined to include all the remain-
ing terms of the energy functional, is a rather complicated term and although the first
Hohenberg-Kohn theorem shows the existence of such a functional it does not give any
hint, how it can be derived from the Coulomb interaction.

As a conclusion, the direct minimization of the energy functional could not be con-
sidered as the most efficient way to implement [DET], in particular, since orbital-based
approaches such as Hartree-Fock theory appeared to perform much better in this re-
spect. This would mean that although the Hohenberg-Kohn theorem is exact, it is also
practically useless.

The solution to this problem was given soon thereafter by Kohn and Sham [I0} [IT]
who realized that one needs a single particle Schrodinger equation in order to obtain
shell effect. Therefore they introduced an auxiliary single particle potential v.ss(r) in
one-to-one correspondence with the exact density p(r). Today, when one says [DET] he
is likely talking about the Kohn-Sham method.

11



12

Nuclear Density Functional Theories

2.1.2 Self Consistent Kohn-Sham Equations

Kohn and Sham did not exclusively work in terms of the particle density, but instead,
they introduced an auxiliary single particle potential v.ss(r), which defines the Kohn-
Sham equations:

<_2h—m% + Ueff(r)) Yi(r) = eihi(r). (2.8)

The single particle energies €; and the single particle wave functions ;(r) are auxiliary
quantities with no specific physical meaning at this point. The effective Kohn-Sham

potential v.sf(r) is defined by the requirement that the local density obtained from
these single particle wave functions

p(r) = Z i ()i (r) (2.9)

is identical to the exact local density. Eq. ([Z3) is a valid representation [66] of the
exact density and there is a one to one correspondence between the two functions p(r)
and vegp(r).

In this way Kohn and Sham mapped the exact many-body problem onto an effective
single-particle problem with the orbitals v;(r). They ingeniously introduced a fictitious
non-interacting reference system and created the link to the interacting many-body
problem.

Next Kohn and Sham defined an approximation for the kinetic energy:

- I~ )
Tis = 5, 3 [ @V =503 [arimant, 210)

because for non-interacting particles, the total kinetic energy is just the sum of the
individual kinetic energies. Since all ¢;(r) are functionals of p, this expression for
Tks is an explicit orbital functional with an implicit density dependence Tkg[p] =
Trs[{vi[p]}]. The expression ([ZI0) is an approximation to the exact kinetic energy
T[p] The difference between the T[p] and Tkg[p] is small and can be absorbed by the
exchange-correlation term. We thus obtain the Kohn-Sham energy

Exslp(r)] = Tislp(r)] + Vulp(r)] + Veulp(r)] + Euclp(r)]. (2.11)

The idea of Kohn and Sham was then to carry out the variation of the this energy
functional by performing variations with respect to the orbitals ¥ (r) entering Eq. (Z9)

§E
;7 (r)

This variation is quite straightforward and yields Eq. (Z8) with the effective Kohn-
Sham potential

— 0. (2.12)

Ver () = v (1) + Vs (x) + Ve (1) (2.13)

12
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with
O0Ey. [/)]

dp(r)
Of course at this stage one needs an explicit expression for the density dependence
of the exchange-correlation term E,.[p]. Therefore in the past 40 years much effort
has been put into the determination of this term for Coulomb systems [67]. Starting
from gradient expansions with phenomenological parameters one nowadays has rather
successful expressions for this term derived completely from the Coulomb interaction.

vg(r) = e/dgr p(r’) and Uge(T) = (2.14)

r—r'|’

Since the potentials vy and v,. depend on p(r), which itself depends on the orbitals
;, which in turn depend on v.ys, the problem of solving the Kohn-Sham equations is
highly non-linear. Therefore, it must be solved self consistently, that is, we start from
an initial guess for p(r) and proceed to the above steps till convergence is achieved.
Using the single particle orbitals, one gets in this way the exact ground state density we
defined in Eq. (). The most visible consequence is the appearance of shell structure
effects as well as correct treatment of the density in the asymptotic region.

Once we have a convergence solution py, the exact ground state energy of Eq. (Z2H) can
be calculated:

By=3 e % / d3r / g 2Eel) g o) (2.15)

v — |

This equation shows that Ej is not simply the sum of all £;. In fact, it should be
clear from the derivation of Eq. [Z8) that the g; are completely artificial objects.
They are the eigenvalues of an auxiliary single-particle Schrodinger equation whose
eigenfunctions yield the correct density. It is only this density, and of course the
total energy and its derivatives, that have a strict physical meaning in the Kohn-
Sham equations. The Kohn-Sham eigenvalues, on the other hand, bear only a semi-
quantitative resemblance with the true single particle energy spectrum, but are not to
be trusted quantitativelyﬁ.

Finally, we notice that the Kohn-Sham equations (Z8) look much like the Hartree-Fock
(where basically v, appears to replace the Fock term), or even more the simple Hartree
equation. However, there are two important differences: (i) the Kohn-Sham theory is
in principle exact, if one has the exact expression for the exchange-correlation energy
Ezclp]. Tt includes many more correlations than Hartree-Fock and (ii) the Kohn-Sham
potential v.rr(r) is local and therefore one avoids the numerical complexity of the
non-local exchange terms in the Hartree-Fock equations.

*There is however a small exception, regarding the ionization (Fermi) energy € g, since the condition
that the exact particle number is contained in the density, allows for the constraint equation:

3B =l [ #rotw) - )| =0 (2.16)

which gives the chemical potential p.In other words, the fermi energy is the only one to have a physical
meaning.
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2.1.3 Nuclear Density Functional Theory

After its success in Coulomb systems, i.e. in atomic, molecular and solid state physics,
density functional theory appeared to be the most notable tool in the development of
the nuclear models as well. In fact shortly after the Kohn and Sham have introduced
density functional theory in Coulomb systems, a similar method has been developed in
nuclear physics. Goldstone [I3] and Brueckner [T4] realized that because of the Pauli
principle and the uncertainty relation the effective interaction in the nuclear interior
is very different from the bare nucleon-nucleon interaction determined from scattering
experiments in the vacuum. In particular, it depends strongly on the density. Early
attempts to use this effective interaction in the framework of the local density approxi-
mation for Hartree-Fock calculations in finite nuclei failed [68], because it was not clear
at that time that tree-body forces play an important role in nuclear systems. However,
the idea of phenomenological density dependent interactions introduced by Vautherin
and Brink [T5] turned out to be very successful. It soon became clear that these
density dependent Hartree-Fock calculations (DDHF') were closely related to density
functional theory in Coulomb systems. In fact, the energy functional E[p] is nothing
but the Hartree-Fock energy calculated with the corresponding density dependent force.
This functional was introduced in a completely phenomenological way by adjusting the
parameters of the model to binding energies and radii in finite nuclei. Vautherin and
Brink used the model of Skyrme [69, [T5], [70), [7T] with zero range forces. Gogny [16, [72]
developed a phenomenological model with finite range forces of Gaussian type and a
similar density dependence. It was able to include at the same time pairing correla-
tions in the density dependent Hartree-Fock-Bogoliubov framework. Covariant density
functional theories in nuclear physics based on the Walecka model [73, 7, [74, 18, B2]
allow a consistent description of the spin degree of freedom|[T9, B3, B5]. All these three
models have been applied with great success in reproducing data all over the periodic
table [75, 37].

There are howevwe essential differences between [DET] in Coulomb systems and in
nuclear systems:

e The theorems of Hohenberg and Kohn are based on a many-body system in an
external potential. However, nuclei are self-bound systems and an external po-
tential does not exist. The Hohenberg-Kohn theorem is still valid, but useless,
because as a consequence of translational invariance the exact single particle-
density is a constant [76]. In fact the densities used in DDHF theory are intrinsic
densities. Of course, the Hohenberg-Kohn theorems can be generalized to any
Hermitian operator, thus including the intrinsic density. However, the problem is
that the intrinsic density depends on the center of mass coordinate and therefore
this quantity is an A-body operator [(7]. A possible solution to this problem
would include some approximations regarding an ”adiabatic” treatment of the
center of mass coordinate managing to recover the Kohn-Sham equations in the
1/A-limit of large nucleon numbers [78]. In any case, regarding the problem from
a realistic point of view, at present the exact density functional cannot be de-
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rived from first principles anyhow. Therefore it is an academic question, whether
density functional theory in nuclei is exact or only an excellent approximation.

e In Coulomb systems in most cases one can neglect the spin degrees of freedom as
a small effect. This is not true in nuclear systems. Here one has additional de-
grees of freedom which cannot be neglected, such as spin and isospin. Therefore,
calculations must include besides the usual density with (S = 0,7 = 0) the spin
density (S = 1,7 = 0), the isospin density (S = 0,7 = 1) etc. This leads to an
increasing number of phenomenological parameters which are difficult to adjust to
experimental data and this is the reason, why most of the present functionals con-
tain redundant parameters. It is the advantage of covariant density functionals,
that the spin degree of freedom is taken into account automatically in a proper
way and therefore they usually contain a smaller number of phenomenological
parameters.

e Pairing correlations play an essential role in nuclear systems. Apart from the few
cases with doubly magic shells closures, the large majority of nuclei are superfluid
systems. BCS and HFB theory allow an elegant description of these phenomena,
which is based on a generalized mean field approximation and provides a vehicle
to implement density functional theory for superfluid systems. Here the density
functional E[R] depends on the generalized Valatin density [(9]

R:<p* " ) (2.17)

kK 1—p*

which contains the normal density p and the pairing density . In this way
pairing correlations have been introduced in non-relativistic [I6] as well as in
relativistic [80, B0] density functionals with great success.

e Conventional density functional theory is based on the well know Coulomb force
and therefore over the years one has developed very successful ”ab-initio” func-
tionals. They are based on exact numerical solutions of the homogeneous electron
gas and do not contain any phenomenological parameter. The situation in nu-
clear physics is much more complicated. The basic theory is QCD. Because of its
non-perturbative character one is far from an exact solution of nuclear matter.
So far, one usually starts with the bare nucleon-nucleon force, which is nowadays
well known, but our knowledge on tree-body forces is still very limited and exact
solutions of the nuclear matter problems are in their infancy. It also turns out
that there is a considerable cancellation of the contributions of the kinetic en-
ergy and the two-body interaction and therefore small effects, such as three-body
forces, play an essential role. Therefore one probably will need always some addi-
tional parameters for fine tuning in order to achieve the high accuracy of present
days phenomenological density functionals in nuclear physics.

This work is based on covariant density functional theory. In the next section we
therefore discuss the essential properties of nuclear density functionals based on the
Lorentz invariance.
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2.2 Relativistic Mean Field Theory of Finite Range

The Walecka model is used as a vehicle to implement relativity in [DET] Following the
idea of Kohn and Sham, one needs a relativistic one-body potential and in order to
implement self-consistency (Hartree term), one needs a simple relativistic interaction.
Because of the requirement of causality, two body interactions can only be formulated
in a relativistic way by zero-range forces or by forces caused by an exchange of particles.

Historically, the meson coupling model has been introduced first in the framework
of the Walecka model [4, [I8]. In such an approach, one considers that the protons
and neutrons in a nucleus interact with each other in a relativistic covariant manner
through the exchange of various mesons (carrying different spin, isospin and angular
momentum), as we discussed in the introduction. This model should not be considered
as a fully fledged quantum field theory but rather a possible way to implement relativity
in the framework of a mean field theory. The mesons are only auxiliaries quantities.
They are treated only on the classical level, defining fields with the proper relativistic
quantum numbers. They have little to do with mesons in free space.

The most important meson that exists in free space is the pion. However, the pion has
a pseudo-scalar nature, which means that in the Hartree level, it produces a field that
violates parity. This comes in full contradiction to all experimental observations which
state that the parity is conserved on the level of the strong interaction. This fact was
probably the reason why relativistic mean field models after their first discovery in the
fifties [73, 17, [74] had not been considered more seriously in nuclear physics for many
years.

However, this is all occurring in the nuclear interior where interactions between nucle-
ons are far more complicated than the bare nucleon-nucleon interaction in free space.
Since we are bound to stay within the mean field approximation, there should be no
restriction on using any kind of mesons, even those that are not observed in free space.
The idea was encouraging and a minimal number of two mesons was finally able to
describe the saturation properties of infinite nuclear matter and binding properties of
finite nuclei quite well. These mesons are the o-meson, which has an isoscalar-scalar
nature and the isoscalar vector w-meson. Their strength and mass parameters are cho-
sen in such a way as to reproduce observed phenomena. For instance, the choice of a
larger mass and a stronger coupling for the w meson against the o is responsible for
the short range repulsion, familiar from standard nucleon-nucleon interactions.

The first [RME approximation was nothing but a simple ¢ — w model. Later on,
another meson was considered necessary, carrying isospin [33, B4] and thus providing
in a reasonable way the asymmetry energy term. This was the isovector-vector p-
meson, the quantum numbers of which are given in Eq. (ZI8), together with those of
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the other mesons.
0", 0, o meson

J°T = 17, 0, w meson (2.18)
17, -1, p meson

Of course, there is also the possibility to consider scalar isovector meson fields with
S = 0,7 = 1. They are usually associated with the é-meson. However, it turns out
that present data on ground state properties of nuclei do not allow the corresponding
parameters of the Lagrangian with reasonable accuracy. All the present attempts to fit
these parameters lead to highly redundant parameter sets and unstable fits. The scalar
isoscalar J-fields are therefore neglected in all present successful parameterizations.

In order to derive the [EME equations, it is reasonable to start with a relativistic
covariant Lagrangian which is composed by the meson and nucleon degrees of freedom
plus the electromagnetic field:

L=Lx+ Lo+ Lons. (2.19)

The nucleon part describes free nucleons with mass m:

Ly = (i7", —m) . (2.20)

In addition, the meson part describes the motion of o, w and p mesons with the corre-
sponding masses m,, m,, and m,, and the photon:

1 1 1 1
L, = 5@06“0 — §m302 - ZQWQW + amiwuw“
1o o0 1, 1 )
— 7 R B + §m§puﬁ“ — 7w (2.21)

where the field tensors for the vector mesons (w,p) and photon fields are defined adl

Q, = 0w, — 0w, (2.22)
Ry = 0., —0up (2.23)
Fo, = 0,4, —8,A,. (2.24)

Finally, the nucleon-meson interaction is described by the minimal coupling and is
given by the sum:

Lint = YTt = —YTo0) = PTlhw,t) = P45 — PTE ALY, (2.25)
where the index m runs over different mesons ¢,, and vertices I',,, given by

1-'-7'3
2

Iy =g, Th=g," Th=g,™, Th=e o (2.26)

with the coupling constants ¢,, g., g, and e.

*The units h = ¢ = 1 are used in the present discussion and isovectors are characterized by arrows.
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2.2.1 Equations of Motion

According to the initial approximation of Walecka, the BRMH equations can be provided
by replacing the field operators of the mesons and the photon by their expectation
values, formally by setting 6 — o — (&) etc. Then, the role of the meson fields
reduces to that of potentials generated by the appropriate nucleon densities, so that
the nucleons would behave as non-interacting particles moving in these mean fields.

The Dirac equations for the nucleons are derived from the Lagrangian by the classical
variational principle. Considering time-reversal symmetry and charge conservation we
obtain the Dirac equation for the nucleons:

(70, + V + B(M — S)] b = e, (2.27)

with the fields
S = g,0, V' = guwo + g,m3p0 + €Ay, (2.28)

and the Klein-Gordon equations for the mesons:
(040, +m2 | ¢ = £ (VT 1)) (2.29)

where, the positive (negative) sign holds for vector (scalar) fields while the photon mass
vanishes (m, = 0).

In Eq. (Z28) one introduces the attractive scalar field S(r) and the repulsive vector field
V' (r) which appear to be very large in absolute value (=~ 400 and 350 MeV respectively).
However, for the large components we deal only with the difference V' — S ~ 50 MeV,
meaning that the Fermi energies are less than 50 MeV and hence small compared to
the rest mass. In other words, we have to deal with non-relativistic kinematics. On
the other hand, in the second equation that includes the small components, a very
large potential V + 5 &~ 750MeV appears. This implies that whenever these potentials
add up, in a constructive way, the relativistic effects are non-negligible. This has
multiple consequences, as for example the fact that the spin-orbit coupling has the
right magnitude naturally and without requiring additional fitting parameters.

The sources of the inhomogeneous equations (229) are given by various densities and
currents

(YT ) = Zw(wrmww- (2.30)

Here the sum runs only over the occupied states in the Fermi sea. This is known as
the "no-sea approximation” and is used in almost all practical applications of RMH in
nuclear matter and finite nuclei. Of course, in order to be complete, we would have
to include also the negative energy states in the Dirac sea. However, this would lead
to divergent terms, which have to be removed by a proper renormalization. In finite
systems this is very complicated, since the corresponding equations can be solved only
numerically [RT]. An analytical solution is possible for infinite nuclear matter [82]. In
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approximate numerical studies of the vacuum polarization in spherical 22, B3] and
deformed nuclei [84], the renormalization effects appear to be of the order of 20-30%.
However, if the vacuum polarization is taken into account, the parameter set of the
effective Lagrangian has to be re-adjusted to the experimental data, leading to a new
force with approximately the same results as in the case when the vacuum polarization
is neglected. Therefor the "no-sea approximation” is not really an approximation. In
such calculations effects of vacuum polarization are not neglected, but rather taken into
account in a global phenomenological way by adjusting the corresponding parameters
to data.

2.2.2 Extended versions and Medium Dependences

Extensive studies have shown that a quantitative treatment of nuclear matter and finite
nuclei necessitates a medium dependence of effective mean-field interactions, which take
into account higher order many body effects. This can be achieved either by including
non-linear meson self-interaction terms on the Lagrangian (ZI9) or by assuming an
explicit density dependence for the meson-nucleon coupling, as we briefly discussed in
the introduction.

In the first case, non linear terms have been adopted in the construction of several very
successful phenomenological [RMH interactions, where the prediction of many nuclear
properties can reach high level of accuracy. In particular, the mass term of free mesons
is replaced by a non-linear potential including higher order terms

L 5 5 L 9 9,92 3,93 4

50 —  Uo) = 50 + 5 + 17 (2.31)
This ansatz was first introduced by Boguta and Bodmer [32] and was widely accepted
since. Later on, a self-coupling of the vector field, i.e. a quadratic w? term was
added [85] in order to soften the equation of state for neutron matter. It was shown,
that models linear in w are responsible for a very steep neutron matter equation of
state, hence being incompatible with the observed spectrum of neutron star masses,
whereas the addition of the vector self-coupling of w has the advantage of ”soften-
ing” the above effect. Recently, another model including a sophisticated meson-meson
coupling between ¢ and w, in a similar fashion to the non linear terms, has been intro-
duced [R6] and, although it slightly overestimates the charge radii of several closed shell
nuclei, it gives a nice prediction of the binding energies as well as the compressibility
of nuclear matter. The Lagrangian parameters are usually obtained, as in the case of
non-relativistic mean field calculations, by using fitting procedures on bulk properties
of several spherical nuclei [33]. The most widely used parameter sets [87, B8, 89] that
determine the [EMH equations are listed in the Table 211

More modern models avoid the somewhat unphysical non-linear terms and introduce
a density dependence of the meson-nucleon vertex functions. This density dependence
can be determined either from ”ab-initio” calculations based on Dirac-Brueckner theory
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parameters | NLI1 NL3 NL3*

m 938.0 939.0 939.0

My 492.25 | 508.194 | 502.5742
my, 795.359 | 782.501 | 782.6

m, 763.0 763.0 763.0

Jo 10.138 | 10.217 | 10.0944
oo 13.285 | 12.868 | 12.8065
9p 4.976 4.474 4.5748
Jo -12.172 | -10.431 | -10.8093
g3 -36.265 | -28.885 | -30.1486

Table 2.1: RMF parameterizations NL1 [87], NL3 [89] and NL3* [90]. K,
corresponds to the incompressibility of the nuclear matter for each set of pa-
rameters. The masses m are given in MeV', while the coupling constants are
dimensionless, except g3 which is given in fm™=1!.

in nuclear matter [39, 0T, 92, 93], or it can be completely phenomenological [94], 95, 43],
with parameters adjusted to data of finite nuclei and empirical properties of symmetric
and asymmetric nuclear matter. One obtains a Lagrangian with density dependent
coupling constants g,,(p), where p is either the scalar density ps or the Lorentz invariant
form /j“j, of the baryon density, j, = ¥7,¢ B2]. In particular, one often uses the
Typel and Wolter ansatz [94] with the following density dependence:

9:(p) = gi(psat) fi <ppt) for i=o0,w. (2.32)

Here, psat denotes the baryon density at saturation in symmetric nuclear matter and

Zl + CZ'<.§L’ + dZ)Q

filz) =a (2.33)
is a function of = p/ps.. The eight real parameters (a;, b;, ¢;, d; for i = 1,2) in
Eq. Z33) are not independent. The five constraints f;(1) =1, f/(0) =0 (i = 1,2) and
f2(1) = fI'(1) reduce the number of independent parameters to three. Three additional
parameters in the isoscalar channel are: ¢,(psat), 9w(psat), and m, - the mass of the
phenomenological sigma-meson. For the p-meson coupling the functional form of the
density dependence is suggested by Dirac-Brueckner calculations of asymmetric nuclear
matter [93]

9o(P) = 9p(Psar) exp [—a,(x —1)] . (2.34)

The parameter set DD-ME2, from Lalazissis et al. [96](Table EZZ2) has lead to one of
the most successful nuclear description, ranging all over the periodic table.

In addition, when compared with standard nonlinear meson-exchange effective La-
grangians, interactions with an explicit density dependence on the meson-nucleon cou-
plings are more flexible and provide an improved description of asymmetric nuclear
matter, neutron matter and finite nuclei far from stability.
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m, = 550.1238 m, = 783.000 m, = 763.000
0o(psas) = 105396 | go(psar) = 13.0189 | gp(psas) =  3.6836

a, =  1.3881 a, = 13892 a, = 0.5647

by =  1.0943 b, = 0.9240

¢y =  1.7057 o = 14620

dy, = 04421 d, = 04775

Table 2.2: The parameter set DD-ME2. Masses are given in MeV and the
remaining parameters are dimensionless. The nucleon mass is M=939 MeV
and the saturation density is psa; = 0.152 fm=3 (from Ref. [96]).

2.3 Relativistic MFT of Zero Range (Point Cou-
pling)

The previous versions of [RME approaches have been able to describe the static nuclear
system starting from different descriptions of the medium dependence (non-linearities,
density dependencies). Their common basis was the agreement that the nucleons in-
teract via the exchange of meson fields with finite range. An idea of implementing a
zero-range counterpart of these fields would in principle be very enterprizing, since such
a simplified approach could not beat the predicting power of the FR-RMF. However,
intensive studies have proved that this idea is not only a possible scenario but it has
turned into a powerful and numerically preferable [RNMH approach.

Under this framework, a zero range or contact interaction can be used (Fig. 2.1),
instead of the virtual meson fields, in order to represent the system of interacting
Dirac nucleons.

opw :

Figure 2.1: Diagrammatic structure of the meson exchange (a) and the point
coupling (b) interaction for two nucleons

A general point-coupling effective Lagrangian must be constructed to be consistent
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with the underlying symmetries of QCD (e.g., Lorentz covariance, gauge invariance,
and chiral symmetry), just as in the case of the meson-exchange model. It should in
principle contain every possible term, allowed by these symmetries, but at the same
time should also be described by the least possible parameters in order to give a quan-
titative solution.

Under such a concept, we construct the point coupling Lagrangian as an expansion in
powers of the nucleon scalar, vector and isovector-vector densities. Here, finite-range
phenomenology and experience with meson-exchange [RME models are useful guides.
Thus, we follow the reasoning of Ref. [97] to make an one to one correspondence between
the new Lagrangian and the meson exchange one (ZI9), through a simple leading-
order analysis. For example, the scalar field, ¢, is proportional to the scalar density
ps; the term cubic in the scalar density in the point-coupling model corresponds to the
term cubic in the non-linear scalar field, and so on.

In addition, the Klein-Gordon equations (Z29) of the meson-exchange model with
meson masses m,, and couplings g,, are replaced by two point coupling interaction
terms, via the expansion of the Yukawa potential in terms of 1/m?:

9m ~ 9m
—A+m2, =~ m2

A

m

In the case of infinite nuclear matter, the two models give the same results because the
gradient terms in Eq. (2239) vanish in this case. For finite nuclei, however, the central
potentials S(r) and V(r) are very large and the gradients appear to be essential in a
quantitative theory.

In this work we use the point coupling Lagrangian of Ref. [46]. It presents an expansion
in powers of the nucleon scalar, vector and isovector-vector densities.

L= Efree + £4f + ‘Chot + Eder + Eem (236)

with the Lagrangian for free nucleons:

Lfree = w(Z/YMaM - mN),le)a (237)

the Lagrangian for normal four-fermion interactions
Lu = =ZW0)(0) = (@) (") — ZE@F0) 0F),  (2.38)

the Lagrangian for higher order terms leading in mean field approximation to a density
dependence
Bs

Loos = =5 (00)" = Z2(0)* = L) (7P, (2:39)

the Lagrangian containing derivative terms which simulate in a simple way the finite
range of the forces:

0 - - ) - - 1) - _
Laee = =5 (0u00)(0" ) = - Dutb ) (@97 0) = =5 (O Tnab) (077 ),
(2.40)

22



2.3 Relativistic MFT of Zero Range (Point Coupling)

23

and the electro-magnetic part of the Lagrangian

1 _
Lom = =7 FuF™ = S(1+ ) 4,007 (2.41)

In these equations the subscripts S and V' are attributed to scalar and vector fields,
while the subscript T is attributed to isovector fields. As usual, vectors in isospin
space are denoted by arrows, where symbols in bold indicate vectors in ordinary three-
dimensional coordinate space. The scalar-isovector channel is again neglected.

As it stands, the Lagrangian contains the nine coupling constants ag, oy, ary, Bs, Vs,
Vv, g, Oy and d7y. Hence, the model contains more or less the same number of free
parameters as the analogous RMF-FR models.

From the Lagrangian (30) and the corresponding energy momentum tensor we can
derive the [RMH equations using either the classical Euler-Lagrange equation, as we did
in the meson-exchange version, or a relativistic energy density functional. This energy
functional has the form:

gRMF[pa t] = /d?’T H(I‘,t), (242)

where the energy density
H(r,t) = Hyn(r,t) + Hing(r,t) + Hom (1, 1) (2.43)

consists of a kinetic part
Hkm Z Q/)Z Oép + ﬁm - m) ’QZ)Z‘(I', t)a (244)

an interaction part

ag Bs Vs ds
Hin(r,t) = 5 — 0%+ 3 = Ps+ 1 —ps + EPSAPS

. 4% 5V . .
+ _]u]M + _(]u] ) _jMAjM (2-45)
2 4 2
ary = 5TV =2 -
+ T]Tv ]T\/u + Tﬂﬁv ATV )
and an electromagnetic part
1 y .
Hop(r,t) = 1 FuF" — F®0 A, + eAujh. (2.46)

The interaction part depends on the local densities:

= Z 1/_12(1', t)wi<r7 t>7 (2.47)
Z il )yoti(r, 1), (2.48)

pTV Z 1/% T’YO’QZJZ )7 (249)
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and currents

Zm £}y i (x, 1), (2.50)
sz T’V 1/}2 ) (2'51>

As in all relativistic mean field models, the no-sea approximation is used in the calcu-
lations of the nuclear densities.

The self energy, i.e. the single particle Hamiltonian is obtained as the functional deriva-
tive of the energy density functional with respect to the relativistic density matrix:

hp(t) = 5§£ﬁ]. (2.52)
This yields the Dirac Hamiltonian: hp:
hp = a[—iV = V(r,t)] + V(r,t) + B(m+ S(r, 1)) (2.53)
with the self-consistent scalar and vector potentials
S(r,t) = Xg(r,t) 2.54
VA(r,t) = S (r,t) + 7 - Xl (r, 1), (2.55)

The nucleon isoscalar-scalar, isovector-scalar, isoscalar-vector and isovector-vector self-
energies are density dependent and defined by the following relations:

Ns = asps + Bsps + vsps — 0sAps (2.56)
147

¥ = avpy + Wpy — oy Apy — eAH 5 3 (2.57)

i?v = arypry — orvApry. (2.58)

Here we have neglected retardation effects, i.e. second derivatives with respect to the
time for the various densities.

The problem of the [RMH equations is solved self-consistently. An initial guess of the
fields (usually of Woods-Saxon character) is enough to give us an explicit form of the
Hamiltonian (ZX13), which in tern, solves the Dirac equation. The resulting wave-
functions are the tool to construct the single-particle densities and, through them, a
new set of field functionals.

o = p =%, = SV = h— P - (2.59)
The same procedure continues until a convergence in the field structure is achieved.

24



2.4 PC-RMF Parameterizations

2.4 PC-RMF Parameterizations

PC-F1

The point coupling Lagrangian [PC-FT] of Ref. [46] contains nine coupling constants.
Based on an extensive multi parameter x? minimization procedure, Biirvenich et al.
have adjusted the parameters to reproduce ground state properties of infinite nuclear
matter and spherical double closed nuclei. This set is listed in Table EZ3 and it has been
tested in the calculation of many ground state properties of spherical and deformed
nuclei all over the periodic table. The results are very well comparable with reasonable
effective meson-exchange interactions.

PC-F1 | a;[fm™2] | Bilfm™°] | %lfm™®] | & [fm™]
S -14.935894 | 22.994736 | -66.769116 | -0.634576
\% 10.098025 | 0.0 -8.917323 | -0.180746

TV 1.350268 | 0.0 0.0 -0.063680

Table 2.3: The coupling constants in the parameter set [PC-I'] resulting from
the fitting procedure in Ref. [46].

DD-PC1

Quite recently, there has been developed a new parameter set for the point coupling
Lagrangian by T. Niksi¢ et al [98] with the name [DD-PCIl The main peculiarity of
this parameterization is that the linear term as well as the medium dependence are
all included in a density dependent coupling constant «(p), in a similar way to the
DD-ME1 and DD-ME2 cases of the meson-exchange approaches [95], 96]. In addition,
these coupling constants strictly depend on the baryon density p = p, and not on
the local densities that correspond to the various spin-isospin channels. The effective
Lagrangian in this case would be:

L = Yliv-0—m)

- %Oés(/)) (W) () — %av@)(ww(mw - %ampxmw)(wmw
— S5O Y) ey ATy, (2.60

For the functional form of the coupling constants, one chooses the following practical
ansatz:

ai(p) = a; + (b + cix)e 4 i = {S,V, TV} (2.61)

where x = p/psar and psq is the saturation density of nuclear matter, which is set to
psat = 0.152 fm=3.
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The self-energies which are used to determine the self-consistent scalar and vector
potentials S(r) and V(r) of Eq. (Z24)) are defined by the following equations:

Ys = as(p)ps — dsAps (2.62)
1
o = oyl eI B (2.63)
Sy = arv(p)i”. (2.64)
with the rearrangement term
17* [ dag oay . . dary - -
Y =~ 2 g g W 2.65
R va{appﬁ ap]u]+8p]u] (2.65)

The parameters of this functionals will have to be adjusted to structure data of finite
nuclei. For the majority of the functionals used in previous approaches, this tuning has
been performed on a relatively small set of spherical closed-shell nuclei, mainly because
they are simple to calculate and can therefore be easily included in multi-parameter
least-squares fits.

A problem arises, however, because ground-state data of closed-shell nuclei include
long-range correlations that cannot really be absorbed into mean-field functionals. Gen-
erally this will affect the predictive power of energy density functionals when they are
used in the description of phenomena related to the evolution of shell structure. For
instance, soft potential energy surfaces or small energy differences between coexisting
minima in deformed nuclei, are often difficult to describe using functionals adjusted
solely to data of spherical nuclei, even when sophisticated models are employed that
include angular momentum and particle number projection, as well as intrinsic con-
figuration mixing. As a consequence, the parameters of the set [DD-PCIl, which are
shown in Table Z4], are adjusted to 64 axially deformed nuclei in the mass regions
A~ 150 — 180 and A ~ 230 — 250.

The undeniable advantage of the point coupling scheme is of course the ability to predict
the ground state properties of nuclei with a much simpler approach, as compared to
the finite range ones and using the same number of parameters. From a different
perspective, RMF-PC model allows one to investigate its relationship to non-relativistic
point-coupling approaches, such as the Skyrme-Hartree-Fock (SHF') theory, which is
also a well-developed self-consistent mean-field model that performs very well. One

DD-PC1 | a;[fm?] | b; [fm?] | c;[fm?] | di |6 [fm?]
S -10.0462 | -9.1504 | -6.4273 | 1.3724 | -0.815
V 5.9195 | 8.8637 | 0.0 0.6584 | 0.0

TV 0.0 2.2657 | 0.0 0.9214 | 0.0

Table 2.4: The coupling constants in the parameter set [DD-PCII resulting
from the fitting procedure in Ref. [98].
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Figure 2.2: FErrors (in %) for the observables binding energy, diffraction
radius, surface thickness, and rms charge radius for [PC-FTl (filled diamonds)
and NL-Z2 (open squares) are seen on the left. The right panels show the
absolute mean errors for the corresponding observables, where the dashed
lines indicate the relative error AO in the fitting procedure [46]

can hence view RMF-PC as an approach that lies between the RMF-FR and the
nonrelativistic SHF approach. In particular, a comparison of RMF-PC and SHF would
address the differences between in-medium Dirac and Schrodinger nucleons, that is, in
kinetic and spin-orbit components, whereas a comparison of RMF-PC and RMF-FR
would address the absence versus presence of finite range and the different treatments
of density dependence.

Summarizing, we can say that in a qualitative level, the point coupling approach is
more general and the interaction terms are not restricted by the constraints imposed
by the finite range of meson exchange. Furthermore, with the point coupling [RMF,
the need of virtual mesons, which do not exist in free space, is avoided.

In a quantitative level, the efficiency of the point coupling model can be seen in Fig.
2.2, where the performance of the parameter set [PC-FTlis demonstrated and compared
with the finite range force NL-7Z2 [46].

In Fig. 2.3 we plot for the Pb and Sn isotopic chains the absolute deviations of the
calculated binding energies from the experimental values, as functions of the mass
number. The binding energies are calculated using the RMF+BCS model with the

27



28

Nuclear Density Functional Theories

T T T T T T T 1] T T
5.0 1
- Pb
3.0 + A
Y ;
S‘ 1.0 —— -A el e ,I’ ==
i eroreBig Mg coacgl®
73] e
Y
30 F -
50 | _
Il 1 1 1 1 1 1 1 1 1
196 198 200 202 204 206 208 210 212 214
T T T T T T T T
50 | .
Sn
3.0 A""'Ah =
oy o
1.0 p----- £ B e W R ¥ A A |
; ’l ‘\A‘.‘ "t’
é -1.0 ----,A‘ - o WO
5 &
e
30 F -
50 I 4
DD-PC1
DD-ME2 ---a---
1 Il 1 Il 1 1 1 1 1

100 104 108 112 116 120 124 128 132
A

Figure 2.3: Absolute deviations of the calculated binding energies from the
experimental values for the Pb (upper panel) and Sn (lower panel) isotopic
chains, as functions of the mass number. The theoretical binding energies
are calculated using the RMF+BCS model with the point-coupling effective
interaction [DD-PCT] [98] and the finite-range meson exchange interaction DD-
ME2 [96].

functional [DD=PCT] are also compared to those obtained with the meson-exchange
interaction DD-ME2 [96]. In this case, we see that the variance between calculated
masses and the corresponding experimental values is somewhat larger. We have to
keep in mind however that the set DD-ME2, like most of the modern self-consistent
mean-field nonrelativistic and relativistic interactions, was adjusted to reproduce the
binding energies of doubly closed-shell nuclei, including 32Sn and 2°® Pb. It is thus not
surprising that DD-ME2 goes better than [DD-PCTlin the vicinity of the double closed
nuclei while the opposite is happening outside this area.

The nuclear ground state is defined as the equilibrium point of the functional ([Z42),
thus, is associated with the density which minimizes Egryrp[p]. Furthermore, small
oscillations around this equilibrium point correspond to the vibrational nuclear states.
They are usually described within the harmonic approximation, that is, using linear
response theory. In nuclear physics, this is the so called Random Phase Approximation
(RPA) which has been already mentioned in our discussion and will be described in
more detail in the next section.
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Chapter 3

Random Phase Approximation

So far, we have seen that on the mean field level, protons and neutrons inside the
nuclear interior are considered as non-interacting (uncorrelated) particles moving in an
average mean field potential. The occupation of the lowest single-particle levels up to,
and not beyond, the Fermi energy describes the ground state of the system. This simple
model can successfully describe the shell structure of the nucleus, as well as general
bulk properties, such as binding energies and nuclear radii. However, in order to go a
step further and explain the collective properties of a nucleus, one needs to consider the
residual two-body interaction between the nucleons which is not accounted for in the
mean-field potential. It is this residual interaction which give rise to the collectivity of
the nucleus.

Excitations of the ground state are described in terms of particle-hole transitions where
a nucleon in some state below the Fermi surface (hole) is promoted to a state above it
(particle). These excitations can be handled with relative ease. This is a blessing, since
1plh excitations are the dominant components in a variety of processes. For example,
nuclear states that have large 1plh components are strongly excited by electromag-
netic processes, such as inelastic electron scattering, and by strong interaction probes
in the form of intermediate energy nucleon scattering. In a study of the properties of
such states, one of our primary concerns is to establish the correct correlation between
different 1plh components, in order to produce, for example, the observed strong en-
hancement in strengths. The Random Phase Approximation solves that problem by
allowing only certain types of correlations and is thus able to account for the strong
1plh excitations observed in many nuclei with a relatively simple calculation.

The Random Phase Approximation (RPA]) is a theory of small-amplitude vibrations
in the quantum many-body system. The name was originated in the first application
of the method by Bohm and Pines referring to the plasma oscillations of an electron
gas [99]. The theory is equivalent to the time dependent mean field theory, at the
limit where the amplitude of the motion is small. Consequently, the applicability of
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the theory is restricted to systems where an effective mean-field theory provides a good
description of the ground state of the nucleus.

With improved interactions and present computer resources, [RPAl has proven itself to
be a robust theory, capable of predicting and describing in detail many properties of
collective excitations.

There are two quite different mathematical representations of the [RPAl namely the
configuration space formalism or A-B matrix diagonalization and the response
function formalism. In a brief outlook, the configuration space formalism diagonal-
izes a non-hermitian matrix which are constructed in the configuration space of 1plh
excitations. In contrast, in the response function formalism, ones solves the linear re-
sponse equations in a time dependent external field. This requires a matrix inversion
for given frequency w.

The above two methods are in principle equivalent, but in practise, one or the other
way may be better suited to the problem at hand. For instance, the response function
formalism allows excitations to be calculated in very large spaces of configurations;
the computational effort is only linear in the number of configurations. However,
the residual interaction must have a simple form, with very restricted possibilities for
non-locality. In particular, the exchange interaction can only be calculated approxi-
mately, in a zero-range approximation. In contrast, the matrix diagonalization puts
no limitation on the interaction, but the computational effort is cubic in the number
of configurations included in the space.

Another important difference is that the response-function formalism is capable of
treating the coupling to the positive energy continuum exactly, as we will extensively
discuss later. It is much harder to deal with this coupling, by using the matrix diago-
nalization method. In the following, the details of these two formalisms are unfolded.

3.1 Matrix Representation of RPA

In any of the cases discussed above, one starts from a ground state described in a
mean field theory and considers small amplitude fluctuations around its equilibrium
configuration. For the sake of simplicity, we describe here only spherical, double closed
nuclei. In a microscopic picture, all states below fermi surface are fully occupied and
all states above the fermi surface are empty. However, they are all calculated in the
same basis, regardless the fact that some of them may belong to the positive energy
continuum. The latter are determined by expansion in an appropriate basis, given for
instance by a finite number of eigenfunctions of a harmonic oscillator [62] , or of a
Woods-Saxon potential in a finite box [63].
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In order to describe excited states, we start from the same relativistic energy density
functional E[p] that was used to determine the nuclear ground states in the last sec-
tion. In an arbitrary representation indicated by the Greek indices «, 3, ... (e.g. the
(r, s, d, t)-representation) this functional depends on the single particle density matrix:

pes = (0]} aa]0). (3.1)

The same functional can be used for the description of excited states by considering
the time-dependent single particle density:

pap(t) = (2(t)|afaq|2(t)) (3.2)

With the help of the time-dependent variational principle

5 / "t {(®]i0)®) — E[p(t)]} =0, (3.3)

1

we can derive the equation of motion for the density matrix:

i0;p(t) = [h(p(t)), p(t)] - (3.4)

These are the time-dependent relativistic mean field equations and the single-particle
Dirac-Hamiltonian h is obtained from the functional derivative of the energy with
respect to the single-particle density matrix p

_GE

h=—.
op

(3.5)

The static solution is immediately deduced if we neglect the time-dependance in Eq.
E:
[ho, po] =0 (36)

and it describes the nuclear ground state as discussed in the last section. This means
that hg = h(po) and py can be diagonalized at the same time and in the static basis.
ho is diagonal and the matrix py has the form:

okl = Okimu (3.7)
where the occupation numbers are:

n; =1 for occupied states

n,, = 0 for unoccupied states (38)

That means that, besides the occupied states (hole states (h)), we have in the relativis-
tic case two types of unoccupied states. These are the positive energy solutions (particle
states (p)) with eigenvalues ¢, > ep and negative energy solutions (anti-particle states
(a)) due to the no-sea approximation.

The numerical solution of the time-dependent [RME equations [T00, H2] requires not
only a tremendous numerical effort, but it is also connected with additional problems.
For instance, their solutions break symmetries and they are connected with a spurious
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channel mixing (see Ref. [T01]). In order to avoid these problems, we consider in this
section excited states in the small amplitude limit, that is, we concentrate on vibrations
around the ground state density by po:

p(t) = po + dp(t). (3.9)

In the mean field approximation we assume that the many-body wave function |®(t))
stays at all times a Slater determinant, i.e.

pi(t) = p(t), (3.10)

In first order in dp, the equation of motion of Eq. (B4 becomes:

i050() = [ho, p(0)] + | 5 5p<t>,po] (3.11)
P PO
— (o, 8p(t)] + [Vp(t), po] (3.12)
with the effective interaction:
Ohags 52E(p)
Vaparpr = = — 3.13
P Spa |y Opapdpery (319

)

Decomposing the full time-dependent solution |®(¢)) in terms of the eigenstates (the
ground state |0) and the excited states |u)) of the nuclear Hamiltonian we get

(1)) = e 00) + 3 e ) (3.14)

I

and find in first order in c,:

Spas(t) = Y _cu(Olafae|mye ™" + (h.c.) (3.15)

"

with the transition densities:

Pl = (Olafanlp) (3.16)

which connect the ground state |0) and the excited state |u). Because of the relation
(BI0) we find in the static basis that the only non-vanishing matrix elements of §p are
0pmi and dp;, connecting occupied and unoccupied states and the transition densities
have in this basis the form:

8Py = ( 5o 0 ) (3.17)

For convenience, we transform the above expression so that the ph-space is character-

ized by the vectors
5p = OPmi (3.18)
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Inserting the expression ([BIH) for §p into equation (BI1]) and considering only compo-
nents oscillating with the frequency 2, we find in the static basis the linear eigenvalue
problem:

Quprni = (Em — i) pmi + vai,njpgj + Vmi,jn/)gn (3.19)
nj
QP = (e — )Pl Y VeV (3.20)
szm m i)Pim mz,]npn] mz,n]p]n
nj

Introducing the ph-amplitudes:
X = (Olafam|p),  and Y5 = (Olajailp), (3.21)

the [RPAl equations are given using the following matrix formulation:

A B XH 1 0 XH
B D)l ). e
with the [RPAl matrices:

Aminj = (Em - 52)57717152] + Vmi,nja (323)
Bminj = Vmi,jrr (324)

As was discussed before, this is a linear eigenvalue problem describing small amplitudes
vibrations |p) of the nuclear many-body problem, The eigenmodes ©,, of the [RPAI
equations correspond to the excitation energies of the system, while the transition

densities .
X*
= (), (3.25)

are the eigenvectors of the [RPAl equations.

The [RPAlequations (B:22)) are usually solved in a discrete basis, i.e. the eigenfunctions
of the static basis are expanded in terms of a complete set of harmonic oscillator
functions of the eigenfunctions of a Saxon-Woods potential within a finite box of Radius
R. In this case one needs a discrete ph-basis of relatively large dimension. This requires
a considerable numerical effort, in particular in the relativistic case, where one has to
consider also a very large number of (ah)-configurations including a hole in the Fermi
sea and a particle in the Dirac sea.

3.2 Linear response theory

So far, we considered eigen-modes |u) of the system and found in Eq. (B22) a linear
eigenvalue problem. In the linear response formalism, we start from a totally different
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ansatz. We now consider the system in an external time-dependent field with small
amplitudes:

F(t) = Zfaﬁ(t)agaﬁe’m + [halage™™". (3.26)
ap

oscillating with the frequency w. This external field F' leads to a change in the density,
similar to the Eq. (B). The basic assumption in this formalism is the assumption
that the transition density dp is linear in the external field:

0pap(w) = D Rapars(w) fars- (3.27)
a/ﬁ/

The matrix R,ga g (w) is called response function and describes the response of the
system to the external field. With the help of time-dependent perturbation theory in
first order in the external field, this function can be written in the general form:

(Oafaalp){ulagas|0)  (plajas|0)(0lagap|p)

Reporsr(w) = Ak iy 3.8
porir () ; w— By + Bo+in w+E, — Bo+1in (3.28)

However, the above expression is not really helpful for the calculation of R(w), because
the energies F, are not known quantities. In the other hand, this function can be
derived from the time-dependent mean field equation

i0p(t) = [h(p(t)) + F(2), p(t)] (3.29)
of a nuclear system in the external field F'(¢). In the limit of a small external field, we
find:

i0,:0p(t) = [ho, 6p()] + [Vop(t), pol + [£(), po] (3.30)

and for the vectors (BIX) we obtain in analogy the [RPAl equation (B22) the linear
response equation:

LG8 (e SN0 () e

By inverting this equation we obtain for the response function of Eq. (B2Z1) in the

static basis )
1 0 A B B
Ry (w) = [w ( 0 —1 ) - ( B A )} . (3.32)

Kkl
Neglecting the residual interaction between the ph-pairs we find the free response func-

tion
ng — 1y

Cw—c¢ e+
and using the expressions ([B2Z3) and ([B24)) for the BPAl matrices we obtain for the full
response

Rl?lk’l’ (w)

5kk/5ll/ (333)

R(w) = [(Rw)™ = V] (3.34)
where the ph-interaction is given by the matrix
Voo Vo
ph __ minj mijn
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Eq. (B34) can be written in the standard form of the linearized Bethe Salpeter equa-
tion:

R(w) = R%(w) + R (w)VP"R(w). (3.36)

This means, that a local external field F(r) induces in r-space a transition density
dp(r;w) which obeys the equation

Sp(rw) = 0p° (r;w) + /d3r'd3r”R0(rr',w)VPh( )op(r";w), (3.37)

where

5% (riw) = /d3r'R0(rr’,w)f(r') (3.38)

3.2.1 The strength function

We now consider the excitation of the system in an external field F'(t) of the form
(B26)) and calculate the strength function function:

= S 1O1F ) o — ). (3.39)

In [DRPA] calculations the transition matrix elements (0| F'|u) can be expressed by the
transition density (810

(O[F'[ ) = Tr( fp Zflm mi )+ fmzY(u . (3.40)

Expressing the d-function by

1
—imd(z) = lim Im , (3.41)
n—0 T+
the strength function can be expressed in terms of the response function (B28)
S(w) = 1IZF*R Fay — —~ImR
w) = —; m 8 04,8&’5’( ) o'f = —; m FF(C()),
aBa’ B
where we have used the reduced response
Ror(w) = Y QhsRapup (@) Fay, (3.42)

aBal B

describing the change of the expectation values of the operator () in an external field
F.

In [DRPAI calculations discussed above, the strength function vanishes everywhere ex-
cept at the eigenfrequencies w = ), of the system. In realistic systems we have discrete
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states only below the neutron emission threshold. Because of the coupling to the con-
tinuum, above this value the strength function is a continuous function. In order
to obtain continuous curve for S(w) in [DRPAI calculations one usually introduces a
smearing by a folding with a Lorentzian of width I' finds:

Tl T ) 1
S+ i) =~ Resle + i) = S0P

oo 69

In this case the coupling to the continuum is introduced in a phenomenological way
and the escape width T cannot be calculated in [DRPAlL On the other hand, in the
response formalism the continuum can be taken into account fully by solving the linear
Bethe Salpeter equation (B38) in r-space (see Section BH).

3.2.2 Sum Rules

The number of collective and non collective states |u), obtained in the [RPA] diagonal-
ization of the Hamiltonian is equal to the total number of the particle-hole components.
Providing that the nuclear interaction is velocity independent, the product of the en-
ergy of these states times the square of the matrix elements of the external operator F
is a model-independent quantity, known as energy-weighted sum rule mIH:

mi(F) =) Q| (v|F|0)[*.Q) S (w)d(hw) (3.44)

One can prove that the above sum is equal to:

> QlwIF|0) = %<0HF7 [H, F]]]0). (3.45)

The expectation value of the double commutator in Eq. ([B40) may be quite a simple
operator, so that it can often be evaluated more easily than the left part. If, for
instance, F' is the electric dipole operator, the sum rule reflects simple properties of
the system as a whole:

NZe?h?
my = A
where N and Z are the number of the neutrons and protons, A is the sum of them and
m is the nucleon mass. It is often useful to consider other moments of the strength
function, described in general by the equation:

(3.46)

mp(F) =) Ql|F|0)?, (3.47)

*The presence of a velocity dependence in the nuclear mean field produces an extra contribution
to the energy-weighted sum rule, usually written in the form m; p = mi rrr(1 + %), where the
enhancement factor x is of the order of 0.1 to 0.3 in heavy nuclei, as obtained by the integration of
the photoabsorption cross section up to about twice the peak energy of the GDR.
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where interesting quantities can be deduced. For instance, the ratio m;/myg is the
quantity often compared with the experimental excitation energy of the corresponding
resonance and is called the centroid energy. Of course, in most experiments, only a
restricted range is accessible and therefore one also has to restrict the summation in Eq.
BZD) to the same energy window. One can also find the notation E_; for y/my/m_;.

From the previous equations, we see that the sum rules depends crucially on the struc-
ture of the transition operator F'. This operator is determined by the requirement that
one state exhausts a major part of the corresponding sum. As a consequence, we can
write for isoscalar modes:

A A

F(r)= Z Yy o for A>0 and  F(r)= Z'r’f forA=0

i=1 =1
where interesting quantities can be deduced [102]. For isovector modes, the isospin
index 73 is also inserted in the above expression. In particular, the isovector dipole
operator can be written as:

F(r) = % > rYiu(fy) — % > Yiu (i) (3.48)

3.2.3 Separability and Channel Representation

The evaluation of the strength function ([B:28) requires three main steps. As a starting
point, one determines the interaction V;);a,ﬁ, of Eq. (B3d). In the second step, one
calculates the free response function R°(w), while in the third step one solves the linear

response equation (B30).

Starting from the effective interaction, the numerical effort can be simplified consider-
ably, if the interaction Ve & 18 written as a sum of separable terms:

afBa
Viy = > QasVQl, (3.49)

where Q¢ are single particle operators characterized by the channel index ¢. From now
on, we use this index to express all the possible degrees of freedom of the interaction.
In the non-relativistic description, ¢ includes the radial coordinate r and the discrete
quantum numbers {J, S, T}. In relativistic description the nucleons are described by
vector wavefunctions and thus c¢ includes also the dirac quantum number D.

If we insert the effective interaction (B49) into the generalized Bethe-Salpeter equation
of Eq. (B30) and introduce the reduced response function

Ro(w)= Y QRapwrs (@)Qp, (3.50)
aﬁa/,@/
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equation ([B30) turns into the reduced Bethe Salpeter equation:

Reo(w) = +ZR W)VE Roner (w). (3.51)

The simplicity of this expression is obvious. Provided that the external operator Fis
expressed by the operators (). as:

F=>fQ. (3.52)
we finally obtain the strength function as:
1 1
S(w)=—=ImRpp=——1 "R o 3.53
() = ——Im Rpp = —— me (W)f (3.53)

In the cases where the channel index ¢ includes a continuous part, as for instance
the radial coordinate 7, this is an integral equation. In addition, in Eq. (B3Il the
interaction VP! is assumed to be diagonal with respect to the channel index ¢, although
this assumption is not always valid, as we will stress later.

3.3 The Point coupling Effective Interaction

As we have discussed in the previous chapter, within a relativistic approach one is
able to express the interaction between nucleons either by finite range meson fields,
or by considering a contact interaction. In the second case, not only do we avoid
the use of virtual mesons, but also we provide ourselves with a much simpler radial
dependance for the interaction, which leads to the least numerical complexity. This
simplicity is a strong statement not only for the static (RME]) but also for the present
[RPAl calculations. Therefore, in this work, we concentrate in the latter option, where
one uses a point coupling [RMH approach for the ground state.

In order to derive the residual particle hole interaction, we start from the static case
and the expression of the energy functional (242). Since the external field acts in such
a way that small deviations from the equilibrium density matrix py are produced, i.e.
p = po + 6p, one can deduce the residual interaction by expanding the total energy up
to second order in dp. In particular, we have:

E ) + T 8p 50 3.54
v Zc?paﬁ Z 5pa[3510v6 Pap®hus (3.54)

The first derivative to be taken at the equilibrium density (0E/dpas)o = hog is the
stationary single-particle hamiltonian of Eq. (B and eventually vanishes. The sec-
ond derivative (0°E/0papdpqs)o = 0hs/0pys however describes how the single particle
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Hamiltonian reacts to small changes in the density matrix and it can be identified as
the particle-hole interaction:

’E
PR 3.55
5pa55p76 00y ( )

The expansion of the second derivative (B.5H) is carefully done in Appendix ([Al) and
for the particular case of the [PC-EF]l parametrization of the point coupling energy
functional, one gets:

VPh(1,2) = {’Vél)[as +2Bsps + 37s0% + 65 A1

+87%" [ov + 3w + 0y A8

+BaWVay + oy + SvA]Ba®

+707Y [arg + g AlyoT? (3.56)
+Bv07V [ary + drv A]Bye7?

+ BaiVary + 6ry Alfar®} - 5(r — 1)

1%7’3(1) ’ 1+Tg(2)
9 UC(rvr)’YO 9

+ 7

Neglecting for the moment the Coulomb force, this can be written in a separable form
as:

VPh(1,2) = ) T 6(ry — rp)ve(ry) T (3.57)
where the vertices I', are 2x2 matrices acting on the indices (s,d,t) and reflect the
different covariant structures of the fields including spin and isospin degrees of freedom.
We express the 2x2 Dirac matrices as a direct product of spin matrices o, where
0s—o = 1 and 05— = 0, the Dirac matrices vp acting on large and small components:

v (3 8) (00 e () e

and the isospin matrices 7, obtaining I'. = vp X g5 X 7 (see also the second column

of Table BTI).

For spherical nuclei, the densities and currents in the Lagrangian depend only on the
radial coordinate r. Therefore we expand the J-function in Eq. (BX2D) in terms of

spherical harmonics
5(7“1 — Ty

5(ry —ry) = 7)21@(91).1@@2). (3.59)

rra

Combining spin (S) and orbital (L) degrees of freedom we find by re-coupling to total
angular momentum .J

(0§ o) (YV2(1) - Y2(2) = D _losY2l} - [osVily (3.60)
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Inserting this expression into Eq. (B:63]) we obtain for the interaction a sum (or integral)
of separable terms (channels)

vrr2) = Y / dr QO () v (r) Q1P () (3.61)

Each channel is characterized by a continuous parameter r and the discrete numbers ¢ =
(D,S,L,J,T). The corresponding channel operators le)('r’) are local single particle
operators
or—r
o) = L vy A (3.62)
rTr1 J

and the upper indices (1) and (2) in Eq. (B&]) indicate that these operators act on
the ”coordinates” 1 = (r1€Qs1d1t1) and 2 = (ryQss0dsts).

The total angular momentum is a good quantum number and for fixed J the sum
over ¢ in Eq. BB runs only over specific numbers ¢ = (D, S, L, T) determined by the
selection rules. We concentrate in this manuscript on states with natural parity, i.e.
7 = (—)" = (-)’. Considering that S = 0 for the scalar and the time-like vector and
that S = 1 for the space-like vector we therefore have

I _ J for S=0
]l JE+1 forS=1

Finally we have eight discrete channels. Their quantum numbers are shown in Table 311
Of course, for J = 0 we have for S =1 only L = 1, and therefore only six channels.

c| o= ®os®@1r D S L T
1 YW® 1 ® 1 S 0 J 0
2 1®1®1 Vv 0 J 0
3 B o ® 1 V 1 J—1] 0
4 R o ® 1 V 1 J+1] 0
5 YW® 1 ® 13 S 0 J 1
6 1®1® 73 Vv 0 J 1
7 V5 & 0 Q T3 |4 1 J—1 1
8 V5 R 0 T3 \% 1 J+1 1

Table 3.1: Vertices and quantum numbers of the different channels in Eq.

(B.27)

Finally, in Eq. (B357) the effective interaction v.(r) describes the r-dependance and
the strength of the different channels as it is derived in a consistent way from the
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Lagrangian. In the [PC-F]l parametrization, the terms derived from the four-fermion
terms (Z38) are constants. Furthermore, due to a density dependence of the higher
order terms (Z39) as well as the corresponding rearrangement terms, v.(r) depends
on the static density and therefore on the coordinate r. In addition, because of the
derivative terms in (B50), they also contain Laplace operators. Summarizing, we have:

c
scalar:

time-like vector:
space-like vector:

UC(I‘) =

as + 20sps(r) + 3vspe(r) + 0sA
ay + 3y (r) + oy A

ay +wpk(r) + ovA

(3.63)

In the isovector case the constants ag, oy, ds and dy are replaced by ars, ary, drsg
and d7y. As we see in Table the corresponding values Brs = yrs = yry vanish. So
v(r) will correspond to a matrix in channel space, where only the diagonal terms are

non-zero, having OCIZ,C_Fl = V(1) e -

However, the situation in the parameter set DD-PCTl of Niksic [98] is more complicated
than that. The reason is that all the spin-isospin channels depend on the same baryon
density. As we show in the Appendix ([Al), the second derivative of the energy functional
leads to additional terms which are not diagonal in the channel space. The interaction
vPP=PCL ]l be given here by the matrix (2

cc’

DD-PC1 15} 1 a T aT
6} aglp] +dsA as[plps 0 0 0
1 aslplps  1/208[plps + Fvlp] 0 agylplpry 0
+1/20%y Py
o 0 0 -ay[p] 0 0
T 0 ary[plprv 0 ary|p] 0
aT 0 0 0 0 -arv|p]

Table 3.2: The structure of the channel matrix v..(r,r’) for the [DD-PCI
parametrization. The functional Fy[p] = ay[p] + 2a4,[p]p + 1/2a8:[p]p?

An essential feature of the effective interaction v.» is that it contains derivative terms
in the form of Laplacians A (retardation effects are neglected). As we show in the
Appendix (), in spherical coordinates this operator is expressed by:

1

L(L+1)—2
. S

é
0, + >

A=120 (3.64)

T r

— —
Here the radial derivatives 0, and 0, act on the right and on the left side in Eq. (BX21]),
i.e. on RY.(r'r) and on R (r,r"). Since the integration is discretized r — r, = nh
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H
the operator 0, is represented by a matrix in r-space as for instance by the tree-point

formula:
- 1
ann/ = %<5n’,n+1 - 5n/,n71)- (365>

This means that the term v, (7) in Eq. (B:63) is no more diagonal in the coordinate r
and it must be replaced by a more general expression v (7, 77).

The description of the residual interaction is completed by the inclusion of the Coulomb
term. This term has been proven to be important and thus excluding it is not a
good approximation. However, it needs special treatment because it brakes isospin
symmetry. This problem is solved by expanding the Coulomb term in off-diagonal
terms. This can be easily done, if we recall that V> can be written as:

LS BC) (3.66)

Vo(l,2) = G+ m) O —2— (2

|r1—Ts]

where 73 = 1(—1) for protons (neutrons). After decomposing Eq. (B60), we finally
get:
1 «

Vi = x (1010 — 102 _ 00 4 D 2)y

4 |I'1—I'2|
That means that in isospin space, the Coulomb interaction can be split into four parts,
two of which correspond to mixing (off-diagonal) terms. This leads to a Coulomb
matrix v&, (r,r’) in Eq. (B63) as shown in Table B3 The r dependance can be written
as:

(6%
- |:Zvc(r,r’)YL(Q)-YL(Q’) (3.67)
i —rIo 3
with
4o rk
vo(r, ') = oo 1 (3.68)
2L +1 7*£+1

and r. and r- are the smaller and the greater of r and r’.

6 1 o 6T T aT
G |0 0 0 0 0 0
1 0 Jvc 0 0 Juc 0
a0 0 —fuve 0 0 —lue
67 || 0 0 0 0 0 0
T |0 Fue 0 0 Juc 0
aT || 0 0 —%UC 0 0 —%vc

Table 3.3: The structure of the channel matrix v%, (r,r’) for the Coulomb
interaction.
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3.3.1 Relativistic Free Response Function

As we have discussed before, in most of the relativistic [RPAl approaches, one uses the
same basis (harmonic oscillator or Woods-Saxon) for the entire single particle spectrum.
We recall here that this spectrum has a discrete and a continuous part. Therefore the
levels which lie in the positive energy continuum are fully discretized and obey the
regular Dirac equation with fixed boundary conditions far outside the nucleus. The
wavefunction of each state is characterized by the 2-spinors:

L [k () Ve (S2)
[)wm = - (z’gm(r)ym(ﬁ))' (3.69)

where the subscripts n, x and m are principal and angular momentum quantum num-
bers; k = F(j + 1/2) for j =1+ 1/2, where j and [ are the total and angular momenta
of the nucleon. As usual, m is the z component of the total angular momentum. The
spherical spinors ), ,,(£2) are given in terms of spherical harmonics Y}, (€2) and Pauli
Spinors x as:

V() = 3 Im — AT Im) Vi, (D) (3.70)

Km ~ 2 9 my;— ) .

while the radial part of the functions U, (r) satisfy the homogenous coupled Dirac
equations:

(d +“) )~ [en+ M — (V1 S)lg(r) = 0

it
(5= 5) o)+ b+ 2 =V 8)00) = 0, (3.71)

as it has been shown in the previous chapter.

Starting from Eq. (BX50) for the reduced response function, we derive the following
expression for the corresponding reduced free response function, which depends only
on the energy w and the channel indices ¢, ¢:

cc -

RO (w) = Z<thilp><p|ch|h> (plQI1h) (h|Qe|p)
w—¢€pteptin w+ep,—€p+in

ph

> (hQF o) (@]Qelh)  (a|QF|h)(h|Qwle) (3.72)

+ - -
Ww—E¢Eqteptin W+Eq—Ept+1n

ah

where h stands for occupied (hole), p for unoccupied (particle) states above the Fermi
energy and « are the unoccupied states in the Dirac sea. This is a generalization of
the free response function of Eq. (B33) to include relativistic dynamics.

The operators Q. given by Eq. ([B62) are characterized by the channel index which
describe the residual interaction V?', namely ¢ = (r, DSLT). Each single particle
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matrix element of the form (p|Q.|h) in Eq. (B72) separates into an angular, an isospin
and a radial part.

PlQclh) = (plrr|h) (kpll los YLl [[5n) (Plyp|h)- (3.73)

Since we consider in this paper only phdRPAl in the same nucleus, the particle states
have the same isospin as the hole states and thus the isospin matrix element (p|7r|h)
is simply a phase +1.

matrix elements (p|v.|h), = (p(r)|vp|h(r)) then depend on a single r. They are found
as sums over the large and small components in the radial spinors |h(r)) and |p(r)) for
fixed values of .

The angular matrix elements depend on the quantum numbers « of particle and hole
states, and, of course, on the channel quantum numbers S and L. In particular, we

find for S = 0:

A . 1+ (_)l+l/+J jjlj . j J j/
(Y55 = (=)2 (3.74)
! 2 Vi -5 0 3

while for S =1, it is

. ) 14 (=)L 57 LT 1 (1 L
il oY), 1V = 5 =" 0
J

Var
e (45

Using for the angular and isospin part the abbreviation

o = (| [05YL] ) [|Kn) (pl7r|h), (3.76)
we finally obtain for the reduced response function of Eq. (B772) in r-space:

0 s N we e AR R) (Pl [h) (hlve p)r (P |h)r
Rew(r,rsw) = E Qi Qo , :
o W —Ep+Ep -t w+ep—ept+in

e oo P la)e(alyel i) e o (Blvela)e (alvd h),
+ ;{QahQah W —otentin QhaQha Wt o —en+in
(3.77)

N =S
|

—_

pol= S

\_/ o

[
—~
&2
-
ot
SN—

*c M
- thth

Theoretically speaking, the set of unoccupied states (indices p and «) is infinite in
length. In practical applications hoewever, one has to restrict this infinite set by a
finite sum introducing an upper limit €, — ¢, < Efft in energy for the particle states
p and a lower limit €, — €, > —E for the negative energy solutions a. These energy
cut-offs are introduced in order to make the - otherwise infinite - sum, tractable, leading

of course to a discretized spectrum.
R°(w) has poles at the ph-energies w = +(g, —¢3) .
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3.3.2 Bethe-Salpeter Equation

Having defined the residual interaction V" and the free response function R%(w), we
are now able to solve the reduced Bethe-Salpeter equation, which in the coordinate
space is written by:

Ree(r,riw) = R (r,r'w) (3.78)
1
+ Z/ dr'" R i (r, 7" W)Uc//(’f’”)r,,272(://,(:/(7’”,7“/;00)-

The numerical treatment of this equation requires a simple matrix representation, so
that one can write:

Rew () = R, (w) + R (w) v Rerer (w), (3.79)

or:

A

R = [1- sz(w)v]l R0 (w). (3.80)

CC”

Numerically, the dimension of these matrices equals the interaction channels times the
size of the r-mesh. Although the index c is fixed and well known from the previous
analysis (eight channels for transitions of natural parity), the latter depends on the
length of the coordinate space, i.e. the maximum value of r (typically 15 — 20 fm) as
well as the step size Ar.

Proper investigations have shown that calculations involving isoscalar (7' = 0) excita-
tions are more sensitive to the choice of the r-mesh, that is, a finer mesh is required to
reach a convergence, as compared to the isovector (7" = 1) modes. Although this has
not been fully understood yet, our experience let us assume that the main reason for
that comes from the uncontrollable kink of the non-spectral Green’s function at the
point » = /. Obviously, the finer the step size is, the better this king is evaluated and
thus the more accurate the result is. But apparently, Isoscalar and Isovector modes do
not give the same answer on how small the step size needs to be and there is unfor-
tunately little room for improvement on this direction. As a result, the full dimension
of the response matrix will vary between 400 and 800, which is already a factor ten
smaller than the conventional [RPAl methods, which use a diagonalization routine in
configuration space.

As we have seen, the evaluation of the strength function S(w) is required in order
to get an overview of how the nucleus responds to the external force. However, one
should keep in mind that different external fields are sensitive to different pieces of
the residual interaction. In other words, a multipole excitation of a given angular
momentum J, parity 7 and isospin 7', shortly described by the index cp, will receive
a direct contribution from those parts of the interaction which carry exactly the same
quantum numbers. For instance isoscalar monopole excitations will be sensitive to the
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isoscalar part of the interaction and so on. Therefore, we are only interested in one of

the R.~ terms, namely the one having:
c=c =cp

where cr characterize the external probe. It is then more proper to rewrite the equation
for the strength function as:

S(w) = / / &r d®r' F*(£)Rey (v, 1 ;0) F (') - 60,00, (3.81)

By proper integration of the full response R, and keeping only terms that are ”stim-
ulated” by the external force, one is able to determine the strength distribution:

SW) = Gecpberer / / &Prd®r’ F(r)Rew(r,r')F(r') (3.82)
where cp corresponds to the set of quantum numbers of the external field {J, T'}.

A special attention must be paid in the case of the isovector dipole excitation (J™ =
17,7 =1). In such a case, more than one channel, i.e. the isoscalar and the isovector
part are both contributing to the excitation probe and hence, the Kronecker delta is
no more correct. In order to understand that, we recall that the dipole external field

is:
N z
A N
D(r)=— g Vi + E VRl (3.83)
i=1 j=1

which can be rewritten using isospin operators as:

D - ¥ |-Sga-ni+ FRa+n)x
= izzmp |:N2j421 " %7'3] r; (3.84)

Obviously, both isoscalar and isovector terms take part in the summation ([B:82), car-
rying the factors % and % respectively. We can easily generalize the idea of these
effective charges in the equation ([B8Z), regardless the type of the excitation mode; one

simply replaces the Kronecker deltas by the effective charges e..,, (see table B3.2).

We remind that the full response function R..(w) has poles at the eigen energies
E,, — Ey of the BPAlequation (B28) in the same restricted space. For real frequencies
w it is purely real, and therefore the strength function vanishes everywhere apart from
these poles. For complex energies w + iA /2, however, these poles are shifted from the
real axis and one obtains a continuous spectrum, with the phenomenological width
A. This procedure yields identical results as the diagonalization of the [RPAlmatrix in
(B22) along with a subsequent folding with a Lorentzian as discussed in Eq. (BZ3]).
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field T=0|T=1]| IVD
isoscalar scalar 0 0 0
isoscalar vector 1 0 %%
isovector scalar 0 0 0
isovector vector 0 1 :

Table 3.4: The effective charges of the different interaction channels with
respect to the isospin of the excitation probe. These values stand for external
fields of electric type including transitions of natural parity excitations.

The sum rules (B47) can be directly defined as moments of the strength function S(w)
[T02:

my, = /OO WhS(w) dw. (3.85)

They are helpful to characterize the spectral distribution of the oscillator strength. In
particular they allow us to define the centroid energy by the ratio
my

E, = (3.86)

mo
This quantity can be compared directly with experimental values. Of course, in most

experiments only a restricted energy range is accessible and therefore one has to restrict
the integration in Eq. (B8H) to the same energy window.

Other important quantities are transition densities in various channels ¢ with respect
to the operator F"

Spe(riw) = / Ar'Reer (1, 7"; W) For (1) (3.87)

as for instance the neutron and proton transition densities:

6p(r)np = 0pr=0(r;w) £ dpr=1(r; w) (3.88)

3.4 Achievements and Limitations of Discretization
Methods

Soon after the first application of the RPA approach in nuclear systems, it had been
realized that excitation of nucleons between bound states is not enough to correctly
describe the collective phenomena. Only when one included the transitions to the
positive energy continuum, was the result successful.

Continuum has been always a not so easy task to handle with. For that reason it is
taken into account approximately through the expansion of the s.p. wave function in
the oscillation basis, or by means of its ”discretization” [103].
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Discrete RPA

N
P

Figure 3.1: In the discrete [RPAl the continuum is approximated by a box
which includes discrete levels, similar to the bound ones

It is indeed convenient to introduce a potential "wall” around and in some distance
from the nucleus, so that all the states which are embedded in this ”"box” will become
discretized (Fig.BIl). One then considers that transitions to continuum are treated like
the usual single-particle excitations between bound states and thus, one can safely use
either the interaction matrix element (B:35) using configuration space formalism or the
single particle Green’s function within the linear response formalism. The largest the
wall is, the better the positive energy discrete states approximate the true continuum.

Under this approximation, the discrete Random Phase Approximation based on Point-
Coupling [RMF] has been tested in the calculations of spherical double-closed nuclei and
the results are on the level of the best meson-exchange approaches [T04, [T05]. In the
case of nuclei with open-shell structure, additional effects, such as pairing correlation,
must be included in the calculation and an extension of the present model, known as
Relativistic Quasiparticle Random Phase Approzimation (RQRPA) is performed.

In these calculations, the discretization of the continuum is indeed very successful in
reproducing the position of the Giant Resonances, as well as the corresponding sum
rules with great accuracy. This is basically the reason why people have trusted it for
many years now. However, in all those discrete approaches, one virtually ignores the
fact that the coupling between the hole levels (¢ < F') to the actual continuum is
necessary and eventually, important phenomena, such as the acquiring of the decay
width by the discrete hole levels, are neglected.

That can be obvious, if one studies qualitatively the response function (B28). Indeed,
RY(r,r’;w) is a meromorphic function of w, with simple poles at the exact excitation
energies of the interacting system and thus, the strength function consists of sharp
lines at these poles. Only after applying an artificial width via a proper Lorentzian fit,
one gets the desirable smearing of the transition strength, as we nicely see in Fig.
[106].

We already know that the width of a resonance is directly connected to the exhaustion
of the corresponding sum rules, but it also gives information about the half lives of
the excited states. Therefore, it becomes obvious that the resonance width is a pure
physical quantity and one cannot allow any arbitrariness imposed by the Lorentzian
fitting.
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Figure 3.2: Dipole strength distribution (J™ = 17) of the spherical nucleus
10 Ca. The sharp lines are the solutions of the discrete model (D-RRPA), while

The dashed curve is the corresponding lorentzian with I' = 0.7MeV .

In the next section, we treat the continuum in the above [RPAl calculations in an
explicit way. The approach we are going to use is called Continuum Random Phase
Approximation ([CEPA]) and, although it has been used in the past for non-relativistic
models [64], T07, 65], an attempt is being made here to connect it with the [RPAl based
on the Relativistic Mean Field, and explore the new areas that this consideration opens.

3.5 Continuum RPA

As we have continuously and systematically underlined, the ”standard” [RPAl scheme
is based on the idea, under which a discrete single particle basis is used in the whole
energy spectrum, including the positive energy continuum. The size of this spectrum
is determined numerically by the energy cut-off E,,,, or in the case of expansion to
harmonic oscillator basis, by the maximum value of the shell quantum number N,,,;.
Keeping in mind that many p-h pairs contribute to the matrix elements of the external
field, one can a priori expect that enlargement of the model space (increase of N4.)
should lead to more accurate matrix elements. This of course means that any basis
truncation leads always to some uncertainty. In that respect, it would be interesting
to test the stability of the model, by letting N — oo, i.e. where one takes the full basis
into account.

In terms of numerical effort, this looks impossible, not only for the present, but also
for the future generations of computer power. In addition, the inclusion of major shells
lying much higher than the Fermi level may be associated with the appearance of
single-particle level crossings, which encounter principal limitations on the accuracy of
the ”discrete” approximation. Basically, only one major shell lying higher than the
Fermi shell can be safely considered.
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However, even without those two problems, the model faces a more important disad-
vantage, which is related to the unsatisfactory description of the finite structure of the
strength distribution, namely the resonance width. The derivation of such a quantity is
difficult and some times an unspeakable subject, which can be easily understood from
the differences (sometime substantial) found among the related theoretical papers. It
is however an important quantity, if one wants to explain the resonance’s tails and
the decay properties of the resonance. In this direction, the use of conventional [RPAI
models, which simulate the width by applying a lorentzian curve upon the discrete
transition strengths, cannot be the optimal choice.

Fortunately, over the years, people have come up with an alternative method to over-
pass these limitations, using the so called Continuum RPA [64]. By re-formulating
the [BPAl response functions, one achieves a proper assessment of the entire positive
energy continuum, where exact scattering wave-functions succeed the unsuitable dis-
crete eigenstates. As a result, not only does the position and the sum rule of the
giant resonances are better described, but also a continuous strength distribution is
automatically derived.

The main goal of this chapter, is to construct a continuum [RPAl approach based on
relativistic dynamics, in analogy to the existing non-relativistic continuum approaches.

3.5.1 Green’s Function Formalism

It is relatively easy to show that solving the continuum [RPAl equations using the
A-B formalism discussed in section (B) is practically impossible. At first, the use
of exact scattering wave functions would cause a divergence in the interaction matrix
element (a3 |V|yd), which is defined as an integral over particle and hole wavefunctions.
Furthermore, the [RPAl amplitudes X*. = (u|al a,,|0) which correspond to overlap of
the excited state |u) with a specific particle hole pair, would be inconsistent with this
idea, since the existence of a scattering solution would not allow for a distinguishing
between different particles having the same quantum numbers.

On the other side, the response function formalism appears to be more flexible in
treating the scattering wave functions, since the different configuration terms appear
only in a simple summation. The exact coupling to the continuum is taken care by
the re-definition of the single-particle Green’s function, needed to determine R?,. The
rest of the linear response equations follow exactly the methodology of the previous
chapter.

Using completeness, the reduced free response function of Eq. (BIZ7) can lead to an
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expression including the Green’s function:

1
0, = hlQf——— Qv — Qu————QF|h
Re(w) Z< Qg Qe @ w_gth 1)

Z (h|QF G(w + 1) Qu + QuG(—w + 1) Q[ |h).
h
(3.89)

where (h(r)| = (fi(r) g;(r)) is the 2-dimensional radial Dirac spinor and G(E) is the
relativistic Green’s function, which describes the propagation of a particle with energy
E and quantum numbers x from r to r’. It is also important to remember that the
operator ). acts on the indices (s,d,t). From those quantum numbers, the Dirac
index d corresponds to the large and small component of the wavefunction, and thus
is connected to the radial dependance. Therefore, if one wants to obtain the reduced
free response function in r space, the operator vp needs to be disentangled from the
main body of the operator ().. One then can write:

R (rr'sw) = > { Q5.0 (A5 Galr 15w + 1)y ()

hk
T QO D Galr s —w +en)ypla() | (3.90)

The sum runs over all the occupied states (hole) states h and over all the quantum
numbers k = (Ij) compatible with the selection rules in the reduced angular and isospin
matrix elements:

Qh s = er.(knll 05, YL], ), (3.91)

where er, = 1 in the isoscalar channel (7, = 0) and e, = £1 (for protons or neu-
trons) in the isovector channel (7, = 1). The reduced matrix elements of the operator
l05.Y1.]; contain integrations over the orientation angles © and sums over the spin
indices. The matrix elements of the form (h|ypG(E)yp|h) thus depend on r and
r’ and are obtained by summing over the Dirac indices d = 1,2 for large and small
components.

We have already seen in the previous chapter that the Green’s function G (r, ', E') can
be calculated by spectral representation, i.e. as a discrete sum:

Gl E) =Y |n(;)>—<tiﬂ)" (3.92)

over a complete set of eigenstates |n(r)) of the radial Dirac equation (Z53) with the
quantum number  using box boundary conditions (or an oscillator expansion). There-
fore |n(r)) contains both hole |h(r)) and particle |p(r)) states, although only the latter

survive in Eq. (B90)

In the present problem, however, the exact treatment of the continuum requires that
exact scattering wave functions are used instead of the discrete p states and thus,
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another representation is needed For this reason, we use the so called non-spectral
representation, firstly described in the work of Schlomo and Bertsch [64]. In this
pioneering work, the non-relativistic Green’s function was constructed at each energy
from two linearly independent solutions of the Schroedinger equation with different
boundary conditions at »r = 0 and at r — oo. In the relativistic case, the situation
is similar; however, the Dirac-equation in r-space is a two-dimensional equation and
therefore the corresponding single particle Green’s function is a 2x2 matrix. As in the
non-relativistic case, G(E) obeys the inhomogeneous equation:

(E — Mr)) Go(r, ' E) = 6(r — 1), (3.93)

where h,.(r) is the radial Dirac hamiltonian of Eq. £33) depending on the quantum
number x = (Ij). This Green’s function can be constructed at each energy E from two
linearly independent solutions

o - () wo-(5) o
(W (r) = (fulr) gu(r)), (W*(r)] = (fu(r) gul (3.95)

of the homogenous (Dirac) equation with the same energy E

(E _ ﬁﬁ(r)> lu(r)) = 0, (E _ ﬁﬁ(r)> lw(r)) = 0, (3.96)

but with different boundary conditions. The functions u(r) and w(r) are normalized
in such a way that the Wronskian is equal to:

fulr) fu(r)

= fuw()gu(r) — guw(r) fu(r) = 1. 3.97
Ptr) B | = a0)9u0) = 9ul0)20) (397
Of course these scattering solutions depend on the energy F and on the quantum
number &, i.e. we have |u,(r; E)) and |w,(r; E)). Using the bracket notation of Dirac
for the 2-dimensional spinors and following Ref. [I08] we can express this Greens’s
function as:

W:

|wi(r; B)) (ui(r'; E)I for >+ (3.98)

oy
Gl B) = { lug(r; E))(wi(r's E)|  for r <o’
with the general property:
G.(r',r;E) =Gl (r,7"; E) (3.99)

The solution u,(r) is regular at the origin, i.e. following Ref. [I09] we have for £ > V+S
in the limit r — 0:

Ji(kr) r=0 CIESYIT (kr)!
u(ﬂ:r(ﬁEvs )H<HEVS ), (3.100)
=] Jilhr) [s] 2(21}1)!!)(]“”)1

with k* = (FE =V = S)(E—V + 54 2m) > 0 and j(z) is a spherical Bessel function of
the first kind. The wave function w,(r) is irregular and represents at large distances
for £ > 0 an outgoing wave, i.e. we have for r — oo

(1)
rh,” (kr oo 1 ,
U}(’T’) Eéo < K zk: ;L(l)) ) - < Kk ik )elkrv (3101)

&l E+2m '] (k’?") x| E+2m
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where hl(l)(z) is the spherical Hankel function of the first kind and for £ < 0 an
exponentially decaying state, i.e. we have for r — oo

w(r) = < rﬁK”%(Kr) ) roge ( L >eKr, (3.102)

o\ n Kiy 1 (Kr)

E+2m

where K> = (V=S —E)(E -V + S +2m) >0 and ji(z) and K;11/2(2) are modified
spherical Bessel functions [IT0]. For £ < 0 the two scattering solutions are both
real. This absence of any imaginary term will eventually give no contribution to the
strength function of Eq. (B39). We have to keep in mind, however, that at energies
that correspond to eigen energies of a bound state, the solutions u,(r, ') and w(r, E)
coincide up to a factor, which means that the Wronskian vanishes at this energy. This
corresponds to a pole in the response function on the real energy axis. By adding a
small imaginary part to the energy £ — E +1in we obtain a sharp peak in the strength
distribution.

Having the exact form of the Green’s function for the static radial Dirac equation ([(Z23),
one can finally construct the non-spectral or continuum reduced response function

(B0):

RU(r5w) = 3 QQGelriw + e + 1)
hk

Qi Qnu(riw — e (5w — en) b O(r — 1)

+ D { Qs + e w + €)
hk

— QS Af(riw — en) Yo (7w — eh)} o' —r)  (3.103)

where the Dirac matrix elements depend on the coordinate r:

V(T3 E) = (hlve|lw(E))r, (3.104)
Va3 E) = (h]ve|u(E))r, (3.105)
Yan(1: E) = (u (E)|yelh)r, (3.106)
Ton(T3 E) = (W (E)]ve|h)r. (3.107)

We have discussed earlier, that the Continuum [EPA] is capable of reproducing a finite
structure of the strength distribution, and eventually a resonance width. This is easily
realized after looking at the definition of the irregular function (BI0I). Whenever
this wave function is a complex function, it is reasonable for the imaginary part of
the response function and thus it offers a nonzero strength function S(w) oc Im[R(w)]
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without the need of any auxiliary parameter in. Of course this is true only for energies
above the neutron emission threshold.

A question then emerges on how satisfactory this resonance width is, as compared to the
one deduced from experimental data. To answer this, we need to understand better the
nature of the width which is derived from our method. Since it is connected to nucleon
transitions to unbound levels, there is a certain probability that the nucleon will escape
the nucleus. This probability mostly depends on the height of the centrifugal barrier
and of the Coulomb barrier, if the excited particle is a proton. The higher the barrier is,
the longer the particle stays in the excited state and hence, the probability of particle
decay is connected to the width of this particular level. Therefore, the resonance width
that is deduced by the continuum calculations is called decay or escape width I'T.

Unfortunately, I'! is only a part of the total width that corresponds to the experimental
outcome. From a microscopic point of view, the total width of a giant resonance has
three sources. A second part would correspond to the Landau damping in the finite
nucleus which is regarded as the fragmentation of the resonance over the particle-hole
configurations.

A third part would originate from a coupling of the simple [RPAl excitations to more
complex configurations, such as 2p2h and so on. This gives the so called spread-
ing width (I''). It has been shown in recent investigations of the coupling to these
configurations within the framework of the relativistic time-blocking approximation
(RTBA) [I11]] or the relativistic quasiparticle-time-blocking approximation (RQTBA)
[TT2] that such couplings can be taken into account successfully in a fully consistent
way starting from one density functional E[p|. So far, relativistic investigations of this
type have been carried out with discrete methods. At present, investigations in this
direction including the continuum properly go beyond the scope of this work.

Through the following calculations, we will address the influence of I'! in the total
width, and thus get an overview of the contribution of the continuum representation
in the overall strength contribution.
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Chapter 4

Results

Electric and magnetic giant resonances in the atomic nucleus represent a spectacu-
lar example of the complexity of collective phenomena that take place in many-body
fermionic quantum systems. In atomic nuclei these collective excitations are usually
classified according to their multipolarity A L, spin AS and isospin AT quantum
numbers [T13, [TT4]. The first experimental observation of the phenomenon of increased
absorption cross section of photons from some target nuclei was made by Bothe and
Gentner [I15] and was later confirmed by Baldwin and Klaiber [I16]. An interpretation
was given by Goldhaber and Teller [T17] within the macroscopic hydrodynamical model,
which treated protons and neutrons as rigid fluids, oscillating relative to each other.
This mode was identified as an isovector giant dipole resonance (IVGDRI) characterized
by the multipolarity, spin and isospin transfers AL =1, AS =0 and AT = 1 respec-
tively. Then followed the observation of other collective modes, such as the isoscalar
giant monopole resonance ([SGMRI) and the isoscalar quadrupole resonance (ISGQR).
In addition we have the Isoscalar Dipole Resonance ([SGDRI) revealing the spurious
state corresponding to a translational motion of the nucleus. These modes show up in
an energy range of 10 —30 MeV and they exhaust a major portion of the corresponding
sum rules [55, B4].

From a microscopic point of view, these vibrations are described via coherent overlap
of many one-particle-one-hole (1p-1h) excitations. A schematic representation of such
a description can be seen in Fig. L] where 1p-1h transitions contribute coherently to
a quadrupole (A = 2) mode. As we have already discussed, the key method to study
this collective modes is via the random phase approximation.

In the previous section we briefly described how conventional RPA methods treat the
continuum part of the spectrum through the introduction of a potential "wall” far
from the nucleus. In the credit side of this approach, general properties of collective
excitations can be very well reproduced, either by using finite range or point coupling
interactions in the mean field level. Since can treat the coupling to the con-

55



56 Results

— X X 3Py,
y 3pan

i

- 7 Y 13
N=35 k A ] [ s
ry y 29
IYREE) T
35y
2d,,

1h

N=4 2 X 2,
lg.,

T — — I —— 52 n
iE:; e CF
p gz
& ——— — — — — +-THHF——14t+H=1T+—-

| m N

2p,

L 111 ululul If

N=3 g - ; 2py

. | 0| ululul

Quadrupole AL=1,AS=0,AT=0

Figure 4.1: An example of microscopic representation of giant resonances
as a coherent superposition of many particle-hole transitions. Shown in the
case for electric quadrupole (A = 2) excitation in the ®*Zr nucleus. Protons
(arrows with solid squares) and neutrons (arrows with open squares) 1p-1h
transitions from levels below to levels above the Fermi level ¢ are shown.

tinuum exactly, it is of interest to see how well this model does in reproducing the
properties of excited state in finite nuclei, in particular the giant resonances.

4.1 Numerical Details

In the following, we perform several calculations using the relativistic continuum RPA
approach in r-space with Point Coupling forces 6] and try to investigate how the
collective excitation phenomena depend on an exact coupling to the continuum. In a
first attempt, we select the doubly magic nuclei 60, 4°Ca, '32Sn and 2°Pb.

The ground state of the nucleus under consideration is determined by solving the self-
consistent [RMF equations (Z53) for the parameter set PC-F1 given in Table The
method we are using is a fourth order Runge-Kutta in r-space (Dirac-mesh) where
nucleons move in a spherical box with radius Rp = 15 fm and with a mesh size
dp = 0.05 fm.

Using the single particle wave functions and the corresponding energies of this static
solution, we determine the free response R° of Eq. (B30) in the same box radius but
using a wider mesh in r-space (response-mesh). The size dg of this mesh depends on
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the excitation mode; for the monopole modes we use dg = 0.15 fm, while for the dipole
a larger interval dg = 0.30 fm is sufficient. Then we solve the Bethe salpeter equation
B1) to get the strength distribution S(w).

At the same time, we perform similar calculations using the discrete RPA approach,
where the continuum is not treated exactly, aiming of course to a more precise com-
parison with the results. For those calculations, an energy cut-off is necessary,
so that a feasible diagonalization is achieved. In particular, we have used an energy
cut-off e, — e, | < EP!, = 300 MeV for the configurations with particles above the Fermi
sea and |e, — €| < B = 1500 MeV for configurations with anti-particles in the Dirac

sea.

4.2 Multipole Resonances

4.2.1 Isoscalar Giant Monopole Resonances

Results for the isoscalar monopole strength distribution are attainable, once the corre-

sponding external field
A

Fl=9 =Y r} (4.1)

is used. In this case, the classical energy weighted sum rule m;(F£0) becomes:
1 h? 2h?
mi (E0) = S([F, [T, Fll) = 5 —~(V*F) = —

- 2m m

(r?). (4.2)

The doubly magic spherical nucleus 2°®Pb is a particularly good case of nuclear system
to begin with, since it has been used in the literature to test numerous nuclear structure
models in the past, in particular applications of the random phase approximation
[TTR, (19, 20, 2T, 122, 123, 124).

In Fig. we show the [SGMRI strength distribution obtained by continuum RPA (full
red line) and compare it with the discrete B(EQ) values (blue) obtained by the spectral
representation of the response function for the same parameter set PC-F1 [46].

Using the approach, we find for the calculated centroid energy defined in Eq.
(E2) that mq/my = 14.40 MeV, which is rather close to the result mq/my = 14.17
MeV deduced from discrete RPA calculations as well as to the experimental value
my/mg = 13.96 + 0.2 MeV [125].

In those two methods, no additional smearing A = 0 has been used. This means that
the observed width of the continuum RPA strength corresponds entirely to the escape
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Figure 4.2: Left panel: The isoscalar monopole spectrum in 2°*Pb, calculated
with the parameter set PC-F1. The red curve corresponds to the strength
distribution (units on the Lh.s.) obtained by with A = 0, the blue
lines give the discrete B(EO)-values (units on the r.h.s.) obtained by the
spectral representation with the same force. The black arrow indicates the
experimental centroid energy of the resonance [125]. Right panel: the neutron
and proton transition densities at the peak with the energy F/ = 14.40 MeV.

with which in the Pb region is very small, due to the relatively high Coulomb and
centrifugal barriers in this heavy nucleus. In contrast, discrete RPA provides no width
at all. Otherwise, the agreement of these two methods in this nucleus is excellent.

In the second panel of Fig. B2 we give the neutron and proton transition densities
at the peak energy, as it is calculated in Eq. (B:88). They emphasize the collective
character of the isoscalar breathing mode extended over the entire interior of the nucleus
with neutrons and protons always in phase.

In addition, the energy weighted sum rule obtained in using Eq. (BXH) is
my(E0) = 5.448 - 105 [MeV-fm?]. This result is in excellent agreement with the [DRPAI
calculation my(E0Q) = 5.446 - 10° [MeV-fm?] as well as the classical value m;(E0) =
4AR/2m(r*) = 5.453 - 10° [MeV-fm*]. This shows that the results obtained in the
literature by relativistic RPA calculations using the spectral method are very reliable
for such heavy nuclei [126], b3, K6, B4].

In Fig. we show the EO strength distributions for the lighter doubly magic nuclei
160, 40Ca, and *?Sn. As in Fig. E2, the smearing parameter A is zero, but now the
escape width is considerably larger for these nuclei. Fig. EE4l summarizes the results
for the isoscalar monopole strength distributions as a function of the mass number A.
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Figure 4.3: The isoscalar monopole strength distribution in the doubly magic
nuclei 90, °Ca, and '¥2Sn. Details are the same as in the left panel of Fig.

B2

In the upper panel, we plot the centroid energies of both continuum RPA (red dots)
and discrete RPA (blue dots), together with the experimental centroid energies taken
from Ref. [T25]. We also show the phenomenological A-dependence Ey+ ~ 80 A~/3
by the dashed line. It becomes clear that can successfully reproduce collective
excitations over the known range of nuclei.

In the lower panel of Fig. EE4we show the escape width I'" of EOQ resonances. The red val-
ues correspond to the full width half maximum (FWHM) of the peak, using continuum
RPA | while the experimental values are indicated in black. The evident disagreement
is not surprising, if we consider that only 1plh-configurations are taken into account,
i.e. the major part of the width resulting from the coupling to more complicated con-
figurations such as 2p2h etc. is not described well in this simple RPA approach. It has
been shown in recent investigations of the coupling to complex configurations within
the framework of the relativistic time-blocking approximation (RTBA) [I11] or the
relativistic quasiparticle-time-blocking approximation (RQTBA) [I12] that such cou-
plings can be taken into account successfully in a fully consistent way starting from one
density functional E[p]. So far, relativistic investigations of this type have been carried
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out with discrete methods. At present, investigations in this direction including the
continuum properly go beyond the scope of this paper.

As we have mentioned in Chapter ], a new parameter set based on Point Coupling
Lagrangian has been recently introduced to describe static and collective phenomena.
Known as DD-PC1 [98], this set has been adjusted to spherical open-shell as well as
to axially deformed nuclei and hence, it is expected have a better predicting power in
the nuclei which require the inclusion of pairing correlations.

On the other hand, the parameter set PC-F1 has been adjusted to spherical double-
closed nuclei. It is thus of great interest to study and compare these two available
parameter sets PC-F1 and DD-PC1 in view of their ability to reproduce the giant
multipole resonances for various group of nuclei. In Fig the monopole strength
distribution for the group of the double closed-shell nuclei O, 4°Ca, % Zr and '32Sn is
shown. One can clearly see that, in the case of medium and heavy nuclei, the two sets
give almost similar excitation energies and escape widths while a small dissgreement
appears in the light nuclei. In both cases however, the energy weighted sum rules are
equally exhausted.
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Figure 4.5: The isoscalar monopole strength distribution for the doubly
magic nuclei 160, 4°Ca, ©°Zr and '32Sn. Calculations using PC-F1 are repre-
sented by solid curves, while dashed curves correspond to DD-PC1 calculations
[98].The vertical dotted line indicates the neutron emission threshold.

4.2.2 Isovector Giant Dipole Resonances

[sovector Giant Dipole resonance is the most well studied collective excitation and the
first to be observed experimentally [IT6]. An external electromagnetic field of the form:

N Z 7
Fio = A Z rpY1im () — A Z Y10 (§2p) (4.3)
n=1

p=1

causes protons and neutrons to oscillate in opposite phases to each other and this leads
to a pronounced peak in the photoabsorption cross section. This mode has been well
studied in many nuclei [TT3].

With the increasing number of experiments in systems far from stability and systems
with large neutron excess, one has been able to observe also low-lying E1 strength in
the area of the neutron emission threshold. It is called Pygmy Dipole Resonance PDR
and can be interpreted as a collective mode with dipole character where the neutron
skin oscillates against an isospin saturated proton-neutron core. This mode has first
been predicted in phenomenological models [127, 28] exhausting several percent of
the electric dipole sum rule. In recent years, it has been intensively investigated both
on the experimental side by the Darmstadt group [129, [[30)] as well as on the theoretical
side, using discrete relativistic RPA calculations based on NL3 [I31], 132].

In Fig. 26 we show in the upper panel the results of the isovector dipole strength E1 in
the nucleus 2°Pb using the [CRPA] approach. The centroid energy at 13.32 MeV is in
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Figure 4.6: Upper panel: The isovector dipole strength distribution in 2*8Pb.
Details are essentially the same as in the left panel of Fig. However, in
order to distinguish the continuum (red curve) and the discrete (blue lines)
calculations we have used here a small smearing parameter A = 10 keV in
the continuum calculation. The black arrow indicates the theoretical neutron

emission threshold. Lower panel: transition densities for neutrons and protons
at the energy of the PDR (left) and at the GDR (right).

0 2 4

excellent agreement with the experimental excitation energy E = 13.3 MeV [133]. The
energy weighted sum rule ([B8H) is found as m(E1) = 916.28 [MeV-fm?]. This result is
in agreement with the DRPAl calculation, where we obtain m;(FE1) = 943.32 [MeV-fm?
and as usual somewhat (23.8 %) larger than the classical Thomas-Reiche-Kuhn sum
rule

h? NZ
D WNZ_ h0a3 [MeV - fm?.

Trom A (4.4)

MTRK =

In addition to the giant dipole resonance a smaller peak appears at the energy region of
the neutron emission threshold around F ~ 7.5 MeV, that corresponds to the pygmy
resonance.

In the lower panel of Fig. we give the transition densities associated the low-lying
peak at £ = 7.66 MeV and the GDR peak at F = 12.9 MeV. The higher peak has
clearly an isovector character, since the neutrons are oscillating against the protons
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Figure 4.7: The E1 pygmy resonance (PDR) in the nucleus 2°*Pb. The
black arrow indicates the theoretical neutron emission threshold at Ey, =
7.58 MeV. The units on the L.h.s. characterize the dipole strength given by a
red continuous curve of calculations above the neutron threshold. The
units on the r.h.s characterize the discrete B(E1)-values given by the length of
the blue vertical lines resulting from [DRPAl and the red dashed lines obtained
by calculations below the threshold.

over a large radial range centered at the surface. The lower peak shows an isoscalar
core, where neutrons and protons oscillate in phase and a pure neutron skin moving
against the T'= 0 core. This is the typical behavior of the pygmy mode.

Closer investigation of pygmy resonances have shown that this mode is in the neighbor-
hood of the neutron separation threshold, slightly below for small and slightly above
for large neutron excess (see for instance Ref. [I34]). It is therefore of particular im-
portance to study this mode with a proper treatment of the continuum, since in most
of the previous investigations this has not been possible [135]. We show in Fig. B
the details of the PDR in the nucleus 2°*Pb. Above the theoretical neutron separation
threshold which is found at Ey, = 7.58 MeV (black arrow) we have a continuous red
curve showing the E1 strength distribution calculated with (units at the L.h.s)
and also few full blue vertical lines that correspond to the discrete poles of the [DRPAI
equations (B:92) (units at the r.h.s.) and with length equal to the corresponding B(E1)
values.

In the same figure and below the threshold we have in both cases discrete lines. The
solid blue ones are again the eigen-solutions of the [DRPAlequation (B). The solutions
of the equations lead in this region also to discrete poles. We show them by
dashed red lines at the pole of the full response function. Numerically, the only way to
determine the B(E1) values of these poles in is by using very small imaginary
parts A — 0 in the frequency w + i%A and then determining the B(E1) values by
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Figure 4.8: The isovector dipole strength distribution in 32Sn. Details are
the same as in the upper panel of Fig. 4.

CRPA DRPA

No. E B(E1) E | B(E1)
6.90 019 | 712 | 0.23
7.44 145 | 746 | 282
7.66 | 1.11 | 7.69 | 0.40
2.75 3.45

Mlw o =

Table 4.1: Energies and B(E1) values for the three most dominant peaks in
the PDR area around the neutron threshold for the nucleus 2**Pb for contin-
uum ([CBPA]) and discrete (DRPA]) calculations. The numbers given in italic
correspond to resonances in the calculations. The units are MeV for
the energies and [e?fm?] for the B(E1) values. More details are given in the
text

simple integration over a small interval around this pole.

By doing that, we finally observe that there are differences in the details between the
continuum and the discrete RPA calculations close to the neutron separation threshold.
In Table EETl we show for both calculations the three most dominant peaks in the area
of the PDR around 7.5 MeV. In the discrete calculations (DRPAI) the strength is
concentrated in one peak at £ = 7.46 MeV, whereas in the continuum calculations
(CRPA]) most of the strength in this region is distributed over two peaks, one below
the neutron threshold at £ = 7.44 MeV and a sharp resonance slightly above the
threshold at £ = 7.66 MeV. The energy weighted strength in this area is 17.09 [e*fm?]
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Figure 4.9: The E1 pygmy resonance (PDR) in the nucleus 3?Sn. Details are

the same as in Fig. 71 The arrow indicates the theoretical neutron emission
threshold at Ey, = 7.13 MeV.

(i.e. 1.86 % of the total sum rule) for [CRPAl and 26.95 [e*fm?] (i.e. 2.85 % of the total
sum rule) for DRPAL

CRPA DRPA

No| E | B(El)| E | B(E)
1| 811 0.03 |8.067| 0.037

8.48 | 0.02 |8.186| 1.601

8.82 | 144 |8511| 0.260

1.490 1.898

M| w o

Table 4.2: Energies and B(E1) values for the three most dominant peaks in
the PDR area above the neutron threshold for the nucleus '*2Sn for continuum
([CRPA]) and discrete (DRPA) calculations. The units are MeV for the energies

and [e*fm?] for the B(E1) values. More details are given in the text

In Fig. EE8 we show the distribution of the isovector dipole strength in the doubly magic
nucleus ¥2Sn. Again, results using continuum RPA equations (red curve) are compared
with the solutions obtained from the spectral representation (blue lines). As one can
see, there is excellent agreement between the two methods, as far as the resonance
position and the overall distribution is concerned. Moreover, the energy weighted sum
rule obtained in is given by m;(F1) = 563.60 [MeV-fm?], which is in very good
agreement with the [DRPAIl calculation my(FE1) = 591.02 [MeV-fm?*] and 22,9 % larger
than the Thomas-Reiche-Kuhn sum rule in Eq. (@)
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In addition, we find that the escape width in this nucleus is considerably smaller in
the E1 channel as compared to the EO channel in Fig. BE3 This has the following
explanation: The selection rules for ph-excitations with EO character is Aj = 0 and no
change in parity. It turns out that most of the ph-excitations contributing to the strong
peak in the resonance region have rather small ¢ values for the particle configurations
and therefore a very low or no centrifugal barrier. This is different for the E1 resonance.
Here we have a change in parity and in addition changes of Aj = 0,+1 and here a
large part of the contributing ph-pairs have particles with larger ¢-values and a strong
centrifugal barrier and hence the width becomes smaller.

CRPA DRPA Exp.

160 | 20.6279 | 21.623 | 23.3540.12 [130]
0Ca | 18.367 19.32 | 21.76+0.11 [137]
13280 | 14.503 14.78
28ph | 13.32 13.23 13.3£0.10 [133]

Table 4.3: Isovector dipole (IVGDR) excitation energies in [MeV] for several
spherical nuclei, calculated with both continuum and discrete relativistic RPA
based on the point coupling force PC-F1.

In Fig. we show the region of the PDR in the doubly magic nucleus *2Sn. As
already found in Ref. [I34], the theoretical neutron emission threshold at £ = 7.13
MeV lies much below the area of interest. As before, we calculate the B(E1) values
of the prominent peaks, for both discrete and continuum calculations with the total
strength to be in nice agreement. In Table we show in what extent each level
contributes to the total pygmy collective state. Finally, the energy weighted strength
my in this area is 13.24 [e*fm?] (i.e. 2.35 % of the total sum rule) for and 20.45
[e*fm?] (i.e. 3.46 % of the total sum rule) for DRPAL

In the left panels of Fig. we show the electric dipole strength distribution of the
lighter nuclei 160, 4°Ca, ®Ni and *°Zr. At first we observe that the systematic rule of
Fi- ~31.2A71/3420.6 A=/ is nicely reproduced in our calculations. The position of
the corresponding peaks and poles with large strength are in rather good agreement,
as one can also see in Table E3 We find, however, that in the continuum calculations
a much larger escape width emerges, in particular for the nucleus 60O, due of course
to the very low coulomb and centrifugal barriers. In the right panels of Fig. ET0 the
neutron and proton transition densities for the corresponding excitation energy for the
four nuclei are given. It is very clear that all cases, this high concentration of excitation
strength corresponds to a pure oscillation of the neutrons against protons.
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Figure 4.10: Left panels: The isovector dipole strength distribution for the
nuclei 1°0, °Ca, 5Ni and °Zr. The theoretical neutron separation energies are
indicated by black arrows. The comparison of the excitation energies with the
[DRPAI calculations as well as the experimental values are given in Table
Right panels: The corresponding neutron and proton transition densities for
the peak energies of the four nuclei.

4.2.3 Isoscalar Giant Dipole Resonances

Besides the distribution of the isovector dipole strength which is dominated by the
[VGDRI in many experimental spectra, in recent years there has also been considerable
interest in measuring the isoscalar dipole strength distribution [I38, 139, 140]. In a
similar way, one expects to find the [SGDR] which corresponds to a compression wave
going through the nucleus along a definite direction and to learn from such experiments
more about the nuclear incompressibility. Relativistic calculations based on discrete
RPA [126, 56, T22] have shown that the resonance energy of this mode is indeed closely
connected to the incompressibility of nuclear matter.
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Along with this resonance built on 3hw-excitations above 20 MeV, calculations
based on both relativistic [126] and non-relativistic [T41] RPA approaches have revealed
a low-lying isoscalar dipole strength in the region below and around 10 MeV. Experi-
mental investigations with inelastic scattering of a-particles at small angles [142, [T40]
have also found isoscalar dipole strength in this region. This strength has been at-
tributed in Ref. [143] to an exotic mode of a toroidal motion predicted already in early
theoretical investigations on multipole expansions of systems with currents [144), [T45]
and investigated also by semiclassical methods [146, [147]

On the theoretical point of view, there is further interest in the isoscalar dipole mode,
characterized by the quantum numbers (J™ = 17,7 = 0), because it contains the
Goldstone mode connected with the violation of translational symmetry in the mean
field solutions. This mode corresponds to the center of mass motion of the entire
nucleus. Because of the missing restoring force, this mode has vanishing excitation
energy. It is one of the essential advantages of the RPA approximation, that it preserves
translational symmetry and therefore it has an eigenvalue at zero energy with the
eigenfunction given by the ph-matrix elements of the linear momentum operator.

Since the [SGDRI is expected to be a 3hw-excitation it is usually associated with the
external field derived in Ref. [T48]

0 = 30 =) Yind) (45

where n = 2(r?).

In the upper panel of Figs. EETTl we display the distribution of the isoscalar dipole
strength in 2°Pb, calculated with the operator (EH) for n = 0, that is, we take no
action for the spurious state. We therefore observe a huge peak close to zero energy,
which dominates the spectrum and corresponds to the spurious translational mode.

It turns out that the position of this spurious state is an extremely sensitive object
which strongly depends on the numerics of the model. Of course the optimal would be
to calculate the spurious state at exactly zero energy. Therefore this excitation mode
presents an ideal benchmark for numerical efficiency of the RPA or the linear response
equations. Detailed studies have shown that the exact separation of the spurious state
requires a fully self-consistent solution [T21]); a fact which was not given in most of the
older applications with Skyrme or Gogny forces. In many cases, only few of the different
terms in the residual interaction had been taken into account in RPA calculations.

In addition, the configuration space must be full. Indeed, the discussed drawback of the
conventional spectral representation in a truncated ph-configuration space affects the
position of the spurious state. Therefore, the convergence to zero eigenvalue of the spu-
rious translational mode occurs very slowly and only in extremely large configuration
space. In relativistic applications this is translated to including also large spectrum
in the Dirac sea [I49, b3]. As a consequence, in the spectral representation, one has
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Figure 4.11: Upper panel: Spurious E1 isovector strength distribution in
208Ph obtained by calculations with two different values of the radial
mesh size dr. Lower panel: the position of the spurious El-state as a function
of the radial mesh size

to take into account many configuration with particles in the Dirac and holes in the
Fermi sea, which complicates the numerical applications considerably and inevitably
decreases the efficiency of the method.

Fortunately, using the continuum RPA approach, one is free from such constraints and
limitations, since the entire configuration space is automatically included. In Fig. EETT]
we show that the spurious state depends only on the mesh size used for the solution of
the continuum response equation (the response mesh). In the upper panel of Fig. LTl
we present two calculations with different mesh-sizes, where in the lower panel we show
how the spurious state moves to zero energy as we use a finer radial interval. For the
ideal case of an infinitesimal mesh, the strength connected with the spurious state
would be completely separated from the rest of the spectrum.

If we properly subtract the spurious state in the upper part of Fig. EETT] and focus on
the high-energy region, some small but finite fragments of the remaining strength are
revealed. They are shown in Fig. in a scale increased by three orders of magnitude.
The main part of the remaining spectrum is located at E ~ 25 MeV. This "exotic”
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Figure 4.12: The isoscalar dipole strength distribution in 2%*Pb. Details are
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mode is best described as a ”hydrodynamical density oscillation”, in which the volume
of the nucleus remains constant and the state can be visualized as a compression wave
oscillating back and forth through the nucleus [T43].

Low[MeV] High[MeV]
CRPA 10.97 25.05
Hamamoto et al [I50)] ~ 14 23.4
Colé et al [T51] 10.9 23.9
Vretenar et al. [T26] 10.4 26.
Piekarewicz [122] ~ 8 244
Shlomo, Sanzhur [T52] ~15 ~25
Uchida et al. [T40] 127£02| 224+05

Table 4.4: Self-consistent (relativistic and non-relativistic) RPA calculations
performed for the [SGDRAI in 2*Pb, compared with the most recent experi-
mental data. The two columns refer to the centroid energies of both the low-
and high-energy sides of the mode.

Moreover, Fig. shows an additional mode in the region of 10 — 15 MeV that

exhausts roughly 20% of the total sum rule.

This peak does not correspond to a

compression mode, but rather to a kind of toroidal motion discussed in [T43] [[53]. The
toroidal dipole mode is understood as a transverse zero-sound wave and its experimental
observation would invalidate the hydrodynamical picture of the nuclear medium, since
there is no restoring force for such modes in an ideal fluid.
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Figure 4.13: Left: The isoscalar giant quadrupole strength distribution in
208Ph. Details are the same as in the left panel of Fig. The experimental
peak energy is indicated by the arrow. Right: Proton and neutron transition
densities at the peak energy of the for the same nucleus.

In conclusion, continuum RPA calculations manages not only to predict the existence
of the toroidal and the compression mode, but also to achieve a reasonable agreement
of the corresponding centroid energies to other models which focus on the same prob-
lem, as well as to recent experimental data [T40} 138]. In Table EE4 these results are
presented for the case of the well studied 2°°Pb.

4.2.4 Isoscalar Giant Quadrupole Resonances

Since its discovery [I54], the has been extensively studied in several nuclei
and within various reactions [I55, [T56], so that nowadays systematic experimental
data exist on its energy centroid, resonance width, and the exhausted strength in
terms of the energy-weighted sum rule (EWSR) [Ih6]. Macroscopically the
can be described as a quadrupole (L = 2) shape vibration of a nucleus, the protons
and neutrons oscillating in phase, thereby defining the isoscalar (AT = 0) nature
of this resonance. The microscopic structure is given in Fig. BTl describing the p-h
configurations coupled by the residual interaction.

In the left panel of Fig. we show the continuum RPA calculations for the
of the nucleus 2®® Pb. The excitation energy is slightly overestimated, as compared to
the experimental resonance energy E, = 10.89 + 0.30 MeV [125]. However, this is a
systematic deviation that torments all the relativistic RPA approaches, as one can see

also from the results of the discrete RPA, given in the same figure by blue sharp lines
T3]
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Figure 4.14: The isoscalar giant quadrupole strength distribution for four
double magic nuclei, using the point coupling parametrizations PC-F1 (solid
curves) and DD-PC1 (dashed curves).

Another characteristic of this excitation mode, is the appearance of a sharp low-lying
state, which is very collective. As we can see, this state lies in an energy area much
below the particle emission threshold. Hence, in order to produce it within the con-
tinuum RPA, one needs to introduce a small smearing parameter (in Fig. it is
A = 0.5 MeV). In the right panel of the same figure, the proton and neutron transition
probabilities at the peak energy show explicitly the isoscalar nature of the mode.

Further calculations in the quadrupole excitations have been performed, concern-
ing comparison between different parameter sets on several double-magic nuclei. In
Fig. ET4, we deploy the for the nuclei 160, 4°Ca, °Zr and *?Pb. We see
that the low-lying state appears only in heavy nuclei. That is an indication that it
is constructed exclusivly by the transition of a high-/ single-particle state, which does
not exist in light nuclei. In addition, one clearly observes that the two parameter sets
PC-F1 and DD-PC1 are overall in very nice agreement to each other but with the
PC-F1 to be overall closer to the experimental values.
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Chapter 5

Quasiparticle continuum RPA

Until now we have been considering only spherical nuclei with doubly closed shells for
the application of the approach. In the framework of the shell model, nucleons
were assumed to move in the ground states independently in a self-consistent field,
without the account of any correlations. In a time-dependent description of excited
states this has lead to the well known particle-hole structure of the random phase
approximation.

However, closed shell nuclei represent only a very small portion of the entire nuclear
chart and thus, the which was defined in the previous chapter meets obvious
limitations in the direction towards describing properties of the majority of nuclei. As
a next step, we consider semi-magic nuclei and go farther away from a closed major
shell. In this case one type of nucleons (protons or neutrons) move in degenerate orbits
and the residual interaction cannot be neglected. Particle-particle (pp) correlation
lead to a phase-transition to superfluid systems. In the case of open shells for protons
and neutrons we have in addition strong particle-hole correlations leading to deformed
shapes.

Deformed nuclei will not be considered in this study. Nevertheless, the description of
semi-magic open-shell nuclei requires an extension of the concept of particles and holes,
regardless the fact that the spherical symmetry is still preserved. It is thus helpful to in-
troduce Bogoliubov quasi-particles, which in the framework of second quantization can
be understood as a superposition of creation and annihilation operators. The essence
of the quasiparticle method is contained in the simple picture of a quasiparticle shell
model, which consists of a quasiparticle vacuum and non-interacting quasiparticles.

In this section, the nuclear model enhanced by the pairing interaction will be used in
order to give the appropriate wave functions and energy spectrum for the calculation
of both ground and excited states of open-shell nuclei.

73



74

Quasiparticle continuum RPA

This approximation is properly studied in the framework of the BCS-model. In the
next section we discuss the basic principles of this model and the way it is adjusted
in our continuum [RPAl method to describe collective phenomena of single-magic open
shell nuclei. Since nuclei with open shells for protons and for neutrons are usually
deformed we concentrate here on single magic nuclei, where only one type of particles
are in open shells and therefore one type of nucleons are participating in pairing.

5.1 The RMF plus BCS Model

At the basis of the BCS method lies the formalism of second quantization. The nuclear
system is described by a spherical shell model with the appropriate single particle
energies €5 and a residual two-body interaction

N 1
H= Z 5ka,tak + 3 Z Vklmnaza;aman. (5.1)
k

klmn

where aL creates a particle in state |k) and aj annihilates a particle in the same state.

As a consequence the bar vacuum |—) is defined as:

Within the shell model the ground state |0) is understood as a state where all levels |i)
below Fermi energy are occupied and all levels |m) above the Fermi energy are empty.
As a consequence the shell model ground state |0) has the property

all0)y = 0, am|0) = 0. (5.3)

The pairing interaction leads to the fact that the levels are only partially occupied.
Within the BCS-model for pairing only matrix elements Vi, of the type Vg are
considered, where |k) is the time-reversed state of |k). A very simple and powerful
model of this type is the seniority model with a simple attractive monopole force.
The pairing matrix elements in this case are constant within a certain pairing window
around the Fermi surface and zero elsewhere. The Hamiltonian is then given by:

H = Z skazak + f/pm. (5.4)
k

where the first term represents the sum of the spherical single-particle energies €; while
the second term represents the pairing interactions between nucleons in the unfilled
shell. Introducing the creation and annihilation operators for Cooper pairs

_ Pt
St = Z @ @

im>0

S=" ajmajm (5.5)

im>0
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75

with @, = (=)’ "™a;j_y,, the pairing interaction V. is written as:

G

‘A/air = 5
b 2

(STS 4 SST). (5.6)
where the parameter G determines the strength.

The ground state in the BCS-model is given by:

IBCS) = H(uk +vpalal)| =), ui +vp = 1. (5.7)

k>0

In this model the orbits are only partially occupied and v} corresponds to the proba-
bility that the orbit k is occupied. The nuclear ground state can be represented as the
quasiparticle vacuum:

ax|BCS) =0, (5.8)

where the operators oz,z, oy, refer to a new set of quasiparticle creation and annihilation

operators obeying the Bogoliubov-Valatin transformation:

a,z = uka}C + vy, (5.9)
al = upal — vpay. (5.10)

As this transformation mixes states with different particle number, the particle number
symmetry is broken spontaneously. In other words, the new mean field Hamiltonian
does not commute with the particle number operator N = Dok azak. For that reason
it is necessary to introduce a constraint in the Hamiltonian (&.4):

H =H- AN, (5.11)

The parameter A is the chemical potential that serves as a Lagrange multiplier and
takes care of the fact that the particle number is preserved on the average.

Using the above Hamiltonian one can write

(BCS|H — AN[BCS) = ) “(ex — Nvp — G (Z ukvk> (5.12)

k k>0

The amplitudes u;, and vy are derived from the variational equation

§(BCS|H — AN|BCS) =0 (5.13)

1 5k_)\ 1 &'k—)\
2 _~ (1 2 _ " (1— 14
Uk 2<+ E, ) Uk T 5 E. ) (5.14)

where E), are the quasiparticle energies

and one finds

Ep= /(e — N2+ A2> 0. (5.15)
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The chemical potential X is defined in such a way as to satisfy the particle number:
N=> (5.16)

Finally, the quantity

is called the pairing gap, since it causes a gap in the spectrum. It is determined by the
so called gap equation:

1 1
= _ZE' (5.18)

k>0

In practical calculations, the equation (EI7) goes to zero for high energy states but not
with a safficient speed, so that the pairing energy of the system eventually diverges. It
is therefore necessary to prevent the anyhow unrealistic pairing of these states and to
confine the region of influence of the pairing force to the vicinity of the Fermi surface.
This is done by introducing a pairing window at some energy E,, meaning that any
state with energy higher than F, has exactly zero occupation probability.

Further study have shown that a sharp pairing window, similar to a step function,
can lead to the failure of the convergence for some nuclei. In contrast, this problem is
overpassed if we allow for a soft pairing window. This is accomplished by defining the

pairing cut-off factor:
1
fo=—""==% (5.19)
1+e =

which contributes to the total energy and thus to the gap equation as an artificial
pairing range. In Eq. (BE19), E, is the pairing window, A is the chemical potential and
1 defines how smoothly this range is reached.

With this definition of the pairing cut-off, the gap equation (B-I8) becomes:

1 1
k>0 K

In Fig. the pairing cut-off is given as a function of the single particle energies. The
two plots correspond to two different pairing windows, while the drop lines indicate
the occupation numbers of the single particle states which participate in the pairing
interaction. We have to keep in mind that the entire idea of a pairing cut-off is a purely
technical method and it is used only to ensure a successful convergence of the RMF
equations. More about this figure will be discussed in the following section , where we
investigate the influence of superfluidity on the response theory, i.e. the quasiparticle

RPAl
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There are essentially two points, which have to be considered: (i) BCS theory causes
partial occupation. As compared to normal response theory we can no longer distin-
guish particles and holes. Instead of ph - pairs we have two-quasiparticle pairs and
this leads to certain occupation numbers in the linear response equations. (ii) the pair-
ing interaction in the Hamiltonian or the corresponding pairing energy in the density
functional causes an effective pairing interaction between the two-quasiparticle compo-
nents. This effect is usually called dynamical pairing and is often neglected in practical
applications. In fact, in the conventional applications of continuum [RPAl based on BCS
(Refs. [I57, 107]), dynamical pairing has not been taken into account. We will discuss
it in the Section B3

5.2 Linear Response Theory with Pairing

Following the conventional formulation of the linear response equations and neglecting
in this section the pp-interaction in the response equation, we start with the residual
ph-interaction given as a sum of separable terms (Chapt. B) :

a,@a’,@/ ZQ VthJr/l@/a (521)

where the one-body operator Q, is of the type afa, similar to the external field F.
The response functions are now written in terms of quasi-particles. For instance, we
obtain for the free reduced response function R, (w) = Q.R%(w)Q}, by summing over
two-quasiparticle configurations |kk’) = alal,|BCS):

RL() = 3 { (BCS|QI[kk') (kK| Qc[BCS) (kK| QIBCS)( BCS|Q.|kk') } 522

by W—Ek—Ek/+Z?7 w+Ek+Ek/+m
Since |BCS) represents the quasiparticle vacuum, it is useful to evaluate the matrix
elements (kk'|Q.|BCS) in the quasiparticle representation. In this representation we
have

Q QO —+ Z Qkk/ak&k/ + - Z Qkk/ak&k/ + Qkk/ofko{k/> (523)
Kk’ Kk’
with:
o = —)* kIQIK') = &y (kIQIK 5.24
Qur = (upup + (=) vpow )(K[QIK") = o (K|QIK) (5.24)
Qry = (wvw + (=) veug ) (k|QIK) = ng. (K|QIK) = Qi ; (5.25)

where (k|Q|k’) are the matrix elements of the operator @ for the particle states & and
k'. The phase (—)° = £1 depends on the time-reversal properties of the operator,
i.e. it is plus for scalar and time-like parts of vectors (S = 0), while minus stands for
space-like components of the vector fields (S = 1).
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After some algebraic calculations we find
(kK'|QIBCS) = Qi = mi (kIQIK) (5.26)

Now, within the BCS-model, the sum in the free response runs not over the ph-pairs
but over all quasi-particle pairs kk’ with the corresponding occupation factors 1y,
After coupling to good angular momentum we obtain

1 ,
RO, (r,rw) = — 2 AE|QEN 2 (k| Qu ||,
eer( ) ];Hakk,nm Q| K" ) rmighs (K| Qe || K)
1 (_)S+S’

>< J—

(5.27)

where k and k' run over all the quasiparticle levels with energy e, < . The factor
1/4/1 4 O which is counted twice in the above equation, is used in order to eliminate
a double counting in the case where k = k'

It is well known that BCS-theory leads to stable bound systems only in the case where
the levels in the continuum stay empty. For all other cases one needs non-relativistic
HFB or relativistic Hartree-Bogoliubov (RHB) theory (see Refs. [I58, 49]. We there-
fore restrict ourselves in the following to nuclei with a Fermi level far enough from
the continuum limit, such that the pairing window does not allow occupation in the
continuum, i.e. all levels with quasiparticle energies €, > 0 have vanishing occupation
probabilities vi = 0.

We have seen in previous chapters that the non-spectral representation includes au-
tomatically the transition to bound and unbound states. On one hand, levels in the
continuum (¢ > 0) should be described by scattering wave functions and hence have
occupation numbers vZ = 0. In contrast, the bound states (¢, < 0) can have arbi-
trary occupation probability, and therefore they have to be treated as quasiparticles.
This immediately implies that the transitions to bound and unbound states have to be
distinguished when we treat quasiparticle [RPAl in the continuum.

Therefore, in order to treat the continuum properly, the model has inevitably to mix
spectral and non-spectral representations. As discussed in the non-relativistic and non-
self-consistent case by Kamerdziev et al [Ih7] and by Hagino and Sagawa [159], and
shown schematically in Fig. Bl one separates R°(w) in a non-spectral part R, ., where
a quasiparticle with occupation probability vZ and &;, < 0 is promoted to a pure particle
(not necessarily in the continuum) and in a spectral part qup where a quasiparticle
k with e, < 0 is promoted to another quasiparticle k" with ¢}, < 0 inside the nuclear
potential. However, as clearly seen from Fig. Bl we find in this case a double counting
of transitions between bound states. This has to be corrected by subtracting the term
RSOI’I"

This picture of continuum QuasiparticledRPAl (CQRPA) can be formally given by a
sum of the three terms shown in Fig. Bl (for simplicity we neglect the arguments
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T
YT YT

R
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Figure 5.1: Various configurations used for the calculation of the free quasi-
particle response. Filled circles (o) refer to a pure particle (v = 0), while
empty circles (o) indicates (v > 0) or quasiparticles. Details are given in the
text.

(re,r'd;w) and use Eyp = Ey + Ej here:

R . = Zvi(k(rﬂQcG(r, riw—E+ ) (5.28)
k
+ ()G —w — B+ NQLIK()),
1
Row = D o (Kl Qel [K)ri (K| Qurl[K) (5.29)
= 1+ o

1 ( )S+S’
X T . )
(W—Ekk/+l7’/ w ~+ i +Z’I7)

Reow = D77 5 - (RIQeIK e (K| Qe 1K) (5.30)
k<k'
y { I G st
w—(Ek+5k/—>\)+i?7 w+(Ek+sk/—)\)+i77
+ U]%/ . 'U]%/ (_)S+Sl
w—(Epy+er—AN+in w+ (Ey+epr— N +in

The indices k and &’ run only over the partially occupied states below the continuum
limit (g, < 0). All the particle states in the positive energy continuum and all the
states in the Dirac sea do not participate here, since they are completely taken into
account in the continuum part RY . (r, 7' w).

Concluding, the free response function will be simply the sum of the above separated
terms, namely:

R Rgont + R2qp + R(c)orr (531>

The calculation of the above free response function is all one needs in order to give an
appropriate description of the collective excitations for open-shell nuclei. However, in
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order to be fully self-consistency with the ground state calculated in the RMEHBCS
approach, also the residual pairing interaction (dynamical pairing) should be taken
into account.

5.3 Dynamical Pairing

It is well known that the exact Hamiltonian commutes with the particle number opera-
tor, i.e. the particle number N is a conserved quantity. Hence, the state associated with
nucleon number conservation should have zero excitation energy [I01], i.e. a Goldstone
mode should appear, similar to the one, associated with the translational symmetry in
the isoscalar dipole mode. The quantum number of this new spurious state should be
J™ =07, since the number operators has these quantum numbers.

Earlier versions of had been suffering the common problem of violating the
sum rules of the resonance excitations. It was soon realized that this violation was
directly connected to the Goldstone modes, which, in non self-consistent calculations
are not orthogonal to the physical states. It is also known that this orthogonality
and a precise decoupling from the normal modes is achieved, if the [RPAl theory treats
the inherent symmetries of the problem consistently. In other words, the sum rule is
satisfied when pairing is consistently treated not only in the mean field Hamiltonian
(BEMH level) with the proper inclusion of the occupation numbers, but also in the
residual interaction ([RPAllevel). This interaction should then include, apart from the
particle-hole (ph) channel (B21]), an additional particle-particle (pp) channel, i.e. the
effective interaction considered in the response equation should also contain an effective
pairing force obtained from the second derivative to the pairing energy with respect to
the pairing density s

i 52Epair

PP kK

Since the pairing interaction in the seniority model does not depend on density, there
are no rearrangement terms in the pairing channel and we find

(5.32)

i G

pp - 9

(S1Sy +5;8%). (5.33)

where 7,7 run over all the neutron (or proton) shells participating in pairing. The
two-particle transfer operators ST and S defined in Eq. (EH) are not Hermitian, and
therefore it is convenient to introduce the Hermitian (and anti-Hermitian) operators:

. 1 - 1
S = 5(S1+5)), L =5(8)=8)), (5.34)

J

so that the pairing interaction is finally described by:

Vi = —G(S 51T 4 57 5T, (5.35)

pp
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In the following, we will use the index d to describe the two pairing interaction channels
corresponding to the operators S, and S_. Overall, the index d = (%) will have two
possible values (in case that we have both protons and neutrons in open shells there
are four possible values). That means that in general the dimension of the full residual
interaction will be extended by only four additional discrete channels, as shown in
Table Bl which presents now super-matrix of dimension (N 4 4) x (N + 4).

Qu(r)  Sn sn sn Sn

Qc(r) Ucc’<T,> 0 0 0 0

n 0  —G,/2 0 0 0

gn 0 0 —G./2 0 0

sP 0 0 0 —G,2 0
P 0 0 0 0 —G,/2

Table 5.1: Vertices and quantum numbers of the different channels in
Eq. BRD). The indices n and p refer to protons and neutrons. For semi-
magic nuclei we have only two discrete channels.

Of course we also have to extend the reduced free response in Eq. Eq.(2Z3) by two (or
four) discrete pairing channels. By expanding Sy in terms of the Bogoliubov operators
and performing the calculations of Eq.(R2Z3) to (B26) one finds for the pp-matrix
elements:

(BOS|Sulkk') = (ugups — (=)Svgun) (HISe ) = €5, (k] Sal¥)
where we have now the factor &2, instead of the factor n,, for the two quasiparticle
matrix element (B20) in the ph-interaction. Finally we find for the free response
function:

1 , 1 (_)SJrS’
0 _ S ¢S k L 2 _ )
Faa %: T g kil (KISl k)] w—2F,+in w4+ 2E +in (5.36)

and for the mixed terms

1 /
R =3 sl QIRE KISt

kK’

1 (_)S+S/

) (5.37)

w—2Ek+in_w+2Ek+in

where the pp-matrix element is simply:

[T
(K[Salk') = Oxr [k + 5(—)]”1/27 and &y = weuw — (=) vpvp. (5.38)

From this relations one can see that the p-p terms of the response function are non-zero
only when k = K, i.e. when the transition undergoes within the same single particle
orbital. In addition, we have to mention here that the spin indices S and S’ of the pp
components are different from the ones of the ph components, (Eq. E2¥). Here they
get the values 1 and —1 according to whether the corresponding operator is S+ or S_

(Eq. B34 respectively.
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5.4 CQRPA Calculations and the Spurious State

One of the most interesting characteristics of the BCS model appears in the monopole
J = 0 excitation, where the spurious state can be successfully separated from the
normal vibrations of the system once we work in a fully-self consistent framework, i.e.
when dynamical pairing is properly taken into account. This can be proven using the
following arguments.

Suppose that there is no particle-hole term of the interaction, i.e. all the excitation
modes are subject to the particle-particle pairing force. We want to see if w = 0 is a
possible solution of the full response function:

_ Rz (@)

1= Ry (@) Vp
for isoscalar monopole mode. R(w) must diverge at this energy, which is of course
satisfied, only if

R(w) (5.39)

[1— Rag(@)Vpp) _y =0 (5.40)

By substituting Eq.([&36) and V,, in Eq.(520), the requirement w = 0 simply leads to
2 1

— = —. 5.41

G o

which is exactly the gap equation (I8 we derived in the BMEHBCS model. In other
words, the initial assumption that the spurious state is at exactly zero energy should
be valid, as long as the gap equation is satisfied.

However this does not happen always. The reason is that the smooth pairing window
which is usually introduced in the RMF level is far beyond the continuum limit, e.g.
at I, close to 20 MeV, as we show in the upper case of Fig. b2 The fulfillment of the
gap equation requires of course the inclusion of all the pairing active states, even those
which have g, > 0. Any truncation of these states would lead to 2/G > > k1/Ej.
This is exactly the situation in the Eqs. (B28); the free response function takes into
account only bound states (¢ < 0). As a consequence, the gap equation is satisfied
only up to 60-70 %, leading to a solution of w # 0.

This drawback can be overtaken in a relatively simple way. In principle, continuum
QRPA states that all states which lie in the continuum shall not contribute to the gap
equation. In the language of BCS that means that all states above £ = 0 must have
zero occupation probability. This can numerically be achieved, if we set the pairing
window at E, = +|u|, where y is the chemical potential. In addition, one has to make
the pairing window stiff so that no state contributes partially.

In Fig. the pairing factor fj of Eq. (BI9) is given with respect to the single particle
energy, while the drop lines correspond to the occupation probability of each state.
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Figure 5.2: The cut-off factor f; is given for the two different pairing windows
(E, =20 MeV and E, = 6.7 MeV). At the same time, the occupation numbers
of each single particle state are given with respect to the corresponding s.p.
energy. In both cases, the occupation probabilities of the continuum states
(E > 0) are multiplied by a factor of 5 for guiding the eye. The present
example is deduced from calculations on 1°Sn and with constant gap G = 23
MeV.

In the lower case we see that we have produced a spectrum, where all the states in
the continuum have zero occupation number and thus the pairing active area can be
restricted to only bound states.

Since in the lower case of Fig. the the gap equation is fulfilled up to 100% for
the bound states, we expect that the spurious state is at w = 0. In Fig. we
show the isoscalar monopole distribution for the spherical open shell nucleus **Sn,
using Continuum [RQRPA|] For this problem, we make use of two external operators
F having J = 0, that is the monopole 0" operator and the particle number operator
N. The reason is that N is an operator with a pure A N = 0, while 0" contains also
A N = 0 excitations. We clearly see that the calculations which take the full pairing
into account (solid lines) and therefore are fully self-consistent, bring the position of
the spurious state at exactly zero energy. On the other hand, if the dynamical pairing
is excluded, the spurious state is mixed with the physical states, resulting in finite
strength distribution at energies below 2 MeV. The peak which appears at w = 3.2
MeV is of a pure ph character.
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Figure 5.3: The strength function the partricle number operator (left) and
the isoscalar strength function for the monopole operator (right) in *'°Sn. The

curves corespond to Continuum RQRPA calculations with full pairing (red solid
line) and without dynamical pairing (black dashed line).

5.4.1 Tin Isotopes

The continuum RQRPA gives us the oportunity to study isotopic chains of nuclei where
most of the isotopes are open shell nuclei and require treatment of pairing correlations.
In the following we show the and [IVGDRI results for a chain of neighbor nuclei,
such as the Sn isotopes. Despite the fact that in our continuum RQRPA calculations the
spurious state associated with the particle number conservation is properly separated
from the physical spectrum, we often concentrate in excitation energies we[10.5,20.5]
MeV with the corresponding sum rules to be defined in the same energy region.. The
reason is that we want to compare our results with other models which do not success-

fully decompose the spurious state and they restrict their calculations only within this
range.

In the Fig. B4 the [SGMRI excitation energies are compared with the experimental data,

taken from [I60]. One finds a very nice agreement not only in the slightly descending
trend but also in the absolute values.

In Fig. the isovector dipole strength distributions for the Sn isotopes are revealed.
In this analysis, we have extended the calculations also in the region of extreme neutron
rich nuclei, i.e. to isotopes close to the neutron drip line. For the cases that we can
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Figure 5.4: ThellSGMA) energies for the Sn isotopes using [PC-F, as com-
pared to the experimental results [167)]

compare with the experimental data (1*6Sn,'?°Sn and ?Sn), we see that the agreement
is wonderful. The general picture however is that the low-lying strength becomes larger
as we move to heavier nuclei, without losing the strong collective character of the giant
dipole resonance.
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Figure 5.5: The [[VGDA strength disributions for the Sn isotopes using
[PC-F1l. The arrows indicate the experimental excitation energy.

85



86



Chapter 6

Conclusion and outlook

In this work we have outlined a fully relativistic method to study the nuclear collective
phenomena, such as giant resonances in a variety of nuclei along the periodic table.
Starting from a point coupling Lagrangian, we have used the non-spectral relativistic
RPA approach to examine the corresponding excitation spectra and we have compared
the results with spectral calculations based on the same Lagrangian. Our main con-
tribution is that we have formulated a continuum RPA method, where the coupling to
the continuum is taken into account in an explicit way. This RPA approach is built on
the basis of a relativistic Point-Coupling RMF using the phenomenological parameter
sets PCF1 and DDPC1. By further including BCS approximation, the RMF model
provides a unified description of mean field and pairing correlations, making it a ideal
tool for the study of spherical nuclei over the entire nuclear chart.

The Quasiparticle CRPA model employed in this work is fully self-consistent. The same
interaction is used in both the RMF equations and in the linear response equations of
the RPA. As it has been shown, this self-consistency feature is of vital importance for
the fulfillment of current conservation and the decoupling of spurious modes.

In Conventional RPA approaches, where the continuum is discretized, the Dirac sea of
negative energy states were included in the configuration space, increasing considerably
the numerical effort. However, in the continuum RPA formalism and due to the non-
spectral representation of the Green’s function, the antiparticle states do not appear
in the model. In this way, a considerable decrease in numerical effort is achieved,
although the entire configuration space in the 1p-1h picture is included explicitly. This
is of paramount importance for the decoupling of spurious states, as well as for the
proper description of the collective giant resonances.

A great deal of effort and time was spent in the construction and validation of a com-
puter code written in FORTRAN 77 for solving the continuum RPA equations in the
linear response theory. Through extensive testing, the correctness of the implemented
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numerical solution has been proved. In particular, the decoupling of the spurious modes
associated with the broken translational symmetry is accomplished without further ad-
justments in the interaction.

We have applied the CRPA framework to the study of the multipole giant resonances in
spherical nuclei, in particular the Isoscalar Giant monopole and Isovector Giant dipole
modes where we have shown an excellent agreement with the discrete RPA methods. In
the case of heavy nuclei, the total energy weighted sum rule agrees with the TRK sum
rule almost 100% in the case of ISGMR and up to an enhancement factor of roughly
30% for the IVGDR.

Furthermore, a prominent peak at excitation energies between 7—10 MeV was expected
in the isovector dipole resonance. This is identified as the pygmy mode, which faces
a considerable interest over the last years. Using CRRPA, we have indeed shown the
appearance of a soft collective mode in this energy region, specially for ¥2Sn and 2°8Pb
exhausting around 5% of the total energy weighted sum rule. Its structure resembles
that of a pygmy excitation mode, and hints that its interpretation as an oscillation of
a proton-neutron core against a neutron skin is valid in heavy spherical nuclei. It has
been also found that the position of these soft collective modes are quite sensitive to
the model in use, since CRPA calculations do not fully agree with the discrete RRPA
ones, anlike for example to the giant dipole state. It possibly has to do with the fact
that in the discrete methods, the configuration space is truncated and this cause a
shift of the position of the states, specially for the low-lying ones. However, further
study in the direction including better experimental data are necessary to draw final
conclusions.

We would also like to give a brief outlook of future extensions and improvements of the
Continuum RRPA, planned or already under development, which show the direction,
scope and possibilities that such a framework offers. These include:

i) Improving parameter sets. Systematic differences in the performance of the three
static models (non linear terms, density dependencies, point coupling) discussed in
chapter Plhave been identified and studied under the relatively small scope of the sample
applications presented in this document. It has been discussed that the parameter set
PC-F1 of Buervenich et al. [46] although successful in reproducing bulk properties and
excitation phenomena of closed shell nuclei, it is not as much powerful when one goes
to spherical open shell or even deformed nuclei. The set DD-PC1 on the other hand
behaves exactly the other way around, since it has been adjusted to open shell and
deformed nuclei. Thus, the development of future energy functionals that give a better
quantitative agreement with the experimental data must be a task of the future.

In addition, the implementation of meson exchange interaction into out CRPA code
would certainly lead to an overall better description and understanding of nuclear
phenomena, since it has been seen that the density dependent set DD-ME2 has proven
itself one of the best phenomenological forces available.
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ii) Better treatment of pairing. A better treatment of pairing correlations opens the
door to the study of exotic nuclei close to the drip lines, where new nuclear structure
is being reported in recent experimental and theoretical results. Within this work,
we have used the BCS model with constant pairing gap deduced from experimental
information. In addition to the RMF level, we have applied the BCS model also in
RPA by the dynamical pairing in the (pp) channel. This simple approach, although
capable of reproducing the properties of the giant resonances in nuclei close to the
beta-stability line, it fails to apply on nuclei close to the drip lines, where occupied
states may lie in the continuum. Therefore, a proper implementation of the relativistic
Hartree Bogoliubov or Hartree Fock Bogoliubov within our Continuum RPA method is
a very important and challenging task in order to predict nuclear structure phenomena
in exotic nuclei, where experiments are missing. In addition, it would be useful to
count with a pairing interaction that does not depend on the experimental knowledge
of the gaps.

iii) Applications to astrophysics. A direct and natural extension to this work is the
inclusion of proton-neutron RPA. Gamow-Teller and isobaric analog resonances play
a very important role in astrophysics. Electroweak interactions such as scattering
and absorption of electrons and neutrinos are strongly influenced by these resonances.
They play an essential role during many stages in the evolution of stellar objects.
The knowledge of such reaction rates provides a crucial input for the modeling of
supernova explosions as well as accretion processes in binary systems. Nuclear network
calculations for the description of nucleosynthesis are of particular importance in the
understanding of heavy element abundances in the universe, and require a precise
knowledge of such reaction rates.

iv) Inclusion of more complex configuration of the RPA excitations. The present ap-
proach is based on the main RPA including only 1plh-configurations which are the
main contributors to the collective phenomena. As a result, only the escape width of
the resonances can be reproduced properly within CRPA. Unfortunately, this partial
width alone is not enough. The width resulting from a coupling to more complex
configurations, such as 2p-2h is very important, specially for heavy nuclei. In fact,
such couplings have been introduced successfully in the relativistic scheme using the
spectral representation in Refs. [I11, [T2]. On the non-relativistic side such techniques
have also been used in the context of the non-spectral representation without [I61], [T06]
and with [I62] pairing. So far, however, fully self-consistent relativistic applications
including complex configurations with a proper treatment of the continuum are still
missing.

In conclusion, the relativistic CQRPA represents a significant new theoretical tool for
a realistic description of excitation phenomena in large regions of the nuclear chart. Its
development, and the few sample applications presented in this document, show that
its future use in nuclear structure and astrophysics will provide an valuable insight into
very important, and still open, questions about the nature of the nuclear interaction,
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collective response, deformation effects, heavy element abundances and cross sections
relevant in astrophysical processes.
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Appendix A

Rearrangement terms of the
residual Interaction

In this Appendix we write explicitly the full expression of the two-body residual inter-
action, as it is defined after the inclusion of the rearrangement terms, due to the higher
order terms of the density dependance. These rearrangement terms are essential for
a fully self consistent relativistic [RPAl implementation. Only when their contribution
is treated properly in the matrix elements of the residual interaction it is possible to
reproduce reasonably well the excitation spectrum of giant multipole resonances.

The basic idea is to include all the non-linear terms of the lagrangian density (Z36])
into a density dependent coupling constant which then applies on the linear term. A
different coupling constant is of course expected for the various covariant terms of the
field.

In general, the density functional F(p) is the starting point to derive the mean field
hamiltonian:

Wy

h= Al
= (A1)
as well as the [RPAlinteraction, in the small amplitude limit H:
. 16°FE
V== (A.4)
20pp
*The factor % comes from the fact that
p=po+3p (A-2)
and thus 1
E(p) = E(po +0p) = E(po) + 5 > Vi ki6pig Spu- (A.3)

kKLl
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The above energy functional (without exchange terms) can be written as:

1

B =322 / dPridra, (1)L, oy Yog (00)V (01, 1)1, (1) Dagey Yy (12) - (AL5)
1

-2 / PrydrsTe(T p(r)V (01, 1) Te(Tj(ra)). (A.6)

A.l1 PC-F1

We concentrate here in the cases where the interaction part of the Lagrangian has an
explicit density dependance G, f(I';p) on all the civariant densities, i.e. not exclusively
on the baryon density. For instance, in the Lagrangian of Buervenich et al. [46] the
isoscalar scalar functional depends on the scalar density ps = Yop. In any case, the
potential energy functional becomes:

B = @Vi®) = 5G: [ & [ @) Alnle - )T Cpw). (A7

where the trace runs over:
A

Te(Dp(r) = Y (Wi(x)|T[e(r)) = pi(r) (A.8)

=1

and 7 runs over the interaction terms, namely ¢ = {S, V, TV'}. One has to mention here
that the density p(r) is the local (diagonal) part of the full relativistic single particle
density matrix p(r,r’). Using the fact that p is Hermitian, i.e.

TH(Ij(x) = Te(I" (1)
and that the derivative of this trace with respect to the density is:
0T (I p* (r1, 7))
507 (v, 1)

=T7(r —ry)d(r'—r))

one can calculate the self energies:

, OE ot
ST S
= b =G [t nlnta) + o) L) (09
The derivative of the functional f[p;] is:
of(pi(ri,ra)) 0 6pi(r1,T2)
Ty Pl G
= fl[pi(ry,r2)|T:0(r — ry)d(r — 1) (A.10)
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and thus we obtain for Eq. (A0

5 r,) = 806 = )G Ll wITEpo) + 310 (I () ).

For the second derivative we find
521 (I’l, I'/l)

=L+L+I;+1
5p(ra, 1) 1+ 1o+ I3+ 1y

V(ry,rh,ry,ry) =

with the normal term

I = 6(ry — 14)3(rs — v5)Gi fil i (01T 8 (ry — 1y) T

and
I, = 8(r1 — ¥ G fl st )| 2T T pe) 0
dp(ra,ry) *
= 6(ry — r))Gif!pi(r1)) TP 8(x1 — ) (x) — rj) T pi(x))
= 6(ry — r))8(r2 — 1)3(r1 — 12)Gi fi[pi(x1)]ps(r))T; VT
and
I3 = 6(ry — 1})8(ry — 15)8(r1 — 12)Gof[pi(x1)] pi (r1) T VTP
and finally

1, ., _ / .
L= 5 Guf! I (r)IT T8y x)d(r — x)3(r1 — v2)p; (02)3(x1 — 1) pi(r1)

1
= 50(rs = x)a(rs = 15)d(rs — x2) Gif ! [pi(e1) pf (e1)pi (e TV T,

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

Therefore we find for the interaction with the rearrangement terms in short hand

notation

~

! 1 1/
Vi(ry —ro) = 0(r1 — r2)Gi[filpi] + 2 [pilps + §f¢ [Pi]ﬂ?]rgl)rgm

e Isoscalar-scalar term

Looking at the isoscalar-scalar part of the Lagrangian we find:

1 - 1 - 1 -
L= —§as(w1/1)2 - gﬁsij>3 - Z%(Wj)‘l

and the Dirac operator is I'y = 7. Neglecting exchange terms we find

1 2 1

1 _ 28, 1. ] -
= g [ #rto) [+ 3 204 322 )

=, [ [ @) Ll )5~ T (op(e),
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(A.18)

(A.19)

(A.20)
(A.21)
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where the trace reads:

A

Tr(70p(r)) = Y _{(¢i(x)olts(r)) = ps(x). (A.23)

i=1
The function f describes exactly the density dependence of the interaction, and

it is given by the polynomial expression:

2 [ L7vs o
psl =14+, + 2202 G, = a,. A.24

Following the method of calculating the first and second derivative of the energy
functional [A.T) in the simple case of only linear terms, we do the same here, but
we need to keep in mind that the function f;[p] has a finite derivative.

Finally, one gets the isoscalar-scalar part of the interaction with the rearrange-
ment terms included:

N

Vol = 1) = 8(r1 — ma)aul Al + 2000 )p + 5 £t (A25)

We recall that for the same interaction without the rearrangement terms, one

would have: A
Va(ry — ra) = 8(r1 — r2)ays s (A.26)

which means that the density dependent expression

1
Fylps] = fslps] + 2f:lpslps + §fsl/[ps]p§ (A.27)
is missing out.

Isoscalar-vector term

In the isoscalar-vector channel we have I'y = ypy* = (1, &) and using

g (r) = Tr(~voy"p(r)) (A.28)

we get for the density functional:

L,
folz] =1+ 52—:1:2 (A.29)
with x = /j#j,, i.e.
19 ..
fo=1+ 52—]“@, G, = . (A.30)

In the static case of even-even nuclei the spatial parts of the currents are vanishing
(only for [RPAl in rotating nuclei we have spatial currents already in the static
solution). However, in the [RPAl level, the currents terms are non zero.
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Using the second derivation, we get for the conventional term of Eq. (AI2):

L = God(ry — r2) fi[2](v07*) M (707,:) (A.31)
= Gy0(ry — 1) fo[x] (113 — W), (A.32)
where the rearrangement terms are:
0 folx(r
= Gy = 1) 2 (00 0, 1), (A33)
Neglecting spatial currents this means
6 fulz(rs)]
I, = — j ARt A A.34
2 = Gud(r1 —12)py(r1) 5p(rs) (A.34)
The derivative term can be analyzed into:
Ofole(e)] . 0T oz® 1 0(5"jv)
- == = A.
Lo = Rl = Rl = o AT ()
e 1
OJolAL)] 2 @) — 2 g ) A
5p(r) —Folalpu(r)(0m)'™ = — filals” (1) (yo7)™. (A.36)
In the static case where j* = (p,,0,0,0), it is x = p, and therefore
Sfolr(m)] 1o
S = f[2]1®@, A.37
L = Ll (A37
Finally , this yields for I:
I = G6(ry — ra) fipo]pp 10132, (A.38)
Next we consider the term I3
6 folz(ry)]
= — )5 1) A.
GU(S(I'l I'Q) 5p* (I‘l) Puv ( 39)
and using Eq. ([A37) we obtain in short hand notation
[3 = Gvé(rl - I'Q)f{}[pv]pvl(l)l@) = [2. <A40)

For the last term I, in Eq. (B64]), we can again neglect the spatial currents after
forming the derivatives and obtain

0 fulz(ra)]
— " (ry). A4l
5p*(r2)5p(r2)pv< 1) ( )
Next, we calculate the second derivative. Using Eq. ([A36) we obtain using that

(707») is Hermitian and that we can neglect the spatial currents after forming
the derivative%fb'd (2] (r) (7))

Fhle) 5 1 .
00 (1)0pases, () Op(r )[ follpn (r)(v07,)™] (A.42)

S file])
= ool

1
= éGv(5<I'1 - 1'2)

’+%ﬁMWwMW%¢W” (A.43)
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Rearrangement terms of the residual Interaction

Using Eq. ([A317) we get:
5(%]%@]) L., 1,

Ngdol7l) _ (2
) () - . (A1)
Again, using Eq. ([A36) and replacing f by 1 f" we find in short hand notation:
82 flx(r " 1, 1,
St (121 - O+ LA - aOa)  (at5)

1
— FIp 101 = Z [, ]aWa ). (A.46)
x
This yields in short hand notation
1
Iy = 5Gud(ry = 12) o £ 1] 112 = pu f o]V a®)]. (A.47)

Summarizing we find for the isoscalar-vector channel

~

Vo(r1,12) = Goo(r1 — 1) [(fulpu] + 200 f1[p0] + %pgfél[pv])l(l)l(m

— (o + 3ol lp))aa) (A48)

Isovector-vector term

In the isovector-vector channel we have I'ry = voy#T = (7, @T) and using

J"(x) = Tr(y07*7p(r)) (A.49)
1
frvln) =1+ - g2 (A.50)
2 ary
with x = \/jﬂfu, ie.
1 =
frv =1+ é’YT_V]MjM’ Gry = ary. (A.51)
ary

In the static case the spatial parts of the currents are vanishing and because of
charge conservation we have only 73 and p3. The rest runs in full analogy to the
w-channel

For the conventional term we find:

I = Grvd(ry — 1) frv [z (Yo" )V (voy,73) @ (A.52)
= Gryo(r; — I'Q)fTv<1(1)1(2) — &(1)a(2))7§1)7_?§2) (A.53)

while for the rearrangement terms one gets:

- B (1) 8 frv[z(rs)]
Iy = Gryd(ry —12)p3 73 T op(ra)
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and
IQ = Ig = GTv(S(I'l — I'Q)fz}v[pg]pg T§1)7§2). (A55)
Finally, for the term I, we get:
1
I = 5 Grvo(rs = r2) 3 fv (s 11 = s fipalaVa®r V. (A56)

Summarizing the isovector-vector channel is expressed in the form:
Vv (r1,12) = Grvd(ry — v2)[(frv[ps] + 2ps fv[os] + Psf vlps)) 191

~ (rvlpsl + gpsfilpsDa®a](rr?), (A.57)

A.2 DD-PC1

The Lagrangian parametrization [DD=PCI] is quite different from the [PC-FTl as we
discussed in Section (Z), not only because the density dependent function f;[p] has
a different non-polynomial structure, but mainly because it depends on the baryon
density p = p, only, regardless the covariant field ¢ under consideration.

Gifilp] = a; + (b; + cl-a:)e’d”, T = p/psat (A.58)

where pg,; is the saturation density of nuclear matter. Here, GG; can be chosen to be
G; =1 or G; = 1/ filpsat)- Eventually, the second derivative of the energy functional
will lead to off-diagonal terms in isospin space, as we will find out in the following.

For the interaction we obtain the usual conventional term:

I = Gid(ry — o) flp(r)|TTHT® (A.59)
and the rearrangement terms
nd
’ _ Sl oy e
Ig = Gié(rl — I'Q)WF pi(rl) (A61)
e ! )
- i[P\r2 *
Iy = §Gi5(r1 - rg)m/}i(r) pi(r). (A.62)

Since all the coupling constants depend on the same baryon density alone and the
functional forms of fy[p|, fu[p], and frv[p] are different. Since all the arguments are p
we une in the following only the abbreviations

fo= flo®] = L), fs”zj—prs[p(r)] | (A.63)
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Using .
o7~ (o)~ (o
we obtain
Iy =G flé(r; — rg)FT(l)l(z)pi(rl) (A.65)
Is = Gif!6(ry — ry)10T@ (1)) (A.66)
Ii=Gf5(r; — r2)1(1)1(2)pi(r1)*pi(r1). (A.67)

Summarizing we obtain for the interaction in the various channelsl:

e Isoscalar-scalar term
. 1
Vilri,re) = Gud(rr = r2) £y 267 + pef 06717+ 1067) + 2 p2 11010,
(A.68)

e Isoscalar-vector term

~

1
Vo(r,r2) = God(rr —r2)[(fo + 20f, + 5/)2f£')1(1)1(2) — fraWa®], (A.69)

e Isovector-vector term

VTV<I'17 I'Q) = GT\/é<I‘1 — I'Q)[fTv(l(l)l(Q) — Oé(l)()é@))’??(l)?@)
1
+ ol (V10 £ 1072 4+ S 110 (AT0)

As a consequence, the rearrangement terms in the set [DD-PCI] would occupy also off-
diagonal terms of the interaction matrix, as we summarize in the Table of Chapter

B
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Appendix B

Derivative Terms in the
Point-Coupling Interaction

At first, we show how the gradient operator applies in the conventional RPA approach.
The corresponding interaction matrix element will be written as:

Vigsy = /OOO /OOO dPrdProty (r1) s (1) Vi (ry, T2) s (1) (T2)

But Vp(ry,ry) = 4, 6(” r2) V2 with V2 = 88:2 + 2 7"87" — l(l;;”, so that:

W = b [ i) (4 ) )l

b6 [P (25 ) ) o [ i

) by

This integral can be much simplified if we solve the integrations by part and at

the same time consider the relation [ f(r)%d’r = [f(Mg(r)i=r — J3° %g(r)d’r =
— I ZJ; (r)dr. After doing that, one gets:

U=, [ P ar(Giua) ((f a +l”;”>zﬁz<rm<r> (B.1)

In other words, the gradient operator in the A-B formalism can be substituted by the
much simpler

(B.2)
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Gradient in Linear response equations

The gradient expression is somehow different if we try to apply it in the linearized
Bethe-Salpeter equation:

R(ﬁ 7’/) = RO("U 7“/) +/ dTldT2RO(T7 Tl)VD(T17T2)R(T277J>- (B-?’)
0

Here, R° is a function of the radial wave functions U(r) = r - ¢ (r). This is the reason
why the terms r} and 73 are absent from the Eq. (B:3). This is important, because the
integration by parts do not lead to the operator [B.2

The integrant part of the Bethe-Salpeter equation will then be:

MVZR(TQ, )

r1Te

R(r,7") — R(r,r) =1 = / drydryR%(r,71)
0

— /O dr R (r, )V (:lR(ﬁ,T')) (B.4)

Now, if we expand the gradient operator into its constituents, we get:

I = /Oodr R%(r,ry) 8—2 (iR(T "))
— o 1 s 11 37“% 7"2 1,

1

+ /OoodrlRO('r,rl) (2 0 )( ZR@I,T))—/OOOanO(r,n) (#) (%R(T{B@)

r10ry ) ri :

where L is the total angular momentum of the system, which equals the angular momen-

tum J of the excitation mode. Using again the property fo dg Ldr = oo 4 g(r)dr,

0 dr
we continue the simplifying:

r= [ (Z) e () o)

+ 2/ driR°(r, rl)—ga—R — 4/ driR%(r, Tl)—4R(T1,7”)
0 0 0 Ut

ryory
- {/ dri RO(r,71) (J(Jijl)) 12R(r1,r’)} (B.7)
0 1 1
or
*° 9R" 1 OR) ©  9R" 1
I = — S S
{/0v dr 87“1 7"12 87"1 /0 drl 87“1 Tl R(Tb )}

> 0 0 1 ,
+ {—2/0 drlarl [R (7”77“1)@} R(rl,r)}

[ i (2 ) w9

U
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or
< I9RY 1 OR < IRV 1
I = — d 2 d ——R
/0 "o, dry 12 Ory * /0 " ory 3 (r1,7)
— 2/00 dr OR’ 1 —R(ry,7") +6/ driR°(r,r )iR('r’ ')
o 187’1 Tfi)) 1 o 1 s 11 Til 1
o J(J +1 4
— / driR%(r, 1) (—( 4;4)+ )R('r’l,r') (B.9)
0 1
or finally
* OR’ 1 OR o J(J+1)—=2\ 1
0’—R0’:—/d —/dRO T T2 2Ry,
R (r,r") (r,r") i r—— o 8r1 i r R (r,rq) p g (r1,r")
o 8 1 8 JJ+1)—2
= — dr, R° _ N. B.1
| anmen) |G+ S R (810

The big advantage here is that the gradient and the linear part of the interaction can
be included in the same interaction channel. So, for instance, for the isoscalar-scalar
part (counterpart of the isoscalar-scalar term) we will have:

R(r,r") = R°(r,7") + /000 driR°(r,r1)Vi(r1)R(ry, ") (B.11)

where
— —
1 J10 J(J+1) -2

‘/S(T) = O‘st[ps(r)]ﬁ - 53574_25 - 53 1 (B12)

r

with a, and §, being the coupling constants of the linear and the gradient term of the
isoscalar scalar field respectively.

Numerically, R%(r,r;) with fixed r, is an array in r; of dimension N. Similar is the
situation for R(ry,7") where r’ is fixed. The interaction Vi(r) however, is a N x N
matrix with only diagonal terms in the case of asr% and —5SW but with more
complicated structure in the case of 5857"—28@ In total, the integral will be a sum
over N points for the quantity:

with

H-21hr . A
D=2 h gy,
TZ

For the numerical derivation we can use any of the methods prescribed in the literature,
but we prefer the 3-points formula:

df(r) _ =3f(r) +4f(r+h) — f(r+2h)
dr 2h

because in this way one describes the endpoints (i = 1 and i = n,,.,) with better
accuracy.
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Derivative Terms in the Point-Coupling Interaction

Definition from tensor derivation

One can get the same result in a much simpler way, if one make use of the fact that
the radial part of the gradient operator can be also written as:

A=_-VV

We must have in mind that these two derivative terms are vectors and thus they would
apply not only on the spatial but also on the angular part of the response function:

R(r,r') = R(r,t')Y 10(9). (B.13)

so that the vector harmonics Y, cannot be excluded from the problem. Instead, one
has to apply the properties:

Vi) = ~ (L) e
B R () T

= U(r) - Yiam(Q) +V(r) - Yieam () (B.14)

of the vector gradient operators [I63]. After some calculations, we receive the following
four parts:

L o= AmdﬁlEWQwoﬂwﬁﬂmeuV{Ymﬂﬂﬂﬁﬁﬂﬁﬂ

N

I, = /Ooon1 :Ro(r,'r’l) (T)V(T)R(Tl,’f’/): Vi (@)Y ()

Ql

I, = Amdﬁl}zwrg$()()RwhﬂXYpﬂQQEEAQQ

L - / "y [Br ) V() B )R] Vi ()Y ()

where of course only the first and the forth one survive, following the orthogonality
relation fooo Y Y/dQY = 0pp. Finally, the radial part that results is equal to

Vo(r) = UM Ur) + V()Y (r),

or after applying Eq. (BI4

919 Ju+n+a (92 270
Vo(r) = o or r2 or + rd <3T r3 + r3 3T>]
(919 JJ+1)-2
_ s |010 B.1
& orr2or + rd ] (B.15)

which is exactly the same result with the one we got in Eq. (BI) when we made use
of A = V2.
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