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Abstract 
 We studied the de-mixing properties of the ternary Zr-Al-N, Zr-Si-N, Al-Si-N and 

Zr-Al-O systems with the goal to find if they may be suitable candidates for new superhard 

nanocomposites. For this purpose we used a combined ab initio density functional theory 

(DFT) and thermodynamic modelling based on the sublattice solution model, which has 

been recently developed by Zhang and Veprek and applied to the study of several ternary 

nitride systems that are applied in the industry as wear protective coatings on tools, such as 

metastable solid solutions Al1-xTixN, Al1-xCrxN or superhard nanocomposites nc-TiN/a-

Si3N4, nc-Al1-xTixN/a-Si3N4 or nc-Al1-xCrxN/a-Si3N4. The important advantage of the 

combined method, as compared with the quantum molecular dynamic (e.g. Car-Parrinello) 

approach, is orders of magnitude shorter computing time needed (approximately a factor of 

105).  

For the ab initio DFT calculation we used the well tested Vienna Ab-initio 

Simulation Program (VASP). In order to verify the reliability of our calculations and of the 

potentials used, we first calculated, by means of ab initio DFT, the fundamental properties, 

such as the dependence of the total energy on volume, lattice constant, bulk modulus, its 

derivative and cohesive energy of the relevant, stable binary compounds ("terminal phases"), 

such as fcc(NaCl)-ZrN, hcp(ß)-Si3N4 and others, and compare them with published data. 

Because in all cases very good agreement has been obtained, these calculations were 

extended to the ternary solid solution phases of interest, and to their corresponding 

hypothetical terminal phases (e.g. hcp(ß)-Zr3N4, fcc(NaCl)-SiN etc.), which have to be used 

in the DFT calculations in order to preserve the given crystal symmetry, because the 

calculation are done in the reciprocal space. From the formation energy calculated by the ab 

initio DFT at 0 K as function of the composition, we determined the composition-dependent 

interaction parameter which has been then used in the sublattice solution model to calculate 

the Gibbs free energy of the mixed solid solution phases at ambient pressure and different 

temperatures.  

The results were then used to study, by means of the thermodynamic sublattice 

solution model, the phase stabilities and de-mixing properties of the solid solutions with the 

appropriate structures. Finally, the temperature-composition diagrams were constructed to 

determine the spinodal and binodal regimes of each of the above mentioned systems. We 

have also investigated the effect of different temperature dependence of the interaction 

parameter on the final results. It has been found that the exponential dependence yields the 

most reliable results whereas using T-independent interaction parameter, as done in several 
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recent papers of other researchers, is obviously incorrect. Based on the calculated chemical 

spinodal and considering the effect of the interfacial lattice misfit elastic energy, we 

discussed the possibilities of the occurrence of "coherently" spinodal phase segregation and 

of the formation of stable nanocomposites in the above mentioned systems. 

In the second part of this work, the mechanical properties of the stable terminal 

phases and the metastable Zr1-xAlxN solid solution have been studied by calculating the 

stress-strain curves in tension (relevant for crack growth and brittle fracture) and shear 

(relevant for plastic deformation) for several slip systems. The results for bulk phases 

showed only a small reduction of the ideal strengths for the ternary solid solution as 

compared with the pure binary terminal phases. Afterwards, the calculations have then been 

extended to heterostructures consisting of few nm thick slabs of ZrN with one monolayer 

thick pseudomorphic AlN interface. In contrast to the TiN/1 ML SiNx/TiN system, no 

enhancement of the strength has been found for the ZrN/1 ML-AlN/ZrN heterostructures. 

These findings are in agreement with experimental results because hardness enhancement 

has been reported for the TiN/1 ML-SiNx/TiN and ZrN/1 ML SiNx/ZrN heterostructures, but 

not for the VN/1-ML AlN/VN ones.  
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Chapter 1: Introduction 

The present work attempts to contribute to the understanding of the formation and 

properties of superhard nanocomposites, which were developed at the former Institute for 

Chemistry of Inorganic Materials of the Technical University Munich during the last 14 years 

[Veprek et al. 95] [Veprek et al. 96] (see also reviews [Veprek 99] [Veprek et al. 05]), and 

introduced into large-scale industrial applications by the company SHM (Czech Republic) 

[Veprek & Jilek 02] [Jilek et al. 03] [Jilek et al. 03b] [Holubar et al. 00] and PLATIT 

(Switzerland) [Cselle 05] [Cselle 05b] [Veprek & Veprek-Heijman 08].  

Nanocomposites comprise at least two phases: either a nanocrystalline and 

amorphous, or two nanocrystalline phases. The two phases should be incommensurable, 

such as e.g. cubic (c-BN) and wurtzite (w-BN) boron nitride [Durbovinskaia et al. 07], 

strongly immiscible and refractory, to ensure high thermal stability of the nanostructure. 

With the decrease of the crystallite size, the strength and hardness of the materials increases 

due to the decrease of dislocation activity by the Hall-Petch strengthening [Hertzberg 89]. 

However, when the crystallite size reaches about 10 nm (the "strongest crystallite size") 

softening is found due to increasing grain boundary shear with a further decrease of the size 

[Argon 08]. The overall hardness enhancement achievable by this "nano-size" mechanism is 

about a factor of ≤ 2. In the superhard nanocomposites developed by Veprek et al., the grain 

boundary shear is hindered by the formation of about 1 monolayer (1 ML) thick SiNx 

interface, that is strengthened by valence charge transfer from the transition metal nitride. 

Consequently, a much higher strengthening can be achieved with crystallite size decreasing 

to 3-4 nm and hardness reaching > 100 GPa, more than diamond. 

The development of these novel superhard nanocomposites has been, so far, done on the 

basis of the generic design principle as formulated in [Veprek et al. 95]. Accordingly, the 

formation of a nanocomposite occurs due to self-organization upon spinodal phase segregation 

in strongly immiscible quasi-binary systems, such as stoichiometric, hard transition metal nitride 

(TiN, W2N, VN, ZrN, (Ti1-xAlx)N, (Al1-xCrx)N, …) in combination with a covalent nitride 

(Si3N4, BN). During their preparation, a sufficiently high pressure of nitrogen of ≥ 10-2 mbar is 

needed to provide the thermodynamic driving force, and a high temperature of ≥ 550 °C is 

required to assure a sufficiently fast diffusion that enables the phase segregation to be kinetically 

completed during the preparation [Veprek et al. 95] [Veprek et al. 96] [Veprek 99] [Veprek et al. 

05] [Zhang & Veprek 06]. Nanocomposites prepared in this way consist of 3-4 nm small 

nanocrystals of the hard transition metal nitride "glued" together by about 1 monolayer (1 ML) 
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of the covalent nitride. Based on their experimental findings, Veprek et al. postulated that the 

self-organization occurs by the spinodal decomposition of the ternary phases (e.g. Ti1-xSixN), and 

that the 1 ML interfacial layer is stabilized by some, at that time unknown mechanism, because 

in the optimum composition, where maximum hardness is achieved, the crystallite size is at a 

minimum, i.e. the specific interfacial area reaches a maximum [Veprek et al. 95] [Veprek et al. 

96] [Veprek 99] [Veprek et al. 05]. In collaboration with Professor A. S. Argon (Massachusetts 

Institute of Technology, Cambridge, USA), the researchers also explained the unusual 

combination of mechanical properties, such as high hardness exceeding 100 GPa (diamond 70 – 

100 GPa), high elastic limit and high resistance against brittle fracture, by the ideal behavior of 

an almost defect-free material [Veprek & Argon 02] [Veprek et al. 03]. They also showed the 

importance of high purity in these nanocomposites, because oxygen impurities of ≥ 0.1 at. % 

strongly degrade the hardness [Veprek et al. 05] [Veprek et al. 05b]. As an explanation of this 

detrimental role of oxygen, both size and electronic effect, i.e. weakening of neighbor bonds by 

valence charge transfer to oxygen, has been suggested [Veprek et al. 05b]. Therefore, the very 

high hardness of ≥ 100 GPa has been achieved only in ultra-pure nanocomposites. 

Until about 2006, the theoretical understanding of the formation and properties of the 

superhard nanocomposites has been limited to the above quoted papers. Using the sublattice 

thermodynamic model and experimentally determined interaction parameter, Zhang and Veprek 

have shown in 2006 that the phase segregation in the Ti-Si-N system indeed proceeds by 

spinodal mechanism [Zhang & Veprek 06]. More recently, these researchers developed new 

computational approach based on a combined ab initio density functional theory (DFT) and 

thermodynamic modeling [Zhang & Veprek 08] [Zhang & Veprek 07] [Zhang & Veprek 07a] 

[Zhang & Veprek 07b], and applied it to several ternary systems including Ti-Si-N. In such a 

way they confirmed that the phase segregation occurs by spinodal mechanism in this system, in 

agreement with the semi-empirical calculations in [Zhang & Veprek 06]. In collaboration with 

Prof. Argon [Veprek et al. 07], they also explained the high hardness of ≥ 100 GPa, reported 

earlier for nc-TiN/a-Si3N4/TiSi2 nanocomposites (see [Veprek et al. 05] and references therein). 

They used the values of the shear strength of the TiN/1 ML-SiNx/TiN sandwich calculated by 

the ab initio DFT method, Sachs's average of the shear resistance of randomly oriented 

nanocrystals, Tabor's ratio between the yield stress and hardness, and the pressure-enhancement 

of the flow stress in order to show that hardness in excess of 100 GPa should be achieved in 

many similar systems [Veprek et al. 07]. The reason of this surprising result is the strong 

enhancement of the strength of 1 ML interfacial layer, the fact that the 3-4 nm small 

nanocrystals which are free of flaws deform only elastically, their random orientation which 
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enhances the shear resistance as compared with a single crystal, and the pressure enhancement of 

the flow stress. These conclusions were more recently further supported by the non-linear finite 

element modeling [Veprek-Heijman et al. 09]. 

The strong enhancement of the strength of a sandwich, consisting of TiN and 1 ML 

interfacial SiNx, is due to partial transfer of the valence charge from TiN to that interface. Such a 

sandwich displays significantly higher shear strength than bulk SiNx [Hao et al. 06] [Hao et al. 

06b] [Veprek et al. 07]. During the last two years, Zhang et al. applied the ab initio DFT method 

for the calculation of de-cohesion and ideal shear strength of variety of crystalline phases of 

silicon nitride [Zhang et al. 07d], aluminium nitride [Zhang et al. 07b], rhenium diboride [Zhang 

et al. 07c] and boron nitride [Zhang et al. 08c], and to the study of the mechanism of the B3-to-

B1 and B4-to-B1 transition in AlN [Zhang et al. 07] [Zhang et al. 08]. Similar calculations 

have been recently published by other researchers for different hard and superhard materials. 

Here we focus only on papers related to the subject of the present work.  

Hao et al. [Hao et al. 06] [Hao et al. 06b;c] conducted extensive studies of the TiN/Si3N4 

–like system 1  by means of ab initio DFT using large cells and supercomputing facilities 

available at the University of Sydney, and obtained similar results as Zhang et al. who studied 

the fcc-TiN/1 ML-SiN/TiN system. Hao et al. have shown that also the de-cohesion strength of 

a 1 ML-Si3N4 interfacial layer in the TiN/Si3N4/TiN sandwich is higher than the de-cohesion 

strength of bulk Si3N4 crystal, thus confirming the strengthening of such interface as discussed 

above. However, for a theoretical modeling of plasticity in the nanocomposites, the knowledge 

of the shear strength, as calculated by Zhang et al., is important because plastic deformation 

occurs in shear. Based on the calculation of electronic structure, Hao et al. have confirmed the 

detrimental effect of oxygen impurities, which substitute nitrogen within the interfacial Si3N4 

thus weakening the neighbour bonds. Interestingly, they could show that this effect is absent in 

the case of a titanium silicide interface because in that case the oxygen is incorporated as 

interstitials within the metallic TiN nanocrystals. These results explained why the highest 

hardness has been found in nc-TiN/a-Si3N4/TiSi2 nanocomposites with total oxygen impurity of 

about 100 ppm, where the silicide acts as a "getter" of oxygen, thus removing it from the Si3N4 

interface. 

The aim of the present work is to apply and extend the theoretical modeling of Zhang et 

al. to new ternary systems in order to investigate to what extent do the results obtained for the 

TiN/SiNx system apply also for other ones, and to identify which of them may be suitable for the 

development of new super- and ultrahard nanocomposites. An important part of the work will be 
                                                 
1 Depending on the crystallographic nature, the exact stoichiometry of 1 ML interface may somewhat differ 
form the Si3N4 one. For simplicity we use her the term "Si3N4". 
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also a deeper clarification of the mechanism of the strengthening of the 1 ML of Si3N4 and 

possibly other interfacial layers consisting of a covalent nitride. The present status of the 

experimental and theoretical work in the field of hard and superhard coatings will be briefly 

summarized in the next section, followed by the specification of the goal of the present work in 

Sect. 1.2. 

 

1.1  The present status of the experimental and theoretical work in the field of hard and 

superhard coatings       

During the last 3 decades, a large effort has been devoted to the development of new 

super- and ultrahard materials (see e.g. [Liu & Cohen 90] [Sproul 96] [Teter 98] [Veprek 99] 

[Haines et al. 01] [Brazhkin et al. 02] [Kaner et al. 05] and references therein), because of 

fundamental scientific interest and their possible applications [Veprek et al. 05] [Jilek et al. 03] 

[Veprek & Veprek-Heijman 08]. Besides of the intrinsically superhard materials, such as 

diamond (H ≈ 70 – 100 GPa) and cubic boron nitride (H ≈ 48 GPa) [Veprek 99], the research 

work focused on extrinsically superhard materials, such as heterostructures [Barnett 93] 

[Barnett & Madan 98] [Clemens et al. 99] and the nanocomposites, in which the hardness of 

the nano-structured system is significantly higher than that given by the rule-of-mixtures. 

Wear protective coatings made of transition metal nitrides and carbides with 

hardness between about 20 and 30 GPa are commercially available and used because of the 

combination of a high hardness, high thermal stability and a relatively high-temperature 

strength [Zhang et al. 07d] [Sundgren & Hentzell 86] [PalDey & Deevi 03]. TiN, which has 

been introduced as protective coating on tools in 1980s, is, during the last 4 – 6 years, being 

replaced by ternary Me-Al-N (Me = transition metal) systems, such as Ti1-xAlxN  [Münz 86] 

[Knotek et al. 86] [Jehn et al. 86] [Münz 90] [Tanaka et al. 92] [Suzuki et al. 00] [Adibi et al. 

91] [Jilek et al. 03b] [Zhang & Veprek 07] [Mayrhofer et al. 06] [Mayrhofer et al. 06b] 

[Mayrhofer et al. 03], Al1-xCrxN  [Knotek et al. 91] [Hofman & Jehn 90] [Vetter et al. 98] 

[Sanjines et al. 02] [Kawate et al. 03] [Schram et al. 04] [Park & Baik 05] [Reiter et al. 05] 

[Hasegawa et al. 05] [Kalss et al. 06] [Willmann et al. 06] [Zhang & Veprek 07b] [Reiter et 

al. 07] and others, because of their higher hardness and oxidation resistance. Therefore, these 

coatings were most widely investigated, whereas very limited studies have been dedicated to 

the Zr-Al-N, Zr-Si-N and Al-Si-N systems, which are the primary subject of the present 

work from the scientific point of view, as well as potential candidates for new superhard 

nanocomposites. ZrN has a lower coefficient of friction than TiN and other transition-metal 

nitrides, and is relatively hard [Holleck 86] [Berg et al. 00], which makes it interesting as 
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protecting coatings on tools. However, its poor oxidation resistance is hampering a broader 

range of applications. Therefore its alloying with Al was suggested in order to improve the 

oxidation resistance and possibly also the mechanical properties [Li 06]. Recent 

experimental studies have shown that the fcc (NaCl-type)-Zr1-xAlxN solid solution exists for 

0< x<0.43, and the hardness increases from 21 GPa to 28 GPa when the Al fraction increase 

from x = 0 to 0.43 [Lamni et al. 05]. With further addition of Al, hcp (ZnS-type)-AlN 

appears and the hardness of the coatings decreases. Zr1-xSixN coatings on machining tools 

have shown an excellent cutting performance, but no detailed investigation into their 

performance has been done [MACHERENA 07]. 

In the past decades, theoretical investigations of hard transition metal nitrides 

attracted much interest. These studies include mainly the first principles ab initio DFT 

calculations [Hugosson et al. 01] [Hugosson et al. 03] and empirical thermodynamic 

modeling [Spencer 98] [Spencer 01]. The advantage of the ab initio method is the fact that 

no experimental input data are needed, and a much deeper physical insight can be obtained. 

However, its application to a larger number of different systems is limited to the ground 

state properties at 0 K, because the quantum mechanics and dynamics computations, such as 

the Car-Parrinello method, require much larger CPU time (for our case we estimate by a 

factor of 105 or more). Furthermore, because the exact ab initio DFT modeling of solids is 

based on reciprocal space methods, only perfect crystal structures can be considered which, 

in turn limits the composition range that can be treated. The thermodynamic modeling is 

much simpler and faster, it can cover the whole composition range and account for variety of 

chemical activities at different temperatures. However, the calculations of ternary solid 

solutions require the knowledge of the relative stability of different structures of the solution 

as well as of the terminal binary phases, and of the interaction parameter between the 

involved binary phases. Such experimental data are not available for strongly immiscible 

systems.  

These problems have been solved by the above mentioned combined method of 

Zhang and Veprek, which applies the ab initio DFT calculations for the determination of the 

relative lattice stabilities and interaction parameters of the involved phases that are then used 

in the thermodynamic modeling. This method has been already applied to the Ti1-xSixNy 

[Zhang & Veprek 06] [Zhang & Veprek 08], Ti1-xAlxN [Zhang & Veprek 07], Cr1-xAlxN 

[Zhang & Veprek 07b] and Ti1-xBxN [Zhang et al. 08b] systems.  

Because of the limited experimental data available for the Zr-Al-N, Zr-Si-N and Al-

Si-N systems, it is of interest to study their phase stability as well as the thermal 
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decomposition mechanism of the ternary solid solution phases by means of a combined ab 

initio DFT calculations and thermodynamic modeling. This will enable to predict their 

properties, the possibility of the formation of superhard nanocomposites by spinodal phase 

segregation, and to compare them with other systems. An important question to be addressed 

is if the Al-containing systems can also form superhard nanocomposites with AlN as 

interfacial phase instead of SiNx. It is known that few monolayers thin interfacial AlN 

between TiN crystals forms pseudomorph cubic phase with diffuse interphase. The study of 

the Zr-Si-N system is motivated by the expectation that, by analogy to Ti-Si-N, it may also 

form superhard nanocomposites with high hardness and high oxidation resistance, and 

possibly lower coefficient of friction. In the case of the Al-Si-N system, for which only 

limited experimental studies are available [Pelisson et al. 07], we want to address also the 

question as which of the possible interfacial phases (1 ML-SiNx or 1 ML-AlN) will provide 

larger strengthening. This should be complemented by similar studies on oxides, such as Zr-

Al-O in order to elucidate if superhard nanocomposite can be prepared also in these systems. 

The oxide-based superhard nanocomposite coatings would offer a great advantage because 

of their essentially "unlimited" oxidation resistance. High oxidation resistance is important 

in dry and minimum lubricant, hard and fast machining where the oxidation of the coatings 

is the dominant wear mechanism [Veprek & Veprek-Heijman 08]. 

The results of the calculations of the ideal shear strength of these different 

sandwiches and of the possible strengthening of the interfacial phases will be compared with 

similar data reported by Zhang et al. [Zhang et al. 07d] [Veprek et al. 07] [Zhang et al. 09] 

and Hao et al. [Hao et al. 06] [Hao et al. 06b;c] on the Ti-Si-N system in order to obtain a 

deeper understanding of the strengthening phenomena. 

 

1.2  The goal of the work  

       The goal of the present work is divided into the following work packages:       

- In-depth studies of combined ab initio DFT and thermodynamic modelling 

for the calculations of the free energy of the mixed pseudo-binary nitride systems and 

of the possibility of spinodal decomposition. This includes the phase stability and 

phase segregation in the ternary Zr-Al-N systems by ab initio DFT and 

thermodynamic calculation in order to verify if the system is "chemical spinodal". 

Using a simple model to estimate the elastic strain energy it will be verified if the 

phase segregation can be also coherent spinodal.  
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- Based on the experience obtained with Zr-Al-N system, the work will be 

extended to the Zr-Si-N and Al-Si-N nitride and Zr-Al-O oxide systems that are of 

interest from the scientific point of view and may be also important for large-scale 

industrial applications. For systems, which show sufficiently pronounced chemical 

spinodal curve, the interfacial strain energy (coherent, semi-coherent and incoherent 

interfaces) will be included into the combined ab initio DFT and thermodynamic 

modelling, in order to clarify its effect on the mechanism of the phase segregation 

(spinodal vs. nucleation and growth).  

- The mechanical properties of the stable and metastable phases involved in 

these systems will be studied by using the ab initio DFT method to calculate the 

stress-strain relationships in order to obtain the ideal tensile de-cohesion and shear 

strength of the binary and ternary phases. In order to further improve the 

understanding of the strengthening mechanism in the nanocomposites, such 

relationships will be calculated for sandwiches consisting of 6-8 monolayers (ML) of 

the transition metal nitride with 1 ML of pseudomorphic interfacial AlN phase. It 

should be clarified if the strengthening, as reported for the TiN-Si3N4 system by Hao 

et al. and Zhang et al., also applies to other systems, and if it scales with the 

enhancement of the negative valence charge density at that interface. 

- The results will be analyzed in terms of changes of the valence charge density 

at the interfacial monolayer. Comparison of these data and their correlation with the 

strengthening (or weakening?) obtained in all these systems should provide a deeper 

understanding of this new and interesting phenomena.  
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Chapter 2: Computational Methods Used 

2.1  Brief description of the DFT and VASP code 

2.1.1  The DFT method   

The ab initio methods are based on the solution of Schrödinger's equation for the 

many-body problem in order to obtain the electronic structure [Martin 04] [Lazar 06]. Since 

the wave function of many-particle system depends on the coordinates of each particle and 

their interactions, the complexity of this approach is obvious. Because the computing time 

strongly increases with increasing number of the atoms in the system, one has to design the 

cell to be calculated as small as possible, but yet representative for the given system and 

problem. Furthermore, the calculations being conducted in this work are limited to 

temperature of 0 K because considering the thermal movement of the atoms within the 

framework of quantum molecular dynamic (e.g. Car-Parrinello) increases the computing 

time by several orders of magnitude.   

The DFT is based on theorems of Hohenberg and Kohn [Hohenberg & Kohn 1964], 

who demonstrated that the total energy E of a system of interacting particles in ground state 

is completely determined by the electron density ρ. Therefore, the total energy can be 

expressed as a function of the electron density, E(ρ), which satisfies the variational principle. 

Kohn and Sham [Kohn & Sham 1965] derived more rigorous functional equations in terms 

of a simplified wave function concept, separating the contributions to the total energy as 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )rEdrdr
rr

rrdrrrVTrE xcs ρρρρρρ +
′−

′
++= ∫∫ '

2
1

 .        (2.1.1) 

Here, Ts represents the kinetic energy of a non-interacting electron gas, V is the potential of 

the nuclei. The third term corresponds to the electron-electron interaction and the last one, 

Exc, comprises the many-body particle interactions.  

  Introducing the Kohn-Sham orbitals, the solution of the variational Euler equation 

corresponding to the functional of equation 2.1.1 results in Schrödinger-like equation for the 

orbitals ψ(r) 

                                         ( ) ( ) ( )rrrV
m eff εψψ =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+∇− 2

2

2
h

                                 (2.1.2)
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These, well known Kohn-Sham equations are then solved under approximations described 

below. Equation 2.1.2 transforms the many-particle problem into a problem of one electron 

moving in an effective potential  

                                       ( ) ( ) ( ) ( )
δρ

ρδρ xc
eff

E
rd

rr
rrVrV +′

′−
′

+= ∫                               (2.1.3) 

which describes the electronic field induced by the other particles. The actual role of the 

auxiliary orbitals is to build up the true ground state density by summing over all occupied 

states, 

                                                       ( ) ( ) ( )rrr
occ

ψψρ ∑= *                                                (2.1.4) 

The reformulation of Kohn and Sham provides a suitable basis, which transforms the 

functional equation into a set of differential equations, which can be solved in a self-

consistent manner. The crucial point for actual applications is the functional Exc, which has 

no analytical expression, and therefore requires approximations. The historically first and 

widely used approximation is the local density approximation (LDA), which is based on the 

assumption that the exact exchange-correlation energy can, at the point r, be locally replaced 

by the expression for homogeneous electron gas, 

                           ( ) ( ) ( ) ( )drrrrE xcxc ρερρ ∫=                           (2.1.5) 

in which εxc(ρ) is the exchange-correlation energy per particle in that gas. The function 

εxc(ρ) has to be approximated as well, but this can be done accurately by computer 

simulations. Several methods have been utilized to parameterize the many-body interactions 

of a homogeneous gas of interacting electrons, for instance by many body perturbation 

theory or by quantum Monte-Carlo techniques. Because the differences between the 

different parameterizations are small, εxc(ρ) can be considered as a well-defined quantity. 

Although it yields in many cases surprisingly reliable results, LDA is a relatively 

crude approximation. Therefore, it is nowadays considered not to be accurate enough for all 

problems. Various improvements have been proposed beyond the simple LDA assumption, 

taking into account the gradient of the electron density within the framework of the 

generalized gradient approximation (GGA) [Perdew et al. 1992]. In many applications, GGA 

provides a substantially improved description of the ground state properties, in particular for 

3d transition metals, as demonstrated e.g. for the ground state of iron [Singh et al. 1991].  

Ab initio DFT methods have great capabilities and are widely applied, in particular 

since the last two decades when sufficient computing capacity became available. Their 

significance for the scientific community was honored by the Nobel Prize awarded to W. 
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Kohn and J. Pople in 1998. DFT proved to be a general and predictive tool for calculating 

various properties which can be derived from the electronic ground state, such as 

equilibrium crystal structures and lattice constants, elastic constants, ideal strengths, surface 

energies, phonon dispersions, etc. [Freeman & Wimmer 1995].  

 

2.1.2  The VASP code 

The ab initio DFT calculations were done using Vienna ab-initio Simulation Package 

(VASP) developed at the Institute of Materials Physics of the University of Vienna [Kresse 

& Hafner 93] [Kresse & Furthmüller 96] [Kresse & Furthmüller 96b]. The calculations were 

conducted using the projector augmented wave (PAW) method employed to describe the 

electron-ion interaction [Kresse & Joubert 99] [Blöchl 94]. The exchange and correlation 

terms were described by the generalized-gradient approximation proposed by Perdew and 

Wang [Pedrew & Wang 92]. The integration in the Brillouin zone has been done on special k 

points (e.g. 8×8×8 Monkhorst-Pack grid) determined according to the Monkhorst-Pack 

scheme [Monkhorst & Pack 76] with energy cutoff of 600 eV, and tetrahedron method with 

Blöchl corrections for the energy calculation and the calculations of electronic properties, e.g. 

density of state (DOS) and valence charge density. The Gaussian smearing method with 

typical smearing width of 0.2 is used for the stress calculations. The conjugate gradient 

algorithm is used to relax the ions into their instantaneous ground state. We refer to the 

quoted publications [Kresse & Hafner 93] [Kresse & Furthmüller 96] [Kresse & Furthmüller 

96b] and to the VASP-manual for further details. 

The specific choice of the ab initio parameters for a given system, and cells including 

the information of their symmetries and positions of the atoms of the different systems used 

for the calculations will be described in the corresponding sections of Chapter 3.  

 

2.2  Calculations of the total energies, lattice constants, bulk moduli, their derivatives, 

and of the interaction parameter   

The total energies were taken from the calculated E – V relationships at equilibrium 

volume V0. The cohesive energies Ec were calculated from the total energy of compounds at 

equilibrium by subtracting the total energies of spin-polarized free atom. In order to study 

the relative stabilities of the ternary compounds with reference to the terminal phases, we 

define in Eq. (2.2.1) the formation energy of the ternary phase with reference to the terminal 

phases, i.e. the de-mixing energy demixingEΔ , as the difference between the total energy of the 
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ternary phase (TM)1-xXxNy, yxx NXTME
−1

, (TM = transition metal, X = Si or Al) and of the 

reference states of the isostructural, terminal phases (TM)N, TMNE , and XN, XNE . 

       XNNTMNXTMdemixing xEExEE
xx

−−−=Δ
− )()1(

1                                (2.2.1) 

From the total energies obtained by ab initio DFT method, we calculated the formation 

energies of the ternary (TM)1-xXxNy phases for several compositions given typically by the 

fractions x =  0.25, 0.5 and 0.75, in all phases relevant for the given system. The choice of 

reference state needed to meet the composition balance of a given reaction, e.g. Zr-Si-N  

ZrN+Si3N4+Zr or Zr-Si-N+N2  ZrN+Si3N4, will be given in corresponding sections.  

In order to verify the reliability of our calculations, we have in each case first 

calculated the total energy E as a function of the volume V, and fitted the calculated E – V 

dependence by the Murnaghan's equation of state [Murnaghan 44] (Eq. (2.2.2)), 

                       1
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Murn                             (2.2.2) 

 to determine the equilibrium properties, such as bulk modulus B0, its first derivative '
0B , 

equilibrium volume V0 and lattice constant a, and compared the results with experimental 

and theoretical data available in the literature. Zhang and Veprek have shown the using 

either the Birch's [Birch 47&78] or Vinet's equation of state [Vinet et al. 86] [Vinet et al. 87] 

yields the same results as the Murnaghan's EOS.  

 

2.3 Calculations of the stress-strain curves and the determination of the enhanced 

valence charge density    

The knowledge of the stress-strain relationship in both tension and shear is important 

for the understanding of the mechanical behavior of an ideal, defect-free material and for the 

estimate of the upper limit of its strength and hardness [Veprek et al. 07]. The ideal de-

cohesion strength yields information about the inter-planar bond strength in the given 

crystallographic direction, whereas the ideal shear strength is a measure of the resistance of 

the material against plastic deformation. It correlates with the onset of dislocation formation, 

which commences by a series of subsequent shear events in an ideal crystal [Vliet et al. 03] [Li 

et al. 02]. The ab initio DFT calculations of stress-strain curves have been recently 

developed and applied to a number of different materials (e.g. [Y. Zhang et al. 05] [Roundy 

et al. 01] [Umeno et al. 07] [Pokluda et al. 04]).  
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The importance of the knowledge of the stress-strain curves is illustrated by the 

following example: Based on the first principle calculations of zero-pressure elastic moduli, 

which describe the elastic response of the crystal upon small strains near equilibrium, Cohen 

predicted about 20 years ago that C3N4 should be harder than c-BN and almost as hard as 

diamond [Cohen 85] [Liu & Cohen 90]. His report has inspired a large experimental effort 

of many researchers around the world to prepare this material. However, this effort remained 

without success because the maximum reported hardness of stoichiometric C3N4 was only 

26-28 GPa [Veprek et al. 95b]. Y. Zhang et al. have recently calculated the stress-strain 

curves and the corresponding changes of the electronic structure upon strain. Their work 

explained that C3N4 can not be harder than c-BN, because it undergoes phase transformation 

into a soft graphite-like phase upon a relatively moderate, finite strain [Y. Zhang et al. 06; 

06b].   

Some researchers recently attempted to explain the hardness enhancement of B-N-C 

materials by the difference of the ideal strength of c-BN and several hypothetical B-N-C 

solution phases [Pan et al. 07] [Chen et al. 07]. However, one has to keep in mind that the 

hardness and strength of engineering materials is determined by structural defects (flaws), 

such as impurities, dislocations, microcracks, grain boundaries etc. [Haines et al. 01] 

[Brazhkin et al. 02] [Gilman 03], and it is usually orders of magnitude smaller than the ideal 

one [Hertzberg 89]. This has been illustrated by the strong reduction of maximum achievable 

hardness in the superhard nanocomposites by oxygen impurities [Veprek et al. 05b] 

mentioned in the introduction.  

The ab initio DFT calculations of the stress-strain dependences have been done 

starting from the fully relaxed cell, by incrementally deforming the modeled cell in the 

direction of the applied strain, and simultaneously relaxing both the atomic basis vectors and 

the atoms inside the unit cell, at each step. To ensure that the strain path is continuous, the 

starting position at each strain step is taken from the relaxed coordinates of previous strain 

step. This approach with a relaxed loading path has been successfully applied to the 

calculation of the strength of several strong solids [Y. Zhang et al. 05] [Roundy et al. 01].  

 The valence charge density (VCD) is obtained directly from the ab initio DFT 

calculation by solving the Schrödinger equation [Martin 04]. VCD and bond lengths provide 

information about the relative stabilities of different bulk phases as well as of interfaces. 

This is particularly interesting for the interfaces because one can directly see the 

strengthening or softening of the bonds therein. As already mentioned in the introduction, 

Hao et al. [Hao et al. 06] [Hao et al. 06b;c] and Zhang et al. [Zhang et al. 07d] [Veprek et al. 
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07] have shown that there is a large strengthening of the 1 ML thin SiNx interfacial layer 

sandwiched between 6–8 ML thick slabs of TiN. Based on the valence charge density 

distribution, Zhang et al. have also shown that pseudomorphic fcc-SiN is instable as bulk 

material. However it has not been clarified if this material is metastable or inherently 

unstable. Therefore this question will be clarified in this work. A comparison of the valence 

charge densities of different polymorphs will be also used to study the relative stabilities of 

different phases, of the interfaces and their behavior under applied strain. The aim of the 

present work is to extend the study of the strengthening of the 1 ML interfacial SiNx 

monolayer reported by Hao et al. and by Zhang et al. to other systems in order to obtain a 

deeper understanding of its mechanism, and if possible, to identify other interfacial materials 

which could provide an even stronger effect. Because these calculations are very much time 

consuming, we shall concentrate on the ZrAlN system only. 

 

2.4  Description of the thermodynamic calculations    

Based on the sub-lattice solution model [Hillert 98] [Saunders & Miodownik 98], a 

ternary compound (A,B)aCc can be described as a continuous solid solution composed of two 

compounds AaCc and BaCc. Thus, in the ternary (A,B)aCc phase, a and c give the numbers of 

different sites per formula unit. The ternary system can be treated as a quasi-binary 

substitutional phase. The simplest model for such a solution can be obtained by assuming 

random mixing of the atoms within each sub-lattice.2 It is then convenient to define mole 

fractions for each sub-lattice. They are called site fractions and denoted y. The site fractions 

are used to define the frame of reference for the Gibbs energy of the ternary solution phase. 

The Gibbs energy of the ternary (A,B)aCc phase with a structure ψ, is given by Eq. (2.2.3) 

[Hillert 98] [Saunders & Miodownik 98] [Zhang & Veprek 07] [Zhang & Veprek 07b]. 

                        ψ

ψγγψδδψ

CBABABBAA

CBCBBCACAACBA

LyayyyyyaRT

GGyGGyG
cacacacaca

:,

00
),(

)lnln(

)()(

+++

+++= →→

                      (2.2.3) 

Here, δ
caCAG0
 and γ

caCBG0  are the Gibbs free energy of end-member phases of caCA−δ  and 

caCB−γ  in the most stable structures whose thermodynamical data are available from 

experiments. ψδ →
caCAG  and ψγ →

caCBG  are the lattice instability of metastable or unstable phases of 

caCA−ψ  and caCB−ψ  with respect to the stable phases caCA−δ and caCB−γ , 

                                                 
2 Note that this is the extreme case. When considering immiscible systems, clustering will decrease the value of 
the de-mixing energy because it represents the onset of the phase segregation by the mechanism of nucleation 
and growth [Zhang & Veprek 07]. 
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respectively. Index a  is the number of sites of the sub-lattice (A,B) per formula unit, and Ay  

and By  are the site fraction of elements A and B in the sub-lattice (A,B), respectively. Ay  

and By are defined by yA = xA/(xA + xB) and yB = xB/(xA+ xB), where xA and xB are the fractions 

of the elements. The first two terms in Eq. (2.2.3) are the contributions of the pure phases, 

the third one is the mixing entropy contribution, and ψ
CBAL :,  in the last term is the interaction 

parameter between caCA−ψ  and caCB−ψ in the ca CBA ),(−ψ  phase.  

For the stable terminal phases, the temperature-dependence of the Gibbs free energy 
δ

caCAG0  and γ
caCBG0 above 298 K is given by Eq. (2.2.4) [Hillert 98] [Saunders & Miodownik 

98] [Zhang & Veprek 07] [Zhang & Veprek 07b]. 

  312ln)( fTeTdTTcTbTaTG +++++= −                    (2.2.4) 

The polynomial coefficients a to f in Eq. (2.2.4) can be obtained for equilibrium stable 

phases by numerical fitting to the experimental data.  

The dependence of interaction parameter on composition and temperature can be 

expressed as Eq. (2.2.5) [Redlich & Kister 48] [Hillert 98] [Saunders & Miodownik 98] 

[Zhang & Veprek 07] [Zhang & Veprek 07b]. 

          ∑
=

− +++++−=
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k
ijijijijijij

k
BBCBA TFTETDTTCTBAyTyL

0

312
:, )ln()21(),(ψ       (2.2.5) 

 Here, n is the order of the Redlich-Kister series, and ijA  to ijF  are the model parameters. 

Similar to the previous studies [Zhang & Veprek 07] [Zhang & Veprek 07b] [Zhang & 

Veprek 08], two simplifications were assumed in present calculations: Due to the 

immiscibility of the stoichiometric (TM)N-XN systems (TM = transition metal, X = Si or 

Al), only two coefficients of ijA  and ijB  were applied in the temperature dependent part. The 

Gibbs free energy of the ternary (TM)1-xXxNy phases in their given structure, that will be 

specified for each particular system in the respective section, as a function of temperature, 

given by Eqs. (2.2.3) to (2.2.5), has been used to construct the Gibbs free energy diagram 

over the whole range of composition. Based on these diagrams, the phase stabilities and 

selections in the quasi-binary TMN and XN system will be discussed. In addition, recently 

reported exponential dependence of interaction parameter on temperature will be used for 

the Zr-Si-N, Al-Si-N and Zr-Al-O systems in order to show its importance. We refer to the 

corresponding sections for further details. 
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2.5 Combined ab initio DFT calculation with thermodynamic modeling  

For the immiscible quasi-binary (TM)N-XN systems, the ternary (TM)1-xXxNy phases 

with a structure ψ  can be regarded as a continuous solid solution composed of a given 

fraction of the stoichiometric NTM )(−ψ  and XN−ψ  phases with the same structureψ . 

According to Eq. (2.2.3), the molar Gibbs free energy of NXTM xx−− 1)(ψ  solution phase 

can be expressed by Eq. (2.2.6). 

    ψ

ψββψααψ
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LxxxxxxRT
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      (2.2.6) 

When ψ  represents α structure it means that in the ternary phase α-(TM)1-xXxNy the TM-

atoms of the α-(TM)N are substituted by atoms X.  

The Gibbs free energies of the stable phases can be obtained directly from the 

published literature [Barin 93] [Chase et al. 85], whereas they are not available for the 

unstable phases (e.g. fcc-AlN, hcp-ZrN etc.). However, the Gibbs free energy of an unstable 

phase can be approximately calculated from the Gibbs free energy of the stable one plus the 

lattice instability of the unstable phase, which will be obtained from the ab intio DFT 

calculation. For simplicity, we regard the lattice instability as a temperature independent 

parameter (this simplification has been justified in [Zhang & Veprek 07] [Zhang & Veprek 

07b] [Zhang & Veprek 08]). For example, the lattice instability of the unstable fcc-AlN with 

respect to the stable hcp-AlN, fcchcp
AlNG → , of about 35.19 kJ/mol (per formula unit) has been 

calculated by the ab initio DFT method. In a similar way, the lattice instability of hcp-ZrN 

with respect to fcc-ZrN,
hcpfcc

ZrNG →
, of about 92.99 kJ/mol (per formula unit) has been 

obtained for ψ  corresponding to the hcp structure. For the stable phases, the temperature 

dependence of the Gibbs free energies NTMG )(
0  and XNG0

, respectively, can be obtained 

from the data compiled in the literature [Barin 93] [Chase et al. 85] and fitted by Eq. (2.2.4) 

in order to obtain the resulting polynomial coefficients a to f. The Gibbs free energy at 0 K is 

then approximately estimated from linear extrapolation of Eq. (2.2.4).3  

 

                                                 
3 Such approximation will not change the relative values of Gibbs free energy of different phases at 0 K.  
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2.6 Thermodynamic calculations including the temperature and composition 

dependence of the interaction parameter  

The interaction parameters of the ternary phase (TM)1-xXxNy with a given structure 

ψ, ψ
NXTML :, , at 0 K is obtained by fitting Eq. (2.2.7), using the total energies of the 

isostructural terminal phases (TM)N, XN and (TM)1-xXxNy phases with ψ  structure obtained 

from the ab initio calculation, 

           
ψψψψ

NXTMXNNTMNXTM LxxxEExE
yyyxx :,)()( )1()1(

1
−=−−−

−
                 (2.2.7) 

The composition dependence of the interaction parameter is approximated by a 

polynomial of the type )( 3
:,

32
:,

2
:,

1
:,

0 xLxLxLL NXTMNXTMNXTMNXTM ⋅+⋅+⋅+ ψψψψ , 

where ψ
NXTML :,

0 , ψ
NXTML :,

1 , ψ
NXTML :,

2  and ψ
NXTML :,

3
 are the composition dependent parameters. 

By fitting the values of the de-mixing energies (with reference to isostructual terminal 

phases)  as a function of the composition calculated by the ab initio DFT method, we 

obtained the composition dependence of the interaction parameter for the given ternary 

phase with the given structure ψ, ψ
NXTML :,  at 0 K. More details about the exact fitting 

procedure used for a given system will be given in the corresponding section. 

In the majority of papers, one assumes a linear dependence of the interaction 

parameter on temperature, i.e. only the coefficients ijA  and ijB  in Eq. (2.2.5). This 

dependence can be obtained from the calculated value of interaction parameter at 0 K and at 

another, higher temperature. For a variety of hard materials, the interaction parameter of 

about 20–50 kJ/mol has been assumed at a temperature close to the melting point, in a fairly 

good agreement with the experimental miscibility gaps [Holleck 88] [Spencer & Holleck 90] 

[Stolten 91] [Spencer 94] [Anderbouhr et al. 99]. The specific choice of the value of the 

interaction parameter at high temperature for a given system will be described in the 

corresponding sections. It should be emphasized that, the high temperature interaction 

parameter is unavailable in both experiments and ab initio calculations. However a 

reasonable estimation can be done based on the facts that, with increasing temperature the 

interaction parameter will decrease. Thus, the choice of a lower value than that at 0K is a 

realistic first approximation. This is in agreement with the previous empirical estimation of 

high temperature interaction parameter for some nitride systems like Ti-Al-N. As will be 

shown, it is important to consider the temperature dependence of interaction parameter, 

which has been absolutely ignored in many studies (e.g. [Mayrhofer et al. 06b]). In order to 
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obtain information about the sensitivity of the final results to such a fit, we used in the work 

on the ZrAlN system both of the above mentioned values for comparison (see Sect. 3.1.1.). 

It will be shown in that section, that the results are relatively insensitive to the exact choice 

of that value.  
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Chapter 3: Results:  

3.1  Combined ab initio DFT calculation and thermodynamic modeling  

3.1.1  Zr-Al-N system 

There is limited knowledge of this system available in the literature. Recent 

experimental studies have shown that only the fcc(NaCl-type)-Zr1-xAlxN solid solution exists 

for 0<x<0.43, and the hardness increases from 21 GPa to 28 GPa when the Al content 

increase from x = 0 to 0.43 [Lamni et al. 05]. With further addition of Al content, hcp-AlN 

appears and the hardness of the coatings deceases.  

3.1.1.1  Structural properties and phase stabilities by ab initio DFT calculation  

For the Zr-Al-N system, the following phases and structures were used: The fcc 

(NaCl-type) structure (space group Fm-3m, No. 225), with atoms placed in (0, 0, 0) and (1/2, 

1/2, 1/2) positions, has been allowed to relax in volume, i.e. in lattice constant a, keeping the 

relative position of atoms and the cell shape constant. The hcp (ZnS-type) structure (space 

group P63mc, No. 186) has two metal atoms placed in (1/3, 2/3, 0) and (2/3, 1/3, 1/2), and 

two nonmetal atoms placed in (1/3, 2/3, u) and (2/3, 1/3, u+0.5) positions. Here, u is the 

internal structural parameter, which determines the vertical position of the nonmetal atoms. 

We used the initial ideal value of u = 0.375 for further calculations, and performed a full 

relaxation of the lattice constant, internal structural parameter and the cell shape. Both fcc 

and hcp structures were studied using a super-cell setup containing four metal and four 

nonmetal atoms. For ternary Zr1-xAlxN phases in fcc and hcp structure, Zr and Al atoms were 

randomly distributed over the whole metal sublattice. As mentioned in Chapter 2, the choice 

of the position of metal sublattice in substitution was found to have no significant effect on 

the results of the present calculations. The total energies and the lattice constants of 

metastable hcp-ZrN and fcc-AlN, stable fcc-ZrN and hcp-AlN, and the ternary fcc- and hcp- 

Zr1-xAlxN (x=0.25, 0.5, 0.75) phases were calculated and optimized. The optimized values 

were used for the determination of the lattice stabilities of metastable hcp-ZrN and fcc-AlN 

phases with respect to the corresponding stable fcc-ZrN and hcp-AlN phases, as well as for 

the determination of the interaction parameters of the ternary fcc- and hcp- Zr1-xAlxN solid 

solution phases. 

Figure 3.1.1.1 shows the calculated relationships between the total energy, E, and 

average volume, V, per atom for binary ZrN, AlN compounds and ternary Zr1-xAlxN (x=0.25, 

0.5, 0.75) solution phases with fcc (dashed lines) and hcp (solid lines) structures. It can be 
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seen that in agreement with the experimental results, the fcc structure is more stable than the 

hcp one for ZrN, whereas the hcp structure is more stable for AlN. With the Al content of 

0.25, the ternary fcc-Zr0.75Al0.25N phase is more stable than the hcp one, in agreement with 

the experimental results which showed that only Zr0.80Al0.20N phase with fcc structure has 

been found [Spillmann et al. 01]. At an Al content of about 0.5, the minima of the total 

energy of hcp and fcc structures are nearly equal. This is consistent with the experimental 

results that both fcc-ZrN and hcp-AlN were found in Zr1-xAlxN coatings with a high Al 

content of about x ≥ 0.43 [Lamni et al. 05].  
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Fig. 3.1.1.1: The dependence of the total energy on average atomic volume for binary ZrN, 

AlN compounds, and ternary Zr1-xAlxN (x = 0.25, 0.5, 0.75) phases in fcc (dashed lines) and 

hcp structures (solid lines). 

 

The calculated values of the lattice constant a, axial ratio c/a, internal parameter u, 

bulk modulus B0, its first pressure derivative Bo′ and cohesive energy Ec of AlN, ZrN and 

Zr1-xAlxN in fcc and hcp structure are listed in Table 3.1.1.I, together with the experimental 

and theoretical data reported in the literature [Stampfl & Walle 99] [Hirai et al. 00] 

[Spillmann et al. 01] [Nagao et al. 06] [Siegel et al. 06]. It can be seen that the calculated 

value of lattice constant a, of about 0.461nm for fcc-ZrN agrees with the experimental one, 

as does also the value of bulk modulus B0 [Spillmann et al. 01] [Nagao et al. 06]. The 

calculated value of 0.4069 nm for fcc-AlN is between the experimental values of 0.411 nm 

[Hasegawa et al. 05] and 0.404 nm [Hirai et al. 00] and close to the theoretical value of 
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0.406 nm [Siegel et al. 06]. Also the calculated values of the lattice constant a, of the c/a 

ratio, of the internal parameter u and cohesive energy Ec, as well as of the bulk modulus B0 

and its pressure derivative Bo' obtained from the fit of the E-V curves by the Murnaghan 

equation of state (see chapter 2 and [Murnaghan 44]) for hcp-AlN, are all in good agreement 

with the published experimental and theoretical data [Stampfl & Walle 99]. The values of all 

the parameters calculated for the ternary Zr1-xAlxN solid solution (x = 0.25, 0.5 and 0.75) in 

both structures are also reported in Table 3.1.1.I. To best of our knowledge, there are no 

related experimental data about these ternary solid solutions reported in the literature. The 

very good agreement of our calculated values for AlN and ZrN shows that our data 

calculated for the ternary Zr1-xAlxN solid solutions are reliable.  
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Table 3.1.1.I: Calculated lattice constant a, axial ratio c/a, internal parameter u, bulk modulus B0, its pressure derivative B0′ and the cohesive energy 

Ec of AlN, ZrN and Zr1-xAlxN in fcc(NaCl) and hcp(ZnS) structure using ab initio DFT calculation, compared with the experimental and previous 

theoretical data (e – experimental data, t – theoretical data).                

Phase Structure a (nm) c/a u B0 (GPa) B0′ Ec (eV) 

fcc(NaCl) 0.461 
0.461±0.002 e[i] --- --- 256.56 

257.9 t[ii] 
4.632 8.72702 

ZrN 
hcp(ZnS) 0.3542 1.600 0.379 179.01 3.961 7.75744 

fcc(NaCl) 

0.4069 
0.411 e[ii]  
0.404 e[iii] 

0.406 t[iv] 

---  --- 

241.47 4.116 11.193 

AlN 

hcp(ZnS) 
0.3117 
0.3111 e[ix] 

0.3113 t[ix] 

1.609 
1.60 e[ix] 

1.619 t[ix] 

0.381 
0.385 e[ix] 

0.380 t[ix] 

189.28 
185-212 e[ix] 

192 t[ix] 

3.925 
5.7-6.3 e[ix] 

3.96 t[ix] 

11.557 
11.669 e[ix] 

11.403 t[ix] 

fcc(NaCl) 0.4550 --- --- 228.55 4.580 5.283 
Zr0.75Al0.25N 

hcp(ZnS) 0.3439 1.585 0.412 187.03 4.278 8.017 

fcc(NaCl) 0.4455 --- --- 212.26 4.250 7.468 
Zr0.5Al0.5N 

hcp(ZnS) 0.3364 1.645 0.410 176.09 4.264 7.485 

fcc(NaCl) 0.4305 --- ---- 213.93 4.300 8.390 
Zr0.25Al0.75N 

hcp(ZnS) 0.3243 1.632 0.405 177.98 4.180 8.828 

[i] = [Spillmann et al. 01]; [ii]  = [Nagao et al. 06]; [iii] = [Hirai et al. 00]; [iv] = [Siegel et al. 06]; [ix] = [Stampfl & Walle 99] 
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Figure 3.1.1.2 shows the lattice constant a of Zr1-xAlxN phases with fcc and hcp 

structures as a function of the Al fraction x, calculated with full relaxation, i.e. for the stress- 

and force-free state. It is found that with increasing x the lattice constants decrease 

approximately linearly following the relationships xa fcc ⋅−= 0541.0461.0  and 

xahcp ⋅−= 0425.03542.0  for fcc-Zr1-xAlxN and hcp- Zr1-xAlxN, respectively. Accordingly, the 

lattice constants for fcc- Zr0.80Al0.20N, Zr0.65Al0.35N and Zr0.57Al0.43N phases are about 0.450 

nm, 0.442 nm and 0.438 nm, respectively, close to the experimental data of 0.453 nm 

[Spillmann et al. 01], of 0.448 nm [Sanjinés et al. 06] and 0.445 nm [Sanjinés et al. 06]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1.1.2: The calculated lattice constant a as a function of the composition x in the ternary 

Zr1-xAlxN phases with fcc and hcp structures, respectively. 

 

The phase stability of the ternary phase Zr0.5Al0.5N, expressed in terms of the de-

mixing energy (see chapter 2, Eq. (2.2.1)), amounts to 92.63 kJ/mol and 90.97 kJ/mol for fcc 

and hcp structures, respectively. Both values are positive, which means that these ternary Zr1-

xAlxN phases are thermodynamically unstable. Thus, only when kinetic constraints hinder the 

system to reach the equilibrium state, as found e.g. by plasma induced physical and chemical 

vapor deposition at a relatively low temperature, the metastable ternary Zr1-xAlxN phases in 

fcc or hcp structures may be obtained. Upon annealing to a sufficiently high temperature for a 

sufficiently long period, both of them should decompose to the equilibrium mechanical 

mixture of fcc-ZrN and hcp-AlN. 
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3.1.1.2  Combined DFT & Thermodynamic calculations   

For the immiscible quasi-binary ZrN-AlN systems, the ternary Zr1-xAlxN phases with a 

structure ψ  can be regarded as a continuous solid solution composed of a given fraction of 

the stoichiometric ZrN−ψ  and AlN−ψ  phases with the same structureψ . According to Eq. 

(2.2.3), the molar Gibbs free energy of NAlZr xx−− 1ψ  solution phase can be expressed by Eq. 

(3.1.1.1). 

                        ψ

ψψψ

NAlZr

hcp
AlN

hcp
AlN

fcc
ZrN

fcc
ZrNNAlZr

LxxxxxxRT

GGxGGxG

:,

00
),(

)1(]ln)1ln()1[(

)())(1(

−++−−+

+++−= →→

                     (3.1.1.1) 

When ψ  represents fcc structure, it means that in the ternary phase NAlZrfcc xx−− 1 , Zr atoms 

of the fcc-ZrN are substituted by Al. The Gibbs free energy of the fcc-ZrN can be obtained 

directly from the published literature [Barin 93], whereas it is not available for fcc-AlN phase 

due to its instability with respect to hcp-AlN. However, the Gibbs free energy of the fcc-AlN 

can be approximately expressed by the Gibbs free energy of the stable hcp-AlN plus the 

lattice instability of fcc-AlN, which can be obtained from the ab intio DFT calculation. For 

simplicity, we regard the lattice instability as a temperature independent parameter (this 

simplification has been justified in [Zhang & Veprek 07] [Zhang & Veprek 07b] [Zhang & 

Veprek 08]). Accordingly, the lattice instability of fcc-AlN with respect to hcp-AlN, fcchcp
AlNG → , 

of about 35.19 kJ/mol has been calculated by the ab initio DFT method. In a similar way, the 

lattice instability of hcp-ZrN with respect to fcc-ZrN, 
hcpfcc

ZrNG →
, of about 92.99 kJ/mol has 

been obtained for ψ  corresponding to the hcp structure. 

We shall now discuss the Gibbs free energy of the stable phases fcc-ZrN and hcp-

AlN, i.e. fcc
ZrNG0  and hcp

AlNG0
, respectively. The compiled data of temperature dependence of 

Gibbs free energy above 273 K by Barin [Barin 93] were numerically fitted by Eq. (2.2.4). 

The resulting polynomial coefficients a to f in Eq. (2.2.4) are listed in Table 3.1.1.II. The 

Gibbs free energy at 0 K is then approximately estimated from linear extrapolation of Eq. (4) 

(Note, that such approximation will not change the relative values of Gibbs free energy of 

different phases at 0 K).  
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Table 3.1.1.II: The fitted parameters in Eq. (2.2.4). 

 

 a b c d e f 

Phase (105) (102) (10) (10-3) (105) (10-7) 

fcc-ZrN -3.829 2.919 -4.843 -2.150 4.603 -1.522 

hcp-AlN -3.385 3.006 -4.600 -3.550 9.882 4.2144 

 
 

As the third step we determine the interaction parameters fcc
NAlZrL :,  and hcp

NAlZrL :,  at 0 K 

by fitting Eq. (3.1.1.2), using the total energies of ZrN, AlN and Zr1-xAlxN phases with ψ  

structure obtained from the ab initio calculation, 

                         
ψψψψ

NAlZrAlNZrNNAlZr LxxxEExE
xx :,)1()1(

1
−=−−−

−
                 (3.1.1.2) 

The composition dependence of the interaction parameter is approximated 

by )( 2
:,

2
:,

1
:,

0 xLxLL NAlZrNAlZrNAlZr ⋅+⋅+ ψψψ
, where 

ψ
NAlZrL :,

1
and 

ψ
NAlZrL :,

2
 are the 

composition dependent parameters. By fitting the ab initio data as shown in Fig. 3.1.1.3, we 

obtained the composition dependence 5
:, 10)24.351.1( ⋅⋅+= xLfcc
NAlZr  and 

52
:, 10)77.789.564.2( ⋅⋅−⋅+= xxLhcp
NAlZr J/mol for fcc- and hcp- Zr1-xAlxN, respectively.  
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Fig. 3.1.1.3: Fit of the formation energies (lines) by ab initio DFT calculation (circles) to the 

function ))(1( 10 xLLxx +− and ))(1( 2
2

10 LxxLLxx ++− .  

 

Now we assume a linear dependence of the interaction parameter on temperature, 

i.e. only the coefficients ijA  and ijB  are applied in Eq. (2.2.5). Accordingly, this dependence 

can be obtained from the calculated value of interaction parameter at 0 K and at another, 

higher temperature. As outlined above, for a variety of hard materials, the interaction 

parameter of about 20–50 kJ/mol has been estimated around the melting point, in a reasonable 

agreement with the experimental miscibility gaps [Holleck 88] [Spencer &  Holleck 90] 

[Stolten 91] [Spencer 94] [Anderbouhr et al. 99]. In order to obtain information about the 

sensitivity of the final results to such a fit, we used in the present work both values 50 kJ/mol 

and of 20 kJ/mol as the maximum and minimum, respectively. The melting point of 

Zr0.5Al0.5N solid solution of 3007.5 K used here is the average value of the melting points of 

ZrN and of AlN [Holleck 86]. Accordingly, the temperature dependent parameters of about -

97 J/mol⋅K and -54 J/mol⋅K are calculated for fcc- and hcp- Zr1-xAlxN, respectively, when the 

minimum value of 20 kJ/mol is used, whereas the values of -87 J/mol⋅K and -44 J/mol⋅K are 

obtained when the maximum value of 50 kJ/mol is adopted. In the following, we shall use the 

temperature dependence parameters calculated with the maximum interaction parameter of 50 

kJ/mol. The possible error should not exceed 10–15 %. Using these values and the calculated 
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lattice stabilities of metastable hcp-ZrN and fcc-AlN phases, the Gibbs free energies of the 

mixed ternary Zr1-xAlxN phase at different temperatures of 0 K, 273 K, 373 K, 573 K, 773 K, 

1073 K, 1273 K and nitrogen pressure of 1 atm have been calculated from Eq. (2.2.6) over the 

entire composition range. Figure 3.1.1.4 shows the results for three selected temperatures of 0 

K, 773 K and 1273 K. The solid lines represent the fcc and the dashed lines the hcp structures. 

One can clearly see that the fcc structure is more stable within the composition range of 

0≤x≤0.472, whereas the hcp structure becomes more stable at higher Al content for the 

temperature of 0 K. With the increasing temperature, the cross-over point moves to a higher 

Al content reaching a value of x = 0.568 at the temperature of 1273 K.  
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Fig. 3.1.1.4: Gibbs free energy of fcc- and hcp- Zr1-xAlxN at three different temperatures of 0 

K, 773 K and 1273 K. (Solid lines: fcc-structure; dashed lines: hcp-structure) 

 

       The cross-over point of the Gibbs free energy for the fcc to hcp phase transformation 

corresponds to the maximum "solubility" 4 of Al in the MeN. According to the experimental 

results of Sanjinés et al. [Sanjinés et al. 06], Zr1-xAlxN coatings with 0≤ x ≤0.43 deposited at 

373 K crystallized in single-phase fcc solid solution, and at the critical point of x = 0.43, the 

maximum hardness has been obtained. Thus, the maximum "solubility" of Al in the Zr1-xAlxN 

                                                 
4 The term "solubility" is not correctly used in the current papers because the Zr1-xAlxN solid solutions are 
metastable whereas the "solubility" refers to an equilibrium state. We use it here as the other authors, however, 
with this limitation in mind. 
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coating should be x = 0.43. The theoretical calculations by Hugosson et al. [Hugosson et al. 

03] have shown that the phase transition from fcc to hcp for Zr1-xAlxN at 0 K occurs around x 

= 0.5. Thus both the experimental [Sanjinés et al. 06] and theoretical [Hugosson et al. 03] 

results are in a reasonable agreement with the present value for the cross-over point of x = 

0.472 at 0 K. The relatively small increase of the critical Al fraction with the increasing 

temperature is similar to the results obtained for TiN-AlN system [Zhang & Veprek 07], but 

quite different from that for CrN-AlN one [Zhang & Veprek 07b]. In the latter system the 

cross-over point shifts strongly to lower Al-fraction with increasing temperature [Zhang & 

Veprek 07b], whereas in the TiN-AlN system the phase transformation from fcc to hcp is 

almost temperature independent [Zhang & Veprek 07]. 

 

3.1.1.3  Possibility of chemical and coherent spinodal decomposition   

 Decomposition of the Zr1-xAlxN solution phase can occur either by nucleation and 

growth or by spinodal mechanism [Hillert et al. 61] [Ditchek & Schwartz 79] [Cahn & Hillard 

58] [Cahn 61] [Cahn 63] [Cahn 68] [Cahn 91] [Porter & Easterling 01]. The spinodal 

mechanism occurs when the second derivative of the Gibbs free energy of the solution phase 

is negative ("chemical spinodal") and the interfacial misfit strain energy is sufficiently small 

compared to the de-mixing energy of the mixed phase ("coherent spinodal"). When the de-

mixing energy is of the order of a few 10 kJ/mol, as in the case of the majority of metallic 

alloys and in the Ti1-xAlxN system, the spinodal mechanism is possible only when the final, 

stable phases are coherent [Porter & Easterling 01].  

Figure 3.1.1.5 shows the Gibbs free energy of the formation of fcc- Zr1-xAlxN solid 

solution as a function of composition for temperatures 0 K, 273 K, 573 K, 773 K, 1073 K, 

1273 K and nitrogen pressure of 1 atm, with stoichiometric fcc-ZrN and fcc-AlN as the 

reference states. It can be seen that, for the typical deposition temperature of ≤ 773 K and 

aging temperature of < 1073 K, the dependence of the Gibbs free energy of the immiscible 

system is typical of chemical spinodal, i.e. 0
)(

2

02

<
x

xG f

δ
δ

, within a large composition range. 

With increasing temperature, the Gibbs free energy of de-mixing decreases.  
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Fig. 3.1.1.5: Gibbs free energy of mixing of fcc-Zr1-xAlxN phase ΔG as a function of 

composition for temperatures 0 K, 273 K, 573 K, 773 K, 1073 K, 1273 K, where ΔG > 0, with 

fcc-ZrN and fcc-AlN as reference states. 

 

Figure 3.1.1.6 shows the calculated temperature-composition phase diagram for fcc- 

Zr1-xAlxN showing the binodal (dashed line) and spinodal (short dashed line) curves with fcc-

ZrN and fcc-AlN as reference states. In order to elucidate the possible effect of the choice of 

the critical interaction parameters, i.e., its temperature dependence (see above), we show in 

Fig 3.1.1.6 (a) and Fig. 3.1.1.6 (b) the binodal and spinodal curves with the critical interaction 

parameter of the maximum and minimum value of 50 kJ/mol and 20 kJ/mol, respectively. The 

binodal line corresponds to the co-existence of two stable phases, whereas below the binodal, 

phase segregation will occur either by (chemical) spinodal mechanism within the region 

below the (chemical) spinodal curve, or by nucleation and growth within the region between 

the spinodal and binodal curves. Thus, the solid solution is unstable within the spinodal and 

metastable between the spinodal and binodal curves. From Fig. 3.1.1.6 (a) and Fig. 3.1.1.6 (b) 

it can be seen that for temperatures of < 1000 K, which occurs during the deposition and 

application of the coatings for machining under mild conditions (relatively low cutting speed 

and sufficient cooling), the binodal curve is close to the y-axes, i.e. the ZrN and AlN nitrides 

are immiscible. The composition range for the chemical spinodal is from 0.289 to 0.994 in 

Fig. 3.1.1.6 (a) and from 0.299 to 0.994 in Fig. 3.1.1.6 (b), which illustrates the relatively 



29 
 

small sensitivity of this result to the exact choice of the value of the critical interaction 

parameter at melting point for this system.  
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(c)  

Fig. 3.1.1.6: Calculated temperature-composition phase diagram for fcc-Zr1-xAlxN showing 

the binodal (dashed line) and spinodal (short dashed line) with fcc-ZrN and fcc-AlN as 

reference states. (a) with the maximum critical interaction parameter of 50 kJ/mol; (b) with 

the minimum critical interaction parameter of 20 kJ/mol; (c) with the constant critical 

interaction parameter obtained from ab intio DFT calculation at 0 K. 

 

In order to illustrate the effect of the temperature dependence on the interaction 

parameter, we show in Fig. 3.1.1.6 (c) a diagram calculated with a constant interaction 

parameter as obtained from the ab initio DFT calculations at 0 K. It is clearly seen that the 

calculated top spinodal point approaches an unreasonably high temperature of about 25000 K. 

This is very important result because several recently published ab initio calculations used a 

constant value of the interaction parameter calculated at 0 K [Alling et al. 07] [Mayrhofer et 

al. 06b]. The results obtained in such a way have to be taken with care. A further 

improvement of the calculations may be obtained by considering also the effect of choice of 

different polynomial functions to fit the composition-dependent interaction parameter. We do 

not include it here because this effect is relatively small for the present case.  

Of course, quantum dynamic (Car-Parrinello) calculations can in principle solve this 

problem because they allow one to perform the calculations at any chosen temperature. 

However, the CPU time needed in this case increases by several orders of magnitude. 
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Considering the fact that our ab initio DFT calculations at 0 K of the kind presented in this 

Thesis need several weeks on a modern work station with several parallel processors, the 

quantum dynamic approach is not realistic in this case. The fairly good similarity of the 

diagrams in Fig. 3.1.1.6 (a) and Fig. 3.1.1.6 (b), which were obtained by a combination of the 

"static" ab initio DFT at 0 K and relatively simple thermodynamics with a linear dependence 

of the interaction parameter on temperature, clearly shows the advantage of our combined 

computational approach. 

 

Effect of the lattice mismatch    

In this section, we consider the effect of the lattice mismatch and corresponding 

interfacial strain energy on the possibility of phase segregation according to the spinodal 

mechanism. In the theory of Cahn and Hillard et al. [Hillert et al. 61] [Ditchek & Schwartz 

79] [Cahn & Hillard 58] [Cahn 61] [Cahn 63] [Cahn 68] [Cahn 91] [Porter & Easterling 01], 

the chemical spinodal discussed above should be modified by the contribution of elastic strain 

energy resulting from the composition fluctuation during the phase segregation. A simple 

thermodynamic estimate can be done by comparing the initial de-mixing energy with the final 

interfacial strain energy resulting from the mismatch between the demixed phases  [Zhang & 

Veprek 07] [Zhang & Veprek 07b] [Zhang & Veprek 08] [Mayrhofer et al. 07]. When the 

interfacial strain energy is sufficiently small as compared with the chemical de-mixing 

energy, the decomposition by the spinodal mechanism is possible even for semi-coherent 

interfaces with a relatively large misfit [Zhang & Veprek 06] [Zhang & Veprek 08], because 

the misfit energy will be relaxed by the formation of misfit dislocations which are known to 

promote the spinodal phase segregation [Chen 02] [Léonard & Desai 98] [Hu & Chen 04]. 

Such diffusion-controlled phase segregation can be investigated by means of the phase-field 

model [Chen 02], which is, however, beyond the scope of the present work. Therefore we 

limit our discussion to a semi-quantitative estimate of the possible phase segregation and 

transformation path.  

The misfit of the lattice constants between the fcc-ZrN and fcc-AlN of 12.47 % (see 

Table 3.1.1.I) is much larger as compared with that for the fcc-TiN/fcc-SiN and fcc-CrN/fcc-

AlN interfaces of 0.117 % [Zhang & Veprek 08] and 0.75 % [Zhang & Veprek 07b], 

respectively. Therefore, the simple coherent model derived from the pseudomorphic growth 

of thin films, which yields the maximum possible elastic misfit strain energy [Zhang & 

Veprek 07b], cannot be used in the present case.  
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The continuum mechanical approach used recently by Mayhofer et al. for the 

decomposition of the Ti-Al-N systems [Mayrhofer et al. 07] does not consider the relaxation 

of the misfit strain energy by the formation of dislocations. Moreover, the assumption of the 

formation and growth of spherical TiN and AlN precipitates (see Eq. (2) and related 

discussion in Ref. [Mayrhofer et al. 07]) corresponds to the mechanism of nucleation and 

growth rather than to the spinodal one, which occurs by a growth of the amplitude of initially 

small compositional modulation with a characteristic period, as described by the theory of 

Cahn et al. [Cahn & Hillard 58] [Cahn 61] [Cahn 63] [Cahn 68] [Cahn 91] [Porter & 

Easterling 01]. Therefore, their approach is also not suitable for the present case. In the 

following we use a method of semi-quantitative estimate to analyze the possible phase 

segregation and transformation path.  

The interfaces in alloys are classified as coherent when the misfit is lower than 5%, 

semicoherent when the misfit is larger than 5% but lower than 25%, and incoherent when the 

misfit is larger than 25% [Howe 97] [Porter & Easterling 01]. However, it is well known from 

the heteroepitaxial, pseudomorphic thin film growth that the relaxation of the elastic strain 

energy of a semicoherent interface by the formation of misfit dislocations depends on the 

thickness of the layer (see e.g., [Jain et al. 97] [Jain et al. 00] [Paul 04] and references therein), 

i.e. on the size of the precipitates in the case of alloys. Therefore, the high misfit of about 

12.47 % for the fcc-ZrN/fcc-AlN interface must result in the formation of dislocations during 

the advanced stage of the phase segregation of the fcc-Zr1-xAlxN solution, which is likely to 

facilitate the phase transition to hcp-AlN, because the misfit of fcc-ZrN(111)/hcp-AlN(0001) 

interface of 4.48 % is much smaller, and can be accommodated by the formation of misfit 

dislocations on the glissile fcc/hcp interfaces [Porter & Easterling 01]. The decomposition via 

a formation of coherent fcc-ZrN and fcc-AlN by spinodal mechanism, as experimentally 

reported [Mayrhofer et al. 03] and theoretically calculated [Zhang & Veprek 07] in the Ti1-

xAlxN, is very unlikely in the Zr1-xAlxN system. These ideas are also in accord with the 

consideration of the average volume per atom of 0.01056 nm3 (10.56 Å3) for the hcp-AlN, 

0.00842 nm3 (8.42 Å3) for the fcc-AlN, 0.01105 nm3 (11.05 Å3) for fcc-Zr0.5Al0.5N and 

0.01224 nm3 (12.24 Å3) for fcc-ZrN. Obviously, the mismatch for both fcc-Zr0.5Al0.5N and 

fcc-ZrN is smaller for hcp-AlN than for fcc-AlN. These consideration and conclusions are in 

agreement with the experimental results that no intermediate fcc-AlN has been observed in 

Zr-Al-N coatings so far [Sanjinés et al. 06]. The hardness enhancement during annealing of 

fcc-Zr1-xAlxN has been attributed to the presence of the formation of the coherent strain 

regions, which are formed due to spinodal phase segregation towards Al-rich and Zr-rich 
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zones, as suggested in Ref. [Sanjinés et al. 06]. However, in order to clarify the exact 

structure of the strained regions, and, particularly of the final stages of the phase segregation, 

further experimental work, in particularly annealing to higher temperatures until the structure 

and hardness of the films will reach a stable stage, is needed. In order to allow the system to 

remain stoichiometric, such annealing should be done under nitrogen. 

 

3.1.1.4  Summary    

The equilibrium properties, such as the lattice constant, bulk modulus, cohesive 

energy, and the relative stabilities of ZrN, AlN and ternary Zr1-xAlxN phases in both the 

fcc(NaCl) and hcp(ZnS) structures have been studied by ab initio DFT calculations. The 

calculated values are in very good agreement with the published experimental and theoretical 

data thus assuring the reliability of present calculations.  

Based on the calculated lattice stabilities of binary phases and interaction parameters 

of ternary solution phases, the phase selection in the Zr1-xAlxN system has been studied over 

the entire composition range. The critical AlN concentration at which the phase 

transformation from fcc to hcp occurs is nearly independent of the temperature. This is in 

agreement with the phase transformation in Ti1-xAlxN system [Zhang & Veprek 07], but 

different from the in Cr1-xAlxN one [Zhang & Veprek 07b] where the critical Al concentration 

is temperature dependent. 

The constructed chemically binodal and spinodal decomposition curves show that 

metastable fcc-Zr1-xAlxN solution coatings might undergo phase decomposition into fcc-ZrN 

and fcc-AlN. However, considering the large value of interfacial strain, the fully coherent 

spinodal decompositon into the fcc-ZrN and fcc-AlN in large scale may be hindered, and 

decomposition into a mixture of fcc-ZrN and hcp-AlN is more preferable.  

 

3.1.2  Zr-Si-N system    

The Zr-Si-N system has been studied by several groups who used reactive sputtering. 

Unfortunately, the deposition conditions were, in most papers, chosen incorrectly and, 

therefore, did not enable the formation of fully segregated nanostructure. For example, Nose 

et al. [Nose et al. 02] used a low deposition temperature of ≤ 100°C. These researchers 

reported a hardness increase up to about 35 GPa with Si content increasing to about 3 at.%. 

The morphology changed from columnar to equi-axial at about 5 at.% Si. Films containing 

12.8 at.% Si, which showed a hardness of 18 GPa, consisted of nanocrystal grains.. In a 
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subsequent investigation [Zhou et al. 03], these authors reported that higher deposition 

temperature up to 400°C had only a little effect on the hardness. This may be due to 

impurities, which are however, not reported by these workers. Song et al. studied the 

microstructure and properties of the Zr-Si-N diffusion barrier films [Song et al. 04]. They 

have shown that with increasing substrate bias from -50 to -200 Volts, the Zr/Si ratio and the 

surface roughness increased, but the resistivity of the film decreased. With the decrease of the 

bias, the microstructure of Zr-Si-N film changed from composites consisting of ZrN 

nanocrystals in amorphous SiNx to fully amorphous films. The reason for this change has not 

been clarified. In a series of studies, Sandu et al. also found hardness maximum of about 30 

GPa for Si content of about 3 at.% in coatings deposited at a temperature of 240 and 440°C 

[Sandu 06a] [Sandu 06b] [Sandu et al. 07a] [Sandu et al. 07b] [Sandu et al. 08]. Coatings 

deposited at room temperature showed a maximum hardness of only 20 GPa for Si-content of 

about 6 at.%. In all these papers, the coatings had a pronounced columnar morphology instead 

of the fully isotropic one, as reported by Veprek et al. for fully segregated nanocomposites 

[Veprek et al. 95] [Veprek 99] [Veprek et al. 05] [Niederhofer et al. 99].  

The relatively low hardness of about 30 to 35 GPa reported in all these papers is most 

probably due to oxygen impurities, which, however, have not been reported in majority of the 

papers. Only in the paper of Sandu, oxygen and carbon impurity content "below 2 at.% for 

each" (i.e., ≤ 4 at. % total) is mentioned [Sandu et al. 06a]. The hardness of such coating is 

determined by the strength of the oxygen-related defects within the SiNx interface [Veprek et 

al. 05] [Veprek et al. 05b] [Hao et al. 06]. The papers of Sandu et al. and of the other quoted 

authors contain also a lot of speculations regarding the formation of the nanostructure which 

are not sufficiently supported by experimental data. For example, the columnar morphology 

with elongated ZrN nanocrystals is obviously responsible for the relatively low Si-content at 

which hardness maximum is found, because the specific interfacial area decreases with 

increasing average crystallite size.    

ZrN/SiNx nanomultilayers with different thickness of Si3N4 were investigated by Dong 

et al. [Dong et al. 06]. By analogy with the TiN/SiNx heterostructures [Söderberg et al. 05] 

[Hu et al. 05], the maximum hardness of about 32 GPa has been achieved in the ZrN/SiNx 

heterostrucutres for about 2 monolayers thin pseudomorphic fcc (NaCl)-SiN. When the SiNx 

thickness was larger than about 1.1 nm, amorphous SiNx has been formed and the hardness 

strongly decreased [Dong et al. 06]. 

The theoretical investigations of phase stabilities of the Zr-Si-N system are very 

limited. Therefore, in this chapter, we shall study its phase stabilities by means of the 
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combined ab initio calculation and thermodynamic modeling as used in the foregoing section 

for the Zr-Al-N system, and in the recent papers of our research group [Zhang & Veprek 07] 

[Zhang & Veprek 07b] [Zhang & Veprek 08] [Sheng et al. 08]. 

In majority of the earlier studies, the temperature dependence of the interaction 

parameter has been expressed by the Redlich-Kister (RK) polynomial [Redlich & Kister 48] 

in linear approximation or even neglected by some authors, which may cause artefacts, such 

as too high spinodal temperature, apparent miscibility regions, and others. In order to avoid 

such problems, Kaptay recently recommended the use of the exponential temperature 

dependence [Kaptay 04]. This method has been successfully used for the thermodynamic 

modeling of Zn-Zr system [Arroyave & Liu 06]. Therefore we shall, in this chapter, compare 

the results obtained with the linear and exponential dependence of the interaction parameter 

on temperature. 

Because of the importance of the pseudomorphically stabilized fcc-SiN, Zhang et al. 

studied the mechanical [Zhang et al. 07d] and thermodynamic [Zhang & Veprek 06] [Zhang 

& Veprek 07] [Zhang & Veprek 08] properties of the sub-stoichionmetric fcc-SiN. These 

studies have shown that this material is mechanically and thermodynamically unstable as 

compared to hcp-Si3N4. However, it was not clear from this work if fcc-SiN is metastable or 

inherently unstable. In a more recent work, Zhang et al. have shown that depending on their 

crystallographic nature, some of the 1ML fcc-SiN interfaces between TiN slabs are inherently 

unstable in their high-symmetry structure, but they stabilize by decreasing the symmetry 

[Zhang et al. 09]. Therefore, in this section we shall investigate the stability of bulk fcc-SiN 

by calculating the elastic constants and phonon dispersion relations.  

 

3.1.2.1  Structural properties and phase stabilities by ab initio DFT calculation    

In the study of the Zr-Si-N system, the following phase structures have been considered: 

the fcc(NaCl-type), space group Fm-3m, No. 225, and hcp (ß-type), space group P63/m, No. 

176. The hcp(ß) and fcc(NaCl) structure were studied using a supercell of 14 and 16 atoms, 

respectively.  For ternary Zr1-xSixNy phases in fcc(NaCl) and hcp(ß)-Si3N4 structure (y is 1 in 

fcc(NaCl) and 4/3 in hcp(β) structure), Zr and Si atoms were randomly distributed over the 

whole metal sublattice. As mentioned in Chapter 2 and in section 3.1.1, the choice of the 

position of metal sublattice in substitution was found to have no significant effect on the 

results of the present calculations. 

 We calculated the total energies and the lattice constants of stable fcc-ZrN and hcp(ß)-

Si3N4, metastable hcp-Zr3N4 and fcc-SiN, the ternary fcc-Zr1-xSixN (x=0.125, 0.25, 0.375, 0.5, 
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0.625, 0.75, 0.875) and hcp-Zr1-xSixNy (x=0.167, 333, 0.5, 0.667, 0.833) phases. In the case of 

the high symmetry of the fcc-NaCl structure, the relaxations of the lattice constant (i.e., 

energy minimization) were performed without any optimization of the internal parameter. 

However, for the hcp(ß)-Si3N4 in P63/m space group, the optimization of internal parameters is 

necessary in order to obtain the most stable structure. Therefore, the full geometry 

optimization for hcp(ß)-Si3N4 was performed with relaxations of both the lattice constant as 

well as all internal parameters. The optimum values were used for the determination of the 

lattice stabilities of metastable hcp(ß)-Zr3N4 and fcc-SiN with respect to the corresponding 

stable fcc-ZrN and hcp(ß)-Si3N4 phases, as well as for the determination of the interaction 

parameters of the ternary fcc- and hcp- Zr1-xSixNy solid solutions. 

6 8 10 12 14 16 18 20
-10.5

-10.0

-9.5

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

Volume,V(10-3nm3 / atom)

T
ot

al
 e

ne
rg

y,
 E

 (e
V

/ a
to

m
)

 

fcc-Zr1-xSixN
x=1

x=0.125
x=0.25

x=0.375

x=0.5
x=0.625
x=0.75

x=0.825

x=0

6 9 12 15 18 21 24 27
-10.5

-10.0

-9.5

-9.0

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

-5.5

hcp-(Zr1-xSix)3N4

T
ot

al
 e

ne
rg

y,
 E

 (e
V

/ a
to

m
)

Volume, V(10-3nm3 / atom)

x=1

x=0.167

x=0.333
x=0.5

x=0.667
x=0.833

x=0

 
                                       (a)                                                                           (b)                   

Fig. 3.1.2.1: The dependence of the total energy on average atomic volume for binary ZrNy, 

SiNy compounds and the ternary Zr1-xSixNy solid solutions in (a) fcc(NaCl) and (b) hcp(ß) 

structures.  

 

 Figure 3.1.2.1 (a) and (b) show the calculated dependence of the total energy, E, on 

volume, V, for binary ZrN, SiN, and ternary Zr1-xSixN with fcc (NaCl) structure, and for 

binary Zr3N4, Si3N4 and ternary (Zr1-xSix)3N4 with hcp(ß) structures. It can be seen that, in 

agreement with the experimental results, the fcc-ZrN structure is more stable than hcp(ß) one, 

whereas the hcp(ß)-Si3N4 structure is more stable than the fcc- one. One can also notice that 

for hcp-(Zr1-xSix)3N4 solution with Si fraction x > 0.5 in the (Zr, Si) sublattice, the local 
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minima of the total energies for x = 0.667, 0.883 are higher than those of the stable binary hcp 

(ß)-Si3N4. To check for the possible reason, we have done the relaxation of these phases with 

Si content higher than 0.5. During the running of the program script, the output file reminded 

us that: “… sub-space-matrix is not hermitian in DAV …”, which indicates that the ionic 

relaxation leads to unreasonable geometry. This is obviously due to the large difference of the 

atomic size of Zr and Si which introduces large strain resulting in an increase of the total 

energy. 

 In order to check the reliability of our calculations for the present system, the 

equilibrium volume V0, lattice constant a, total energy E0, bulk modulus B0 and its first 

derivative (pressure dependence) B0′ were calculated for the three binary phases of fcc-ZrN, 

hcp(ß)-Si3N4 and fcc-SiN as well as for hcp-Zr and fcc-Si using the Murnaghan equation of 

state, Eq. (2.2.2), to fit the dependence of total energy on volume shown in Fig. 3.1.2.1. All 

the resulting values are summarized in Table 3.1.2.I. The corresponding cohesive energy Ec 

and the formation enthalpy ΔHf (see Eq. (2.2.1)) are also included in Table 3.1.2.I together 

with experimental and theoretical data reported in the literature [Aguayo et al. 02] [Ziambaras 

& Schröder 03] [Nagao et al. 06] [Vogelgesang et al. 00] [Ching et al. 98]. The calculated 

bond length of N2 molecule of about 0.1085 nm, is in good agreement with calculated (0.1085 

to 0.111 nm) and the experimental (0.1098 nm) value reported by Stampfl et al. [Stampfl et al. 

01]. The agreement of all the data in Table 3.1.2.I is very good.  
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Table 3.1.2.I: The equilibrium volume V0, total energies E0, bulk modulus B0, and its pressure 

derivative B0′ for hcp-Zr, fcc(Diamond)-Si, fcc(NaCl)-ZrN, hcp(ß)-Si3N4 and fcc-SiN 

obtained from fitting the E-V data in Fig. 3.1.2.1 by the the Murnaghan’s equations of state. 

The cohesive energy Ec and the formation enthalpy ΔHf were also calculated and summarized 

in the table. The calculated results are compared with the published experimental (e) and 

theoretical (t) data. (Note: the formation enthalphy is obtained by calculating the difference of 

the total energies of the stable) 

 

Phase V0 (nm3/atom) E0 (eV/atom) Ec (eV/atom) B0 (GPa) B0′ 
ΔHf 

(kJ/mol·atom) 

  Present work  -8.313 5.144    

N2  
  Reference 

  5.28 t[i] 

4.95 e[ii] 

   

Present work 0.023368 -8.458 6.404 96.69 5  
hcp-Zr 

Reference  0.0234 t[iii]   95 t[iii]   

Present work 0.020457 -5.428 4.539 85.75 4.275  
fcc-Si 

Reference 0.020.414 t[iv]    87.7 t[iv]   

Present work 0.012238 -10.175 7.564 256.56 4.632 -172.7 
fcc-ZrN 

Reference     257.9 t[v]   

Present work 0.010629 -8.225 6.017 237.207 3.902 -129.5 
hcp (ß)-

Si3N4 Reference    
216 e[vi] 

259 e[vi] 

3.99 

t[vii]  

Present work 0.00967 -6.457 4.432 177.41 3.411 39.17 

fcc-SiN 
Reference    

173.7-184.3 

t[viii] 
  

[i] = [Zoroddu et al. 01]; [ii] = [Stampfl & Walle 99]; [iii] = [Aguayo et al. 02]; [iv] = [Ziambaras & Schröder 

03]; [v] = [Nagao et al. 06]; [vi] = [Vogelgesang et al. 00]; [vii] = [Ching et al. 98]; [viii] = [Zhang et al. 07d]. 

 

Now we shall discuss the lattice instability of hypothetical fcc-SiN with respect to the 

hcp(ß)-Si3N4, 
fcchcp

SiNG → . For simplicity, we regard the lattice instability as a temperature-

independent parameter. Based on the reaction 4fcc-SiN = hcp(ß)-Si3N4 + Si, which 

corresponds to a low activity of nitrogen, a high lattice instability of fcc-SiN with respect to 

hcp-Si3N4 of 135.1 kJ/mol·atom has been obtained. Considering the reaction 3fcc-SiN + 0.5N2 

= hcp(ß)-Si3N4, which corresponds to high nitrogen pressure, an even higher lattice instability 

of 167 kJ/ mol·atom has been obtained in agreement with calculated results in [Zhang & 

Veprek 07a]. In a similar way, the lattice instability of hcp-Zr3N4 with respect to fcc-ZrN 
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hcpfcc
ZrNG →  of about 64.29 kJ/ mol·atom has been obtained based for reaction 4fcc-ZrN = hcp-

Zr3N4 + Zr and of 14.96 kJ/ mol·atom, for reaction 3fcc-ZrN + 0.5N2 = hcp-Zr3N4. As 

expected, both fcc-SiN and hcp-Zr3N4 are unstable as compared to the stable hcp(ß)-Si3N4 and 

fcc-ZrN phases.  

Figure 3.1.2.2 shows the calculated lattice constant a as a function of the Si fraction x 

in the ternary Zr1-xSixNy phases with fcc and hcp structures, respectively. With increasing x, 

the lattice constant decreases, showing a slightly positive deviation from the Vegard's law 

xa fcc ⋅−= 35.061.4 and xahcp ⋅−= 55.123.9  for fcc-Zr1-xSixN and hcp-(Zr1-xSix)3N4, 

respectively. The decrease of the lattice constant is due to smaller radius of Si atoms of 0.118 

nm as compared with that of Zr of 0.160 nm. The slight deviation from the Vegard's law is 

due to the change of the bonding character when the systems are changing from a stable fcc-

ZrN (or instable hcp-Zr3N4) to instable fcc-SiN (or stable hcp(ß)-Si3N4).  

0.0 0.2 0.4 0.6 0.8 1.0
3.5

4.0

4.5

7.5

8.0

8.5

9.0

9.5

10.0

fcc-Zr1-xSixN

 

 

Fraction of Si in (Zr1-xSix) sublattice, x 

L
at

tic
e 

co
ns

ta
nt

, a
 (

10
-1

nm
)

 

hcp-(Zr1-xSix)3N4

4.61

4.26

9.23 7.68

 

Fig. 3.1.2.2: The calculated lattice constant a as a function of the Si fraction x for the ternary 

fcc-Zr1-xSixN and hcp-(Zr1-xSix)3N4, respectively. 
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3.1.2.2  Combined DFT & Thermodynamic calculations  

 For the immiscible quasi-binary ZrNy-SiNy systems, the ternary Zr1-xSixNy phase with 

a structure ψ  can be regarded as a continuous solid solution composed of a given fraction of 

the stoichiometric yZrN−ψ  and ySiN−ψ  phases with the same structureψ . According to 

Eq. (2.2.3), the molar Gibbs free energy of yxx NSilZr −− 1ψ  solution phase can be expressed 

by Eq. (3.1.2.1). 

                  ψ

ψψψ

NSiZr

hcp
NSi

hcp
NSi

fcc
ZrN

fcc
ZrNNSiZr

LxxxxxxRT

GGxGGxG

:,

00
),(

)1(]ln)1ln()1[(

)())(1(
4343

−++−−+

+++−= →→

              (3.1.2.1) 

When ψ  represents fcc structure, then in the ternary phase NSiZrfcc xx−− 1 , Zr atoms of the 

fcc-ZrN are substituted by Si.  

 The Gibbs free energy of the stable phases fcc-ZrN and hcp(ß)-Si3N4, 
fcc

ZrNG0  

and )(0
43

ßhcp
NSiG ,can be obtained directly from the published literature [Barin 93]. The compiled 

data of temperature dependence of Gibbs free energy above 273 K by Barin were numerically 

fitted by Eq. (2.2.4). The resulting polynomial coefficients a to f in Eq. (2.2.4) for fcc-ZrN 

and hcp(ß)-Si3N4 are listed in Table 3.1.2.II. The Gibbs free energy at 0 K is then 

approximately estimated from linear extrapolation of Eq. (2.2.4). The Gibbs free energy of the 

fcc-SiN and hcp-Zr3N4 can not be directly obtained from available thermodynamic data but 

can be approximately expressed by the Gibbs free energy of the stable hcp(ß)-Si3N4 and fcc-

ZrN plus the lattice instability of fcc-SiN and hcp-Zr3N4, which have been calculated in 

section 3.1.2.1.  

 

Table 3.1.2.II: The fitted parameters in Eq. (2.2.4). 

 

Parameter a b c d e f 

Factor (105) (102) (10) (10-3) (105) (10-7) 

fcc-ZrN -3.829 2.919 -4.843 -2.150 4.603 -1.522 

hcp(ß)-Si3N4 -7.735 4.143 -7.332 -57.00 3.265 49.37 
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Next we shall study the mixing properties of the fcc-Zr1-xSixN solid solution by 

considering the reaction SixNSixZrNxNSiZr xx 44
)1( 431 ++−=− , which should occur at low 

activity of nitrogen for the temperatures considered here. The de-mixing energy of fcc-

Zr0.5Si0.5N phase with respect to the stable fcc-ZrN, hcp(ß)-Si3N4 and pure Si is about 80.88 

kJ/mol·atom. This value is higher than the previously calculated value of about 74.25 kJ/ 

mol·atom for the Ti-Si-N system [Zhang & Veprek 07a] [Zhang & Veprek 08]. For the case 

of a high nitrogen activity, where the reaction 4321 3
)1(

6
NSixZrNxNxNSiZr xx +−=+− applies, 

the calculated de-mixing energy of fcc-Zr0.5Si0.5N phase with respect to the stable fcc-ZrN, 

hcp(ß)-Si3N4 and pure N2 of about 96.82 kJ/ mol·atom is also higher than that of 90.5 kJ/ 

mol·atom for the Ti-Si-N system [Zhang & Veprek 08]. These large values of de-mixing 

energy suggest that there is a large driving force for fcc-solution phase to segregate into the 

stable fcc-ZrN and hcp(ß)-Si3N4. The higher instability of the Zr-Si-N solid solution as 

compared with the Ti-Si-N one can be, in a somewhat simplified manner, understood in terms 

of a larger difference in the atomic size.      

In order to determine the interaction parameters fcc
NSiZrL :,  and )(

:,
ßhcp

NSiZrL  at 0 K, we 

calculated the mixing properties of the solid solution with respect to the isostructural terminal 

phases. As outlined in the introductory chapter, the interaction parameters for the phases with 

a structure Ψ are obtained from Eq. (3.1.2.2)    

                           ψψψψ
NSiZrSiNZrNNSiZr LxxxEExE

yxx :,)1()1(
1

−=−−−
−

                         (3.1.2.2) 

The composition dependence of the interaction parameter is approximated by the 

polynomial )( 2
:,

2
:,

1
:,

0 xLxLL NSiZrNSiZrNSiZr ⋅+⋅+ ψψψ , where ψ
NSiZrL :,

0 , ψ
NSiZrL :,

1  and ψ
NSiZrL :,

2  are the 

composition dependent parameters. After fitting this dependence to the calculated data shown 

in Fig. 3.1.2.3, we obtained the composition dependence of the interaction parameters 
42

:, 10)42.745.226.2( ⋅⋅+⋅+= xxLfcc
NSiZr  and 52)(

:, 10)56.141.063.1( ⋅⋅+⋅+= xxL ßhcp
NSiZr  J/mol·atom for 

fcc- and hcp(ß)-Zr1-xSixNy at 0 K, respectively. It is seen that the curves of both solution 

phases show positive mixing energies. Therefore, the solid solutions are unstable and should 

decompose to the isostructural terminal phases.  This trend is clearly much more pronounced 

for the hcp-(Zr1-xSix)3N4 than for the fcc-Zr1-xSixN one.  
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Fig. 3.1.2.3: Fit (lines) of the formation energies obtained by the ab initio DFT calculation 

(circles) to the function ))(1( 2
2

10 LxxLLxx ++−  for fcc-Zr1-xSixN and hcp-(Zr1-xSix)3N4.  

 

We shall now compare the effect of the linear and exponential dependence of the 

interaction parameter on temperature. As mentioned earlier, the linear dependence has been 

used in majority of the studies so far. The linear dependence of the interaction parameter on 

temperature is obtained from the calculated value of interaction parameter at 0 K and at 

another higher temperature. For a variety of hard materials, the interaction parameter of about 

20-50 kJ/mol has been estimated at their melting point, in a reasonable agreement with the 

experimental miscibility gaps (see [Zhang & Veprek 08] [Zhang et al. 08] and references 

therein). According to our results for the Zr-Al-N system presented above, there is relatively 

small effect of the choice between 20 and 50 kJ/mol on the final results in that system. 

Therefore, in the present work, we used the value of 20 kJ/mol·atom. To be sure, we have 

checked that using the value of 10 kJ/mol·atom has negligible effect on the results. The 

melting point of Zr0.5Si0.5N solid solution of 2688 K used here is the average value of the 

melting point of fcc-ZrN and the decomposition temperature of hcp(ß)-Si3N4. Accordingly, 

the temperature dependent parameters of about -13.71 J/mol⋅K and -83.25 J/mol⋅K were 

calculated for fcc- and hcp- Zr1-xSixNy, respectively. Using these values and the calculated 

lattice instabilities of hypothetical hcp-Zr3N4 and fcc-SiN phases, the Gibbs free energy of the 

mixed ternary Zr1-xSixNy phases at different temperatures has been calculated from Eq. (2.2.3) 
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over the entire composition range. Fig. 3.1.2.4(a) shows the results at four typical 

temperatures of 373 K, 573 K, 773 K and 1073 K with stoichiometric fcc-ZrN and hcp(ß)-

Si3N4 chosen as reference states. At the temperature of 373 K, the fcc structure is more stable 

within the composition range of 0 ≤ x ≤ 0.179, whereas the hcp structure becomes more stable 

at higher Si content. With increasing temperature, the cross-over point moves to a lower Si 

content reaching a value of only x = 0.123 at the temperature of 1073 K.  

The exponential dependence of interaction parameter on temperature given by Eq. 

(3.1.2.3) [Kaptay 04] 

                                                             Li = hoi ·exp(-T/τoi )                                           (3.1.2.3) 

will be now used to construct the phase diagrams for comparison. Here, the parameter Li 

(J/mol) is the interaction parameter, hoi (J/mol) is the enthalpy part of Li at T = 0 K, while 

parameter τoi is the temperature at which Li would change its sign if it were extrapolated 

linearly from T = 0 K. The interaction parameter depends on both the composition and 

temperature. From values of L0 obtained from the fit of Fig.3.1.2.3, we first determine the 

value of hoi. Using the value of 20 kJ/mol·atom for the interaction parameter at melting point 

we calculate the value of τoi. Accordingly, the temperature dependence is described by the 

equations 24824 )102629.2(
T

eL
−

⋅⋅=  and 10115 )106345.1(
T

eL
−

⋅⋅=  (J/mol⋅K) for fcc- and hcp- Zr1-

xSixNy, respectively. Using these values and the calculated lattice instabilities of hypothetical 

hcp-Zr3N4 and fcc-SiN phases, the Gibbs free energy of the mixed ternary Zr1-xSixNy phases at 

different temperatures has been calculated from Eq. (2.2.3) over the entire compositions. The 

results are shown in Fig. 3.1.2.4(b). The cross-over value of x at 373 K is about 0.149, and it 

decreases to 0.104 at 1073 K, i.e., somewhat lower than for the linear T-dependence.  

Table 3.1.2.III summarizes the cross-over points of the fcc- and hcp-curves at the 

tempereature of 373 K, 573 K, 773 K and 1073 K calculated with the linear and exponential 

functions. Obviously, both T-dependence yield comparable cross-over points within about ≤ 

20 %, and the corresponding values of x decrease with increasing temperature. This is in 

agreement with the experimental results of Sandu et al. [Sandu et al. 07a] [Sandu et al. 06a], 

who reported that with increasing substrate temperature the "solubility" limit of Si in ZrN 

lattice decreases. The cross-over points calculated with exponentially dependent interaction 

parameter are closer to the solubility limit of Si in ZrN lattice (10-12%) reported from the 

experiments [Sandu et al. 07a] [Nose et al. 02]. However, open questions remain regarding 

the effect of impurities (up to 2 at.% of O and C, each) and of possible nitrogen 
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substoichiometry in these experiments, because the solubility of Si in pure, stoichiometric 

ZrN is essentially zero [Rogl & Schuster 92]. 
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Fig. 3.1.2.4: Gibbs free energy of fcc- and hcp- Zr1-xSixNy at temperatures of 373 K, 573 K, 

773 K, 1073 K with stoichiometric fcc-ZrN and hcp(ß)-Si3N4 chosen as reference states for 

linear (Fig. (a)) and exponential (Fig. (b)) dependence of the interaction parameter on 

temperature. In Fig. (b), the red symbols are the cross-over points of the fcc- and hcp- curves 

corresponding to the exponential dependence whereas blue symbols correspond to the linear 

dependence from Fig. (a).  
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Table 3.1.2.III: The cross-over values of the fcc- and hcp- Zr1-xSixNy curves under the 

tempereature of 373 K, 573 K, 773 K and 1073 K calculated by linear function, exponential 

function, respectively. 

Cross-over point, x 
Temperature(K) 

Linear function Exponential function 

373 0.179 0.149 

573 0.161 0.129 

773 0.144 0.117 

1073 0.123 0.104 

 

 

The cross-over points correspond approximately to the "optimum" Si content of 7 – 9 

at.   %, where the maximum hardness has been found in a number of superhard (H ≥ 50 GPa) 

nc-MenN/a-Si3N4 nanocomposites which were deposited under the conditions that enable the 

formation of fully segregated stoichiometric phases [Veprek et al. 05]. It has been shown in 

these papers that under the conditions of a sufficiently high pressure of nitrogen and 

sufficiently high deposition temperature, the Si3N4 percolates as about 1 interfacial monolayer 

because, due to the lattice mismatch, a thicker layer is unstable [Veprek & Veprek-Heijman 

08].  

Figure 3.1.2.5 shows the Gibbs free energy of mixing for the fcc-Zr1-xSixN solid 

solution as a function of composition for temperatures 373 K, 573 K, 773 K, 1073 K and 

nitrogen pressure of 1 atm, with isostructural, stoichiometric fcc-ZrN and fcc-SiN as the 

reference states, calculated with linear (Fig. (a)) and exponential (Fig. (b)) T-dependence, 

respectively. For the typical deposition temperature of ≤ 773 K and annealing temperature of 

< 1073 K, the dependence of the Gibbs free energy of the immiscible system is typical of 

chemical spinodal, i.e., 0
)(

2

02

<
x

xG f

δ
δ

, within the Si-rich composition range, but it should 

decompose by nucleation and growth for Zr-rich range. The coordinates of the peaks of the 

curves at the temperatures of 373 K and 1073 K are marked in the figures. At low temperature 

of 373 K, the maximum Gibbs free energy calculated with linear and exponential function are 
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nearly the same. With increasing temperature from 573 K to 1073 K, the maximum Gibbs free 

energy of mixing calculated with exponential function decreases more rapidly than that 

calculated with linear function. The immiscibility gap is somewhat larger for the exponential 

T-dependence, particularly in the range of low Si content.  
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(b) 

Fig. 3.1.2.5: Gibbs free energy of mixing of fcc-Zr1-xSixN phase, ΔG, as a function of 

composition x for temperatures 373 K, 573 K, 773 K, 1073 K, with fcc-ZrN and fcc-SiN as 

reference states calculated with (a) linear and (b) exponential temperature dependence of 

interaction parameter.  
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3.1.2.3  Possibility of chemical and coherent spinodal decomposition  

Figure 3.1.2.6 shows the phase stability diagrams of fcc-Zr1-xSixN as a function of the 

composition for (a) temperature independent, (b) linearly, and (c) exponentially T-dependent 

interaction parameter. In the case of temperature dependent interaction parameter in Fig 

3.1.2.6 (b) and (c), we used the value of 20 kJ/mol at the decomposition temperature. 
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Fig. 3.1.2.6: Temperature-composition diagram for fcc-Zr1-xSixN showing the spinodal (short 

dashed line) and binodal (dashed lines) with fcc-ZrN and fcc-SiN chosen as reference states 

calculated with (a) temperature independent, (b) linearly and (c) exponentially temperature 

dependent interaction parameter.  

 

It can be seen that, although the compositional range of the chemical spinodal is 

similar for all three cases, the maximum "spinodal temperature" is unreasonably high for the 

case of temperature independent interaction parameter shown in Fig.3.1.2.6 (a). This is in 

agreement with the results for Zr-Al-N system presented above. Therefore, neglecting the T-

dependence of the interaction parameter, as found in many recent papers of other groups, 

yields unreliable results. Also the linear dependence yields a too high upper limit of the 

spinodal temperature of about 6300 K (Fig. (b)) whereas the exponential dependence (Fig. 

(c)) seems to be the best choice.    

Compared with the Ti-Si-N system [Zhang & Veprek 08], the chemically spinodal 

occurs in the Zr-Si-N system at a much higher content of silicon of x > 0.35. Therefore, the 

formation of nc-ZrN/a-Si3N4 nanocomposites with 1 ML interfacial SiNx by spinodal 

mechanism seems to be unlikely in this case. Phase segregation by nucleation and growth is 

more likely. In the Si-rich regime, spinodal phase segregation may occur because the 

thermodynamic driving force is high enough. Moreover, because the instability of the 

fcc(NaCl)-SiN with respect to the hcp(ß)-Si3N4 of 167 kJ/mol·atom is very high as compared 
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with the de-mixing energy (see Fig. 3.1.2.3), such phase transformation during the later stage 

of the decomposition of the stoichiometric, Si-rich fcc(NaCl)-Zr1-xSixN solution will not 

hinder the decomposition of the solid solution into stoichiometric ZrN and Si3N4. Thus, the 

formation of nc-Si3N4/1ML-ZrN nanocomposites by spinodal mechanism should be 

thermodynamically possible, whereas that of nc-ZrN/a-Si3N4 is unlikely because of the 

dominance of the nucleation and growth. However, the formation of crystallins Si3N4 is 

kinetically hindered at temperatures below about 1000°C. It remains an open question if 

superhardness can be achieved in the nc-Si3N4/1ML-ZrN nanocomposite system, and, if 

another mechanism can be responsible for the hardness enhancement reported in Zr-Si-N 

polycrystalline films and heterostructures. One possible explanation may be the lowering of 

the energy of the ZrN grain boundaries by Si3N4 which should have a lower surface energy, 

high affinity to the surfaces of transition metal nitrides and also a larger structural flexibility 

to relax the interfacial energy of polycrystalline transition metal nitrides.  
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Fig. 3.1.2.7: Temperature-composition phase diagram for hcp-(Zr1-xSix)3N4 showing the 

spinodal (short dashed line) and binodal (dashed lines) with hcp-Zr3N4 and hcp-Si3N4 chosen 

as reference states calculated with exponentially temperature dependent interaction parameter.  

 

Figure 3.1.2.7 shows the phase stability diagrams of hcp(ß)-(Zr1-xSix)3N4 as the 

function of Si fraction x with hcp(ß)-Zr3N4 and hcp(ß)-Si3N4 as reference states. On can see 

that, compared with Fig. 3.1.2.6 (c), both binodal and spinodal curves show different shapes, 
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particularly for the region with smaller Si fraction, where the phase segregation by spinodal 

mechanism is possible for the hcp-(Zr1-xSix)3N4 solid solution. 

 

Effect of the lattice mismatch   

In this section we discuss the effect of the lattice mismatch and the corresponding 

interface strain energy, and the possibility of phase segregation by the spinodal mechanism. 

According to the data presented above, the relatively large misfit between the fcc(NaCl)-ZrN 

and fcc(NaCl)-SiN phases of about 7.6 % suggests that semi-coherent interface should form 

in this case. In the case of heteroepitaxial, pseudomorphic thin film growth, the relaxation of 

the elastic strain energy by the formation of misfit dislocations depends also on the thickness 

of the film (see e.g., [Jain et al. 97] [Jain et al. 00] [Paul 04] and references therein), i.e. on the 

thickness of the interfacial layer in the case of the formation of the nanocomposites from a 

solid solution. Therefore, the large misfit of about 7.6 % for the fcc(NaCl)-ZrN/SiN interface 

can be accommodated only when the thickness of the interfacial phase is not much more than 

1ML. In the case of the nc-TiN/a-Si3N4 nanocomposites, about 1 ML thick SiNx interfacial 

layer correspond to maximum hardness and an Si concentration of about 7 - 9 at.%, i.e. the 

fraction x of about 0.14–0.18. However, as shown in Fig. 3.1.2.6, in the case of the fcc-Zr1-

xSixN system, the decomposition of the solid solution with the formation of the stable fcc-ZrN 

should occur by nucleation and growth in this case. Only for the hypothetical hcp-(Zr1-

xSix)3N4 system with x ≅ 0.35–0.45 spinodal mechanism may be possible. However, the 

terminal hcp-Zr3N4 phase is unstable. Therefore it is difficult to understand the results of 

Sandu et al. [Sandu et al. 08] that 1–2 ML SiNx phase could be stabilized in their experiments. 

Here we are again facing the problem of up to 2 at.% of O and C impurities (each, i.e. about 4 

at.% both together) and possibility of nitrogen substoichiometry in these experiments, because 

the "solubility" of Si, reported in their paper, is impossible in stoichiometric ZrN. Another 

problem which needs further experimental verification is the possibility of the formation of 

Si3N4/1 ML ZrN nanocomposites by spinodal mechanism which, according to the results 

presented in Figs. 3.1.2.6 and 3.1.2.7, should be thermodynamically possible. However, 

because Si3N4 crystallizes only at high temperatures of > 1000°C, the stoichiometric Si3N4 

precipitates formed during the PVD at relatively low temperature should be amorphous, and 

the 1 ML thick ZrN interfacial layer should be charged positively, because the 

electronegativity of Zr (1.4) is smaller than that of Si (1.8).    

For these reasons, the most likely mechanism of the formation of nc-ZrN/a-Si3N4 

nanocomposites with 1 ML of SiNx is the precipitation of fcc-ZrN nanocrystals and 1 ML of 
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stoichiometric Si3N4-like interfacial layer by a "mixed" mechanism where the misfit is absent 

in the initial stage of the decomposition of the fcc-Zr1-xSixN solid solution, and the crystallite 

size of ZrN remains limited by the diffusion during the growth, as discussed in [Veprek et al. 

09]. The only condition needed for such a process to occur is a sufficiently high nitrogen 

pressure that assures the formation of stoichiometric ZrN and Si3N4, which are immiscible 

[Rogl & Schuster 92].  

 

3.1.2.4  The lattice stability and bonding nature of fcc-SiN  

 As discussed above, the substoichiometric fcc-SiN is thermodynamically unstable with 

respect to hcp(ß)-Si3N4, but it could be stabilized as pseudomorphic 1 to 2 ML thick layer 

sandwiched between several nm thick fcc-TiN and fcc-ZrN. In order to verify whether bulk 

fcc-SiN is a metastable or inherently unstable phase, we shall calculate, in this section, its 

elastic constant by means of the ab initio DFT calculations.  

 We apply a set of small distortions δ to different components ε of the strain tensor and 

calculate the corresponding change of the total energy ΔE. The elastic constants of interest are 

obtained from the following relations between the applied strain ε and the corresponding 

strain energy density changes ΔE/V0: 

                              )0,0,0,0,0,(δε =  with 2
112

1
0/ δCVE =Δ ,  

                       )0,0,,0,0,0( δε =  with 2
442

1
0/ δCVE =Δ ,  

                       )0,0,0,,,( δδδε =  with 2
12112

3
0 )2(/ δCCVE +=Δ .  

The elastic constants are related to acoustic phonons by well know relations which can 

be found in the literature (e.g. [Dove 93] p. 100). Negative values of elastic constants C44 and 

(C11-C12)/2 suggest that the given structure is dynamically unstable against some transverse 

acoustic phonon modes. Here we limit our consideration only to C44 as the simplest, 

illustrative case, and because it shows the inherent instability of the fcc-SiN. When the elastic 

constant C44 is negative, the crystal is unstable against the transverse acoustic modes with 

frequencies ω related to this constant by 2
44

2
]001[ 2 ξρω C=  (ρ is the density and ξ is the 

corresponding wave vector) [Dove 93], because the phonon branches contain imaginary parts. 

Figure 3.1.2.8 shows the calculated relationships between ε and ΔE/V0 for the distortion 

)0,0,,0,0,0( δε = . The local maximum at δ = 0 means that C44 < 0, i.e., the system is 

inherently mechanically unstable [Born & Huang 54]. However, as seen from this figure, it 

may be stabilized by small distortion into the local minimum which lowers the symmetry of 
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the system, in a way similar to that as found for the 1 ML pseudomorphic fcc-SiN interface 

[Zhang et al. 09]. The calculated values of the elastic constants C11 = 202.461 GPa and C12 = 

183.555 GPa show that phonon branch with the wave vector along the [110] and polarization 

vector along ]011[ is stable because C11 – C12 > 0, i.e., the phonon frequencies are positive, 

i.e. the relationship 2
2211

2
]110[ )(2 ξρω CC −=  does not contain any imaginary solution. 
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Fig. 3.1.2.8: Strain energy density variations vs. the distortion )0,0,,0,0,0( δε = . 
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Fig. 3.1.2.9: Calculated phonon dispersion curves for bulk fcc-SiN for the 

)0,0,,0,0,0( δε = branch. 



53 
 

 

The phonon dispersion relationships were calculated using the density functional 

linear response method as complemented in Quantum-Espresso ab initio  DFT code 

[link: http://www.quantum-espresso.org/]. Figure 3.1.2.9 shows the calculated phonon 

dispersion curves for bulk fcc-SiN. The presence of the negative phonon branches confirms 

that the bulk fcc-SiN in its fully symmetric structure is unstable. Similar results were recently 

reported also by Alling et al. [Alling et al. 08], thus confirming the reliability of our results.         

   

(a) hcp(ß)-Si3N4 

      

(b) fcc-SiN 

Fig. 3.1.2.10: (color online) Left: Atomic structures and the Si-N containing planes for which 

the valence charge differences are shown on the right for the stable hcp(ß)-Si3N4 (Fig. (a)) and 

unstable fcc-SiN (Fig. (b)).  

  

Now we shall try to explain the electronic origin of the instability of fcc-SiN. Figure 

3.1.2.10 shows the atomic structure and relevant planes (left) for which the valence charge 

density difference (VCDD) are shown on the right. The VCDD are defined as the valence 

charge density of the system under consideration from which the valence charge densities of 



54 
 

neutral atoms at the given lattice positions were subtracted. Figure 3.1.2.10 shows the VCDD 

along the Si-N bonds. One can see that total electron density in the polar, covalent bond of 

hcp(ß)-Si3N4  is much higher than those in fcc-SiN.  

This is further illustrated by Fig. 3.1.2.11 which shows the VCDD between the Si and 

N atoms. The bond length in hcp-Si3N4 is much shorter and the total electron density in the 

polar, covalent bond is much higher than those in fcc-SiN. In our earlier paper we have 

shown, that fcc-SiN has a "metallic" character because of a finite density of states at the Fermi 

level [Zhang et al. 07b]. This is a consequence of the six-fold "over-coordination" of Si atoms 

in that crystal. Thus, all the results presented in this section unambiguously show that bulk 

fcc-SiN in its state of full symmetry is inherenly unstable.  
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Fig. 3.1.2.11:  Line plots of the valence-charge density difference along Si-N bond in fcc-SiN 

and hcp(ß)- Si3N4, respectively. 

 

3.1.2.5  Summary 

The fundamental properties, such as equilibrium lattice constant, total energy, bulk 

modulus, its derivative, and cohesive energy of binary fcc-ZrN, hcp(ß)-Si3N4 and fcc-SiN 

compounds, were calculated by ab initio density functional theory. The results are in good 

agreement with the published experimental and theoretical values. Similarly the ground state 

properties (total energy, lattice constant) have been also calculated for ternary fcc(NaCl)- and 
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hcp(ß)-Zr1-xSixNy solid solution phases. From these data the interaction parameter at 0 K has 

been obtained. Using its linear and exponential dependence on temperature, Gibbs free 

energies of the quasibinary ZrNy-SiNy system were constructed, respectively, in order to study 

the relative phase stability of the metastable ternary fcc(NaCl)- and hcp(ß)- Zr1−xSixNy 

solution phases over the entire range of compositions. The cross-over points predicted by the 

exponential equation are in the range of x=0.10–0.15 which is in a good agreement with the 

experimental results. 

 The constructed binodal and spinodal curves show that metastable fcc-Zr1-xSixN 

solution phase should spinodally decompose to isostructural fcc-ZrN and hypothetical fcc-SiN 

as the intermediate state only at relatively high Si content, which would yield much thicker 

SiN interface. Therefore, the most likely mechanism of the phase segregation is the nucleation 

and growth of the fcc-ZrN within a tissue of SiN which, in course of continuing 

decomposition and reaction transform into the thermodynamically stable Si3N4. The spinodal 

decomposition of fcc-Zr1-xSixN is possible at high Si fraction. Such a system is, however, 

unlikely to yield strengthened thin ZrN interface.  

The binodal and spinodal curves have also been constructed for hcp(ß)-(Zr1-xSix)3N4. 

They show that, unlike to fcc(NaCl)-Zr1-xSixN, the spinodal phase segregation is possible also 

at a low Si fraction x. However, such a process is unlikely to occur in reality because of the 

large instability of the hcp-Zr3N4 as compared with its fcc- counterpart. Instead, fcc(NaCl)-

ZrN and thin X-ray amorphous Si3N4-like interfacial phase should form during the final stage 

of the phase segregation. 

Finally we have shown that bulk fcc-SiN is inherently unstable in its fully symmetric 

configuration, but it may be stabilized by a small distortion that lowers its symmetry, in a 

similar way as shown recently for the 1 ML fcc-SiN interface.  

 

3.1.3  Al-Si-N system  

 As outlined in the introduction, the generic design principle for the preparation of the 

superhard nanocomposites is based on the formation of a nanocomposite due to self-organization 

upon phase segregation in strongly immiscible quasi-binary systems, such as stoichiometric, hard 

transition metal nitride in combination with a covalent nitride, such as Si3N4 or BN which have 

been successfully tested so far. Because all these nanocomposites are metallic, it is of interest to 

elucidate the possibility of the formation of hard or superhard nanocomposites consisting of two, 

immiscible covalent nitrides. Due to the lack of data regarding the miscibility of Si3N4 and BN, 

we concentrate in this section on the Al-Si-N system which is, when stoichiometric, immiscible 
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[Rogl & Schuster 92]. Both AlN and Si3N4 have stable hexagonal crystal structure and a 

similar Young's modulus [Holleck 86]. Because both are insulators with relatively large band 

gap (≤ 5.5 eV for Si3N4 [Bekalda et al. 00] and 6 eV for AlN [Speck & Chibu 09]), 

nanocomposites consisting of these nitrides should be also transparent which would make 

them potential candidates for applications in optical and optoelectronic devices. SiNx and AlN 

thin films were investigated as optical coatings by many researchers (e.g., [Piras et al. 08] and 

[Dimitrova et al. 98], respectively). Also the deposition of thin films of the ternary Al-Si-N 

system has been studied by several groups, however with somewhat different results. Some 

authors reported the formation of Al1-xSixN solid solutions [Pélisson et al. 07] [Musil et al. 08] 

[Liu et al. 09] [Kasu et al. 01], whereas others obtained a mixture of AlN and Si3N4 [Zirinsky 

& Irene 78] [Mazel et al. 97]. Pélisson et al. found that the Al-Si-N films are crystalline with 

the hexagonal AlN structure up to 12-16 at. % of Si [Pélisson et al. 07]. The observed shift of 

X-ray diffraction peaks indicates a substitutional incorporation of silicon in the h-AlN lattice 

up to a solubility limit of 6 at.% of Si. Upon a further increase of the silicon content, nc-

Al0.44Si0.06N0.5/a-SiNx nanocomposites were formed. Musil et al. investigated the properties of 

magnetron sputtered (Al1-xSix)N films [Musil et al. 08] and showed that the films with low Si 

content (≤10 at.%) were polycrystalline whereas those with high Si content of ≥25 at.% were 

amorphous. The amorphous films exhibited a high hardness of around 25GPa.  

 Hermann et al. studied the Si doping of AlN films grown by plasma-assisted molecular 

beam epitaxy (MBE) [Hermann et al. 05]. They reported substitutional Si doping of AlN 

grown "under N2-rich" conditions and Si segregation to the surface under "Al-rich" growth 

conditions”, which obviously contradicts the equilibrium diagrams [Rogl & Schuster 92]. 

Because the growth conditions are not sufficiently specified in that paper, and in view of the 

fact that the molecular beam epitaxy operates far from chemical equilibrium, these results 

cannot be considered as representative for the behavior of the Al-Si-N system. Recently, Liu 

et al. prepared Al-Si-N nanocomposite films by means of RF balanced magnetron sputtering 

and showed that a different microstructure development has been found for the films 

deposited by balanced magnetron sputtering as compared with those prepared by unbalanced 

magnetron sputtering. A maximum hardness of ≥ 25 GPa has been obtained along with a 

transition from nanocrystalline to amorphous state, when the Si content increased up to 25 

at.%. Si atoms substituted Al in AlN for Si content of ≤ 8 at.% [Liu et al. 09]. In similar 

studies, Kasu et al. found the formation of Al1-xSixN solid solution in a composition range of 

0-12 at.% [Kasu et al. 01]. Obviously, the results of many papers quoted here contradict the 

equilibrium phase diagrams, because the deposition were done under conditions which were 
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not sufficiently specified, but in most cases were remote from equilibrium. This makes an 

exact comparison and interpretation of the results difficult. 

 In the work of Weitzer et al. [Weitzer et al. 90] and, Hillert and Jonsson [Hillert & 

Jonsson 92], which were done under well specified conditions assuring nitrogen stoichiometry 

and low impurities, only a mixture of AlN and Si3N4 were obtained, but neither a ternary 

compound nor solid solution were found in this system. This is in agreement with the early 

work of Zirinsky and Irene in 1978 [Zirinsky & Irene 78], who deposited a mixture of AlN 

and Si3N4 films by thermal CVD from AlCl3 and SiH4 at temperature between 600 oC and 

1100oC. Also Mazel et al., who deposited thin films by means of low pressure CVD from a 

mixture of AlCl3, SiCl3 and NH3 diluted by N2 as carrier gas at temperature between 1000 and 

1320°C, found only a mixture of crystalline AlN and Si3N4 [Mazel et al. 97].  

 To summarize this short overview of the experimental work, we conclude that solid 

solution does not exist in the Al-Si-N system if the deposition is done under conditions of 

sufficiently high nitrogen pressure and temperature that assure the formation of stoichiometric 

AlN and Si3N4, which are immiscible. The possible role of impurities remains an open issue 

because of the lack of information provided in the papers. However, one should remember 

that Al and Si have very high affinity to oxygen. Therefore, minor oxygen impurities may 

play a large role in these systems.  

The theoretical studies of the Al-Si-N system are very limited. Therefore we shall 

concentrate, in this section, on the ab initio DFT and thermodynamic studies as conducted in 

the foregoing sections. 

 

3.1.3.1  Structural properties and phase stabilities by ab initio calculation    

For the Al1-xSixNy system, two phase structures have been studied: the hcp(ZnS-type), 

space group P63/mc, No. 186 and hcp(ß-type), space group P63/m, No. 176. The nitrogen 

molar coefficient y = 1 for the hcp(ZnS) and y = 4/3 for the hcp(ß) structure. A supercell 

consisting of 14 atoms has been used for the hcp(ß) and that with 16 atoms for the hcp(ZnS) 

structure. In both cases, the Al and Si atoms were randomly distributed over the metal 

sublattice in order to avoid clustering which obviously falsifies the results by decreasing the 

apparent mixing energy (see remark in [Zhang & Veprek 07). A full relaxation of the lattice 

constants, internal structure parameters and cell shape for both structures was first performed 

in order to obtain the most stable geometry with minimum total energy. 

Afterwards, the total energies and lattice constants of stable hcp(ZnS)-AlN and hcp(ß)-

Si3N4, metastable hcp(ß)-Al3N4 and hcp(ZnS)-SiN, and the ternary hcp(ZnS)-Al1-xSixN 
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(x=0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875) and hcp(ß)-(Al1-xSix)3N4 (x=0.167, 333, 0.5, 

0.667, 0.833) phases were calculated with the optimized structure parameters by ab initio 

calculation. These values were then used for the determination of the lattice stabilities of 

metastable hcp(ß)-Al3N4 and hcp(ZnS)-SiN phases with respect to the corresponding stable 

hcp(ZnS)-AlN and hcp(ß)-Si3N4 ones, as well as for the determination of the interaction 

parameters of the ternary hcp(ZnS)- and hcp(ß)- Al1-xSixNy solid solutions. 
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Fig. 3.1.3.1: Dependence of the total energy on the average atomic volume for binary AlNy, 

SiNy compounds and ternary Al1-xSixNy phases in (a) hcp(ZnS) and (b) hcp(ß) structure, 

respectively.  

 

 Because the supercells for hcp(ZnS) structure and hcp(ß) structure have different 

numbers of atoms, the calculated the E-V curves are normalized to the average value per 

atom, as shown in Fig. 3.1.3.1(a) for ternary hcp(ZnS)-Al1-xSixN solid solution with hcp(ZnS)-

AlN and -SiN as terminal phases, and in Fig. (b) for hcp(ß)-(Al1-xSix)3N4 solid solution with 

hcp(ß)-Al3N4 and -Si3N4 as terminal phases. One notices that the absolute values of the total 

energies in Fig. (a) and (b) cannot be directly compared because of the difference in the 

number of atoms in the cell. Nevertheless, it is seen from these figures that the hcp(ZnS) 

structure is more stable than hcp(ß) one for AlN, whereas the hcp(ß) structure is stable for 

Si3N4, in agreement with the experimental results. Moreover, one can also see from the 

figures that the change of the equilibrium volume with increasing Si fraction is much smaller 

for the hcp(ZnS) structure, but it is significant for the hcp(ß) one. This is related to the fact 
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that in the hcp(ZnS) structure, which is the stable one for AlN, the Al atoms are substituted by 

smaller Si ones (size 0.143  0.118 nm) which obviously partially compensates the 

increasing instability of this phase with increasing Si fraction. In the case of the hcp(ß) 

structure, which is the stable one for Si3N4 but unstable for Al3N4, the smaller size of Si and 

increasing stability of that structure with increasing Si content logically results in the observed 

decrease of the equilibrium value.   

 Based on the reaction 4hcp(ZnS)-AlN = hcp(ß)-Al3N4 + Al, which corresponds to a 

low activity of nitrogen, a high lattice instability of hcp(ß)-Al3N4 with respect to hcp(ZnS)-

AlN, )()( ßhcpZnShcp
AlN y

G → ,  of 122.9 kJ/mol·atom has been obtained. Considering the reaction 

3hcp(ZnS)AlN + 0.5N2 = hcp(ß)-Al3N4, which corresponds to high nitrogen activity, the 

lattice instability of hcp(ß)-Al3N4 is 81.66 kJ/mol·atom. The difference of the two values is 

due to the different reaction paths and reference states of Al and N2, respectively. In a similar 

way, the lattice instability of metastable hcp(ZnS)-SiN with respect to hcp(ß)-

Si3N4,
)()( ZnShcpßhcp

SiN y
G → , of about 112.8 kJ/ mol·atom has been obtained for the reaction 

4hcp(ZnS)-SiN = hcp(ß)-Si3N4 + Si and of 145.2 kJ/ mol·atom for the reaction 3hcp(ZnS)-

SiN + 0.5N2 = hcp(ß)-Si3N4.  

Figure 3.1.3.2 shows the calculated lattice constants a as a function of the composition 

x in the ternary Al1-xSixNy phases with hcp(ZnS) and hcp(ß) structures. With increasing x, the 

lattice constants decrease slightly, showing a negligible positive deviation from the Vegard's 

law xa ZnShcp ⋅−= 022.0135.3)( and xa ßhcp ⋅−= 58.026.8)(  for hcp(ZnS)-Al1-xSixN and hcp(ß)-

(Al1-xSix)3N4, respectively. This is in agreement with the experimental and theoretical results 

[Taniyasu et al. 01] [Liu et al. 09]. Taniyasu et al. found that the lattice constants of wurzite 

Al1-xSixN ternary alloys in the strain-free state decreased linearly with increasing Si conten 

and the lattice constant is obtained by a least-square method as xa ⋅−= 1412.01113.30  with 

low Si content of x≤ 8 %. The X-ray diffraction experiments by Liu et al. also proved the 

result that the incorporation of Si atom into AlN crystal lattice resulting in a decrease in its 

lattice parameters. In the foregoing section on the Zr-Si-N system we have reported much 

larger deviation from the Vegard's law and explained it by the change of the bonding nature 

when going from the ionic ZrN nitride to the covalent SiNx one. In the present case, both 

terminal nitrides are covalent and, therefore, the deviation from the Vegard's law is small.   
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Fig. 3.1.3.2: The calculated lattice constants a as a function of the composition x for 

hcp(ZnS)- and hcp(ß)- Al1-xSixNy, respectively.       

 

3.1.3.2  Combined DFT & Thermodynamic calculations  

 For the immiscible quasi-binary AlNy-SiNy systems, the ternary Al1-xSixNy phases with 

a structure ψ  can be regarded as a continuous solid solution composed of a given fraction of 

the stoichiometric yAlN−ψ  and ySiN−ψ  phases with the same structure ψ . According to 

Eq. (2.2.3), the molar Gibbs free energy of the yxx NSiAl −− 1ψ  solution can be expressed by 

Eq. (3.1.3.1). 

                       
ψ

ψψψ

NSiAl

hcp
NSi

hcp
NSi

hcp
AlN

hcp
AlNNSiAl

LxxxxxxRT

GGxGGxG

:,

00
),(

)1(]ln)1ln()1[(

)())(1(
4343

−++−−+

+++−= →→

                   (3.1.3.1) 

 The temperature dependence of the Gibbs free energies of the stable phases hcp(ZnS)-

AlN and hcp(ß)-Si3N4, i.e., )(0 ZnShcp
AlNG  and )(0

43

ßhcp
NSiG , respectively, have been obtained by 

fitting the published data [Barin 93] with Eq. (2.2.4). The resulting polynomial coefficients a 

to f in Eq. (2.2.4) for hcp-AlN and hcp(ß)-Si3N4 have been already reported in Table 3.1.1.II. 

and 3.1.2.II in the foregoing chapters. The Gibbs free energy of the hypothetical hcp(ZnS)-

SiN and hcp(ß)-Al3N4 can be approximately expressed by the Gibbs free energy of the stable 

hcp(ß)-Si3N4 and hcp(ZnS)-AlN plus the lattice instability of hcp(ZnS)-SiN and hcp(ß)-Al3N4, 



61 
 

respectively, which have been calculated in chapter 3.1.3.1.  

 Next we study the mixing properties of the hcp(ZnS)-Al1-xSixN solid solution by 

considering the reaction SixNSixAlNxNSiAl xx 44
)1( 431 ++−=− , which should occur at low 

activity of nitrogen for the temperatures considered here. The de-mixing energy of hcp-

Al0.5Si0.5N phase with respect to the stable hcp(ZnS)-AlN, hcp(ß)-Si3N4 and pure Si is about 

60.2 kJ/mol·atom. This value is lower than the previously calculated value of about 74.25 kJ/ 

mol·atom for the Ti-Si-N system [Zhang & Veprek 07a] [Zhang & Veprek 08] and of 80.88 

kJ/mol·atom for Zr-Si-N system. In the case of a high nitrogen activity, where the reaction 

4321 3
)1(

6
NSixAlNxNxNSiAl xx +−=+− applies, the corresponding de-mixing energy of 

hcp(ZnS)-Al0.5Si0.5N phase with respect to the stable hcp(ZnS)-AlN, hcp(ß)-Si3N4 and pure 

N2 is calculated to be about 76.37 kJ/mol·atom. This value is also smaller than the value of 

about 96.82 kJ/ mol·atom for the Zr-Si-N system calculated in the earlier section and of about 

90.5 kJ/ mol·atom reported for the Ti-Si-N system by Zhang and Veprek [Zhang & Veprek 

08]. Obviously, the driving force for the segregation of the hcp-Al1-xSixN solution to the stable 

hcp(ZnS)-AlN and hcp(ß)-Si3N4 is lower than that for the Ti-Si-N and Zr-Si-N systems. This 

lower instability of the Al-Si-N solid solutions can be in a somewhat simplified manner 

understood in terms of the relative smaller difference in the atomic size (atomic radii: Zr 

0.160 nm, Ti 0.147 nm, Al 0.143 nm, Si 0.117 nm) and covalent bonding in both AlN and 

Si3N4.  

As the next step, we determine the mixing properties with respect to the isostructural 

terminal phases, i.e., the interaction parameters )(
:,
ZnShcp

NSiAlL  and )(
:,
ßhcp
NSiAlL  at 0 K. As outlined in the 

introductory chapter, the interaction parameters for the phases with a structure ψ  are obtained 

from Eq. (3.1.3.2)    

                           ψψψψ
NSiAlSiNAlNNSiAl LxxxEExE

yyyxx :,)1()1(
1

−=−−−
−

                      (3.1.3.2) 

The composition dependence of the interaction parameter is approximated by the 

polynomial )( 2
:,

2
:,

1
:,

0 xLxLL NSiAlNSiAlNSiAl ⋅+⋅+ ψψψ , where ψ
NSiAlL :,

0 , ψ
NSiAlL :,

1  and ψ
NSiAlL :,

2  are the 

composition dependent parameters. After fitting this dependence to the calculated data shown 

in Fig. 3.1.3.3, we obtained the composition dependence of the interaction parameters 
32)(

:, 10)019.1286.6305.18( ⋅⋅−⋅−= xxL ZnShco
NSiAl  and 42)(

:, 10)165.2056.3246.2( ⋅⋅−⋅−= xxL ßhcp
NSiAl  

J/mol·atom for hcp(ZnS) and hcp(ß)- Al1-xSixNy at 0 K, respectively. It is seen that the curves 

of both solution phases show positive mixing energies, i.e., they are unstable.  
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Fig. 3.1.3.3: Fit (lines) of the formation energies, calculated by by ab initio DFT (circles), 

with the function ))(1( 2
2

10 LxxLLxx ++− for hcp(ZnS)- and hcp(ß)- Al1-xSixNy.  

 

As in the foregoing sections, we shall now compare the results obtained with 

temperature independent, linearly and exponentially dependent interaction parameter. We 

refer to the foregoing section for further details regarding the methodology, and present here 

only the results. The only difference is the choice of the critical value of the interaction 

parameter. In the Zr-Si-N system, only small differences in the results were found regardless 

if 20 or 50 kJ/mol at melting point were used. However, for Al-Si-N system, the critical 

interaction parameter around the melting point for hcp-Al0.5Si0.5N is 30 kJ/mol. When a value 

larger than 30 kJ/mol is used, the T-dependence parameter is positive, which is not 

reasonable. Therefore we use in this study only the value of 20 kJ/mol for the interaction 

parameter around the melting point of 2470.5 K for hcp-Al0.5Si0.5N, which is the average 

value of the decomposition temperatures for hcp-AlN and ß-Si3N4 [Barin 93]. Accordingly, 

the temperature dependent coefficients of about -1.985 J/mol⋅K and -1.05 J/mol⋅K are 

obtained for hcp(ZnS)- and hcp(ß)-Al1-xSixNy phases, respectively. These values are much less 

negative than those for Zr-Al-N (-97 and -44 J/mol⋅K for fcc- and hcp- Zr1-xAlxN, 

respectively) and for the Zr-Si-N system (-13.71 and -83.25 for fcc- and hcp- Zr1-xAlxN, 

respectively). Using these values and the calculated lattice instabilities of hypothetical 

hcp(ZnS)-SiN and hcp(ß)-Al3N4 phases, the Gibbs free energies of the mixed ternary Al1-
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xSixNy phase at temperatures of 0 K, 373 K, 573 K, 773 K, 1073 K, 1273 K and nitrogen 

pressure of 1 atm have been calculated from Eq. (2.2.6) over the entire compositions. Figure 

3.1.3.4 shows the results. The values of the cross-over points of the hcp(ZnS) and hcp(ß) lines 

corresponding to different temperatures are summarized in Table 3.1.3.I. One sees that at 0 K, 

the hcp(ZnS) structure is more stable within the composition range of 0 ≤ x ≤ 0.3577, whereas 

the hcp(ß) structure becomes more stable at higher Si fraction. With increasing temperature, 

the cross-over point moves slightly to a higher Si fraction reaching a value of x = 0.3612 at 

the temperature of 1273 K.  
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Fig. 3.1.3.4: Gibbs free energy of hcp(ZnS)- and hcp(ß)-Al1-xSixNy at temperatures of 0 K, 

373 K, 573 K, 773 K, 1073 K, 1273 K with stoichiometric hcp-AlN and hcp-SiN chosen as 

reference states. The results are within an error of ≤ 0.1 % identical for the choice of linear 

and exponential T-dependence of the interaction parameter (see text). 

 

The exponential dependence of interaction parameter on temperature has been 

estimated in the same way as in the foregoing section for the Zr-Si-N system (see Eq. 

(3.1.2.3)). Accordingly, the temperature dependences are 61884 )108305.1(
T

eL
−

⋅⋅=  and 

107004 )102465.2(
T

eL
−

⋅⋅=  for hcp(ZnS)- and hcp(ß)- Al1-xSixNy, respectively. Using these 

values and the calculated lattice instabilities of hypothetical hcp-Al3N4 and hcp-SiN phases, 

the Gibbs free energy of the mixed ternary Al1-xSixNy phases at different temperatures has 

been calculated from Eq. (2.2.3) over the entire compositions. The results, when plotted in 
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Fig. 3.1.3.4, are indistinguishable from those calculated with the linear dependence. This is 

further supported by the values of the cross-over points in Table 3.1.3.I which show that the 

results obtained with linear or exponential equation are within an error of ≤0.1 % identical.  

 

Table 3.1.3.I: The cross-over points of hcp(ZnS)- and hcp(ß)- Al1-xSixNy curves , in terms of 

Si fraction x, for different temperatures as indicated, calculated with linear and exponential T- 

dependence of the interaction parameter. 

Temeperature(K) 0 373 573 773 1073 1273 

Linear 
equation 0.3577 0.3590 0.3597 0.3602 0.3609 0.3612 

Cross-over values 
x Exponential 

equation 0.3577 0.3590 0.3599 0.3603 0.3611 0.3615 

 

          The experimental results have shown that incorporation of Si into AlN films increased 

their microhardness accompanied by changes in microstructure of the films [Liu et al. 09]. 

The incorporation of Si is substitutional in the hcp(ZnS)-AlN crystal lattice up to a critical 

concentration of 12 to 16 at.%, above which nanocomposites film forms and the hardness 

reaches a maximum of about 30 GPa [Pélisson et al. 07]. Also Kasu et al. has found similar 

results in the composition range of 0-12 at.% with the "maximum solubility" of Si in the 

hcp(ZnS)-AlN around 12 at.% [Kasu et al. 01]. However, Liu et al. reported a maximum 

hardness of ≥ 25 GPa for Si fraction of ≥ 25 at.% when the microstructure of the films 

transforms from nanocrystalline to amorphous. Obviously, there are some discrepancies 

between the different experimental works. The possible reasons are different deposition 

temperature used, possibly nitrogen substoichiometry and impurities. Let us point out that 

Pélisson et al. reported oxygen impurities in their film determined by XPS after sputter-

cleaning of about 4±2 at.% [Pélisson et al. 07]. For these reasons, the possibilities of a 

comparison of the results obtained in our calculations with experiments are limited.  

3.1.3.3  Possibility of chemical and coherent spinodal decomposition  

Figure 3.1.3.5 shows the Gibbs free energy of the formation of hcp(ZnS)-Al1-xSixNy 

solid solution as a function of composition for temperatures of 0 K, 373 K, 573 K, 773 K, 

1073 K, 1273 K and nitrogen pressure of 1 atm, with isostructural hcp(ZnS)-AlN and 

hcp(ZnS)-SiN as the reference states for hcp(ZnS)-Al1-xSixN (Fig. (a)), and hcp(ß)-Al3N4 and 

hcp(ß)-Si3N4 as the reference states for hcp(ß)-(Al1-xSix)3N4 (Fig. (b)). For the hcp(ZnS)-Al1-
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xSixN, it can be seen in Fig. (a) that, for the typical deposition temperature of ≤ 773 K, the 

dependence of the Gibbs free energy of the immiscible system is typical of chemical spinodal, 

i.e., 0
)(

2

02

<
x

xG f

δ
δ

, within a large composition range, particularly on the Al-rich side. 

However, because the values of the de-mixing energies are relatively small, it is doubtful if 

the system may be also coherently spinodal. With increasing temperature, the Gibbs free 

energy of de-mixing decreases and the composition range for chemical spinodal decreases as 

well. At the temperature of 1273 K, the whole curve lies below zero showing that the Al-Si-N 

system is miscible within the whole composition range. The situation is similar for the hcp(ß)-

(Al1-xSix)3N4 phase (Fig. (b)).  At the low temperatures of ≤ 573 K, the maximum Gibbs free 

energy is slightly lower than that for hcp(ZnS)-Al1-xSixN, but it is somewhat higher for T ≥ 

773 K. At the highest temperature of 1273 K, there is an immiscibility region for low Si-

fraction. This is most probably related to the instability of the hcp(ß)-Al3N4.  
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Fig. 3.1.3.5 (a): Gibbs free energy of mixing of hcp(ZnS)-Al1-xSixN phase ΔG as a function of 

composition for temperatures 0 K, 373 K, 573 K, 773 K, 1073 K, 1273 K, where ΔG>0, with 

isostructural hcp(ZnS)-AlN and hcp(ZnS)-SiN as reference states.  
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Fig. 3.1.3.5 (b): Gibbs free energy of mixing hcp(ß)-(Al1-xSix)3N4 phase ΔG as a function of 

composition for temperatures 0 K, 373 K, 573 K, 773 K, 1073 K, 1273 K, where ΔG>0, with 

isostructural hcp(ß)-Al3N4 and hcp(ß)-Si3N4 as reference states.  

 

Figure 3.1.3.6 shows the phase stability diagrams of hcp(ZnS)-Al1-xSixN as the 

function of Si fraction x with hcp(ZnS)-AlN and hcp(ZnS)-SiN as reference states for (a) the 

temperature independent, (b) linearly, and (c) exponentially T-dependent interaction 

parameter.  It can be seen that for a temperature of < 1000 K, the binodal curve is close to the 

y-axes, i.e. hcp(ZnS)-AlN and hcp(ZnS)-SiN are immiscible. The composition range for the 

chemical spinodal is within few % similar for all three case of the T-dependence of the 

interaction parameter considered. As in the previous examples, the maximum spinodal 

temperature is higher in the case of T-independent interaction parameter, but the difference of 

only about 6 % is very small as compared with the Zr-Si-N system.    
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Fig. 3.1.3.6 Temperature-composition phase diagram for hcp(ZnS)-Al1-xSixN showing the 

spinodal (short dashed line) and binodal (dashed lines) curves with hcp(ZnS)-AlN and 

hcp(ZnS)-SiN chosen as reference states calculated with (a) temperature independent, (b) 

linearly and (c) exponentially temperature dependent interaction parameter.  

 

Figure 3.1.3.7 shows the phase stability diagrams of hcp(ß)-(Al1-xSix)3N4 as the 

function of Si fraction x with hcp(ß)-Al3N4 and hcp(ß)-Si3N4 as reference states. From the 

figure it is seen that both binodal and spinodal curves show different shapes compared with 

those in Fig. 3.1.3.6, as well as with those in the Zr-Al-N and Zr-Si-N systems. The 

"secondary spinodal", which appears in a relatively narrow, Si-rich region of x = 0.6626 to 

0.8428, is related to minor changes of the corresponding curves in Fig. 3.1.3.5 (b) which are 

almost linear in this range. Because the curves in Fig. 3.1.3.7 correspond to second derivatives 

of the curves in Fig. 3.1.3.5 (b), minor variations in the slope of the latter curves result in 

fairly large changes of the former ones. Therefore one should not overestimate the importance 

of this "secondary" spinodal. 
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Fig. 3.1.3.7: Calculated temperature-composition phase diagram for hcp(ß)-(Al1-xSix)3N4 

showing the binodal (dashed line) and spinodal (short dashed line) curves with hcp(ß)-Al3N4 

and hcp(ß)-Si3N4 as reference states.  

 

Compared with the Zr-Si-N (see above) and Ti-Si-N system [Zhang & Veprek 08], the 

de-mixing energy is orders of magnitude smaller in the Al-Si-N system, Thus, although 

chemically spinodal regime is found which might allow the formation of the nanocomposites 

with a thin interfacial layer of either SiNx or AlN in the Al- and Si-rich compositions, 

respectively, such process seems to be unlikely because the coherence lattice energy may 

hinder the system to undergo coherently spinodal decomposition. One notices that the 

maximum de-mixing energy of ≤ 3.5 kJ/mol found for this system is comparable with the 

elastic strain energy of semi-coherent interfaces [Zhang & Veprek 06].  

This, however, does not mean that hard AlN-Si3N4 nanocomposites may not be 

possible to prepare. At the typical deposition temperature of 500°C, the average diffusion 

length of 5 nm is achieved on the time scale of few 100 s. As discussed recently [Veprek et al. 

09], this possibly determines the average size of the diffusion-controlled phase segregation. 

Because with the formation of the stable hcp(ZnS)-AlN and hcp(ß)-Si3N4 phases, the de-

mixing energy of the stoichiometric (Al1-xSix)3N4 is strongly increased by the transitions SiN 

 Si3N4 and Al3N4  AlN. However, this problem cannot be handled by conventional 

thermodynamics which deals with closed systems. Instead, one may try the approach of the 
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"mechanical mixtures" of the stable phases as used in [Zhang & Veprek 06]. This is however 

beyond the scope of the present work. 

3.1.3.4  Summary   

 The fundamental properties of binary stable hcp(ZnS)-AlN, hcp(ß)-Si3N4 and 

metastable hcp(ZnS)-SiN and hcp(ß)-Al3N4 compounds, and of ternary Al1-xSixNy solution 

phases were calculated by means of ab initio density functional theory. The results are in 

good agreement with the available experimental and theoretical data. 

  The temperature dependence of the interaction parameters of about -1.985 J/mol⋅K and 

-1.05 J/mol⋅K, calculated for hcp(ZnS)- and hcp(ß)- Al1-xSixNy phases, respectively, are much 

less negative than those for the Zr-Al-N (-97 and -44 J/mol⋅K for fcc- and hcp-Zr1-xAlxN, 

respectively) and for the Zr-Si-N systems (-13.71 and -83.25 J/mol⋅K for fcc- and hcp- Zr1-

xSixN, respectively).  

The Gibbs free energies of the quasi-binary AlNy-SiNy system were constructed 

using the linear and exponential temperature dependences of interaction parameter, in order to 

study the relative phase stability of the metastable ternary hcp(ZnS)- and hcp(ß)-Al1-xSixNy 

solution over the entire range of compositions. Because of the T-dependence of the interaction 

parameter is much smaller for this system than for the Zr-Si-N and Ti-Si-N ones, there is only 

a small difference of the results when the T-independent interaction parameter has been used, 

and the difference between the results obtained with linear and exponential T-dependence are 

negligible. The cross-over points between the hcp(ZnS) and hcp(ß) phases are in the range of 

x=0.3577–0.3615 indicating a higher "solubility limit" 5 of Si in hcp(ZnS)-AlN compared 

with the experimentally reported values, whose reliability should be subject to further tests.  

The dependence of the Gibbs free energy of the mixing on composition obtained for 

Al1-xSixNy ternary alloys with both hcp(ZnS) and hcp(ß) structure show that, for the typical 

deposition temperature of ≤ 773 K, the systems are immiscible with dependences typical of 

chemical spinodal. With increasing temperature, the Gibbs free energy of de-mixing decreases 

fast, and the composition range for chemical spinodal decreases as well. At lower temperature 

the maximum Gibbs free energy of mixing for hcp(ß)-(Al1-xSix)3N4 phases is slightly lower 

than that for hcp(ZnS)-Al1-xSixN. At the highest temperature of 1273 K, the hcp(ZnS)-Al1-

xSixN is miscible.  

                                                 
5 Recall that the term "solubility limit" refers to equilibrium whereas here we are dealing with the limit of 
stability of certain structure of an unstable solid solution. Nevertheless, we use this term because it is used in 
many recent papers.  
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The binodal and spinodal curves were constructed for both hcp(ZnS)-Al1-xSixN and 

hcp(ß)-(Al1-xSix)3N4 solution phases. The results for hcp(ZnS)-Al1-xSixN show that metastable 

hcp(ZnS)-Al1-xSixN solution phases might spinodally decompose to isostructural hcp(ZnS)-

AlN and hypothetical hcp(ZnS)-SiN. However, considering the large lattice instability of 

hcp(ZnS)-SiN compared with stable hcp(ß)-Si3N4, the decompositon is likely to be 

accompanied by a phase transformation from unstable hcp(ZnS)-SiN to the stable 

hcp(ß)/amorphous-Si3N4. From the comparison of the results for hcp(ZnS)-Al1-xSixN and 

hcp(ß)-(Al1-xSix)3N4, it is found that in the Al-rich region with low Si content, the spinodal 

phase segregation is more favorable for hcp(ZnS)-Al1-xSixN phases than for hcp(ß)-(Al1-

xSix)3N4. 

 

3.1.4  Zr-Al-O system  

 In the foregoing sections, we have studied the thermodynamic properties of the Zr-Al-

N, Zr-Si-N and Al-Si-N systems by the combined ab initio DFT method and thermodynamic 

calculations. In this section we will focus on the oxide system Zr-Al-O because it has an 

"infinitive" oxidation resistance, that is important in the applications as wear protective 

coatings on cutting tools, and is expected to be spinodal.  

Oxide systems are of large interests because of their relatively high hardness and 

mechanical strength, high melting point, oxidation resistance, high thermal stability, and 

excellent chemical inertness [Rice 00] [Knauth & Schoonman 02]. This has led to many 

fundamental theoretical and experimental investigations as well as to applications such as 

hard coatings, diffusion and reaction barriers and others. Crystalline α-alumina (α-Al2O3, 

called in this section "hcp-Al2O3" to account also for the ternary solid solution) is mostly used 

as hard, wear protection coating on tools because of its high chemical and thermal stability, 

and high hardness of about 20-22 GPa [Berg et al. 00] [Åstrand et al. 04]. In the past decades, 

thin coatings of α-Al2O3 were deposited by the conventional CVD at high temperature of 

about 1000 °C, because at lower temperature the soft tetragonal γ-phase is formed. Only 

recently, hard α-Al2O3 could be deposited by PVD at temperatures of ≥ 700°C by reactive 

sputtering (e.g. [Kohara et al. 04]) or at ≤ 600°C by pulsed vacuum arc [Ramm et al. 07].  

 Zirconia (ZrO2) has many important applications because of its high refractive index, 

high melting temperature, hardness of 13-16 GPa [Berg et al. 00] and corrosion resistance. At 

ambient pressure, ZrO2 forms three phases [Jomard et al. 99] [Zhao & Vanderbilt 02]: 

monoclinic, tetragonal and cubic. The monoclinic phase (space group P21/c) is 

thermodynamically stable below 1400 K, above which it transforms to the tetragonal structure 
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(space group P42/nmc). It is a slightly distorted version of the cubic structure. At about 2570 

K, the tetragonal phase transforms to the cubic one (space group Fm-3m) which is stable up to 

the melting temperature of 2980 K.  

Inspired by the high performance of nitride based superhard nanocomposite coatings, 

researchers have attempted to prepare nanocomposties on the basis of Al2O3 and a second 

oxide phase [Klostermann et al. 05] [Jia et al. 06]. Because of the known immiscibility of 

alumina and zirconia, the system Al2O3 + ZrO2 has been chosen by Klostermann et al. 

[Klostermann et al. 05], who succeeded to prepare nc-Al2O3/ZrO2 nanocomposite films by 

pulsed magnetron sputtering (PMS). The hardness of these coatings reached up to 30 GPa 

when the ZrO2 content has been around 7-8 at.%, i.e., significantly higher than the hardness of 

the pure oxides. When the ZrO2 content increased above 10 at.%, the films were amorphous 

with a low hardness of 10 to 13 GPa. At low Al2O3 content, the films are crystalline again 

with ZrO2 being the dominant phase, and their hardness of about 17 GPa is intermediate 

between that of ZrO2 and α-Al2O3 [Koski et al. 99]. For example, in a film containing 7.5 at.% 

Al2O3, only tetragonal ZrO2 has been found by XRD, whereas pure ZrO2 films are 

monoclinic.  

 Trinh et al. found that the Al2O3-ZrO2 thin films grown by reactive dual radio-

frequency magnetron sputtering contained either an amorphous phase, γ- Al2O3, cubic ZrO2 or 

a mixture of these, whereas pure ZrO2 films were monoclinic and pure Al2O3 ones had the γ-

phase [Trinh et al. 06] [Trinh et al. 08] [Trinh et al. 08b]. The grain size was around 5 nm in 

the nanocomposites, but larger in the pure oxide films. Electron energy loss spectroscopy 

showed a well defined transition from the pure Al2O3 to the pure ZrO2. Because the 

applications of cutting tools are limited to temperatures of about ≤ 1100°C, we shall focus, in 

the present study, on the monoclinic ZrO2 and α-Al2O3 phases. 

 The theoretical investigations of phase stabilities of the ternary and multi-component 

transition metal oxides are still absent due to their complexity. Therefore, we shall, in this 

work, use the combined ab initio DFT calculation and thermodynamic modeling, which has 

been successfully applied for the ternary nitrides systems Ti-Si-N [Zhang & Veprek 08], Ti-

Al-N [Zhang & Veprek 07], Cr-Al-N [Zhang & Veprek 07b], Zr-Al-N [Sheng et al. 08] and 

Ti-B-N [Zhang et al. 08b], as well as for the Zr-Si-N and Al-Si-N systems studied in the 

previous sections. By analogy with the latter studies, we shall compare results obtained with 

temperature independent, as well as linearly and exponentially dependent interaction 

parameter.  
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3.1.4.1  Structural properties and phase stabilities by ab initio DFT calculation  

 The monoclinic structure of ZrO2 (“mono-ZrO2”) can be described as a distorted 

fluorite structure with the Zr atoms in coordination sites shown in Fig. 3.1.4.1(a). The cell 

parameters are a, b, c and γ. There are two oxygen sites in the lattice: one O site (OI) is 

coordinated to three Zr atoms in an almost planar environment, and the other O site (OII) is 

surrounded by a distorted tetrahedron of Zr atoms. The coordinates of the atoms are given by 

the Wyckoff notations ±(x, y, z); ± (-x, y+1/2, 1/2-z).  

 
(a)                                                   (b) 

Fig. 3.1.4.1: Crystal structures of (a) mono-ZrO2 and (b) hcp-Al2O3; large green spheres are 

Zr in Fig. (a), large blue spheres are Al in Fig. (b), and small red spheres are O atoms. 

 

Sapphire, α-Al2O3, belongs to the space group R-3c, and its structure is described by 

Kronberg [Kronberg 57] and by Lee and Lagerlof [Lee & Lagerlof 85]. Many researchers 

have analyzed the correlations of the structure with the plastic deformation mechanism and 

the formation of twins [Kronberg 57] [Scott & Orr 83]. The crystal structure is described as 

the O2- anions arranged in an approximately hcp lattice while the A13+ cations are located in 

two thirds of the octahedral sites. The hexagonal crystal structure of α-Al2O3 is shown in Fig. 

3.1.4.1(b). The close-packed directions in the anion sublattice lie along ><
−

0110 , whereas 

the close-packed directions of the metals are along ><
−

0211 direction. The hexagonal unit 

cell, which properly accounts for the combined anion and cation sublattices, is twice the 
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volume of the morphological unit cell as defined by mineralogists, and rotated by 180o around 

the c-axis.  

The standard crystallographic data of α-Al2O3 structure are specified in the International 

Tables for X-ray Crystallography [Kasper & Lonsdale 72] as follows: Lattice constants: a0 = 

0.47589 nm, c0 = 1.2991 nm, cell volume V = 0.2548 nm3, formula units per cell n = 6 and 

atomic positions 12 Al3+ ions located at 12c positions ((0, 0, 0); (1/3, 2/3, 2/3); (2/3, 1/3, 1/3) ) 

+ (0, 0, u); (0, 0, -u); (0, 0, ½+u); (0, 0, ½-u) where u = 0.3520, and 18 O2- ions located at 18e 

positions ((0, 0, 0); (1/3, 2/3, 2/3); (2/3, 1/3, 1/3)) + (v, 0, 1/4); (0, v, 1/4); (v, v, -1/4); (-v, 0, -

1/4); (0, -v, -1/4); (-v, -v, 1/4) where v = 0.306. The conversion between hexagonal Miller-

Bravais indices and rhombohedral Miller indices for the structural unit cells is easily 

performed by a matrix multiplication (see [Lee & Lagerlof 85] for more details). 

In view of the complexity of the structure of the Zr-Al-O system, we use special k 

points of the 5×5×5 Monkhorst-Pack grid for the integration in the Brillouin zone with the 

energy cutoff of 600 eV. The conjugate gradient method has been used for the relaxation of 

structural parameters. By application of the above crystallographic specifications, we set up a 

24 atoms and a 30 atoms cell for the mono-ZrO2 and hcp(α)-Al2O3, respectively, and perform 

the optimization of the geometry and full relaxation for the cell axes, as well as of all internal 

structure parameters. These structures will be used for the construction of the substitution 

ternary solution with monoclinic and hcp- structures. 

The optimized values of αrho (an angle between lattice vectors), uAl and vO (internal 

parameters for Al and O in rhombohedral representation) for hcp(α)-Al2O3, the internal 

structural parameters for mono-ZrO2, as well as the published experimental and theoretical 

data, are listed in Table 3.1.4.I. It is seen that our calculated values are in good agreement 

with the experimental and theoretical data. In the following, the hexagonal cell is used to 

describe the hcp(α)-Al2O3. 
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Table 3.1.4.I: The internal structural parameters for the mono-ZrO2 and hcp-Al2O3 obtained 

from the ab initio calculation and their comparison with published experimental and 

theoretical data. 

Phase Parameter Present (GGA) Expt. GGA LDA 

α rho (deg) 55.32 55.28 b,c 55.32 a 55.37 a 

uAl 0.352 0.352 b,c 0.353 a 0.352 a 

hcp-Al2O3 

(Rhombohedral 

representation) vO 0.307 0.306 b,c 0.306 a 0.306 a 

γ (deg) 99.59 99.23 d 99.23 f 
99.23 f, 

99.21e 

xZr 0.2766 
0.2758 g,f, 

0.2754d 

0.2773 f 
 

0.2777 f 
0.2769 e 

yZr 0.0432 
0.0404 g,f, 

0.0395 d 
0.0416 f 

0.0418 f, 

0.0422e 

zZr 0.2098 
0.2089 g,f, 

0.2083 d 
0.2103 f 

0.2101 f, 

0.2097 e 

xOI 0.0687 
0.069 g,f, 

0.0700 d 
0.071 f 

0.071 f, 

0.0689e 

yOI 0.3333 
0.342 g,f, 

0.3317 d 
0.336 f 

0.337 f, 

0.3333e 

zOI 0.3446 
0.345 g,f, 

0.3447 d 
0.341 f 

0.342 f, 

0.3445e 

xOII 0.4499 
0.451 g,f, 

0.4496 d 
0.448 f 

0.449 f, 

0.4495e 

yOII 0.7577 
0.758 g,f, 

0.7569 d 
0.757 f 

0.757 f, 

0.7573e 

mono-ZrO2 

zOII 0.4782 
0.479 g,f, 

0.4792 d 0.479 f 
0.480 f , 

0.4798e 

Note : [a] = [Matsunaga et al. 03]; [b] = [Amour et al. 78]; [c] = [Lee & Lagerlof 85]; [d] = [Stefanovich et al. 

94]; [e] = [Zhao & Vanderbilt 02]; [f] = [Jomard et al. 99]; [g] = [Wyckoff 63]. 

 

Using our optimized geometry for hexagonal and monoclinic structure, the total energies 

and the cell volumes of the stable mono-ZrO2 and hcp-Al2O3, and of the hypothetical hcp-

Zr2O3 and mono-AlO2 were calculated. In order to study the composition dependence of the 

mixing properties, we further calculated the total energies of ternary mono-(Zr1-xAlx)O2 and 

hcp-(Zr1-xAlx)2O3 solid solution phases with different compositions using a supercell setup 

containing 24 atoms for monoclinic structure and 30 atoms for hexagonal structure as for the 

pure terminal phases. Zr and Al atoms are randomly distributed over the metal sublattice so 

that Zr (or Al) is surrounded by the other element, i.e., by Al (or Zr). This avoids clustering 
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which would decrease the total energy of the solution. In order to maintain the crystal 

symmetry, the cell shape is kept unchanged during the substitution, i.e., only the substitution 

effects on total energy are considered. This is an extreme case because the clustering, which 

represents the onset of the decomposition, decreases the de-mixing energy of the ternary 

system. 

The total energies and the cell volumes of the binary stable mono-ZrO2 and hcp-Al2O3, 

of the hypothetical hcp-Zr2O3 and mono-AlO2, and of the ternary mono- and hcp-Zr1-xAlxOy 

solution phases were calculated. These values were then used for the determination of the 

lattice instabilities of hypothetical hcp-Zr2O3 and mono-AlO2 phases with respect to the 

corresponding stable mono-ZrO2 and hcp-Al2O3 phases, as well as for the determination of the 

interaction parameters of the ternary mono- and hcp-Zr1-xAlxOy solid solution phases at 0 K. 

The formation enthalpies are obtained by considering the reaction to form (or 

decompose) crystalline oxides from (or into) the elementary substances, i.e., x·Me(solid) + 

(y/2)·O2(gas) = MexOy. From the respective total energies of the phases we obtain the 

formation enthalpies by Eq. (3.1.4.1).  

                        )(
2

)()()( 2 gasOEysolidMexEOMeEOMeH yxyxf −+−+−=Δ               (3.1.4.1) 

Where E(MexOy), E(O2-gas) and E(Me-solid) are the total energies of the bulk MexOy, of the 

free O2 molecule, and of the solid Me. In agreement with the usual nomenclature, a negative 

formation enthalpy value applies for an exothermic, and a positive value for an endothermic 

reaction. In order to calculate the total energy of O2 molecule, a cubic cell with the side length 

of 0.8 nm is constructed with two O atoms placed inside, and a full relaxation is then 

performed to get the stable geometry. The total energy of O atom is calculated by the same 

method. The calculated O-O bond length of 0.124 nm is in good agreement with that of 0.124 

nm calculated by Shi et al. [Shi et al. 07] and with the experimental value of 0.121 nm [Huber 

& Herzerg 79]. The calculated O2 binding energy of 3.34 eV per O atom is similar to other 

calculated values of 3.12 eV [Li et al. 02] and 3.13 eV [Perdew et al. 96], and somewhat 

larger than the experimental value of 2.56 eV [Huber & Herzerg 79]. This difference is typical 

for well-converged DFT-GGA calculations.  

In order to check the reliability of our calculations of the solid phases, the equilibrium 

volume V0, total energy E0, bulk modulus B0 and its first derivative B0' of the binary mono-

ZrO2 and hcp-Al2O3 phases were calculated from the dependence of E on V using the 

Murnaghan equation of state (Eq. (2.2.2)) [Murnaghan 44], as outlined in Sect. 2.2. The 

results are summarized in Table 3.1.4.II. The formation enthalpies calculated from Eq. 
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(3.1.4.1) are also included in that Table. It is seen that our results agree reasonably well with 

the published experimental and theoretical data, thus confirming the reliability of the applied 

potentials and methods.    

 

Table 3.1.4.II: The equilibrium cell volume V0, total energy E0, bulk modulus B0, pressure 

derivative B0' and the formation enthalpy ΔHf for mono-ZrO2 and hcp-Al2O3 obtained by 

fitting E-V data, obtained from the ab initio calculation, to the Murnaghan’s equation of state 

[Murnaghan 44].  

Phase 
V0 

(nm3/atom) 

E0 

(eV/atom) 

B0 

(GPa) 

B0' 

 

ΔHf 

(kJ/mol·atom) 

Murnaghan 0.012214 -9.5377 222.305 4.33 -333.076 mono-ZrO2 

Others 0.012343[i]

0.01174[ii] 

0.01187[iii] 

 95-189[ii] 

186[iii] 

212[iv] 

4.0[iii] -365.821[v] 

Murnaghan 0.008746 -7.565 227.928 4.98 -303.026 hcp-Al2O3 

Others 0.0082[iii] 

0.00849[iii] 

 241[iii] 

254[iii] 

 -335.138[v] 

Note: [i] = [Jomard et al. 99]; [ii] = [Howard et al. 88]; [iii] = [Iuga et al. 07]; [iv] = [Desgreniers & Lagarec 

99] ; [v] =[Barin 93]. 

 

 Now we discuss the lattice instability of hypothetical mono-AlO2 with respect to hcp-

Al2O3 by the ab initio DFT method. For simplicity, we regard the lattice instability as a 

temperature-independent parameter. Based on the reaction 3AlO2+Al = 2Al2O3, a high lattice 

instability, monohcp
OAlG →

32
, of 127.644 kJ/mol·atom of mono-AlO2 with respect to hcp-Al2O3 is 

obtained. For the reaction 4AlO2 = 2Al2O3+ O2, which corresponds to high oxygen pressure, 

the calculated lattice instability of mono-AlO2,
monohcp

OAlG →
32

, of 57.652 kJ/mol·atom results. The 

difference of the two values is due to the different definitions of reaction paths and of the 

reference states. In both cases, the mono-AlO2 is unstable and should transform to hcp-Al2O3. 

Similarly, the lattice instability of hcp-Zr2O3 with respect to mono-ZrO2, 
hcpmono

ZrOG →
2

, of about 

16.988 kJ/mol·atom is obtained from the reaction 3ZrO2 + Zr = 2Zr2O3, and of about 97.426 

kJ/mol·atom from the reaction 4ZrO2 = 2Zr2O3 + O2. Thus, also the hypothetical hcp-Zr2O3 is 

unstable as compared to the stable monoclinic ZrO2. 

 Figure 3.1.4.2 shows the calculated cell volume as a function of the Al fraction x in the 

(Zr1-xAlx) sublattice of the ternary Zr1-xAlxOy phases with monoclinic and hexagonal 
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structures.6 It is found that with increasing Al fraction, the mole volumes in both curves 

decrease. This is due to the smaller atomic radius of Al of 0.143 nm as compared with that of 

Zr of 0.160 nm.  
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Fig. 3.1.4.2. The calculated cell volume as a function of the Al fraction x for the ternary Zr1-

xAlxOy phases with monoclinic and hexagonal structures, respectively.  

 

3.1.4.2  Combined DFT & thermodynamic calculations 

 For the immiscible quasi-binary ZrOy-AlOy systems, the ternary Zr1-xAlxOy phases 

with a structure ψ  can be regarded as a continuous solid solution composed of a given 

fraction of the stoichiometric ψ -AlOy and ψ -ZrOy phases with the same structure ψ . 

According to Eq. (2.2.3), the molar Gibbs free energy of ψ - Zr1-xAlxOy solution phase can be 

expressed by Eq. (3.1.4.2). 

                   ψ

ψψψ

OAlZr

hcp
OAl

hcp
OAl

mono
ZrO

mono
ZrOOAlZr

LxxxxxxRT

GGxGGxG

:,

00
:,

)1(]ln)1ln()1[(

)())(1(
323222

−++−−+

+++−= →→

           (3.1.4.2) 

Where ψ  represents the monoclinic or hexagonal structure.  

                                                 
6 In view of the complexity of the hexagonal and monoclinic structures of Zr1-xAlxOy, we plot the dependence of 
the volume on the composition instead of the lattice constant as in previous sections. 
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The Gibbs free energies of the stable phases mono-ZrO2 and hcp-Al2O3, 
mono
ZrOG

2

0  

and hcp
OAlG

32

0
, respectively, are obtained by fitting the thermodynamic data in the published 

literature [Barin 93] to a polynomial equation (2.2.4). The resulting polynomial coefficients a 

to f in Eq. (2.2.4) are listed in Table 3.1.4.III. The Gibbs free energy at 0 K is then 

approximately estimated from linear extrapolation of Eq. (2.2.4). The Gibbs free energy of the 

hypothetical hcp-Zr3O4 is not directly available, but it can be approximately expressed by the 

Gibbs free energy of the stable mono-ZrO2 plus the lattice instability of hcp-Zr3O4, which has 

been calculated in section 3.1.4.1. The Gibbs free energy of hypothetical mono-AlO2 is 

calculated in a similar way.  

 

Table 3.1.4.III. The fitted parameters in Eq. (2.2.4). 

 a b c d e f 

Phase (105) (102) (10) (10-3) (105) (10-9) 

mono-ZrO2 -11.233 4.263 -6.965 -3.735 7.040 -4.999 

hcp-Al2O3 -17.230 7.339 -11.319 -9.351 19.179 5.415 

 

 Next we study the mixing properties of the mono-Zr1-xAlxO2 and hcp-(Zr1-xAlx)2O3 

solid solutions. Taking mono-Zr0.5Al0.5O2 as an example, we consider the reaction 

8(Zr0.5Al0.5)O2 = 4ZrO2+2Al2O3+O2, which applies for a sufficiently high oxygen activity at 

temperatures considered here. The de-mixing energy of mono-Zr0.5Al0.5O2 phase with respect 

to the stable mono-ZrO2, hcp-Al2O3 and pure O2 is about 42.56 kJ/mol·atom, showing a high 

instability of the mono-Zr0.5Al0.5O2 phase. In a similar way we calculate the de-mixing energy 

of the hcp-(Zr0.5Al0.5)2O3 solid solution of 90.41 kJ/mol·atom by considering the reaction7 

4(Zr0.5Al0.5)2O3+O2 = 4ZrO2+2Al2O3. Both the calculated values show that there is a large 

thermodynamic driving force for ternary Zr1-xAlxOy solution phase to segregate into the stable 

mono-ZrO2 and hcp-Al2O3.  

In order to determine the mixing properties of the (Zr1-xAlx)Oy solid solution with respect 

to the isostructural terminal phases, we have to calculate the interaction parameters mono
OAlZrL :,  

and hcp
OAlZrL :,  at 0 K. The isostructural mono-ZrO2 and mono-AlO2 were chosen as the terminal 

phases for the mono-(Zr1-xAlx)O2, and the isostructural hcp-Zr2O3 and hcp-Al2O3 were chosen 
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as the terminal phases for the hcp-(Zr1-xAlx)2O3. As outlined in section 2.4, the interaction 

parameters for the phases with a structure ψ  can be obtained from Eq. (3.1.4.2)    

                                  ψψψψ
OAlZrAlOZrOOAlZr LxxxEExE

yyyxx :,)1()1(
1

−=−−−
−

                 (3.1.4.2) 

The composition dependence of the interaction parameter ψ
OAlZrL :,  is approximated by the 

polynomial )( 3
:,

32
:,

2
:,

1
:,

0 xLxLxLL OAlZrOAlZrOAlZrOAlZr ⋅+⋅+⋅+ ψψψψ , where ψ
OAlZrL :,

0 , ψ
OAlZrL :,

1 , ψ
OAlZrL :,

2
 

and ψ
OAlZrL :,

3  are the composition dependent parameters.  
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Fig. 3.1.4.3: Fit (curves) of the formation energies calculated by ab initio DFT (circles) with 

the function ))(1( 3
3

2
2

10 LxLxxLLxx +++− .  

 

Figure 3.1.4.3 shows the fit of the formation energies, with the 

function ))(1( 3
3

2
2

10 LxLxxLLxx +++− . The circles are the data points obtained from ab 

initio calculations, and the lines in the figure show the fitted curves. The resulting 

composition dependent relationships are 

                      332
:, 10)39.1649.102.3359.35( ⋅⋅+⋅+⋅+= xxxLmono
OAlZr  and 

          332
:, 10)23.16883.23101.23685.77( ⋅⋅+⋅−⋅+= xxxLhcp
OAlZr  

J/mol·atom for mono- and hcp- Zr1-xAlxOy, respectively. In both cases the formation energies 

are positive. Therefore, the solid solution phases are unstable and have to decompose into the 
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isostructural terminal phases, which, as it will be discussed later, can then transform to their 

stable phases 

We shall now study the effect of the choice of temperature independent, linear and 

exponential dependence of the interaction parameter on temperature following the procedure 

outlined in the foregoing section. This dependence is obtained from the calculated value of 

interaction parameter at 0 K and at another, higher temperature. According to the previous 

studies, there is relatively small effect of the choice between 20 and 50 kJ/mol for the 

interaction parameter close to the melting point on the final results. Therefore in the present 

work, we use only the value of 20 kJ/mol (or 10 kJ/mol·atoms) for ZrOy-AlOy system at its 

eutectic temperature of 2140 K [Jerebtsov et al. 00]. Accordingly, the linear temperature 

dependence of about -22.2 J/mol⋅K and -55.4 J/mol⋅K have been obtained for mono- and hcp- 

Zr1-xAlxOy, respectively. The exponential dependence of interaction parameter on temperature 

has been estimated in the same way as outlined in the foregoing section for the Zr-Si-N 

system (see Eq. (3.1.2.3)). Accordingly, the temperature dependences of 

7754 )107847.7(
T

eL
−

⋅⋅=  and 12724 )103.5586(
T

eL
−

⋅⋅=  (J/mol·atom) have been obtained for hcp- 

and mono-Zr1-xAlxOy phases, respectively.  

Using the values of the Gibbs free energies of the stable mono-ZrO2 and hcp-Al2O3, 

the calculated lattice instabilities of hypothetical hcp-Zr2O3 and mono-AlO2 phases, and the 

composition and temperature dependence of the interaction parameters, the Gibbs free energy 

of the mixed ternary Zr1-xAlxOy phases at different temperatures has been calculated from Eq. 

(2.2.3) over the entire compositions. For comparison, the results for Gibbs free energy of the 

formation of mono- and hcp- Zr1-xAlxOy at different temperatures of 0 K, 273 K, 573 K, 773 

K, 1073 K, 1273 K with stoichiometric mono-ZrO2 and hcp-Al2O3 chosen as reference states, 

calculated with temperature independent, linearly and exponentially temperature dependent 

interaction parameter are shown in Fig. 3.1.4.4. From Fig. (a) it can be seen that at the 

temperature of 273 K the monoclinic solid solution is more stable within the composition 

range of 0 ≤ x ≤ 0.775, whereas the hcp solid solution becomes more stable at higher Al 

fraction. With increasing temperature, there is no any significant change of the composition of 

the cross-over points. In Fig. (b), it is seen that with increasing temperature the cross-over 

point moves slightly to a lower Al fraction with the values of 0.775 at 0 K and 0.705 at 1273 

K. For the case of exponential dependence in Fig. (c), the cross-over values show a stronger 

dependence on the temperature with the values of 0.775 at 0 K and 0.643 at 1273 K. The 

cross-over points correspond approximately to the "optimum" Al content where the maximum 
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hardness is expected in nc-Al2O3/ZrO2 nanocomposites if they will be deposited under the 

conditions that enable the formation of fully segregated stoichiometric phases.  
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Fig. 3.1.4.4: Gibbs free energy of the formation of mono- and hcp-Zr1-xAlxOy at different 

temperatures of 0 K, 273 K, 573 K, 773 K, 1073 K and 1273 K with stoichiometric mono-

ZrO2 and hcp-Al2O3 chosen as reference states calculated with (a) temperature independent, 

(b) linearly and (c) exponentially temperature dependent interaction parameter.  

3.1.4.3  Possibility of chemical and coherent spinodal decomposition  

Figure 3.1.4.5 shows the Gibbs free energy of mixing for the mono-Zr1-xAlxO2 solid 

solution as a function of AlO2 fraction for temperatures 0 K, 273 K, 573 K, 773 K, 1073 K, 

1273 K and nitrogen pressure of 1 atm, with isostructural, stoichiometric mono-ZrO2 and 

mono-AlO2 as the reference states, calculated with temperature independent, (Fig. (a)), 

linearly (Fig. (b)) and exponentially (Fig. (c)) temperature dependent interaction parameter. It 

is seen that for the case of temperature independent interaction parameter in Fig. (a), the 

Gibbs free energy of mixing changes only little with increasing temperature from 0 K to 1273 

K. Comparing the linear (Fig. (b)) and exponential (Fig. (c)) temperature dependence one sees 

that with increasing temperature, the maximum of the Gibbs free energy of mixing decreases 

with increasing temperature for both cases. However, the decrease is faster for the exponential 

dependence than for the linear one. Moreover, the immiscibility gap with 0
)(

2

02

<
x

xGf

δ
δ

 is 
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somewhat larger for the exponential temperature dependence, particularly in the range of low 

AlO2 fraction. Furthermore, the position of the maximum of the Gibbs free energy as function 

of the AlO2 fraction changes less for the exponential case. 
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(c) 

Fig. 3.1.4.5: Gibbs free energy of mixing of mono-Zr1-xAlxO2 phase as a function of AlO2 

fraction for temperatures 0 K, 273 K, 573 K, 773 K, 1073 K and 1273 K, with isostructural 

mono-ZrO2 and mono-AlO2 as reference states, calculated with (a) temperature independent, 

(b) linearly and (c) exponentially temperature dependent interaction parameter. 

 

Next we discuss the Gibbs free energy of mixing of the hcp-(Zr1-xAlx)2O3 solid 

solution with the isostructural hcp-Zr2O3 and hcp-Al2O3 phases chosen as the reference states. 

The results are shown in Fig. 3.1.4.6. Comparing these results with Fig. 3.1.4.5 we see similar 

trends for the different temperature dependences of the interaction parameters. However, the 

maximum de-mixing energies are higher for hcp-Zr1-xAlxOy than that for mono-Zr1-xAlxOy. 
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Fig. 3.1.4.6: Gibbs free energy of mixing of hcp-(Zr1-xAlx)2O3 phase as a function of Al2O3 

fraction for temperatures 0 K, 273 K, 573 K, 773 K, 1073 K and 1273 K, with isostructural 

hcp-Zr2O3 and hcp-Al2O3 as reference states, calculated with (a) temperature independent, (b) 

linearly and (c) exponentially temperature dependent interaction parameter. 

 

 Figure 3.1.4.7 shows the phase stability diagrams of mono-(Zr1-xAlx)O2 as a function 

of AlO2 fraction x with mono-ZrO2 and mono-AlO2 as reference states calculated with (a) 

temperature independent, (b) linearly, and (c) exponentially temperature dependent interaction 

parameter. It can be seen from Fig. (a) that assuming the temperature independent interaction 

parameter, as it has been done in several recent papers of other groups, yields unreasonably 

high spinodal temperature. Therefore, this case will not be further discussed here. In the case 

of linear dependence, the spinodal temperature is much lower, but its maximum is still higher 

than the melting points of the oxides (2327 K for α-Al2O3 and 2950 K for ZrO2). Therefore 

we concentrate on the case of the exponential dependence of the interaction parameter shown 

in Fig. (c). For the convenience of the reader we repeat that the chemical spinodal curve 

corresponds to the dependence of Gibbs free energy on the composition where 0
)(

2

02

<
x

xG f

δ
δ

, 

i.e., the thermodynamically driven phase segregation occurs without any activation, whereas 

between the spinodal and binodal curves it occurs by activated nucleation and growth because 



88 
 

0
)(

2

02

>
x

xG f

δ
δ

. From Fig. (c) we conclude that, for a typical deposition (773 K) and aging 

(1073 K) temperature, the system is chemically spinodal within almost the whole composition 

range, in particular for the compositions of about x = 0.2-0.8 corresponding to the formation 

of the nanocomposites. Even when the system, starting the decomposition from the spinodal 

region is approaching, within the incompletely segregated volumes, the terminal phases where 

nucleation and growth might be theoretically possible (e.g., for x < 0.1), the mechanism of 

nucleation and growth will not operate because of a sufficiently high density of the segregated 

grains and low supersaturation. Therefore, the mechanism of nucleation and growth can be 

neglected. The de-mixing energies presented in Fig. (c) might appear relatively small for 

coherent spinodal to occur, because the elastic misfit energy is relatively high. However, one 

has to consider the high instability of the mono-AlO2 terminal phase of 57.65 kJ/mol·atom as 

compared with the thermodynamically stable hcp-Al2O3 one. Therefore, the phase 

transformation 2mono-AlO2  hcp Al2O3 + (1/2)O2 during the later stage of the 

decomposition of the mono-Zr1-xAlxO2 solution will not hinder the decomposition into 

stoichiometric ZrO2 and Al2O3 to be completed. This is an extension of the conventional 

concept of the spinodal decomposition developed originally for metallic system with a much 

smaller de-mixing energy than the oxide under consideration. Because of the high de-mixing 

energy of the mono-Zr1-xAlxO2 solid solution, spinodal decomposition will occur within the 

whole composition range which is relevant for the formation of the nanocomposites.  
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Fig. 3.1.4.7: Temperature-composition phase diagram for mono-Zr1-xAlxO2 showing the 

spinodal (short dashed line) and binodal (dashed lines) curves with mono-ZrO2 and mono-

AlO2 chosen as reference states calculated with (a) temperature independent, (b) linearly and 

(c) exponentially temperature dependent interaction parameter. 
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Finally, we shall discuss the phase stability of hcp-(Zr1-xAlx)2O3 solid solution. Figure 

3.1.4.8 shows the phase stability diagram of hcp-(Zr1-xAlx)2O3 solid solution as function of the 

composition calculated by the three different temperature dependences of the interaction 

parameters discussed above. As for the case of the hexagonal structure, neglecting the 

temperature dependence yields physically unreasonable results. Also the linear dependence 

yields too high temperature above the melting points of both terminal phases. Therefore, we 

concentrate on Fig. (c), which shows the results when assuming the exponential temperature 

dependence of the interaction parameter. Accordingly, the chemical spinodal decomposition 

occurs in a large composition range from 0.197 to 0.988 at the temperature of 1000 K. The 

obtained maximum temperature of 2045 K for spinodal decomposition is quite reasonable. 

The spinodal range is somewhat smaller at the side of hcp-Zr2O3 as compared with the mono-

ZrO2 in Fig. 3.1.4.7 (c) because the latter is the stable whereas the hcp-Zr2O3 is the unstable 

terminal phase.  
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Fig. 3.1.4.8: Temperature-composition phase diagram for hcp-(Zr1-xAlx)2O3 showing the 

spinodal (short dashed line) and binodal (dashed lines) curves with hcp-Zr2O3 and hcp-Al2O3 

as reference states calculated with (a) temperature independent, (b) linearly and (c) 

exponentially temperature dependent interaction parameter. 
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3.1.4.4  Summary  

The internal structure parameters of the stable mono-ZrO2 and hcp-Al2O3 phases were 

first optimized by ab initio DFT calculation, and then used for the calculation of the 

equilibrium properties, such as the total energy, volume, bulk modulus, and its derivative. The 

obtained results agree well with the published theoretical and experimental data. Therefore, 

the ab initio DFT calculations were extended to determine the relative stabilities of 

hypothetical, unstable binary hcp-Zr2O3 and mono-AlO2 and their ternary Zr1-xAlxOy solid 

solution counterparts. Because of the smaller atomic radius of Al as compared with that of Zr, 

the calculated molar volume decreases with increasing Al fraction in the (Zr1-xAlx) sublattice. 

 Two polynomials with four parameters have been obtained by fitting the composition 

dependence of the interaction parameter for mono- and hcp-Zr1-xAlxOy phases, that has been 

calculated by the ab initio DFT method. For the temperature dependence of the interaction 

parameter, three cases have been considered: temperature independent, linearly and 

exponentially temperature dependent. These dependences were then used for the calculation 

of the Gibbs free energy of mixing for both hcp- and mono-Zr1-xAlxOy phases, as well as for 

the calculation of the spinodal and binodal diagrams as function of composition. It is found 

that using the temperature independent interaction parameter, as done in many recent papers 

of other groups, yields unreasonable results. With a linearly dependent interaction parameter, 

the proportionality factors of -22.2 J/mol⋅K and -55.4 J/mol⋅K are obtained for mono- and 

hcp- Zr1-xAlxOy phases, respectively. However, the maximum spinodal temperature was above 

the melting points of the terminal binary oxides and, therefore still too high. The most reliable 

results were obtained with the exponential temperature dependences of 

7754 )107847.7(
T

eL
−

⋅⋅= and 12724 )103.5586(
T

eL
−

⋅⋅=  for the hcp- and mono- Zr1-xAlxOy phases, 

respectively. 

 With the exponential dependence we calculated the Gibbs free energy of the mixed 

solid solution, as well as the spinodal and binodal curves as function of the composition for 

both monoclinic and hexagonal Zr1-xAlxOy solid solution. The results clearly show that the 

system should undergo spinodal phase segregation within the composition range that is 

relevant for the formation of superhard nanocomposites, provided the deposition temperature 

is sufficiently high in order to assure fast diffusion, which kinetically controls the segregation. 

These results provide guideline for more precise experimental work to be done in the future, 

particularly as regards the deposition temperature and partial pressure of oxygen during the 

deposition.  
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3.2  Strengthening mechanism in the ZrAlN system 

In this section, we shall calculate the ideal strengths of the fcc-Zr1-xAlxN solid solution 

with different Al content and compare it with terminal binary phases fcc(NaCl)-ZrN and 

fcc(NaCl)-AlN. The ideal strengths of the stable hcp-AlN reported recently by Zhang et al. 

[Zhang et al. 07b] will be considered as well. The results will be then used for the comparison 

with the ideal strengths of a ZrN/1 ML-AlN/ZrN and AlN/1 ML-ZrN/AlN sandwich.  

 

3.2.1  Zr1-xAlxN solid solutions  

 
Fig. 3.2.1. Stress – strain relationships calculated by ab initio DFT method for fcc(NaCl)-

ZrN. 

 

The ideal de-cohesion strengths for the fcc-ZrN, fcc-AlN and three fcc-Zr1-xAlxN solid 

solution with x = 0.25, 0.50 and 0.75 were calculated in three main crystal directions <100>, 

<110> and <111> through a projection of 8 atoms unit cell onto three Cartesian coordinate 

axes with one axis parallel to the direction of the strain. For the calculation of the shear 

deformation, one of the axes was chosen parallel to slip direction and another one was 

perpendicular to the slip plane. The selected slip systems were (111) ]011[ , (111) ]211[  and 

(110) ]011[ .  

Figure 3.2.1 shows the stress – strain curves calculated for fcc-ZrN. The anisotropy ratio 

of the ideal de-cohesion strengths of fcc-ZrN is σ<111>= 86.4 GPa : σ<110>= 45.4 GPa : σ<100>= 
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28.9 GPa = 2.99: 1.57: 1. The ideal shear strengths of fcc-ZrN is 27.4 GPa for the (111) ]011[ , 

26.1 GPa for the (111) ]211[ , and 25.7 GPa for the (110) ]011[  slip system.  

Figure 3.2.2(a) shows the stress – strain curves calculated for fcc-AlN. The anisotropy 

ratio of the ideal de-cohesion strengths of σ<111>= 102.6 GPa : σ<110>= 45.2 GPa : σ<100>= 20.7 

GPa = 4.96: 2.18: 1 is larger than that of fcc-ZrN shown in Fig. 3.2.1. However, the calculated 

lowest decohesion strength of 20.7 GPa of fcc-AlN is lower than that of fcc-ZrN of 28.9 GPa. 

The ideal shear strengths of fcc-AlN is 22.2 GPa for the (111) ]011[ , 19.4 GPa for the 

(111) ]211[ , and 18.7 GPa for the (110) ]011[  slip system. It is found that the ideal shear 

resistance of the fcc-AlN of 18 to 22 GPa is also smaller than that of the fcc-ZrN of 25 to 27 

GPa.  

 
Fig. 3.2.2 (a). Calculated stress – strain relationships for fcc(NaCl)-AlN. 

 

 Figure 3.2.2(b) shows the stress – strain curves calculated for hcp-AlN by Zhang et al. 

[Zhang et al. 07b]. The anisotropy of the ideal de-cohesion strength is smaller, but the de-

cohesion strength larger than the weakest one in the <100> direction of the fcc-AlN. The ideal 

shear strength compares with that of the fcc-AlN, and it is only slightly smaller than that of 

fcc-ZrN. 
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Fig. 3.2.2 (b): Calculated stress – strain relationships for hcp-AlN (from [Zhang et al. 07b]). 

 

Figure 3.2.3 shows the stress – strain curves calculated for fcc-Zr1-xAlxN solid solution 

with x = 0.75, 0.50, 0.25. Except for a small decrease of the de-cohesion strength in the <111> 

direction, there is relatively small difference between the solid solution and the terminal 

binary phases fcc-ZrN and fcc-AlN. With the increase of the Al content, the ideal shear 

strengths decreases from about 25.7 GPa for pure fcc-ZrN to 18.2 GPa for the weakest 

(111) ]211[ slip system of Zr0.5Al0.5N, followed by a slight increase to 19.5 GPa for 

Zr0.25Al0.75N when compares with the calculated shear strength of fcc-AlN.  
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(a) 

 

 
(b) 
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(c) 

Fig. 3.2.3: Calculated stress – strain relationships for fcc(NaCl)- Zr1-xAlxN solid solutions (a) 

x = 0.75, (b) x = 0.50 and (c) x = 0.25. 

 

 Table 3.2.I summarizes the maximum ideal de-cohesion strengths in the <100>, <110> 

and <111> directions, and the maximum ideal shear strengths in the (110) ]011[ , (111) ]011[   

and (111) ]211[  slip systems for the fcc- AlN, ZrN and Zr1-xAlxN with x = 0.25, 0.5, 0.75. One 

can see that: 

1. The de-cohesion strength is the highest in the <111> direction for all the phases. 

2. The ideal shear strength is the highest in the (111) ]011[  slip system for all phases. 

3. Substitution of Al for Zr in ZrN results in a slight decrease of ideal de-cohesion and shear 

strength. 

4. The lowest shear strength shows in the (111) ]211[ slip system of the Zr0.5Al0.5N solid 

solution.   
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Table 3.2.I: The maximum tensile strengths under the <100>, <110> and <111> tensile stress, 

respectively, and shear strengths under (110) ]011[ , (111) ]011[ , and (111) ]211[  shear stress, 

respectively, of AlN, ZrN and Zr1-xAlxN (x=0.25, 0.5, 0.75) in fcc(NaCl) structure calculated 

by ab initio DFT calculation. 
 

Tensile strength Shear strength 
Phase 

<100> <110> <111> (110) ]011[  (111) ]011[  (111) ]211[  

fcc-ZrN 28.91 45.41 86.39 25.68 27.41 26.06 

fcc-AlN 20.74 45.15 102.61 18.74 22.17 19.39 

fcc-Zr0.75Al0.25N 24.43 45.44 80.80 22.81 25.49 22.24 

fcc-Zr0.5Al0.5N 24.13 37.90 55.99 22.80 25.49 18.21 

fcc-Zr0.25Al0.75N 21.11 39.91 81.80 19.50 22.03 19.68 

 

It should be noted that the experimental results show that the hardness increases from 

21 GPa for pure ZrN to 28 GPa for the Zr0.57Al0.43N solid solution [Lamni et al. 05]. This is 

not in any discrepancy with the calculated decrease of the ideal shear strength because the 

solution hardening is based on the reduction of dislocation mobility caused by the solute 

atoms. The exact mechanism of solution strengthening depends on many factors including 

among others also the type of the dislocations and the structure of the material [Argon 08]. 

The most important effects are the a) size misfit interaction, where the solute atoms replacing 

the host atom in the lattice place is of a different size, and b) the modulus misfit interaction 

where the solute atom changes the elastic properties of its surrounding. However, other effects 

can also play a role: The solute atoms may segregate to the stacking faults of the dislocations 

(the so called "chemical interaction"). It has been also shown, that clustering, which may 

occur during the deposition, can also increase the hardness by the mechanism of precipitation 

hardening. Because of the complexity of these mechanisms [Argon 08] and limited 

experimental data, more detailed discussion of the mechanism of the solution strengthening in 

the Zr1-xAlxN solid solution is beyond the scope of this work. Our calculations just show that 

the reduction of the ideal strengths is modest and therefore does not hinder the solid solution 

strengthening of the deposited coatings which are far away from being "ideal materials". 
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3.2.2  The strength of the ZrN/1 ML AlN/ZrN interface in comparison with the bulk 

phases  

 In this section, we shall present the results of the calculations of the stress-strain 

relationships, the atomistic mechanisms and the electronic structures of instability of several 

ZrN/1 ML-AlN/ZrN interface, and compare them with those of the bulk phases in order to 

find out if a similar strengthening as in the case of the TiN/1 ML-SiNx/TiN can be expected. 

We do not consider the AlN/1 ML-ZrN/AlN interface because due to a somewhat lower 

Pauling's electronegativity of Zr (1.4) as compared with Al (1.5) no strengthening is expected 

in this case. In addition, we shall also check the possible effect of the chosen thickness of the 

ZrN slab on the results. 

 

3.2.2.1  The stress-strain relationships of the ZrN/1 ML-AlN/ZrN interfaces  

Figure 3.2.4 shows the calculated stress–strain relationship of fcc(NaCl)-ZrN/1 ML-

AlN/ZrN for different crystallographic directions and slip systems as indicated. For 

comparison, the de-cohesion and shear strengths and the corresponding critical strains for 

bulk phases reported in the foregoing section and those of the interfaces shown in Fig. 3.2.4 

are summarized in Table 3.2.II. The minimum de-cohesion strength of the interface of 24.26 

and 22.75 GPa is found in the <001> direction for slabs with ZrN thickness of 1.8 and 2.7 nm, 

respectively. The minimum shear strength of 14.7 GPa is found in the )111( ]211[  slip system. 

Both are comparable to the smallest strengths of the bulk phases fcc-ZrN, fcc-AlN and the 

solid solutions Zr1-xAlxN. Thus, we conclude that there is no obvious strengthening of the 

ZrN/1 ML-AlN/ZrN slab similar to that which has been found in the TiN/1 ML-SiNx/TiN 

system.  

In order to check the effect of the thickness of the ZrN(001) slabs on the results of the 

calculations, a comparison of the calculated stress-strain curves for slab thickness of 1.8 and 

2.7 nm is shown in Fig. 3.2.4(d) and the values of the ideal strengths are given in Table 3.2.II. 

It is seen that the stress-strain curves for two different thickness are nearly the same and the 

values of the ideal strength and strain differ only slightly when the thickness changes. This 

confirms that the results are not influenced by the thickness of the ZrN slab chosen in this 

range, which corresponds to the average crystallite size of 3-4 nm as found in the superhard 

nanocomposites prepared under the optimum conditions [Veprek et al. 05].  
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(a) (b)  

 

  
                                       (c)                                                                     (d)  

Fig. 3.2.4: Calculated stress-strain relationships for three fcc-ZrN/1 ML-AlN/ZrN interfaces 

in different crystallographic directions and slip systems as indicated for the (001) [Fig. (a)], 

(110) [Fig. (b)] and (111) [Fig. (c)] interfaces. Figure (d) shows a comparison of the stress-

strain curves for (001) interface with different thickness of the ZrN slab of 1.8 nm and 2.7 nm 

(denoted as "thicker"). 
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Table 3.2.II: De-cohesion strengths and corresponding strains in the <001>, <110> and <111> directions and the shear strengths and strains in 

various slip systems of bulk fcc-ZrN, fcc-AlN and fcc(NaCl)-Zr1-xAlxN(x=0.25, 0.5, 0.75) in comparison with the fcc-ZrN/1 ML-AlN/ZrN interface. 

The strains are given in the parenthesis.   

De-cohesion strength and  

the corresponding strain 

Shear strength and 

the corresponding strain Phase 

<001> <110> <111> (001)[100] (001)[110]  (110) [001] (110) ]011[  (111) ]011[  (111) ]211[  

fcc-ZrN 
28.91 

0.1025 

45.41 

0.3400 

86.39 

0.4071    

25.68 

0.2155 

27.41 

0.2763 

26.06 

0.2155 

fcc-AlN 
20.74 

0.1576 

45.10 

0.2155 

102.61 

0.3400 
   

18.74 

0.2763 

22.17 

0.2763 

19.39 

0.2763 

fcc-Zr0.75Al0.25N 
24.26 

0.1576 

42.35 

0.3400 

80.46 

0.4071 
   

22.77 

0.2155 

25.49 

0.2763 

22.11 

0.2155 

fcc-Zr0.5Al0.5N 
24.13 

0.1576 

37.88 

0.3400 

55.99 

0.2287 
   

22.80 

0.2155 

25.49 

0.2763 

18.21 

0.2763 

fcc-Zr0.25Al0.75N 
21.11 

0.1704 

39.91 

0.2763 

81.80 

0.3282 
   

19.50 

0.2524 

22.03 

0.2649 

19.68 

0.2649 

fcc-ZrN/1 ML-AlN/ZrN 

(ZrN thickness 1.8 nm) 

24.26 

0.1040 

38.54 

0.1716 

64.23 

0.2189 

34.79 

0.3728 

28.07 

0.2682 

28.93 

0.3195 

16.65 

0.1040 

17.58 

0.1261 

14.70 

0.1261 

fcc-ZrN/1 ML-AlN/ZrN  

(ZrN thickness 2.7 nm) 

22.75 

0.0824 
  

34.7 

0.4002 

29.46 

0.2936 
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3.2.2.2  The crystal and electronic structure at equilibrium  

The crystal structure and the bond length of bulk fcc-ZrN, fcc-AlN and hcp-AlN after 

relaxation at zero strain are shown in Fig. 3.2.5. The Zr-N bond length of fcc-ZrN of 0.2304 

nm is in agreement with the experimental value of 0.2305 nm [Spillmann et al. 01]. The fcc-

AlN shows only a slightly longer Al-N bond length as compared with the hcp-AlN, in 

agreement with the comparable mechanical strength for both polymorphs [Zhang et al. 07b]. 

   

 
Fig. 3.2.5: The crystal structure and bond lengths (nm) of the bulk fcc-ZrN, fcc-AlN and hcp-

AlN.  

 

Figure 3.2.6 shows the structure and the variation of bond lengths of the (a) (001), (b) 

(110) and (c) (111) interfaces after the relaxation of the total energy at zero strain for ZrN 

thicknesses as indicated. The (111) interface contains only Al atoms whereas the (001) and 

(110) ones contain both Al and N atoms. The smallest spheres represent N, the larger ones Al, 

and the largest ones Zr atoms. The interatomic distances near the interface show alternations 

with the shortest one being the Al-N bond at the interface and the longest Zr-N bond next to 

it, followed by a kind of oscillations of the other Zr-N bonds lengths which are damped with 

increasing distance from the interface. These resemble the Friedel oscillations which occur in 
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solids when their electronic structure is locally perturbed by foreign atoms or at solid-vacuum 

interfaces [Roduner 06]. The lengths of the Al-N bonds directed out of the Al-interface are 

larger than those in bulk fcc-AlN (0.2034 nm) for the (110) (0.2136 nm and 0.2152 nm for 

thinner and thicker ZrN, respectively) and (111) interfaces (0.2166 nm), but slightly smaller 

for the (001) interface (0.2019 nm and 0.2010 nm for the thinner and thicker ZrN, 

respectively). The Zr-N bond length in the layer next to the AlN interface is the largest one 

for the (001) interface (0.2445 nm for the thinner and 0.2444 nm for the thicker ZrN). A 

similar situation is found for the (110) interface, where the longest Zr-N bond length is next to 

the AlN interface (0.2417 nm for the thinner and 0.2488 nm for the thicker ZrN). Also in the 

case of the (111) interface, the longest Zr-N bond of 0.2354 is next to the AlN interface (for 

the time reason, we have considered only the case with the slab thickness of 2.4 nm). All 

these values are larger than that of bulk fcc-ZrN of 0.2304 nm.  
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(a) (001) interface 
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 (b) (110) interface 
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 (c) (111) interface 

Fig. 3.2.6: The structure and interatomic distances (in nm) of the (a) (001), (b) (110) and (c) 

(111) ZrN/1 ML-AlN/ZrN interfaces after full relaxation at zero strain. The bond lengths and 

ZrN thicknesses are shown in the figures. 

 

Figure 3.2.7 shows the interatomic bond lengths plotted as function of distance from the 

AlN interface. One can see the damped Friedel-like oscillations spreading from the (001) and 

(111) interfaces whereas for the (110) interface only the second plane shows an enlarged bond 

distance. The oscillations are somewhat more pronounced for the thicker ZrN slabs, but the 

essential features remain preserved, i.e., the overall mechanism of the instabilities during 

deformation will not change with the thickness of the slabs in this range, which approximately 

corresponds to the crystallite size in the superhard nanocmposites.  
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Fig. 3.2.7: The dependence of the interatomic bond length on the distance from the AlN 

interface for the (a) (100), (b) (110) and (c) (111) interfaces, respectively. The “position” 1 

corresponds to the Al-N bond directed out of the interface.  

 

 
Fig. 3.2.8: Valence charge densities of the (001), (111) and (110) interfaces after full 

relaxation at zero strain. The scale ranges from 0.54 electrons/Bohr3 (red) to 0 (blue).     
 

 The Friedel-like oscillations of the valence charge density, as indicated by the variable 

bond distances, reflect the oscillatory nature of the valence charge density in ZrN near the 
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AlN interface, because due to the somewhat larger electron negativity of Al (1.5) as compared 

with Zr (1.4) [Greenwood and Earnshaw 84] the interface is negatively charged as shown in 

Fig. 3.2.1.8. However, this effect is less pronounced than in the case of the TiN/1 ML-

SiNx/TiN.  

Because the (111) interface contains only Al atoms and all atomic layers parallel to it 

within the ZrN slabs contain only one sort of atoms (either N or Zr), the Friedel-like 

oscillations are "in phase" around this interface. However, in the case of the (001) and (110) 

AlN interfaces which contain both Al and N atoms, the planes in the ZrN slabs parallel to 

these interfaces contain Zr as well as N atoms. This results in a kind of "phase shift" of the 

Friedel-like oscillations between the neighbour atomic planes perpendicular to the interface, 

which contain either Al or N atoms in that interface (See Fig. 3.2.6 (a) and (b)). This can be 

clearly seen on the (001) interface shown in Fig. 3.2.1.6 (a): The distances of Al-N bond 

perpendicular to the (001) interface (0.2019 nm) are evidently shorter than those of the N-Zr 

ones coming out of the AlN interface, and this feature propagates also in the subsequent 

layers parallel to that interface. These phase shifts of the Friedel-like oscillations have 

important effect on the sequence of bond ruptures during de-cohesion in tension, and bond 

flip-over, rotation and re-arrangement during ideal shear. In the following parts, we limit our 

discussion on the Al containing planes to show the instability under tension and shear 

deformations.  

 

3.2.2.3  The mechanism of tensile de-cohesion    

In this section, we shall study the mechanism of de-cohesion in tension for all three 

interfaces. Figure 3.2.9 shows the structures (Fig. (a)) and the valence charge density map 

(Fig. (b)) upon tension of the slab with the (001) interface in the <001> direction at strains of 

0.1040 and 0.1716, which correspond to the maximum stress and to the de-cohesion 

instability, respectively (c.f. Fig. 3.2.4 (a)). 

 Both figures show that de-cohesion occurs between the second and third Zr-N layers 

parallel to the interface. This is surprising because one would expect that de-cohesion should 

occur between the planes with the largest distance at zero strain, i.e., between the first and 

second Zr-N planes (see Fig. 3.2.6 (a)) away from the interface.  It were interesting to find out 

if this may be related to the phase shift of the Friedel-like oscillations in neighbor planes 

perpendicular to the interface as found in the TiN/1 ML-SiNx/TiN system [Zhang et al. 09], or 

rather to the size effect. Nevertheless, it is clear that the weakening of the Zr-N bonds 
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between the second and third Zr-N planes from the interface influences the strength of the 

whole interface "sandwich" more than the strengthening of the Al-N bonds. 

 
Fig. 3.2.9 (a): Changes of the interatomic distances upon tensile strain applied to the (001) 

interface in the <001> direction for strains as indicated. Bond lengths are given in the unit of 

nm.  

 
Fig. 3.2.9 (b): Changes of the valence charge density upon tensile strain applied to the (001) 

interface in the <001> direction for strains as indicated. 
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Figures 3.2.9 (c) and (d) show the changes of the interatomic distances and valence 

charge density upon tension strain applied to the (001) interface in the <001> direction for a 

thicker slab of 2.7 nm. A comparison with Figs 3.2.9 (a) and (b) reveals a close similarity in 

the changes of bond lengths as well as in the valence charge density. Thus also in this case the 

calculations performed with a thinner slab describe correctly the basic physics of the de-

cohesion.  

 

 
Fig. 3.2.9 (c): Changes of the interatomic distances upon de-cohesion in tension applied to the 

(001) interface in the <001> direction for strains as indicated. The thickness of the cell is 2.7 

nm. Bond lengths are given in nm. 
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Fig. 3.2.9 (d): Changes of the valence charge density upon de-cohesion in tension applied to 

the (001) interface in the <001> direction for strains as indicated.  

 

Figure 3.2.10 shows the changes of interatomic distances (Fig. (a)) and valence charge 

density map (Fig. (b)) upon tensile strain applied to the (111) interface in the <111> direction 

perpendicular to that interface for strain before and after the de-cohesion instability. One can 

see that in this case de-cohesion occurs between the second plane (Zr) and third palne (N) 

parallel to the Al interface, where the Zr-N bond length of 0.2257 nm at zero strain is the 

second longest one (c.f. Fig. 3.2.6 (c)). As in the previous case, the de-cohesion does not 

occur between the N-Zr bonds where, at zero strain, the bond distance of 0.2354 nm is the 

largest. Because (111) interface contains only Al atoms, the Friedel-like oscillations in the 

neighbor planes perpendicular to the interface are in phase.  
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Fig. 3.2.10 (a): The atomistic mechanism of de-cohesion of the (111) interface upon the 

tensile strain applied in the <111> direction perpendicular to that interface for strains as 

indicated. The bond lengths are given in nm.  
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Fig. 3.2.10 (b): Changes of the valence charge density upon tensile strain applied in the (111) 

interface in the <111> direction perpendicular to that interface for strains as indicated. 

 

Figure 3.2.11 shows the atomistic mechanism (Fig. (a)) and the changes of valence 

charge density (Fig. (b)) upon tension applied to the (110) interface in the <110> direction 

perpendicular to that interface for strain before and after the de-cohesion instability. One can 

see that in this case the instability is due to the weakening between the first and second Zr-N 

plane parallel to the interface. However, before and after instability, the atomic lattice still 

remains partially connected. This can be also seen from the stress-strain curve shown in Fig. 

3.2.4 (b): after the instability, the stress does not fall to zero, but remains at a relatively high 

level for strain increasing up to 0.35.  This is probably due to the phase shift of Friedel-like 

oscillations in neighbor planes perpendicular to that interface, and a complex re-distribution 

of the valence charge density in a similar manner as described for the TiN/1 ML-SiNx/TiN 

system by Zhang et al. [Zhang et al. 09]. 
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Fig. 3.2.11 (a): Three-dimensional atomistic structure pictures of de-cohesion upon tension 

applied to the (110) interface in the <110> direction perpendicular to that interface for strains 

as indicated.  Bond lengths are given in the unit of nm. 

 
Fig. 3.2.11 (b): Changes of the valence charge density upon de-cohesion in tension applied to 

the (110) interface in the <110> direction perpendicular to that interface for strains as 

indicated.   
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3.2.2.4  The mechanism of shear deformation    

 Plastic deformation occurs in shear under constant volume (compatibility conditions). 

The following analysis of the changes of the valence charge density upon shear will be 

conducted by comparing them before and after the ideal shear instability. The atomistic 

structures are used to illustrate how the atoms move before and after the ideal shear 

deformation. 

Figure 3.2.12 shows the behavior of the (001)[100] slip system as atomistic structure 

(Fig. (a)) and the valence charge density (Fig. (b)) for shear strains of 0.3728 and of 0.4002, 

which corresponds to the maximum of the stress-strain curve and to the shear instability, 

respectively (c.f. Fig. 3.2.4(a)). In order to see easily the shear, the atoms on the left, just 

before the instability, have been numbered. One can see that, by analogy with the de-cohesion 

discussed above, the shear occurs between the first and the second Zr-N planes parallel to the 

interface. The movement of the atoms between the first and second Zr-N planes is shown in 

Fig. 3.2.12(b). The white arrows in Fig. 3.2.12(b) show the flip-over of the Zr-N bond upon 

the shear instability. The valence charge densities in the regions labeled by black arrows in 

the Fig. 3.2.12(b) are nearly zero (see the numbers in the figure), which indicates that they are 

weak links. 

 
Fig. 3.2.12 (a): The atomistic structure upon the shear deformation applied to (001)[100] slip 

system for values of strain as indicated.   
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Fig. 3.2.12 (b): Changes of the valence charge density upon the shear deformation applied to 

(001)[100] slip system for values of strain as indicated (see text).  

 

Figure 3.2.13 shows the behavior of the (001)[110] slip system as atomistic structure  

and the valence charge density for shear strains of 0.2682 and 0.2936 which correspond to the 

maximum of the stress-strain curve and to the shear instability, respectively (c.f. Fig. 

3.2.4(a)). Figure 3.2.13 (a) shows the three-dimensional figures of the atomistic configuration. 

We distinguish between planes perpendicular to the interface which pass through Al atoms in 

that interface (Figs. (b) and (c)), and those which pass through N atoms within the (001) 

interface (Figs. (d) and (e)). The movement of the atoms is indicated by labeling the relevant 

atoms in Fig (b) and (d), whereas the flip-over of the Al-N and Zr-N bonds is shown by white 

arrows in the figures (c) and (e), respectively. One can see that the shear occurs between the 

Al and N atoms next to the interface in the first set of planes, but between Zr and N atoms 

remote from that interface in the second set of the planes.  
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Fig. 3.2.13 (a): The three-dimensional atomistic structure pictures of shear deformation 

applied to (001)[110] slip system.  

 

 
Fig. 3.2.13 (b): Movement of the atoms during the shear deformation applied to slip system 

(001)[110] for planes passing through Al atoms in the interface.  
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Fig. 3.2.13 (c): Changes of the valence charge density upon the shear deformation applied to 

(001)[110] slip system for planes passing through Al atoms in the interface.  

 
Fig. 3.2.13 (d): Movement of the atoms during the shear deformation applied to slip system 

(001)[110] for planes passing N atoms within the AlN interface.  
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Fig. 3.2.13 (e): Changes of the valence charge density upon shear deformation applied to 

(001)[110] slip system for planes passing N atoms within the AlN interface.  

 

 Figure 3.2.14 shows the behavior of the (111) interface upon shear applied in the 

]011[ direction. It is clearly seen that the shear occurs between the Al containing (111) 

interface and N atoms next to it. Figure (a) shows the atomic pictures and Fig. (b) the valence 

charge density. The bond flip-over is clearly seen from these figures. 
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Fig. 3.2.14 (a): The atomic pictures upon shear deformation applied to ]011)[111(  slip system 

for values of strain as indicated.   

 

 
Fig. 3.2.14 (b): Changes of the valence charge density upon shear deformation applied to 

]011)[111(  slip system for values of strain as indicated.  
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A significantly different behavior is found for the ]211)[111(  slip system shown in Fig. 

3.2.15. From the three-dimensional atomic figures in Fig. (a) and the valence charge 

densities maps in Fig. (b) it is seen that there is not any dramatic difference in the 

structure and in the valence charge density before and after the strain corresponding to 

the maximum of the stress-strain curve which does not show any pronounced instability 

but rather a smooth shape (see Fig. 3.2.4 (c)).  

 

 
Fig. 3.2.15 (a): The three-dimensional atomic configuration pictures upon shear deformation 

applied to ]211)[111(  slip system for values of strain as indicated.   
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Fig. 3.2.15 (b): Changes of the valence charge density upon shear deformation applied to 

]211)[111(  slip system for values of strain as indicated.  

 

Figure 3.2.16 shows the behavior of the (110) interface upon shear strain applied in the 

]011[ direction. Referring to Fig. 3.2.4(b), this is the weakest shear direction for the (110) 

interface. It is seen that the sliding occurs next to the AlN interface. The atomic pictures are 

shown in Fig. (b) and the valence charge density in Fig.(c). During the instability, the bonds 

between N atom 4 and Al atom 6, and between N atom 3 and Al atom 7 are broken resulting 

in shear with a new configuration. 

 

 



 124

 
Fig. 3.2.16 (a): Three-dimensional atomic pictures upon shear deformation applied to (110) 

]011[ slip system for values of strain as indicated.   

 

 
Fig. 3.2.16 (b): The atomic pictures of the (110) plane upon shear deformation applied to 

(110) ]011[ slip system for values of strain as indicated.   
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Fig. 3.2.16(c): Changes of the valence charge density upon shear deformation applied to 

(110) ]011[  slip system for values of strain as indicated.  

 

3.2.2.5  Summary  

 The results presented in this section show that there is no enhancement of the strength 

in the ZrN/1 ML-AlN/ZrN system comparable to that which has been found for the TiN/1 

ML-SiNx/TiN one. This is somewhat surprising because Dong et al. reported a similar 

hardness enhancement for the ZrN/SiNx/ZrN heterostructures [Dong et al. 06] as it has been 

found by several groups for the TiN/SiNx/TiN [Söderberg et al. 05] [Söderberg et al. 07]  [Hu 

et al. 05] [Kong et al. 07]. However, in the VN/AlN/VN heterostructures, only a small 

hardness enhancement with decreasing period has been reported and attributed to the Hall-

Petch mechanism. In that work, no maximum of hardness has been found for an about 1 ML 

thin AlN interface [Li et al. 04], although nc-VN/a-Si3N4 nanocomposites showed clearly a 

hardness maximum of > 40 GPa for about 1 ML thick Si3N4 –like interface [Veprek 99] 

[Veprek et al. 05]. Therefore the results obtained in the present work seem to be in accord 

with the experimental findings.  

 The full physical explanation is beyond the scope of this work, because it would 

require a much detailed DFT and possibly also MD studies of several other systems. 
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Therefore we limit our discussion to some suggestions for the future work: The possible 

explanation may be searched for in the smaller difference of the electronegativity between Al 

and Zr of 0.1 as compared with Si and Ti of 0.3, combined with a larger difference in atomic 

size between Al and Zr of 0.027 nm as compared with Ti and Si of 0.021 nm. Therefore, the 

larger elastic strain energy caused by the misfit of the atomic sizes probably destabilize the 

ZrN/1 ML-AlN/ZrN system more than the small difference in the electronegativity can 

stabilize it. However, this suggestion should be considered as a preliminary one because 

processes at interfaces and their impact on mechanical properties are very complicated. For 

example it is known for about 100 years that 100 ppm of Bismuth makes copper very brittle, 

and all researchers agree that it is due to grain boundary embrittlement by segregation of 

Bismuth (e.g., [Rühle et al. 99] [Vitek et al. 99]), but there is still ongoing discussion whether 

it is dominated by size [Schweinfest et al. 04] or electronic effect [Duscher et al. 04]. 
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Chapter 4: Conclusions and outlook 

 The main part of this work deals with combined, ab initio DFT and thermodynamic 

modelling of the Zr-Al-N, Zr-Si-N, Al-Si-N and Zr-Al-O systems in order to study their de-

mixing properties and possibility of forming new, advanced superhard nanocomposites for 

industrial applications. The advantage of the combined method, developed recently by Zhang 

and Veprek, as compared with the quantum molecular dynamic (e.g. Car-Parrinello) approach 

is orders of magnitude shorter computing time needed (we estimated a factor of about 105). In 

the combined method, we first calculate, by means of ab initio DFT, the fundamental 

properties, such as the total energy vs. volume, lattice constant, bulk modulus, its derivative 

and cohesive energy of the relevant binary compounds ("terminal phases", such as fcc(NaCl)-

ZrN, hcp(ß)-Si3N4 and others) and compare them with published data in order to verify the 

reliability of our ab initio DFT code and potentials used. Because in all cases very good 

agreement has been obtained, these calculations were extended to the ternary solid solution 

phases of interest, and to their corresponding hypothetical terminal phases (e.g. hcp(ß)-Zr3N4, 

fcc(NaCl)-SiN etc.) which have to be used in the DFT calculations in order to maintain the 

given crystal symmetry, because the calculations are done in the reciprocal space. From the 

formation energy calculated by the ab initio DFT at 0 K as function of the composition, we 

determined the composition-dependent interaction parameter which has been then used in the 

sub-lattice solution model to calculate the Gibbs free energy of the mixing of the solid 

solution phases at ambient pressure and different temperatures. The results were then used to 

study the phase stabilities and de-mixing properties of the solid solutions with the appropriate 

structures. Finally, the temperature-composition diagrams were constructed to determine the 

spinodal and binodal regimes of each of the above mentioned systems. Because in the work of 

other groups, a temperature independent interaction parameter has been used resulting in 

values of spinodal temperature which appeared to us to be too high, far above the melting 

points of the materials under consideration, we have investigated the effect of its linear and 

exponential temperature dependence on the final results. It has been found that the 

exponential dependence yields the most reliable results whereas using T-independent 

interaction parameter is obviously incorrect. Based on the calculated chemical spinodal and 

considering the effect of the interfacial lattice misfit elastic energy, we discussed the 

possibilities of the occurrence of "coherently" spinodal phase segregation and of the 

formation of stable nanocomposites. 
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 In the Zr-Al-N system, the critical AlN content at which the phase transformation from 

fcc to hcp occurs is nearly independent of temperature. The chemical binodal and spinodal 

decomposition curves show that fcc-Zr1-xAlxN solid solution coatings should undergo phase 

decomposition into fcc-ZrN and fcc-AlN. However, because of the relatively large misfit 

strain, the spinodal decompositon into the fcc-ZrN and metastable fcc-AlN is obviously 

hindered, and the decomposition into a mixture of thermodynamically stable fcc-ZrN and hcp-

AlN is more probable.  

The binodal and spinodal curves calculated for the fcc-Zr1-xSixN solid solution show 

that it should spinodally decompose into isostructural fcc-ZrN and and unstable fcc-SiN only 

at relatively high Si content, which would yield too thick SiN interface and avoid the 

formation of superhard nc-ZrN/a-Si3N4 nanocomposites. 7 However, the hcp-(Zr1-xSix)3N4 

system is, at the temperatures relevant for the deposition of the coatings, chemically spinodal 

within nearly the whole relevant range of the composition. Therefore, the spinodal 

decomposition combined with the phase transformation  hcp-(Zr1-xSix)3N4  nc-fcc-ZrN + 

hcp(ß)- or a-Si3N4 is characterized by a large driving force, and, therefore, the formation of 

superhard nanocomposites is expected in this system. In view of the lower coefficient of 

friction as compared with other transition metal nitrides, the nc-ZrN/a-Si3N4 nanocomposites 

may be superior to the nc-TiN/a-Si3N4, nc-(Ti1-xAlx)N/a-Si3N4 and nc-(Al1-xCrx)N/a-Si3N4 

systems which are presently being used in large-scale industrial applications. The most likely 

mechanism of the phase segregation is the nucleation and growth of the fcc-ZrN within a 

tissue of SiNx which, in course of continuing decomposition and reaction transform into the 

thermodynamically stable Si3N4. The spinodal decomposition of fcc-Zr1-xSixN is possible at 

high Si fraction. Such a system is, however, unlikely to yield strengthened thin ZrN interface 

because the electronegativity of Zr is lower than that of Si and, therefore, no strengthening of 

the ZrN interface is expected.  

The Al-Si-N system has been chosen because both terminal phases are covalent 

nitrides with hexagonal structures. At the temperatures of interest for deposition and 

applications, the Al1-xSixNy solid solutions with both hcp(ZnS) and hcp(ß) structure are 

immiscible with typical characteristics of chemical spinodal.  Considering the instabilities of 

the hypothetical terminal phases hcp(ß)-Al3N4 and hcp(ZnS)-SiN with respect to their stable 

modifications hcp(ZnS)-AlN and hcp(ß)-Si3N4, spinodal decomposition accompanied by the 

                                                 
7 Notice that in all superhard nanocomposites studied so far, the maximum hardnes has been achieved when the 
interfacial SiNx layer was about one monolayer thick. This has been fully explained by the recent ab initio DFT 
calculations of Hao et al. and by Zhang et al. 
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phase transformation into the thermodynamically stable phases should occur, provided the 

nitrogen activity during the decomposition is sufficiently high.  

Because high oxidation resistance is important for materials applied as wear protective 

coatings on tools for hard and dry machining (drilling, milling, turning and the like), oxides 

are of great interests. However, so far, only α-Al2O3 deposited at high temperatures of about 

1000°C, which limits the choice of the substrate material to cemented carbide only, has been 

used. Therefore the Zr-Al-O system has been chosen as the most promising candidate which 

may form nanocomposites with enhanced hardness. The ab initio DFT calculations of such an 

oxide system represent a challenge because it is more difficult than that of the nitrides or 

carbides. Nevertheless, the obtained results have been checked to be reliable when the 

exponential dependence of the interaction parameter has been used. The binodal and spinodal 

curves show that the system should undergo spinodal phase segregation within the 

composition range that is relevant for the formation of superhard nanocomposites, provided 

the deposition temperature is sufficiently high in order to assure fast diffusion, which 

kinetically controls the segregation. These results provide guideline for more precise 

experimental work to be done in the future, particularly as regards the temperature and partial 

pressure of oxygen during the deposition.  

 In the last part of this work, we studied the mechanical properties of the stable 

terminal phases and the metastable Zr1-xAlxN solid solution, by calculating the stress-strain 

curves in tension (relevant for crack growth and brittle fracture) and shear (relevant for plastic 

deformation) for several slip systems. The results for bulk phases showed only a small 

reduction of the ideal strengths for the ternary solid solution as compared with the pure binary 

terminal phases. These calculations have then been extended to heterostructures consisting of 

few nm thick slabs of ZrN with one monolayer thick pseudomorphic AlN interface. In 

contrast to the TiN/1 ML SiNx/TiN system, no enhancement of the strength has been found 

for the ZrN/1 ML-AlN/ZrN heterostructures. These results appear to be in agreement with 

experimental ones because hardness enhancement has been reported for the TiN/1 ML-

SiNx/TiN and ZrN/1 ML SiNx/ZrN heterostructures, but not for the VN/1-ML AlN/VN ones. 

The very long CPU time needed for these calculations did not allow their extension to other 

system within the time frame available for the present work. This remains a challenge for the 

future work because the search for new and better superhard nanocomposite systems by such 

"first principles design" is, in spite of the large CPU time needed, much more efficient and 

cheaper than experimental trial and error approach. 
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