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Abstract

Networked systems have become an essential part of our daily life over the last decades.
Many applications benefit from the information exchange enabled by networking. Ob-
taining the desired behavior of the system usually relies on the estimation of certain crit-
ical quantities. However, estimation in a networked system is not a trivial task due to the
large amount of participants, the complex uncertainties and processes. Graphical models
provide a powerful tool for organizing all sources of information and describing explicitly
the statistical structure of the estimation problem. The whole system is then characterized
by the joint probability distribution of a large collection of random variables. Estimation
is performed by inferring the posterior probability distributions of the variables that are
related to the quantities of interest, given the observation variables. A large number of
efficient inference algorithms are available which exploit the specific structures embed-
ded in the graphical models. The focus of this thesis is the development of inference
algorithms that solve the estimation problems in large networked systems. These new
methods are based on the existing inference algorithms but extend them to adapt to the
specific properties of applications in networked systems.

Many applications require a distributed implementation of inference due to constraints
on power consumption, computational complexity, maximum allowable latency, etc.
Some existing inference algorithms (e.g. belief propagation and the sum-product algo-
rithm) can be formulated in a message passing style. Based on these algorithms, we
present a basic framework for distributed implementation of inference in a networked
system where computations needed by the inference are carried out locally and messages
are passed via the communication links.

Some estimation problems involve very complicated processes which generate random
variables that do not have a closed form distribution. Appropriate representation of the
random variables or their distributions is needed to simplify the computation and to re-
duce the communication required by message passing. Two approaches are considered
in the thesis. First we summarize sample-based representation, i.e., non-parametric belief
propagation. Then we develop Fourier domain belief propagation which approximates
the distribution via truncated Fourier series expansions.

Some applications in networked systems do not have a convenient statistical structure
which forbids exact inference to be implemented in a distributed manner. In particular,
in networked dynamical systems, the distribution of the hidden state loses its indepen-

1



2 List of Tables

dence structure with the evolution of the process. In this case, we introduce approximate
distributions with simpler structures which enable distributed inference.

Finally, distributed and approximate inference methods are applied to solve two practi-
cal problems: node localization and clock synchronization. Calibrating the coordinates of
networked nodes in time and space is a fundamental requirement for many applications.
We demonstrate Fourier domain belief propagation and non-parametric belief propaga-
tion on the problem of self-organized sensor localization. In the clock synchronization
problem, we use a probabilistic model to quantify the uncertainties of the observation
and to describe the stochastic processes involved. Then synchronization is formulated as
an inference problem. Based on its graphical model, we first develop a centralized in-
ference method which produces exact results but is practically impossible to implement.
Then we develop distributed inference algorithms which are not exact, but are feasible
for realization in practice.



1. Introduction

1.1 Background

Nowadays, networks are playing a more and more important role in our daily life. Net-
worked systems are widely used in many applications. The most typical and important
examples include telecommunications, sensor networks, industrial automation and con-
trol networks, the power grid, transportation systems, social networks and many more. A
networked system is usually composed of a large number of spatially distributed nodes
which are connected via an underlying communication network so that they can interact
with each other. Information is propagated through the network which enables the whole
system to work in a cooperative fashion or to have an optimal performance in the global
sense. Achieving desired behaviors of the entire system requires reliable estimation of the
state of the system, which is not a trivial task due to inaccurate information, incomplete
knowledge and the large number of network participants.

Two estimation problems are of special interest in a networked system: node localization
and clock synchronization. Calibrating the coordinates of the network nodes in time and
space is the fundamental requirement for many other applications to function correctly.
For example, in a sensor network which measures a physical field, without a precise
knowledge about each sensor’s position and without calibrated clocks, it is not possible
to construct the correct model that describes the distribution of the physical field in space
and time. Another example is in automation networks. Imagine that several robot arms
operate together on a product. All of them have to follow a predefined schedule with crit-
ical time constraints. Without clock synchronization, the robot arms can not coordinate
their actions which may lead to severe consequences.

These two estimation problems, which are representative of many other problems, have
some characteristics in common. First of all, the parameters of interest are usually not
directly measured, but are related to some other parameters that can be observed. Sec-
ondly, there are a lot of uncertainties involved, e.g., noisy observations, random behavior
of the network, stochasticity of the process at each node and so on. Third, there exist a
lot of spatial and temporal correlations between the parameters. Furthermore, many net-
worked system contains a large number of nodes. Estimation on such a large scale is not
trivial.

In order to obtain an optimal estimation, we need to find a reasonable way to organize all
the available information, which includes:

3
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• the noisy measurements

• our prior knowledge on the relationship between the measurements and the quantities
of interest. This knowledge often comes from the physics of the problem.

• our prior knowledge on the spatial and temporal correlations

• structure, i.e., topology of the network.

Probabilistic graphical models provide a powerful tool that assembles all the informa-
tion mentioned above. They use probability functions to quantify the uncertainties. In
this approach, the physical parameters of interest are characterized by random variables.
Probability functions define the distribution of randomness and model the strength of the
spatial and temporal correlation. In this way, the system is modeled by a joint probability
or a global function of large, complex collections of variables, from which we can compute
the probability of a specific configuration of the random variables. A graphical model vi-
sualizes the probabilistic relationships between those variables, which offers a framework
for a deeper understanding of the nature of the problem. In some cases, the structure of
the probabilistic model (dependence or independence relations) can be modified so as to
adapt to the topology of the network, possibly by making approximations.

Using the graphical model, the estimation problem turns into a probabilistic inference
problem. Based on the joint probability distribution, a set of quantities can be computed:

• likelihoods

• marginal distributions of sets of variables

• conditional distributions

• configuration of a set of variables that maximizes a given probability function (e.g.,
maximum a posteriori estimate, maximum likelihood).

Many estimation problems in networked system can be formulated as computing one or
several of the above mentioned quantities. For example, in the sensor localization prob-
lem, we obtain noisy measurements of the mutual distances between sensors. Assuming
knowledge of the distribution of the measurement noise, and having derived the relation-
ship between the mutual distances and the sensor positions, we can pose sensor localiza-
tion as a maximum a posteriori distribution problem, where based on the joint probability
distribution of all random variables, we compute and maximize the posteriori distribu-
tion of the sensor positions, i.e., the conditional probability distribution of the sensor po-
sitions given the noisy measurements. Such an approach not only computes the estimate,
but also provides a measure of the uncertainty, or the confidence of the estimation. Such a
soft information could be very useful for the subsequent applications that rely on the esti-
mation results. For example, in channel equalization, soft decision [59] methods assign a
confidence value to each output bit obtained by hard decision [63]. Empirical implemen-
tation has verified that such a method improves the decoding process by reducing the
probability of the decoding bit error [32].
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Probabilistic inference has a rich coverage in the literature. Its successful applications can
be found in bioinformatics, computer vision, image processing, speech processing, error-
correct coding, etc. Many well-known algorithms can be interpreted as special cases of
probabilistic inference. For example, Kalman filter is the posteriori distribution compu-
tation in a linear state space model with Gaussian distributions. The Viterbi algorithm
is related to maximum likelihood estimation. Usually, modifications have to be made to
the standard inference algorithms according to the requirement of the specific applica-
tion. It is very common that similar inference algorithms have totally unrelated names in
different communities.

1.2 Problem statement

Probabilistic inference in a networked system is not a trivial task since usually we face
a large scale computation or optimization problem. It has been proved that conditional
independence between the random variables plays a very important role in simplifying
the inference. The relationship between the variables can be intuitively represented by a
graphical model by casting our expectation of local conditional dependence or indepen-
dence into the form of the graph, based on which we can easily judge the conditional
dependence or independence of not directly related variables. If two random variables
are independent, the distribution of each variable can be evaluated individually, while
evaluating the distribution of statistically dependent variables has to consider jointly all
possible configurations of the variables, resulting in an exponential complexity. Many
inference algorithms exploit this property and carefully choose the sequence of compu-
tations so as to reduce the number of necessary operations. Such an approach simplifies
the computation to some extent but could still be too expensive for many applications.
Further simplifications are needed to make the problem tractable.

Several issues complicate the inference in large networked system. First of all, such an es-
timation problem usually operates on a large number of variables. Therefore, centralized
inference usually has an extremely high complexity. For example, the state estimation of
a linear Gaussian state space model with 100 state variables can be implemented by a
centralized Kalman filter. But the computation involves multiplication and inversion of
matrices with very high dimensions. In addition, to enable centralized inference, all the
local information at the spatially distributed nodes has to be transmitted to an inference
center. And some times the inference results are transmitted back to the nodes. Typi-
cally, this will consume a lot of transmission power and introduce extra delays, making
centralized inference infeasible for systems with power constraints or time constraints.
Therefore, it is always preferable to have a distributed inference method in which infor-
mation is processed as locally as possible.

Another problem arises from the complexity of the probability functions in the system.
Standard inference deals with discrete random variables or well known distributions,
e.g., Gaussian distributions. However, complicated underlying physics introduces very
complicated unknown distribution functions, which are not easily parameterized. Inap-
propriate representation of the distribution function results in high computational com-
plexity and unnecessary waste of transmission bandwidth.
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The third difficulty is the spatial correlation between the dynamics at different locations,
which results in a probabilistic model with both spatial and temporal correlations. Al-
though the individual temporal or spatial correlation is usually sparse, the combination
of them introduces strong coupling between the random variables. As a consequence,
the conditional independence structure is lost and the inference becomes very expensive.
Exact inference usually leads to a centralized state-space model where at each time step,
the joint distribution of all the variables has to be evaluated, which is not suitable for
distributed inference and sometimes can be intractable.

This thesis studies how we can develop efficient inference algorithms that take the specific
properties of estimation problems in networked systems into consideration. The above-
mentioned difficulties of inference in networked systems will be discussed in detail.

1.3 Contributions and overview of the thesis

Graphical Models and Probabilistic Inference. Chapter 2 and Chapter 3 review graph-
ical models and inference algorithms. They provide the basic knowledge for the under-
standing of the subsequent chapters. We try to make our presentation as detailed as
possible so that it would be easy to understand the concepts, even for people who are
not familiar with probabilistic inference. We construct simple examples for illustration
and provide proofs when necessary. Chapter 2 presents the three most commonly used
graphical models, i.e., Bayesian networks, Markov random fields and factor graphs. We
explain the nature of these graphical models and illustrate them with simple examples.
We then discuss how to judge the conditional independence, one of the most important
properties represented by graphical models. Chapter 3 starts with a simple inference ex-
ample. Using that example, we explain the principle of inference algorithms: exploiting
the independence properties to achieve simplifications. We present belief propagation for
a graph with a tree structure. In particular, we present the sum-product algorithm for
factor graphs and prove that it implements in an efficient way the computation of the
marginal probability distributions. For graphs with loops, we present two approaches.
The first one, i.e., loopy belief propagation applies the formulas of normal belief propaga-
tion on a graph with loops. As an iterative method, it is simple to implement but exactness
or even convergence is not guaranteed. The second approach, i.e., the junction tree algo-
rithm converts graphs with loops to trees and then runs the normal belief propagation.
Junction tree algorithms produce exact results, but finding the optimal tree representation
is an NP hard problem. At the end, we present the variational inference algorithms, e.g.,
the mean field method, which simplify inference by introducing approximations.

Probabilistic Inference in Networked Systems. Chapter 4 addresses three most impor-
tant issues in the typical estimation problems in networked system: distributed inference,
approximations and state estimation in dynamical systems. We first analyze how the in-
ference and the communication influence each other. Then we propose a general proce-
dure of distributed inference in a networked system. In the second part, we focus on the
approximation of the distribution functions. Based on the Fourier density approximation
method proposed in [11], we derive belief propagation based on Fourier densities, which
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we call Fourier domain belief propagation. Then we summarize a Monte Carlo sampling
based distribution approximation approach, the non-parametric belief propagation. In
the third part, we review state estimation for dynamical systems. We present dynamic
Bayesian networks which visualize the relationships between the variables involved in a
dynamical system. Then we briefly review the general inference algorithms applied on
a dynamical Bayesian network, in particular, the interface algorithm and Boyen-Koller’s
approximation method. This chapter provides a general discussion of the problems en-
countered during inference in typical applications of networked systems. We analyze the
nature of the problems and provide a comprehensive summary of the relevant techniques
that solve these problems.

Self-Organized Sensor Localization. Chapter 5 applies the inference methods to the
self-organized sensor localization problem in wireless sensor networks. Due to the non-
linearity of the functions involved in the model, we apply the function approximation
methods introduced in Chapter 4. Distributed inference is implemented by using belief
propagation. We develop simplified transmission based on Fourier series approximation
which reduces transmission data using the Fourier transform. Then we derive Fourier
domain belief propagation in which the functions are represented by truncated Fourier
series. All the computations and transmissions of the relevant functions are based on the
Fourier series. We show that using such a representation, we simplify both the computa-
tion and the transmission. For comparison, we also implement the non-parametric belief
propagation for sensor localization. At the end we use simulation to verify the perfor-
mance of different localization algorithms.

Clock Synchronization Of Networked Nodes. Chapter 6 shows the application of
probabilistic inference to clock synchronization of cascaded network elements, where all
the network participants synchronize their clocks to a master element which provides
the reference time. We first briefly introduce the Precision Time Protocol (PTP) specified
in the IEEE 1588 standard, which provides the basic framework for clock synchroniza-
tion. The PTP protocol defines a mechanism to allow the elements to exchange timing
information, based on which, different synchronization algorithms can be obtained. We
propose several synchronization algorithms based on probabilistic inference. We first es-
tablish probabilistic models that assemble all the information that can help to improve
the synchronization precision. Based on that model, we develop different inference algo-
rithms. These algorithms realize centralized or distributed implementation of inference.
We test and compare the performance of the algorithms through simulations under dif-
ferent scenarios.

Conclusions and Future Work. Chapter 7 summarizes the contribution of this thesis
and discusses several directions for future research.

Some of the research results developed in this thesis have been published in conference
proceedings and journals. Fourier domain belief propagation and its application to sensor
localization was published in [85, 86]. Analysis of the synchronization performance of the
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PTP protocol was summarized in [81, 97]. Probabilistic model, centralized and distributed
inference algorithms were originally presented in [79], [84] and [80, 83] respectively.



2. Graphical Models

A graphical model represents the probabilistic model of a multivariate system on a graph.
In general, a graphical model is a graph G in which a set of nodes V present random vari-
ables and the presence of edges E between nodes reveals the existence of a probabilistic
relationship between the variables. The whole graph is a compact representation of a
joint distribution or a global function, which can be expressed as the product of many
local functions defined on the locally connected subsets of the variables in the graph.

Regarding the means to express the probabilistic relationships, there are two most com-
mon graphs: directed and undirected. A Bayesian network [39], or belief network is a
typical directed graph in which edges carry arrows and the direction of an arrow reveals
the causality. A Markov random field [58] or Markov network is an example of undi-
rected graphical model in which edges do not carry arrows and directionality is of no
importance. A suitable graph representation of the probabilistic model is usually chosen
according to the nature of the system. Normally, undirected models are more popular in
statistical physics or image processing where few causality relationships exist, while di-
rected models are often used in artificial intelligence or bioinformatics to represent gen-
erative models.

Factor graphs, developed by Kschischang et al. [62] are drawing growing attention in
many empirical applications. In factor graphs, factors that make up the joint distribution
are explicitly represented, which provides a convenient way of defining a messaging-
passing-based inference algorithm.

In this chapter, we review the above mentioned graphical models, i.e., Bayesian networks,
Markov random fields and factor graphs in Section 2.1, 2.2 and 2.3. Simple examples
will be given for illustration. Conversion between different types of graphical models
will be shown in Section 2.4. Finally, we give some remarks on the graphical models in
Section 2.5. In Appendix 2.A, we show the judgement of conditional independence for a
three node Bayesian network. Appendix 2.B makes a list of the notations that appear in
this chapter.

2.1 Bayesian networks

A Bayesian network is an acyclic directed graph in which nodes are connected by edges
with arrows. The direction of the arrow along an edge expresses the causal relationship

9
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between random variables. A Bayesian network can be constructed based on the causality
of the variables. It is usually used to represent a generative model.

Let GBN = {VBN, EBN} denote a directed acyclic graph, where VBN are nodes representing the
variables xVBN = {xv : v ∈ VBN} and EBN are directed edges that map the statistical depen-
dencies between the nodes. A Bayesian network represents the factorization of the joint
probability density function p(xVBN) into the product the conditional probability density
functions, which can be formulated as follows:

p(xVBN) =
∏
v∈VBN

p(xv|xPA(v)) (2.1)

where PA(v) are the parent nodes of node v. On the graph, there is always an edge start-
ing from a parent node and pointing to the child node. It will be seen from (2.1) that each
variable xv is associated with a conditional probability density function.

A famous Bayesian network example from [94], which we call ”wet grass” model, is
shown in Figure 2.1. In this example, symbol C stands for ”cloudy weather”, S for ”sprin-
kler”, R for ”rain” and W for ”grass wet”.

Fig. 2.1. Bayesian Network Example
(Russell and Norvig, Artificial Intelligence: A Modern Approach, 1995)

The causality relationship between variables is that the cloudy weather may trigger sprin-
kler or rain with probability density functions: p(xS|xC) and p(xR|xC). Both sprinkler and
rain may cause the grass to be wet and the probability density function is given by
p(xW|xS, xR). Here, C is the parent of S and R. S and R are parents of W. So from the graph,
we can read the following factorization of the joint probability:

p(xW, xS, xR, xC) = p(xC)p(xS|xC)p(xR|xC)p(xW|xS, xR) (2.2)

As a Bayesian network is constructed using the causality inherent in the domain, it is a
directed acyclic graph, i.e. there should be no directed cycles. A cycle is present in Fig-
ure 2.1. However, it is not directed.
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In many cases, we are interested in conditional independence, i.e., given a subset xS(S ⊂
VBN), we would like to know if variables xa (a ∈ VBN and a /∈ S) and xb (b ∈ VBN and b /∈ S)
are independent. Borrowing the notation from [16], we use xa ⊥⊥ xb |xS to express that xa
is conditionally independent of xb given xS .

We first consider the simplest cases with three variables: xa, xb and xc, which are rep-
resented by three variables nodes xa, xb, and xc in a Bayesian network. There are edges
connecting xa with xc and xb with xc. No edge exists between a and b. Depending on the
direction of the edges and whether xc is observed or not, there are eight different cases.
Figure 2.2 depicts all these cases where hidden variables are represented by unshaded
circles, observed variables are represented by shaded circles and dashed lines represent a
path from xa to xb via xc or vice versa. Figure 2.2 shows whether a path between xa and xb
is blocked by xc or not. In Figure 2.2, if the dashed line is straight, then we say that path
is through. Otherwise, the path is blocked. The results depicted in Figure 2.2 are obtained
by using the Bayes rule, which is shown in Appendix 2.A. If the path is blocked, then we
can say that xa is conditionally independent of xb given xc and vice versa. For example,
the first column tells us that if edges merge at xc and xc is not observed (Figure 2.2 (a1)),
then xa and xb are independent, i.e., p(xa, xb) = p(xa)p(xb). If xc is observed (Figure 2.2
(a2)), then in general p(xa, xb|xc) �= p(xa|xc)p(xb|xc).

Fig. 2.2. Conditional independence property in a three node Bayesian network
Three nodes graphs showing that nodes xa and xb are connected through xc in different

forms: (a) head-to-head connections; (b) tail-to-tail connections; (c) head-to-tail
connections; (d) tail-to-head connections, and whether a path from xa to xb is blocked by

xc or not.

Now let us consider the general case. Given three nonintersecting sets xT , xU and xS ,
we can judge the validity of the independence statement xT ⊥⊥ xU |xS by using the d-
separation algorithm [92] which compute all the conditional independence relations en-
tailed by the directed graphs. To do so, we first check if a path from a node in T to a node
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in U is blocked or not. In a general graph, a path is said to be blocked if along the path
there is a single node that:

1) two edges meet at the node head-to-tail or tail-to-head(Figure 2.2 (c) and (d)) and the
node is in S, or

2) two edges meet at the node tail-to-tail(Figure 2.2 (b)) and the node is in S, or

3) two edges meet at the node head-to-head(Figure 2.2 (a)) and neither the node nor any
of its descendant is in S

If all possible paths from any node in T to any node in U are blocked, then we say that
T and U are d-separated by S, which implies that set xT is conditionally independent on
the set xU given the set xS , i.e., xT ⊥⊥ xU |xS.

Conditional independence is a very important property that should be well studied. If we
want to solve the problem of inferring one variable xa in a directed graph, usually it is not
necessary to have the knowledge of all other variables and probability density functions.
Using a graph’s d-separation property, we can identify a node a’s Markov blanketMB(a),
which is the smallest set that ”isolates” that node from the rest of the network, i.e.:

p(xa|xMB(a),xVBN\({xa}∪xMB(a))) = p(xa|xMB(a)) (2.3)

where S \ T means the set S excluding the subset T .

In a Bayesian network, the Markov blanket of a node a is the set composed of a’s parents,
its children and its children’s other parents. It can be seen from (2.3) that the Markov
blanket of a node contains all knowledge needed to infer the behavior of that node.

2.2 Markov random fields

A Markov random field (MRF) is an undirected graph. It is a non-causal model. The graph
GMRF = {VMRF, EMRF} contains variable nodes and undirected edges that connect the nodes
according to their dependency. A set of local potential functions {ψCk

(xCk
)} are defined

along the graph where each function ψCk
(xCk

) has the domain of some clique Ck in the
graph. According to the definition of the functions, the whole graph can be divided intoK
cliques CMRF = {C1, . . . CK}, with a clique Ck being defined as a fully connected sub-graph.
The potential functions map each concrete assignment of the variables xCk

in the clique to
a non-negative real number. The joint distribution of all variables, i.e., xVMRF , called MRF
distribution is then defined as the normalized product of all potential functions:

p(xVMRF) =
1

Z

K∏
k=1

ψCk
(xCk

) (2.4)

where Z is the normalization factor calculated by summation or integration.

An example of a Markov random field is shown in Figure 2.3, which represents the MRF
distribution

p(xVMRF) =
1

Z
ψ12(x1, x2)ψ23(x2, x3)ψ24(x2, x4)ψ45(x4, x5)ψ356(x3, x5, x6) (2.5)
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Fig. 2.3. A Markov random field example.

where the normalization factor is obtained by, assuming discrete random variables in
(2.5):

Z =
∑

x1,x2,x3,x4,x5,x6

ψ12(x1, x2)ψ23(x2, x3)ψ24(x2, x4)ψ45(x4, x5)ψ356(x3, x5, x6) (2.6)

Judging conditional independence is easier in Markov random field because now no com-
bination of directions have to be considered. In general, variables xa and xb are condition-
ally independent given set {xS} if S separates node a and node b in the graph, i.e., every
path from a to b or vice versa has to pass through at least one node in S.

In the example in Figure 2.3, x2 and x6 are conditionally independent given x3 and x5. The
set {x3, x5} is also the Markov blanket (MB) of x6. In a Markov random field, a variable
node a’s Markov blanket is the set of variables that are directly connected to it, i.e., its
neighboring nodes.

2.3 Factor graphs

If the joint distribution can be written as a product of a set of factors {fu : u ∈ UFG}where
each factor is a function as follows:

p(xVFG) =
∏
u∈UFG

fu(xCu) (2.7)

where Cu contains the indices of the variables that are associated with factor fu, then
we can represent this factorization in a factor graph. Factor graph GFG = {VFG,UFG, EFG}
is a bipartite graph over the variables xVFG and functions {fu : u ∈ UFG}. A bipartite
graph is defined as a graph whose vertices can be divided into two sets, such that every
edge has one endpoint in each set. A factor graph uses variable nodes VFG to present
the variables and function nodes UFG to present the local functions of random variables.
Edges EFG connect function nodes with their arguments. In a factor graph, function nodes
are connected only to variable nodes and vice versa. So the set Cu is composed of the
neighboring variable nodes of the function node u.

An example of a factor graph is depicted in Figure 2.4. Variable nodes are presented by
circles and local function nodes are presented by squares. The whole graph represents the
following function:

p(x1, x2, x3, x4, x5) = f1(x1)f2(x1, x2, x4)f3(x2, x3)f4(x3, x4, x5) (2.8)
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One advantage of using a factor graph is that it explicitly identifies the functions in a
more fine-grained way which enables the direct use of inference algorithms like the sum-
product algorithm.

Fig. 2.4. A factor graph example

A Forney style factor graph [22] provides a more compact presentation of the factorization
of functions. In the Forney style factor graph GFFG = {EFFG,UFFG},

• each factor fu is presented as a function node u ∈ UFFG;

• each variable xe is presented as a full edge or a half edge e ∈ EFFG. There may be only
one edge associated with each variable;

• an edge e that represents a variable xe is connected with a node u that represents
factor fu if fu is a function of xe. A full edge connects two function nodes. A half edge
is connected only to one function node.

The second rule forbids a variable to be shared by more than two functions. This can be
avoided by adding nodes that correspond to ”equality” in the graph. Variables connected
to this node are equal to each other.

Figure 2.5 shows the conversion from a standard factor graph to a Forney style graph.
Both of them represent the factorization of the following function:

f(x1, x2, x3, x4) = f1(x2)f2(x1, x2)f3(x2, x4)f4(x3, x4) (2.9)

It can be observed in Figure 2.5(b) that in order to avoid x2 being connected by three
functions, an equality function node is added to replicate x2.

2.4 Conversion between different graphs

Although Bayesian networks, Markov random fields and factor graphs have different
forms, in principle, they all represent the factorization of a joint probability or a global
function. This can be observed from (2.1), (2.4) and (2.7). Some conversions between dif-
ferent types of graph models are possible, as we outline next.
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(a) Standard factor graph (b) Forney style factor graph

Fig. 2.5. Factor graph vs Forney style factor graph

2.4.1 Conversion from Bayesian networks to Markov random fields

If we compare (2.1) and (2.4), we find that the factorization in a Bayesian network is
just a special case of that in a Markov random field where the normalization constant
in a Bayesian network is 1 and the potential functions are just conditional or marginal
probabilities. In this case, each clique consists of a variable and its parents. So we can
convert a Bayesian network to a Markov random field by marrying parents (connecting
mutually all the parents of each node) and dropping the directions, which is known as
moralization [42]. Such a conversion will hide some independence properties that were
explicitly expressed by the Bayesian networks. However, we often transform a Bayesian
network into an undirected model for the purpose of inference. A conversion example is
shown in Figure 2.6. The Bayesian network on the left represents

pBN(x1, x2, x3, x4, x5, x6) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2)p(x5|x4)p(x6|x3, x5) (2.10)

and the Markov random field on the right represents:

pMRF(x1, x2, x3, x4, x5, x6) =
1

Z
ψ1(x1, x2)ψ2(x2, x3)ψ3(x2, x4)ψ4(x4, x5)ψ5(x3, x5, x6) (2.11)

The relationships between the factors in (2.10) and (2.11) are:

Z = 1

ψ1(x1, x2) = p(x1)p(x2|x1)
ψ2(x2, x3) = p(x3|x2)
ψ3(x2, x4) = p(x4|x2)
ψ4(x4, x5) = p(x5|x4)

ψ5(x3, x5, x6) = p(x6|x3, x5) (2.12)
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(a) Bayesian network (b) Markov random field

Fig. 2.6. Conversion from a Bayesian network to a Markov random field

2.4.2 Conversion from Bayesian networks to factor graphs

If we look on the marginal or conditional probabilities in a Bayesian network as local
functions, then it is easy to create a factor graph from a Bayesian network. We first create
variable nodes. For each variable node, we create a function node and connect it to that
variable node and its parents. Then we set the local function of each function node to the
corresponding conditional probability. The global function is then the joint probability.
A conversion example is shown in Figure 2.7. The Bayesian network on the left repre-
sents the same probability density function as in (2.10) and the factor graph on the right
represents:

fFG(x1, x2, x3, x4, x5, x6) = f1(x1)f2(x1, x2)f3(x2, x3)f4(x2, x4)f5(x4, x5)f6(x3, x5, x6) (2.13)

The relationships between the factors in (2.10) and (2.13) are:

f1(x1) = p(x1)

f2(x1, x2) = p(x2|x1)
f3(x2, x3) = p(x3|x2)
f4(x2, x4) = p(x4|x2)
f5(x4, x5) = p(x5|x4)

f6(x3, x5, x6) = p(x6|x3, x5) (2.14)

2.4.3 Conversion from Markov random fields to factor graphs

For a Markov random field, we can set the potential functions as local functions and then
convert the graph into a factor graph. We first create the variable nodes. Then we create a
function node for each clique, connect each function node with the variable nodes in that
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(a) Bayesian network (b) Factor graph

Fig. 2.7. Conversion from a Bayesian network to a factor graph

clique and set the local function to be the potential function. The global function is then
the MRF probability. A conversion example is shown in Figure 2.8. The Markov random
field on the left represents

pMRF(x1, x2, x3, x4, x5, x6) =
1

Z
ψ1(x1, x2)ψ2(x2, x3)ψ3(x2, x4)ψ4(x4, x5)ψ5(x3, x5, x6) (2.15)

and the factor graph on the right represents:

fFG(x1, x2, x3, x4, x5, x6) = f1(x1, x2)f2(x2, x3)f3(x2, x4)f4(x4, x5)f5(x3, x5, x6) (2.16)

The relationships between the factors in (2.15) and (2.16) are:

f1(x1, x2) =
1

Z
ψ1(x1, x2)

f2(x2, x3) = ψ2(x2, x3)

f3(x2, x4) = ψ3(x2, x4)

f4(x4, x5) = ψ4(x4, x5)

f5(x3, x5, x6) = ψ5(x3, x5, x6) (2.17)

Note that the factorization constant 1
Z

can be contained in any of the five factors in (2.16).

2.5 Some remarks on graphical models

Now we make some remarks on the graphical models. Some of the remarks could be
helpful for the understanding of the content in the upcoming parts of the thesis.
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(a) Markov random field (b) Factor graph

Fig. 2.8. Conversion from a Markov random field to a factor graph

2.5.1 A comparison of different graphs

Three graphical models were introduced in the previous sections. Directed graphical
models, e.g. Bayesian networks, contain directed edges which reveal the causal relation-
ship between variables. The whole graph represents the decomposition of a joint proba-
bility into the product of conditional probabilities. In undirected graphs, e.g. Markov ran-
dom fields, the direction of the edges has no significance. A Markov random field usually
represents the soft constraints, e.g. correlations between variables. In general, such con-
straints or correlations are symmetric. The potential function in a Markov random field
does not necessarily have an explicit probabilistic interpretation. In principle, we should
notice that a directed graph and an undirected graph are different languages. It is not
convenient to express non-causal relationships by using Bayesian networks. And if we
convert a Bayesian network into a Markov random field, some independence properties
cannot be read directly from the graph any more. For a system where both non-causal
and causal relationships coexist, it is not suitable to express the probabilistic model by
using either a Bayesian network or a Markov random field. A factor graph provides a
more explicit representation of the relationships between variables, in which factors (lo-
cal functions) that connect variables are identified on the graph. In this case, it is the best
way to express the factorization. A Forney style factor graph provides a more compact
form. Extra nodes, i.e., ”equality” nodes have to be introduced to avoid that a variable
is shared by more than two function nodes. The advantage of using Forney style factor
graphs in some of the inference problems will be demonstrated in the later chapters. Intro-
ducing directions is another extension to the standard factor graphs. Like in the Bayesian
network, we use direction to express causality. In this way, we construct a directed factor
graph [25], which unifies directed and undirected graphs. The benefit of doing this will
be discussed when we introduce inference algorithms in the later chapters.
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2.5.2 Parameter estimation based on graphical models

To carry out inference, local distribution functions (conditional probability density func-
tions for Bayesian networks, local potential functions for Markov random fields and local
factors for factor graphs) need to be defined. If we deal with discrete random variables, we
usually list in a table the values of the local function that are generated from different con-
figurations of its arguments. The values of each conditional probability in the ”wet grass”
model (Section 2.1) are listed in Figure 2.1. In that example, all variables are Boolean, i.e.
they have two possible values: TRUE or FALSE. If local distribution functions are defined
over continuous random variables, we need an analytical expression. The Gaussian distri-
bution is the most popular distribution function. In some applications, the local function
might take a very complex form. In that case, approximations are desirable to simplify
the expression of the local functions.

Sometimes, the type of the local distribution function is known but parameters of the dis-
tribution are unknown or only partially known. In that case, we can include parameters
in the graph. An example is shown in Figure 2.9. Based on the structure of the graph,

Fig. 2.9. Bayesian network with parameters.
{yt : t = 1, ...T} are measurements of {xt : t = 1, ...T}which are samples drawn from a
uniform distribution. The parameter of the uniform distribution is π, i.e., xt ∈

[
−π

2
, π
2

]
and p(xt) =

1
π

. Measurements are corrupted by additive Gaussian noise, i.e., yt = xt + νt
and νt ∼ N (0, σ2)

different learning algorithms, e.g., expectation maximization (EM) algorithm, can be de-
veloped to learn the parameters from data. Examples can be found in [26].

2.5.3 Independence property

The most important information embedded in graphical models is the independence
property between random variables. The conditional independence can be easily read
from an undirected graph. In a directed graph, we have to use the d-separation algorithm
defined in Section 2.1 to judge the conditional independence. Given a single node, we can
also identify its Markov blanket, i.e., the set of nodes that matter for the inference of that
single node.

In the next chapters, we will see what an important role the independence property will
play in the simplification of the computational complexity of inference algorithms. This
is since the graphical models encode the conditional independences in their structure.
Using conditional independence in algorithms means exploiting the special structure of



20 2. Graphical Models

the graphical models. Therefore, graphical models offer a visible tool for the design of
new algorithms.

2.5.4 Benefits from using graphical models

Graphical models provide a diagrammatic tool to demonstrate the relationship between
the components of a complex system, which brings several benefits:

1) it visualizes the properties of the model, especially the conditional dependences or
statistic correlations

2) it provides an intuitive understanding of the complexity of the system

3) it enables researchers to communicate the system model to other researchers and users
in a more convenient way

4) it leads to algorithms that make use of the structure of the graph and indicates possible
approximations on the model which simplify the computation

5) it helps us develop new models

6) some complicated systems can be modeled by the manipulation of simple structures

2.A Judgement of conditional independence using Bayes rule

This appendix presents the conditional independence property of the simplest structure
of a directed graph, i.e., a three node Bayesian network. We study the graph representing
the joint probability of density function of p(xa, xb, xc) in which nodes xa and xb are not
directly connected, but are connected via xc. Depending on the direction of the edges,
there are four different cases. Now we study the independence property of these graphs
case by case.

• head-to-head case (Figure 2.10): an arrow goes from xa to xc and another arrow goes
from xb to xc.

Fig. 2.10. Three node Bayesian network: head to head

If xc is observed, let the observation be x∗c . It is represented on the graph by a
shaded circle, as shown in Figure 2.10(a). In this case, the directed graph represents:

p(xa, xb, xc = x∗c) = p(xa)p(xb)p(xc = x∗c |xa, xb) (2.18)
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Dividing on both sides of (2.18) by p(xc = x∗c) which is equal to 1, we obtain:

p(xa, xb, xc = x∗c)
p(xc = x∗c)

=
p(xa)p(xb)p(xc = x∗c |xa, xb)

p(xc = x∗c)
(2.19)

In general, we cannot obtain the equality of p(xa, xb|xc = x∗c) = p(xa|xc = x∗c)p(xb|xc =
x∗c) from (2.19). Therefore, in head-to-head case, xa is not conditionally independent
on xb given xc. Then we say that the path from xa to xb via xc is open.

If xc is not observed, it is represented by an unshaded circle in the graph, as shown
in Figure 2.10(b). In this case, the directed graph represents:

p(xa, xb, xc) = p(xa)p(xb)p(xc|xa, xb) (2.20)

If we marginalize on both sides of (2.18) over xc, we obtain:∑
xc

p(xa, xb, xc) =
∑
xc

p(xa)p(xb)p(xc|xa, xb)

⇒ p(xa, xb) = p(xa)p(xb)
∑
xc

p(xc|xa, xb)

⇒ p(xa, xb) = p(xa)p(xb) (2.21)

So given no observations, xa and xb are independent. That means, the path between
xa and xb is blocked at xc.

• tail-to-tail case (Figure 2.11): an arrow goes from xc to xa and another arrow goes from
xc to xb.

Fig. 2.11. Three node Bayesian network: tail to tail

If xc is observed, let the observation be x∗c . It is represented on the graph by a
shaded circle, as shown in Figure 2.11(a). In this case, the directed graph represents:

p(xa, xb, xc = x∗c) = p(xc = x∗c)p(xa|xc = x∗c)p(xb|xc = x∗c) (2.22)

Since p(xc = x∗c) = 1, we can divide both sides of (2.22) by p(xc = x∗c). Using the
definition of conditional probability, we obtain:

p(xa, xb, xc = x∗c)
p(xc = x∗c)

=
p(xc = x∗c)p(xa|xc = x∗c)p(xb|xc = x∗c)

p(xc = x∗c)
⇒ p(xa, xb|xc = x∗c) = p(xa|xc = x∗c)p(xb|xc = x∗c) (2.23)
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So given the observation of xc, xa and xb are independent. The path from xa to xb is
blocked at xc.

If xc is not observed, the graph is shown in Figure 2.11(b), which represents:

p(xa, xb, xc) = p(xc)p(xa|xc)p(xb|xc) (2.24)

Marginalizing both sides of (2.24) over xc, we obtain:∑
xc

p(xa, xb, xc) =
∑
xc

p(xc)p(xa|xc)p(xb|xc)

⇒ p(xa, xb) =
∑
xc

p(xc)p(xa|xc)p(xb|xc) (2.25)

In general, (2.25) does not lead to the conclusion that p(xa, xb) = p(xa)p(xb). So xa and
xb are not marginally independent. The path between a and b via c is open.

• tail-to-head case (Figure 2.12): an arrow goes from xc to xa and another arrow goes
from xb to xc.

Fig. 2.12. Three node Bayesian network: tail to head

If xc is observed, the graph is shown in Figure 2.12(a), which represents:

p(xa, xb, xc = x∗c) = p(xb)p(xc = x∗c |xb)p(xa|xc = x∗c) (2.26)

Since now p(xc = x∗c) = 1, we can divide both sides of (2.26). Using the definition of
conditional probability, we obtain:

p(xa, xb, xc = x∗c)
p(xc = x∗c)

=
p(xb)p(xc = x∗c |xb)p(xa|xc = x∗c)

p(xc = x∗c)

⇒ p(xa, xb|xc = x∗c) =
p(xc = x∗c , xb)
p(xc = x∗c)

p(xa|xc = x∗c)

⇒ p(xa, xb|xc = x∗c) = p(xb|xc = x∗c)p(xa|xc = x∗c) (2.27)

So given the observation of xc, xa and xb are independent. The path from xa to xb is
blocked at xc.

If xc is hidden, the graph is shown in Figure 2.12(b), which represents:

p(xa, xb, xc) = p(xb)p(xc|xb)p(xa|xc) (2.28)
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Marginalizing both sides of (2.28) over xc, we obtain:∑
xc

p(xa, xb, xc) =
∑
xc

p(xb)p(xc|xb)p(xa|xc)

⇒ p(xa, xb) = p(xb)
∑
xc

p(xc|xb)p(xa|xc) (2.29)

In general, (2.29) does not lead to the conclusion that p(xa, xb) = p(xa)p(xb). So xa and
xb are not marginally independent. The path between xa and xb via xc is open.

• head-to-tail case (Figure 2.13): an arrow goes from xa to xc and another arrow goes
from xc to xb.

Fig. 2.13. Three node Bayesian network: head to tail

If xc is observed, the graph is shown in Figure 2.13(a), which represents:

p(xa, xb, xc = x∗c) = p(xa)p(xc = x∗c |xa)p(xb|xc = x∗c) (2.30)

Since now p(xc = x∗c) = 1, we can divide both sides of (2.30). Using the definition of
conditional probability, we obtain:

p(xa, xb, xc = x∗c)
p(xc = x∗c)

=
p(xa)p(xc = x∗c |xa)p(xb|xc = x∗c)

p(xc = x∗c)

⇒ p(xa, xb|xc = x∗c) =
p(xc = x∗c , xa)
p(xc = x∗c)

p(xb|xc = x∗c)

⇒ p(xa, xb|xc = x∗c) = p(xa|xc = x∗c)p(xb|xc = x∗c) (2.31)

So given the observation of xc, xa and xb are independent. The path from xa to xb is
blocked at xc.

If xc is hidden, the graph is shown in Figure 2.13(b), which represents:

p(xa, xb, xc) = p(xa)p(xc|xa)p(xb|xc) (2.32)

Marginalizing both sides of (2.32) over xc, we obtain:∑
xc

p(xa, xb, xc) =
∑
xc

p(xa)p(xc|xa)p(xb|xc)

⇒ p(xa, xb) = p(xb)
∑
xc

p(xc|xa)p(xb|xc) (2.33)

In general, (2.33) does not lead to the conclusion that p(xa, xb) = p(xa)p(xb). So xa and
xb are not marginally independent. The path between a and b via c is open.
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The above derivation is summarized as the Bayes ball algorithm presented in Figure 2.2.
Based on the analysis of these simple structures of Bayesian network, we can judge the
conditional independence for more complicated structures, e.g., the d-separation algo-
rithm.

2.B Summary of notations

This section contains a summary of the notation that appear in this chapter.

General graph

G a graph
V the variable node set of G
E edges in a graph
a, b, c indices of variables and variable nodes
R, S, T subsets of V
v index of a variable node
u index of a function node
e index of an edge
xV set of variables that are represented by nodes V in a graph
xv a random variable indexed by v
xS a set of variables indexed by S
MB(a) Markov blanket of node a

Probability theory

p(·) joint density function
p(·|·) conditional probability density function
xT ⊥⊥ xU |xS conditional independence: xT and xU are independent given xS

Bayesian network

GBN a Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VBN the variable node set of a Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
EBN edges in a Bayesian network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PA(v) parent nodes of node v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Markov random field

GMRF a Markov random field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
VMRF the variable node set of a Markov random field . . . . . . . . . . . . . . . . . . . . . . . . 12
EMRF edges in a Markov random field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
C set of cliques in a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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K number of cliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
k index of a clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Ck indices of variables in clique k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Z normalization factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ψCk a local potential function that is defined on the variables in Ck . . . . . . . . . 12

Factor graph

GFG a factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
VFG the variable node set of a factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
EFG edges in a factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
UFG the function node set of a factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
fu a function indexed by u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Cu indices of variables mentioned in fu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Forney style factor graph

GFFG a Forney style factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
EFFG edges in a Forney style factor graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
UFFG the function node set of a Forney style factor graph . . . . . . . . . . . . . . . . . . . . 14
xe a random variable associated with edge e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

“wet grass“ example

C symbol to denote the event “cloud” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
R symbol to denote the event “rain” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
S symbol to denote the event “sprinkler” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
W symbol to denote the event “wet grass” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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3. Inference Algorithms

The task of inference is to acquire the desired information about some variables based on
the observations of other variables and on the probabilistic relationship between vari-
ables. In probabilistic inference, we are usually interested in calculating the marginal
probability distribution of certain variables or the posterior probability distribution of
the hidden variables given the observations. Calculating marginals from a joint probabil-
ity distribution function is not trivial if a large number of variables is involved. We should
find a suitable way to carry out the inference so that it is efficient. Otherwise, the problem
could be intractable.

This chapter studies this problem in detail. It will be shown how independence properties
and function factorizations are exploited to simplify the calculation in the case that a
”brute force” approach is intractable. Different state-of-the-art inference algorithms will
be introduced. If the probabilistic model of a system can be represented by a graphical
model that has a tree structure, an exact inference solution is achievable by using the
junction tree algorithm or belief propagation. However, in practice, the following difficulties
may make exact inference impossible or intractable:

1) loops in the graph

2) number of variables in factors that are not further decomposable

3) complexity of the factors, e.g., complex probability density function of continuous
random variables with non-Gaussian distribution, non-linear functions.

In such cases, approximations are needed to simplify the computation so that at least an
approximate result can be found. This chapter reviews the most common inference algo-
rithms that solve the first two problems and leaves the discussion of the third problem to
the next chapter. To deal with loops in graphs, Pearl[92] suggested extending belief prop-
agation to general graphs, i.e., graphs with loops. Such an extension is called loopy belief
propagation. Variational methods[112][113] approximate a complex factor with a slightly
varied factor with simpler structures. The mean field method uses variational factors that
can be fully factorized, i.e., the variables in that factor are mutually independent.

This chapter is organized as follows. We first introduce the general form of the inference
problem. Then we explain the idea of exploiting the independences and factorizations to
simplify the inference. In the part of exact inference algorithms, junction tree algorithms

27
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and belief propagation on trees are presented. In the approximate inference part, we will
introduce loopy belief propagation, and variational inference, in particular the mean field
method. Appendices show some discussion on belief propagation.

3.1 Problem formulation

Suppose we have a system described by a set of random variables xV = {x1, x2, ...xN} and
a graph G = {V, E}, which represents the factorization of the joint probability distribution
p(xV). Some of these variables are observed or instantiated: xI = {xi}i∈I , while others
are hidden or unobserved: xH = {xi}i∈H. With respect to V , these two sets are mutually
exclusive and xV = {xI ,xH}. Usually, two values are of interest:

• the marginal probability distribution of some of the observed variables:

p(xI1) =
∑
xH1

p(xI1,xH1) (3.1)

where {H1} ⊆ {H}, {I1} ⊆ {I} and the summation is over all possible values that the
hidden variables can take. {H1} contains the all indices of the hidden variables that
are related to the observed variables whose indices are in {I1}.

• the posterior probability distribution of the hidden variables given the observations:

p(xH|xI) =
p(xH,xI)
p(xI)

(3.2)

These two tasks are tightly related. Once we obtained the marginal, we can easily calcu-
late the posterior.

In the following sections, we will show how the problems presented in (3.1) and (3.2) can
be solved, either exactly or approximately. For the explanation of inference algorithms,
we mainly consider the undirected graph because a directed graph is usually converted
into an undirected graph for the inference [53].

3.2 Exact inference

In this section, we discuss several exact inference algorithms. We start from the ”brute
force” approach, which theoretically produces the exact inference algorithm but in prac-
tice often involves intractable computations. Then we will show that by using factoriza-
tion and by carefully choosing the sequence of computation, the complexity of inference
can be greatly reduced. Such an approach is called variable elimination, which is connected
to node elimination on graphs. The rest of this section explain belief propagation on trees
and the junction tree algorithm, which illustrate the variable elimination method in dif-
ferent formalisms.
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3.2.1 Brute force and variable elimination approach

Let us use a simple example to illustrate inference algorithms. Suppose we have a joint
probability distribution:

p(x1, x2, x3, x4, x5, x6) =
1

Z
ψ1(x1, x2)ψ2(x2, x3)ψ3(x2, x4)ψ4(x4, x5)ψ5(x3, x5, x6) (3.3)

over six discrete random variables and we want to calculate the marginal probability
distribution of x4. The naive way of doing this is to calculate the summation over the
other five variables, i.e.,

p(x4) =
∑
x1

∑
x2

∑
x3

∑
x5

∑
x6

p(x1, x2, x3, x4, x5, x6) (3.4)

For notational simplicity, we suppose all variables take value from a finite set L =
{1, 2, ...L}. Then the complexity of the calculation in (3.4) is in the order of L6 because
we have to consider all possible values that each variable can take. This complexity can
be largely reduced if we exploit the factorization in (3.3) and apply the distributed law to
find a suitable sequence of the calculations:

p(x4) =
∑
x1

∑
x2

∑
x3

∑
x5

∑
x6

p(x1, x2, x3, x4, x5, x6)

=
1

Z

∑
x1

∑
x2

∑
x3

∑
x5

∑
x6

ψ1(x1, x2)ψ2(x2, x3)ψ3(x2, x4)ψ4(x4, x5)ψ5(x3, x5, x6)

=
1

Z

∑
x2

{
ψ3(x2, x4)

(∑
x1

ψ1(x1, x2)

)∑
x5

[
ψ4(x4, x5)

∑
x3

(
ψ2(x2, x3)

∑
x6

ψ5(x3, x5, x6)

)]}

=
1

Z

∑
x2

{
ψ3(x2, x4)m1(x2)

∑
x5

[
ψ4(x4, x5)

∑
x3

(
ψ2(x2, x3)

∑
x6

ψ5(x3, x5, x6)

)]}

=
1

Z

∑
x2

{
ψ3(x2, x4)m1(x2)

∑
x5

[
ψ4(x4, x5)

∑
x3

(ψ2(x2, x3)m6(x3, x5))

]}

=
1

Z

∑
x2

{
ψ3(x2, x4)m1(x2)

∑
x5

[ψ4(x4, x5)m3(x2, x5)]

}

=
1

Z

∑
x2

{ψ3(x2, x4)m1(x2)m5(x2, x4)}

=
1

Z
m2(x4)

(3.5)

where the intermediate factor mi(·) is the result of summation over variable xi. In each
step, we operate on a local function with no more than three variables. That means, each
time when we calculate the summation, we need to consider at most L3 different com-
binations of possible values that the variables of the local function can take. Therefore,
the complexity of the total calculation in (3.5) is in the order of L3, which is a remarkable
simplification of (3.4).
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In the calculation in (3.5), we eliminated certain variables in each step by summing over
them, which gives the name “variable elimination algorithm”. It can be easily concluded
that the time complexity (for computations) and space complexity (memory for saving
the intermediate results) of variable elimination depends on the largest number of the
variables to be tackled in a single summation. Eliminating variables in different sequences
may result in different complexities. Choosing a schedule with lowest complexity is an
NP-hard problem[3].

Variable elimination reduces the computational complexity by exploiting the factoriza-
tion of the joint probability distribution or global function. As introduced in the last
chapter, this function or probability factorization can be represented by graphical mod-
els. Variable elimination in equations can be represented by node elimination in graphical
models. An undirected graphical model for the joint probability distribution in (3.3) is de-
picted in Figure 3.1

Fig. 3.1. Markov random field for the example in (3.5)

Figure 3.2 shows the sequence of eliminating nodes in the graph which resembles the
variable elimination shown in (3.5).

Fig. 3.2. Procedure of node elimination

Comparing the variable elimination in (3.5) and the node elimination in Figure 3.2, we
can find the correspondence. In the third line of (3.5), we have an intermediate factor
m6(x3, x5), which is a result of summing over x6. And this intermediate factor itself can
be seen as a potential function. This means, after each variable elimination step, we can
construct a new Markov random field for the remaining variables. So the fourth line of
(3.5) is represented by Figure 3.2(b). It can be also observed that in each step of node
elimination, we have always removed a clique, i.e., a fully connected sub-graph.
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The variable elimination or node elimination algorithm simplifies inference by exploiting
the independence properties of the joint distribution. However, they are query sensitive,
i.e., if we want to calculate the marginals of a new query variable, the whole variable
elimination procedure has to be repeated. We should notice that the inference of different
variables may share some intermediate results. An efficient algorithm should avoid re-
computing these intermediate results each time it infers a new variable. In the following
sections, we introduce belief propagation and the junction tree algorithm. Belief propagation
realizes an efficient implementation of variable elimination. It produces exact results if it
is applied on a graph that has a tree structure. In case that the graph has loops, we use the
junction tree algorithm to convert the graph into a tree and then apply belief propagation.

3.2.2 Belief propagation on graphical models

Belief propagation is a message passing algorithm that can solve several types of infer-
ence problems, e.g., calculating marginals or solving the maximum a posteriori (MAP)
problem. In the literature, belief propagation can be defined for different types of graph-
ical models. In this section, we present belief propagation on the most common graph-
ical models that we have introduced in the last chapter, i.e., Bayesian network, Markov
random field and factor graph. We present the sum-product algorithm which efficiently cal-
culates marginals of variables [41] and the max-product algorithm which solves the MAP
problem [6]. In the literature, the term “summary-product algorithms“ is used to unify these
two algorithms. The summary-product algorithms can be presented in a particularly
simple and general form if we use factor graphs. As discussed in the previous chapter,
Bayesian network and Markov random field can be easily converted to a factor graph.
Summary-product algorithm on factor graph can also solve the inference problem for
Bayesian network and Markov random field.

In belief propagation on a factor graph, a message is defined as a function associated
with an edge. It takes the variable node of the corresponding edge as its argument. For
example, in Figure 3.3 the message from function node fa to variable node xi is a func-
tion of xi, which will be denoted by mfa→xi(xi). The message from variable node xj to
function node fa is a function of xj and is denoted by mxj→fa(xj). In a factor graph with
a tree structure, belief propagation starts from the leaves. If a leaf is a variable node, it
sends out a message with constant value 1. If a leaf is a function node, its message to
the neighboring variable nodes is the function represented by the function node. The in-
termediate nodes produce messages to their neighbors following the summary-product
rule. Using that rule, two messages are calculated for each edge in the graph, one in each
direction. The summary-product rule regulates that a function node fa (or variable node
xi) can produce a message for its neighboring variable node xi (or function node fa) if
fa (or xi) has received messages from all other neighbors. Depending on the operations
needed in the summary step, we have two message passing rules, i.e., sum-product rule
and max-product rule.

• Sum-Product Rule

In the sum-product algorithm, messages sent between nodes are defined as follows:



32 3. Inference Algorithms

Fig. 3.3. Message passing on a factor graph

- Message from a variable node xi to a function node fa:

mxi→fa(xi) :=
∏

c∈NE(i)\a
mfc→xi(xi) (3.6)

where NE(i) denotes the index set of the neighbors of variable node xi.

- Message from a function node fa to a variable node xi:

mfa→xi(xi) :=
∑
xa\xi

⎛
⎝fa(xa) ∏

j∈NE(a)\i
mxj→fa(xj)

⎞
⎠ (3.7)

where NE(a) denotes the neighbors of function node fa.

After all messages are passed, marginals can be calculated:

- Marginal for a variable xi:

βi(xi) ∝
∏

c∈NE(i)

mfc→xi(xi) (3.8)

- Marginal for a clique xa at function node a:

βa(xa) ∝ fa(xa)
∏

j∈NE(a)

mxj→fa(xj) (3.9)

• Max-Product Rule

The max-product algorithm resembles the sum-product algorithm but replaces the
∑

operator with max:

- Message from a variable node xi to a function node fa:

mxi→fa(xi) :=
∏

c∈NE(i)\a
mfc→xi(xi) (3.10)

where NE(i) denotes the neighbors of variable node xi.

- Message from a function node fa to a variable node xi:

mfa→xi(xi) := max
xa\xi

fa(xa)
∏

j∈NE(a)\i
mxj→fa(xj) (3.11)

where NE(a) denotes the neighbors of function node fa.
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After all messages are passed, we can calculate the configuration of the values of the
variables that maximize the joint probability function or the global function. For xi:

ximax = max
xi

∏
c∈NE(i)

mfc→xi(xi) (3.12)

If the factor graph is a tree, the summary-product rule guarantees that all the messages
can be sequentially computed and the results are identical to those obtained from the vari-
able elimination algorithm. (See the discussion and a simple example in Appendix 3.A.)
Extension of the sum-product algorithm to a general graph with loops will be discussed
in Section 3.3.

3.2.3 Junction tree algorithm

The summary-product algorithms presented in the previous section produces exact re-
sults only if the factor graph has a tree structure. The junction tree algorithm deals with
loops in the graph. It converts a general graph to a junction tree and then runs the belief
propagation algorithm on that tree.

Given a graph G, the junction tree T = {K, E} of it is a cluster graph with each cluster
Ku being composed of a subset of variables xKu . There are edges E connecting clusters
with common variables. To be a junction tree, the cluster graph has to have the following
properties [42]:

• single connection: there is only one path between two clusters

• covering: each clique C in G must be in at least one cluster in G

• running intersection: if cluster Ku and cluster Kv have a common variable xi, then all
clusters on the path between Ku and Kv must also contain variable xi.

Now we use the example shown in (3.3) and Figure 3.2 to illustrate how to construct
a junction tree. We start from the undirected graph shown in Figure 3.1. To construct a
junction tree T from a graph G, we can use the following steps [42]:

1) if we start with a directed graph, convert it to an undirected graph using moralization
as shown in Section 2.4.1.

2) ordering the nodes, use variable/node elimination to obtain the (non-unique) se-
quence of elimination cliques. This can be illustrated by using the example in Fig-
ure 3.2. Figure 3.4 depicts the sequence of eliminating cliques. We start with the orginal
undirected graph (Figure 3.4(a)). Then we identify a clique, i.e., {x1, x2} and remove it
so that we obtain a trimmed graph in Figure 3.4(b). Then another clqiue ({x3, x5, x6})
will be identified and removed. The clique that is removed in each step is called elim-
ination clique, which is highlighted in Figure 3.4. This clique elimination process will
be repeated until at the end the resulting graph is a clique (Figure 3.4(d)), which be-
comes the last elimination clique. As illustrated in Figure 3.4, the elimination cliques
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in our example are: {x1, x2}, {x3, x5, x6}, {x2, x3, x5}, {x2, x4, x5}. Note that sometimes
extra edges have to be added in order to form a clique, e.g., the dashed line added
in Figure 3.4(c). Such an operation for finding the cliques is referred in the litera-
ture as triangulation. The relevance between the identification of elimination cliques
and variable elimination in (3.5) is as follows. In (3.5), we computed step by step the
summation over the following functions: ψ1(x1, x2), ψ5(x3, x5, x6), ψ2(x2, x3)m6(x3, x5),
ψ4(x4, x5)m3(x2, x5), ψ3(x2, x4)m1(x2)m5(x2, x4). As a result, the consecutive elimina-
tion cliques, i.e., variables involved in the functions that are processed in each step,
are: {x1, x2}, {x3, x5, x6}, {x2, x3, x5}, {x2, x4, x5}, {x2, x4}. If one clique is a subset of
the other clique, we delete the smaller clique. So at the end we obtian the same set of
elimination cliques.

Fig. 3.4. Clique elimination in a undirected graph

3) generating a complete cluster graph, i.e. a fully connected graph, using the elimination
cliques. From the cliques found in step 2, we choose the clusters to be K1 = {1, 2},
K2 = {3, 5, 6},K3 = {2, 3, 5},K4 = {2, 4, 5}where each Ku is a collection of the indices
of the variables involved in that cluster.

4) weighting the edge between two clusters Ku and Kv by ‖{xKu ∩ xKv}‖ where the
operator ‖·‖ calculates the size of a set. The junction tree for graph G is the maximal
weight spanning tree according to [52]. Figure 3.5(a) shows a complete cluster graph
and the weights between different clusters. A spanning tree with maximal weights,
i.e., the junction tree is generated and shown in Figure 3.5(b). Sometimes, the maximal
weights spanning tree is not unique. Another possible junction tree for our example is
shown in Figure 3.5(c).

Now we distribute the factors (potential functions) of (3.3) into the clusters in the junction
tree T . To do that, we first assign for each clusterKu a potential function φKu and initialize
it to unity. Then we select one of the potential functions ψC(C ∈ C) of p in (3.3) and assign
it into the one cluster Ku which covers the clique C. Then we update the cluster potential
function by multiplying it with the clique potential functions that were assigned to it. The
covering property of a junction tree ensures that every clique potential in p will appear in
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Fig. 3.5. Generating a junction tree from a complete cluster graph

the junction tree. The final assignment of the potential functions is as follows:

φK1(x1, x2) = ψ1(x1, x2)

φK2(x3, x5, x6) = ψ5(x3, x5, x6)

φK3(x2, x3) = ψ2(x2, x3)

φK4(x2, x4, x5) = ψ3(x2, x4)ψ4(x4, x5) (3.13)

which is also shown in Figure 3.5(b). It can be observed that the potential function as-
signed to cluster K3 only contains x2 and x3. x5 is also present in K3 because the running
intersection property has to be fulfilled.

It can be seen that the indentification of clusters on the graph and the assignment of the
original potential functions ψC(C ∈ C) into the clusters is a very tedious process if high
dimensional probability functions is considered. Therefore, finding a suitable juntion tree
for a given distribution is by itself an NP hard problem.

Now we can run the junction tree algorithm on Figure 3.5(b), which is similar to the
summary-product rule in factor graphs. In a junction tree, each cluster Ku knows its lo-
cal potential function and its neighborhood NE(Ku). Clusters exchange messages be-
tween each other. By combining its local potential with the messages from all its neigh-
bors NE(Ku), a cluster Ku can calculate the marginals of the variables it covers. Message
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passing obeys the rule that cluster Ku can send a message to its neighbor Kv ∈ NE(Ku)
only if Kv has received messages from all its neighbors except Kv.

Usually, we schedule the message passing procedure by choosing a root in the junction
tree and starting message passing from the leaves. If we are interested in the marginal of
a specific variable, we should choose the cluster that contains the variable to be the root.
Figure 3.6 illustrates the message passing schedule. The arrows denote the messages and
their direction, with the numbers ordering the sequence of messages.

Fig. 3.6. Message passing in a junction tree

In the example in Figure 3.6(a), we choose cluster K4 to be the root. So we first start
sending messages from the leaves K1 and K2. Once cluster K3 has received all messages
from its neighbors other than K4, it can combine them with its local potential function
and generates the message for K4. Another example is shown in Figure 3.6(b) where K2

is chosen to be the root.

In general, the message sent from a cluster Ku to its neighbor Kv is defined as:

mKu→Kv(xKu∩Kv) =
∑

xKu\Kv

φKu(xKu)
∏

Kw∈NE(Ku)\Kv

mKw→Ku(xKw∩Ku) (3.14)

Here we defineNE(Ku) as the set of Ku’s neighbors. From (3.14) we can see, the message
Ku sends to Kv is the product of its local potential function with all the messages it re-
ceived from its neighbors other than Kv, summing over the variables that are not in Kv.
So the messages between Ku and Kv, in both directions, are functions of the intersection
of xKu and xKv .

If a cluster has received messages from all its neighbors, then it can calculate the marginal,
which is called cluster belief:

βKu(xKu) = φKu(xKu)
∏

v∈NE(Ku)

mKv→Ku(xKu∩Kv) (3.15)

It can be shown that the cluster belief βKu(xKu) is proportional to the marginal probability
p(xKu). Exact marginals can be calculated by normalizing the cluster beliefs.

If we want to calculate the marginal probabilities of multiple variables that are contained
in different clusters, we need to repeat the message passing choosing different clusters as
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Fig. 3.7. Junction tree with separators

the roots. It should be noticed that some intermediate results can be shared by the infer-
ence of different marginals. For example in the calculations presented in Figure 3.6, the
message fromK1 toK3 is shared by both calculations. To make the junction tree algorithm
more efficient, we introduce separators S ∈ S between neighboring clusters. A separator
contains the common variables in the neighboring clusters. A junction tree with separa-
tors is shown in Figure 3.7. Using the separators, we modify our inference algorithm:

1) Initialization. Give each cluster K and separator S a potential function and initialize
them to:

ϕK(xK) = φK(xK) (3.16)
ϕS(xS) = 1 (3.17)

2) Update. Once cluster Ku wants to send message to cluster Kv, it sends the message
first to the separator Suv, so Suv updates its potential function as:

ϕ′
Suv

(xSuv) =
∑

xKu\Suv

ϕKu(xKu) (3.18)

Then Kv updates its potential function as:

ϕ′
Kv

(xKv) = ϕKv(xKv)
ϕ′
Suv

(xSuv)

ϕSuv(xSuv)
(3.19)

3) Termination. When all messages are passed, the potential ϕK(xK) is proportional to
the marginal probability p(xK).

The junction tree algorithm is an extension of node elimination in Markov random fields.
The message passing method that we have used in the junction tree algorithm is also an
example of belief propagation. It is belief propagation applied on a cluster graph, i.e., each
node on the graph represent several variables. The sum-product algorithm introduced in
the Section 3.2.2 is another example of belief propagation. It is belief propagation applied
on a factor graph where each node represent only a single variable or a single function.
The messages passed in the junction tree algorithm can be multivariate functions whereas
the messages passed in factor graph is always a function of a single variable.
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Belief propagation is an iterative algorithm for computing marginals of functions or vari-
ables on graphical models. Judea Pearl formulated this algorithm on trees [91] in 1982.
Kim and Pearl formulate it on polytrees [57] in in 1983. Belief propagation applied on a
tree can generate exact result. In a general graph, which usually contains loops, we con-
vert it to a junction tree before we use belief propagation. Another approach uses loopy
belief propagation [92] as an approximate inference method. Loopy belief propagation
will be introduced in Section 3.3.

3.3 Approximate inference

Until now, all the inference methods we introduced are exact. Applying these algorithms
will yield exact solutions. They are more efficient than a “brute force” approach, because
they exploit the independence properties of the stochastic system. However, what can we
do if the system is so involved that few independent relationships can be found. An ex-
treme example would be a system described by a fully connected graph. In this case, the
nature of the system does not provide us anything to help designing algorithms simpler
than “brute force”. In this section, we will introduce several approximate inference algo-
rithms. Another “uncomfortable” case would be a system with complicated local func-
tions, e.g. non-Gaussian distribution, non-linear function. Both these situations make an
exact inference impossible. The solution to the second problem will be left to the next
chapter.

3.3.1 Loopy belief propagation

In Section 3.2, we introduced the belief propagation method. Exact marginalization can
be obtained if the graph is a tree. However, in many cases, the graph contains loops. One
way of calculating the exact marginals is to use the junction tree algorithm, which mod-
ifies the graph to guarantee a tree structure. This was demonstrated on the example in
Section 3.2.3, where a graph with loops (Figure 3.1) was turned into a tree (Figure 3.6).
However, in a complex system, finding a suitable junction tree for the graphical model is
an NP-hard problem by itself. Pearl has suggested using belief propagation as an approx-
imation for the inference in loopy network, which is known as loopy belief propagation
algorithm.

Loopy belief propagation can be implemented almost in the same way as the belief prop-
agation that is implemented in a tree. During the belief propagation in a tree, neighboring
nodes exchange their messages only once and the order of the inference is always from
leaves to the root of the tree where the root is chosen to be the variable whose marginal
is to be calculated. However, no leaves can be found in a loop which raises the problem
of finding the order of message passing. In order to solve this problem, we initialize all
the messages with 1. Then the messages will be iteratively updated by the constraints
presented in the function nodes. The message updating rules introduced in Section 3.2.2
are used for the messages calculation at every iteration. Typically, messages will be prop-
agated along the loops for several rounds with each node in the loop being visited several
times until the termination criterion is met.
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The precise conditions of the convergence of a loopy belief propagation are still not well
understood. It is shown in [107] that graphs containing a single loop will converge to
a correct solution. Several sufficient conditions for the convergence of the sum-product
algorithm are shown in [72]. An example where the belief propagation does not converge
to the exact solution can be found in [106]. An extrinsic information transfer chart (EXIT
chart) [103] can be used to illustrate visually the progress of belief propagation and to
judge the convergence for some applications. Although the convergence of loopy belief
propagation is still an open question, it has been used in many practical applications with
great empirical success. Typical applications include joint decoding of turbo code [68] or
low density parity checking (LDPC) code [23], medical diagnosis [78], image processing
and computer vision problems [26][24][21].

3.3.2 Variational inference

Let us recall the inference problem in (3.1). Evaluating the marginal of observations xI in
a graph G requires marginalizing out all the hidden variables xH. The computational com-
plexity is determined by the density of the sub-graph of G over the hidden variables. Let
us assume the worst case that nodes in this sub-graph GH are so densely connected that
it is impossible to run variable elimination algorithms for exact solutions. In this case, we
can use variational methods to reduce the complexity. The basic idea of variational infer-
ence is to pose the probability distribution under query as the solution of an optimization
problem. Then a perturbation is introduced and the solution for the pertubed problem
is found. This section reviews one of the variational inference algorithms based on the
minimization of Kullback-Leibler distance.

We pose an optimization problem where the cost function J is defined as follows:

J(q) = log p(xI)−KL(q(xH)‖p(xH|xI)) (3.20)

Here q(xH) is called variational probability. It is a probability distribution over the hidden
variables. And the Kullback-Leibler distance between q(xH) and p(xH|xI) is given by:

KL(q(xH)‖p(xH|xI)) =
∑
xH

q(xH) log
q(xH)

p(xH|xI)
(3.21)

The KL distance is always non-negative. It is zero if and only if the two distributions
p(xH|xI) and q(xH) are identical. This means the cost function reaches its maximum
log p(xI) only if q is identical to the posterior probability. So the optimization problem
is to find q which maximizes the cost function. The definition of the cost function is intu-
itive. By optimizing the cost function, we simultaneously obtain the marginal probability
(Jopt = log p(xI)) and the posterior probability (qopt = p(xH|xI)).
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Now, let us rewrite (3.20) as follows,

J(q) = log p(xI)−KL(q(xH)‖p(xH|xI))

= log p(xI)−
∑
xH

q(xH) log
q(xH)

p(xH|xI)

=
∑
xH

q(xH) log p(xI)−
∑
xH

q(xH) log
q(xH)

p(xH|xI)

= −
∑
xH

q(xH) log
q(xH)

p(xI)p(xH|xI)

= −
∑
xH

q(xH) log q(xH) +
∑
xH

q(xH) log p(xH,xI)

= H(q) + Eq{log p(xH,xI)}

(3.22)

In (3.22), we express the cost function J as the sum of two terms. The first term H(q), is
the entropy of the variational probability. And the second term is the expectation of the
joint probability with respect to q.

Now, the computation of the maximum depends on two factors. One is the structure of the
original joint probability p(xH,xI). The other is the structure of the variational probability.
Assume we can factorize the joint probability as a product of local potentials:

p(xH,xI) =
∏
i

φci(xci) (3.23)

Inserting this factorization into the cost function, we turn the expectation into a sum of
simpler terms:

J(q) = H(q) +
∑
xH

(q(xH) log p(xH,xI))

= H(q) +
∑
xH

(
q(xH) log

∏
i

φci(xci)

)

= H(q) +
∑
xH

(
q(xH)

∑
i

logφci(xci)

)

= H(q) +
∑
i

(∑
xH

q(xH) logφci(xci)

)

= H(q) +
∑
i

⎛
⎝ ∑

xci∩H

q(xci∩H) logφci(xci)

⎞
⎠

(3.24)

Up to this step, we have only simplified the problem by exploiting the factorization prop-
erty of the joint probability. As we did not put any constraint on the structure of q, an
exact solution is still recoverable. To further simplify the problem, we will play with the
structure of q.
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As we can learn from the variable elimination algorithm, simplification in probabilistic
inference algorithms comes from the independence property of the variables. Here, for
the variational probability, the simplest choice is the one that all variables are independent
of each other, i.e.:

q(xH) =
∏
j∈H

qj(xj) (3.25)

Let us insert (3.25) into (3.24). Based on the fact that entropy of independent variables
equals the sum of the individual entropies, we obtain:

J(q) =
∑
j∈H

H(qj) +
∑
i

∑
xci∩H

q(xci∩H) logφci(xci) (3.26)

The optimization in (3.26) can be approached by an iterative method. As we have fully
factorized q into the product of marginals qj in (3.25), each of them can be adjusted in-
dependently. Based on this, we can design an updating rule where each time, we fix the
other single marginals, while adjusting one single marginal qk to maximize the cost func-
tion. This can be done by taking the derivative of J with respect to qk, setting to zero and
then finding the solution for qk. Before we express this mathematically, we first make a
definition to make the expression more explicit. We define:

Eq{log p(xH,xI)|xk} =
∑
xH\k

∏
j∈H\k

qj(xj) log p(xH,xI) (3.27)

Now, we can write the cost function for each individual qk assuming that the other
marginals are fixed. Using the first line of (3.24), we obtain:

J(qk) = J(q)

=
∑
j∈H

Hj(qj) +
∑
xH

(q(xH) log p(xH,xI))

=
∑
j∈H

Hj(qj) +
∑
xH

(∏
j∈H

qj(xj) log p(xH,xI)

)

=
∑
j∈H

Hj(qj) +
∑
xk

⎡
⎣qk(xk) ∑

xH\k

⎛
⎝ ∏
j∈H\k

qj(xj) log p(xH,xI)

⎞
⎠
⎤
⎦

=
∑
j∈H\k

Hj(qj) +Hk(qk) +
∑
xk

(qk(xk)Eq{log p(xH,xI)|xk})

(3.28)

Taking the derivative of J with respect to qk and setting to zero, we get:

− 1− log qk(xk) + Eq{log p(xH,xI)|xk} = 0 (3.29)

Solving (3.29), we obtain the updating rule:

qk(xk)←
1

Zk
eEq{log p(xH,xI)|xk} (3.30)
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Here Zk is the normalization factor which is given by:

Zk =
∑
xk

eEq{log p(xH,xI)|xk} (3.31)

Applying (3.30) to update each factor qk(xk), the value of the cost function J(q) will be
monotonically increased. In general, the choice of the initial value and the order of the
updating affect the final result that the algorithm is going to converge to.

In the variational inference presented above, a fully factorizable variational probability
distribution is chosen. Such an approximation is called mean-field method. There exist other
choices of the variational probability distribution q. For example, [54] presents the so-
called structured mean-field approach. The cluster variation method[56, 40, 73, 74], developed
by Kikuchi et al, introduces different approximations to the cost function J(q). In mean
field approach, the variational probability distribution is restricted to those that are fully-
factorized, i.e., each factor in q contains one variable only, whereas in Kikuchi’s cluster
variation method, variational probability distribution contains bigger factors, i.e., there
are factors that contains multiple variables. With cluster variation method, one can find
an approximation that is more accurate than the mean field method. Yedidia et al gener-
alized the approximations used in cluster variation method and introduced region-based
approximations. [113] shows that one of these approximation method-Bethe approximation-
generates results that are equivalent to the belief propagation algorithm. Based on the
study of region-based approximations, Yedidia et al proposed generalized belief propa-
gation algorithm in [112]. Variational inference has a close relationship with free energies
in statistical mechanics [113]. Many approximation methods are inspired by the study
done by physicists and it is not surprising that many of these methods borrow the names
of the counterparts in physics.

3.4 Extensions and discussions

This chapter reviewed several inference algorithms. We started from the “brute force”
approach which is infeasible for many applications due to the high computational com-
plexity. Variable elimination exploits the decomposability property of the joint probability
distribution and carefully arranges the sequence of computation to reduce the computa-
tional effort. Such an idea can be visually represented as node elimination on graphical
models. Belief propagation on factor graphs implements variable elimination in an effi-
cient way in the sense that it avoids unnecessary repetition of computing the intermediate
results when computing simultaneously several marginals. If the graph is a tree, belief
propagation calculates the exact marginals. If the graph contains loops, node elimination
has a problem of finding the starting point since every node on the loop is the ”reason”
and the ”consequence” of others. One solution is to use the junction tree algorithm to
convert the original graph to a tree before running belief propagation. The junction tree
algorithm still discovers the exact marginals. But its complexity is determined by the size
of the clusters and the separators, which are usually big for the sake of breaking the loops.
Finding a junction tree that optimizes the belief propagation running on it is in itself an
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NP-hard problem. So either we make a lot of effort to search for a junction tree that mini-
mizes the computational complexity of the belief propagation or we spend less effort on
searching but come up with a junction tree that still needs complicated computations.
An alternative solution to the problem of loops is to run loopy belief propagation. Con-
vergence conditions for loopy belief propagation has not been well studied. However,
empirical results showed successful application of this approximation method.

In Section 3.2.2, we presented belief propagation, in particular, the sum-product algo-
rithm and the max-product algorithm on a standard factor graph. Some researchers prefer
a more compact representation on Forney style factor graphs. Forney style factor graph
only contains function nodes. An edge between two function nodes is labelled by the vari-
ables that are shared by both functions. A message on an edge is defined as a function of
the variable that is associated with that edge. Figure 3.8 illustrates a part of a Forney
style factor graph. In this example, functions fa and fb have a common argument xi. The
message from fa to fb, denoted by: mfa→fb(xi) is calculated by:

mfa→fb(xi) =
∑
xa\xi

⎛
⎝fa(xa) ∏

c∈NE(a)\b
mfc→fa

⎞
⎠ (3.32)

Fig. 3.8. Message passing in Forney style factor graph

This chapter showed how to calculate the marginal probability distributions on an undi-
rected graph. If we have a directed graph, we first convert it into an undirected graph
then follow the inference algorithms introduced in this chapter. Let us consider a directed
graph example in Figure 3.9, which represents:

p(x1, x2, x3, x4, x5, x6) = p(x4)p(x2|x4)p(x5|x4)p(x1|x2)p(x3|x2)p(x6|x3, x5) (3.33)

We can convert it into an undirected graph, which is exactly identical to the graph in
Figure 3.1. If we want to infer the marginal probability of x4, we can follow the variable
elimination shown in (3.5). However, the marginal probability distribution of x4 is already
given on the right hand side of (3.33). That means we do not need any calculation at all. By
simply looking at the undirected model in Figure 3.1, we cannot detect this convenience.
Such an example shows that some times there is a good reason to keep the arrows when
we do the conversion. And it is preferable to introduce directions in a factor graph to
explicitly express the causality relationship on the graph.

3.A Sum-product algorithm on a tree

If the factor graph is a tree, the sum-product algorithm on it can calculate the exact
marginals. We first present how to use a factor graph to arrange the sequence of calcula-
tions in order to evaluate a particular marginal, which turns out to be a message passing
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Fig. 3.9. Directed graph representing (3.33)

method, i.e., the sum-product algorithm. Then we use a simple example to illustrate the
sum-product algorithm.

3.A.1 Evaluation of marginals in factor graphs

Suppose we have a factor graph G = {U ,V, E}which represents a global function:

fG(xV) =
∏
u∈U

fu(xu) (3.34)

Let us consider the evaluation of the marginal of a particular variable x ∈ {xV}. Fig-
ure 3.10 shows the subgraph that contains variable node x and its neighbors. We use
NE(x) = {r1, . . . rN} to denote the index of N neighbors of x. Since a factor graph is a
bipartite graph, a variable node is connected only to function nodes. So the neighbors of
x are factors {fr1, . . . frN} where each factor fri contains x and xri . Since the factor graph
under study is a tree, if we remove variable x, then the factor graph is divided into N
subgraphs, i.e.: {G1, . . .GN} with Gi = {Ui,Vi, Ei} where {xVi

} = ∪u∈Ui
{xu}. We call x the

root of the subgraphs of {Gi}i=1,···N . Each subgraph Gi represents:

fGi
(xVi

) =
∏
u∈Ui

fu(xu)

= fri(x,xri)
∏

u∈Ui\ri
fu(xu) (3.35)

and now the overall global function can be written as:

fG(xV) =
N∏
i=1

fGi
(xVi

) (3.36)

The marginal of x can be calculated as follows, using the result from (3.35):

β(x) =
∑
xV\x

fG(xV)

=
∑
xV\x

N∏
i=1

fGi
(xVi

)

=
N∏
i=1

∑
xVi

\x
fGi

(xVi
) (3.37)
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Let us define:

mfri→x(x) =
∑
xVi

\x
fGi

(xVi
) (3.38)

It can be regarded as a message that fri sends to x. This message contains the summary
of the calculation in the subgraph Gi. Then we can rewrite (3.37) as:

β(x) =
N∏
i=1

mfri→x(x) (3.39)

Fig. 3.10. Illustration of marginal calculation
(by dividing the factor graphs into small subgraphs)

We further divide each Gi into Mi subgraphs {Gij = {Uij ,Vij, Eij}}j=1,...Mi
as shown in Fig-

ure 3.10, where Mi is the number of fri’s neighbors besides of x. So xri = {xsi1 , . . . xsiMi
}.

In this case, fri is the root of the subgraphs {Gij}j=1,...Mi
. Let us use NE(fri) = {s1, . . . sMi

}
to denote the neighbors of fri . Then the factor fGi

(xVi
) can be written as:

fGi
(xVi

) = fri(x,xri)

Mi∏
j=1

fGij
(xVij

) (3.40)
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It should be noticed that x is not contained in any xVij
. And only xsij in xri is contained in

xVij
. Then the message mfri→x(x) can be written as:

mfri→x(x) =
∑
xVi

\x
fGi

(xVi
)

=
∑
xVi

\x
fri(x,xri)

Mi∏
j=1

fGij
(xVij

)

=
∑
xri

fri(x,xri)

Mi∏
j=1

∑
xVij

\xsij

fGij
(xVij

) (3.41)

Let us define:
mxsij→fri

(xsij ) =
∑

xVij
\xsij

fGij
(xVij

) (3.42)

So it is the message that xsij sends to fri . It is the summary of the calculation in subgraph
Gij . Inserting (3.42) into (3.41), we obtain:

mfri→x(x) =
∑
xri

fri(x,xri)

Mi∏
j=1

mxsij→fri
(xsij ) (3.43)

which gives us the message updating equation at a function node.

Now let us divide each subgraph Gij again into subgraphs as illustrated in Figure 3.10
so that Gij is composed of {Gijk = {Uijk,Vijk, Eijk}}k=1,...Lij

, where Lij is the number of
neighbors of xsij besides fri . Let us use NE(xsij ) = {t1, . . . tLij

}. Then the factor fGij
(xVij

)
can be factorized as follows:

fGij
(xVij

) =

Lij∏
k=1

fGijk
(xVijk

) (3.44)

Then the message calculation in (3.42) can be rewritten as:

mxsij→fri
(xsij) =

∑
xVij

\xsij

fGij
(xVij

)

=
∑

xVij
\xsij

Lij∏
k=1

fGijk
(xVijk

)

=

Lij∏
k=1

∑
xVijk

\xsij

fGijk
(xVijk

) (3.45)

Let us define:
mftijk→xsij

=
∑

xVijk
\xsij

fGijk
(xVijk

) (3.46)
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Then it is the message from ftijk to xsij . It summarizes the calculation in the subgraph Gijk.
And now, we can rewrite (3.45) as:

mxsij→fri
(xsij ) =

Lij∏
k=1

mftijk→xsij
(3.47)

which gives the message update equation at a variable node.

We can keep dividing subgraphs into smaller graphs until all subgraphs are not dividable
anymore. A non-dividable graph may contain a single variable node or a single function
node. If it contains a single variable node xu∗, then the message it sends to its root fv∗ is
given by:

mxu∗→fv∗(xu∗) = 1 (3.48)

If a non-dividable subgraph contains a single function node fv′ , then the message it sends
to its root xu′ is, note in this case fv′ must be a function of xu′ only:

mfv′→xu′ (xu′) = fv′(xu′) (3.49)

We can use (3.48) and (3.49) to initialize the marginal calculation at the non-dividable
nodes, then use (3.43) and (3.47) to recursively calculate the message from subgraphs to
their roots and expand the graph. At the end, when the expansion reaches our target
variable x, we can use (3.39) to summarize the marginal of x.

3.A.2 A sum-product algorithm example

Fig. 3.11. An example of the sum-product algorithm in factor graph
Dotted arrows represent messages that are available in current step. Solid arrows

represent the messages that were calculated in previous steps.

An example that illustrates the sum-product algorithm is shown in Figure 3.11. The factor
graph in Figure 3.11 represents:

f(x1, x2, x3, x4, x5) = f1(x1)f2(x1, x2, x3)f3(x3, x4)f4(x3, x5) (3.50)
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Message passing starts from the leaves. So in the first step (Figure 3.11(a)), messages are
sent out from function node f1 and variable nodes x2, x4 and x5. The content of the mes-
sages are given by:

mf1→x1(x1) = f1(x1) (3.51)
mx2→f2(x2) = 1 (3.52)
mx4→f3(x4) = 1 (3.53)
mx5→f4(x5) = 1 (3.54)

In the next step (Figure 3.11(b)), node x1 can calculate its message to f2 using (3.6) and
f3 and f4 can calculate their messages to x3 using (3.7). So the following messages are
available:

mx1→f2(x1) = mf1→x1(x1) (3.55)

mf3→x3(x3) =
∑
x4

f3(x3, x4)mx4→f3(x4) (3.56)

mf4→x3(x3) =
∑
x5

f4(x3, x5)mx5→f4(x5) (3.57)

In the third step (Figure 3.11(c)), node f2 can calculate its message to x3 by using (3.7) and
node x3 calculates its messages to f2 using (3.6):

mf2→x3(x3) =
∑
x1,x2

f2(x1, x2, x3)mx1→f2(x1)mx2→f2(x2) (3.58)

mx3→f2(x3) = mf3→x3(x3)mf4→x3(x3) (3.59)

In the fourth step (Figure 3.11(d)), node f2 calculates it messages to x1 and x2, node x3
calculates its messages to f3 and f4. The calculations are as follows:

mf2→x1(x1) =
∑
x2,x3

f2(x1, x2, x3)mx2→f2(x2)mx3→f2(x3) (3.60)

mf2→x2(x2) =
∑
x1,x3

f2(x1, x2, x3)mx1→f2(x1)mx3→f2(x3) (3.61)

mx3→f3(x3) = mf2→x3(x3)mf4→x3(x3) (3.62)
mx3→f4(x3) = mf2→x3(x3)mf3→x3(x3) (3.63)

In the final step (Figure 3.11(e)), the following messages are calculated:

mx1→f1(x1) = mf2→x1(x1) (3.64)

mf3→x4(x4) =
∑
x3

f3(x3, x4)mx3→f3(x3) (3.65)

mf3→x5(x5) =
∑
x3

f4(x3, x5)mx3→f4(x3) (3.66)

After this step, all the messages are available. Marginal probabilities can be calculated.
For example, the marginal of x3, i.e., β(x3) is calculated by multiplying all the incoming
messages:

β(x3) = mf2→x3(x3)mf3→x3(x3)mf4→x3(x3) (3.67)
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Inserting the results from (3.58), (3.56) and (3.56) into (3.67), we obtain:

β(x3) =
∑
x1,x2

f2(x1, x2, x3)mx1→f2(x1)mx2→f2(x2)
∑
x4

f3(x3, x4)mx4→f3(x4)

∑
x5

f4(x3, x5)mx5→f4(x5) (3.68)

Using the results from (3.55), (3.52), (3.53) and (3.54), we can obtain:

β(x3) =
∑
x1,x2

f2(x1, x2, x3)mf1→x1(x1)
∑
x4

f3(x3, x4)
∑
x5

f4(x3, x5) (3.69)

Inserting the result from (3.51) into (3.69) we obtain:

β(x3) =
∑
x1,x2

f2(x1, x2, x3)f1(x1)
∑
x4

f3(x3, x4)
∑
x5

f4(x3, x5)

=
∑

x1,x2,x4,x5

f1(x1)f2(x1, x2, x3)f3(x3, x4)f4(x3, x5)

=
∑

x1,x2,x4,x5

f(x1, x2, x3, x4, x5) (3.70)

From this result we can see that the sum-product algorithm can calculate the exact
marginal of x3. The first line in (3.70) also indicates that variable elimination is imple-
mented by the sum-product algorithm.
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4. Probabilistic Inference in Networked Systems

A networked system is composed of a large number of simple systems which are con-
nected via communication links so that they can interact with each other. Modern net-
worked systems (e.g., industrial Ethernet) enable flexible system operation and reduce
the cost of installation and maintenance. There are many potential applications of net-
worked systems in many areas of engineering and science. Typical examples include sen-
sor networks, industrial automation networks, power grids, transportation systems and
so on. Networked systems are usually complex dynamical systems with uncertainties.
Hence, achieving desired behavior of the whole system requires reliable estimation of the
state of the system under uncertainties.

A lot of uncertainties are typically involved in networked systems, such as the measure-
ment noise and random effects introduced by the communication system, e.g., varying
delay, packet loss, bit errors. Probability theory provides an appropriate framework to
quantify these uncertainties. On the other hand, sampled measurements are usually cor-
related in time and/or space. Soft constraints, e.g., local potential functions can be used to
describe the strength of correlation. Therefore, it is reasonable to use probabilistic models
as a suitable mathematical expression of the estimation problem in networked systems.

In a probabilistic model, uncertainties and soft constraints are modeled by random vari-
ables with given distributions, system states are modeled by hidden variables and ob-
servations are known variables. The relationships between the variables are given by the
underlying physics. In this way, we can formulate state estimation as a probabilistic infer-
ence problem where the posterior probability distribution of the hidden variables, given
the observations, can be computed. The result not only calculates the MAP estimate of the
variables of interest, but also provides the uncertainty of the estimation via the probability
distribution.

In practice, a typical networked system has a very high complexity due to the large num-
ber of participants in the system, different sources of randomness and very complicated
physics or underlying dynamics of the sub-systems. As a consequence, probabilistic in-
ference in a typical networked system involves a large scale of computations, which is a
non-trivial task.

In this chapter, we will discuss tractable inference methods for the estimation problems
in a typical networked system. In particular, the following issues will be addressed:

1) distributed inference in a networked system

51
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2) function and message approximation

3) state estimation for a dynamical system

State estimation can be done in a centralized way which requires local measurements
to be transmitted to a fusion center where a global model of the whole system will be
established. However, we prefer distributed inference in practice in order to save the
power consumed by transmitting the measurements, to parallelize the computations and
to avoid intensive processing at a single network element. We will derive in this chapter
the basic methodology of implementing probabilistic inference in a distributed manner,
i.e., distributed inference in a networked system.

A practical networked system may involve uncertainties that have very complicated, non-
standard density functions. The model of the underlying physics of the system may con-
tain non-linear continuous functions. The high complexity of these functions may cause
the inference algorithms introduced in Chapter 3 to be intractable. On the other hand, to
transmit a very complicated function efficiently over communication links, we need to
find out an appropriate representation. Usually, we have to introduce approximations in
order to simplify the computation in inference and to reduce the size of the messages that
should be communicated. In this chapter, we discuss two function and message approxi-
mation methods. We derive Fourier domain belief propagation which is based on the Fourier
density approximation technique [11, 12]. Then we present non-parametric belief propagation
[102] as another approximation method.

A networked system usually contains many stochastic processes that are coupled with
each other. As a result, the whole system is a very large-scale dynamical system. Modeling
and state estimation for such a complicated system is not trivial. We introduce dynamic
Bayesian network as an appropriate tool to model the system. Several state estimation
methods, exact or approximate, will be presented. Examples are given to illustrate these
methods.

This chapter will solve the three classes of problems mentioned above in very general
terms. They encompass the most critical issues in the probabilistic inference for a compli-
cated networked system. In the next two chapters, we will elaborate and apply the meth-
ods introduced in this chapter to solve the sensor localization and clock synchronization
problems. From these applications, we will see that several of the techniques mentioned
in this chapter can be combined to solve a complicated problem. For example, sensor lo-
calization uses distributed inference and function approximation; clock synchronization
uses distributed inference in a linear dynamical system.

The rest of this chapter is organized as follows. Section 4.1 introduces appropriate
distributed inference methods for state estimation in networked systems. Section 4.2
presents function approximation methods targeting on simplifying the computation for
the inference and reducing communications. Section 4.3 discusses probabilistic inference
for dynamical systems. We conclude this chapter with remarks and discussions in Sec-
tion 4.4. In Appendix 4.A.1 and 4.A.2, we present the derivation of the product and inte-
gration of Gaussian density functions. The results are used in the preceding sections and
subsequent chapters.
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4.1 Distributed inference

The message passing based inference algorithm introduced in the previous chapter al-
ready indicates the possibility of implementing probabilistic inference in a distributed
way. Based on the topology of the communication system underlying a networked sys-
tem, we can develop an inference graph (probabilistic graphical model). Network ele-
ments can exchange information required by the inference algorithm via the communica-
tion links so that marginal probability distributions or posterior probability distributions
can be computed locally. However, the underlying communication system also influences
the inference. For example, two elements are supposed by the inference algorithm to talk
to each other, however there may be no direct communication link between them. Due
to this constraint, the communication and the inference should be designed in a way that
they fit each other, i.e.,

• inference has to be designed to adapt to the topology of the communication network

• communication links should be chosen properly to simplify the inference and to re-
duce the total amount of traffic

In this section, we will formulate the estimation problem mathematically. Then we
present the probabilistic model for the system and introduce the most important pro-
cedures of distributed inference. An example will be shown at the end to illustrate dis-
tributed inference method.

4.1.1 Problem formulation

Let us assume that a system withN networked nodes is deployed to measure some phys-
ical environment. For each sensor node i, we define a hidden state variable xi to denote
the value of the environment or process state at that sensor position. Let yi denote the
sensor measurement at sensor node i, which should be relevant to the hidden states. The
most common task of probabilistic inference is to compute at each sensor the posterior
probability distribution p(xi|y) where y = {y1, y2, ...yN}.

4.1.2 General assumptions

Based on the property of many inference problems in networked systems, we observe
that the following assumptions are valid for most applications:

• Given all state variables, observations at different sensor nodes are conditionally in-
dependent, i.e., p(yi, yj|x) = p(yi|x)p(yj|x);

• Observations made at one sensor node depend only on a subset of state variables, i.e.
p(yi|x) = p(yi|xPA(yi)) where xPA(yi) ⊂ x is a subset of the states variables that affect
the sensor measurement at node i;
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• Correlation exists between state variables. Usually, the correlation is local between
neighboring nodes. This indicates that the joint probability distribution of state vari-
ables can be factorized into a product of local functions which represent the correla-
tion among the nodes in neighborhoods, i.e., p(x) =

∏
C p(xC) where each C denotes

a clique.

The first assumption comes from the fact that the observation can usually be expressed as
a deterministic function of hidden variables plus additive measurement noise, e.g.,

yi = gi(x) + ξi (4.1)

where gi is a function which maps the configuration of hidden state variables to the quan-
tity that can be measured by the sensor. ξi denotes the random error made at the sensing
process. The additive noises at different sensors are independent from each other, i.e.,

p(ξi, ξj) = p(ξi)p(ξj) (4.2)

As a consequence:
pξi,ξj(yi, yj|x) = pξi(yi|x)pξj(yj|x) (4.3)

The second assumption tells us that the deterministic function gi in (4.1) is usually local.
It depends only on the hidden state variables at the locations that are close to sensor i’s
location.

4.1.3 General inference procedure

Based on the assumptions in Section 4.1.2, and using the Bayes rule, the joint probability
distribution of the state variables and the observations can be factorized as follows:

p(x,y) = p(y | x)p(x)

=
N∏
i=1

p(yi | xPA(yi)) · p(x)

=
N∏
i=1

p(yi | xPA(yi)) ·
∏
Cj

p(xCj
) (4.4)

Now we reorganize the factorization of the joint distribution to obtain the following struc-
ture:

p(x,y) =
N∏
i=1

ϕi(yi,xCi
) (4.5)

so that each local function ϕi(yi,xCi
) in (4.5) is associated with one single sensor node

i. Such a factorization automatically provides the possibility to distribute the computa-
tion for the state estimation. Each node executes some local computation and the results
are eventually disseminated over the whole network through the communications links
between nodes.

To obtain the factorization, each factor in (4.4) should be assigned to one of the local
functions in (4.5). The assignment is typically not unique. Different criteria should be
considered, for example:
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• if local functions share the same variables

• availability of a communication link

• link quality

• computational complexity

• power consumption of communication

Then an inference network i.e., a graphical model can be constructed. The inference net-
work is a subnet of the communication network where only part of the communication
links are used, depending on the information required by the inference algorithm. A ro-
bust architecture is presented in [90] where a tree-structured inference network is con-
structed taking into consideration the communication cost and the computational com-
plexity. Thereby, it is convenient to use junction tree algorithm. This algorithm, over such
an architecture provides a tractable solution for distributed inference [89], regression [34]
and optimal control [33] in sensor network. The next section uses a simple example to
illustrate this distributed inference approach. Other work, e.g., [15], [49] defines infer-
ence networks that contain loops. In this case, loopy belief propagation is used to solve
the estimation problem. In the next chapter, we present loopy belief propagation for self-
organized sensor localization.

4.1.4 Example of distributed inference

Let us assume a networked system with the topology shown in Figure 4.1. There are 6
elements in the network. Each of them measures the physical parameters at its own loca-
tion and wants to estimate these parameters from the noisy measurements. We use xi to
denote the physical parameters at element i and use yi to denote the noisy measurement
of xi. We assume that:

yi = xi + ξi (4.6)

where the additive random noise variables ξi and ξj are independent if i �= j. We further
assume that the underlying physical parameters have space correlations, given by:

p(x1, x2, x3, x4, x5, x6) = p(x1, x2)p(x2, x3)p(x3, x6)p(x4, x5)p(x5, x6) (4.7)

In Figure 4.1, we use dashed ellipses to illustrate the spatial correlations.

Based on (4.6) and (4.7), we can write the joint probability distribution as follows:

p(y1, . . . y6, x1, . . . x6) = p(x1, . . . x6)p(y1, . . . y6|x1, . . . x6)

= p(x1, . . . x6)
6∏
i=1

p(yi|x1, . . . x6)

= p(x1, x2)p(x2, x3)p(x3, x6)p(x4, x5)p(x5, x6)
6∏
i=1

p(yi|xi) (4.8)
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Fig. 4.1. Topology of the network and the spatial correlation

As discussed in Section 4.1.3, we want to write the joint probability distribution in the
following form:

p(y1, . . . y6, x1, . . . x6) =
6∏
i=1

ϕi(yi,xCi
) (4.9)

so that each local function ϕi(yi,xCi
) is associated with element i. Now we should assign

the factors in (4.8) into one of these local functions. Obviously, the conditional probability
p(yi|xi) should be assigned to ϕi(yi,xCi

). But there exist many possible ways to assign the
rest of the factors.

4.1.4.1 Distributed inference-factor assignment scheme 1

One possible assignment is shown as follows:

ϕ1(y1, x1) = p(y1|x1)
ϕ2(y2, x1, x2) = p(y2|x2)p(x1, x2)
ϕ3(y3, x2, x3) = p(y3|x3)p(x2, x3)
ϕ4(y4, x4, x5) = p(y4|x4)p(x4, x5)
ϕ5(y5, x5, x6) = p(y5|x5)p(x5, x6)
ϕ6(y6, x3, x6) = p(y6|x6)p(x3, x6) (4.10)

Figure 4.2 depicts the assignment of the factors. From that, we construct a junction tree
based on the availability of communications links. The junction tree is shown in Fig-
ure 4.3.

In the junction tree in Figure 4.3, x3 is added to local functions ϕ2 and ϕ5 to fulfill the
running intersection property required by a junction tree (see Section 3.2.3). We choose
the link between elements 2 and 5 instead of the link between elements 1 and 4 or the link
between elements 2 and 4 because such a choice minimizes the complexity of the junction
tree. For example, if we choose the link between elements 2 and 4, then x3 should also be
included in ϕ4 to satisfy the running intersection requirement.

Figure 4.4 demonstrates the belief propagation for inferring marginals. The messages
along the edges are computed using (3.14). At the end, the marginal probability distri-
bution can be calculated by applying (3.15). The size of each message is associated with
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Fig. 4.2. Assignment of factors, scheme 1

Fig. 4.3. Junction tree for assignment scheme 1

the number of variables involved. For example, two variables are inside the message from
element 5 to element 6.

Fig. 4.4. Message passing for assignment scheme 1

Figure 4.5 illustrates the complexity of the message computation by showing how many
variables should be summed out in the calculation with

∑
xi,xj

. With no
∑

means no
summation is needed for that message. For example, for the calculation of the message
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from element 2 to element 5, we should sum over all possible values that x1 and x2 can
take. In the figure, this is expressed by labeling the corresponding message by

∑
x1,x2

Fig. 4.5. Complexity of inference based on assignment scheme 1

4.1.4.2 Distributed inference-factor assignment scheme 2

Another possible assignment is shown as follows:

ϕ1(y1, x1, x2) = p(y1|x1)p(x1, x2)
ϕ2(y2, x2, x3) = p(y2|x2)p(x2, x3)

ϕ3(y3, x3) = p(y3|x3)
ϕ4(y4, x4, x5) = p(y4|x4)p(x4, x5)
ϕ5(y5, x5, x6) = p(y5|x5)p(x5, x6)
ϕ6(y6, x3, x6) = p(y6|x6)p(x3, x6) (4.11)

Such an assignment scheme is shown in Figure 4.6.

Fig. 4.6. Assignment of factors, scheme 2

The junction tree generated from this assignment scheme is shown in Figure 4.7. x3 is
added to local function ϕ5 to satisfy the running intersection requirement.
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Fig. 4.7. Junction tree for assignment scheme 2

The junction trees shown in Figure 4.3 and Figure 4.7 have the same topology but the
clusters are different. As a consequence, the size of the messages and the complexity
of message computation are different. Figure 4.8 demonstrates the message passing for
the assignment scheme 2. It can be seen that Figure 4.8 has fewer large messages than
Figure 4.4, i.e., only 2 with 2 arguments instead of 4. Therefore, assignment scheme 2
consumes less transmission power for the inference.

Fig. 4.8. Message passing for assignment scheme 2

Figure 4.9 illustrates the complexity of the message computation. Let us assume the each
variable xi is L-ary, i.e., it can take L possible values. From Figure 4.5, we see that the total
number of summations needed for the message computation is approximately 4L2 + 3L
(4 messages are calculated by summing over 2 variables and 3 messages are calculated
by summing over 1 variable). The total number of summations needed for the message
computation in assignment scheme 2 is approximately 2L2 +6L. So assignment scheme 2
also saves power for the message computation.

4.1.4.3 Centralized inference

In centralized inference, we assume that all the observations are transmitted to a fusion
center. Let us suppose that node 2 is chosen to be the fusion center. Then all the other
nodes transmit their local observations to node 2. Figure 4.10 illustrates the data flow.
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Fig. 4.9. Complexity of inference based on assignment scheme 2

Fig. 4.10. Data transmission to the fusion center

Then in node 2 we can construct a factor graph based on the factorization in (4.7). The
resulting factor graph is depicted in Figure 4.11. We can also solve the problem with a
junction tree. However, factor graph and junction tree make no difference for the belief
propagation that runs on them. We use factor graph for the sake of a better representation.
Note that the whole graph of Figure 4.11 resides in a single node, i.e., node 2. The com-
munication links do not influence the choice of the graphical model anymore. Therefore,
although there is no direct communication between nodes 3 and 6, it does not prevent
us from generating a probabilistic model where x3 and x6 are directly connected, which
represents the local correlation between them.

Marginal probability distributions can be computed based on the sum-product algorithm.
Figure 4.12 illustrates the message passing for the sum-product algorithm. Messages are
computed by using (3.7) and (3.6) and the marginal probability distributions are com-
puted by using (3.8).

Figure 4.13 illustrates the complexity of the message computation as before.

Comparing Figure 4.13 with Figure 4.5 and Figure 4.9, we can see that centralized infer-
ence requires only approximately 10L sum operations. It has the lowest computational
complexity. However, such a model can be established only if all the data are available at
a single node, which requires nodes to send the local measurements.

At the end of a centralized inference, the estimation results should be sent to the corre-
sponding nodes. Figure 4.14 illustrates the traffic for transmitting the posterior probabil-
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Fig. 4.11. Factor graph for centralized inference

Fig. 4.12. Message passing for centralized inference

ity distributions back to each node, where each of them is represented by a vector with L
entries. As a result, node 2 has to transmit 5L values in total.
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Fig. 4.13. Complexity of centralized inference

Fig. 4.14. Transmission of the final results

4.1.4.4 Comparison and discussion

We use Table 4.1 to compare the transmission cost and the computational complexity
required by distributed inference and centralized inference. In this table, we use Mo to
denote the number of bits that are needed in average to transmit the observations made
at one single node, i.e., yi and use Mn

p to represents the number of bits that are needed
in average to transmit probability distributions or messages of dimension n (i.e., with n
arguments) in message passing.
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Table 4.1. Comparison of distributed and centralized inference

Transmission Computation
DI 11 DI 22 CI3 DI 1 DI 2 CI

node 1 Mp Mp Mo L
node 2 2Mp +M2

p 3Mp 5Mp L+ 2L2 3L 10L
node 3 M2

p Mp Mo

node 4 Mp Mp Mo L L
node 5 2Mp +M2

p 2Mp +M2
p 2Mo +Mp L+ 2L2 L+ 2L2

node 6 M2
p M2

p Mo

in total 6Mp+4M2
p 8Mp+2M2

p 6Mo+6Mp 3L+ 4L2 6L+ 2L2 10L

1 distributed inference assignment 1
2 distributed inference assignment 2
3 centralized inference

From this example, we can see that the topology of the communication network may
put extra constraint on the inference. As a result, the entire computational complexity
of a distributed inference method is higher than the complexity of a centralized inference
method. However, ifMo �Mp, which is a common situation for many applications, trans-
mission of measurement data to the fusion center would be too expensive. On the other
hand, transmitting measurements to a fusion center usually involves multihop transmis-
sion. Multihop transmission consumes a lot of power because a lot of data have to be
received and forwarded by the intermediate nodes. For example in Figure 4.10, node 5
has to help node 6 transmit its data y6 to the fusion center node 2. Using distributed in-
ference, we can avoid transmission of large amount of data to the fusion center and the
total computation is distributed so that each node only need to execute a small amount of
computations. By doing that, we also avoid long distance communications, which further
reduces power consumption. To reduce the complexity, we can also introduce approxima-
tions to reduce L. Approximate inference will be discussed in the next section.

4.2 Function and message approximation in inference

When we introduced inference algorithms in the previous chapters, we have restricted
our discussion to graphical models with discrete random variables. Another challenge
arises when variables are specified by continuous, non-Gaussian distributions. For dis-
crete random variables, marginal of a certain variable is obtained by summing out other
variables. For continuous variable, calculation of marginals is done by integration. There-
fore, the inference equations presented in the introduction of inference algorithms in the
previous sections should be modified so that they are adapted to continuous random
variables. This is done by replacing the summations with integrations. For example, the
updating equations for the sum-product algorithm with continuous variables look as fol-
lows:
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1) Message from a variable node i to a function node a:

mxi→fa(xi) :=
∏

c∈NE(i)\a
mfc→xi(xi) (4.12)

2) Message from a function node a to a variable node i:

mfa→xi(xi) :=

∫
xa\xi

fa(xa)
∏

j∈NE(a)\i
mxj→fa(xj) (4.13)

Although we have used the same notations of functions and messages in (3.7) and (4.13),
they have different forms. Variables in (3.7) are discrete, so the messages and functions are
vectors or matrices containing the probabilities of the discrete values, whereas in (4.13),
variables and functions are continuous.

If all the functions and messages in (4.12) and (4.13) are Gaussian, the calculation is simple
since either the multiplication of several Gaussian functions or the integration of multi-
variate Gaussian distribution results in a new Gaussian function. The calculation of the
mean and the variance of the new Gaussian distribution is straightforward. Some impor-
tant results are shown in Appendix 4.A.1 and 4.A.2. However, in many applications with
complicated continuous non-Gaussian functions and distributions, no closed form solu-
tion exists for the calculation in (4.12) and (4.13), which makes exact inference intractable.
Thus, it is necessary to develop appropriate approximations to the functions and mes-
sages in a graphical model which not only provide a convenient means of representation
but also make the computation of message updating in (4.12) and (4.13) simple. Particu-
larly, it is always convenient to express a complicated function as a linear combination of
basis functions. I.e., For a given function f(x), we would like to approximate it by:

f(x) ≈ fA(x) =
∑
i

αihi(x) (4.14)

where hi(x) is the ith basis function, αi is the associated weight. If an appropriate set of
basis functions are chosen, we obtain a more compact representation of the original func-
tion. Such a technique has been used in information source coding or image processing
[2, 13] to obtain a high compression rate. Based on this idea, we developed probabil-
ity density approximation methods where the density functions are approximated with
carefully chosen basis functions which have the following properties:

• original density functions are well approximated by a limited number of basis func-
tions and their weights

• necessary operations on the basis functions (e.g., multiplication and integration of ba-
sis functions) are well defined and simple

• the specific structure of the original function is exploited
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Discretization is the simplest method for the approximation of intractable continuous-
valued inference problems. For example, we can uniformly sample a continuous function
f(x) and approximate it by:

fD(x) =
L∑
l=1

f(xDl )δ(x− xDl ) (4.15)

where the sub- or superscript D indicates that this is an approximation of a continuous
function with a ”discrete” function, L is the total number of discrete samples, {xDl }Ll=1 are
the sampling points, f(xDl ) calculates the value of the original function at the sample point
xDl and the unit impulse function δ(x) is given by:

δ(x) =

{
1 if x = 0
0 if x �= 0

(4.16)

Some discretization-based approximate inference algorithms have produced satisfactory
results in practical applications [92]. The computational complexity of a discretization-
based inference algorithm is determined by the number of discrete values involved in
each operation (e.g., multiplication, summation), e.g., L in (4.15). For high dimensional
variables, exhaustive discretization of the entire state space results in a large number of
discrete values which makes the computation in the standard inference algorithms in-
tractable. Sophisticated approximation methods need to be developed in order to reduce
the computational complexity. In this section, we will introduce two function approxima-
tion approaches that are suitable for the belief propagation algorithm. We first introduce
the classical Fourier density approximation method and derive the Fourier domain belief
propagation algorithm. Then we introduce the well known non-parametric belief propa-
gation algorithm, which is based on the Monte Carlo sampling methods.

4.2.1 Fourier domain belief propagation

In this section, we introduce function approximation based on the Fourier transform. The
Fourier transform was chosen to be the first candidate because it is already well studied
and easy to implement.

Using the Fourier transform for function approximation has been developed decades ago
[61]. Recent research refined the previous work so that it is suitable for the approximation
of density functions and used it in practical applications. Some new concepts of Fourier
density approximation for Bayesian inference have been developed in [11] and [12]. Here
we summarize their work and derive Fourier approximation for the message representa-
tion in belief propagation or the sum-product algorithm.

4.2.1.1 Fourier series representation of functions

The basic idea of the Fourier function approximation method is to approximate a given
function by a truncated Fourier series. Such an approximation is not suitable for den-
sity function approximation as a truncated Fourier series does not guarantee the non-
negativity required by a density function. To overcome this problem, authors of [11] and
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[12] approximate the square root of the original density function by its Fourier expansion.
The approximation of the original function is then obtained by taking the square of the
truncated Fourier series, which is guaranteed to be non-negative by construction.

Without loss of generality, we assume a density function p(x) where x takes value in a
finite interval [−π, π] (For an arbitrary random variable, we first restrict its possible value
in a finite interval, then project it to x ∈ [−π, π]). We use pFDA(x) to denote the Fourier
density approximation (FDA) of p(x). The authors of [11] proposed an optimal choice of
pFDA(x) in the sense of maximizing the similarity of p(x) and pFDA(x), measured by the
Hellinger metric:

C(p(x), pFDA(x)) =

∫ π

−π

(√
p(x)−

√
pFDA(x)

)2

dx (4.17)

To guarantee the non-negativity of pFDA(x), we restrict our choice of pFDA(x) to the ones
that can be expressed as the square of a function, which can itself be approximated by a
Fourier series, i.e.,:

pFDA(x) = ψ(x)ψ∗(x) = |ψ(x)|2 (4.18)

where the operator ∗ calculates complex conjugate and the Nth order Fourier series ψ(x)
is given by:

ψ(x) =
N∑

k=−N
cke

jkx (4.19)

where j is the imaginary unit, i.e., j2 = −1 and ck is the Fourier coefficient for the kth

order component.

Inserting (4.19) and (4.18) into (4.17) and solving for the coefficients {ck}Nk=−N which min-
imize the Hellinger metric, as shown in [11], we obtain:

ck =
1

2π

∫ π

−π

√
p(x)e−jkxdx (4.20)

It can be seen from (4.20) that the coefficients can be determined independently. Calcu-
lation of coefficients can be implemented in a very efficient way, e.g., using fast Fourier
transform (FFT).

Inserting (4.19) into (4.18), pFDA(x) can be expressed by:

pFDA(x) =

(
N∑

k1=−N
ck1e

jk1x

)(
N∑

k2=−N
ck2e

jk2x

)∗

=

(
N∑

k1=−N
ck1e

jk1x

)(
N∑

k2=−N
c∗k2e

−jk2x
)

=
N∑

k1=−N

N∑
k2=−N

ck1c
∗
k2
ej(k1−k2)x

=
2N∑

l=−2N

N∑
k2=−N

c̄l+k2c
∗
k2
ejlx (4.21)
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where c̄l+k2 is given by:

c̄l+k2 =

{
cl+k2 if−N ≤ l + k2 ≤ N
0 otherwise

(4.22)

Let us define:

γl =
N∑

k2=−N
c̄l+k2c

∗
k2

(4.23)

Then we can rewrite (4.21) as follows:

pFDA(x) =
2N∑

l=−2N

γle
jlx (4.24)

Until now, we have found a Fourier series approximation pFDA(x) for a given function p(x).
If we use Fourier series to approximate the functions and messages in (4.12) and (4.13),
we need to calculate the product of Fourier series approximations and the integration of
Fourier series approximation. In the following sections, we will discuss these operations
in detail.

4.2.1.2 Product of Fourier series

Let us assume we have two probability density function pa(x) and pb(x). The Fourier
series approximation of these two density functions are given by:

paFDA(x) =

Na
x∑

lax=−Na
x

γalaxe
jlaxx (4.25)

and

pbFDA(x) =

Nb
x∑

lbx=−Nb
x

γblbxe
jlbxx (4.26)

The product of these two density functions can be expressed as:

pcFDA(x) = paFDA(x)p
b
FDA(x)

=

Na
x∑

lax=−Na
x

γalaxe
jlaxx

Nb
x∑

lbx=−Nb
x

γblbxe
jlbxx

=

Na
x∑

lax=−Na
x

Nb
x∑

lbx=−Nb
x

γalaxγ
b
lbx
ej(l

a
x+l

b
x)x (4.27)

Let us define N c
x = Na

x +N b
x and rewrite (4.27) as follows:

pcFDA(x) =

Nc
x∑

lcx=−Nc
x

Nb
x∑

lbx=−Nb
x

γ̄alcx−lbxγ
b
lbx
ejl

c
xx (4.28)



68 4. Probabilistic Inference in Networked Systems

where:

γ̄alcx−lbx =

{
γalcx−lbx if−Na

x ≤ lcx − lbx ≤ Na
x

0 otherwise
(4.29)

Defining:

γclcx =

Nb
x∑

lbx=−Nb
x

γ̄alcx−lbxγ
b
lbx

(4.30)

we can express pcFDA(x) as:

pcFDA(x) =

Nc
x∑

lcx=−Nc
x

γclcxe
jlcxx (4.31)

After the multiplication, the new Fourier series approximation has an order of Nc
x = Na

x +
N b
x which indicates that the number of Fourier components grows very fast in the result

of the product. Measures have to be taken to avoid the explosion of Fourier series after
multiplications.

4.2.1.3 Integration of Fourier series

It can be observed from (4.13) that in the inference methods like junction tree or sum-
product algorithm, we need to calculate the integral that takes the following form:

pc(y) =

∫ π

−π
pb(x, y)pa(x)dx (4.32)

Let us approximate pa(x) by:

paFDA(x) =

Na
x∑

lax=−Na
x

γalaxe
jlaxx (4.33)

and pb(x, y) by:

pbFDA(x, y) =

Nb
x∑

lbx=−Nb
x

Ny∑
ly=−Ny

γblbx,lye
j(lbxx+lyy) (4.34)

Then the integration is calculated by:

pcFDA(y) =

∫ π

−π

Nb
x∑

lbx=−Nb
x

Ny∑
ly=−Ny

γblbx,lye
j(lbxx+lyy)

Na
x∑

lax=−Na
x

γalaxe
jlaxxdx

=

Ny∑
ly=−Ny

⎛
⎝∫ π

−π

Nb
x∑

lbx=−Nb
x

γblbx,lye
jlbxx

Na
x∑

lax=−Na
x

γalaxe
jlaxxdx

⎞
⎠ ejlyy (4.35)
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Let us define:

γcly =

∫ π

−π

Nb
x∑

ly=−Nb
x

γblbx,lye
jlbxx

Na
x∑

lax=−Na
x

γalaxe
jlaxxdx

=

Nb
x∑

lbx=−Nb
x

Na
x∑

lax=−Na
x

∫ π

−π
γblbx,lyγ

a
lax
ej(l

b
x+l

a
x)xdx (4.36)

Since
∫ π
−π e

jlxdx = 0 for l �= 0, (4.36) can be simplified to:

γcly =

Nc
x∑

lcx=−Nc
x

∫ π

−π
γblcx,lyγ

a
−lcxdx

= 2π

Nc
x∑

lcx=−Nc
x

γblcx,lyγ
a
−lcx (4.37)

where
N c
x = min(Na

x , N
b
x) (4.38)

Then, (4.35) can be rewritten as:

pcFDA(y) =

Ny∑
ly=−Ny

γclye
jlyy (4.39)

which gives the Fourier series expression for pcFDA(y).

4.2.1.4 Components reduction

For many density mixture approximation approaches like Fourier series, Gaussian mix-
ture, Dirac mixture or Monte Carlo methods, the number of coefficients increases expo-
nentially after the product operation. Keeping all coefficients is practically impossible.
Determining how many coefficients and which ones are needed is challenging. [37] pro-
vides a progressive way to calculate the parameters of mixture densities optimally. But
the computational requirement is relatively high.

Components reduction for a Fourier series approximation is done as follows. Let us as-
sume a Fourier density:

pFDA(x) =
2N∑

l=−2N

γle
jlx (4.40)

Suppose we want to reduce the number of components in the Fourier series approxima-
tion. We can do this by eliminating the components with smallest coefficients. However,
the resulting density function may have negative values. As discussed before, we should
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operate on the square root of pFDA(x) to guarantee the non-negativity of the new density
function. Let us use ψ(x) to denote the square root of pFDA(x), which can be expressed as:

ψ(x) =
N∑

k=−N
cke

jkx (4.41)

The relationship between {ck}Nk=−N and {γl}2Nl=−2N is presented in (4.23). Having the values
of {γl}2Nl=−2N , we can use (4.23) (for all l = −2N, . . . 2N) to solve for {ck}Nk=−N . Now let us
eliminate components with small coefficients in the Fourier series of ψ(x) and express the
obtained function by:

ψ′(x) =
∑
k∈S

cke
jkx (4.42)

where S ⊂ {−N, . . .N} stores the indices of the components that are kept. Taking the
square of ψ′(x), we obtain a density function with reduced components:

p′FDA(x) = |ψ′(x)|2 =
∑
l∈U

γ′le
jlx (4.43)

where U = {k1 − k2|k1 ∈ S, k2 ∈ S} and γ ′l is given by:

γ′l =
∑
k∈S

c̄l+kc
∗
k (4.44)

where c̄l+k is given by:

c̄l+k =

{
cl+k if l + k ∈ S
0 otherwise

(4.45)

Since S is a subset of {−n, . . . n}, the size of U is smaller than the number of Fourier com-
ponents in the original density function, i.e., pFDA(x). For density functions with specific
structure, the final number of Fourier components that are used for density approxima-
tion can be greatly reduced.

4.2.1.5 Fourier domain belief propagation

Previous sections discussed basic operations on Fourier densities that are needed for the
computations in belief propagation. Based on those results, we can develop a Fourier
domain belief propagation algorithm as a result of this thesis where all complicated func-
tions and messages are represented by their Fourier series approximation. Let us use the
subgraph in Figure 4.15 as an example to illustrate the algorithm. In this example, variable
node x0 is connected toNu function nodes, i.e., f0, . . . fNu−1. Function node f0 is connected
to Nv variable nodes, i.e., x0, . . . xNv−1.

We first look at the message calculation at variable node x0. Suppose it received mes-
sages {mfi→x0(x0)}Nu−1

i=1 from all its neighbors except for f0. Each message mfi→x0(x0) is
represented by an Mi components Fourier series, which can be expressed as:

mfi→x0(x0) =
∑
li∈Ui

γlie
jlix0 (4.46)
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Fig. 4.15. A FDBP example

where Ui contains the orders of the Mi valid Fourier components and γli is the Fourier
coefficient.

According to (4.12), message mx0→f0(x0) is calculated by:

mx0→f0(x0) =
Nu−1∏
i=1

mfi→x0(x0) (4.47)

Algorithm 1 uses pseudo code to present the computation in (4.47).

Algorithm 1 FDBP: message propagation at variable node

Require: input message {mfi→x0(x0) =
∑

li∈Ui
γlie

jlix0}Nu−1
i=1

Ensure: output message mx0→f0(x0) from x0 to f0
1: initialize g(0)(x0) =

∑
l
(0)
0 ∈U (0)

0
γ
l
(0)
0
ejl

(0)
0 x0 where U (0)

0 = {0} and γ(0)l0
= 1.

2: for i = 1 to Nu − 1 do
3: update g(i)(x0) = g(i−1)(x0)mfi→x0(x0) which can be calculated by using the results

in Section 4.2.1.2.
4: reduce the number of components in g(i)(x0) using the method introduced in Sec-

tion 4.2.1.4
5: end for
6: assign mx0→f0(x0)← g(Nu−1)(x0)

Now let us take a look at the message calculation at a function node f0. Suppose it re-
ceived messages {mxi→f0(xi)}Nv−1

i=1 from all its neighbors except for x0. Each message is
given by:

mxi→f0(xi) =
∑
li∈Vi

γlie
jlixi (4.48)

According to (4.13), message mf0→x0 is calculated by:

mf0→x0(x0) =

∫
x1,...xNv−1

f0(x0, x1, . . . xNv−1)
Nv−1∏
i=1

mxj→f0(xi) (4.49)

Pseudo code in Algorithm 2 presents the computation in (4.49).
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Algorithm 2 FDBP: message propagation at function node

Require: input message {mxi→f0(xi) =
∑

li∈Vi γlie
jlixi}Nv−1

i=1 and local factor
f0(x0, x1, . . . xNv−1)

Ensure: output message mf0→x0(x0) from f0 to x0
1: initialize g(Nv−1)(x0, x1, . . . xNv−1) = f0(x0, x1, . . . xNv−1).
2: for i = Nv − 1 to 1 do
3: compute g(i−1)(x0, . . . xi−1) =

∫
xi
g(i)(x0, . . . xi)mxi→f0(xi) which can be calculated by

using the results in Section 4.2.1.3.
4: reduce the number of components in g(i−1)(x0, . . . xi−1) using the method intro-

duced in Section 4.2.1.4
5: end for
6: assign mf0→x0(x0)← g(0)(x0)

4.2.2 Non-parametric belief propagation

Monte Carlo sampling methods provide an alternative of approximate inference. Sam-
pling methods are widely used for characterizing complex probability distributions. Lots
of Monte Carlo sampling techniques, like importance sampling, Gibbs sampling, Markov
chain Monte Carlo methods [66] are successfully used in statistics. The general idea is
to draw samples, i.e., to generate realizations from given distributions. By carefully de-
signing the sampling methods, the finite number of samples can represent the underlying
distribution very well. Using sampling methods in belief propagation is a promising ap-
proach as samples could be packaged in the messages to deliver the information about the
complex distributions or local functions where parameterization is not possible, which
gives the name non-parametric belief propagation.

Using sampling in inference is not a new idea. Particle filters [60] are already widely
used in signal processing where particles (samples with corresponding weights) propa-
gate along the Markov chain which approximate the filtering distribution. The particle
filter applies to arbitrary distributions but in Markov chains only. Standard belief propa-
gation applies to general graphs, but the potential functions are either discrete or Gaus-
sian. Non-parametric belief propagation or NBP [102] can be regarded as a combination
of these two so that sampling method is applied to a general graph.

In non-parametric belief propagation, continuous functions are represented by random
samples {μ(1), . . . μ(M)} with associated weights {ω(1), . . . ω(M)}. The original function can
be reconstructed by using a Gaussian mixture model:

pGM(x) =
M∑
i=1

ω(i)N (x;μ(i),Λ(i)) (4.50)

where the function N (x;μ,Λ) denotes a Gaussian distribution of variable x with mean μ
and variance Λ. In (4.50), the weights are normalized so that

∑M
i=1 ω

(i) = 1. It can be seen
that the Gaussian components are centered at the values of the random samples. Λ(i) is the
width which controls smoothness of the reconstructed distribution function. Discussion
of Gaussian mixture representation of data set or distribution function can be found in
[100, 7].
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Using Gaussian mixture models, a message in belief propagation can be defined by a
parameter vector θ = {ω(i), μ(i),Λ(i)}Mi=1, i.e., each message can be expressed by:

m(x; θ) =
M∑
i=1

ω(i)N (x;μ(i),Λ(i)) (4.51)

Message updating is based on (4.12) and (4.13). However, new messages are generated
from stochastic process, i.e., sampling method. With different graph topologies, message
computations are different. Figure 4.16 shows two typical sub-graph structures: line struc-
ture and star structure. The following sections discuss message update for each case.

(a) Line topology

(b) Star topology

Fig. 4.16. An NBP example

4.2.2.1 Message update for line structure

From (4.12), message updating at each variable node within a line structure (e.g., x0 in
Figure 4.16(a)) is simply copying the incoming message. For example, the message from
node x0 to node f0, given the message mf1→x0 , is calculated by:

mx0→f0(x0) = mf1→x0(x0) (4.52)

At function node f0, having received message mx0→f0(x0), the message from f0 to x1 is
generated as described in Algorithm 3.

Sometimes, new message contains some samples with dominant weights whereas other
samples have negligible weights. In this case, resampling techniques [17] are used to
make all samples have comparable weights.

A Markov chain is composed of many line structures. The message update method pre-
sented above can be repeated to approximate the distribution of the hidden state variables
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Algorithm 3 Message propagation at function node

Require: input message mx0→f0(x0; θx0,f0) where θx0,f0 = {ω
(i)
x0,f0

, μ
(i)
x0,f0

,Λ
(i)
x0,f0
}Mi=1 and local

potential function f0(x0, x1)
Ensure: output message mf0→x1(x1; θf0,x1) from f0 to x1

1: for i = 1 to M do
2: draw a sample x(i)0 from N (x0;μ

(i)
x0,f0

,Λ
(i)
x0,f0

)

3: draw a sample x(i)1 from f0(x
(i)
0 , x1), i.e.: x(i)1 ∼ f0(x

(i)
0 , x1)

4: assign a weight ω̂(i)
1 to sample x(i)1 , where the weight is calculated by: ω̂(i)

1 = ω
(i)
x0,f0
·

N (x
(i)
0 ;μ

(i)
x0,f0

,Λ
(i)
x0,f0

) · f0(x(i)0 , x
(i)
1 )

5: end for
6: construct the message mf0→x1(x1; θf0,x1) where the parameter vector θf0,x1 =

{ω(i)
f0,x1

, μ
(i)
f0,x1

,Λ
(i)
f0,x1
}Mi=1

7: for i = 1 to M do
8: normalize weights: ω(i)

1 =
ω̂
(i)
1

∑M
i=1 ω̂

(i)
1

9: assign μ(i)
f0,x1
← x

(i)
1

10: assign ω(i)
f0,x1
← ω

(i)
1

11: choose Λ
(i)
f0,x1

with any appropriate kernel bandwidth selection method [100]
12: end for

in a Markov chain. Such a method is known as particle filter. Many successful applications
of particle filter can be found in the field of positioning [36], tracking [4], computer vision
[71] and so on.

4.2.2.2 Message update for star structure

Message update in a star structure is more complicated because the central node has to
combine messages from several neighboring nodes. Since each message is represented by
a sum several values with corresponding weights, the product of the messages involves
elementwise multiplications. The number of necessary multiplications and the size of the
resulting message can be very large.

The following example can illustrate this. Assume in Figure 4.16(b), node x0 received
messages from nodes f1, . . . fNu−1 and each message mfj→x0(x0; θfj ,x0) is composed of M
random samples, i.e., θfj ,x0 = {ω

(i)
fj ,x0

, μ
(i)
fj ,x0

,Λ
(i)
fj ,x0
}Mi=1. Each message mfj→x0(x0; θfj ,x0) can

be expressed as follows:

mfj→x0(x0; θfj ,x0) =
M∑
i=1

ω
(i)
fj ,x0
· N (x0;μ

(i)
fj ,x0

,Λ
(i)
fj ,x0

) (4.53)
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According to (4.12), the message that node x0 sends to f0 is produced from:

mx0→f0(x0; θx0,f0) =
Nu−1∏
j=1

mfj→x0(x0; θfj ,x0)

=
Nu−1∏
j=1

(
M∑
i=1

ω
(i)
fj ,x0
· N (x0;μ

(i)
fj ,x0

,Λ
(i)
fj ,x0

)

)
(4.54)

Equation (4.54) produces MNu−1 components, where each component is the product of
Nu − 1 Gaussian functions. The calculation of each component is associated with Nu − 1
labels {ιj}Nu−1

j=1 where each label ιj ∈ {1, . . .M} identifies a Gaussian component in the jth

message. The product ofNu−1 Gaussian distributions {N (x;μ
ιj
j ,Λ

ιj
j )}Nu−1

j=1 with associated
weights {ωιjj }Nu−1

j=1 is still Gaussian, with mean and variance given by:

Nu−1∏
j=1

N (x;μ
ιj
j ,Λ

ιj
j ) ∝ N (x; μ̄, Λ̄)

Λ̄−1 =
Nu−1∑
j=1

(Λ
ιj
j )

−1

Λ̄−1μ̄ =
Nu−1∑
j=1

(Λ
ιj
j )

−1μ
ιj
j (4.55)

and the corresponding weight given by:

ω̄ ∝
∏Nu−1

j=1 ω
ιj
j N (x;μ

ιj
j ,Λ

ιj
j )

N (x; μ̄, Λ̄)
(4.56)

The total calculation in (4.54) requires O(MNu−1) operations and generates a Gaussian
mixture with MNu−1 components. An appropriate approximation method should be
found to simplify the message calculation as well as control the size of the resulting mes-
sage.

The non-parametric belief propagation method introduced in [102] uses Gibbs sampler
[30] to draw M samples from theMNu−1 component product of (4.54). In (4.54), direct cal-
culation of the Gaussian products for all possible combination of labels {ιj}Nu−1

j=1 is very
complicated for large number M and Nu − 1. However, the conditional distribution of
any single label ιj is simple. Using Gibbs sampler, the sampling of a multivariate distri-
bution is obtained by iteratively sampling individual variables while fixing the values of
the others. At each iteration, the label of {ιk}Nu−1

k=1 (k �=j) are fixed and the label ιj is sam-
pled from its conditional distribution. At the next iteration, this label ιj will be fixed and
another input message will be picked and its label will be sampled and so on until all in-
coming Gaussian mixtures are sampled once. This whole procedure will be repeated for
κ times to improve the sampling accuracy. The final result provides a Gaussian product
identified by the final labels. A sample will then be drawn from this Gaussian product.
To draw M samples like that, it takes O{(Nu − 1)κM2} operations.
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Algorithm 4 Gibbs sampling for product of Gaussian mixtures
Require: input Nu − 1 Gaussian mixtures of M components, denoted by
{ω(i)

j , μ
(i)
j ,Λ

(i)
j }Mi=1, j ∈ {1, . . .N}

Ensure: output M samples {x(l)}Ml=1 and associated weights {ω(l)}Ml=1 that represent the
product of the input Gaussian mixtures

1: for l = 1 to M do
2: for j = 1 to Nu − 1 do
3: choose an initial label ιj ∈ {1, . . .M}
4: end for
5: for t = 1 to κ do
6: for j = 1 to Nu − 1 do
7: calculate mean μ∗ and variance Λ∗ for N (x;μ∗,Λ∗) ∝

∏
n �=jN (x;μιnn ,Λ

ιn
n )

8: for i = 1 to M do
9: calculate mean μ̃ and variance Λ̃ for N (x; μ̃, Λ̃) ∝ N (x;μ∗,Λ∗) · N (x;μ

(i)
j ,Λ

(i)
j )

10: calculate weight ω̃(i) by ω̃(i) = ω
(i)
j

N (x∗;μ∗,Λ∗)·N (x∗;,μ(i)j ,Λ
(i)
j )

N (x∗;μ̃,Λ̃) where x∗ can be cho-
sen arbitarily

11: end for
12: sample a new label ιj according to p(ιj = i) = ω̃(i)

13: end for
14: end for
15: calculate mean μ̂ and variance Λ̂ for N (x; μ̂, Λ̂) ∝

∏Nu−1
j=1 N (x;μ

ιj
j ,Λ

ιj
j )

16: draw a sample x(l) from N (x; μ̂, Λ̂) and calculate its weight by: ω̂(l) = N (x(l); μ̂, Λ̂)
17: end for
18: normalize weights by: ω(l) = ω̂(l)

∑M
l=1 ω̂

(l)

Detailed explanation of the sampling procedure for the Gaussian mixtures multiplication
was presented in [102]. Algorithm 4 uses pseudo code to illustrates this procedure.

Based on Algorithm 4, the message from x0 to f0 can be calculated. The calculation steps
are summarized in Algorithm 5.

From (4.13), given messages mxj→f0(xvj ; θxj ,f0) from nodes x1, . . . xNv−1 to node f0, mes-
sage from function node f0 to variable node x0 is produced from:

mf0→x0(x0; θf0,x0)) =

∫
x1,...xNv−1

f0(x0, x1, . . . xNv−1)
Nv−1∏
j=1

mxj→f0(xj ; θxj ,f0) (4.57)

where mxj→f0(xj ; θxj ,f0) is given by:

mxj→f0(xj; θxj ,f0) =
M∑
i=1

ω
(i)
xj ,f0
· N (xj;μ

(i)
xj ,f0

,Λ
(i)
xj ,f0

) (4.58)

It can be seen from (4.57) that in order to calculate a message from a function node to a
variable node, the product of incoming messages should be combined with local function
f0. Local function will influence the weights of the samples.
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Algorithm 5 NBP message update from variable node x0 to function node f0
Require: input messages mfj→x0(x0; θfj ,x0) with θfj ,x0 = {ω(i)

fj ,x0
, μ

(i)
fj ,x0

,Λ
(i)
fj ,x0
}Mi=1, j =

1, . . .Nu − 1 from Nu − 1 neighboring nodes
Ensure: output message mx0→f0(x0; θx0,f0) with θx0,f0 = {μ

(i)
x0,f0

,Λ
(i)
x0,f0

, ω
(i)
x0,f0
}Mi=1 from vari-

able node x0 to function node f0
1: generate M samples {x(l)0 }Ml=1 from g(x0) =

∏Nu−1
j=1 mfj→x0(x0; θfj ,x0) and calculate the

associated weights {ω(l)
0 }Ml=1 using Algorithm 4

2: construct the message mx0→f0(x0; θx0,f0) with θx0,f0 = {μ
(i)
x0,f0

,Λ
(i)
x0,f0

, ω
(i)
x0,f0
}Mi=1

3: for i = 1 to M do
4: assign μ(i)

x0,f0
← x

(i)
0

5: assign ω(i)
x0,f0
← ω

(i)
0

6: choose Λ
(i)
x0,f0

with any appropriate kernel bandwidth selection method [100]
7: end for

A simple case was considered in [102] where each function node is connected to at most
two variable nodes, as shown in Figure 4.17. In this case, only pairwise potential functions
are considered. In this case, there is alway a line structure at the function node. Message
update at a function node is given by Algorithm 3.

Fig. 4.17. Subgraph with simpler structure

4.3 State estimation for dynamical systems

Dynamical systems are mathematical representations of processes in which values of the
state variables change over time. In addition usually, different state variables are corre-
lated in space. Many practical problems can be modeled by a dynamical system, e.g.,
tracking, process monitoring etc. State estimation in simple dynamical systems can be
achieved by Kalman filter or particle filter. However, in some networked systems, pro-
cesses at different locations are coupled with each other, resulting in a very complicated
dynamical system. And the state estimation in this case is a non-trivial task. Probabilistic
models can be used to model the time dependence and the space correlation. This not
only provides a clear representation of the entire system, but also offers a framework for
efficient state estimation in dynamical systems. This section formulates a general proba-
bilistic model for typical dynamical systems and presents general inference methods for
the state estimation.
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4.3.1 Problem formulation

We describe the dynamics involved in a system by state processes and observation pro-
cesses that are discretized in time. The state of the system at time instance t is represented

by state vector x(t) which contains M state variables, i.e., x(t) =
[
x
(t)
1 , . . . x

(t)
M

]T
. The ini-

tial state is given by x(0) =
[
x
(0)
1 , . . . x

(0)
M

]T
. At each time instance, N measurements are

made. We use vector y(t) =
[
y
(t)
1 , . . . y

(t)
N

]T
to denote the observations. The first observa-

tion is made at time instance t = 1. And we use Y(1:T ) =
[
y(1), . . .y(T )

]
to denote all

the observations made until time instance T . The most interesting inference problem in
dynamical system is the optimal estimation of state variables x(t) based on the observa-
tions made till now, i.e., Y(1:T ), which can be posed as a maximum a posteriori problem,
i.e., max p(x(t) | Y(1:T )). If t = T , this is a filtering problem; if t < T , this is a smoothing
problem and if t > T , this is a prediction problem.

4.3.2 Graphical model for dynamical systems

A dynamic Bayesian network [31] (DBN) is a powerful tool for representing the proba-
bilistic model of dynamical systems. A dynamic Bayesian network represents the whole
system in interconnected time slices. Each time slice t represents the relationship between
hidden variables x(t) and observations y(t). Edges from the variable nodes in one time
slice to the variable nodes in another time slice reveal the time dependence of the sys-
tem. Typically, a dynamic Bayesian network represents a process that is stationary and
Markovian. In a stationary process, the relationships of the variables in time slice t and
the transition function between time slice t and slice t + 1 do not depend on the choice
of t. With Markovian property, the transition function depends only on the immediately-
preceding time slice, i.e., there is no edge between slice t to slice t + n for any t ≥ 1 and
n > 1. We further assume that observations at time slice t only depend on the state vari-
ables in the same time slice. As a consequence, edges between neighboring slices only
connect hidden state variables. Therefore, it is sufficient to represent the whole process
using a simplified representation which contains the subgraph from time slice t − 1 to t
and the initial time slice 0 only. Such a representation is called two-slice temporal Bayes
net (2TBN). Dynamic Bayesian network can be used as a general tool to describe a wide
range of dynamical systems. For specific problems, we can use other models to represent
the dynamics. For example for linear dynamical systems, we typically use state-space
models to describe the systems. Although the state-space model is the most well known
representation of the dynamical systems. It can represent only a subset of all possible
dynamical systems. The property and the limitation of the state-space model will be dis-
cussed later.

With the Markovian assumption, the entire dynamic Bayesian network represents the
following probability distribution:

p(X(1:T ),Y(1:T )) = p(x(0)) ·
T∏
t=1

p(x(t) | x(t−1)) ·
T∏
t=1

p(y(t) | x(t)) (4.59)
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The conditional probability function p(x(t) | x(t−1)) represents the state transition model.
Since it reveals the dependence between the variables in consecutive time slices, we call
it inter-slice dependence. In the graph, inter-slice dependence is represented by the edges
from slice t − 1 to t. The conditional probability function p(y(t) | x(t)) represents the ob-
servation model. Since it involves variables in the same time slice, it is called intra-slice
dependence. Intra-slice dependence is represented by each sub-graph G(t). A complete
dynamic Bayesian network presents the whole joint probability of (4.59) while a 2TBN
represents:

p(y(t),x(t),x(t−1)|Y(1:t−1)) = p(y(t)|x(t)) · p(x(t),x(t−1)|Y(1:t−1))

= p(y(t)|x(t)) · p(x(t)|x(t−1)) · p(x(t−1)|Y(1:t−1)) (4.60)

It can be seen from (4.60) that a 2TBN is composed of three major parts:

• observation model: p(y(t)|x(t))

• state transition model: p(x(t)|x(t−1))

• a conclusion of the history: p(x(t−1)|Y(1:t−1))

Usually, the observation and state transition models are factorizable, i.e.,:

p(x(t)|x(t−1)) =
M∏
i=1

p(x
(t)
i |xPA(x(t)i )

) (4.61)

and

p(y(t)|x(t)) =
N∏
j=1

p(y
(t)
j |xPA(y(t)j )

) (4.62)

where x
PA(x

(t)
i )
⊂ {x(t),x(t−1)} are parents of x(t)i and x

PA(y
(t)
j )
⊂ {x(t)} are parents of y(t)j .

So a 2TBN represents:

p(y(t),x(t),x(t−1)|Y(1:t−1))

=
M∏
i=1

p(x
(t)
i |xPA(x(t)i )

) ·
N∏
j=1

p(y
(t)
j |xPA(y(t)j )

) · p(x(t−1)|Y(1:t−1)) (4.63)

Figure 4.18 illustrates a complete dynamic Bayesian network and its 2TBN representation
where white circles represent the hidden state variables and the shaded circles represent
observations.

4.3.3 Inference in dynamical systems

A naive inference method in dynamical systems is to infer in a subgraph, i.e., keep ”rel-
evant” slices and turn the dynamic Bayesian network to a static Bayesian network, then
apply standard method, e.g., junction tree algorithm to infer the state variables of inter-
est. Such a method is simple to implement. However, it is always difficult to decide which
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(a) complete Bayesian network

(b) 2-slice temporal Bayes nets

Fig. 4.18. An example of 2TBN

slices are relevant to the slice of interest and by omitting some slices in the past, the his-
tory of the process is not completely kept. Usually, we want to do the filtering based on
the entire time history.

Exploiting the special structure of 2TBN, recursive methods were proposed where the
posterior probability density function p(x(t) | Y(1:t)), also called belief state, is estimated
based on the estimate of p(x(t−1) | Y(1:t−1)), the transition model p(x(t) | x(t−1)) and the ob-
servation model p(y(t)|x(t)). Authors of [27] formulated the recursive estimation in three
steps. Here we formulate the procedure in two steps for clarity.

• Prediction. In this step, we first combine the estimate from the previous time slice, i.e.,
p(x(t−1)|Y(1:t−1)) with the state transition model p(x(t)|x(t−1)):

p(x(t),x(t−1)|Y(1:t−1)) = p(x(t)|x(t−1)) · p(x(t−1)|Y(1:t−1)) (4.64)

Then we integrate out x(t−1) in the result in (4.64) to obtain the conditional probability
density function of x(t) given Y(1:t−1):

p(x(t)|Y(1:t−1)) =

∫
x(t−1)

p(x(t),x(t−1)|Y(1:t−1)) (4.65)

The result of (4.65) is the prediction of x(t) based on the time history.
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• Estimation. In this step, the predicted probability density function will be modified by
the observation in the current time slice:

p(x(t)|Y(1:t)) = p(x(t)|Y(1:t−1)) · p(y(t) | x(t)) (4.66)

so that the final estimation in the current time slice is obtained.

Depending on the property of the dynamical systems, the recursive inference method
can be implemented in different ways for specific models. The most famous implemen-
tation is the Kalman filter used for state estimation in linear-Gaussian state space model.
In a linear-Gaussian state space model, the relationships between variables are linear
and inter-slice and intra-slice dependences are given by Gaussian distribution functions.
Such a linear dynamical system can be represented by the state-space model, which is
described by a pair of linear equations, i.e.,:

• state transition equation:
x(t) = A(t)x(t−1) + ω(t) (4.67)

• observation equation:
y(t) = C(t)x(t) + υ(t) (4.68)

where A(t) ∈ R
M×M defines the state transition, C(t) ∈ R

N×M defines the observation
model. ω(t) ∈ R

M×1 is process noise which is assumed to be drawn from a zero mean mul-
tivariate Gaussian distribution with covariance Q(t). υ(t) ∈ R

N×1 is measurement noise
which is assumed to be drawn from a zero mean multivariate Gaussian distribution with
covariance R(t).

The state-space model takes a specific form. There is no intra-slice dependence between
hidden variables. Otherwise, it is not possible to use the two linear equations to fully
characterize the dependence between the variables. As a consequence, the state-space
model can be used to represent dynamical systems with specific structures while the dy-
namic Bayesian network provides a more general representation. For example, the dy-
namic Bayesian network shown in Figure 4.18 cannot be represented by a state-space
model since the hidden state variable x3 depends on x1 and x2 in the same time slice.

With a linear-Gaussian state space model, the inter-slice dependence is given by:

p(x(t)|x(t−1))

=
1

(2π)M/2|Q(t)|1/2 exp
[
−1
2

(
x(t) −A(t)x(t−1)

)T (
Q(t)

)−1 (
x(t) −A(t)x(t−1)

)]
(4.69)

and the intra-slice dependence is given by:

p(y(t)|x(t))

=
1

(2π)M/2|R(t)|1/2 exp
[
−1
2

(
y(t) −C(t)x(t)

)T (
R(t)

)−1 (
y(t) −C(t)x(t)

)]
(4.70)



82 4. Probabilistic Inference in Networked Systems

Assume the initial state is given by a Gaussian distribution with mean x̂(0,0) and covari-
ance P(0,0). Since all random variables in equation (4.67) and (4.68) are Gaussian and the
equations are linear, all the hidden state variables are Gaussian, i.e., p(x(t−1)|Y(1:t−1)) is
a Gaussian distribution. Let us use x̂(t−1,t−1) and P(t−1,t−1) to denote the mean and the
covariance matrix of p(x(t−1)|Y(1:t−1)). Then the result of (4.65) is also a Gaussian distri-
bution. Let us denote the mean of p(x(t)|Y(1:t−1)) with x̂(t,t−1) and covariance matrix with
P(t,t−1). Using the derivation in Appendix 4.A.1, we obtain:

x̂(t,t−1) = A(t) · x̂(t−1,t−1) (4.71)

and
P(t,t−1) = A(t) ·P(t−1,t−1)(A(t))T +Q(t) (4.72)

Based on (4.65), the result of (4.66) is also Gaussian. Let us use x̂(t,t) and P(t,t) to denote its
mean and covariance matrix. Then using the derivation in Appendix 4.A.2, we obtain:

P(t,t) = P(t,t−1) −P(t,t−1)(C(t))T
(
R(t) +C(t)P(t,t−1)(C(t))T

)−1
C(t)P(t,t−1) (4.73)

and
x̂(t,t) = P(t,t)

(
(P(t,t−1))−1x̂(t,t−1) + (C(t))T(R(t))−1y(t)

)
(4.74)

Standard Kalman filter posed state estimation as a minimum mean square error (MMSE)
problem. The derivation above gives a probabilistic interpretation of Kalman filter. Al-
though Kalman filter is the estimation method for a very specific kind of dynamical sys-
tem, it has a wide variety of applications [114].

Basic Kalman filter works under the linear assumption. For dynamical systems with non-
linear transition and/or observation functions, different versions of extension have been
made to deal with non-linearity. Extended Kalman filter (EKF) [88] linearizes the system be-
fore the state estimation using the first order Taylor expansion. It is simple to implement.
However, it may result in non-stable estimate [55]. A better solution is unscented Kalman
filter (UKF) [55] which approximates the probability density by nonlinear transformation
of a random variable. An alternative to EKF and UKF is the particle filter introduced in
the Section 4.2.2. Particle filter is a sample based method. With sufficient random samples,
particle filter approaches the Bayesian optimal estimate [18]. So particle filter can provide
more accurate estimate than either EKF or UKF.

For high-dimensional non-linear data with non-Gaussian distributions, joint calculation
in (4.64), (4.65) and (4.66) without exploiting the structure of the graph results in in-
tractable solution. It is usually impossible to find a closed form solution like in the Kalman
filter. In this case, the structure of 2TBN, especially the d-separation property should be
exploited to simplify the computation. 2TBN can be treated as a static Bayesian network
and the inference algorithms, e.g., junction tree algorithm, belief propagation, can be used
for querying the marginals of any hidden variable.

The most important issue of inference in 2TBN is the delivery of the past from one time
slice to its successor. It can be observed from (4.63) and (4.64) that the joint distribution, or
the belief state p(x(t−1)|Y(1:t−1)) has to be provided by the previous slice in order to enable
the current time slice to retrieve all the necessary information for the exact inference.
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Kevin Murphy’s interface algorithm [77] defines an interface I(t) that d-separates the past
from the future. The interface encapsulates all necessary information about the history. In
a DBN, the interface from time slice t− 1 to slice t contains hidden variables in time slice
t− 1 which have children in time slice t, i.e.,

{xI(t−1)} = {xPA(x(t)),xPA(y(t))} ∩ {x(t−1)} (4.75)

where I(t−1) denotes the indices of the variables in the interface from time slice t − 1 to
time slice t.

Let us use the 2TBN in Figure 4.18 as an example to illustrate the interface algorithm.
According to (4.75), {xI(t−1)} = {x(t−1)

1 , x
(t−1)
2 } is the interface at time slice t− 1, as shown

in Figure 4.19(a).

(a) interface in 2TBN (b) connecting variables in interfaces

(c) triangulation (d) junction tree

Fig. 4.19. Interface algorithm

Having identified hidden variables that influence the “future”, we modify the graph so
that variables in the interface are mutually connected and nodes that are not in the in-
terface in the first slice in the 2TBN are removed. The resulting graph is shown in Fig-
ure 4.19(b). Based on the new graph, we can construct a junction tree and use belief
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propagation to compute the marginals of the hidden variables. We first triangulate Fig-
ure 4.19(b) which leads to a graph in Figure 4.19(c). Then we construct the junction tree
which is shown in Figure 4.19(d). As explained in the previous chapter, the junction tree
algorithm implements variable elimination which exploits the independence property of
a distribution. As a consequence, junction tree algorithm reduces the complexity of the
inference in dynamic Bayesian network. The interface algorithm guarantees the exact-
ness of the result by introducing new constraints into the original graph. It requires that
variables in the interface are mutually connected, which complicates the graphical model.

In practice, many constraints forbid a centralized implementation of the Kalman filter or
the interface algorithm due to the constraints on communications, computational com-
plexity or allowable latencies. For example, self contained power supply limits the power
consumption of transmitting all necessary information to an inference center; time crit-
ical applications cannot tolerate the delays incurred by transmitting information to the
inference center and waiting for the results. Distributed inference exploits the decom-
posability of the problem and process the information as locally as possible. However,
according to the interface algorithm, state variables in the interface have to be mutually
connected in the inference to produce exact results, which indicate that the belief state,
i.e., p(x(t) | Y(1:t)) should not be factorized. Such a property make it impossible to have a
distributed implementation of the inference.

Boyen and Koller proposed an approximate algorithm in [10] that assumes additional
independence among variables in the same time slice so that the distribution can be fac-
torized, i.e.,:

p(x(t−1)|Y(1:t−1)) =
L∏
i=1

p(xK(t−1)
i
|Y(1:t−1)) (4.76)

where xK(t−1)
i
⊂ x(t−1) is called BK cluster. Obviously, factorization in (4.76) can further

simplify the inference since now we can construct a junction tree with smaller clusters. On
the other hand, it allows distributed implementation of the inference. Figure 4.20 shows a
junction tree that is constructed based on the assumption that the belief state is factorized
as:

p(x
(t−1)
1 , x

(t−1)
2 |Y(1:t−1)) = p(x

(t−1)
1 |Y(1:t−1))p(x

(t−1)
2 |Y(1:t−1)) (4.77)

With the introduction of extra independence, the results are not exact. However, it is
proved that the error made by the approximation, measured by Kullback-Leibler distance
from the true distribution, remains bounded indefinitely [10]. In practice, the factorization
of the belief state is based on the topology of the network. We can use the procedure of
distributed inference introduced in Section 4.1.3 to construct such a factorization.

The central idea of Boyen-Koller’s approximation is to use a factorizable distribution to
approximate a non-factorizable distribution, as shown in (4.76). Variational methods in-
troduced in Chapter 3 search for the optimal factorization in the sense that the Kullback-
Leibler distance between the exact belief state and the approximate belief state is min-
imized. Using variational method in Boyen-Koller’s approximation, the inference algo-
rithm should converge faster. However, implementing variational method is not trivial
since iterative optimization is involved. Usually we construct the approximate belief state
in a simpler way. For example, given a belief state p(x(t) | Y(1:t)), we may approximate
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(a) triangulation (b) junction tree

Fig. 4.20. Boyen and Koller algorithm

it by the product of its marginal probability distributions. We should not forget that the
graphical model of dynamical systems also provide a tool for selecting the approximate
belief state. In Chapter 6, we will modify the structure of the graphs to discover feasi-
ble inference algorithms for the state estimation. Other examples of using Boyen-Koller’s
approximation for distributed inference can be found in [27, 28, 76].

4.4 Remark and discussions

In this chapter, we presented the probabilistic inference techniques that are most relevant
to the estimation problems encountered in networked systems. Three most important
issues are discussed: distributed inference, approximations and probabilistic models for
dynamical systems. All these techniques aim at reducing the communication cost and the
computational complexity required by the probabilistic inference to make it operationally
feasible.

Distributed inference makes computations as local as possible. Each network element
does some processing before it sends the data to the network. Only the most necessary
information should to be exchanged between elements. In this way, the communication
cost is reduced to the lowest level. However, distributed inference is not trivial. The un-
derlying communication network puts extra constraint on the inference. When designing
the inference algorithm, we should take into consideration these constraints. We used a
simple example to show how the communications influence the inference and how differ-
ent designs of inference result in different resource requirements. Distributed inference is
important for networked systems with power constraints, e.g., wireless sensor network.
In the next chapter, we will see a practical example.

Approximations are needed because exact inference could be too expensive. In this chap-
ter, we have focused on function and message approximation. We have shown that by
carefully choosing the proper representations, very complicated functions can be well
approximated by functions with simple structure. Using approximations, both the com-
putational complexity and the transmission cost can be reduced. We have presented two
function approximation methods which simplify belief propagation. Fourier domain be-
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lief propagation represents a function by its truncated Fourier series expansion. Similar
representation can be established by using other basis functions, e.g., wavelets, Gaussian.
Non-parametric belief propagation uses random samples to represent functions. It is a
Monte Carlo approach. Like the loopy belief propagation introduced in the last chapter,
it is very difficult to derive analytically the total error introduced by these approximation
methods. However, we can use numerical simulations to examine their performance.

State estimation in simple dynamical system can be achieved by Kalman filter or its ex-
tensions. However, in networked systems, hidden state variables are typically correlated
in space, which results in a very complicated dynamical system. We can use dynamic
Bayesian networks to represent the relationships between the variables. Based on such
a graphical model, we can develop different inference algorithms, exact or approximate,
for the state estimation. A practical application will be shown in Chapter 6.

4.A Property of Gaussian density functions

Although the property of Gaussian density functions (e.g., the product of is still Gaussian
and the integration of multivariate Gaussian density function with respect to a subset
of its arguments result in another Gaussian function) is well known in the literature, we
did not find a good reference that explicitly derives the resulting mean and covariance.
Therefore, we make the derivation in this section.

4.A.1 Derivation of Gaussian integral

Suppose we want to calculate:

p(y) =

∫
x

p(y|x)p(x) (4.78)

where x ∈ R
N , y ∈ R

M , x ∼ N (μx,Λx) and y|x ∼ N
(
Ax,Λy|x

)
(i.e., y = Ax + ν

and ν ∼ N (0,Λy|x)). We already know that the result of the product of two Gaussian
probability density functions results in new Gaussian pdf. The mean can be calculatd by:

μy = E {y} = E {E {y|x}} = E {Ax} = Aμx (4.79)

and the covariance can be calculated by:

Λy = E
{
(y− μy)(y − μy)

T
}

= E {yyT} − μyμy
T

= E {E {yyT|x}} − μyμy
T

= E
{
Λy|x + μy|xμy|x

T
}
− μyμy

T

= Λy|x + E {AxxTAT} −Aμxμx
TAT

= Λy|x +A (E {xxT} − μxμx
T)AT

= Λy|x +AΛxA
T (4.80)
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4.A.2 Derivation of Gaussian product

Suppose we want to calculate:

p2(x) = p (y|x) p1 (x) (4.81)

where x ∈ R
N , y ∈ R

M , the likelihood function p (y|x) = 1

(2π)M/2|Λy|x|1/2
e
− 1

2
(y−Cx)TΛ−1

y|x(y−Cx)

and the pdf p1 (x) = N (μx,Λx). The product is calculated as follows:

p2 (x) = p (y|x) p1 (x)

=
1

(2π)M/2 |Λy|x|1/2
exp

(
−1
2
(y −Cx)TΛ−1

y|x (y−Cx)

)

· 1

(2π)N/2 |Λx|1/2
exp

(
−1
2
(x− μx)

TΛ−1
x (x− μx)

)

∝ exp

(
−1
2

{ (
xTCTΛ−1

y|xCx− xTCTΛ−1
y|xy − yTΛ−1

y|xCx+ yTΛ−1
y|xy

)
+ (xTΛ−1

x x− xTΛ−1
x μx − μx

TΛ−1
x x+ μx

TΛ−1
x μx)

})

= exp

⎛
⎝−1

2

⎧⎨
⎩

xT
(
CTΛ−1

y|xC+Λ−1
x

)
x− xT

(
CTΛ−1

y|xy +Λ−1
x μx

)
−

(
yTΛ−1

y|xC+ μx
TΛ−1

x

)
x+ yTΛ−1

y|xy + μx
TΛ−1

x μx

⎫⎬
⎭
⎞
⎠ (4.82)

Let us denote
(
CTΛ−1

y|xC+Λ−1
x

)−1

with D and
(
CTΛ−1

y|xy +Λ−1
x μx

)
with z. Then we con-

tinue with (4.82):

p2 (x) ∝ exp

(
−1
2

{
xTD−1x− xTz− zTx+ yTΛ−1

y|xy + μx
TΛ−1

x μx

})

= exp

(
−1
2

{
xTD−1x− xTD−1Dz− zTDD−1x

+ (zTDD−1Dz− zTDD−1Dz) + yTΛ−1
y|xy + μx

TΛ−1
x μx

})

= exp

(
−1
2

{
xTD−1 (x−Dz)− zTDD−1 (x−Dz)− zTDD−1Dz

+yTΛ−1
y|xy + μx

TΛ−1
x μx

})

= exp

(
−1
2

{
(xT − zTD)D−1 (x−Dz)− zTDz+ yTΛ−1

y|xy + μx
TΛ−1

x μx

})

∝ exp

(
−1
2

{
(x−Dz)TD−1 (x−Dz)

})
(4.83)

So the resulting p2(x) has a Gaussian distribution. Its mean is:

x̄ = Ep2(x){x} = Dz = D
(
CTΛ−1

y|xy +Λ−1
x μx

)
(4.84)

Its covariance matrix is:

cov(x,x) = Ep2(x){(x− x̄)(x− x̄)T} = D =
(
CTΛ−1

y|xC+Λ−1
x

)−1

(4.85)

Using the matrix inversion lemma, the covariance matrix can also be written as:

cov(x,x) = Λx −ΛxC
T
(
Λy|x +CΛxC

T
)−1

CΛx (4.86)
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5. Belief Propagation For Sensor Localization

Advances in sensing technology and telecommunications make wireless sensor networks
an appropriate solution for a wide variety of applications. In a wireless sensor network,
sensor nodes are spatially distributed to monitor the physical or environmental param-
eters, e.g., temperature, humidity, pressure, sound, visible and infrared light, magnetic
fields, acceleration and so on. Each sensor is also equipped with a computing unit so that
initial data processing can be carried out locally within the sensor node. In order to re-
duce the cost, the capacity of the processor and memory in a sensor node is limited. The
processed information can be exchanged through the wireless channel so that the whole
network works in a cooperative fashion. To save transmission power, each node only
communicates with the nodes in its neighborhood. In order to increase the flexibility of
the whole system, each sensor is equipped with a self-contained power supply, typically
a battery. For the reason of low infrastructure and maintenance cost, these power sup-
plies are usually neither replaced nor recharged. Therefore the life of the power supply
determines the life of the sensor node.

In the scenario of pervasive sensing, a large number of sensor nodes are scattered in a
region which report everything they measured. Based on the noisy measurements and
the underlying physical model, we can learn the distribution over time and space of the
parameters of interest. Simple tasks require only basic operations, e.g., mean and sum.
Sophisticated tasks require the computation of posterior probabilities or likelihood func-
tions. In this case, probabilistic inference algorithms are needed. For a system with such
a large scale and due to the constraint of the power supply and the computing ability, we
have to be very careful about the complexity of the probabilistic inference algorithms to
make them operationally feasible.

Inference can be implemented in a centralized way in which all the local measurements
are transmitted to a fusion center and a big inference engine is established there to com-
pute the quantities of interest. However, such a scheme requires the transmission of a
large amount of raw data. The main bottleneck in a wireless sensor network is the power
supply as each sensor is equipped with a non-replaceable and non-rechargeable battery.
It has been observed in empirical applications that communication typically consumes
many times the amount of energy required for computation or sensing. Therefore, send-
ing raw data without any processing should be avoided to reduce the unnecessary power
consumption.

89



90 5. Belief Propagation For Sensor Localization

The distributed inference method introduced in Section 4.1 processes measurements lo-
cally. Only brief summaries, i.e., functions of the measurement data, usually represented
by probability functions, have to be exchanged between sensor nodes. In such a way, the
power consumed by the transmission can be greatly reduced. However, for complicated
probability distributions, the computations required by the distributed inference are still
complicated. It is usually impossible to implement them in sensor nodes with limited
computing resources. To solve this problem, we use approximation methods introduced
in Section 4.2, which not only simplify the inference, but also further reduce the amount
of transmitted data.

Having introduced distributed and approximate inference algorithms in Chapter 4, we
use them to solve the self organized sensor localization problem in this chapter. In par-
ticular, we propose message passing based inference methods as suitable solutions to
this problem and use Fourier density approximation and non-parametric belief propa-
gation to simplify the computation and reduce the transmission power. Non-parametric
belief propagation for self-organized sensor localization was discussed in detail in [49].
In this chapter, we present our implementation of this inference algorithm. We also want
to compare the performance of these two function approximation methods, one based on
function analysis and the other one based on Monte Carlo sampling.

The rest of the chapter is organized as follows. Section 5.1 briefly introduced the back-
ground of sensor localization. The system model is presented in Section 5.2. The proba-
bilistic model is developed in Section 5.3 and belief propagation for distributed inference
is formulated in Section 5.4. Two approximate inference algorithms, i.e., Fourier domain
belief propagation and non-parametric belief propagation are applied to this problem in
Section 5.5 and Section 5.6. Simulation results are provided in Section 5.7 to illustrate the
performance of the localization algorithms. Finally, Section 5.8 concludes this chapter.

5.1 Background

Sensor localization is an important task in pervasive sensing in which sensor nodes are
typically arbitrarily scattered in a region. At initialization, sensors have to calibrate their
relative and absolute positions in order to carry out subsequent tasks. Sensor positioning
can be achieved by using the GPS service. However, due to the high cost, it is not possible
to equip every sensor with a GPS receiver. Therefore, a self-organized sensor positioning
scheme is desirable. Relative positions can be estimated from associated measurements,
e.g., strength of received signal power, transmission delay and so on. A subset of the
sensor nodes can be equipped with GPS receivers to obtain absolute positions. Then all
the information, i.e., associated measurements and the information provided by GPS will
be combined to enable all sensor nodes to estimate their absolute positions. Usually, it
would be beneficial to compute not only the estimate of the sensor position, but also
the uncertainty of the estimation. Such information could be very useful for subsequent
tasks. In that case, sensor localization becomes a probabilistic inference problem in which
we want to obtain the posterior probability distribution of the sensor locations given the
measurements. An efficient algorithm is preferable to fulfill the computational and power
constraint of a wireless sensor network.
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5.2 System model

In this chapter, we present sensor localization based on noisy distance measurements.

Let us assume that we have a wireless sensor network with N sensors distributed in a
planar space. The two dimensional location of sensor i is denoted by xi. The measurement
taken at sensor i about its distance to sensor j takes the form:

dij = ‖xi − xj‖+ νij (5.1)

where dij denotes the distance measurement. The operator ‖ · ‖ calculates the Euclidean
norm. Additive random noise νij is drawn from a Gaussian distribution N (0, σ2).

Distance measurement dij is not always available since sensor i does not always detect its
neighbor j. We use a binary random variable oij to indicate whether a distance measure-
ment is available, i.e. oij = 1 when observation is made, and oij = 0 otherwise. A model
is suggested in [75] in which the availability of the distance measurement depends on the
distance of two sensor nodes. In particular, the probability that sensor i detects sensor j
is given by an exponential function of their distance:

p(oij = 1|xi,xj) = exp

(
−‖xi − xj‖2

2Rρ

)
(5.2)

whereR is a parameter that determines the detection range. Parameter ρ can take different
values according to the environment. Typical values are between 2 and 4.

Furthermore, each sensor has some prior knowledge about its position, which is given
by a prior distribution p(xi). The prior distribution is usually uninformative unless the
sensor has obtained its position information from other resources, e.g. GPS signal. In this
case, the prior distribution takes the form of a Dirac function.

5.3 Probabilistic model for sensor localization

Based on the system model described in the previous section, the joint probability distri-
bution of the whole system is given by:

p({xi}, {dij}, {oij}) =

⎛
⎝ ∏

{i,j}:i �=j
p(oij |xi,xj)

⎞
⎠

⎛
⎝ ∏

{i,j}:i �=j,oij=1

pvij (dij|xi,xj)

⎞
⎠(∏

i

p(xi)

)

(5.3)

The goal of sensor localization is to estimate the positions of sensors, which can be for-
mulated as a maximum a posteriori (MAP) problem. In that way, position estimation
becomes a problem of estimating the posterior probability distribution of each individual
sensor position given observations, i.e., calculating p(xi|{dij}, {oij}). As discussed at the
beginning of the chapter, the estimation should be implemented in a distributed manner
and the computation should be efficient for the sake of minimizing power consumption.
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A distributed inference procedure has been discussed in Section 4.1. According to that,
we need to identify for each sensor i a local function ϕi and obtain a factorization of the
joint probability distribution with the following structure:

p({xi}, {dij}, {oij}) =
∏
i

ϕi (5.4)

In order to achieve such a factorization, we need to assign each factor in (5.3) into one of
the local functions. At the end, each local function ϕi should take the following form:

ϕi(x1, . . .xN) = p(xi)
∏

{j}:j �=i
p(oij |xi,xj)

∏
{j}:j �=i,oij=1

pvij (dij|xi,xj) (5.5)

since oij , dij and p(xi) are only available at sensor node i without communications. Other
assignments require the measurements or the local prior to be exchanged between sensor
nodes.

To simplify the notation, we rewrite (5.5) in the following form:

ϕi(x1, . . .xN) = φi(xi)
∏

{j}:j �=i
φij(xi,xj) (5.6)

where
φi(xi) = p(xi) (5.7)

is called single-node potential function and

φij(xi,xi) =

{
p(oij|xi,xj)p(dij|xi,xj) if oij = 1
p(oij|xi,xj) if oij = 0

(5.8)

is called pairwise potential function.

From (5.1) and (5.2), the pairwise potential function is given by:

φij(xi,xj) =

⎧⎨
⎩

exp
(
−‖xi−xj‖2

2R2

)
1√
2πσ

exp
(
− (dij−‖xi−xj‖)2

2σ2

)
if oij = 1

1− exp
(
−‖xi−xj‖2

2R2

)
if oij = 0

(5.9)

Based on (5.5) we can construct a graphical model from the sensor network, in which
each sensor is a node and each detectable communication link is an edge that connects
two nodes. Each node i in the graph is associated with a local function ϕi(x1, . . .xN) that
is given by (5.5). Possibly, there will be a lot of loops in the graph since sensors located
inside a small region can probably communicate mutually with each other.

5.4 Belief propagation for sensor localization

Now, we use belief propagation as a distributed inference algorithm to solve the MAP
estimation problem in sensor localization. We will apply the loopy belief propagation
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method to deal with loops in the graph. As introduced in Section 3.3.1, in loopy be-
lief propagation initialize all messages by uniform distributions and then use the sum-
product algorithm to iteratively update the message until the termination criterion, either
convergence or reaching the defined maximum iteration number, has been fulfilled.

Let us use m(t)
ij to denote message from node i to node j at the tth iteration. According to

equation (3.7), message updating is given by:

m
(t)
ij (x1, . . .xN) = αϕi(x1, . . .xN)

∏
l∈NE(i),l �=j

m
(t−1)
li (x1, . . .xN) (5.10)

where α is a normalization factor and NE(i) denotes the neighbors of node i, i.e., sensors
that sensor i can detect.

It can be seen that each message in (5.10) is a function of N variables. It is impossible
to transmit such complex functions in an efficient way between nodes. Furthermore, the
multiplication of messages will be so complicated that it makes the inference intractable.
To reduce the complexity, we modify the definition of messages so that a message from
node i to node j is a function that only involves xj . In other words, message from node
i to node j only contains a summary of sensor i’s belief on the position of j, position in-
formations about other sensor nodes are summed out. Based on this simplification, (5.10)
will be revised to:

m
(t)
ij (xj) = α

∫
xi

φi(xi)φij(xi,xi)
∏

l∈NE(i),l �=j
m

(t−1)
li (xi)dxi (5.11)

The intuition of such a simplifications is that sensor node i sends to node j only the in-
formation that is directed connected to the estimation of sensor j’s position. The conver-
gence of the belief propagation using this form of messages was discussed in [49], which
shows that with this simple form, the belief propagation still converges after iterations
provided that each sensor can observe several other sensors in its neighborhood. There
exist other forms of simplification, e.g., messages that contains more hidden variables.
However, such methods involve more complicated message computations. Discussions
on other forms of simplification can be found in [49].

Using the proposed simplification, the posterior probability distribution of xi is calculated
according to (3.8) by:

p(xi|{dst}, {ost}) ∝
∏

l∈NE(i)

m
(t)
li (xi) (5.12)

where {dst} and {ost} contain the observations made in all sensor nodes.

Although the complexity of messages has been greatly simplified in (5.11), computation
in (5.11) and (5.12) is still complicated because the calculation involves very complex
functions defined in (5.9). Figure 5.1 illustrates the pairwise potential functions according
to (5.8) involved in the message computation. Figure 5.2 demonstrates the typical shapes
of the messages generated in belief propagation for sensor localization according to (5.11).
It can be seen that messages are complicated functions.

As discussed at the beginning of this chapter, the inference algorithm has to be efficient so
that it consumes little power. For that purpose, we need to find a suitable representation
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Fig. 5.1. Pairwise potential function

−4
−2

0
2

4

−4

−2

0

2

4

0

0.01

0.02

0.03

(a)

−4
−2

0
2

4

−4

−2

0

2

4

0

0.01

0.02

0.03

(b)

Fig. 5.2. Messages in BP in sensor localization

of functions and messages so that fewer bits have to be transmitted and the local compu-
tation can also be simplified. Two message representation methods have been introduced
in Section 4.2, i.e., non-parametric belief propagation and Fourier domain belief propaga-
tion. Now we apply these two methods to the MAP estimation of sensor positions.

5.5 Fourier domain belief propagation for sensor localization

Using Fourier series expansion and the coefficient reduction method introduced in Sec-
tion 4.2.1, the sizes of the messages are significantly reduced. This has brought two-fold
benefits. On one side, it reduces the transmission power. On the other hand, it reduces
the complexity of the computation in sum-product algorithm with a penalty of comput-
ing the Fourier transform.
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5.5.1 Discretization of the space domain

In order to use the efficient fast Fourier transform, we first discretize all the continuous
functions. For the convenience of fast Fourier transform, the approximation points are
chosen to be an equidistant two dimensional grid. According to the Sampling Theorem, if
the distance between neighboring samples is close enough, the original function can be
recovered from its discrete approximation.

So the single potential function φi(xi) is approximated by:

φ∗
i (xi) =

Ni∑
ni=1

φi(x
∗
ni
)δ(xi − x∗

ni
) (5.13)

where Ni is the number of discrete samples, {x∗
ni
}Ni
n1=1 are approximation points and

φi(x
∗
ni
) is the value of the function at an approximation point x∗

ni
. The unit impulse func-

tion is given by:

δ(x) =

{
1 if x = 0
0 if x �= 0

(5.14)

The pairwise potential function φij(xi,xj) is approximated by:

φ∗
ij(xi,xj) =

Ni∑
ni=1

Nj∑
nj=1

φij(x
∗
ni
,x∗

nj
)δ(xi − x∗

ni
)δ(xj − x∗

nj
) (5.15)

We initialize all messages by a discrete uniform distribution. So message m(0)
ij is given by:

m
(0)
ij (xj) =

Nj∑
nj=1

1

Nj
δ(xj − x∗

nj
) (5.16)

Sensor node i calculates its message m(t)
ij to node j based on the messages from its neigh-

bors except j using (5.11). Let us suppose that the message that node i received from its
neighbor l(l �= j) is given by the following discrete function:

m
(t−1)
li (xi) =

Ni∑
ni=1

ω
(t−1)
li,ni

δ(xi − x∗
ni
) (5.17)

Inserting (5.17), (5.15) and (5.13) into (5.11), we can calculate the message from i to j.
Since now all the inputs for the calculation are discretized, the integration of (5.11) will
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be replaced by summation. The calculation is shown as follows:

m
(t)
ij (xj) ∝

∑
xi

⎛
⎜⎝

∑Ni

ni=1 φi(x
∗
ni
)δ(xi − x∗

ni
)·∑Ni

ni=1

∑Nj

nj=1 φij(x
∗
ni
,x∗

nj
)δ(xi − x∗

ni
)δ(xj − x∗

nj
)·∏

l∈NE(i),l �=j
∑Ni

ni=1 ω
(t−1)
li,ni

δ(xi − x∗
ni
)

⎞
⎟⎠

=
∑
xi

( ∑Ni

ni=1

∑Nj

nj=1 φij(x
∗
ni
,x∗

nj
)δ(xi − x∗

ni
)δ(xj − x∗

nj
)·∑Ni

ni=1 φi(x
∗
ni
)
∏

l∈NE(i),l �=j ω
(t−1)
li,ni

δ(xi − x∗
ni
)

)

=
∑
xi

⎛
⎝ Ni∑
ni=1

Nj∑
nj=1

φij(x
∗
ni
,x∗

nj
)φi(x

∗
ni
)

∏
l∈NE(i),l �=j

ω
(t−1)
li,ni

δ(xi − x∗
ni
)δ(xj − x∗

nj
)

⎞
⎠

=

Nj∑
nj=1

⎛
⎝∑

xi

Ni∑
ni=1

φij(x
∗
ni
,x∗

nj
)φi(x

∗
ni
)

∏
l∈NE(i),l �=j

ω
(t−1)
li,ni

δ(xi − x∗
ni
)

⎞
⎠ δ(xj − x∗

nj
)

=

Nj∑
nj=1

⎛
⎝ Ni∑
ni=1

φij(x
∗
ni
,x∗

nj
)φi(x

∗
ni
)

∏
l∈NE(i),l �=j

ω
(t−1)
li,ni

⎞
⎠ δ(xj − x∗

nj
)

(5.18)

So the message m(t)
ij (xj) can be written in the following form:

m
(t)
ij (xj) =

Nj∑
nj=1

ω
(t)
ij,nj

δ(xj − x∗
nj
) (5.19)

where ω(t)
ij,nj

is given by:

ω
(t)
ij,nj

=

Ni∑
ni=1

φij(x
∗
ni
,x∗

nj
)φi(x

∗
ni
)

∏
l∈NE(i),l �=j

ω
(t−1)
li,ni

(5.20)

The new message m(t)
ij (xj) will be transmitted over the wireless channel. 2Nj values have

to be sent. They are the position of the samples, i.e., {x∗
nj
}Nnj=1 and the associated weights

{ω(t)
ij,nj
}Nnj=1. As discussed before, a suitable approximation requires dense sampling, i.e.,

nj is a big number. Transmission of such a large number of values consumes a lot of
power, which should be avoided in order to elongate the life of the sensor node.

We propose two algorithms. The simplified transmission based on Fourier series approxi-
mation (ST-FSA) algorithm uses Fourier series expansion only to reduce the transmission
power. It can be regarded as a data compression method. The simplified transmission and
computation based on Fourier domain belief propagation (SCT-FDBP) algorithm does all
the calculation in the frequency domain thus reducing both the transmission power and
the computational complexity.
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5.5.2 Simplified transmission based on Fourier series approximation

In the ST-FSA algorithm, all the message computation is carried out in the original space
domain, i.e., using (5.18). We observed in numerical simulations that in the Fourier series
expansion of messages, many components have considerably small zeroth order coeffi-
cients. Based on this observation, we can use a Fourier series expansion to compress the
message. Given a message m(t)

ij (xj) that is obtained from (5.18), we write its Fourier series
approximation m(t),F

ij (xj) as follows:

m
(t),F
ij (xj) =

Nj∑
nj=1

⎛
⎝ Nj∑
nl=1

γmij
(f∗nl

) exp(2jπx*nj

Tf∗nl
)

⎞
⎠ δ(xj − x∗

nj
) (5.21)

where the Fourier coefficients {γmij
(f∗nl

)}Nj

nl=1 can be computed efficiently using Nj points
fast Fourier transform on (5.19).

In the expression in (5.21), there are 2Nj parameters. We use the component reduction
method introduced in Section 4.2.1.4 to truncate the Fourier series. Suppose there are Rj
components left, then the new Fourier series approximation is given by:

m
(t),rF
ij (xj) =

Nj∑
nj=1

⎛
⎝ Rj∑
rj=1

γmij
(f

′
rj
) exp(2jπx*nj

Tf
′
rj
)

⎞
⎠ δ(xj − x∗

nj
) (5.22)

where m(t),rF
ij (xj) denotes the Fourier series approximation after component reduction,

{f ′
rj
}Rj

rj=1 ⊂ {f∗nj
}Nj

nj=1 are the remaining components and the associated coefficients

{γmij
(f

′
rj
)}Rj

rj=1 are obtained by using the formulas in Section 4.2.1.4. If Rj � Nj , trans-

mission of m(t),rF
ij (xj) consumes much less power than that of m(t)

ij (xj). Based on this idea,
we developed the ST-FSA algorithm, i.e., simplified transmission based on Fourier series
approximation. The algorithm is summarized in Table 5.1

Table 5.1. Description of ST-FSA Algorithm

ST-FSA

1) Discretize the local potential functions.
2) Initialize messages with uniform distributions.
3) Calculate the outgoing message using (5.18). Use FFT to transform the out-

going message into the frequency domain and use the coefficient reduction
method introduced in Section 4.2.1 to reduce the size of the messages.

4) Once a new message (represented by Fourier coefficients) is received, an IFFT
will be used to change the message to the 2D space domain for the SPA.

5) Run SPA for a defined number of iterations.
6) The posterior probability distribution can be calculated by using (3.8).



98 5. Belief Propagation For Sensor Localization

5.5.3 Simplified computation and transmission based on FDBP

In the ST-FSA algorithm, Fourier series approximation is only used for compressing the
message. It does not simplify the computation in (5.18). All the message calculations are
carried out in the original space domain. FFT and IFFT are required before the message
transmission and after the message reception, which increases the computational com-
plexity. As shown in Section 4.2, message computation can also be done in the Fourier
domain. In order to do that, we first find the Fourier series expansion for the single
potential function and the pairwise potential function. From the discretized single po-
tential function in (5.13), we can calculate the Fourier coefficients {f∗ni

, γi(f
∗
ni
)}Ni
n1=1 using

FFT. Removing the components that have small coefficients, we keep onlyRi components
{f�ri}

Ri
ri=1 ⊂ {f∗ni

}Ni
n1=1. Note that in order to guarantee the non-negativity of the resulting

density function, component reduction should be conducted by the means introduced in
Section 4.2.1.4. Then the shortened Fourier series expression of φi(x∗

ni
) is given by:

φsFi (xi) =

Ri∑
ri=1

γi(f
�
ri
) exp(2jπxTi f

�
ri
) (5.23)

Using FFT to calculate the Fourier coefficients {f∗ni
, f∗nj

, γij(f
∗
ni
, f∗nj

)} for ni ∈ {1, . . .Ni}
and nj ∈ {1, . . .Nj} and doing the component reduction, we can obtain a Fourier series
expression of φij(xi,xj) with ri× rj components. The shortened Fourier series expression
is given by:

φsFij (xi,xj) =

Ri∑
ri=1

Rj∑
rj=1

γij(f
�
ri
, f�rj) exp(2jπx

T
i f
�
ri
+ 2jπxTj f

�
rj
) (5.24)

Sensor node i calculates its message m(t)
ij to node j based on the messages from its neigh-

bors except j using (5.11). Let us suppose that the Fourier series expression of the message
that node i received from its neighbor l(l �= j) is given by:

m
(t−1),sF
li (xi) =

Ri∑
ri=1

γmli
(f�ri) exp(2jπx

T
i f
�
ri
) (5.25)

Then the message from i to j will be calculated by, according to (5.11):

m
(t),sF
ij (xj) ∝

∫
xi

⎛
⎝φsFi (xi)φ

sF
ij (xi,xj)

∏
l∈NE(i),l �=j

m
(t−1),sF
li (xi)

⎞
⎠ (5.26)

Let us define:
ψ

(t−1),sF
i (xi) = φsFi (xi)

∏
l∈NE(i),l �=j

m
(t−1),sF
li (xi) (5.27)

Then the Fourier series expression of ψ(t−1),sF
i (xi) can be produced by the multiplication

operation of Fourier series introduced in Section 4.2.1.2.
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Using (5.27), message calculation in (5.26) becomes:

m
(t),sF
ij (xj) ∝

∫
xi

(
φsFij (xi,xj)ψ

(t−1),sF
i (xi)

)
(5.28)

Then we can use the integration operation of Fourier series introduced in Section 4.2.1.3 to
calculate the Fourier series expression of m(t),sF

ij (xj). After normalization and component
reduction, m(t),sF

ij (xj) can be finally expressed as:

m
(t),sF
ij (xj) =

R′
j∑

rj=1

γmij
(f�rj ) exp(2jπx

T
j f
�
rj
) (5.29)

where R′
j is the final number of Fourier components in message m(t),sF

ij (xj).

In this way, when we calculate a new message, we just calculate the coefficients of its
Fourier series. We call it belief propagation in the Fourier domain. The reduced number
of Fourier components together with their coefficients then will be transmitted to the des-
tination node. By doing this, we not only reduce the number of values that should be
transmitted between nodes, but also reduce the values involved in the message compu-
tation. We give this method the name SCT-FDBP algorithm, i.e., simplified computation
and transmission based on Fourier domain belief propagation. Table 5.2 summarizes SCT-
FDBP Algorithm for sensor localization.

Table 5.2. Description of SCT-FDBP Algorithm

SCT-FDBP

1) Discretize the local potential functions.
2) Initialize messages with uniform distributions.
3) Use FFT to transform all messages and potential functions to frequency do-

main. Use coefficient reduction method (Sect. 4.2.1.4) to reduce the number
of Fourier components. All messages stay in frequency domain until the end
of the algorithm.

4) Implement the sum-product algorithm by using Algorithm 1 and Algo-
rithm 2 in Section 4.2.1. Coefficient reduction is done in each step.

5) Run SPA for a defined number of iterations.
6) Finally, use IFFT to convert the posterior probability distribution from fre-

quency domain into space domain.

The ST-FDA and the SCT-FDBP algorithms implement belief propagation using trun-
cated Fourier series approximations. The compact Fourier series will be transmitted in
both cases. The ST-FDA algorithm implements the message computation in the original
space domain and the SCT-FDBP algorithm implements the message computation in the
Fourier domain. Later on, we will see that both algorithms achieve comparable approxi-
mation qualities.
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5.6 Non-parametric belief propagation for sensor localization

As explained in Section 4.2.2, messages are represented by Gaussian mixture models in
non-parametric belief propagation. Assume now sensor node iwants to calculate its mes-
sage to sensor node j based on the messages it received from all the other neighbors
{l|l ∈ NE(i), l �= j}. Let us use m

(t),NBP
ij (xj) to denote the belief message that sensor node

i sends to sensor node j at the tth iteration. According to (5.11), message m
(t),NBP
ij (xj) is

calculated by:

m
(t),NBP
ij (xj)

K-GMM←−−− α

∫
xi

φi(xi)φij(xi,xj)
∏

l∈NE(i),l �=j
m

(t−1),NBP
li (xi)dxi (5.30)

In (5.30), φi(xi) and φij(xi,xj) are analytical functions. Each input message is represented
by a K-component Gaussian mixture model, which takes the following form:

m
(t−1),NBP
li (xi) =

K∑
k=1

ω
(t−1),(k)
li N (xi;μ

(t−1),(k)
li ,Λ

(t−1),(k)
li ) (5.31)

where μ
(t−1),(k)
li and Λ

(t−1),(k)
li are the mean and covariance of each Gaussian compo-

nent. ω(t−1),(k)
li is the weight associated with the kth Gaussian component. The operation

h(x)
K-GMM←−−− g(x) generates a K-components Gaussian mixture model h(x) from the ana-

lytical function g(x).

Let us define
ψ

(t−1),BNP
ij (xi)

K-GMM←−−−
∏

l∈NE(i),l �=j
m

(t−1),NBP
li (xi) (5.32)

so that ψ(t−1),BNP
ij (xi) is aK-component Gaussian mixture model that is generated from the

product of input messages.

In Algorithm 4 in Section 4.2.2, it has been explained how to generate a new Gaussian
mixture with K components from the product of several K-components Gaussian mix-
tures.

Let us write ψ(t−1),BNP
ij (xi) as:

ψ
(t−1),BNP
ij (xi) =

K∑
k=1

ω
(k)

ψ
(t−1),BNP
ij

N (xi;μ
(k)

ψ
(t−1),BNP
ij

,Λ
(k)

ψ
(t−1),BNP
ij

) (5.33)

Using Algorithm 4, ω(k)

ψ
(t−1),BNP
ij

μ
(k)

ψ
(t−1),BNP
ij

and Λ
(k)

ψ
(t−1),BNP
ij

can be calculated. Now we use

ψ
(t−1),BNP
ij (xi) to approximate

∏
l∈NE(i),l �=jm

(t−1),NBP
li (xi) and change the formula of message

calculation in (5.30) as follows:

m
(t),NBP
ij

K-GMM←−−− α

∫
xi

φi(xi)φij(xi,xj)ψ
(t−1),BNP
ij (xi)dxi (5.34)

According to (5.8), the pairwise potential function φij(xi,xj) takes two different forms
depending on the value of oij . Therefore, the message calculation in (5.34) falls into the
following two cases.
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• If sensor node i detects the signal from sensor node j, i.e., oij = 1 and

φij(xi,xj) = p(oij|xi,xj)p(dij|xi,xj) (5.35)

m
(t),NBP
ij can be generated based on Algorithm 3 described in Section 4.2.2. We first

generate K random samples {x(k)
i }Kk=1 from ψ

(t−1),BNP
ij (xi) and calculate the associated

weights:
ω
(k)
i = ψ

(t−1),BNP
ij (x

(k)
i ) (5.36)

For each x
(k)
i , generate a sample x

(k)
j from the distribution φij(x

(k)
i ,xj). The factor

p(dij|xi,xj) in (5.35) is generated from the measurement model in (5.1). So the sam-
ple x

(k)
j can be generated by:

x
(k)
j = x

(k)
i + (dij + ν

(k)
j )[cos(θ

(k)
j ), sin(θ

(k)
j )]T (5.37)

where ν(k)j is a random variable generated from the distribution of the measurement
noise, i.e.,N (0, σ2) and θ(k)j is a random variable generated from a uniform distribution
U(0, 1

2π
). So the distance between x

(k)
j and x

(k)
i is controlled by (dij + ν

(k)
j ) and the

orientation of x(k)
j with respect to x

(k)
i is controlled by the vector [cos(θ(k)j ), sin(θ(k)j )]T.

The weight associated with each sample x
(k)
j is calculated by:

ω
(k)
j = ω

(k)
i φi(x

(k)
i )φij(x

(k)
i ,x

(k)
j ) (5.38)

and normalized by:

ω
(k)
j =

ω
(k)
j∑K

k=1 ω
(k)
j

(5.39)

Suppose the K-component Gaussian mixture m
(t),NBP
ij takes the following form:

m
(t),NBP
ij =

K∑
k=1

ω
(t),(k)
ij N (xj;μ

(t),(k)
ij ,Λ

(t),(k)
ij ) (5.40)

We use x
(k)
j obtained in (5.37) as the mean μ

(t),(k)
ij in each Gaussian components and

use ω(k)
j obtained in (5.39) as the weight of each Gaussian component, i.e., we set:

μ
(t),(k)
ij = x

(k)
j (5.41)

and
ω
(t),(k)
ij = ω

(k)
j (5.42)

At the end, we choose an appropriate covariance matrix Λ
(t),(k)
ij for each Gaussian com-

ponent.

• If sensor node i does not detect the signal from sensor node j, i.e., oij = 0, then the
pairwise potential function is given by:

φij(xi,xj) = 1− p(oij|xi,xj) (5.43)
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In this case, m(t),NBP
ij (xj) can be generated based on Algorithm 3 described in Sec-

tion 4.2.2. We first generate K random samples {x(k)
i }Kk=1 from ψ

(t−1),BNP
ij (xi) and cal-

culate the associated weights:

ω
(k)
i = ψ

(t−1),BNP
ij (x

(k)
i ) (5.44)

For each x
(k)
i , generate a sample x

(k)
j from the distribution φij(x

(k)
i ,xj),i.e.,

x
(k)
j ∼ φij(x

(k)
i ,xj) (5.45)

Then we calculate the weights for each sample by:

ω
(k)
j = ω

(k)
i φi(x

(k)
i )φij(x

(k)
i ,x

(k)
j ) (5.46)

and normalize weights:

ω
(k)
j =

ω
(k)
j∑K

k=1 ω
(k)
j

(5.47)

Suppose the K-component Gaussian mixture m
(t),NBP
ij takes the following form:

m
(t),NBP
ij =

K∑
k=1

ω
(t),(k)
ij N (xj;μ

(t),(k)
ij ,Λ

(t),(k)
ij ) (5.48)

We use x
(k)
j obtained in (5.45) as the mean μ

(t),(k)
ij in each Gaussian components and

use ω(k)
j obtained in (5.47) as the weight of each Gaussian component, i.e., we set:

μ
(t),(k)
ij = x

(k)
j (5.49)

and
ω
(t),(k)
ij = ω

(k)
j (5.50)

At the end, we choose an appropriate covariance matrix Λ
(t),(k)
ij for each Gaussian com-

ponent.

5.7 Simulation results

To verify the performance of the belief propagation methods introduced in the previous
sections, we simulate belief propagation algorithms for self-localization problem.

We first use a simple scenario to illustrate the function approximation. Then we use a large
scale sensor network to evaluate and compare the localization performance obtained by
different algorithms.
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Fig. 5.3. Sensor distribution

5.7.1 A simple scenario

We first run the simulation in a wireless sensor network that is illustrated in Figure 5.3.

The positions of sensor nodes 1, 2 and 3 are known as (0, 0), (1, 0) and (1, 1) respectively.
Unknown sensor nodes 4 and 5 are located at (-1, 0.4) and (-0.2, 0.8). In this simulation
setting, we limit the area to [−π, π]2 for simplicity.

The parameters ρ and R in (5.2) are set to 2 and 3m respectively. The standard deviation
of distance measurements σ in (5.1) is set to 0.4m. The belief propagation algorithm is
forced to stop after 7 iterations.

Figure 5.4 illustrates the message approximation by Fourier series approximation and
random sample based approximation (Monte Carlo method) using different number of
components to represent a single potential function or a message. We use the contour
lines and the darkness of the color to represent the values of the density functions, i.e.,
the darker the color, the larger the value of the density function at the corresponding
point. The results are compared with the true result generated by uniform sampling based
method. The sampling resolution is 65x65 for all experiments. For the Fourier series ap-
proximations, we implemented both ST-FDA algorithm and the SCT-FDBP algorithm.
The results depicted in Figure 5.4 demonstrate equivalent performance of these two im-
plementations of Fourier series approximation. In the subsequent simulations, we will
only show the results of the SCT-FDBP algorithm.

From the results in Figure 5.4 we can see that with 49 Fourier components, the approxima-
tion is already very close to the true distribution, whereas too few (e.g., 16) components
cannot fully characterize the very non-linear, non-Gaussian distribution. It is also the case
for random sample based method. The more the components, the better the approxi-
mation. In general, with the same number of components, Fourier series based density
approximation outperforms the Monte Carlo method. This is because the Fourier series
approximation analyses the structure of the function whereas the other method is based
on randomly generated samples.

Figure 5.5 shows the approximation results from Fourier series approximation using dif-
ferent sampling resolutions. Sampling resolution of 15x15, 30x30, 45x45, 65x65 are applied
to Figure 5.5 (a) to (d). The sampling resolution determines the precision of the estimate.
According to Nyquist Theorem, the original function can be recovered from its samples
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only if the sampling rate is greater than twice the maximum frequency of that function.
Bad results can be observed from Figure 5.5(a) because the sampling rate is too low.

Figure 5.6 depicts the density function, recovered by interpolating the random samples
with Gaussian basis functions with different choices of the bandwidth, i.e., variance of
each Gaussian component. In this simulation, for a given set of random samples with
value {μ(k)}Mk=1 and associated weights {ω(k)}Mk=1, the variance is computed by:

Λ(k) =

√∑M
k=1 ω

(k)‖μ(k) − μ̄‖2

M
1
α

(5.51)

where

μ̄ =
1

M

M∑
k=1

μ(k) (5.52)

is the mean value of the centers of the Gaussian components and α is a parameter
which controls the smoothness of the resulting Gaussian mixture model. In Figure 5.6,
we present the result produced when α is chosen to be 2, 3, 4 and 6. It can be seen that if
the variance of each Gaussian component is too small, i.e., α is small, the resulting Gaus-
sian mixture function is discontinuous (Figure 5.6(a)). If the variance is too big, the details
of the functions cannot be characterized (Figure 5.6(d)).

5.7.2 Simulation in a large scale sensor network

Having illustrated the function approximations through the simple example, now we
apply belief propagation methods to a sensor network with a larger scale. We randomly
spread 30 sensor nodes in a given region. 9 of them are supposed to be pre-calibrated, i.e.,
they already have a precise prior knowledge on their locations. In the simulation, we use
maximally 64 components for Fourier density approximation and for Gaussian mixtures.
Sampling resolution is 65×65. Other parameters are the same as those used in the simple
example.

Figure 5.7 to Figure 5.10 depicts the localization performance achieved by each method
after different number of iterations. Plus signs represent the pre-calibrated nodes. Circles
represent the true position of the nodes that should be localized, which are connected
with their corresponding estimates (solid dots) via straight lines. The length of the line
reveals the magnitude of the error made in the estimation.

From the results we can see that the belief propagation stabilizes after 4 iterations, which
shows that the self-organized localization converges very fast. Fourier domain belief
propagation achieves a very similar result as the uniform sampling based belief propaga-
tion while non-parametric belief propagation is not as good as the other two. The result
also shows that nodes that are close to the pre-calibrated nodes can be precisely localized.

The averaged communication costs, approximated by the number of parameters that is
required by different methods to represent the messages throughout the entire simulation
are compared in Table 5.3. The results are obtained from 10 simulation runs of a sensor
network with 30 nodes. From the results we can see that Fourier series approximations
and non-parametric belief propagations greatly reduce the transmission costs.
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method total number of samples transmitted
uniform sampling 1022307
SCT-FDBP 17445
NBP 35200

Table 5.3. Transmission cost of different methods

5.8 Discussions

In this chapter, we studied a self-organized sensor localization problem. Using belief
propagation, we implemented message passing algorithms for the computation of the
posterior probability distribution of the sensor positions conditioned on the measure-
ments of the mutual distances. Due to the non-linearity of the problem and due to the
very complicated distribution functions, we introduce approximations to simplify the al-
gorithms. Most important, the communication cost for the message passing should be
minimized to make it possible to implement the algorithm on sensors with self-contained
power supplies. We introduced uniform sampling, Fourier series and Monte Carlo meth-
ods for the message and function approximation. Uniform sampling does not exploit the
special structure of the data. To achieve a good performance, the density functions have
to be densely sampled. Fourier series approximation uses truncated Fourier series to rep-
resent the density functions. Non-parametric belief propagation use random samples to
represent the density function. The simulation results have shown that Fourier and ran-
dom sample based method can greatly reduce the transmission cost while keeping good
localization performance.

In this chapter, we focus on the suitable message representation for the belief propagation
and the results are obtained from software simulation. In practice, there are many other
issues to be considered, for example, the message compression. We presented compacted
representation of the density functions or belief messages. Such representations should
be compressed before the transmission. The compression process involves quantization
of the continuous values and source coding. The compression performance also greatly
influence the transmission cost and the computational complexity. The value listed in Ta-
ble 5.3 illustrates the transmission cost without considering the compression. Therefore,
further research can be conducted to study the number of bits for the transmission re-
quired by different algorithms.
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Fig. 5.4. Comparison of different approximation methods
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Fig. 5.5. Results of Fourier series approximation with different sampling rate

Fig. 5.6. Results of Gaussian interpolation with different variances
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Fig. 5.7. The localization results after 1 iteration

Fig. 5.8. The localization results after 2 iterations
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Fig. 5.9. The localization results after 4 iterations

Fig. 5.10. The localization results after 7 iterations
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6. Clock Synchronization Of Networked Nodes

Ethernet [43], due to its cheap cabling and infrastructure costs, high bandwidth, efficient
switching technology and good interoperability, has been adopted in various areas to
provide the basic networking solution. Many Ethernet-based applications require the net-
worked clocks to be precisely synchronized. Typical examples include synchronization of
base stations for hand-over or interference cancellation [87] in telecommunication net-
works, distribution of audio/video streams over Ethernet based networks [48], and mo-
tion control in industrial Ethernet [14]. Standard Network Time Protocol (NTP) [69, 70]
synchronization over Ethernet provides a time accuracy at the millisecond level, which
is enough for processes that are not time critical. However, in many applications, for ex-
ample base station synchronization or motion control where only sub-microsecond level
synchronization errors are allowed (the so-called isochronous mode), a more accurate
solution is needed. The Precision Time Protocol (PTP), specified by the IEEE 1588 stan-
dard [45] published in 2002, constitutes a promising Ethernet synchronization protocol, in
which messages carrying precise timing information, obtained via hardware time stamp-
ing in the physical layer, are propagated in the network to synchronize the slave clocks to
a master clock. Boundary clocks [45] adjust their own clock to the master clock and then
serve as masters for the next network segment. Authors of [51] introduced the transpar-
ent clock (TC) concept, in which intermediate bridges are treated as network components
with known delay. By doing this, no control loop in the intermediate element is needed
for providing timing information to the next local clock and hence the synchronization at
the time client is not dependent on the control loop design in the intermediate bridges.
The transparent clock concept has been adopted in the new version of IEEE 1588 pub-
lished in 2007 [47] and the IEC 61588 standard [50]. Exciting applications of IEEE 1588
can be found in [19].

In industrial automation and manufacturing systems, the line topology is very important.
Cabling often leads to networks with line topology. Typically, an industrial automation
network may have tens or even hundreds of cascaded elements. It is always desirable
to synchronize the clocks of all these elements to a single master clock. However, due
to long line length, latency and jitters in the intermediate bridges will greatly influence
the achievable synchronization performance. In this chapter, we will focus on the topic of
synchronization of cascaded clocks, i.e., synchronizing the clocks in a network with line
topology. We assume that all the element in the network are IEEE 1588 compatible and
apply the transparent clock concept. Based on the timing information provided by the

111
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PTP protocol, we develop synchronization algorithms that support as many as possible
elements that can be synchronized to the master clock.

Factors that affect the synchronization quality achievable by PTP include the stability of
oscillators, the resolution and precision of time stamping the message, the frequency of
sending synchronization messages, and the propagation delay variation caused by the jit-
ter in the intermediate elements. A comprehensive analytical work has been presented in
[96] to show the influence of these factors on the synchronization accuracy. It can be seen
from the analytical results that stamping errors, including quantization error, stamping
jitters, have very adverse effect because the errors introduced by different elements ac-
cumulate along the network. On the other hand, each clock in the network is a dynamic
system. Discrete observation of the state of the clocks are obtained by generating time
stamps. Clock synchronization can be formulated as a state estimation of dynamic sys-
tems based on discrete noisy measurement, i.e., the time stamps. This chapter discusses
the probabilistic modeling of clock synchronization and the inference algorithm for state
estimation. Through this application, we also demonstrate how important it is to explore
the rich context of graphical models for solving practical signal processing problems.

The rest of this chapter is organized as follows. Section 6.1 presents the system model
and introduces briefly the synchronization mechanism of PTP protocol. Section 6.2 lists
the notations of the variables. Section 6.3 shows the basic parameters for the simulations.
We first introduce the standard synchronization, i.e., the one that is already implemented
in the industrial Ethernet products, in Section 6.4. Probabilistic modeling and inference
algorithms for clock synchronization will be derived in Section 6.5. The performance of
different synchronization algorithms are verified and compared through numerical sim-
ulations. Results are presented in Section 6.6.

6.1 Background

6.1.1 Characteristics of clocks

A clock consists of an oscillator and a counter. The oscillator should generate repeatable
time intervals. By counting this intervals, the clock can establish a time scale that is re-
quired by certain applications.

Characterizing oscillators is a very complex topic. We present here a simplified model
that will be used for the rest part of this chapter. Comprehensive understanding of the
oscillators can be found in [44, 104, 105].

Based on the modeling of the oscillators introduced in [104], the time scale produced by
an oscillator can be described by:

c(t′) = �c0 +
∫ t′

0

f(t)dt� (6.1)

where:

• c(t) is the counter value at a given absolute reference time t;
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• c0 is the origin of the time scale;

• f(t) is the evolution of frequency over time;

• �·� calculates the floor of a number.

In the ideal case, an oscillator runs at a constant frequency, which is defined as the nom-
inal frequency. However, the true frequency of the oscillator may be affected by different
environmental and inherent factors. Environmental effects include the changes in tem-
perature, pressure or supply voltage and inherent effect comes mainly from the aging of
the oscillator. So in practice, f(t) can be a very complex function over time. Fortunately,
linear approximation of f(t) already provides satisfactory results. In the following parts
of this chapter, we will use two types of models:

• constant frequency model

In this model, the frequency f(t) of the oscillator has a constant value:

f(t) = f (6.2)

Inserting (6.2) into (6.1), we obtain the formula for calculating the counter state at a
given time t′:

c(t′) = �c0 + ft′� (6.3)

Note that although the frequency is a constant value, this value is not necessarily equal
to the nominal frequency. That means, two clocks might run with different frequencies
although they have the same nominal frequency.

• linear frequency drift model

In this model, the frequency f(t) of the oscillator drifts with a constant speed Δ. The
frequency is given by the following affine equation:

f(t) = f +Δt (6.4)

where f represent the initial frequency now. Inserting (6.4) into (6.1), we obtain the
formula for calculating the counter state at a given time t′:

c(t′) = �c0 + ft′ +
Δ

2
t2� (6.5)

6.1.2 Network topology

In an IEEE 1588 compatible system, all clocks are organized into a master-slave hierarchy.
To enable that, the PTP protocol has to operate on a communication topology that is loop
free. In fact, many underlying communication systems run a minimum spanning tree or
similar protocol which offers the PTP protocol a tree-structured communication topology.
The spanning tree protocol (STP) used in Ethernet systems is defined in IEEE Standard
802.1D [46]. A detailed description of the spanning tree algorithm can be found in [93].

A typical topology of an industrial automation network is shown in Figure 6.1 where
dashed and solid lines represent the physical cabling between network elements. Out of
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all the physical links, the spanning tree algorithm picks the communication links (solid
lines in Figure 6.1) to form a tree. Communication over any link that is not in the tree
(dashed line in Figure 6.1) will be forbidden by the communication protocol or only used
for robustness to the link failure, e.g., Media Redundancy Protocol (MRP).

Fig. 6.1. Network topology

6.1.3 PTP messages

In the initial phase, the PTP protocol runs a best master algorithm [47] to elect a master
clock which provides the reference time to the other clocks, i.e., slave clocks. In order to
synchronize its clock to the reference clock provided by the master clock, a slave has to ac-
quire information about the state of the master clock. In the PTP protocol, clocks exchange
timing information by sending PTP messages which contain discrete time stamps. Based
on the timing information delivered by the PTP messages, each slave estimates the state
of the master clock and thus adjusts its clock to follow the master clock.

Figure 6.2 depicts the PTP messages and the timing information associated with all the
messages on a simplified diagram with two elements: a master and a slave. Four types of
messages are defined in PTP, they are:

• Sync message: the master element sends periodically Sync messages to the directly
connected slaves. A time stamp −→s M is generated according to the master’s local clock
when the message leaves. When the slave receives the Sync message, it will generate
a time stamp −→s S of the receiving time based on the slave’s local clock.

• Follow Up message: in order to let the slave know the precise time stamp of the Sync
message’s sending time, the master element sends a Follow Up message to the slave
which carries the time stamp −→s M.

• Delay Req message: the slave sends a delay request (Delay Req) message to the mas-
ter. The slave clock generates a time stamp←−s D

S based on its local clock when the De-
lay Req message leaves the slave. The master clock generates a time stamp←−s D

M based
on its local clock when the Delay Req message arrives at the master.
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Fig. 6.2. Synchronization messages in PTP protocol

• Delay Resp message: the master sends a delay response (Delay Resp) message to the
slave which carries the receipt time stamp of←−s D

M. Delay Resp message is followed by
another Follow Up message which carries the time stamps generated at the transmis-
sion of the Delay Resp, i.e., −→s D

M to the slave. At the slave side, it stamps the local time
when it receives the Delay Resp message which is −→s D

S.

All the messages will be sent periodically so that at the slave side, it may maintain the
updated values of −→s M, −→s S, ←−s D

S, ←−s D
M, −→s D

S and −→s D
M. The time stamps associated with the

Sync message is used by the slave to estimate the master time. The time stamps that are
associated with the Delay Req and Delay Resp messages are used by the slave to estimate
the transmission delay of a message between the master and the slave. The following
sections will show how to use these time stamps to achieve the synchronization.

6.1.4 Peer to peer transparent clock

The previous section introduced the basic PTP messaging in a master-slave hierarchy.
Such a messaging scheme will be applied to the entire network. It has been discussed in
Section 6.1.2 that the PTP works on top of a communication protocol which provides a
tree-structured topology. So it is enough to study just one branch of the tree, i.e., from the
root (master) to the leaf (the most remote slave). For example in the network shown in
Figure 6.1, if node 1 is elected to be the master, then we will study how to synchronize all
the elements in the longest line, i.e., {1, 2, 6, 9, 10, 11, 12}.
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Figure 6.3 shows a system withN+1 cascaded elements connected in a line topology. The
first element is the time source, also called (grand)master, which provides the reference
time to the rest N elements, called slave elements.

Fig. 6.3. System model and the propagation of PTP messages

Synchronization of the entire network can be implemented in different ways. The follow-
ing discussion is based on the peer to peer transparent clock concept.

Figure 6.3 also depicts the propagation of the PTP messages along the line. The Sync
message, which carries the timing information of the master clock, will propagate along
the line until it arrives at the last slave. The line delay

−→
dLDn is the total propagation between

slave n and its upstream (with respect to the propagation of Sync messages) element. A
Sync message will be processed at each slave before it can be forwarded to the next slave
element. The residence time of a Sync message at slave n is called bridge delay and is
denoted by

−→
dBDn . In the peer to peer transparent clock implementation, each slave sends to

its neighboring upstream node a Delay Req message and receives a Delay Resp message
from the upstream node. The four time stamps generated at the transmission and the
reception of these two messages, are collected by the requester. Since the delay messages
are only exchanged between neighboring nodes and used for estimating the line delay
between those nodes, such an implementation is called peer to peer delay estimation. In
such a system, the propagation of Sync messages and the line delay estimation can be
regarded as two independent processes.
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6.1.5 Peer to peer line delay estimation

In order to synchronize the clocks in the entire network, it is important to estimate all the
delays, i.e., line delays and bridge delays that a Sync messages experiences. In comparison
with the bridge delay estimation, the line delay estimation is more complicated. Here we
introduce the estimation of line delay between two neighboring nodes (i.e., an upstream
node and it neighboring downstream node). The results will be used in the subsequent
sections. Before we introduce the calculation, we first summarize the notations that will
appear in the formulas.

• general notations

sE: a time stamp of the clock of element E ∈ {U,D}where U stands for the upstream
element and D stands for the downstream element. If U is master, then D is slave 1. If U
is slave n, then D is slave n+ 1.

cE: the true local time according to the clock of element E that corresponds to sE
ξE: stamping error, i.e.,

sE = cE + ξE (6.6)

In the following derivations, we assume that cE is a real number without quantization.
The quantization error is included in ξE and sE is always an integer.

• parameters of the clocks

coU: initial value of the upstream clock

coD: initial value of the downstream clock

fU: initial frequency of the upstream clock

fD: initial frequency of the downstream clock

ΔU: speed of frequency drift of the upstream clock

ΔD: speed of frequency drift of the downstream clock

• time, counter values and time-stamps that are associated with the peer to peer delay
messages (See Figure 6.4).
←−
t D(j): the absolute reference time when the jth Delay Req message is sent by

the downstream element. (The true downstream element’s local time at this point is
←−c D(j). A time-stamp of the local clock is generated at this time, which is←−s D(j))
←−
t U(j): the absolute reference time when the jth Delay Req message is received by

the upstream element. (The true upstream element’s local time at this point is←−c U(j).
A time-stamp of the local clock is generated at this time, which is←−s U(j))
−→
t U(j): the absolute reference time when the jth Delay Resp message is sent from

the upstream element. (The true upstream element’s local time at this point is −→c U(j).
A time-stamp of the local clock is generated at this time, which is denoted by−→s U(j))
−→
t D(j): the absolute reference time when the jth Delay Resp message is received

by the downstream element. (The true downstream element’s local time at this point
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is −→c D(j). A time-stamp of the local clock is generated at this time, which is denoted
by −→s D(j))

Fig. 6.4. Relationships between time variables

Using the peer to peer delay messages, the slave element can estimate the line delay to its
upstream element. Based on different clock models, the line delay estimation has different
complexity.

6.1.5.1 Clocks with identical constant frequency values

Now we first study the simplest case when two clocks are running with the same fre-
quency, i.e., fU = fD = f0 and there is no frequency drift, i.e., ΔU = ΔD = 0. In this case,
the evolution of the upstream element’s local time is given by, using (6.3):

cU(t) = coU + fU · t = coU + f0 · t (6.7)

and the downstream element’s local time is given by:

cD(t) = coD + fD · t = coD + f0 · t (6.8)

Comparing (6.8) with (6.7), the difference between these two local time values is a con-
stant value:

oUD = coU − coD (6.9)
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According to the clock model in (6.7) and (6.8), we have the following relationships be-
tween local time and the absolute reference time:

−→c U(j) = cU(
−→
t U(j)) = coU + f0 ·

−→
t U(j)

−→c D(j) = cD(
−→
t D(j)) = coD + f0 ·

−→
t D(j)

←−c D(j) = cD(
←−
t D(j)) = coD + f0 ·

←−
t D(j)

←−c U(j) = cU(
←−
t U(j)) = coU + f0 ·

←−
t U(j) (6.10)

Using (6.6), the corresponding time stamps can be expressed as follows:

−→s U(j) = −→c U(j) +
−→
ξ U(j) = coU + f0 ·

−→
t U(j) +

−→
ξ U(j) (6.11)

−→s D(j) = −→c D(j) +
−→
ξ D(j) = coD + f0 ·

−→
t D(j) +

−→
ξ D(j) (6.12)

←−s D(j) = ←−c D(j) +
←−
ξ D(j) = coD + f0 ·

←−
t D(j) +

←−
ξ D(j) (6.13)

←−s U(j) = ←−c U(j) +
←−
ξ U(j) = coU + f0 ·

←−
t U(j) +

←−
ξ U(j) (6.14)

Let us use −→
d (j) =

−→
t D(j)−

−→
t U(j) (6.15)

to denote the transmission delay, also called line delay of the jth Delay Resp message in
terms of the absolute reference time and use

←−
d (j) =

←−
t U(j)−

←−
t D(j) (6.16)

to denote the line delay of the jth Delay Req message in terms of the absolute reference
time. We assume that the line delay is symmetric and constant, i.e., we always have:

−→
d (j) =

←−
d (j) = d (6.17)

Combining (6.11) and (6.12), we obtain:

−→s U(j)−−→s D(j) =
(
coU + f0 ·

−→
t U(j) +

−→
ξ U(j)

)
−

(
coD + f0 ·

−→
t D(j) +

−→
ξ D(j)

)
= (coU − coD) + f0 ·

(−→
t U(j)−

−→
t D(j)

)
+

(−→
ξ U(j)−

−→
ξ D(j)

)
= oUD − f0 ·

−→
d (j) +

(−→
ξ U(j)−

−→
ξ D(j)

)
= oUD − f0 · d+

(−→
ξ U(j)−

−→
ξ D(j)

)
(6.18)

where we applied (6.11) and (6.12) in the first line; (6.9) and (6.15) for the third line; (6.17)
for the last line.
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Subtracting (6.13) from (6.14) on both sides, we obtain:

←−s U(j)−←−s D(j) =
(
coU + f0 ·

←−
t U(j) +

←−
ξ U(j)

)
−

(
coD + f0 ·

←−
t D(j) +

←−
ξ D(j)

)
= (coU − coD) + f0 ·

(←−
t U(j)−

←−
t D(j)

)
+

(←−
ξ U(j)−

←−
ξ D(j)

)
= oUD + f0 ·

←−
d (j) +

(←−
ξ U(j)−

←−
ξ D(j)

)
= oUD + f0 · d+

(←−
ξ U(j)−

←−
ξ D(j)

)
(6.19)

where we applied (6.13) and (6.14) in the first line; (6.9) and (6.16) for the third line; (6.17)
for the last line.

Subtracting (6.18) from (6.19) on both sides, we obtain:

(←−s U(j)−←−s D(j))− (−→s U(j)−−→s D(j))

= 2f0 · d+
(←−
ξ U(j)−

←−
ξ D(j)

)
−

(−→
ξ U(j)−

−→
ξ D(j)

)
(6.20)

Then the true line delay with respect to the clock frequency f0 is given by:

f0 · d =
[(←−s U(j)−←−s D(j))− (−→s U(j)−−→s D(j))]−

[(←−
ξ U(j)−

←−
ξ D(j)

)
−

(−→
ξ U(j)−

−→
ξ D(j)

)]
2

(6.21)

Based on (6.21), the downstream element estimates the line delay with respect to its clock
frequency f0 by:

ĉD(
−→
dLDD (j)) =

[(←−s U(j)−←−s D(j))− (−→s U(j)−−→s D(j))]

2
(6.22)

where cE(x) represent the element E’s local measurement of the absolute reference time
interval x. A hat on c represents the estimate of this quantity. The true line delay cD(

−→
dLDD (j))

is equal to f0 · d, given in (6.21). Comparing (6.21) with (6.22), we can see that the estima-
tion error c̃D(

−→
dLDD (j)) is given by:

c̃D(
−→
dLDD (j)) = cD(

−→
dLDD (j))− ĉD(

−→
dLDD (j))

=

[(−→
ξ U(j)−

−→
ξ D(j)

)
−

(←−
ξ U(j)−

←−
ξ D(j)

)]
2

(6.23)

6.1.5.2 Clocks with different constant frequency values

Now we consider a more complicated situation, where the upstream element’s clock and
the downstream element’s clock are running with different frequencies, i.e., fU �= fD. But
we still assume that both frequencies are constant, i.e., ΔU = ΔD = 0. In this case, the
master time at t is given by:

cU(t) = coU + fU · t (6.24)
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and the slave time is given by:
cD(t) = coD + fD · t (6.25)

According to the clock models in (6.24) and (6.25):

−→c U(j) = cU(
−→
t U(j)) = coU + fU ·

−→
t U(j)

−→c D(j) = cD(
−→
t D(j)) = coD + fD ·

−→
t D(j)

←−c D(j) = cD(
←−
t D(j)) = coD + fD ·

←−
t D(j)

←−c U(j) = cU(
←−
t U(j)) = coU + fU ·

←−
t U(j) (6.26)

Using (6.6), the time stamps can be expressed by:

−→s U(j) = −→c U(j) +
−→
ξ U(j) = coU + fU ·

−→
t U(j) +

−→
ξ U(j) (6.27)

−→s D(j) = −→c D(j) +
−→
ξ D(j) = coD + fD ·

−→
t D(j) +

−→
ξ D(j) (6.28)

←−s D(j) = ←−c D(j) +
←−
ξ D(j) = coD + fD ·

←−
t D(j) +

←−
ξ D(j) (6.29)

←−s U(j) = ←−c U(j) +
←−
ξ U(j) = coU + fU ·

←−
t U(j) +

←−
ξ U(j) (6.30)

Let us define:
cD(
−→
dLDD (j)) = fD · d (6.31)

to be the line delay measured by the downstream element’s clock where we assume that
the line delay is symmetric and constant. Then, we have:

−→
d (j) =

−→
d (j + 1) =

←−
d (j) =

←−
d (j + 1) = d (6.32)

From (6.32), we obtain:
−→
t D(j)−

−→
t U(j) =

−→
t D(j + 1)−−→t U(j + 1) (6.33)

Moving
−→
t U(j + 1) to the LHS and

−→
t D(j) to the RHS, we obtain:

−→
t U(j + 1)−−→t U(j) =

−→
t D(j + 1)−−→t D(j) (6.34)

Using (6.26) in (6.34):

−→c U(j + 1)− coU
fU

−
−→c U(j)− coU

fU
=
−→c D(j + 1)− coD

fD
−
−→c D(j)− coD

fD
⇓

−→c U(j + 1)−−→c U(j)

fU
=
−→c D(j + 1)−−→c D(j)

fD
⇓

fU
fD

=
−→c U(j + 1)−−→c U(j)
−→c D(j + 1)−−→c D(j)

(6.35)
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Let us define

rUD =
fU
fD

(6.36)

to be the frequency ratio between the upstream and downstream elements’ local clocks.
Based on (6.35), we can estimate rUD by:

r̂UD =
−→s U(j + 1)−−→s U(j)
−→s D(j + 1)−−→s D(j)

(6.37)

Now we derive the formula to estimate the delay cD(
−→
dLDD (j)). We first define:

uUD = coU − coD ·
fU
fD

(6.38)

to be the skewed offset between the clocks.

Now we compute (6.27) minus fU
fD
×(6.28) and use (6.15), (6.38) to obtain:

−→s U(j)−−→s D(j) ·
fU
fD

=

(
coU − coD ·

fU
fD

)
+ fU ·

(−→
t U(j)−

−→
t D(j)

)
+

(−→
ξ U(j)−

−→
ξ D(j) ·

fU
fD

)

= uUD − fU ·
−→
d (j) +

(−→
ξ U(j)−

−→
ξ D(j) ·

fU
fD

)

= uUD − fU · d+
(
−→
ξ U(j)−

−→
ξ D(j) ·

fU
fD

)
(6.39)

Computing (6.30) minus fU
fD
×(6.29) and using (6.16), (6.38), we obtain:

←−s U(j)−←−s D(j) ·
fU
fD

=

(
coU − coD ·

fU
fD

)
+ fU ·

(←−
t U(j)−

←−
t D(j)

)
+

(
←−
ξ U(j)−

←−
ξ D(j) ·

fU
fD

)

= uUD + fU ·
←−
d (j) +

(←−
ξ U(j)−

←−
ξ D(j) ·

fU
fD

)

= uUD + fU · d+
(←−
ξ U(j)−

←−
ξ D(j) ·

fU
fD

)
(6.40)

Subtracting (6.40) by (6.39) on both sides, we obtain:(
←−s U(j)−←−s D(j) ·

fU
fD

)
−

(
−→s U(j)−−→s D(j) ·

fU
fD

)

= 2fU · d+
(
←−
ξ U(j)−

←−
ξ D(j) ·

fU
fD

)
−

(
−→
ξ U(j)−

−→
ξ D(j) ·

fU
fD

)

= 2
fU
fD
· (fD · d) +

(←−
ξ U(j)−

←−
ξ D(j) ·

fU
fD

)
−

(−→
ξ U(j)−

−→
ξ D(j) ·

fU
fD

)

= 2
fU
fD
· cD(
−→
dLDD (j)) +

(←−
ξ U(j)−

←−
ξ D(j) ·

fU
fD

)
−

(−→
ξ U(j)−

−→
ξ D(j) ·

fU
fD

)
(6.41)
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Based on (6.41), we can estimate cD(
−→
dLDD (j)) by:

ĉD(
−→
dLDD (j)) =

(←−s U(j)−←−s D(j) · r̂UD)− (−→s U(j)−−→s D(j) · r̂UD)
2r̂UD

=
(←−s U(j)−−→s U(j))− (←−s D(j)−−→s D(j)) · r̂UD

2r̂UD

=
(←−s U(j)−−→s U(j)) · r̂DU − (←−s D(j)−−→s D(j))

2
(6.42)

where:

r̂DU =
1

r̂UD
=
−→s D(j + 1)−−→s D(j)
−→s U(j + 1)−−→s U(j)

(6.43)

The estimation error is given by, according to (6.41) and (6.42):

c̃D(
−→
dLDD (j)) = cD(

−→
dLDD (j))− ĉD(

−→
dLDD (j)) (6.44)

=
(←−s U(j)−−→s U(j)) · r̃DU

2
−

(←−
ξ U(j)−

−→
ξ U(j)

)
· r̂DU −

(←−
ξ D(j)−

−→
ξ D(j)

)
2

According to the realistic values of the variables in (6.44) (see Table 6.1), the estimation
error can be closely approximated by:

c̃D(
−→
dLDD (j)) ≈ −

(←−
ξ U(j)−

−→
ξ U(j)

)
−

(←−
ξ D(j)−

−→
ξ D(j)

)
2

(6.45)

6.1.5.3 General case

In general, the frequency of the master and slave can be given by very complicated func-
tions thus the constant frequency assumption used in the above derivation is not valid
anymore. However, the frequency drift is usually very slow. If we do the delay estima-
tion frequently enough, the error is negligible. In the derivation in the previous sections,
we always assume that the line delay is constant. However, from one transmission to the
other, the true line delay may vary. In order to minimize the influence of delay variation
as well as the stamping error, usually several delay estimates are averaged. The averaged
line delay will be eventually used for knowing the line delay experienced by the Sync
messages. Let us define ĉD(

−→
dLDD (k)) to be the line delay value that is used to approximate

the line delay in the transmission of the k’s Sync message from element U to element D (U
is the direct upstream element of D). Then ĉD(

−→
dLDD (k)) can be expressed as:

ĉD(
−→
dLDD (k)) =

1

L

L−1∑
i=0

ĉD(
−→
dLDD (j − i)) (6.46)

where j is the last delay estimation cycle that has been finished at element D before the
kth Sync message arrives at element D. Let cD(

−→
dLDD (k)) denote the true line delay of the kth

Sync message. It can be expressed as:

cD(
−→
dLDD (k)) = fD · d+ χD(k) (6.47)
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where χD(k) is a Gaussian random variable that models the variation of the line delay.

Using (6.46) and (6.44), we can obtain that:

ĉD(
−→
dLDD (k))− cD(

−→
dLDD (k)) =

1

L

L−1∑
i=0

c̃D(
−→
dLDD (j − i)) + χD(k) (6.48)

Let us define:

c̃D(
−→
dLDD (k)) = −

(
1

L

L−1∑
i=0

c̃D(
−→
dLDD (j − i)) + χD(k)

)
(6.49)

to be the estimation error, then we can write:

ĉD(
−→
d LD
D (k)) = cD(

−→
d LD
D (k))− c̃D(

−→
d LD
D (k)) (6.50)

From (6.49), we can see that the line delay estimation error is composed of the sum of
L i.i.d. random variables {c̃D(

−→
dLDD (j − i))}L−1

i=0 plus a Gaussian random variable χD(k).
As a result, the line delay estimation error itself is a Gaussian random variable, i.e.,
c̃D(
−→
d LD
D (k)) ∼ N (0, σ2

dLDD
).

All the synchronization algorithms developed later will assume a prior estimation of the
line delay, which is obtained by using (6.42).

6.2 Notations

Before introducing the synchronization algorithms, we list again the notations that will
appear in the following sections for the sake of clarity.

• −→s TT
TB(k): time-stamps generated at the transmission or the reception of the kth Sync

message. Subscript TB ∈ {M,S1, . . .SN} indicates at which element this is generated.
Superscript TT ∈ {in,out} indicates whether the time-stamp is generated-at the re-
ception (in) or at the transmission (out).

• −→c TT
TB(k): the true local time at the transmission or the reception of the kth Sync message.

• −→ξ TT
TB(k): stamping error, i.e.,

−→s TT
TB(k) =

−→c TT
TB(k) +

−→
ξ TT
TB(k) (6.51)

• rMSn(k) the kth frequency ratio of the master frequency and slave n’s frequency

• −→y TT
n (k): master time when slave n’s local time is −→c TT

Sn(k).

• −→x TT
n (k): master time when slave n’s counter state is really−→s TT

Sn(k).

• cSn(
−→
dLDn (k)): the true line delay between slave n− 1 and slave n, measured by slave n’s

clock
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• ĉSn(
−→
dLDn (k)): estimate of the line delay between slave n − 1 and slave n, measured by

slave n’s clock. According to (6.50),

ĉSn(
−→
d LD
n (k)) = cSn(

−→
d LD
n (k))− c̃Sn(

−→
d LD
n (k)) (6.52)

where c̃Sn(
−→
d LD
n (k)) ∼ N (0, σ2

dLDn
) is the estimation error.

Figure 6.5 depicts the relationships between the variables we defined above.

Fig. 6.5. Notation of variables

6.3 Simulation settings

In the following sections, we will introduce different synchronization algorithms. To il-
lustrate the synchronization performance of each algorithm, we will present simulation
results after the description of the algorithm. Comprehensive simulation results and per-
formance comparisons will be shown at the end of the whole chapter.

Table 6.1 summarizes the parameters for the simulation. Where the quartz precision indi-
cates the maximum frequency deviation from the nominal frequency omitting the envi-
ronmental effects. The line delay is equal to the constant cable delay plus varying jitters,
which are approximated by Gaussian random variables. The master sends out Sync mes-
sages every 30ms. Each slave initializes a delay estimation process every 8s. Errors made
in the time stamping is modeled by uniformly distributed random variables.
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Parameter Value
Quartz precision 100ppm
Cable delay 100ns
Bridge delay uniform [125, 250]μs
Interval of Sync message 30ms
Interval of Delay request 8s
Stamping jitter uniform [−40, 40]ns
Jitter in line delay zero mean Gaussian, standard deviation: 40ns

Table 6.1. Simulation parameters

6.4 Standard synchronization algorithm

Using the ”transparent clock” concept [51], the synchronization procedure is as follows:

• master element generates periodically Sync messages with an interval of ΔcSYNCM and
generates a time-stamp −→s out

M (k) at the transmission.

• a Follow Up message will be sent right after Sync message which delivers −→s M(k) to
slave 1

• upon the reception of the Sync message, slave n generates a time-stamp−→s in
Sn(k)

• after some bridge delay
−→
d BD
n (k), slave n forwards the Sync message to slave n + 1,

a time stamp −→s out
Sn (k) will be generated at the transmission. Then the bridge delay

measured by slave n is given by:

ĉSn(
−→
d BD
n (k)) = −→s out

Sn (k)−−→s in
Sn(k) (6.53)

• upon the reception of Follow Up message, slave 1 estimates the frequency ratio rMS1
by:

r̂MS1(k) =
−→s out

M (k)−−→s out
M (k − 1)

−→s in
S1 (k)−

−→s in
S1 (k − 1)

(6.54)

and estimates the master time by:

x̂in1 (k) = −→s out
M (k) + r̂MS1(k) · ĉS1(

−→
d LD

1 (k)) (6.55)

where the line delay estimate ĉS1(
−→
d LD

1 (k)) is given by (6.46).

• a Follow Up message will be sent by slave 1 right after the Sync message, which carries
its master time estimate at the transmission of the Sync message, i.e., x̂out1 (k), which is
calculated as follows:

x̂out1 (k) = x̂in1 (k) + r̂MS1(k) · ĉS1(
−→
d BD

1 (k)) (6.56)

where ĉS1(
−→
d BD

1 (k)) is given by (6.53) and r̂MS1(k) is given by (6.54)
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• upon reception of Follow Up message from slave n−1, slave n estimates the frequency
ratio between master clock and its local clock, i.e., rMSn by:

r̂MSn(k) =
x̂outn−1(k)− x̂outn−1(k − 1)
−→s in

Sn(k)−−→s in
Sn(k − 1)

(6.57)

and estimates the master time by:

x̂inn (k) = x̂outn−1(k) + r̂MSn(k) · ĉSn(
−→
d LD
n (k)) (6.58)

where the line delay estimate ĉSn(
−→
d LD
n (k)) is given by (6.46).

• slave n estimates the master time at the forwarding time of the Sync message by:

x̂outn (k) = x̂inn (k) + r̂MSn(k) · ĉSn(
−→
d BD
n (k)) (6.59)

To illustrate the synchronization performance, we simulated the standard synchroniza-
tion algorithm using the simulation parameters summarized in Section 6.3. The perfor-
mance is evaluated through the synchronization error at the reception of the Sync mes-
sage, i.e. the difference between the estimated master time x̂inn (k) and the true master time
−→x in

n (k). Simulation results are shown in Figure 6.6.

Fig. 6.6. Synchronization error of the standard algorithm.
(−→x in

n (k)− x̂inn (k))

The synchronization procedure introduced above estimates master time based on the
noisy time-stamps. The achievable precision relies on the precision of the time-stamps.
From the simulation results in Figure 6.6 we can see the effect of error propagation. For re-
mote slave elements, the synchronization performance is greatly influenced by the stamp-
ing noise accumulated along the line.

Improvements can be done from different aspects. Authors of [64] improve the accuracy
of the time-stamping by careful (but costly) design of the hardware implementation. The
authors of [65] summarize software based methods that improve the synchronization pre-
cision for PTP without transparent clocks. A Kalman filtering algorithm is presented in [1]
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to achieve end-to-end synchronization based on the NTP protocol. Another NTP based
Kalman filtering method can be found in [9]. Both these works can be extended to PTP
protocol, but not to PTP with transparent clocks, since they did not study the case where
time stamps are also available at the intermediate bridges. The authors of [5] presented a
Kalman filter approach which tracks what they call the ”skew”, i.e., the rate of change of
the offset between a pair of clocks. The resulting skew is used as the input to the PI con-
troller to regulate the clocks. As to our knowledge, most related works are only applied
to a small number of devices and not in a cascaded networked system where the esti-
mation error propagates and greatly degrades the synchronization accuracy at a remote
slave element. Some of these works exploited the distribution of the uncertainties. But the
relationships between the time-stamps generated at different elements are not modeled.

In [97], we analytically studied the effect of error propagation. It has been shown that the
estimation error is not simply the sum of all the uncertainties. As we can see in (6.57),
the frequency ratio estimated at slave n depends on the estimates of the master time at
slave n− 1. At the end, the synchronization error can be expressed as a very complicated
function of the uncertainties. A big drawback of the standard synchronization algorithm
is that it treats each Sync message independently. But actually the relationships between
the time stamps associated with consecutive Sync messages can be used to average the
noise. In the following sections, we exploit this property and formulate clock synchro-
nization as a state estimation problem. We use probabilistic graphical models to explicitly
express the statistical relationships involved in the system and discuss different proba-
bilistic approaches to this estimation problem.

6.5 Probabilistic model for clock synchronization

In this section, we establish probabilistic models for the clock synchronization, which re-
sults in a linear dynamical system [8], i.e., temporal evolutions and the spatial correlations
in the system are linear and all the random variables are Gaussian.

We first study centralized inference, where the hidden state associated with all slaves
will be estimated jointly. This method has to be based on an ideal assumption that all
the time-stamps are transmitted to a fusion center, where a probabilistic representation
is established to model the relationships between variables. Using this model, we trans-
late the synchronization into the problem of estimating hidden state variables (the master
time corresponding to a given slave time) given the observations (time stamping asso-
ciated with IEEE 1588 messages). Then we use Kalman filtering technique to solve this
estimation problem. The solution is optimal in the sense of minimizing the mean square
error. The results will then be sent to corresponding slave elements so that they can build
the relationship between their own clock and the master clock.

Then we study the case where the state estimation is done in a distributed way. Each slave
maintains its estimation of the master time. Only a limited amount of information has to
be exchanged between network elements. Distributed inference is only possible when the
problem can be factorized. However, as discussed in Section 4.3, due to the coupling of
the processes, the belief state, i.e., the joint distribution of the state variables, is usually not
decomposable. We have to introduce an approximate belief state which has a convenient
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structure for distributed inference. This can be done by assuming extra structure on the
graphical model, i.e., modifying the graph to make distributed implementation possible.
Based on the modified graph, we derive efficient synchronization algorithms.

6.5.1 Probabilistic model

Since we assume constant frequencies, the state transition model of frequency ratio is
given by:

rMSn(k) = rMSn(k − 1) + ωn(k) (6.60)

where ωn(k) is the process noise of frequency ratio. If the frequency drifts, the perfor-
mance is sensitive to the choice of ωn(k). We will discuss the proper choice of the value of
ωn(k) later.

The state transition of−→x in
n (k) is given by:

−→x in
n (k) = −→x in

n (k − 1) +
(−→s in

Sn(k)−
−→s in

Sn(k − 1)
)
· rMSn(k) (6.61)

Let us define:
an(k) =

−→s in
Sn(k)−

−→s in
Sn(k − 1) (6.62)

then (6.61) can be rewritten as:

−→x in
n (k) = −→x in

n (k − 1) + an(k) · rMSn(k) (6.63)

−→x in
n (k) and −→x out

n (k) are related by:

−→x out
n (k) = −→x in

n (k) +
(−→s out

Sn (k)−−→s in
Sn(k)

)
· rMSn(k) (6.64)

Let us define

bn(k) = ĉSn(
−→
d BD
n (k))

= −→s out
Sn (k)−−→s in

Sn(k) (6.65)

and rewrite (6.64):
−→x out

n (k) = −→x in
n (k) + bn(k) · rMSn(k) (6.66)

−→c out
M (k) and −→y in

1 (k) are related by the line delay between master and slave 1:

−→c out
M (k) = −→y in

1 (k)− cM(
−→
dLD1 (j))

= −→y in
1 (k)− cS1(

−→
dLD1 (j)) · rMS1(k)

= −→y in
1 (k)−

(
ĉS1(
−→
dLD1 (j)) + c̃S1(

−→
dLD1 (j))

)
· rMS1(k) (6.67)

For n > 1, −→y out
n−1(k) and −→y in

n (k) are related by:

−→y out
n−1(k) = −→y in

n (k)− cM(
−→
dLDn (j))

= −→y in
n (k)− cSn(

−→
dLDn (j)) · rMSn(k)

= −→y in
n (k)−

(
ĉSn(
−→
dLDn (j)) + c̃Sn(

−→
dLDn (j))

)
· rMSn(k) (6.68)
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For all TT ∈ {in,out}, the relation holds by definition of rMSn(k):
−→x TT

n (k)−−→y TT
n (k) = rMSn(k) ·

(−→s TT
Sn(k)−

−→c TT
Sn(k)

)
= rMSn(k) ·

−→
ξ TT
Sn(k) (6.69)

where we have applied (6.51) for the second equality.

Applying (6.51) with −→c out
M (k) on the left hand side and (6.69) on the 1st term on the right

hand side, (6.67) can be rewritten as:

−→s out
M (k)−−→ξ out

M (k) = −→x in
1 (k)−rMS1(k)·

−→
ξ in
S1 (k)−

(
ĉS1(
−→
dLD1 (k)) + c̃S1(

−→
dLD1 (k))

)
·rMS1(k) (6.70)

Moving
−→
ξ out
M (k) to the right hand side, we obtain:

−→s out
M (k) = −→x in

1 (k)−rMS1(k)·
−→
ξ in
S1 (k)−

(
ĉS1(
−→
dLD1 (k)) + c̃S1(

−→
dLD1 (k))

)
·rMS1(k)+

−→
ξ out
M (k) (6.71)

Using (6.69) on both left hand side and 1st term on the right hand side, (6.68) can be
rewritten as:

−→x out
n−1(k)− rMSn−1(k) ·

−→
ξ out
Sn−1

(k)

= −→x in
n (k)− rMSn(k) ·

−→
ξ in
Sn(k)−

(
ĉSn(
−→
dLDn (k)) + c̃Sn(

−→
dLDn (k))

)
· rMSn(k) (6.72)

Using (6.66) and moving rMSn−1(k) ·
−→
ξ out
Sn−1

(k) to the right hand side, (6.72) can be rewritten
as:

−→x in
n−1(k) + bn−1(k) · rMSn−1(k)

= −→x in
n (k)− rMSn(k) ·

−→
ξ in
Sn(k)−

(
ĉSn(
−→
dLDn (k)) + c̃Sn(

−→
dLDn (k))

)
· rMSn(k) +

+rMSn−1(k) ·
−→
ξ out
Sn−1

(k) (6.73)

We define:

νn(k) =

{
−c̃S1(

−→
dLD1 (k)) · rMS1(k) +

−→
ξ out
M (k)− rMS1(k) ·

−→
ξ in
S1 (k) for n = 1

−c̃Sn(
−→
dLDn (k)) · rMSn(k) + rMSn−1(k) ·

−→
ξ out
Sn−1

(k)− rMSn(k) ·
−→
ξ in
Sn(k) for n > 1

(6.74)
and

dn(k) = ĉSn(
−→
dLDn (k)) (6.75)

and then rewrite (6.71) and (6.73) as follows:
−→s out

M (k) = −→x in
1 (k)− d1(k) · rMS1(k) + ν1(k) (6.76)

−→x in
n−1(k) + bn−1(k) · rMSn−1(k) =

−→x in
n (k)− dn(k) · rMSn(k) + νn(k) (6.77)

Let us use rnomMSn to be the ratio of the nominal frequencies of master and slave n, which is
a constant. Now we replace rMSn(k) with rnomMSn in (6.74), i.e., we define:

νn(k) =

{
−c̃S1(

−→
dLD1 (k)) · rnomMS1 +

−→
ξ out
M (k)− rnomMS1 ·

−→
ξ in
S1 (k) for n = 1

−c̃Sn(
−→
dLDn (k)) · rnomMSn + rnomMSn−1

· −→ξ out
Sn−1

(k)− rnomMSn ·
−→
ξ in
Sn(k) for n > 1

(6.78)
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As shown in Table 6.1, the maximum frequency deviation is very small, the error intro-
duced by this replacement is negligible. But it makes νn(k) independent on the hidden
variables. Once the hardware specification of the network element is given, we can deter-
mine the distribution of the noise variable νn(k).

6.5.2 Model analysis

Now, let us summarize the most important formulas that have been derived:

- (6.60): rMSn(k) = rMSn(k − 1) + ωn(k)

- (6.63): −→x in
n (k) = −→x in

n (k − 1) + an(k) · rMSn(k)

- (6.76): −→s out
M (k) = −→x in

1 (k)− d1(k) · rMS1(k) + ν1(k)

- (6.77): −→x in
n−1(k) + bn−1(k) · rMSn−1(k) =

−→x in
n (k)− dn(k) · rMSn(k) + νn(k)

The variables above fall into the following categories:

• known variables: −→s out
M (k), {an(k)}Nn=1, {dn(k)}Nn=1 and {bn−1(k)}Nn=2.

• hidden state variables: {−→x in
n (k)}Nn=1 and {rMSn(k)}Nn=1.

• random variables with known distribution: {νn(k)}Nn=1 and {ωn(k)}Nn=1

Let us assume all noises are Gaussian noise, i.e., ωn(k) ∼ N (0, σ2
ω) and νn(k) ∼ N (0, σ2

ν)
for all n = 1, . . . N . Assuming same hardware for each network element (master or slave),
then the distributions of ωn(k) and νn(k) are independent of time step k and element
number n. Therefore, we dropped k and n in σω and σν .

As we can see from (6.78), νn(k) is a linear combination of many zero mean stamp-
ing noises where each noise

−→
ξ TT
TB(k) is a random variable generated from a distribution

p−→
ξ TT
TB(k)

(
−→
ξ TT
TB(k)). Usually, we obtain the distribution function of the stamping errors from

the description of the hardware or from experiment. Given all the distributions, we can
use Monte Carlo method to generate many samples v(i) ∼ p−→

ξ TT
TB(k)

(v). Using (6.78), we
can produce samples {ν(i)} of νn(k) from {v(i)}. Then we can find out the best Gaussian
distribution that fits the histogram of the data {ν(i)} and thus obtain the value of σν .

The state transition model of the frequency ratio in (6.60) indicates that the underlying
model assumes constant frequency and uses the parameter σω to control the strength of
this assumption. If the true frequency varies, we will face a model mismatch problem.
We can determine how much such a model should be trusted by adjusting the value of
σω. It balances the importance between the state transition model and the measurements.
If σω is big, then we can somehow decrease the error introduced by model mismatch by
trusting the measurements. But we will tolerate the noise made in the observation. If σω
is small, we force the estimate of frequency to be constant. By doing that, we will take
the risk of model mismatch. However, if the true frequency is constant, small σωn can
minimize the influence of the observation noise. In practice, the choice of the value of
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σωn should be based on the stability of the oscillator and the magnitude of the stamping
errors.

For more compact notation we lump the two hidden variables into one hidden
vector-valued variable xn(k) = [−→x in

n (k) rMSn(k)]
T, and define accordingly An(k) =[

1 an(k)
0 1

]
, e = [0, 1]T, cn(k) = [1,−dn(k)]T, bn(k) = [1, bn(k)]

T. Then the state-space

equations become:
xn(k) = An(k)xn(k − 1) + ωn(k)e (6.79)
−→s out

M (k) = cT1(k)x1(k) + ν1(k) (6.80)

bTn−1(k)xn−1(k) = cTn(k)xn(k) + νn(k) (6.81)

The random vectors xn(k) and xn(k − 1) are related via the probability density function
pωn(k)(ωn(k)) of the noise ωn(k); the distribution x1(k) is given by the probability density
function pν1(k)(ν1(k)) of the noise ν1(k); and the random vectors xn(k) and xn−1(k) are
related via the probability density function pνn(k)(νn(k)) of the noise νn(k).

Since we assume all the noise are Gaussian, i.e., for all n ∈ {1, . . .N}, ωn(k) ∼ N (0, σ2
ω)

and νn(k) ∼ N (0, σ2
ν). Then

pωn(k)(ωn(k)) =
1√
2πσω

exp

(
−(ωn(k))

2

2σ2
ω

)
(6.82)

and since from (6.79)
ωn(k) = eT (xn(k)−An(k)xn(k − 1)) (6.83)

we define:

fnk (xn(k)|xn(k − 1)) = pωn(k)(ωn(k)) = pωn(k)(e
T (xn(k)−An(k)xn(k − 1)))

=
1√
2πσω

exp

(
−(xn(k)−An(k)xn(k − 1))T eeT (xn(k)−An(k)xn(k − 1))

2σ2
ω

)
(6.84)

Here we write fnk in a form of conditional probability to show that this function represents
the evlolution of the hidden state. Later, when we represent this function on a graphical
model, we use directed edges to represent this relationship.

Likewise:

pνn(k)(νn(k)) =
1√
2πσν

exp

(
−(νn(k))

2

2σ2
ν

)
(6.85)

and from (6.80), (6.81)
ν1(k) =

−→s out
M (k)− cT1(k)x1(k) (6.86)

νn(k) = bTn−1(k)xn−1(k)− cTn(k)xn(k) (6.87)

hence we define:

g1k(x1(k);
−→s out

M (k)) = pν1(k)(ν1(k)) = pν1(k)(
−→s out

M (k)− cT1(k)x1(k))

=
1√
2πσν

exp

(
−(
−→s out

M (k)− cT1(k)x1(k))
2

2σ2
ν

)
(6.88)
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and

gnk (xn(k),xn−1(k)) = pνn(k)(νn(k)) = pνn(k)(b
T
n−1(k)xn−1(k)− cTn(k)xn(k))

=
1√
2πσν

exp

(
−
(
bTn−1(k)xn−1(k)− cTn(k)xn(k)

)2
2σ2

ν

)
(6.89)

The functions fnk and gnk (n = 1, . . .N and k = 1, . . .K) reveal all possible relationships
between hidden and observed variables. Figure 6.7 uses a factor graph to visualize those
relationships where the function nodes represents the functions defined in (6.84), (6.88)
and (6.89).

Fig. 6.7. Factor graph for clock synchronization

The joint probability represented by Figure 6.7 can be expressed as follows:

p({X(k)}Kk=1, {−→s out
M (k)}Kk=1) =

N∏
n=1

p(xn(0)) · (6.90)

·
K∏
k=1

(
N∏
n=1

fnk (xn(k)|xn(k − 1)) · g1k(x1(k);
−→s out

M (k)) ·
N∏
n=2

gnk (xn(k),xn−1(k))

)

where X(k) = [x1(k), . . .xN(k)] ensembles all the hidden state variables at the same time
step k. The distribution p(xn(0)) represents the prior knowledge on the distribution of the
initial state.

Our goal is to use probabilistic inference algorithms to estimate the a posteriori probabil-
ity distribution of xn(k), i.e., p(xn(K)|{−→s out

M (k)}Kk=1) for each slave n at time step K.

The factor graph shown in Figure 6.7 resembles a dynamic Bayesian network. However,
there are function nodes and undirected edges in the graph. Therefore, we call it dynamic
factor graph. The arrows reveal the transition of the hidden states. Like 2TBN, we can
also develop a compact graphical representation of the dynamical system, which we call
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Fig. 6.8. 2TFG for clock synchronization

2TFG, i.e., two-slice temporal factor graph. Figure 6.8 illustrates 2TFG for the synchro-
nization problem.

Section 4.3 introduced probabilistic inference algorithms for state estimation in dynamical
systems, which convert a 2TBN to a junction tree. Kevin Murphy’s interface algorithm
produces the exact result. In this algorithm, we first identify the interface I(k) that d-
separates the past from the future. The interface from time slice k − 1 to slice k contains
hidden variables in time slice k−1 which have children in time slice k. In the 2TFG shown
in Figure 6.8, the interface from time slice k − 1 to k is {xn(k − 1)}Nn=1. According to the
interface algorithm, when we construct a junction tree, all the variables in the interface
should form a big clique. As a result, we should assemble {xn(k)}Nn=1 into a big node,
which result in a factor graph shown in Figure 6.9.

Fig. 6.9. Junction tree of the 2TFG in Figure 6.8

In Figure 6.9, the function gIk is given by:

gIk(x1(k), . . .xN(k);
−→s out

M (k))

= g1k(x1(k);
−→s out

M (k)) ·
N∏
n=2

gnk (xn(k),xn−1(k)) (6.91)
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and the function fIk is given by:

fIk (x1(k), . . .xN(k),x1(k − 1), . . .xN(k − 1))

=
N∏
n=1

fnk (xn(k)|xn(k − 1)) (6.92)

At each time slice k, the interface algorithm requires joint estimation of all hidden state
variables. Such an algorithm must be implemented in a centralized way, i.e., all the rele-
vant information should be transmitted to a fusion center where the junction tree shown
in Figure 6.9 can be constructed to compute the joint posterior probability distribution
of all the hidden state variables. Such a centralized estimation guarantees exact results.
However, it is infeasible in practice because transmitting information to the fusion center
is not supported by the PTP protocol. Additional transportation protocol has to be de-
fined. Furthermore, communication between the slaves and the fusion center introduces
delays, which degrades the synchronization performance. Therefore, centralized infer-
ence only provides theoretically the best achievable synchronization precision.

In order to implement a distributed state estimation method, we need to introduce ap-
proximations. We modify the 2TFG in Figure 6.8 to produce a graphical model with sim-
pler structure. Such a simpler structure enables distributed state estimation. However,
the result is not exact anymore. We should expect that the results are worse than that of
the centralized inference method. Boyen and Koller proved in [10] that for appropriate
approximations, the error, measured by the Kullback-Leibler distance to the true distri-
bution, remains bounded indefinitely.

In the following sections, we introduce respectively the centralized and the distributed
inference algorithms for clock synchronization.

6.5.3 State space model and centralized master time estimation

We first present an estimation method that is implemented in a centralized way. All the
time stamps associated with the Sync messages are transmitted to a fusion center, where a
Kalman filter is used to solve the state estimation problem. The solution is optimal in the
sense of minimizing the mean square error. The results are then sent to the corresponding
slave elements so that they can work out the relationship between their own clock and
the master clock. It will be shown that this method is equivalent to the interface algorithm
mentioned in Section 6.5.2 which computes the exact posterior probability distribution of
the hidden state variables.

Usually a distributed implementation of the state estimation is preferable, in order to
avoid extra network traffic and the adverse effect of additional delays. However, as ex-
plained in Section 6.5.2, exact inference requires joint estimation of all the hidden state
variables. This centralized Kalman filtering implements such a centralized inference,
therefore yields a lower bound to the synchronization error achieved by any other syn-
chronization algorithm that is based on the same probabilistic model.
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Using (6.60) and (6.63), we obtain the following state transtion model for the whole sys-
tem:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−→x in
1 (k)

...
−→x in

N (k)
rMS1(k)
...
rMSN (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 a1(k) · · · 0
... . . . ...

... . . . ...
0 · · · 1 0 · · · aN(k)
0 · · · 0 1 · · · 0
... . . . ...

... . . . ...
0 · · · 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−→x in
1 (k − 1)

...
−→x in

N (k − 1)
rMS1(k − 1)
...
rMSN (k − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
ω1(k)
...
ωN(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.93)

Using x(k) to denote the vector of hidden state variables on the left hand side of (6.93),
using A(k) for the first matrix on the right hand side, and ω(k) = [ω1(k), . . . ωN(k)]

T for
the noise vector and defining EN = [0N , IN ] where 0N is an N × N null matrix and IN is
an identity matrix of dimension N , we can write (6.93) as follows:

x(k) = A(k) · x(k − 1) + ET
N ·ω(k) (6.94)

which gives us the state transition model.

Now, let us rewrite (6.77) in the following form:

0 = −→x in
n (k)− dn(k) · rMSn(k)−−→x in

n−1(k)− bn−1(k) · rMSn−1(k) + νn(k) (6.95)

Combining (6.76) with (6.95) for all elements, we obtain:⎡
⎢⎢⎢⎣
−→s out

M (k)
0
...
0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 · · · 0 0 −d1(k) 0 · · · 0 0
−1 1 · · · 0 0 −b1(k) −d2(k) · · · 0 0

...
... . . . ...

...
...

... . . . ...
...

0 0 · · · −1 1 0 0 · · · −bN−1(k) −dN(k)

⎤
⎥⎥⎥⎦ ·

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−→x in
1 (k)
−→x in

2 (k)
...
−→x in

N−1(k)−→x in
N (k)

rMS1(k)
rMS2(k)
...
rMSN−1

(k)
rMSN (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣
−ν1(k)
−ν2(k)
...
−νN(k)

⎤
⎥⎥⎥⎦ (6.96)

Using C(k) to denote the matrix on the right hand side of (6.96), y(k) for the left hand
side, ν(k) for the noise vector, we rewrite (6.96) as follows:

y(k) = C(k) · x(k) + ν(k) (6.97)

which gives us the observation model.

Now, let us write down the state-space model:
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• state transition model (6.94): x(k) = A(k) · x(k − 1) + ET
N · ω(k)

• observation model (6.97): y(k) = C(k) · x(k) + ν(k)

The first formula reveals the time correlation of the state variables, so they constitute the
state transition model. The second one reveals the space correlation of the state variables;
hence they are the observation or coupling model. These two equations represent the state-
space-model of the system.

The vectors and matrices in these two formulas fall into the following categories:

• known: y(k), A(k), C(k), ET
N .

• hidden states: x(k − 1), x(k).

• noise with Gaussian distribution: ω(k), ν(k).

In (6.94), the random vectors x(k − 1) and x(k) are related via the probability density
function pω(k)(ω(k)) of the noise ω(k). From (6.94), we obtain a distribution of random
vectors x(k) which is given by the probability density function pν(k)(ν(k)) of the noise
ν(k).

As discussed in the previous section, we assume that all the additive noise are Gaussian,
i.e., ωn(k) ∼ N (0, σ2

ω) and νn(k) ∼ N (0, σ2
ν) for all n = 1, . . . N . Let us use R and Q to

denote the covariance matrix of ω(k) and ν(k), so:

R =

⎡
⎢⎣
σ2
ω . . . 0
... . . . ...
0 . . . σ2

ω

⎤
⎥⎦ = σ2

ω · I (6.98)

and

Q =

⎡
⎢⎣
σ2
ν . . . 0
... . . . ...
0 . . . σ2

ν

⎤
⎥⎦ = σ2

ν · I (6.99)

Then:

pω(k)(ω(k)) =
1

(2π)N/2 |Q|1/2
exp

(
−1
2
ωT(k)Q−1ω(k)

)
(6.100)

From (6.94):
ET
N · ω(k) = x(k)−A(k) · x(k − 1) (6.101)

Left multiplying on both sides of (6.101) with EN and noting that ENE
T
N = IN , we obtain:

ω(k) = EN · (x(k)−A(k) · x(k − 1)) (6.102)

Now we define:

fCk (x(k − 1),x(k)) = pω(k)(EN · (x(k)−A(k) · x(k − 1)))

=
1

(2π)N/2 |Q|1/2
e(−

1
2
(x(k)−A(k)·x(k−1))TET

NQ−1EN (x(k)−A(k)·x(k−1)))

(6.103)
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Likewise:

pν(k)(ν(k)) =
1

(2π)N/2 |R|1/2
exp

(
−1
2
νT(k)R−1ν(k)

)
(6.104)

and from (6.97):
ν(k) = y(k)−C(k) · x(k) (6.105)

hence we define:

gCk(x(k)) = pν(k)(y(k)−C(k) · x(k))

=
1

(2π)N/2 |R|1/2
e(−

1
2
(y(k)−C(k)·x(k))TR−1(y(k)−C(k)·x(k))) (6.106)

Figure 6.10 shows the factor graph representation of the state-space model.

Fig. 6.10. Factor graph representation of the centralized state-space model

Since we assume that all the random vairables in the model are Gaussian distributed, we
can use a Kalman filter to solve the state estimation problem. The calculation is summa-
rized as follows:

• Predict:

predict state: x̂(k, k − 1) = A(k)x̂(k − 1, k − 1)

predict covariance: P(k, k − 1) = A(k)P(k − 1, k − 1)AT(k) + ET
NQEN

• Update:

measurement residual: z̃(k) = y(k)−C(k)x̂(k, k − 1)

residual covariance: S(k) = C(k)P(k, k − 1)CT(k) +R

Kalman gain: K(k) = P(k, k − 1)CT(k)S−1(k)

updated state: x̂(k, k) = x̂(k, k − 1) +K(k)z̃(k)

updated covariance: P(k, k) = (I−K(k)C(k))P(k, k − 1)

Figure 6.10 is very similar to the graph shown in Figure 6.9. It can also be easily proved
that (6.106) and (6.103) are the expression of (6.91) and (6.92) in vector form. As a conse-
quence, the interface algorithm is identical to the centralized Kalman filter (see the dis-
cussion in 4.3). That is to say that using the state space model and the Kalman filter, we
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implement the centralized inference that computes the exact posterior distribution of the
hidden state variables.

As we mentioned, this Kalman filter method is a centralized estimation method. All the
timing information has to be transmitted to a fusion center where a Kalman filter is im-
plemented to jointly estimate the hidden state for all slaves. Then the results will be dis-
seminated to the slaves. Figure 6.11 illustrates the gathering of the information from the
slaves and the distribution of the estimation results.

Fig. 6.11. Information transmission between network elements and the fusion center

The performance of the centralized Kalman filter is verified by simulation. The results,
i.e., the synchronization error is depicted in Figure 6.12. This simulation result is obtained
by choosing an appropriate value for the parameter σω.

Fig. 6.12. Synchronization error of the centralized Kalman filter

6.5.4 The sum-product algorithm for master time estimation

In this section, we develop a distributed implementation of the hidden state estimation.
As discussed in Section 6.5.2, computation of exact posterior probability distribution re-
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quires a centralized implementation. We modify the structure of the original probabilistic
graphical model so that the resulting graph is suitable for running the sum-product algo-
rithm, which realizes the distributed estimation of the hidden state variables.

6.5.4.1 Modified factor graph for distributed inference

The 2TFG shown in Figure 6.8 represent the following distribution:

pk(x(k − 1),x(k),−→s out
M (k)|−→s out

M (1), . . .−→s out
M (k − 1))

= p(x(k − 1)|−→s out
M (1), . . .−→s out

M (k − 1)) · g1k(x1(k);
−→s out

M (k)) ·
N∏
n=2

gnk (xn(k),xn−1(k))

·
N∏
n=1

fnk (xn(k)|xn(k − 1)) (6.107)

In each time step k we want to infer the posterior distribution of xn(k) and pass the belief
state p(x(k)|−→s out

M (1), . . .−→s out
M (k)) to the next time step.

According to Section 4.1, distributed inference is based on the factorization of the joint
probability. In (6.107), the problem is with the belief state p(x(k−1)|−→s out

M (1), . . .−→s out
M (k−

1)) which is usually not factorizable. To overcome this problem, we approximate this
belief state by:

p(x(k − 1)|−→s out
M (1), . . .−→s out

M (k − 1)) =
N∏
n=1

q(xn(k − 1)) (6.108)

We further assume that gnk represent conditional probability distributions. And now we
can modify (6.107) to:

pk(x(k − 1),x(k),−→s out
M (k)|−→s out

M (1), . . .−→s out
M (k − 1)) (6.109)

=
N∏
n=1

q(xn(k − 1)) · g1k(x1(k);
−→s out

M (k)) ·
N∏
n=2

gnk (xn(k)|xn−1(k)) ·
N∏
n=1

fnk (xn(k)|xn(k − 1))

Based on (6.109), we construct a inference graph as shown in Figure 6.13. Arrows are
introduced on the vertical edges to reveal that gnk now is a conditional probability func-
tion. By introducing directed edges, we regulate that message passing only follows the
indicated directions.

6.5.4.2 Sum-product algorithm for distributed inference

Using the graph in Figure 6.13, we can derive the posterior probability distribution of
every xn(k), i.e., q(xn(k)) by using the sum-product algorithm.

Since all the equations in the state-space model are linear and all the random variables
have Gaussian distribution, q(xn(k)) is also a Gaussian distribution, which is given by:

q(xn(k)) =
1

(2π) |Pn(k)|1/2
exp

(
−1
2
(xn(k)− x̄n(k))

TPn(k)
−1 (xn(k)− x̄n(k))

)
(6.110)
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Fig. 6.13. Factor graph for distributed inference

where x̄n(k) is the mean of Gaussian random variable xn(k). Pn(k) is its covariance
matrix. The mean and covariance matrix are initialized with appropriate values (e.g.,

E{rMSn(k)} is initialized by 1, E{xinn (k)} is initialized by −→s out
M (k) +

N∑
i=1

di(k) +
N−1∑
i=1

bi(k)

and Pn(k) is initialized by: N · σ2
ν(k) · IN ) in step 0. The following part derives the transi-

tion from step k−1 to step k. Using the sum-product algorithm, we can calculate q(xn(k))
in each time step k, for which it is sufficient to calculate the mean and variance. Because
q(xn(k)) is Gaussian, it has its maximum at the mean, hence the MAP estimate of xn(k) is:
x̂MAP
n (k) = x̄n(k).

In (4.12) and (4.13), if incoming messages are Gaussian, then the outgoing message is also
Gaussian. The sum-product algorithm will be initialized by Gaussian distributions, so all
the messages are Gaussian. We use μa→b and Λa→b to denote the mean and the variance
of message ma→b.

Since now we regulate the message flow of the sum-product algorithm, i.e., messages
only pass in the direction indicated by the arrows on the edges, we can discover the
following relationships by applying the computation rule (equations (4.12) and (3.8)) of
the sum-product algorithms (see Figure 6.16):

mxn−1(k−1)→fn−1
k

(xn−1(k − 1))

= mxn−1(k−1)→gnk−1
(xn−1(k − 1))

= q (xn−1(k − 1))

= mfn−1
k−1 →xn−1(k−1) (xn−1(k − 1)) ·mgn−1

k−1→xn−1(k−1) (xn−1(k − 1)) (6.111)

We first take a look at the message passing around function node fnk , as depicted in Fig-
ure 6.14.
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Fig. 6.14. Message passing around f nk

According to (4.13) and (6.111), the message from function node fnk to variable node xn(k)
can be calculated as follows:

mfnk →xn(k)(xn(k)) =

∫
xn(k−1)

mxn(k−1)→fnk
(xn(k − 1)) · fnk (xn(k)|xn(k − 1)) (6.112)

=

∫
xn(k−1)

q(xn(k − 1)) · fnk (xn(k)|xn(k − 1)) (6.113)

The expression of q(xn(k−1)) is given by (6.110) and the expression of fnk (xn(k)|xn(k−1))
is given by (6.84). Calculating the integral in (6.112) according to the standard multipli-
cation and integration of multivariate Gaussian distribution functions, leads to the result
that mfnk →xn(k)(xn(k)) is a Gaussian density function, with mean:

μfnk →xn(k) = An(k) · x̄n(k − 1) (6.114)

and covariance matrix:

Λfnk →xn(k) = An(k)Pn(k)A
T
n(k) +Φn(k) (6.115)

where Φn(k) =

[
0 0
0 σ2

ω

]
.

So mfnk →xn(k)(xn(k)) can be expressed as:

mfnk →xn(k)(xn(k)) (6.116)

=
1

2π
∣∣Λfnk →xn(k)

∣∣ exp
(
−1
2

(
xn(k)− μfnk →xn(k)

)T
Λ−1
fnk →xn(k)

(
xn(k)− μfnk →xn(k)

))

Message Calculation Around Node x1(k) As shown in Figure 6.15, the message from
function node g1k to variable node x1(k), i.e., mg1k→x1(k) is only determined by the function
g1k, since no message enters this function node. According to the sum-product algorithm,
mg1k→x1(k) is given by:

mg1k→x1(k)(x1(k)) = g1k(x1(k)) (6.117)

As g1k(x1(k);
−→s out

M (k)) is given by (6.88), the expression of mg1k→x1(k)(x1(k)) is identical to
(6.88), namely:

mg1k→x1(k)(x1(k)) =
1√
2πσν

exp

(
−(
−→s out

M (k)− cT1(k)x1(k))
2

2σ2
ν

)
(6.118)



6.5 Probabilistic model for clock synchronization 143

Fig. 6.15. Message passing around x1(k)

According to Figure 6.15, the only incoming message at variable node x1(k) are
mg1k→x1(k)(x1(k)) and mfnk →xn(k)(xn(k)). Since now they have been calculated in (6.117)
and (6.112), and the results are given in (6.118) and (6.116), we can calculate the estimated
marginal q(x1(k)), according to (6.111) as follows:

q(x1(k)) = mg1k→x1(k)(x1(k)) ·mf1k→x1(k)(x1(k)) (6.119)

Calculating the product of two Gaussian functions in (6.119), we can find out that q(x1(k))
is also a Gaussian function. Its covariance matrix is:

P1(k) =
(
c1(k)σ

−2
ν cT1 (k) +Λ−1

f1k→x1(k)

)−1

(6.120)

and the mean is:

x̄1(k) = P1(k) ·
(
c1(k)σ

−2
ν
−→s out

M (k) +Λ−1
f1k→x1(k)

μf1k→x1(k)

)
(6.121)

Message Calculation Around Node xn(k) (n > 1) The message from gnk to xn(k) (for
n > 1) is given by, using (4.13) and (6.111):

mgnk→xn(k) (xn(k))
=

∫
xn−1(k)

mxn−1(k)→gnk
(xn−1(k)) · gnk (xn(k)|xn−1(k))

=
∫

xn−1(k)

q (xn−1(k)) · gnk (xn(k)|xn−1(k))
(6.122)

Inserting (6.110) and (6.89) into (6.122) and computing the integration, we obtain:

mgnk→xn(k)(xn(k)) = α · exp
(
−
(
cTn(k)xn(k)− bT

n−1(k)x̄n−1(k)
)2

2
(
σ2
ν + bT

n−1(k)Pn−1(k)bi−1(k)
)
)

(6.123)

where α is the normalization factor.
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Fig. 6.16. Message passing around xn(k)

Then the posterior probability distribution of xn(k) is calculated by:

q(xn(k)) = mfnk →xn(k)(xn(k)) ·mgnk→xn(k)(xn(k)) (6.124)

Inserting the result of (6.116) and (6.123) into (6.124), it can be found out that the covari-
ance matrix of q(xn(k)) is:

Pn(k) =
(
cn(k)

[
σ2
ν + bTn−1(k)Pn−1(k)bn−1(k)

]−1
cTn (k) +Λ−1

fnk →xi(k)

)−1

(6.125)

and the mean of q(xn(k)) is:

xn(k) = Pn(k)

{
cn(k)

[
σ2
ν + bTn−1(k)Pn−1(k)bn−1(k)

]−1
bTn−1(k)x̄n−1(k)

+Λ−1
fnk →xi(k)

μfnk →xi(k)

}
(6.126)

Using (6.110)-(6.126), the posterior probability density function for all variable nodes can
be calculated.

Figure 6.17 illustrates the information exchanged between the slaves. All this information
can be delivered by the Sync messages.

Fig. 6.17. Information transmission between network elements

The synchronization performance of this distributed Kalman filter is evaluated by sim-
ulations. The results, i.e., synchronization error is shown in Figure 6.18. This simulation
result is obtained by choosing an appropriate value for the parameter σω.
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Fig. 6.18. Synchronization error of the distributed Kalman filter

6.5.5 Sequential Kalman filter for master time estimation

In the state space model derived in the previous sections, we model the frequency ratio
as a hidden variable, which doubles the number of the hidden variables. In this section,
we present another state-space model where the frequency ratio will be regarded as a
parameter of the model. It will be estimated separately and the estimate will be used as a
deterministic input to the state-space model.

6.5.5.1 State space model

As we just need to modify the modeling and the estimation of the frequency ratio, we can
still use formula (6.63), (6.76) and (6.77) in the new probabilistic model. Let us summarize
them here for clarity:

- (6.63): −→x in
n (k) = −→x in

n (k − 1) + an(k) · rMSn(k)

- (6.76): −→s out
M (k) = −→x in

1 (k)− d1(k) · rMS1(k) + ν1(k)

- (6.77): −→x in
n−1(k) + bn−1(k) · rMSn−1(k) =

−→x in
n (k)− dn(k) · rMSn(k) + νn(k)

To further decouple the problem, we now define different frequency ratios and rewrite
the equations as follows:

−→x in
n (k) = −→x in

n (k − 1) + an(k) · raMSn(k) (6.127)

−→s out
M (k) = −→x in

1 (k)− d1(k) · rdMS1(k) + ν1(k) (6.128)

−→x in
n−1(k) + bn−1(k) · rbMSn−1

(k) = −→x in
n (k)− dn(k) · rdMSn(k) + νn(k) (6.129)

where raMSn(k), r
b
MSn(k) and rdMSn(k) represent different values of the frequency ratio be-

tween master and slave n.
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At slave 1, we estimate the frequency ratio between master clock and slave 1’s clock by:

r̂MS1(k) =
−→s out

M (k)−−→s out
M (k − 1)

−→s in
S1 (k)−

−→s in
S1 (k − 1)

(6.130)

Usually, several last estimates are averaged to improve the estimation accuracy. Let us
use η1(k) to denote the estimation error, i.e.,:

rTTMS1(k) = r̂MS1(k) + ηTT1 (k) (6.131)

where TT ∈ {a, b, d}.
The property of the frequency ratio estimation error has be analytically studied in [79].
Improvements of the estimation accuracy have been proposed in [80]. It can be seen
that the final estimation uncertainty can be well modeled by a Gaussian random vari-
able. We further assume that ηa1(k), η

b
1(k) and ηd1(k) are three independence random vari-

ables that are generated from the same Gaussian distribution, i.e., ηTT1 (k) ∼ N (0, σ2
η) for

(TT = a, b, c). For simplicity, we assume that the variance of ηTT is time and element in-
dependent. The variance of the Gaussian distribution is related to the stamping error and
the quantization error in the time stamping. The relationship was shown in [80]. In case
of frequency drift, the reasonable choice of the value of ση also depends on the speed of
the frequency drift. If the value of ση is small, then we assume that the frequency drift is
slow. Otherwise, we assume the frequency drift is fast.

Now let us insert (6.131) into (6.127) with TT = a, then we obtain:

−→x in
1 (k) = −→x in

1 (k − 1) + a1(k) · r̂MS1(k) + a1(k) · ηa1(k) (6.132)

Let us define:
ε1(k) = a1(k) · ηa1(k) (6.133)

and rewrite (6.132) as follows:

−→x in
1 (k) = −→x in

1 (k − 1) + a1(k) · r̂MS1(k) + ε1(k) (6.134)

which constitutes the new state transition model at slave 1.

Inserting (6.131) into (6.128) with TT = d, we obtain:

−→s out
M (k) = −→x in

1 (k)− d1(k) · r̂MS1(k)− d1(k) · ηd1(k) + ν1(k) (6.135)

Let us define:
ζ1(k) = −d1(k) · ηd1(k) + ν1(k) (6.136)

Then we rewrite (6.135) as follows:

−→s out
M (k) = −→x in

1 (k)− d1(k) · r̂MS1(k) + ζ1(k) (6.137)

which constitute the observation model at slave 1.
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At slave n, the frequency ratio between master clock and slave n’s clock is estimated by:

r̂MSn(k) =
x̂outn−1(k)− x̂outn−1(k − 1)
−→s in

Sn(k)−
−→s in

Sn(k − 1)
(6.138)

where x̂outn−1(k) is the estimate of −→x out
n−1(k) which can be computed by:

x̂outn−1(k) = x̂inn−1(k) + bn−1(k) · r̂MSn−1(k) (6.139)

The estimation of −→x in
n−1(k), i.e., x̂inn−1(k) will be explained later.

Let us use ηn(k) to model the estimation error, then:

rTTMSn(k) = r̂MSn(k) + ηTTn (k) (6.140)

where TT ∈ {a, b, d}. Again we assume that ηan(k), η
b
n(k) and ηdn(k) are three independence

random variables that are generated from the same Gaussian distribution, i.e., ηTTn (k) ∼
N (0, σ2

η) for (TT = a, b, c).

Inserting (6.140) into (6.127), we obtain:

−→x in
n (k) = −→x in

n (k − 1) + an(k) · r̂MSn(k) + an(k) · ηan(k) (6.141)

Let us define:
εn(k) = an(k) · ηan(k) (6.142)

and rewrite (6.141) as follows:

−→x in
n (k) = −→x in

n (k − 1) + an(k) · r̂MSn(k) + εn(k) (6.143)

which constitutes the new state transition model at slave n.

Inserting (6.66) and (6.140) into (6.129), we obtain:

−→x out
n−1(k) =

−→x in
n (k)− dn(k) · r̂MSn(k)− dn(k) · ηdn(k) + νn(k) (6.144)

Let us define:
ζn(k) = −dn(k) · ηdn(k) + νn(k) (6.145)

Then (6.144) can be rewritten as:

−→x out
n−1(k) =

−→x in
n (k)− dn(k) · r̂MSn(k) + ζn(k) (6.146)

which constitutes the coupling model at slave n.

Now let us summarize the most important formulas of the new state space model:

- (6.134) −→x in
1 (k) = −→x in

1 (k − 1) + a1(k) · r̂MS1(k) + ε1(k)

- (6.137) −→s out
M (k) = −→x in

1 (k)− d1(k) · r̂MS1(k) + ζ1(k)

- (6.143) −→x in
n (k) = −→x in

n (k − 1) + an(k) · r̂MSn(k) + εn(k)

- (6.146) −→x out
n−1(k) =

−→x in
n (k)− dn(k) · r̂MSn(k) + ζn(k)
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The variables in these four equations fall into the following categories:

• Known variable: a1(k), an(k), −→s out
M (k) (from the time-stamps); dn(k) (from the line de-

lay estimation (6.46)); r̂MSn(k) (from the frequency ratio estimation (6.130) and (6.138))

• Hidden state variables: −→x in
n (k), −→x out

n (k)

• Random variable with known distributions: εn(k), ζn(k). These random variables con-
tain all the random errors in the system. Each of them is a linear combination of
several other random variables. As a result, their distribution can be well approx-
imated by a Gaussian distribution. In the following derivations, we assume that
εn(k) ∼ N (0, σ2

εn(k)
) and ζn(k) ∼ N (0, σ2

ζn(k)
). According to (6.133) and (6.142)

σ2
εn(k) = a2n(k)σ

2
η (6.147)

According to (6.136) and (6.145),

σ2
ζn(k) = d2n(k)σ

2
η + σ2

ν (6.148)

From the derivation, we can easily see that εn(k) and ζn(k) are independent random vari-
ables.

6.5.5.2 Distributed Kalman filter for state estimation

The probabilistic model derived in the previous section is linear and all the random
variables therein are Gaussian. As a result, the posterior probability distribution of
the hidden variables is also Gaussian, i.e., −→x in

n (k) ∼ N (x̂inn (k), vinn (k)) and −→x out
n (k) ∼

N (x̂outn (k), voutn (k)). We can use a Kalman filter to estimate the mean x̂inn (k) and the vari-
ance voutn (k) of the Gaussian distribution. Let us define the estimation error:

x̃inn (k) = xinn (k)− x̂inn (k) (6.149)

x̃outn (k) = xoutn (k)− x̂outn (k) (6.150)

Then:
E{x̃inn (k)} = E{x̃outn (k)} = 0 (6.151)

E{(x̃inn (k))2} = vinn (k) (6.152)

E{(x̃outn (k))2} = voutn (k) (6.153)

For the convenience of a unified expression of the state-space model for slave 1 and all
the other slaves, we define:

x̂out0 (k) = −→s out
M (k) (6.154)

and
vout0 (k) = 0 (6.155)

Using (6.150) and (6.154), we can unify the observation model in (6.137) and the coupling
model in (6.146) by expressing them as:

x̂outn−1(k) =
−→x in

n (k)− dn(k) · r̂MSn(k) + ζn(k)− x̃outn−1(k) for n ≥ 1 (6.156)
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where according to (6.155), x̃out0 (k) = 0.

Similarly, we unify the state transition model for all slave elements:

−→x in
n (k) = −→x in

n (k − 1) + an(k) · r̂MSn(k) + εn(k) for n ≥ 1 (6.157)

For n > 1, x̂outn−1(k) is computed from x̂inn−1(k) by:

x̂outn−1(k) = x̂inn−1(k) + bn−1(k) · r̂MSn−1(k) (6.158)

and the variance is computed by:

voutn−1(k) = E{(x̃outn−1(k))
2}

= E{((−→x in
n−1(k) + bn−1(k) · rbMSn−1

(k))− (x̂inn−1(k) + bn−1(k) · r̂MSn−1(k)))
2}

= E{(x̃inn−1(k) + bn−1(k) · ηbn−1(k))
2}

= vinn−1(k) + b2n−1(k) · σ2
η (6.159)

where in the last line is based on the uncorrelatedness between random variables x̃inn−1(k)
and ηbn−1(k).

For the Kalman filtering, we initialize the state estimation by:

r̂MSn(0) = 1 (6.160)

x̂inn (0) = x̂outn−1(0) + dn(0) · r̂MSn(0) (6.161)

vinn (0) = voutn−1(0) + σ2
ζn(k) (6.162)

x̂outn (0) = x̂inn (0) + bn(0) · r̂MSn(0) (6.163)

voutn (0) = vinn (0) + b2n(0) · σ2
η (6.164)

In the initial phase, no enough Sync messages are available to estimate RCF. So we ini-
tialize it with 1. Equations (6.161) and (6.163) make sense according to the physics of the
problem. Equation (6.162) results from the fact that the uncertainties at slave n, modeled
by ζn(k) increase the variance by σ2

ζn(k)
. Equation (6.164) is obtained from (6.159).

The Kalman filter contains two steps.

• In the first step, the prediction step, it computes, based on the results from the previous
time step:

Predicted mean:
x̂inn (k, k − 1) = x̂inn (k − 1) + an(k) · r̂MSn(k) (6.165)

Predicted variance:
vinn (k, k − 1) = vinn (k − 1) + σ2

εn(k) (6.166)



150 6. Clock Synchronization Of Networked Nodes

• The second step, the updating step, corrects the prediction by using the observation
model (6.156). In this step, the following computations will be carried out, according
to [108] and the derivation in Section 4.3.

Measurement residual:

zinn (k) = −→x out
n−1(k) + dn(k) · r̂MSn(k) + ζn(k)− x̃outn−1(k)− xinn (k, k − 1) (6.167)

Residual mean:

ẑinn (k) = x̂outn−1(k) + dn(k) · r̂MSn(k)− x̂inn (k, k − 1) (6.168)

where we have used the fact that both ζn(k) and x̃outn−1(k) are zero mean random vari-
ables.

Residual variance:

sinn (k) = E{(zinn (k)− ẑinn (k))2}
= E{(x̃outn−1(k))

2}+ E{ζ2n(k)}+ E{(x̃inn (k, k − 1))2}
= voutn−1(k) + σ2

ζn(k) + vinn (k, k − 1) (6.169)

Kalman gain:

kinn (k) =
vinn (k, k − 1)

sinn (k)
(6.170)

Posterior mean:
x̂inn (k) = x̂inn (k, k − 1) + kinn (k) · zinn (k) (6.171)

Posterior variance:
vinn (k) = (1− kinn (k)) · vinn (k, k − 1) (6.172)

Using the above equations, all the state variables can be estimated. It can be seen that
the computations are local. Each slave n can use a local Kalman filter to estimation a
master time x̂inn (k) that corresponds to its own time −→s in

Sn(k). The estimation results, i.e.,
x̂outn (k) and voutn (k) will be packaged in the Sync message and transmitted to the next
slave element. Information exchange between the elements is illustrated in Figure 6.19.

Fig. 6.19. Information transmission between network elements

Simulation results in Figure 6.20 illustrate the performance of this distributed Kalman
filter approach. This simulation result is obtained by choosing an appropriate value for
the parameter ση.
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Fig. 6.20. Synchronization error of sequential Kalman filter

6.6 Numerical evaluation of synchronization algorithms

In this section, we provide more comprehensive simulation results of the synchronization
algorithms introduced in the previous sections, i.e.,

• standard synchronization algorithm (standard)

• centralized Kalman filter (CKF)

• sum-product algorithm (SPA)

• sequential Kalman filter (SKF)

Our simulation parameters are obtained from the direct measurement of the industrial
automation network. The simulation results are realistic.

We consider two simulation settings. In the first setting, the clocks have constant fre-
quency. In the second setting, we consider the impact of frequency drift on different algo-
rithms.

6.6.1 Synchronization with constant clock frequency

In the previous sections, we demonstrated the synchronization performance of different
synchronization algorithms when the key parameters are carefully chosen. The central-
ized Kalman filter and the sum-product algorithm are based on the same probabilistic
model. In that model the most important parameter is σω. This parameter describes the
dynamics of the frequencies of the clock. In the probabilistic model used by the sequen-
tial Kalman filter, the key parameter is the uncertainty of the frequency estimate, i.e., ση.
This parameter also characterizes the change of the frequency. Only by choosing the ap-
propriate values for these key parameters, the best synchronization performance can be
achieved. To illustrate this, we simulate all the algorithms with different values of the
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parameters. We evaluate the performance by using the root mean square error (RMSE) of
the master time estimates, i.e., the RMSE of x̂inn (k).

In the simulation, we set:

σω = ση = ρ for n = 1, . . . N and k = 1, . . .K (6.173)

In Figure 6.21, we plot the RMSE vs. ρ curves for all different algorithms at the first slave
in the line topology with 50 elements.

Fig. 6.21. The RMSE with different values of the key parameters (slave 1)

In this simulation scenario, the frequency ratio is always constant. To reflect this, in the
probabilistic model used by the centralized Kalman filter and the sum product algorithm,
the value of σω should be small. In the extreme case when σω = 0, the state transition
equation (6.60) becomes rMSn(k) = rMSn(k − 1), which accurately reflects the fact that the
frequency ratio is constant. From the simulation results we can see that the smaller the
value of ρ, the better the synchronization performance. The same principle applies for the
probabilistic model used by the sequential Kalman filter.

If we look at the RMSE performance at remote slaves (e.g., slave 9 in Figure 6.22 and slave
49 in Figure6.23), the curves of sequential Kalman filter and the sum product algorithm
becomes irregular. This is because we have chosen the same value of σω and ση for all
slaves which is not optimal. Both distributed methods estimate the hidden state variables
in a given slave based on the results of the hidden state estimation in upstream slaves.
The parameters σω and ση not only characterize the stability of the frequency ratio, but
also reflect the error inherited from the previous element. As a consequence, the optimal
choice of σω and ση should result in different values for different slave elements. However,
for simplicity, we choose the same value of σω and ση for all slave elements which leads to
the RMSE curves shown in Figure 6.22. For centralized Kalman filter, such a configuration
is fine since the state variables of all slave elements are estimated jointly. Finding out the
optimal configuration of the parameters for all slave elements is not a trivial task, no
matter numerically or analytically.

Another interesting observation is that the centralized Kalman filter and the sum-product
algorithm can be worse than the standard algorithm when the value of σω is too large.
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Fig. 6.22. The RMSE with different values of the key parameters (slave 9)

Fig. 6.23. The RMSE with different values of the key parameters (slave 49)

However, the sequential Kalman filter is never worse than the standard algorithm when
the parameter ρ = ση is in the range [4 × 10−6, 1 × 10−3]. Actually, it can be proved that
(see Appendix 6.A) when the value of ρ = ση is in a given range, the RMSE performance
of sequential Kalman filter is identical to that of the standard algorithm.

6.6.2 Synchronization under adverse environmental effects

The environment can influence the stability of the oscillators. For example, dramatical
temperature changes, mechanical shocks and vibrations may cause the frequency of the
oscillators to drift. In this section, we examine the performance of different synchroniza-
tion algorithms under these environmental effects.

6.6.2.1 Effect of temperature change

Temperature change may cause the oscillator’s frequency to drift. In the automation and
manufacturing environment, temperature may increase or decrease dramatically. We sim-
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ulate the synchronization algorithms mentioned in this chapter and check their perfor-
mance under temperature change.

The temperature change we investigate in the simulation is illustrated in Figure 6.24.

Fig. 6.24. Profile of temperature change

Detailed discussion on the relation between temperature change and the frequency drift
can be found in [105]. In this chapter, we assume that the speed of the frequency drift is
proportional to the speed of the temperature change. Relevant parameters are summa-
rized in Table 6.2

Parameter Value
Maximum temperature 85◦C
Minimum temperature 25◦C
Initial temperature 25◦C
Speed of temperature change 3K/s
Frequency drift w.r.t. temperature change 1ppm/K
Speed of frequency drift caused by temperature change 3ppm/s

Table 6.2. Parameters of temperature change

Our first simulation scenario assumes temperature change at the master. We first study
the influence of the parameters on the performance of the algorithms. We plot the RMSE
versus parameter ρ = σω = ση curve for each algorithm in Figure 6.25, 6.26 and 6.27 for
slave 1, 9 and 49 respectively.

From the results, we can see that all the probabilistic approaches produce U-shape curves.
This is due to the fact that the parameter ρ being very small indicates that the variances
of ωn(k) and ηn(k) are small in (6.60) and (6.140), which can be interpreted that the proba-
bilistic models assume constant frequency. However, due to the temperature change, the
true frequency changes. Therefore, choosing ρ to be small introduces model mismatch
problem. On the other hand, if the value of ρ is too large, then we assume an inaccurate
state transition model. The estimation will give more importance to the measurements.
In this case, the measurement noise cannot be well filtered out. As a consequence, there is
always a tradeoff between model accuracy and noise filtering. To illustrate this, we plot
the absolute synchronization error achieved by centralized Kalman filter by choosing dif-
ferent values for ρ = σω.

In Figure 6.28, a a small value for ρ = σω is chosen. We observe biased estimation error
when the temperature is constantly changing. The bias in the estimation is caused by the
wrong assumption that the frequency ratio is constant. Due to that, the slave element
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Fig. 6.25. The RMSE with different values of the key parameters (slave 1)

Fig. 6.26. The RMSE with different values of the key parameters (slave 9)

Fig. 6.27. The RMSE with different values of the key parameters (slave 49)

cannot track the actual frequency of the master clock. This phenomenon was analyti-
cally studied in [81, 97]. Methods are proposed in [82] to remove this estimation offset
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Fig. 6.28. Synchronization performance of CKF when ρ = 7× 10−7

with temperature change at master

Fig. 6.29. Synchronization performance of CKF when ρ = 1× 10−3

with temperature change at master

for the standard synchronization algorithm. In Figure 6.30 and Figure 6.29, the constant
frequency assumption is relaxed by assigning large values to ρ = σω. Therefore the slave
can track the master clock frequency change better.

High frequency fluctuations are present in the synchronization error curves, which reveal
the result of filtering the measurement noise. It can be seen that the smaller the value of
ρ = σω, the better the reduction of measurement noises, i.e., the smaller the fluctuations.
In the case that the value of ρ = σω is too large, the measurement noise will overtake
the model mismatch problem to become the dominating error contributor, which is evi-
denced by the results in (6.29).

Now let us see what happens if the temperature change takes place at slave 1 only. The
results of using centralized Kalman filter is shown in Figure 6.31.
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Fig. 6.30. Synchronization performance of CKF when ρ = 3× 10−6

with temperature change at master

Fig. 6.31. Synchronization performance of CKF with temperature change at slave 1
when ρ = 7× 10−7

Comparing Figure 6.31 with Figure 6.28 we can see that temperature change taking place
at a single slave element has much less influence on the overall synchronization perfor-
mance than a temperature change at the master. It has been analyzed in [98] that if only
one element is heating, the estimation offset observed at the end of the line is much larger
if this element is the master and not a slave. Only if all slaves exhibit identical non-zero
frequency drift do they match the effect of ”master only heating”. This is verified by
the simulation results shown in Figure 6.32 where all the slaves are having temperature
change.

From the curves shown in Figure 6.25, 6.26 and 6.27, we can identify the best choice of
the value of ρ for each synchronization algorithm. Now we plot the synchronization er-
ror performance achieved by different algorithms with the best choice of the parameters.
The results are shown in Figure 6.33. As we can see from the results, the sum-product
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Fig. 6.32. Synchronization performance of CKF with temperature change at all slaves
when ρ = 7× 10−7

algorithm does not achieve a visible improvement over the standard algorithm. The se-
quential Kalman filter achieves some improvement and the centralized Kalman filter has
the best performance.

(a) standard algorithm (b) sum-product algorithm

(c) sequential Kalman filter (d) centralized Kalman filter

Fig. 6.33. Synchronization error with temperature change at the master
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6.6.2.2 Mechanical shocks

Mechanical shocks may cause the frequency of the oscillator to drift in a short time. The
drift can be modeled by a sinusoid function, which is illustrated in Figure 6.34

Fig. 6.34. Profile of frequency drift caused by mechanical shocks

As shown in Figure 6.34, the duration of the frequency drift caused by the mechanical
shock is 30ms. The total error in time is equal to the area of the half wave, which is in this
case 120ns.

In the simulation, we assume that mechanical shocks take place according to a pattern
shown in Figure 6.35.

Fig. 6.35. Pattern of mechanical shocks

6.6.2.3 Vibrations

Vibrations cause the oscillators’ frequency to oscillate periodically, resulting in a sinusoid
function. Figure 6.36 illustrates the frequency with vibrations. Parameters of the sinusoid
function are summarized in Table 6.3.

Parameters Value
Wave length 60ms
Area of half wave 120ns
Initial phase uniform [−π, π]
Start of vibration 7s
End of vibration 56s

Table 6.3. Parameters of vibrations



160 6. Clock Synchronization Of Networked Nodes

Fig. 6.36. Pattern of vibration

6.6.2.4 Synchronization performance for N elements line length

In industrial automation networks an interesting topic is the maximum line-length of the
clock synchronization protocol, i.e., the number of elements that stay within a required
synchronization error tolerance. Now, we evaluate and compare the performance of dif-
ferent synchronization algorithms by measuring the synchronization error at each slave
element of a line with N elements. At the end, we achieve a RMSE vs line length curve
for each algorithm, where the RMSE is achieved when using the optimal choice of the pa-
rameters. Based on these curves, we can check and predict the maximum synchronizable
line length that is supported by each algorithm.

The simulation scenario is as follows. The network has a line topology with 50 elements.
The first element is the master which provides reference time to the other elements. Sys-
tem parameters, including the delays in the network, properties of the oscillators and the
parameters of PTP messaging are summarized in Table 6.1. The master element experi-
ences temperature changes. The profile of the temperature change is shown in Figure 6.24.
Mechanical shocks take place at each element and thus cause their frequency to drift. The
pattern of the mechanical shocks is shown in Figure 6.35. Vibrations start at the simula-
tion time of 7 second at all elements. Profile of the frequency drift caused by vibration is
shown in Figure 6.36 and parameters are summarized in Table 6.3.

We choose for each synchronization method the optimal value of the parameter using
the results in Figure 6.27, i.e., for centralized Kalman filter, ρ = σω = 4 × 10−6; for the
sum-product algorithm, ρ = σω = 8 × 10−5 and for the sequential Kalman filter, ρ = ση =
8× 10−6.

Based on 100 simulation runs, we obtained some statistics of the RMSE performance for
each of the synchronization algorithms. The results are depicted in Figure 6.37.

From the simulation results, we can see that all the probabilistic methods improve the
synchronization performance when the parameters are properly chosen.

6.7 Discussions

In this chapter, we studied synchronization of cascaded clocks based on the Precision
Time Protocol. The standard synchronization algorithm does not take care of the stamp-
ing error. As a consequence, it can only support a limited number of consecutively con-
nected clocks. For example for a RMSE requirement of 100ns under the situation defined
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Fig. 6.37. The RMSE performance comparison

in Section 6.6.2.4, the standard algorithm can support only 10 elements according to the
simulation results shown in Figure 6.37. We formulated clock synchronization as an es-
timation problem and used graphical models to represent the statistical relationships be-
tween the variables. Based on the probabilistic model, we developed several inference
algorithms that improve the synchronization performance. With a RMSE requirement of
100ns under the situation defined in Section 6.6.2.4, the sum-product algorithm does not
support more slaves than the standard algorithm. The sequential Kalman filter supports
15 slaves, i.e., a gain of 50%. If the computational complexity is out of concern, then the
centralized Kalman filter achieves an improvement of 200% as it supports 30 slaves.

Synchronization in general is an important and non-trivial task in distributed systems.
Besides what we discussed in this chapter, there are many other interesting topics. For ex-
ample, clock synchronization in a network that is not fully compatible to the PTP protocol
has to deal with the unknown delays, e.g., queuing delay incurred in the intermediated
switches. Related work can be found in [65, 101]. Another interesting research direction
is consensus time synchronization as discussed in [99, 111]. Synchronization in wireless
networks, especially sensor networks is also intensively studied, e.g., in [20, 29, 67].

6.A Connection between SKF and the standard synchronization algo-
rithm

In the sequential Kalman filter, the parameter ση is important. It characterizes the fre-
quency variation and the estimation error made in the RCF estimation. Obviously, ση
cannot be too small, otherwise the uncertainties cannot be fully characterized. A model
mismatch problem occurs. Now we study the case when ση takes a very large value.

Let us study the steady state of the Kalman filter in which:

vinn (k) = vinn (k − 1) (6.174)
vinn (k, k − 1) = vinn (k − 1, k − 2) (6.175)
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Furthermore, we assume that the parameters an(k), bn(k), dn(k) are time-invariant, i.e.,
the index k can be dropped.

Let us first study the steady state of the Kalman filter at slave 1. Using (6.172), (6.170),
(6.169) and (6.166), we obtain:

vin1 (k) = (1− kin1 (k)) · vin1 (k, k − 1)

= (1− vin1 (k, k − 1)

sin1 (k)
) · vin1 (k, k − 1)

=
(vout0 (k) + σ2

ζ1(k)
) · vin1 (k, k − 1)

vout0 (k) + vin1 (k, k − 1) + σ2
ζ1(k)

=
σ2
ζ1(k)
· vin1 (k, k − 1)

vin1 (k, k − 1) + σ2
ζ1(k)

(6.176)

where the last step is based on the fact that vout0 (k) = 0 since xout0 (k) = TS(M(k)) is
deterministic. Using (6.166), we can rewrite (6.176) as:

vin1 (k + 1, k) = vin1 (k) + σ2
ε1(k)

=
σ2
ζ1(k)
· vin1 (k, k − 1)

vin1 (k, k − 1) + σ2
ζ1(k)

+ σ2
ε1(k)

(6.177)

Using the steady state condition in (6.175), we obtain:

vin1 (k, k − 1) =
σ2
ζ1(k)
· vin1 (k, k − 1)

vin1 (k, k − 1) + σ2
ζ1(k)

+ σ2
ε1(k)

(6.178)

Solving (6.178) for vin1 (k, k − 1), we obtain:

vin1 (k, k − 1) =
σ2
ε1(k)

+
√
σ4
ε1(k)

+ 4σ2
ε1(k)

σ2
ζ1(k)

2
(6.179)

=
a21σ

2
η +

√
a41σ

4
η + 4a21σ

2
ησ

2
ν + 4a21d

2
1σ

4
η

2

where we applied (6.147) and (6.148) in the second line.

In a realistic PTP implementation, the parameter a1 � d1 e.g., the interval of sending Sync
message (an) is in millisecond level and the line delay (dn) is in the nanosecond level. Then
if ση is sufficiently large, i.e., ση � σν , we have:

vin1 (k, k − 1) = a21σ
2
η (6.180)

Inserting this result in (6.170), we obtain:

kin1 (k) =
vin1 (k, k − 1)

vin1 (k, k − 1) + σ2
ζ1(k)

(6.181)

=
a21σ

2
η

a21σ
2
η + d21σ

2
η + σ2

ν
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where we applied (6.148) in the second line.

Inserting (6.181) and (6.180) into (6.172), we obtain:

vinn (k) = (1− kinn (k)) · vinn (k, k − 1)

=
(d21σ

2
η + σ2

ν) · a21σ2
η

a21σ
2
η + d21σ

2
η + σ2

ν

For a1 � d1 and σν
a1
� ση � σν

d1
, we have:

kin1 (k) = 1 (6.182)

and

vin1 (k) = σ2
ν (6.183)

Inserting (6.182) into (6.171), we obtain:

x̂in1 (k) = x̂in1 (k, k − 1) + kin1 (k) · ẑin1 (k)
= x̂in1 (k, k − 1) + ẑin1 (k)

= x̂out0 (k) + d1(k) · r̂MS1(k)
= −→s out

M (k) + d1(k) · r̂MS1(k)
= −→s out

M (k) + r̂MS1(k) · ĉS1(
−→
d LD

1 (k)) (6.184)

where we used (6.154) for the 4th line and (6.75) for the 5th line. The final expression in
(6.184) is identical to (6.55), i.e., in this case the Kalman filter at slave 1 converges to the
standard synchronization algorithm.

Then xout1 (k) is estimated by using (6.158), i.e.,

x̂out1 (k) = x̂in1 (k) + b1(k) · r̂MS1(k)
= x̂in1 (k) + ĉS1(

−→
d BD

1 (k)) · r̂MS1(k) (6.185)

where we used (6.65) in the second line.

The calculation in (6.185) the same as (6.56), i.e., the Kalman filter coincides with the
standard algorithm again. As in practice, b1 � a1, by choosing σν

a1
� ση � σν

b1
for (6.159),

we have:

vout1 (k) = σ2
ν (6.186)

Using induction, we conclude that for slave n, if dn � an, bn � an, when we choose
σν
an
� ση �

√
nσν
dn

and σν
an
� ση �

√
nσν
bn

, then the following holds:

vinn (k, k − 1) = a2nσ
2
η (6.187)

kinn (k) = 1 (6.188)
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and

vinn (k) = nσ2
ν (6.189)

Inserting (6.188) into (6.171), we obtain:

x̂inn (k) = x̂outn−1(k) + dn(k) · r̂MSn(k)

= x̂outn−1(k) + ĉSn(
−→
dLDn (k)) · r̂MSn(k) (6.190)

where we used (6.75) in the last step.

Using (6.158), x̂outn (k) is given by:

x̂outn (k) = x̂inn (k) + bn(k) · r̂MSn(k)
= x̂inn (k) + ĉSn(

−→
d BD
n (k)) · r̂MSn(k) (6.191)

where we used (6.65) in the last step.

From the results of the above derivation, we can see that if the value of ση fulfills
σν
an
� ση � min(

√
nσν
dn

,
√
nσν
bn

) (for the simulation settings shown in Table 6.1, this corre-
sponds to 3 × 10−6 � ση � 10−3 approximately), then the Kalman filter implementation
is closely approximated by equations (6.130), (6.184), (6.185), (6.138), (6.190) and (6.191).
Comparing them with the equations used in the standard synchronization algorithm, i.e.,
(6.54), (6.55), (6.56), (6.57), (6.58) and (6.59), we can see that they are totally identical. In
this case, the results of sequential Kalman filter coincide with the results of the standard
algorithm. The simulation results shown in Figure 6.23 verified our analysis.
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This chapter briefly summarizes the main themes and the contributions of the thesis.

7.1 Summary and contributions

A networked system is usually composed of a large number of simple systems. Many ap-
plications in networked systems involve the estimation of quantities of interest. Estima-
tion in networked systems is not trivial due to the typically high complexity of the system
and the inaccurate and incomplete information. Probabilistic models provide a standard
way to assemble all the information that is needed for the estimation and to represent
the entire system as a joint distribution over a large number of variables. Estimation is
then formulated as computing or optimizing the relevant probability functions such as
likelihood or posterior distribution of certain variables of interest. Graphical models in-
tuitively visualize the relationships between the variables. In particular, they provide a
basic formalism to represent the conditional independence property or the factorization
of a high dimensional function. Exploiting the independence property or the ability to
factorize the problem, we can compute the probability functions in a more efficient way.

The whole thesis has discussed how to use probabilistic inference to solve the estima-
tion problems in networked systems. Several factors complicate the direct application of
standard inference algorithms. They are:

• The large number of network participants, the power or time constraint which forbid
a centralized implementation of the inference.

• The high complexity of the stochastic processes involved results in very complicated
distribution functions.

• Spatial and temporal correlations, in particular, spatially correlated dynamics, intro-
duce dependences between variables, which complicate the exact inference.

The main contribution of the thesis is summarizing the existing methods and developing
new solutions to the above-mentioned problems. In particular,

• we have introduced a general procedure of implementing distributed inference;

165
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• we have reviewed sample based inference methods, i.e., particle filters and non-
parametric belief propagation and we have derived inference algorithms using the
Fourier series approximation;

• we have summarized the tools to solve the state estimation problem of a complicated
dynamic system;

• we have applied distributed inference methods to the self-organized sensor localiza-
tion problem. Both sample based and Fourier series based approximations have been
considered to simplify the inference so that it fulfills the power constraints of a wire-
less sensor networks;

• we have formulated networked clock synchronization as a state estimation problem,
then we have derived a probabilistic model and developed inference algorithms that
solve the estimation problem.

7.2 Discussion on future directions

7.2.1 Measurement of the error caused by approximation

We have used approximations for both applications presented in this thesis. In the sensor
localization application, we need an approximation because the distributions involved in
the belief propagation do not have a closed form expression. In the clock synchroniza-
tion application, we approximate the posterior distribution obtained in each time step
by a distribution with a simpler structure to enable distributed implementation of infer-
ence. In both applications, we constantly introduce new errors by doing approximations
in each intermediate step. Although in some cases, we can measure the error we make
in each single step in some form (e.g., Hellinger metric for Fourier series approxima-
tion, Kullback-Leibler divergence for approximate inference in dynamical systems), it is
very difficult to compute the accumulated error or understand the effect of error propa-
gation for such complicated systems. However, some analytical work can be done with
simple models, e.g., graphical model or distribution functions with special structure. For
example, Boyen and Koller [10] studied the error propagation in approximate inference
in dynamic Bayesian networks. The study was focused on discrete random variables.
In the clock synchronization algorithm, all the uncertainties are modeled Gaussian. The
Kullback-Leibler distance between two Gaussian distributions has a closed form [109].
Based on Boyen and Koller’s idea, we can also study the error propagation effect in a
dynamical system with Gaussian random variables.

7.2.2 Distributed inference

Many applications prefer a distributed implementation of inference due to the constraints
on communications, computational complexity or allowable latencies. Some networked
systems provide many degrees of freedom to design the inference. For example, in a
meshed network there are many different choices of communication links to carry out
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message passing for inference. In this case, the design of an inference algorithm by it-
self can be posed as an optimization problem. Different cost functions can be defined,
for example, the communication cost, the overall complexity, maximal complexity of the
required processing at each node and so on. Sometimes, several criteria have to be simul-
taneously considered, making such an optimization problem more complicated.

7.2.3 Other potential applications

In this thesis, we considered two applications of distributed and approximate inference.
In practice, there is a tremendous variety of other applications. Many of them can benefit
from using the methodology and the results derived in the thesis.

First of all, we present in Chapter 6 a synchronization protocol. By using probabilistic
modeling and distributed inference, we improve the synchronization accuracy. The re-
sults are examined through the simulation of an industrial automation network. Extended
versions of the synchronization algorithms can also be applied to other networks, e.g.,
power grids, sensor networks, communication systems and so on.

In Chapter 5, a self-organized sensor localization problem is discussed. The problem can
be complicated if the sensors can move, which becomes a tracking problem. In that case,
we need a more sophisticated graphical model to represent the correlation over space and
the dynamics of each moving sensor. The structure of the graph should be exploited for
the design of an efficient inference algorithm. Approximations have to be introduced if
it is necessary. Other constraints can further complicate the task. Interesting applications
of tracking multiple moving objects include dynamic positioning of vehicles, cooperative
robot team and so on.

Another interesting set of problems is tracking with indirect observations, just like the
synchronization of cascaded clocks. Each slave element can not directly observe the actual
state of the master clock. The indirect observation will be affected by the intermediate
elements through which the slave element is connected to the master. In this case, we
should exploit the model of the target dynamic process and the spatial model to filter the
noisy observations.

As we mentioned at the beginning of the thesis, there is a tremendous variety of appli-
cations in networked systems that rely on the estimation. The inference methodologies
discussed in this thesis can be potentially applied to the fault diagnosis in power grids
[38] or automation networks [95], to the safety systems in vehicles [35] and so on.
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