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Abstract

Chip Hardware-in-the-Loop Simulation Framework

Using the real Microcontroller (µC) as a replacement for an µC model inside a system
simulation of an µC based system is a big benefit because the µC is already verified
and its maximum performance and its accuracy is much higher than any simulation
model.
The Chip-Hardware-in-the-Loop Simulation (CHILS) approach covers the connec-
tion between µC and simulation, the interface abstraction, and the analysis and the
optimization of such coupling systems. The coupling system is developed with focus
on less hardware effort, capabilities to couple with different simulation environments
and efficiency of coupling. The interface abstraction primarily supports the efficiency
of coupling. The system analysis and optimization concept includes formal criterions
to determine the fidelity of coupling systems, stability analysis of coupling systems
and the numerical analysis of applied software algorithms.
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Kurzfassung

Chip Hardware-in-the-Loop Simulation Framework

Einen echten Microcontroller (µC) als Ersatz eines µC-Modelles innerhalb der Simu-
lation eines µC basierten Systems zu verwenden, ist durch die höhere Simulations-
geschwindigkeit, der höheren Genauigkeit und der bereits erfolgten Verifikation eine
attraktive Lösung.
Der neue Ansatz der Chip-Hardware-in-the-Loop Simulation (CHILS) umfasst
die Umsetzung der Kopplung von µC und Simulation, die Abstraktion der µC-
Schnittstellen und die Analyse und Optimierung des Kopplungssystems. Die Kop-
plung wurde in Hinblick auf geringen Hardwareaufwand, Adaptivität zu ver-
schiedenen Simulationsumgebungen und Effizienz entworfen, welche durch die
Abstraktion der µC-Schnittstellen unterstützt wird. Das Systemanalyse- und Sys-
temoptimierungskonzept umfasst formale Kriterien zur Qualität von allgemeinen
Hardware-in-the-Loop(HIL)-Systemen, Stabilitätskriterien derartiger Systeme und
die numerische Analyse der eingesetzten Software-Algorithmen.
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Chapter 1

Introduction

The complexity of embedded hardware/software systems increases every year. For
example, the currently implemented embedded systems in cars consist of 10 to 100
million transistors per chip, 1 to 10 million lines of code, and 10 to 100 microcontrollers
(µCs) per car. Especially the automotive industry requires high-endµCs for Electronic
Control Units (ECUs) to fulfil the government’s requirements on emissions reduction
as well as the customers’ demands for comfort, safety and reliability. Today, most
failures in cars are caused by electronic components and not by mechanical ones
anymore [Jac03]. In addition, the cycle times for new products last only a few years
in the automotive industry and just several months in the communications industry.

System modelling becomes even more important to handle the high demands
on complexity, reliability, and short development time mentioned above. Model-
based development offers possibilities like early exploration of system designs, rapid
prototyping, and extended system verification, optimization and testing. It allows
the engineers to develop software and hardware in parallel to reduce the cycle times.
Furthermore, these systems are often a recombination or extension of existing parts
to reduce the development effort.

1.1 Motivation

The present development in high-tech industry causes an exponential growth of
system simulation performance requirements that cannot be covered by the rising
simulation computer performance. The current method is to use different levels of
abstraction, since a higher level of abstraction increases simulation speed. Modelling
is a trade-off between high speed, high accuracy and low effort. It is easy to create
a model covering two of these three attributes but it is nearly impossible to build
high speed and high accuracy models spending only a small amount of effort. This
trade-off is especially critical if system software development is supposed to begin
on the simulated system hardware. Because of this, software developers need highly
accurate and fast models.
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1.2 Objective of the Thesis

Many complex hardware/software systems are a combination of existing parts like
µCs, memory subsystems, interconnect structures, input/output (I/O) modules and
hardware accelerators. The possibility to embed a real µC into a system simulation
of a larger technical context would be a great benefit. Compared to a model, the real
µC will run with high speed and full accuracy. This is an advantage especially for
early software development. The challenge is to embed the µC into the simulation
environment so that it is transparent to the system simulation whether it is a simulated
or a real µC. This kind of solution needs to meet different demands, namely:

• The data exchange and synchronization between real hardware and simulated
hardware has to be realized in an efficient and effective way.

• A certain accuracy of the coupling system has to be guaranteed.

• The hardware has to be coupled with different simulation environments.

• In order to reduce the amount of exchanged data a suitable level of abstraction
for the µC interfaces and peripherals has to be found.

• Transparency of the coupling between simulated environment and the µC to
the executed µC is needed to minimize the influence of the coupling to the
simulation results.

• The hardware effort for coupling determines the practicability of the solution.

Figure 1.1: CHILS Schematic Diagram

With respect to the existing concept of Hardware-in-the-Loop (HIL) simulation, the
presented approach is called Chip-Hardware-in-the-Loop Simulation (CHILS) (see
figure 1.1). HIL simulation is a technique that is used in the development and testing
of complex embedded systems. In a HIL simulation, the represented system consists
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of the simulated part and a real part, the “hardware-in-the-loop”. CHILS meanwhile
focuses on complex hardware/software systems designed with existing µCs.

1.3 Thesis Organization

The thesis organization is shown in figure 1.2. The following chapter includes the
working hypothesis, related work and the basics of the thesis. Three main topics are
identified: the connection between hardware and simulation, the representation of
µC interfaces in the coupling of hardware and simulation, and the event exchange
optimization between hardware and simulation. These topics are examined in the
following five chapters. Chapter 3 introduces the µC hardware to simulation cou-
pling1 which is used to realize the CHILS approach. The representation of the µC
interfaces, from the simulation point of view and from µC point of view, is explained
in chapter 4. Chapters 5, 6 and 7 cover different aspects of the hardware to simulation
coupling optimization. Chapter 8 gives an overview of the complete CHILS frame-
work. Chapter 9 covers the classification of the CHILS framework. A comparison
with other solutions is presented. Some applications for the CHILS approach are
shown in chapter 10. Finally, the conclusions can be found in chapter 11.

Figure 1.2: Document Structure

1The term hardware to simulation coupling as well as the terms µC to simulation coupling and
µC hardware to simulation coupling denote all the same setup of a coupling between a µC and a
simulation environment on the PC.
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Chapter 2

Related Work and Work Hypothesis

The dilemma of modelling complex hardware/software systems is the combination
of the three main aspects: speed, accuracy and effort. The target is to have high
speed models with high accuracy, combined with a low effort for model creation and
application. For µC applications this means to have nearly 100 percent cycle accurate
models, which are created or generated automatically, and which run in real time on
a standard Personal Computer (PC).
This requirement is nearly impossible to fulfill. Figure 2.1 shows performance

measurements presented by the company Target Compiler Technologies [ReT] at the
conference and exhibition multicoreEXPO in 2008 [Goo08]. A cycle accurate Instruc-
tion Set Simulator (ISS) has a performance of about one Million Instructions per
Second (MIPS). This is very fast for a cycle accurate model, but this model is just an
ISS, so it contains no peripheral module models. A µC contains a lot of peripheral
modules in addition to the main core, the Central Processing Unit (CPU). The target
device used in this thesis, the high-end 32bit TriCore R© µC 1 series shown in figure D.1,
contains several complex peripherals like the General Purpose Timer Array (GPTA).
The GPTA provides a set of timer, compare and capture functionalities, which can be
flexibly combined to form signal measurement and signal generation units. The com-
bination of over one hundred timers and thousands of trigger combinations between
them makes this module hard to model. A speed-up in modelling is mostly achieved
by reducing the events 2 and the state changes produced within a model. If hundreds
of sources and sinks for events exist, for example inside the GPTA, the task becomes
very difficult. A less accurate model, with the focus set to instruction accuracy and
not in addition to timing accuracy, can achieve about 100 MIPS (see figure 2.1). Such
an instruction accurate model will be less time accurate, because of the simplification
of the instruction execution process (pipelining is often not included) and of the
memory access (the cache behaviour is not modelled). A complete µC modelled

1The TriCore is a 32-bit µC-Digital Signal Processor (DSP) architecture which is optimized for real-
time embedded systems. Its main applications are engine control, body and safety applications within
the automotive sector an industrial applications.

2An event can be defined as an indicator for a change [ZPK00].
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Figure 2.1: Simulation Performance [Goo08]

on that abstraction level can have a performance which is the tenth part of a model
which only covers the CPU. Within the project Open Virtual Platforms [OVP] core
models modelled in Transactional Level Modelling (TLM) 2.0 3 with a performance
of some hundred MIPS can be found. The peak performance is higher than 1000
MIPS (see figure 2.2), but these are only models of processor cores without peripherals.

The raising abstraction level of models primarily addresses the biggest problem of
current Systems-on-Chip (SoC) and µC modelling. The available performance grows
slower than the demand for it, caused by the rising complexity of such systems.
“Simulation Can’t Keep Pace with Design Size” [DMMN03].

Beyond the modelling itself, another important part is the verification of the
correctness of the model. The model is useless if the functional correctness is not

3TLM 2.0 is the current standard in transaction level modelling. TLM is mostly connected with
SystemC [Sys]. It is an interface standard that enables the interoperability and reuse of SystemC
models at the transaction level.
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Figure 2.2: OVP Core Model Performance in TLM 2.0 [OVP]

Simulation Can't Keep Performance with Design SizeSimulation
Performance

Cycles Required

Transaction Based
Emulation

Block                 Sub-system             SoC         SoC Co-Simulation

Level of
Integration

MHz

KHz

Hz

Transaction Based
Simulation

Simulation

Figure 2.3: Simulation Performance Challenge [DMMN03]

verified. The silicon test benches for µC verification will fail on a model of a high
abstraction level, because the tests require a cycle accurate behaviour 4.
All this leads to the idea to use the real µC as a replacement for a modelled µC inside
of a system simulation. The µC is already verified and the maximum performance
reachable with a µC is its natural performance. The overall system performance is
primarily limited by the performance of the coupling system between real hardware
and simulation.

2.1 Basics

The introduction refers to the importance of system modelling and simulation and
the complexity of doing so. This section introduces the motivation behind these
techniques. Furthermore the different types of simulations are presented as well as
the basics of modelling. Modelling is the task to find a suitable description of a system.

4The test benches are composed of sets of input data and sets of expected output data including
hard deadlines. The tests will fail if the system-under-test-response does not match with the expected
response in time.
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The Deutsches Institut für Normung (German Institute for Standardization) defines in DIN
19226 [DIN] a system as follows:

Definition 2.1.1. A system is an arrangement of entities in an observed context which
are related to each other. This arrangement is separated from the environment by defined
conditions.

Ein System ist eine in einem betrachteten Zusammenhang gegebene Anordnung
von Gebilden, die miteinander in Beziehung stehen. Diese Anordnung wird
aufgrund bestimmter Vorgaben von ihrer Umgebung abgegrenzt.

Figure 2.4: System

This is a general definition but it contains the important aspects. A system consists
of related parts and it can be separated from its environment. In the book Signale und
System (Signals and Systems) [Kie98] Uwe Kiencke defines a system as a construction
which reacts on an input signal with an output signal (figure 2.4). A signal is defined
as a physical quantity which changes over time and contains information. So another
property of a system is the existence of inputs and outputs.

Definition 2.1.2. In summary a system can be defined by (see [Abe03a]):

• the system boundary (real physical boundary or imaginary boundary)

• input and output variables which pass the boundary

• internal variables (the internal states)

• the behaviour which defines the relation between input, output and internal states

DIN 19226 [DIN] includes in addition a definition for a model:

Definition 2.1.3. A model is a mapping of a system or a process to another conceptual or
representational system, which is created by using known principles, an identification or
assumptions. The model has to represent the system or the process sufficiently accurately with
respect to the question at hand.
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Ein Modell ist die Abbildung eines Systems oder Prozesses in ein anderes begrif-
fliches oder gegenständliches System, das aufgrund der Anwendung bekannter
Gesetzmäßigkeiten, einer Identifikation oder auch getroffener Annahmen gewon-
nen wird und das System oder den Prozeß bezüglich interessierender Fragestel-
lungen hinreichend genau abbildet.

The phrase “sufficiently accurately” is the most interesting part of the definition.
The needed accuracy depends on the field of application of the model. A model
will never be identical with the system which is modelled. It is just a representation
of the system or rather a representation of certain aspects of the system. Different
modelling principles exist to model these certain aspects. If the target is to model
a µC or a System-on-Chip (SoC), the modeller can fulfil the task for example in the
physical domain by modelling the transistors and their charge, or he or she can write
a model which realizes the pure functionality and no physical aspects.

2.1.1 Motivation for Modelling and Simulation

Now the question is why do we need to model and simulate a system? Due to
the rising complexity of systems in all domains it is not reasonable to design and
build real systems via trial and error from scratch. The effort in terms of time and
cost would be too high. The design of real prototypes has to be reduced. The
goal is to build a system “first time right”, so that the first prototype works properly.
Modelling and simulation are the tools to reach that goal. André Lüdecke mentions in
Simulationsgestützte Verfahren für den Top-Down-Entwurf heterogener Systeme [Lüd03a]
the following motivations for simulations.

• The system specification can be validated very early (Am I building the product
right?). The system design could be wrong because of system interactions
which were not understood or not taken into account during the specification
phase. A simulation can help to discover such failures and leads to a deeper
understanding of a system.

• Components are sometimes not available in an early stage of system develop-
ment. Especially if systems are developed in a top-down approach. At an early
stage of development, only the specification of the whole system is available.
Simulations can help to make early design decisions regarding the components
and reduce the iterations in the design process. A big issue in the design of com-
bined hardware/software systems is the hardware/software partitioning. The
main question is which part of the system should be software (more flexibil-
ity) and which part should be hardware (more efficiency). A lot of research is
done in this area (a short overview can be found in Hardware/Software Codesign
– Pedagogy for the Industry [HTW+08]).

• Sometimes the observation of internal states of a system is not possible in an
experimental environment. A simulation enables the user to observe all internal
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states, variables and parameters (as long as they are modelled). Moreover, the
functional and the timing behaviour of the simulation will not change if the
observation is running, unlike the behaviour of the real hardware.

• The costs are very high for measurements with real prototypes. A simulation
is often cheaper than a real experiment (think about a car crash simulation
in automotive industry). Experiments are mostly very time consuming and
require cost intensive measurement equipment. The main purpose is to use
experiments just for verification of the models.

• Experiments with real prototypes can be dangerous and destructive. Simulation
enables to explore the system limits.

Simulation is a powerful tool in system design, but one has to be aware that a model
is only a simplified representation of the system.

2.1.2 Modelling Basics

In general, the differentiation between structural and pragmatic modelling can be
made (see [PLG02]). Structural modelling is also called white-box modelling. The
inner structure of the systems is known. The modelling is done by abstracting the
given system parts. At pragmatic or black-box modelling the inner structure is
unknown. Only the interaction of the systems, the external behaviour or the reaction
on signals can be observed. The modelling is done by the imitation of the observed
behaviour as so-called behaviour models. This is also called behaviour modelling
(see [Lüd03b]). Combinations of both approaches are called grey-box modelling.
This is often the most efficient way.
Behaviour models represent the system by equations or tables, for example as a
characteristic curve. The behaviour of a system can be described by underlying
physics of the system or by measured or simulated input and output values. A
typical example is the control path of the CHILS demonstrator system presented
in chapter 10 in subsection 10.2.1. The demonstrator consists of a rocker with an
air-screw attached, which is controlled by a TC1796 µC. The rocker-air-screw system
is modelled by determining the transfer function of the system by measurements.
Structural models consist of mostly hierarchical sub-models. These sub-models can
also contain other sub-models or basic models. These basic models can be structural
or behaviour models. A typical example of structural models are models of SoCs or
µCs.
Both structural and behaviour models can be used on different levels of abstraction.
A good overview can be found in Daniel D. Gajski’s and Frank Vahid’s book Specifi-
cation and Design of embedded Systems [GVNG94].

Additional differentiations between heterogeneous and homogeneous modelling
are possible. Modelling languages and simulation systems are often bound to spe-
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cial domains. In heterogeneous modelling, a specific language and/or simulation
environment can be applied for each domain of a system to create the model. So it
is possible to choose the language and/or simulation environment which fits best to
the modelling task. This can reduce the effort for modelling enormously. Sometimes
this technique is called multi-language approach. The major problem arising from
multi-language modelling is the coupling of different simulation environments. This
topic is discussed in detail in chapter 3.
In homogeneous modelling or single-language modelling, the system is described
by only one modelling language. Only one simulator is needed so problems caused
by coupling are eliminated. The whole handling of the simulation is easier. Perhaps
some parts of the system have to be described in a language that does not fit well to
the domain of these parts. This can be a disadvantage.

2.1.3 Simulation Systems

Simulation is the method to perform experiments on models of systems. During the
simulation the state of the model changes. This state change can be seen as simu-
lated time or simulation time. This internal time is independent from the simulation
runtime, the external time. It is called realtime simulation if the simulated time and
the runtime of the simulation are identical. Furthermore, the (software) environment
running the simulation is called a simulator.
Depending on the domain of modelling different types of simulation techniques and
principles have been developed. Basic theoretical contemplations can be found in
Bernard P. Zeigler’s, Herbert Praehofer’s and Tag Gon Kim’s book Theory of mod-
elling and simulation - integrating discrete event and continuous complex dynamic systems
[ZPK00]. They differ between three respectively two basic types. These are:

DESS - Differential Equation System Specification - continuous in time and values

DTSS - Discrete Time System Specification - a time discrete system

DEVS - Discrete Event Systems Specification - it can be seen as more general version
of DTSS 5

An even more detailed hierarchy of simulation methods can be found in Diskrete
Simulation – Prinzipien und Probleme der Effizienzsteigerung durch Parallelisierung writ-
ten by F.Mattern and H. Mehl [MM89]. The main differentiation is also between
continuous and discrete simulation systems, but the authors do not see Discrete
Event Systems Specification (DEVS) as an even more general version of Discrete Time

5A change of a state can happen at every point of time, in contrast to a DTSS system. Time steps are
variable and they will be adapted to the events. The point in time of the next event has to be known.
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System Specification (DTSS). DESS systems are often called continuous simulation
systems 6. F.Mattern’s and H. Mehl’s hierarchy is defined as follows:

• continuous

• discrete

– event-driven

∗ event-oriented
∗ activity-oriented
∗ process-oriented
∗ transactional

– time-driven

∗ quasi-continuous

The principles of continuous and discrete simulation are independent from the
level of abstraction. Further explanations about different levels of abstraction are
given in chapter 9. The CHILS Framework is compared with µC models of different
abstraction levels. An overview about these simulation methods can be found in
Stefan Eilers Zeitgenaue Simulation gemischt virtuell-realer Prototypen [Eil06].

Continuous Simulation

Time and values are continuous in a continuous simulation, so the model changes
continuously. The models are often based on differential equation systems, which are
solved by numerical integration. In reality the simulation is only quasi-continuous
due to the numerical solving on a computer. The time steps, which are performed by
the numerical solver, are often adapted to the differential equation system which is to
be solved. This is caused by the non-exact solving behaviour of numerical algorithms.
An exact analytical solution is not possible for general differential equation systems
(see [Bec05]).
In continuous (or quasi-continuous) simulators like Simulink R©, the numerical solver
can be chosen by the user. There are different numerical methods: the single-step
and the multi-step method. The accuracy of the methods depends on their order. A
method of a higher order usually leads to a higher computational resource consump-
tion for calculation. Willi Törnig and Peter Spellucci provide a good overview about
these methods in the book Numerische Mathematik für Ingenieure und Physiker [TS90].

6In fact most continuous simulation system are only quasi-continuous due to the discrete nature of
simulation computers. From now on the term continuous simulation or Differential Equation System
Specification (DESS) is used for that kind of simulation system.
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Discrete Simulation

In a discrete simulation, the state changes of the model occur at determined points in
time. The time jumps from one change to the other. The state change is caused
by incrementing the simulation time, which is called time-driven, or caused by
events, which is called event-driven. A time-driven simulation can run on an event-
driven simulator by generating time-events (see definition in Bernard P. Zeigler’s
book [ZPK00]).

Definition 2.1.4. An event is an indicator for a change.

Event-driven Simulation In an event-driven simulation events, which are marked
by time stamps, cause the state changes of the model. If the event-driven simulation
contains only one model, which runs in one simulator, the functionality can be de-
scribed as follows. A global event queue sorts the events based on their time stamps.
The simulator chooses a non-processed event with the smallest proximity in time in
difference to the actual simulation time. Then the simulation time is set to the time
stamp of this event and the event is processed. The event processing changes the
state of the model. New events can be produced and these events are sorted into the
global event queue. If more than one model (and possibly more than one simulator)
are used, the models have to be synchronized, because each model has its own sim-
ulation time. Stefan Eilers [Eil06] mentions two principles to obtain the causal order
of the events: the conservative and the optimistic principles.
Conservative principles guarantee the maintenance of the causal order. The simula-
tion time is only incremented if all relevant events can be determined. The simulation
step size is chosen in the way that all events are processed to the exact point of time
of occurrence. Sometimes this can cause deadlocks or slow down the simulation by
producing empty synchronization events.
Optimistic methods are based on the assumption that violations of the causal order
are seldom. The simulation is incremented even if not all relevant events are known.
If an event is detected with a time-stamp smaller than the actual simulation time,
the simulation is set back to a point of time before the event occurs. Now the next
step can be set exactly to the right point of time. This principle is called rollback
or backtracking. Previous simulation states have to be stored. One version of the
rollback simulation is the time-warp method.
These principles are basics of simulator coupling and Co-simulation. In chapter 3
Connection between Hardware and Simulation this topic is evaluated.
In general, event-driven simulation is very efficient because computation time is only
consumed if state changing events occur. Dead times with no changes do not con-
sume computation time, unless all relevant events are known.
A popular event driven simulator is the SystemC simulation framework [Sys] which
is one of the target frameworks to couple with CHILS.
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Time-driven Simulation The simulation time is incremented in fixed or variable
steps (see [Eil06]). All events with a time stamp between the last and the present
simulation point of time are processed. It is important that the time step is small
enough, so that the events processed in the same interval only influence events in
simulation future. Time-driven simulation is normally slower than event-driven sim-
ulation because time steps without processed events must not be ignored.
A general time-driven simulator works as follows ([HP02]). First the simulator initial-
izes the system state and simulation time. As long as the simulation is not finished,
the following steps have to be repeated: collecting statistics about the current state,
handling events that occurred between the last step and incrementing the simulation
time. Time-driven simulators are used for example in network simulations.

2.2 Possibilities of Hardware-Simulation-Coupling

The concept of hardware-simulation coupling has been existing for several years.
Sheran Alles, Curtis Swick, Syed Mahmud and Feng Lin [ASML92] present an in-
tegrated HIL simulation systems which does not differ from actual systems. The
simulation runs on standard PC hardware, while the coupling is realized with special
I/O cards.

Paul Baracos defines the term HIL simulation in the following way [BMRJ01]:

Definition 2.2.1. In HIL, either a simulated plant is wired to a real controller,
or a real plant to a simulated controller.

So two types of HIL simulations can be distinguished. In Design of the Embedded
Software Using Flexible Hardware-In-the-Loop Simulation Scheme D. Virzonis, T. Jukna
and D. Ramunas call these types plant simulation and a controller behaviour simu-
lation [VJR04]. Other terms with identical meaning or specialization can be found in
literature, too.
Within a plant simulation the mathematical model of the control object, called plant,
is running on a general purpose computer. For example, the controller is connected
via a Data Acquisition (DAQ) board with the simulation PC. The controller behaviour
simulation inverts the situation. The prototype of a control programme runs on a
general purpose computer which is connected to a real plant for example through
a DAQ board. Sometimes special simulation computers instead of general purpose
computers are used to run the simulation. The solutions of dSPACE [dsp] are one
example (see subsection 2.2.2). They will be discussed later in this chapter.

2.2.1 Motivation for Hardware-in-the-Loop

HIL simulation is a widely used concept. Especially within the automotive industry,
it is used mainly for rapid prototyping, test and optimization of systems. A typical
example of HIL simulations is a connection between a complete ECU (including a
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µC) and a simulated car environment. The environment is the plant, while the ECU
is the controller in this setup. [WMH04],[Güh05], and [PSF04] are typical examples
for this application. Jae-Cheon Lee and Myung-Won Suh describe in [JCL99] a HIL
simulator for testing an ECU for an Anti-Lock Braking System (ABS) and Traction
Control System (TCS). Such an application is a typical HIL supported test scenario.
Several reasons lead to the development of HIL simulation systems (see [Abe03b],
[WMH04] and [Rot04]).

• Critical scenarios can be tested without compromising hardware or people.
Safety-critical components (such as drive-by-wire) can be tested without danger.

• Test automation is possible.

• HIL tests are cost-efficient tests. A scenario is easier to configure in a virtual
environment than in a real environment. So, for instance, fewer test drives and
test bench experiments are needed, and also fewer vehicle prototypes or vehicle
components - resulting in cost savings.

• On one hand, the virtual environment can be easily modified, so a real control
(the real ECU) can be tested in different control loops. On the other hand, a real
control loop (for example an engine) can be easily tested with different simulated
controllers (or control algorithms). Difficult ambient conditions (winter tests,
rain, high or low temperatures) can be simulated by simple parameter changes.

• Tests are immediately repeatable, so component failures and associated emer-
gency scenarios can be tested reproducibly.

• The hardware can be tested in parallel in different working environments (for
example in a climate chamber).

• If some parts of a system are too complex to model, they can be replaced inside
the simulation by the real hardware.

• The embedded real hardware can accelerate the whole simulation.

• The hardware and software of ECU can be tested at an early stage of develop-
ment. A real engine or a real transmission is not needed.

2.2.2 Commercial Hardware-in-the-Loop Solutions

Especially the importance of HIL-simulation for the industry leads to a wide offering
of commercial solutions. Simulation software like MATLAB R©/Simulink R© is well
established to design complex systems. HIL solutions need to offer the interface
between the simulation software and the “hardware-in-the-loop”. Depending on
the field of application, the system also has to be real-time capable (for example for
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ECU-in-the-Loop scenarios). The following simulation frameworks are an overview
about available commercial solutions. The principles are more or less identical. A
standard PC or a dedicated simulation computer, often designed from standard PC
hardware, hosts the simulation while the connection to the hardware is realized by
DAQ cards or external units. Classical HIL simulations require more often than not
real-time capable simulations, because the hardware-in-the-loop, like an ECU, cannot
be slowed down.

MathWorksTM

MATLAB R© from MathWorksTM [Mat] is a well known solution for technical comput-
ing. It offers great capabilities for numerical computations. Based on this computation
solution, MathWorksTM delivers Simulink R©. Simulink R© is an environment for model-
based design of complex dynamic systems. Systems can be designed on a high level
by modelling the interactions between functional blocks. The calculations of the
blocks are done by MATLAB R©.
With xPC TargetTM, MathWorksTM offers a solution for rapid prototyping and HIL-
simulation (see [xPC09]). xPC TargetTM delivers I/O interface blocks for Simulink R©

models. These interface blocks represent I/O boards inside a PC. xPC TargetTM exe-
cutes the models under a realtime kernel on the PC. The “hardware-in-the-loop” is
attached to theI/O boards.
MATLAB R©/Simulink R© is one example for a simulation environment which can be
coupled to a µC via the CHILS approach. The CHILS demonstrator platform pre-
sented in chapter 10 CHILS Framework - Applications uses MATLAB R©/Simulink R© to
simulate the control path.
In addition, MathWorksTM offers an auto-code generator bundled with a Processor-
in-the-Loop (PIL) solution 7 which is called Link for TASKING R© [Lin09]. Link for
TASKING R© links MATLAB R© and Simulink R© to the TASKING [TAS] environment.
Depending on the µC, the generated code runs on an ISS or a real device.

dSPACE

dSPACE [dsp] offers hardware and software for rapid control prototyping and HIL
simulation. MATLAB R©/Simulink R© is used for high level modelling while dSPACE
provides I/O hardware for hardware to simulation coupling and additional software
for example for target code generation8 from models. The dSPACE simulator hard-
ware for HIL simulation is modular. In addition, I/O boards can be added. Complete
solutions, for example for rapid control prototyping, are available. The automotive

7PIL simulation is special kind of a HIL or a Software-in-the-Loop (SIL) simulation for complex
embedded systems which consist of a plant part and a controller part. The control algorithm interacts
with the model of the plant. It can be executed either on the real µC or on an ISS.

8A target code generator is able to transform the an high-level description of an algorithm into
source code (for example C-code) for a target system (normally a µC).
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industry is one of the main dSPACE-customers. A typical dSpace solution is used for
a comparison with the CHILS approach in chapter 5.

Modelica/Dymola

Modelica R© [mod] is an object-oriented modelling language for complex physical sys-
tems, containing mechanical, electrical, electronic, hydraulic, thermal, control and
electric power or process-oriented subcomponents that allows homogeneous mod-
elling. Modelica R© is more suitable for mixed dynamic systems with different types
of components than MATLAB R©/Simulink R©.
Dymola R© is a commercial modelling and simulation environment for Modelica. In-
terfaces to MATLAB R©/Simulink R© exist, so models can be embedded as special block
diagrams (S-functions) into Simulink.
Dymola R© [dym]) offers the capability of HIL-simulation in combination with dSPACE,
xPC TargetTM or RT-LAB. The Modelica R© language is translated into C-Code which
is compiled for the simulation execution.
Because of the multi-domain single language capabilities Modelica R©, the language
has a fast growing community. HIL-simulations are implemented for example by
the working group of Professor Dr.-Ing. Clemens Gühmann (Hardware-in-the-Loop
simulation of a hybrid electric vehicle using Modelica/Dymola [WG06a], Synchronizing a
Modelica Real-Time Simulation Model with a Highly Dynamic Engine Test-Bench System
[WG06b]).

National Instruments

National Instruments offers a variation of HIL solutions based on the LabVIEW sim-
ulation environment [Lab09]. LabVIEW offers a graphical programming language
to program and to control the I/O interfaces from the simulation to the “hardware-
in-the-loop”. LabVIEW can execute models of other simulation environments or it
interfaces directly to MATLAB R©/Simulink R© for example. Various DAQ boards are
provided including Field Programmable Gate Array (FPGA) boards.

Visual Solutions

Visual Solutions VisSim is, like Simulink R©, a visual block diagram language for
modelling and simulation of complex dynamic systems. Interfaces to MATLAB R©

are available. Simulink R© blocks can be imported directly into VisSim. Identical to
MathWorksTM solutions, it is possible to generate C-Code from the block model.
The VisSim Embedded Controls Developer provides an integrated solution for rapid
control prototyping based on µCs from Texas Instruments.
VisSim Real-TimePRO provides HIL-simulation capabilities. Analogue and digital
I/O boards from different manufacturers are supported, as well as serial connections
to programmable logic controllers or distributed control systems.
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ETAS

ETAS [ETA] provides pre-configured HIL systems for example for power train control
units. The PT-LABCAR [Anh06], one ETAS HIL solution, offers as I/O interfaces 300
signal pins and 50 additional high-current pins. The basic system is designed for
testing ECUs that control 8-cylinder gasoline engines or 12-cylinder diesel engines. It
can be extended for handling high-end applications, such as tests of ECUs that control
16-cylinder engines too.

2.2.3 Non-Commercial Hardware-in-the-Loop Solutions

Non-Commercial HIL solutions are mainly projects of universities. The general setup
does not differ from the commercial solutions. A standard PC equipped with DAQ
cards hosts the simulation. The DAQ cards establish the connection to the hardware.
Also FPGAs are used as configurable I/Odevices ([VGB04a],[BMG05]).

University of South Carolina - Virtual Test Bed

The Virtual Test Bed (VTB) [vtb], developed by the Electrical Engineering department
of the University of South Carolina, is a software for prototyping of large-scale,
multi-technical dynamic systems. The VTB embeds models from different simulation
environments into a unified simulation environment. The VTB models can be created
in different ways. For instance, they can be imported from other simulation tools,
such as MATLAB R©/Simulink R©, SPICE or ACSL. The modular VTB solver can be used
with Windows, Linux and Mac OS-X. Different analogue and digital I/O boards from
different manufactures are supported to build a HIL setup.

ETH Zürich - Generic Hardware-in-the-loop Framework

A generic HIL framework is designed by Marco Sanvido ([San02], [SCS02]). This
framework adds new approaches in testing embedded systems based on temporal
logic and fault generation.

University of Twente - Borderc project

In the context of the Borderc project (Beyond the Ordinary: Design of Embedded Real-time
Control) HIL solutions were developed to support the design of embedded systems.
The publications of Peter M. Visser, Marcel A. Groothuis and Jan F. Broenink present
applications for embedded control systems ([VGB04a],[VGB04b]). 20-sim [20S] is used
as the simulation environment. 20-sim is a modelling and simulation programme that
can simulate the behaviour of dynamic systems, such as electrical, mechanical and
hydraulic systems or any combination of these.
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University of Karlsruhe - COMPASS

At the University of Karlsruhe a configurable modular rapid prototyping system
called COMPASS has been developed for automotive systems ([BMG05], [Bie07]).
The system uses FPGAs cards as versatile configurable I/O interfaces.

2.2.4 Coupling Concepts

For a general HIL simulation, there is only one possibility of designing it. A physical
connection of each hardware interface is needed to capture signals and to stimulate
the hardware. General HIL simulation does not only covers digital or analogue
signals which are transmitted over electrical wires but also forces or heat. Let us
think about a Damper-in-the-Loop simulation. The damper has to be stimulated with
a real force and it produces an opposing force.
For a µC-in-the-Loop simulation this means that every input and output pin of the
µC has to be connected to the simulation computer. Hundreds of connections are
needed to do so. The advantage is that no special adaption on the side of the µC
is needed. The disadvantages are the demands on the coupling hardware and the
real time capability of the simulation. The last disadvantage can be overcome by
controlling the µC clock system, if it is possible to do so. The DeskPODTM from the
SimPOD company [Sima] is a hardware solution which uses this concept. Later on
the CHILS approach is compared with the DeskPODTM in chapter 5 in section 5.5

Figure 2.5: Processor-in-the-Loop

With µCs as the “in-the-loop” hardware, there is another possibility for the simu-
lation connection. If interfaces of the µC are stimulated from inside, the connection
can be realized on a higher level of abstraction over a single physical connection.
The only physical connection between hardware and simulation can for example be
the debugger interface. The solution is very attractive because of the a low hard-
ware effort for coupling. PIL solutions, based on evaluation boards, often use this
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simple connection over general serial interfaces or the debugger interface. But a PIL
approach does not use any peripherals9 of the µCs. The data exchange with the
simulation is realized by bypass functions at the beginning and the end of a single
control-cycle of the algorithm (see figure 2.5). The Link for TASKING [Lin09] solution
from MathWorksTM mentioned above is a popular example. Further details on PIL
solutions are described in chapter 9 in section 9.2. Vase Klandzevski [KM06] also
describes the usage of a serialized pin interface and internal stimulation as preceding
work of the current approach.

2.3 Additional Concepts

Beyond the HIL simulation other techniques exist. These techniques cover overlap-
ping areas of application within the development process. The three major types
of simulation techniques, including HIL simulation, can be defined as: System-
Simulation or Model-in-the-Loop (MIL), SIL and HIL simulation. In the literature
the use of the terms is often not consistent. For the definitions the system is assumed
to consist of an object of control, the plant, and the controller.

2.3.1 System-Simulation

The System-Simulation has the target to map a real system or a system which is to be
developed to a simulation. The system is mapped to a representation which consists
of equations (continuous simulation) or event sources (event driven simulation). All
components of the simulation are executed as simulation models (the object of control
and the control) on a developing system. Often Co-Simulation techniques are used
to simulate complete system. A Co-Simulation couples different simulation envi-
ronments (for example a continuous and an event driven simulation environment)
together. The motivation is to use a suitable simulation environment for each part of
the system.
The hardware of the development system, typically a PC or Workstation, is usually
not identical with the hardware for the real implementation. The term MIL is also
used for System-Simulation (see figure 2.6).

9The peripherals ofµCs are just as complex as the CPU. Beyond standard communication interfaces,
like Asynchronous Serial Channel (ASC), Controller Area Network (CAN) and Synchronous Serial
Channel (SSC), peripherals include often complex timers for signal acquisition and generation or
external bus systems.
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Figure 2.6: Application of Simulation Techniques [Güh05]

2.3.2 Software-in-the-Loop Simulation

It is called a SIL simulation if the model of the (control) software is replaced by the
real control algorithm10. The control algorithm interacts with the model of the plant.
Co-Simulation can be applied for this purpose, too. One way is to couple an ISS,

10For example, it is possible that the model of the control uses floating point operations while the
real software uses fixed point operations. So the SIL simulation is more exact than the MIL simulation.
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which can execute the control software of the final controller device, with the plant
simulation. Prof. Dr. Ing. Abel’s script Rapid Control Prototyping [Abe03c] defines
that the control algorithm running on the developing hardware interacts with the real
plant or parts of the plant. In fact this is some kind of HIL simulation. The definition
2.2.1 introduced before is used here.

2.3.3 Hardware-in-the-Loop Simulation

In the automotive industry the term HIL simulation is mostly used for the coupling of
an ECU and a vehicle model. As mentioned before the other possibility, the connection
of the real vehicle and a simulated ECU, is also a HIL simulation. In figure 2.6 the
term Rapid Control Prototyping (RCP) is used for that setup. The real vehicle is
controlled by a model of the software, which can rapidly be adapted and optimized.

2.3.4 Emulation and Emulator

An emulator can be defined as provider of an emulation.

An emulator duplicates (provides an emulation of) the functions of one
system using a different system, so that the second system behaves like
(and appears to be) the first system. This focus on exact reproduction of
external behaviour is in contrast to some other forms of computer simula-
tion, which can concern an abstract model of the system being simulated.
([Wika])

Lovic Gauthier and Ahmed Amine Jerraya mention in [GJ00] the hardware simu-
lation or emulation as ‘classic’ methods to model a µC. Hardware simulations or
emulations reproduce at gate level the circuit to be simulated. Often an emulator is
fast enough to be plugged into a working target system as replacement of a future
chip. Different variations of emulator hardware exist. A processor based emulation
contains from tens of thousands to hundreds of thousands of Arithmetic Logic Units
(ALU) with registers [Tur05]. These processing elements are scheduled to emulate the
chip logic and the chip registers. FPGA based emulators map the SoC design to the
configurable logic blocks of a FPGA. Another form are Very Large Instruction Word
(VLIW) based emulators which are described for example in Gunter Haug’s thesis
Emulation synthetisierter Verhaltensbeschreibungen mit VLIW-Prozessoren [Hau01] or in
Jürgen Schnerr’s thesis Zyklengenaue Binärkodeübersetzung für die schnelle Prototype-
nentwicklung von System-on-a-Chip [Sch06b]. VLIW processors are a highly parallel
architecture containing multiple ALUs. The parallelization is realized on compiler
level.
Emulation is an often used technique to accelerate the verification of SoC systems (for
example in[YMC00], [SR04], [HKPS05]) because the emulation is several magnitudes
faster than a Register Transfer Level (RTL) simulation. In Integrierte Simulation und
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Emulation eingebetteter Hardware/Software-Systeme Stephan Schmitt presents [Sch05] an
integrated FPGA based developing environment, which can be used to develop SoC
software in a very early stage of SoC design.
A direct simulation acceleration by FPGAs is also possible. R. Siripokarpirom and F.
Mayer-Lindenberg [SML04] presents a concept of Hardware-Assisted Simulation.

2.4 Comparison of the Concepts

Each of the four concepts supports the system development process. In figure 2.6 from
[Güh05] each technique is mapped to different steps of the development process. The
idea is to start the process with a System-Simulation or MIL simulation and replace
the simulated components step-by-step by the real system parts. HIL simulation is
an addition to the other techniques, but it can be used instead of a System-Simulation
if the HIL components already exist, so that the design process does not start from
the scratch for each component.
Emulation can accelerate simulations or replace a simulation completely. The limita-
tion of emulation is caused by the emulator hardware. This can happen for example
if a SoC design is too large to be synthesized for a FPGA-emulator 11.

2.5 Subproblems of Hardware-Simulation-Coupling

The subproblems to be solved can be divided into three main areas. First off all, the
exchange of information or events between real hardware and simulated hardware
has to be realized. The term events is used because it is more common for simula-
tion systems. This concerns the exchange modes, synchronization aspects and the
hardware needed for the coupling. It also includes possibilities to connect the real
hardware with different simulation environments.
The interface abstraction, especially the level of abstraction, is a problem that is inde-
pendent from the exchange of events itself. The level of abstraction defines what an
event is and not how it is published.
After all, the event exchange process can be optimized by analyzing the system.

2.5.1 Connection between Hardware and Simulation

The connection of hardware and simulation has to cover the following aspects:

• the exchange of events between real hardware and simulated hardware

• the support of different simulation environments

11The synthesization maps the SoC design, which is normally described in hardware description
language, to the resources of the FPGA platform.
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• and the hardware effort for coupling.

In subsection 2.2.4, two general types of connections are mentioned. The first way is
to design a hardware interface which connects every pin of the µC to the simulation
computer. This solution demands a lot of effort in the coupling hardware. Alter-
natively the connection can be realized with internal resources of the µC and uses a
higher level of abstraction to exchange the events. The hardware effort is much lower
but the µC has to support this mechanism. Chapter 3 discusses how CHILS uses this
concept for the exchange of events between the µC and the simulation.

2.5.2 Interface Abstraction

Abstraction is the most effective way to speed up a simulation. If the events, which
are exchanged inside a simulation, can be reduced, the simulation will be faster.
This is done by raising the level of abstraction. The same issue, speeding up a
simulation, is addressed if the events have to be exchanged between hardware and
simulation. The task is to define the right level of abstraction for a certain application.
Chapter 4 presents the CHILS concept of interface realization between the µC and the
environment.

2.5.3 Event Exchange Optimization

The goal of the HIL simulation system analysis is to find an optimized setup for the
data exchange between hardware and simulation. This is primarily a compromise
between accuracy and performance. An optimized setup covers the type and amount
of exchanged data and the step size between two data exchanges. The first claim can
be obtained by choosing the highest level of interface abstraction which is suitable
for the desired functionality. The second claim concerns the rate of changes of the
exchanged data and the necessity of change distribution. Two techniques can be
used, an analysis of the running system and a pre-analysis of the system, which are
presented in chapter 5, 6 and 7.
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Chapter 3

Connection between Hardware and
Simulation

In the last section, the basics of simulation systems were presented. Now the basics of
simulator coupling and coupling system approaches, primarily connections between
different simulation systems, are discussed. Based on these considerations the event
exchange concept will be chosen. The connection setup was partly presented on
the 19th IASTED International Conference on Modeling and Simulation in the paper
Chip Hardware-in-the-loop Simulation (CHILS) - Embedding Microcontroller Hardware in
Simulation [KMH08a].

3.1 Basics

The connection between hardware and simulation is based on principles used in
simulator coupling for Co-Simulations. The principles cover the protocol part of the
coupling and not the physical channel. Basic principles for the physical interface are
explained in chapter 2 in subsection 2.2.4.
Continuous and discrete simulations differ in interpretation of time, communication
and activation of simulation modules. Table 3.1 from [BNAA05] presents this re-
lation. Coupling of discrete simulators is a straightforward task. The notifications
of events have to be passed on from one simulator to another. In order to couple
continuous simulators, the piecewise continuous signals have to be transmitted. The
coupling of discrete and continuous simulators is even more complex. The different
interpretations of time and communication have to be translated into each other.

3.1.1 Simulator Coupling and Co-Simulation

Co-Simulation becomes necessary if a heterogeneous modelling approach is used
to model the different domains of a system (see chapter 2 subsection 2.1.2). Stefan
Eilers [Eil06] distinguishes between two main approaches. If the different modelling
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Concepts /
Model Type

Time Communication
Means

Process Activation
Rules

Discrete Global notion for all
modules of the sys-
tem. It advances dis-
cretely when passing
by time stamps of
events.

Set of events
(value and time
stamp) located
discretely on the
time line.

Processes are
sensitive for
events.

Continuous Global variable in-
volved in data com-
putation. It advances
in integration steps.

Piecewise-
continuous
signals.

Processes are ex-
ecuted at each in-
tegration step.

Table 3.1: Basic Concepts [BNAA05]

languages are translated into a common language, the simulation can run on one
simulation engine. This is called Single-Engine Co-Simulation. The approach is fast
and efficient as long as the transformation into the common language is efficient. So
far no standard for a common language exists.
If no common language exists, each module, written in another language, has to run
on a suitable simulation engine. The simulation engines or simulators are coupled
on a higher level. This setup is called Multi-Engine Co-Simulation. Different imple-
mentations of multi-engine coupling are known. In general, a simulation manager
is implemented to control the different engines. This manager initializes the engines
and synchronizes them. In a tightly coupled concept, the coupling is realized by a
simulation-backplane or simulation-bus1. Other concepts use the message exchange
mechanisms on operating system level or shared memories (see [Bra06] and [Lan06]).
Christian Scholz [Sch04] uses the message passing interface Parallel Virtual Machine
[PVM] to couple simulation engines which run on different computers in a network.
Many simulation systems allow to run user defined modules written in C or C++.
So the coupling can be realized by writing interface modules. A simulation engine
cannot be completely controlled in every case by an external application. This can be
a disadvantage for example if only fixed simulation time steps are possible2.
Master-Slave Co-Simulation is a term used for a Co-Simulation setup where one
simulation engine controls the other one. The simulation manager is in fact the mas-
ter simulation. The master controls the step size of the whole simulation and/or
manipulates the event schedulers of the other simulators (event-driven simulation).

1The terms Co-Simulation bus and a Co-Simulation backplane can be found in literature too.
2The solver of continuous simulation environments, like MATLAB R©/Simulink R©, are even more

efficient if the step size is variable.
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3.1.2 Synchronization of Co-Simulations

The synchronization concept is a key problem of simulation-to-simulation coupling as
well as for hardware-to-simulation coupling. But simulation-to-simulation coupling
has one advantage: it is more flexible because of the pure software nature of the setup.
In Hybride, tolerante Synchronisation für die verteilte und parallele Simulation gekoppelter
Rechnernetze [Rüm97] Markus Rümekasten defines the synchronization as follows.
The synchronization shall prevent the events from one simulation to arrive too late
in another simulation. It has to guarantee the maintenance of the causal order. The
basics are mentioned in chapter 2 in subsection 2.1.3 Simulation Systems. One can
distinguish between conservative and optimistic principles.

Conservative principles forbid the violations of the causal order. Each simulation
has to know if another simulation plans to process events that concerns it. First, a
simulation determine the time t of the next concerning external event. Second, this
simulation continues until the point of time t is reached. Time t is the synchronization
point in time. Third, the simulation waits for the arrival of the planned external
event.
A simulation manager can manage this synchronization by distributing the exter-
nal events from one simulation to another. This technique can only be applied for
event-driven simulations. The problems are deadlocks and decreased simulation per-
formance caused by empty synchronization events 3. The lockstep principle can also
be seen as a conservative principle. The simulators are forced to execute synchronous
time steps. The size of the time step is determined by the next internal or external
event to be processed or by the smallest planned time step by any simulator within the
Co-Simulation, if continuous simulators are included in the coupling. This is needed
to prevent violations of the causal order, but the fact that all simulators are forced to
compute each time step leads to many unnecessary computations. The advantage of
the lockstep principle is that it can be applied in most cases.

Optimistic principles accept violations of the causal order. The violations are
fixed at occurrence by rolling back the simulation to a previously saved state before
the violation causing event occurred. The simulation runs again up to the point
where the detected event occurs. A rollback or backtracking has high demands on
the simulation engines. They have to support the state saving and the rollback. In
addition, the concept requires a lot of memory to store the states.

Hybrid principles combine both approaches. An optimistic execution can be
optimized by distribution of lookaheads to reduce rollbacks. It is also possible to run
sub-models in an optimistic way, while realizing the communication between them
in a conservative way.

3Synchronization events are events which are used to synchronize different simulators. The syn-
chronization events are set to points in time where an external event is supposed to occur. The
synchronization event is called empty if no external events occur.
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3.2 Related Work

In Schnittstellenmaske für die Kopplung unterschiedlicher Simulatoren über polymorphe
Signale [Lan06] and Synchronisation von Simulatoren unter Berücksichtigung des Konzepts
polymorpher Signale [Bra06] so-called polymorphic signals are used to synchronize
different simulators and exchange events between them. The attempt is to present a
generalized synchronization concept. The idea of polymorphic signals was presented
in [SGW04]. They are designed to realize a data exchange between different kinds of
models. A conversion of types, value ranges and clock rates is done implicitly. The
signals adjust to the model. A typical example is a Pulse-Width Modulation (PWM)
signal. A high-level model just evaluates the PWM rate while a low-level model
needs a series of pulses presenting the signal.

Clemens Braband [Bra06] defines four quality levels of simulator coupling. Level

Figure 3.1: Simulator Coupling Adapted from [Bra06]

0, the lowest quality level, synchronizes the simulators only when a read or write
operation to the shared memory area occurs. The simulators are stopped at read and
write accesses until all of them reach the same point in time. This simple technique
allows the coupling of nearly all kinds of simulators.
Level 3, the highest quality level, is equivalent to an event-discrete coupling. The
simulators have to exchange all information of planned events, so no unnecessary
time-steps or delta steps 4 are taken. Continuous simulators cannot be coupled at that
level, because the changes of the signals are often not predictable. Mechanisms like
rollback are not applied in this work.
Level 1 and level 2 are approximations of level 3. Both levels requires simulation
environments with adaptable time steps but without prediction of future events.
Level 1 coupling emulates delta steps by taking a very small time step, while level 2
simulators are able to execute delta steps.

The research group of Professor Gabriela Nicolescu from the Ecole Polytechnique de
Montréal works on discrete–continuous Co-Simulation environments. The focus ob-
jects are generic architectures for discrete-continuous simulation models, for example
for a global validation in component-based heterogeneous systems design ([BNAA05]
and [BBN+06]), and a formal definition of the internal architecture of simulation in-
terfaces [GBNB06]. The examples are based on SystemC and MATLAB R©/Simulink R©.

4Delta steps are the state changes of discrete simulators. They consume no simulated time, but of
course simulation run time.
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The group developed a tool for the automatic generation of simulation models. The
inputs of the tool are the continuous models modelled in Simulink R© and the discrete
models written in SystemC. The output of the tool is a global simulation model, based
on the simulation-bus approach. The interfaces to the simulation-bus are generated
by the tool.
The synchronization model used by the Co-Simulation is based on event detections
[BNAA05]. The requirements are formulated as follows:

“The continuous simulator must detect the next discrete event (timed
event) scheduled by the discrete simulator, once the latter has completed
the processing corresponding to the current time...

The discrete simulator must detect the state events. A state event is an
unpredictable event, generated by the continuous simulator, whose time
stamp depends on the values of the state variables (ex: a zero-crossing
event, a threshold overtaking event, etc.).”

Figure 3.2: Synchronization Model from [BNAA05]

The synchronization model, shown in figure 3.2, is designed to couple two simula-
tion engines. During the simulation, the context switches between both engines 5. An
implementation of rollback mechanisms is planned (see Semantics for Rollback-Based
Continuous/Discrete Simulation [GNB08]). As described in the previous section, the
simulation-bus is a common concept.

A special field of research are Hardware-Software Co-Simulation tools. Often a
Hardware Description Language (HDL)-simulator, with models of the bus systems
and peripherals, is coupled with a model of the software or a fast processor model,
which execute the software. Bus-based architectures allow an easy partitioning of
the whole system architecture by separating the model at the interfaces to the bus.

5So the simulation engines are not executed in parallel.)
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In Hardware-Software Co-simulation of Bus-based Reconfigurable Systems [KV05] a cycle
accurate co-simulator, as a typical setup, is presented. A C-model of a processor
executes the system software while HDL models describe the bus and reconfigurable
units. Because of the discrete nature of the setup and the existing interface, a syn-
chronization of the simulation parts is easy to realize. Every access to the simulated
bus can be seen as a single event (high-level transaction) or a sequence of events (low-
level events). Commercial tools like Seamless [Sea] from Mentor Graphics [Men] are
available for such systems, too.

In Accelerated Logic Simulation by Using Prototype Boards [HSBG98] Jürgen Haufe,
Peter Schwarz, Thomas Berndt and Jens Große present an approach to speed-up
simulations. A FPGA based prototype board is used for the hardware emulation.
The synchronization concept is straightforward. The simulator sets the vector to
the input of the emulator board. Afterwards the simulator waits for one or more
hardware clock cycles, which are defined by the user, to get the output vector output
as return. The simulator advances the simulation in the next step. Diverse other
approaches use a similar approach for synchronization, for example the PIL setups
presented in [JLD+04] and [FBP+07].

Figure 3.3: Simulation-Emulator Synchronization from [HSBG98]

3.3 Exchange of Events between Microcontroller and
Simulation

These considerations lead to two basic settings of simulators to couple with. One
setting is the coupling with a DESS-simulation, or continuous simulation, while the
other one is the coupling with a DEVS-simulation. For each basic type another
strategy can be applied.
Independent from the type of target simulation, the term “event exchange” is used for
the data exchange between µC and simulation. The exchange mechanism operates
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with discrete steps, caused by the discrete nature of the µC, therefore the changes of
a quasi-continuous signal can be interpreted as events. The following considerations
cover the different techniques for simulator coupling. The application of conservative
principles, optimistic principles, and hybrid principles for coupling are discussed.

3.3.1 Continuous Simulation

The connection between a µC and a continuous simulation is a coupling of a discrete
and a continuous system. This is comparable to the Co-Simulation setup which is used
by Professor Gabriela Nicolescu’s research group (see for example ([BNAA05] and
[BBN+06])). In contrast to a discrete simulator like SystemC, additional restrictions
exist. A prediction of future events, caused by the µC software, is not possible 6, but
of course the detection of events is possible. So it is not feasible to run the continuous
simulation exactly to the point in time where an event occurs which is produced by
the µC. A minor propagation delay of the event has to be accepted.

Basic Coupling Principles

Two basic exchange principles exist. The first option is to run the simulation and µC
alternatingly (see figure 3.4). The second one is two run both systems in parallel (see
figure 3.5). It is obvious that the parallel execution has a higher performance at the
same step size, but the alternating version is potentially more exact. Both versions
are possible solutions from the simulation point of view. The next step size of the
continuous simulation is known and in addition some simulators support rollbacks.
The prediction of future events of the µC is not possible as mentioned. The events
can be detected at occurrence. It is also possible to stop the execution of the µC if an
event has been detected.
Optimistic principles cannot be applied. Not all simulation environments support
rollbacks and the effort to implement rollbacks for a µC is too high 7. Conservative
principles need to be applied. The lockstep principle is the best option to be used.
Both sides, the simulation and the µC, have to be forced to execute synchronous time
steps.

Table 3.2 presents the exchange principles in dependence of the available resources.
An alternating execution of simulator and µC makes sense if the simulator uses
rollbacks and/or the µC halts on events. A parallel execution is not possible because
both sides may not run to the same point in time. The challenge is that one side has
to follow the other side, so either the µC or the continuous simulation determines the

6A general prediction of the results, which a programme produces, is not possible. The programme
has to be executed for detecting the read and write operations. Write operations to the peripherals can
be seen as sources for events.

7The whole state of the µC has to be saved. That means to store and restore the values of all internal
registers, memories and state machine positions.
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Figure 3.4: Alternating Execution

Figure 3.5: Parallel Execution

next step. In figure 3.4 the continuous simulation leads the execution while the µC
follows8. If the MC does not halt on events, they might be delayed or lost. This is
true for a parallel run, too. Otherwise if the µC determines the next step, the step size
could be too large or too small for the numerical solver of the simulation. A useful
minimal and maximal step size has to be chosen in advance. Figure 3.6 and figure
3.7 present both possible scenarios. In figure 3.6 the µC leads the execution. The
process starts with a data exchange of both systems (step 1). Information regarding
the minimal and maximal step size can be exchanged. In step 2, the µC starts with

8the µC must not halt on events, otherwise the time base of µC and simulation will differ

Simulation /
Microcontroller

Next Step Size Known + No
Roll Back

Next Step Size Unknown +
Roll Back

Can Detect Events run in parallel run alternatingly
Can Detect Events + halt
device

run alternatingly run alternatingly

Table 3.2: Exchange Principles
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the planned time step size marked as 2*. Before finishing the complete time step, the
µC detects events and halts. The information about the already executed time step is
sent to the simulation (step 3). The simulation executes a time step of the same size
(step 4) and both systems are at the same point in simulation time. In step 5, the data,
events and event occurrence information, are exchanged between the systems while
in step 6 the µC executes the next time step.
Figure 3.7 presents the situation if the simulation is the leading element. In step 1, the
first data exchange is executed. The simulation executes the integration step in step 2.
Afterwards a rollback condition is detected and the simulation is set to the previous
point in time. Step 4 is the adapted time step which is taken by the simulation. In
step 5, the information about the executed time step is transferred to the µC which
executes the time step in step 6. An event is detected by the µC during the execution.
This event is delayed until the data exchange in step 7 is finished.

Simulation
(no rollback)

Microcontroller
(halt on events)

1

2
2*

3

4

5

6

detected µC event

synchronization point

planed synchronization point

simulation / µC step

planed µC step

event exchange

simulation time

Figure 3.6: Alternating Execution - MC Leads

Simulation
(with rollback)

Microcontroller
(detect events)

1

4
2

3

75

6

detected µC event

synchronization point

planed synchronization point

simulation / µC step

simulation rollback

event exchangesimulation time

Figure 3.7: Alternating Execution - Simulation Leads

If no rollback is used by the simulator and the µC does not halt on events (only
detects events), a parallel run makes sense. The simulation determines the size of
the next step 9. The information of detected µC events can influence this choice by
reducing or extending the possible step size. The execution time of the µC application

9The numerical solvers of continuous simulation environments have an automatic step size adap-
tion. Otherwise a constant step size can be chosen be the modeller.
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is adapted to the chosen step size. Figure 3.8 shows this kind of synchronization
and data exchange. In step 1, the first data exchange is executed. Then in step 2,
simulation and µC execute the time step in parallel. An event is detected by the
µC during execution. The event is delayed until the next data exchange in step 3 is
finished.

Simulation
(no rollback)

Microcontroller
(detect events)

1

2

3
detected µC event

synchronization point

simulation / µC step

event exchange

simulation time

2

5

4

4

Figure 3.8: Parallel Execution - Simulation Leads

3.3.2 Event Discrete Simulation

The connection between a µC and a discrete simulation is the coupling of two discrete
systems. The best case for coupling discrete system is an event-discrete coupling
where the simulators exchange all information of planned events. As mentioned
before, a prediction of future events on µC side is not possible but the detection of
events is of course possible. So, only a lower coupling quality level, described in
[Lan06] and [Bra06], can be achieved.

Basic Coupling Principles

The two basic exchange principles of the hardware to simulation coupling are identical
with the continuous simulation coupling. An alternating run of the simulation and
the µC is possible (see figure 3.4). The advantages and disadvantages are the same
as in continuous simulation coupling. One side has to follow the other side, so either
the µC or the discrete simulation determines the next step. Both variations can lead
to lost or delayed events, so a useful minimal and maximal step size has to be chosen
in advance.

In figure 3.9, the µC leads the execution. Step 1 shows the initial data exchange
between both systems. In step 2, the µC starts with the planned time step size marked
as 2*. This step size is chosen by both systems. The discrete systems delivers the
information about a future event for the µC. Then the µC detects an event and halts.
The information about the already executed time step is sent to the simulation (step
3). The simulation executes a time step of the same size (step 4) and both systems are
at the same point in simulation time. In step 5, the data, events and event occurrence
information, are exchanged between the systems while the µC executes the next time
step in step 6.
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Simulation
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3
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planed synchronization point

simulation / µC step

planed µC step

event exchange

simulation time
scheduled simulation event

Figure 3.9: Alternating Execution - µC Leads
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Figure 3.10: Alternating Execution - Simulation Leads

The challenge is to transmit the correct information for the next scheduled event of
the simulation. It would be very inefficient if internal events 10 influence the planned
time step of the µC, too. On the other hand, an internal event can cause an external
event 11. This external event is lost or delayed in the worst case (see figure 3.11).
Figure 3.10 presents the situation if the simulation is the leading element. In step 1, the
first data exchange is executed. The simulation steps forward to the next scheduled
event in step 2. In step 3, the information about the executed time step is transferred
to the µC which executes the time step in step 4. The event, detected by the µC, is
delayed until the data exchange in step 5 is finished.

The second possibility is to run both systems in parallel (see figure 3.5). The event
discrete simulation determines the step size depending on the planned events. The
information of detected µC events can influence this choice. This can be done by
feeding the event queue of the simulator with additional events. A constant step
size for the synchronization of both systems can be implemented by creating such
synchronization-events.
Figure 3.12 shows this kind of synchronization and data exchange. In step 1, the first

10Internal events are not leaving the system boundaries of the simulation, so they have no direct
influence on the coupled systems.

11This happens if an external events crosses the system boundaries.
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Simulation
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scheduled simulation event (internal)
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Figure 3.11: Alternating Execution - µC Leads

data exchange is executed. Then in step 2, simulation and µC execute the time step in
parallel. During the execution, an event is detected by the µC. The event is delayed
until the next data exchange in step 3 is finished.
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detected µC event
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simulation / µC step

event exchange

simulation time

2
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4

4

scheduled simulation event

Figure 3.12: Parallel Execution - Simulation Leads

3.3.3 Conclusions

Both variations of coupling can lead to lost or delayed events. It is advisable to
choose the version which has the potentially better performance. So running the
simulation and the µC in parallel is the most practical and high-performance way.
The alternating run only has minor advantages. In addition, the modeller has to
chose a useful minimal and maximal step size in advance, to prevent or reduce the
effects of delayed or lost events. An efficient version to predict events on the µC is not
possible, but information about detected events can be taken into account to adapt
the step sizes.
It makes sense that the simulation determines the step size because continuous and
discrete-event simulators have mechanisms to do so. The µC event detection yields
additional information to adapt the time step.
If the µC halts on events, other problems can occur. If writing operations, as sources
of events, are located directly in a row, the stop-and-go can be very inefficient. In
addition, the accuracy of execution is reduced enormously because normally a µC
cannot be halted from one cycle to another. This effect is discussed later on in the
section 3.5 Effects Caused by Coupling.
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Levels of Simulator Coupling

Two levels of simulator coupling are defined for the current implementation, the
fixed-step and the variable-step level. In both levels, the simulation and the µC run
in parallel.

fixed-step The step size is chosen in advance for the µC and the simulation

variable-step The step size is chosen dynamically by the simulation. Additional
event occurrence information from theµC can influence the step size. A minimal
and maximal step size can be chosen in advance.

3.4 CHILS Event Exchange Mechanism

The event exchange mechanism of CHILS is based on the information presented in
the last section. A parallel execution of simulation and µC application is chosen. The
time step is fixed or variable, but it is determined before the step is performed. The
modeller chooses the minimum and maximum step size before the run.
The data exchange, the exchange of events, and additional information is managed
by a monitor application which is called the CHILS monitor. The CHILS monitor
has to run independently from the user application on the µC. On the PC side, a
corresponding part exists which handles the communication between the CHILS
monitor and the simulation. This software is called the CHILS device. Based on the
CHILS device, adaption layers for different simulation environments can be written.
Figure 3.13 shows an exemplary data exchange between the µC and the simulation.
Simulation and µC execute time steps of the same length, as can be seen in figure
3.14. The runtime of simulation and µC can differ, so the simulation does not need
to be realtime-capable. On simulation side, the execution context switches between
simulation and CHILS device, while on µC side it switches between CHILS monitor
and user application.

The phases of data exchange are defined as follows.

M.1 The CHILS monitor captures the application output (the events).

M.2 Afterwards the CHILS monitor waits for data exchange with the CHILS device.

M.3 The CHILS monitor sets the new MC inputs for the application after the data
exchange with the CHILS device is finished.

S.1 The CHILS device gets the simulation output.

S.2 This output is transferred as soon as the CHILS monitor is ready to receive.

S.3 Right after transmitting the data to the CHILS monitor, the CHILS monitor device
gets the output data from the application.
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Figure 3.13: CHILS Event Exchange Setup

S.4 Then the CHILS device sets the new simulation input.

Simulation Time

n ms n+1 ms n+2 ms n+3 ms

PC
simulation simulation simulation

user application user applicationuser application

µC
Tricore

Peripherals

event
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Figure 3.14: CHILS Event Exchange Setup

CHILS Monitor Application Demands

1. The step size of the µC application step has to be configurable.

2. Mechanisms like event detection, event counting, and event delay measurement
have to be available.
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3. The CHILS monitor has to have the ability to set new inputs to the µC interfaces
and peripherals.

4. The event sources have to be selectable to reduce the monitoring overhead and
the amount of exchanged data to be exchanged.

5. CHILS monitor should not reduce the resources which are available for the user
application12.

Adaption Layer and CHILS Device Demands

1. Adaption layer and CHILS device have to provide the µC interfaces for the
simulation environment.

2. The interfaces of the µC have to be individually selectable.

3. A data conditioning of received and sent data, for example the conversion
between different abstraction levels or data representation levels, has to be
available.

3.5 Effects Caused by Coupling

The coupling system between theµC and the simulation influences the overall system.
The main cause discussed above is the switching between the CHILS monitor and
the CHILS device. The CHILS monitor suspends the peripheral units, but this can
not be done immediately. A mechanism, called Delayed Suspend (see 3.5.2), takes care
that all bus transfers to a peripheral unit are finished before the unit is suspended.
Otherwise bus transfers could be lost. Other effects are caused by the cache system
and by the pipeline architecture of the TriCore R©.
These factors cause a difference in the runtime of the disturbed and undisturbed
application. In addition, the internal time generated by the µC timers, and the
external time, which is the time of the simulation, differ.
The following contemplations are based on the CHILS monitor implementation for
the TC1796ED µC. The complete framework and some implementation issues are
explained later in chapter 8 CHILS Framework - Concept

12The CHILS monitor has to be executed from a memory location which is not used by the user
application. It should not reserve normal peripherals like timers.
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3.5.1 Measurement of the Timing Difference

The time difference is measured by test applications executed by the µC. Different test
scenarios are applied with focus on the System Timer (STM)13 and the GPTA 14. Based
on the measurements, the execution time accuracy is calculated 15. The execution
time accuracy is based on the time the application needs to fulfill a certain task, so it
is based on the runtime of a piece of code. The execution time accuracy results are
presented in chapter 9 in section 9.4 Performance and Accuracy.

System Timer (STM)

The STM test application measures the runtime of a certain piece of application code.
The basis is the undisturbed system. The measured time difference includes the effect
of the Delayed Suspend, the cache, and the pipelining.
The measurements in table 3.3 are taken at a CPU frequency of 150MHz, a system
frequency of 75MHz, and a STM to system frequency rate of one. The CHILS monitor
implementation on the TC1796ED µC is used as reference. The measurements show
a difference of 22 to 38 CPU clock cycles per exchange. This difference depends on
the CHILS monitor location 16 and on the application. The application code of the
programme NOPS contains only a loop and nop instructions, while Sieve calculates
prime numbers based on the algorithm Sieve of Eratosthenes17.

GPTA

The GPTA test application generates a PWM signal which is measured in the simu-
lation environment. The measurements in table 3.4 are taken at a CPU frequency of
150MHz, a system frequency of 75MHz, and with the CHILS monitor implementa-
tion on the TC1796ED. The measurements show a difference of 37 to 52 CPU clock
cycles per exchange, so the influence on the GPTA is larger than on the STM. The
test application generates a PWM signal of 3750Hz and 1000Hz with a PWM rate of
20%. The signal is measured by a MATLAB R©/Simulink R©model. The CHILS monitor
is executed from a non-cached or from a cached memory region. The results of a
similar programme which uses the STM and generates a PWM manual can be found
in appendix B in table B.1. As expected, the time difference of the PWM signal is
between 24 and 31 CPU cycles per exchange.

13The STM is the standard timer of the TriCore R© based µC series.
14The GPTA is a peripheral unit of TriCore R© based µC series for signal measurement and signal

generation. It provides a set of timer, compare and capture functionalities, which can be flexibly
combined.

15Further examination can be done by executing the tests on the RTL model of the µC.
16The CHILS monitor is executed either from a non-cached or from cached memory.
17The Sieve of Eratosthenes is an algorithm for finding all prime numbers up to a specified positive

integer. The algorithm is based on striking out numbers from an integer list which are multiples of a
prime number.
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Application Step
Size
(CPU
Cycles)

Average Run-
time without
Monitor (STM
Cycles)

Average
Runtime
(STM
Cycles)

Monitor
Activi-
ties

CPU cy-
cles per
exchange

Monitor - Non Cached
NOPS - Flash 20000 35000117 35063562 3498 36.28

10000 35000117 35130507 6991 37.30
5000 35000117 35265506 13966 38.01

NOPS - SRAM 20000 35000080 35062326 3497 35.60
10000 35000080 35123314 6990 35.26
5000 35000080 35245757 13959 35.20

Sieve - Flash 20000 81812440 81943113 8172 31.98
10000 81812440 82049670 16324 29.07
5000 81812440 82368121 32600 34.09

Sieve - SRAM 20000 33406093 33465151 3338 35.39
10000 33406093 33524101 6671 35.38
5000 33406093 33641483 13323 35.34

Monitor - Cached
NOPS - Flash 20000 35000117 35048392 3498 27.60

10000 35000117 35095634 6989 27.33
5000 35000117 35189947 13958 27.20

NOPS - SRAM 20000 35000080 35048338 3497 27.60
10000 35000080 35095609 6990 27.33
5000 35000080 35189921 13959 27.20

Sieve - Flash 20000 81812440 81906445 8172 23.01
10000 81812440 81989499 16325 21.69
5000 81812440 82221708 32600 25.11

Sieve - SRAM 20000 33406093 33451799 3338 27.38
10000 33406093 33497451 6671 27.39
5000 33406093 33588188 13323 27.34

Table 3.3: STM Time Difference Measurements

The high frequency PWM requires a sampling which should be at least twice of the
signal frequency. In addition, a higher oversampling rate is required to capture not
only the base frequency but also the PWM rate. So a sample rate is chosen which is
approximately ten to hundert times higher than the base frequency. The chosen step
sizes of a hundred CPU cycles are at the limit of the CHILS approach, as the values
from table 3.4 show. Here we see a difference of more than 15% in signal period length
in one scenario.
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Monitor
Step Size
(CPU Cy-
cles)

Sampling
Rate

PWM Fre-
quency
(Hz)

Measured
PWM Fre-
quency
(Hz)

Period
Length
Difference

CPU Cy-
cles Dif-
ference per
Exchange

Monitor - Cached
4040 9.80 3750.00 3790.84 0.92% 37.12
440 91.01 3750.00 4131.73 9.25% 40.65
300 133.33 3750.00 4335.43 13.50% 40.51
15050 10.00 1000.00 1002.93 0.29% 43.65
1500 100.00 1000.00 1030.73 2.98% 44.71

Monitor - NonCached
4040 9.90 3750.00 3797.44 1.08% 43.64
440 90.70 3750.00 4196.54 10.64% 46.93
300 133.33 3750.00 4435.41 15.45% 46.36
15000 10.00 1000.00 1003.89 0.35% 52.50
1500 100.00 1000.00 1035.32 3.41% 51.13

Table 3.4: GPTA Time Difference Measurements

3.5.2 Causes for the Timing Difference

The main causes for the differences are mentioned above: the Delayed Suspend, effects
of cache system and pipeline and implementation issues of the CHILS monitor. The
measured time difference accumulates all effects. It is not trivial to separate the
time difference by the sources. The first step is to take a look at the CHILS monitor
implementation. After releasing the peripheral suspend, additional actions have to
be taken, so additional instructions are executed.

Additional Instructions

Sequence CPU Cycles
Monitor - Cached

Without ret 14
With ret 18

Monitor - NonCached
Without ret 14
With ret 28

Table 3.5: Runtime of Additional CHILS Monitor Instructions

The additional instructions executed after the suspend has been released (see
listing 3.1) are the main cause of the time difference. A direct measurement of the
runtime of the instruction sequence with the return from monitor (rfm) statement is not



3.5. EFFECTS CAUSED BY COUPLING 43

possible due to the nature of the breakpoint trap mechanism18. Instead, the sequence
was extended by the normal function return statement ret. The sequence without ret
takes 14 CPU cycles at 150MHz CPU frequency, 75MHz system frequency, and STM
timers at 75 MHz (see table 3.5). If a normal return (ret) statement is used instead of
the rfm statement, the sequence takes 18 to 28 CPU cycles (code location at a cached
or a non-cached area). In difference to the rfm statement, the ret statement restores 16
registers of the TriCore R© (see TriCore R© 1 32-bit Unified Processor Core v1.3 Architecture
Manual [Tri02a]), the so-called upper context. These measurements are also influenced
by pipeline effects, caching or bus accesses, so they are just an orientation.
Further considerations can be made if a look at the whole sequence is taken. The
rfm consists of the following five operations, while six operations are needed by the
monitor after the suspend is released (see listing 3.1).

• branch to a11

• restore PCXI from [DCX]

• restore PSW from [DCX + 4]

• restore a10 from [DCX + 8]

• restore a11 from [DCX + 12]

The minimal execution length of the sequence can be estimated by accumulation of
the single instruction runtime. The instruction mov.d, the macro LDA and the enable
instruction have an accumulated runtime of four CPU cycles. The runtime of the dsync
and isync instruction varies 19. The difference between two monitor implementations
with and without dsync and isync is twelve CPU cycles (see appendix B section B.1)
for the non-cached monitor version and three CPU cycles for the cached version.
Upon the state of store buffers the rfm instruction needs four to five cycles if it is
executed from an cached external memory (cache hit assumed). A normal access to
the memory location, which is used by the monitor, takes ten to twelve CPU cycles.
So the approximated runtime for the sequence is now 30-31 CPU cycles (non-cached)
and eleven CPU cycles (cached with cache hit) or 21 CPU cycles (cached with cache
miss).
These contemplations support the measured values in table 3.5. The approximated
values are now subtracted from the runtime measurement values. Table 3.6 presents

18The breakpoint trap mechanism is a specialized trap mechanism to switch from a user application
to a debug monitor application. The debug monitor on the µC allows the PC debugger application to
observe and manipulateµC resources. The return from monitor (rfm) statement is a dedicated instruction
to switch back from the debug monitor application to the user application.

19 The TriCore R© architecture manual describes the operations as follows [Tri02a]: ”dsync forces all
data accesses to complete before any data accesses associated with an instruction, semantically after
the dsync, is initiated... The isync instruction forces completion of all previous instructions, then flushes
the CPU pipelines and invalidates any cached pipeline state before proceeding to the next instruction.´´



44 CHAPTER 3. CONNECTION BETWEEN HARDWARE AND SIMULATION

/ / r e l e a s e suspend
mfcr \%d15 , $DBGSR
and \%d15 , 0xEF
mtcr $DBGSR, \%d15

/ / suspend i s r e l e a s e d ( ! )
/ / r e s t o r e \%d15 , \%a10 w i l l be r e s t o r e d

mov . d \%d15 , \%a10
/ / l o a d a d d r e s s f i x ( macro c o n s i s t s o f two o p e r a t i o n s )

LDA \%a10 , 0xD000D000
/ / d a t a / i n s t r u c t i o n s y n c h r o n i z a t i o n
dsync
isync
/ / e n a b l e i n t e r r u p t s
enable

rfm
Listing 3.1: Return from Monitor Sequence

the results of this calculation in addition to the execution time accuracy based on
definition 7.2.1.

Delayed Suspend

The so-called Delayed Suspend is a special feature of current TriCore R©-µCs. The
peripheral is not directly suspended if the suspend signal is applied. The suspend is
delayed until all bus-transfers to the peripheral units are finished. The delay can be
zero or a couple of CPU cycles and it cannot be predicted, because it depends on the
application and its current state.

Pipelining

The delay caused by the pipeline stalls is hard to predict and to measure, especially
if two competitive applications like the CHILS monitor and the user application run
on the same CPU. But the maximal length of a stall is determined by the length of
the pipeline. The TriCore R© 1.3 pipeline has four stages, so the maximal delay is four
cycles.
It can be assumed that the test programme NOPS shows the largest influence on
pipeline stalls caused by the switching between the CHILS and the user application.
Hardly any pipeline stalls should occur if the programme is executed without distur-
bance.
As mentioned before, the isynch operation flushes the CPU pipeline and forces all
previous instructions to finish. So the runtime depends on the previously executed
code and the actual state of the CPU.
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Application Step Size
(CPU Cy-
cles)

CPU Cy-
cles per
Exchange

CPU Cycles
(excl. approx.
Monitor Instr.)

Monitor - Non Cached
NOPS - Flash 20000 36.28 6.28

10000 37.30 7.30
5000 38.01 8.01

NOPS - SRAM 20000 35.60 5.60
10000 35.26 5.26
5000 35.20 5.20

Sieve - Flash 20000 31.98 1.98
10000 29.07 -0.93
5000 34.09 4.09

Sieve - SRAM 20000 35.39 5.39
10000 35.38 5.38
5000 35.34 5.34

Monitor - Cached
NOPS - Flash 20000 27.60 6.60

10000 27.33 6.33
5000 27.20 6.20

NOPS - SRAM 20000 27.60 6.60
10000 27.33 6.33
5000 27.20 6.20

Sieve - Flash 20000 23.01 2.01
10000 21.69 0.69
5000 25.11 4.11

Sieve - SRAM 20000 27.38 6.38
10000 27.39 6.39
5000 27.34 6.34

Table 3.6: STM Time Difference (incl. and excl. Monitor Instructions)

Caching

If the monitor is executed from a cached area, a pollution of the cache is possible,
so the cached instructions or data from the user application are overwritten. On the
other hand, the execution time for the additional instructions needed by the CHILS
monitor is reduced by ten CPU cycles (see 3.5). In table 3.6 a difference from two to
eleven CPU cycles is caused between cached and non-cached execution. The effect
strongly depends on the user application.
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3.5.3 Possibilities for Compensation

Possibilities to compensate the measured time differences are rare. The effect of cache
pollution can be solved by executing the CHILS monitor from a non-cached memory
region, and by accepting less execution performance. The advantage is that the time
difference is better predictable.
The difference between the simulation time and µC internal time can be compensated
by reducing the planned step size by the approximated step size. This is easy to apply,
but the available runtime for the user application is slightly reduced.
A more complex solution is needed to compensate this runtime difference. It would

Simulation Runtime

Peripheral

TriCore
User Application

User
Application

User Application

t1 t2

t31 2

t3 = t1 + t2

Monitor
(Peripheral 

Deactivation)

Monitor
(Peripheral 

Reactivation)

Figure 3.15: Compensation by Regaining of Lost Time

be possible to give the user application the chance to catch up the lost time. This can
be done by suspending the peripherals while running the application. Figure 3.15
shows the basic principle. Caused by the Delayed Suspend, the peripheral runs t1 time
units before it is suspended. After the CHILS monitor exchanged the data with the
simulation, the peripherals are not immediately reactivated. First of all the CHILS
monitor gives the application the chance to regain the lost time t1, by running for t3
time units. t3 also includes the time t2, which is lost because of the additional monitor
instructions needed after releasing the peripheral suspend. The problem is that it has
to be guaranteed that the user application did not access any peripherals while they
are suspended20.

3.6 Summary

The hardware to simulation coupling concept used in this work is based on concepts
of simulator coupling in Co-Simulation environments. The approach covers connec-

20This technique can be applied if the debugging system supports the debug trap generation for
peripheral accesses. The CHILS monitor could be called immediately if a peripheral access is detected.
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tions to continuous and discrete simulations which differ in interpretation of time,
communication, and activation of simulation modules. A conservative synchroniza-
tion principle is chosen where both sides, simulation and µC, are forced to execute
identical time steps. Lost or delayed events are accepted because a perfect event de-
tection on µC side is currently not possible and only some simulation environments
support a state rollback. The most practical and high-performance way is to run
the simulation and the µC in parallel. Events are exchanged after a predefined time
between simulation and hardware. A fixed step size and the variable step size is
possible.



48 CHAPTER 3. CONNECTION BETWEEN HARDWARE AND SIMULATION



CHAPTER 4. INTERFACES BETWEEN MICROCONTROLLER AND
ENVIRONMENT 49

Chapter 4

Interfaces between Microcontroller
and Environment

The previous chapter explained the mechanism of data exchange between the µC and
the simulation. The next step is to define which data has to be transferred and in
which way it is done. These questions are depending on the interfaces of the µC.
The discussion includes the representation of the interfaces from the user application
point of view and from the simulation point of view. Especially for the simulation it is
necessary to create models of the interfaces. In addition, a certain level of abstraction
is needed to exchange the data in an efficient way. This also covers the representation
of the data.

4.1 Related Work

The presented related work focuses on interface abstraction and interface modelling.
A strong relation with simulation coupling techniques exists which were presented
in the previous chapter.
The research group of Professor Gabriela Nicolescu from the Ecole Polytechnique de
Montréal works on discrete–continuous Co-Simulation environments. In An XML-
based Meta-model for the Design of Multiprocessor Embedded Systems [CGL+00] and A
Generic Wrapper Architecture for Multi-Processor SoC Cosimulation and Design interface
definitions with four levels of abstraction are used: Service Level, Message Level,
Driver Level and Register Transfer Level (RTL) (see table 4.1). The levels are in-
troduced according to the communication abstractions. The choice is a matter of the
specification and the design process. The highest level of the communication spec-
ification are Services supplied to the environment. The communication is seen as
the interaction of processes. A process can request a service from another process.
Service-request models are very common in web-based software development.
The Message Level describes how processes communicate in the respect of concur-
rency, synchronization, and channel behaviour. Active channels are used to model
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Abstraction
Level

Communication Typical Com-
munication
Primitive

Media Data Type behaviour
Service type-resolved

dynamic net
namespaces
+ concrete
and alge-
braic data
types

routing request (print,
device, file)

Message active channels
with complex
data structures

concrete
generic data
types

protocol con-
version

send (data,
disk)

Driver logical inter-
connections

fixed enu-
merated
data types

driver-level
protocol

write (data,
port) wait until
x==y

RTL binary signals fixed bit-
vector data
types

transmission set (value,port)
wait (clock)

Table 4.1: Interface Abstraction [CGL+00]

the communication between connected modules. Different forms of communication
are modelled by changing the channel behaviour. Messages contain concrete generic
data types.
On Driver Level, system are modelled by interconnected modules which communi-
cate through logical connections. The different modules exchange fixed enumerated
data types like integers. Typical communication abstractions are master-slave buses
or First In - First Out (FIFO) based point-to-point communications.
The RTL is defined as the lowest level of abstraction. The combinatory logic that
controls the registers and any address decoding is explicitly defined. Binary signals
are used as communication primitive.

A similar definition of interface abstraction levels can be found Programming mod-
els and HW-SW interfaces abstraction for multi-processor SoC [JBP06]. The presented
concept defines five abstraction levels: System Level, Virtual Architecture Level,
Transaction Accurate Level, Virtual Prototype and RTL (see table 4.2). This def-
inition is strongly related to the different abstraction levels of SoC modelling. The
approach uses parallel programming models to abstract hardware-software interfaces
in the case of heterogeneous SoCs. The authors define a programming model as a set
of functions (or primitives) that can be used by software to interact with hardware.

The concept of Polymorphic Signals in [Lan06], [Bra06] and [SGW04] has been
mentioned before. Polymorphic Signals are designed to realize a data exchange
between different kinds of models. A conversion of types, value ranges and clock
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Abstraction
Level

Communication Primitives HW-Access Primitives

System Level data exchange e.g send/re-
ceive(data)

functional access to specific
resources

Virtual Architec-
ture

data exchange + synchro-
nization for example Posix
threads, lock/unlock (data)

specific I/O protocols related
to architecture

Transaction Accu-
rate

data access with specific ad-
dresses for example read-
/write(data, adr)

physical access to HW re-
sources

Virtual Prototype HW dependant I/O for ex-
ample DMA and memory
mapped I/O

physical I/Os

RTL load and store physical I/Os

Table 4.2: Interface Abstraction [JBP06]

rates is done implicitly. The next step is to implement an implicit conversion between
different levels of abstraction, too.

Transaction based interfaces for the connection between models on different levels
of abstraction are another topic of research. In A Transaction-Based Unified Architecture
for Simulation and Emulation [HKPS05], Soha Hassoun, Murali Kudlugi, Duaine Pryor,
and Charles Selvidge present a layered architecture for simulation and emulation.
The architecture uses transactions to realize the communication between the Driving
Environment (DE) and Device under Test (DUT). The environment, a high-level ap-
plication, generates the test stimuli. The stimuli are translated by transactors into a
sequence of cycle-level stimuli for the DUT.

The Standard Component Emulator Modelling Interface (SCE-MI) standard also
uses transactors to connect software models and structural hardware models for
verification applications [PAB+05].

The SCE-MI provides a transport infrastructure between the emulator and
the host workstation sides of each channel which interconnects transactor
models in the emulator to C (untimed or RTL) models on the workstation.
For purposes of this document, the term emulator can be used interchange-
ably with any simulator capable of executing RTL or gate-level models,
including software HDL simulators.

A transactor transforms the data between two interfaces. It matches the hardware
to the specific protocol interface, while high-level commands are provided for the
software to perform specific actions.
Damian Deneault and Lauro Rizzatti present an application of the SCE-MI standard
in Evaluating and improving emulator performance [DR04].
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Figure 4.1: SCE-MI Interface between SW Model and DUT [HKPS05]

4.2 Interface Modelling and Abstraction

The interface modelling and abstraction concept is independent from the event ex-
change concept introduced in the previous chapter. The exchange concept covers the
question of how to exchange the data, while this chapter addresses the question what
is the data to be exchanged. This question depends on the available interfaces and the
level of interface abstraction. The communication takes place between the user appli-
cation, executed on the µC, and the simulation on the PC. The abstraction level of an
interface model has to be chosen with respect to the data format expectations of user
application and of the simulation. First of all the approach of interface abstraction is
introduced, then the interface representation is discussed.

4.2.1 Interface Abstraction

There are two aspects to consider about interface abstraction: first the abstraction
levels have to be suitable for the available µC interfaces and second, a higher level
of abstraction can accelerate the simulation-µC coupling by reducing the amount of
data shared between the µC and the simulation environment.
The CHILS approach adapts the proposal for communication abstraction levels pre-
sented in [CGL+00]. Unlike this proposal, the Analogue-Level has been added. Four
levels of interface abstraction are defined (see table 4.3) with respect to the available
µC interfaces. The highest level of abstraction is based on messages. An higher level
of abstraction, for example based on services, is not needed for the target application
of CHILS.
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Abstraction Level Data Type Example Communication
Primitive

Message-Level non-fixed size
generic data types

CAN send(data, device)

Byte-Level primitive fixed
size data types

ASC/SSC write(data, port)
wait until x=y

Digital-Level digital values, bit
vector

Port/Pin set(value,port)
wait(clock)

Analogue Level analogue values A/D, D/A stimulate(value,
pin)

Table 4.3: MC Interfaces Abstraction Levels

In theory, every µC interface can be modelled on the Analogue-Level, but this would
not be efficient. The CHILS device interfaces to the simulation environment are im-
plemented on different levels of abstraction, depending on the interface type. For
example the values of the General Purpose Input/Output (GPIO) ports are exchanged
on Digital-Level as bit vectors. For the communication interfaces, the exchange can
be done on Byte-Level or Message-Level as primitive or composed data-types. Nev-
ertheless, it is possible to define for example the ASC on the Digital-Level, if the
simulation models the serial communication protocol. Normally, concentrating on
the the data bytes transmitted via ASC would be enough.

4.2.2 Interface Representation

The interface representation, a kind of interface model, provides a direct connection
for the user application and for the simulation. So each interface module consists of
two parts. One part is located on the µC, the other part is located on the simulation
computer. The µC part has to provide memory locations for the input and output
values of the user application. In an ideal setup, the user application uses the same
memory addresses as for the real communication. This is not always possible due
to restrictions in accessibility of the peripheral registers. Instead of real registers the
presented concept uses virtual registers for some of the peripherals. This is not a
disadvantage because such adaptations can be realized in the driver software which
is normally used to access peripherals.
The interface representation on the simulation computer, which is part of the CHILS
device implementation, has to provide connection possibilities for the simulated µC
environment. The type of provided and expected data types depends on the interface
itself. Which type of data is chosen for each interface is explained later.
Figure 4.2 shows the module concept and the bipartite representation. The user
application reads and writes configuration data and payload data from virtual or real
registers of the CHILS monitor interface part. The CHILS monitor transfers the data
to the CHILS device. The interface part in the CHILS device evaluates and converts
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the data. The automatic conversion of data types between different abstraction levels
is based on the same idea as the concept of Polymorphic Signals in [Lan06], [Bra06]
and [SGW04]. A transactor-like technique (see SCE-MI standard [PAB+05]) can be
used for implementation.

The communication of both interface module parts is realized on the highest level

Figure 4.2: Module Concept

of abstraction which fulfills the demands on the interface. In order to demonstrate
this idea, the Analogue to Digital Converter (ADC) implementation is discussed. The
simulation produces a simulated analogue value as 32Bit or 64Bit floating point value
to the ADC interface of CHILS device. It is possible to send this floating point value
to the CHILS monitor, but the user application just expects a 8 to 12Bit value. So the
conversion of the simulated analogue value is done in the interface part of the CHILS
device. The necessary configuration data is provided by the CHILS monitor. Only
the converted 8 to 12Bit value is send to the user application, instead of the 32Bit or
64Bit floating point value.

Digital Interfaces

The implementation of the digital interfaces and peripherals, namely the GPIO and
the GPTA, is straightforward. The GPIO output registers are directly writable, while
the input registers can be set via a loop-back to the output registers. The GPTA
uses the same input and output lines, so the GPTA signal can be acquired via GPIO
registers. The user application uses the real registers in both situations.
The data exchange is realized on the Digital-Level, so bit vectors are exchanged. The
simulation receives and sends bits via single virtual pins.
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Analogue Interfaces

The analogue realization, which covers the ADC and the Fast Analogue Digital Con-
verter (FADC), is shown in figure 4.3. The module part within the CHILS monitor
uses virtual registers for configuration and communication. As mentioned before the
AD conversion is done by the CHILS device part of the interface. The data exchange is
realized on Byte-Level, so fixed size primitive data types are exchanged between the
CHILS device and the CHILS monitor. But of course the simulation sets a simulated
analogue value (32Bit or 64 Bit floating point value) as input to the CHILS device.

Figure 4.3: ADC Module

Communication Interfaces

The communication interfaces require a synchronization of the exchanged data. Spe-
cial virtual registers are defined to transfer data between the application and the
CHILS device. Listing 4.1 shows the data structure for the SSC. The driver can send
and receive fully synchronized data1. Figure 4.4 presents the receive synchronization
concept. The driver signalizes to the CHILS monitor (and the CHILS device) that it is
ready to receive data (set req). Then the CHILS device sends available data from the
simulation to the CHILS monitor. The CHILS monitor sets the data and the acknowl-
edgment flag (set data, set ack) and resets the request (reset req). The acknowledgment
flag is reset by the driver as soon as it reads the data (reset ack).

Figure 4.5 shows the send synchronization concept. The driver signalizes to the
CHILS monitor and to the CHILS device that it has new data to transmit and sets this

1Of course the driver can ignore the flags and just read and write the input/output registers
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typedef s t r u c t ssc_sy nc_ t {
v o l a t i l e unsigned i n t SEND;
v o l a t i l e unsigned i n t RECEIVE ;
v o l a t i l e unsigned i n t SEND_ACK;
v o l a t i l e unsigned i n t RECEIVE_ACK ;
v o l a t i l e unsigned i n t SEND_REQ;
v o l a t i l e unsigned i n t RECEIVE_REQ ;

} ssc_sync_ t ;
Listing 4.1: Virtual Registers for SSC Interface

data (set req, set data). Then the CHILS monitor sends the available data to CHILS
device. The CHILS device transmits the data to the simulation and signals the CHILS
monitor that the data has been transmitted. The CHILS monitor resets the request
flag and sets the acknowledgment flag, so the data is only transmitted once (reset reg,
set ack). The acknowledgment flag is reset by the driver as soon as possible (reset ack).

ASC/SSC ASC and SSC are realized via the described set of virtual registers. The
data exchange is implemented on Byte-Level, so fixed size primitive data types are
exchanged between the CHILS device and the CHILS monitor.

CAN The CAN peripheral 2 can be realized in the same way as the ASC and SSC.
The virtual registers will contain the payload of a CAN message. So the data exchange
can be implemented on Message-Level.

4.3 Summary

Four levels of interface abstraction are defined (see table 4.3) with respect to the avail-
able µC interfaces: Message-Level, Byte-Level, Digital-Level and Analogue Level.
The highest suitable level of abstraction for an interface is chosen to reduce the
amount of data shared between the µC and the simulation environment. This reduc-
tion accelerates the simulation-µC coupling. Each interface module consists of two
parts. One part is located on the µC, the other part is located on the simulation com-
puter. The simulation computer part of each interface module is able to convert the
data between the different levels of abstraction. The µC part of an interface consists
of real or virtual registers, which are readable and writable by the user application.
Normally a driver layer hides the implementation, so the user software does not have
to be changed to run on the final system.

2The CAN is not implemented yet.
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Figure 4.4: Receive Synchronization Driver - Monitor

Figure 4.5: Send Synchronization Driver - Monitor
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Chapter 5

Optimization - Coupling System
Analysis

The goal of the HIL simulation system analysis is an optimized setup for the data
exchange between the hardware and the simulation (see figure 5.1). This is primarily a
tradeoff between accuracy and performance. An optimized setup covers the type and
amount of exchanged data and the step size between two data exchanges. The first
claim can be obtained by choosing the highest level of interface abstraction which is
suitable for the desired functionality. The second claim concerns the rate of changes of
the exchanged data and the necessity of change/events distribution 1. Two techniques
can be used, an analysis of the running system and a pre-analysis of the system.

Figure 5.1: HIL System

Runtime Analysis The runtime analysis, or analysis within the runtime, focuses on
the detection of non-distributed 2 changes of exchange values between hardware and
simulation while the system is running . This information can be used to dynamically
adapt the step size of the exchange to find a compromise between accuracy and
performance. Runtime analysis is covered in chapter 7.

1An event can be defined as an indicator for a change [ZPK00].
2A change/event is called non-distributed if it is produced by a signal source but not distributed to

the corresponding sink.
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Pre-Analysis The pre-analysis of the system helps to determine the influence of
errors 3 introduced by the coupling system. It depends strongly on the algorithms
used on both sides (simulation and µC) to process the exchanged data. Algorithm
analysis is a part of numerical mathematics. The basis for µC algorithm analysis is
the source code of the application (chapter 6). The pre-analysis based on the coupling
system is described within this chapter.
These analysis techniques have been partly presented in the paper Determining the
Fidelity of Hardware-In-the-Loop Simulation Coupling Systems for the 2008 IEEE Interna-
tional Behavioural Modeling and Simulation Conference [KMH08b].

5.1 Related Work

The presented work is based on the system theory for the description of Linear Time
Invariant (LTI) systems. Irwin W. Sandberg’s article A Perspective On System Theory
[San84] presents a general introduction to the development of system theory. System
theory deals with the conversion of signals via systems. The authors of the book
Einführung in die Systemtheorie (introduction into system theory) define a signal and a
system as follows [GRS07].

Definition 5.1.1. A signal is a function or a series of values which present information.

Definition 5.1.2. A system is the abstraction of a process or a structure which correlates
several signals to each other.

The LTI systems theory is an important subset of system theory. This part of
system theory is well prospected and defined. The primarily mathematical repre-
sentations of LTI, the linear differential equations, are easy to apply. In contrast to
the linear systems theory, the theory of nonlinear systems is still a field of research
with open questions, especially the mathematical part which is based on nonlinear
differential equations. Several books about linear system theory can be found,
for example Signale und Systeme (Signals and Systems) [Kie98] or Signale, Prozesse,
Systeme (Signals, Processes, Systems) [Kar04].

The attempt to formulate the problem of the theoretical accuracy of HIL simu-
lations can be found [Bac05] , [Bac07] and [MMB07]. In Quantifying the Accuracy of
Hardware-in-the-Loop Simulations the authors M. MacDiarmid and M. Bacic write that
the “quantification of the accuracy of HWIL simulators presents unique challenges,
and remains an open research problem”. The complete system, HIL simulator and
real system are contemplated within the mentioned papers. The authors model the

3The term errors is used in the context of numerical mathematics. An error is the discrepancy
between an expected exact value and the retrieved value. In a larger scope an error can be seen as a
system state which does not matches the specification.
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coupled system as a two-port network. Especially digital systems and control hard-
ware systems are excluded from the approach.
My attempt is to formulate the problem for general HIL systems, including the
coupling system of an ECU-HIL simulation and similar solutions, like the CHILS
approach. The focus is set to the HIL simulation coupling system itself without
modelling the hardware and/or the simulation part.

5.2 Basics

The starting point is given by the complete system within its original environment
(upper part of figure 5.2). The system output is the vectorial variable Xout corre-
sponding to the vectorial variable Xin. The system input is the vectorial variable Yout
corresponding to the vectorial variable Yin.

Xin = Xout
Yin = Yout

(5.1)

Figure 5.2: HIL System

In the HIL simulation the system remains the same, while the environment is
simulated. The coupling system has the same input and output types as the real
system and its environment. The coupling system, as a signal processing system,
transforms the output of the real system and the output of the simulated environment.
The transformation functions are G1(t) and G2(t).

Xin(t) = G1(t) ∗Xout(t)
Yin(t) = G2(t) ∗Yout(t)

(5.2)
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The transformation can be reformulated as follows.(
Xin(t)
Yin(t)

)
=

[
G1(t) 0

0 G2(t))

]
∗

(
Xout(t)
Yout(t)

)
(5.3)

An ideal coupling system does not change the transmitted signal, so the
“hardware-in-the-loop” senses no difference to a connection with the real environ-
ment. The term transparency can be used for this purpose [Bac05]. A design goal of
the coupling system would be to design the system as transparent as possible. That
means that the transformation functions G1(t) and G2(t) are nearly one (equation 5.4).[

G1(t) 0
0 G2(t)

]
≈

[
1 0
0 1

]
(5.4)

The focus of interest now is how to measure the transparency of the coupling system?

5.3 Formal Definitions

Based on the general description of the coupling system the following definitions are
introduced to measure the transparency of the coupling system.

5.3.1 Transparency and Fidelity definition

The basis of measuring the transparency of the coupling system is a model of the
coupling system. Unlike the approach in [Bac05] and [Bac07], it is not necessary to
model the real system or its environment. It is feasible to model only the coupling
system.

Assumption 5.3.1. The coupling is assumed to be representable as a LTI system. This is a
general approximation that is often used because non-linear systems are hard to model. Most
of the non-linear systems can be approximated with linear models within their normal working
range. Real world systems are mostly non-linear.

Definition 5.3.2. A system is called linear if and only if the following equations are valid for
all input variables:

a · f (xin) = f (a ·xin) (homogeneity) (5.5)

f (xin1) + f (xin2) = f (xin1 + xin2) (superposition property) (5.6)

This is called the linearity principle. A system is called nonlinear if the linearity principle
is not valid.

For the next steps, we will use the transfer function within the frequency domain.
The advantage is that the transfer function directly shows the relation of the input
and the output signal.
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Definition 5.3.3. A LTI system can be described by the convolution of the input signal with
the impulse response

y(t) = g(t) ∗x(t) (5.7)

.

Assuming that x(t) is the input signal and y(t) is the output signal of a Single-Input
Single-Output (SISO) system. In the frequency domain, the corresponding Laplace
transformed signals are x(s) = L{x(t)} and y(s) = L{y(t)}.

Definition 5.3.4. The transfer function is defined as

y(s) = h(s)x(s) and so h(s) =
y(s)
x(s)

(5.8)

.
y(s) and x(s) are polynomials of degree m (w.l.o.g. x(s) and y(s) have the same

degree).

h(s) =
y(s)
x(s)

=
b0 + b1s1 + · · ·+ bmsm

a0 + a1s1 + · · ·+ amsm (5.9)

Lemma 5.3.5. In a completely transparent system, the input has to be identical to the output,
so y(s) = x(s). The transparency of a signal transformation system can now be defined
by the difference of the two polynomials y(s) and x(s) of the transfer function h(s).

For the calculation of the transparency, I define a m+1-dimensional space
m∏

over
polynomials

∑m
i=0 aiki. The power i stands for the space axis while the coefficients ai

are the values in each dimension i.

Lemma 5.3.6. The difference between two polynomials y(s) and x(s) can be defined as the

distance of the polynomials within the m + 1-dimensional space
m∏

over polynomials of the
degree m.

Definition 5.3.7. A weighted distance dw(x(s), y(s)) with

x(s) = a0 + · · ·+ amsm (5.10)

and
y(s) = b0 + · · ·+ bmsm (5.11)

is defined as

dw(x(s), y(s)) =

∣∣∣∣∣∣∣∣∣


a0
...

am

−


b0
...

bm


∣∣∣∣∣∣∣∣∣
w

(5.12)

with the weighted norm ∣∣∣. . .∣∣∣
w =

√
w0(a0− b0)2 + · · ·+ wm(am−bm)2 (5.13)
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.
The weights wi ≥ 1 are used to satisfy the influence of the different polynomial

exponents on the whole polynomial difference. For the examples in section 5.4 wi =∑i
j=0 j + 1 is chosen.

The transparency is now defined for SISO systems. Most of the transfer systems
are Multiple-Input Multiple-Output (MIMO) systems (figure 5.3).

Figure 5.3: MIMO System

Definition 5.3.8. MIMO systems can be described by a matrix of SISO transfer functions

H(s) =


h1,1(s) · · · hn,1(s)
...

. . .
...

h1,n(s) · · · hn,n(s)

 (5.14)

with

Y(s) =


y0(s)
...

yn(s)

 (5.15)

and

X(s) =


x0(s)
...

xn(s)

 (5.16)

so
Y(s) = H(s)X(s) (5.17)

.

Remark 5.3.9. The transfer matrix is square because the vectors X(s) and Y(s) have the same
size.

The main diagonal elements represent the direct transfer functions between each
input xi and each output yi. The other elements are couplings between different
inputs and outputs (xi and y j with i , j).
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Definition 5.3.10. The ideal transfer function matrix has a main diagonal containing ones.
The other matrix elements are zero.


y1(s)
...

yn(s)

 =


1 0 · · · 0

0 . . . 0
...

... 0 . . . 0
0 · · · 0 1



x1(s)
...

xn(s)

 (5.18)

This means there are no influences between different inputs and outputs, while
the direct connection between each input and each output does not change the signal,
so y(s)

x(s) = 1.

Definition 5.3.11. A norm ‖h(s)‖p over a polynomial quotient h(s) =
y(s)
x(s) can be defined over

the distance of x(s) and y(s) in
m∏

:∥∥∥∥∥ y(s)
x(s)

∥∥∥∥∥
p

= dw(x(s), y(s)) (5.19)

This norm can be used as a measure for the transparency.

Remark 5.3.12. If x(s) and y(s) are identical the distance is zero, so the system is fully
transparent and the transfer function does not change the input signal. In all other cases the
distance is larger than zero.

Definition 5.3.13. In addition, the difference between the upper polynomial y(s) and a zero

polynomial can be defined as norm
∥∥∥∥ y(s)

x(s)

∥∥∥∥0

p
over the distance of y(s) and 0 in

m∏
:

∥∥∥∥∥ y(s)
x(s)

∥∥∥∥∥0

p
= dw(0, y(s)) (5.20)

Definition 5.3.14. A matrix of transparency can be defined as follows. The main diagonal
contains the elements

∥∥∥hi,i(s)
∥∥∥

p with 1≤ i≤ n, while the other positions are filled with elements∥∥∥hi, j(s)
∥∥∥0

p with 1 ≤ i ≤ n , 1 ≤ j ≤ n , i , j:
‖h1,1(s)‖p

∥∥∥h j,i(s)
∥∥∥0

p
. . .∥∥∥hi, j(s)

∥∥∥0
p ‖hn,n(s)‖p

 (5.21)
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An ideal matrix of transparency is the zero matrix.
0 · · · 0
...
. . .

...
0 · · · 0

 (5.22)

Definition 5.3.15. With the help of a matrix norm we can now define a transparency
function tr for a MIMO system transfer matrix. The Euclidean norm is chosen in the
example in section 5.4.

tr(H(s)) = ∥∥∥∥∥∥∥∥∥∥∥

‖h1,1(s)‖p

∥∥∥h j,i(s)
∥∥∥0

p
. . .∥∥∥hi, j(s)

∥∥∥0
p ‖hn,n(s)‖p


∥∥∥∥∥∥∥∥∥∥∥ (5.23)

Definition 5.3.16. The fidelity function fd of a coupling system can now be defined by the
transparency of the transfer function. The value of the fidelity ranges between zero and one.

fd(H(s)) =
1

1 + tr(H(s))
(5.24)

The transformation performed by the coupling system (equation 5.3) is defined as
follows: (

Xin(t)
Yin(t)

)
=

[
G1(t) 0

0 G2(t))

]
∗

(
Xout(t)
Yout(t)

) (5.25)

Definition 5.3.17. For better visibility, a symbolic transformation (?) of the input signals
can now be defined as multiplication by the fidelity matrix.(

Xin(t)
Yin(t)

)
=

[
fd(L{G1(t)}) 0

0 fd(L{G2(t)})

]
?

(
Xout(t)
Yout(t)

) (5.26)

This can be interpreted as the proportionate information loss of the original input
signal caused by the transformation. The fidelity is one, if the signal is not changed,
so no information gets “lost”.

An ideal symbolic transformation matrix is now[
1 0
0 1

]
(5.27)

.
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Remark 5.3.18. The system is now defined as a continuous version. The same definitions
can be made with a discrete system model (the Laplace transformation is replaced by the
Z-transformation). In real coupling systems, a discrete part often exists, for example if the
input/output values are exchanged via a digital connection.

5.3.2 Application of the Coupling System Fidelity

The fidelity function fd(H(s)) is an instrument to compare different HIL coupling
solutions. Three steps are necessary to use the approach.

First: model the different coupling systems

Second: calculate fd(H(s)) for each system

Third: compare the symbolic transformation matrixes using a matrix norm

It is also possible to find optimal parameters for a parameterized coupling system
by starting an optimization process by applying the transparency function tr(H(s))
and the symbolic transformation matrix.
The optimization problem can be defined as minp(Hp(s)). p is a set of parameters of
the transfer function Hp(s).

The same consideration can be made for discrete coupling systems.

Definition 5.3.19. The transfer function for a discrete LTI SISO system can be defined by

h(z) =
y(z)
x(z)

=
b0 + b1z1 + · · ·+ bmzm

a0 + a1z1 + · · ·+ amzm (5.28)

.

The Laplace transformation is replaced by the Z-transformation.

5.4 Example

Figure 5.4: Heat-Sensor-in-the-Loop
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A heat-sensor-HIL simulation is taken as an example for a continuous coupling
system4. In order to build a heat-sensor-HIL simulation a heating element is needed
to transform the simulated heat into real heat for the sensor.

Definition 5.4.1. The heating element can be described by the following transfer function.

Hh(s) = K ∗
1

1 + Ts
(5.29)

The proportional coefficient K and the time constant T are depending on environ-
mental variables like the specific heat capacity, density and velocity of the transfer
medium and the heating element.

K =
1

cmγmAv
(5.30)

T =
ch

cmγmAv
(5.31)

with

cm - heat capacity of the medium (air cm = 1.01Ws
gK )

ch - heat capacity of the heating element (steel ch = 0.477Ws
gK )

γm - density of the medium (air cm = 1293 g
m3 )

v - velocity of the medium

A - cross section surface of the pipe where sensor and heating element are located

l - distance between heating element and sensor

The heat sensor and the heating element are positioned in a distance of l from

each other. This causes the delay D =
l
v

in heat transportation. It is assumed that
the heat control system corrects the proportional coefficient by adding the correction
coefficient

C =
1
K

(5.32)

.
The transfer function of the complete coupling system is now.

Hh(s) = C ∗K ∗
e−Ds

1 + Ts
(5.33)

4The system example is based on a climate control, which is used in a practical course of control
engineering at the HAW Hamburg [Huß08].
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e−Ds can be approximated by the Fourier series

eDs = 1 + sD +
s2D2

2!
+ . . . (5.34)

.
The fidelity function of the system is now calculated assuming an air velocity of

v = 1m/s, a sensor distance of l = 0.1m and a pipe cross section surface of A = 0.1m2.
The calculation (equation 5.35) is done without units. The result is a system fidelity
of fd(Hh(s)) = 0.847 5 6.

T =
0.477

1.01 ∗1293 ∗0.1 ∗1
(5.35)

T = 0.00365
D = 0.1/1

e0.1s = 1 + 0.1s + 0.005s2

Hh(s) = 1
(1+0.1s+0.005s2)∗(1+0.00365s)

Hh(s) = 1
1+0.10365s+0.00537s2+0,00002s3

tr(Hh(s)) =

∥∥∥∥∥∥∥∥∥∥

∣∣∣∣∣∣∣∣∣∣


1

0.10365

0.00537

0,00002

−


1

0

0

0


∣∣∣∣∣∣∣∣∣∣
w


∥∥∥∥∥∥∥∥∥∥

fd(Hh(s)) =
1

1 + tr(Hh(s))
fd(Hh(s)) = 0.847

Increasing the air velocity to v = 10m/s leads to better results of the fidelity function
fd(Hh(s)) = 0.982. Figure 5.5 shows that the heating systems with increased air velocity
follows the control input even better than the other system.

It is obvious that the higher air velocity leads to a faster heat transport to the
heat-sensor-in-the-loop, but it is not clear what happens if the material of the heating
system itself is changed. The steel heating element in the original system is replaced
by a copper heating element and an aluminium heating element. The heat capacity of
copper is ch = 0.381Ws

gK while the heat capacity of aluminum is ch = 0.896Ws
gK . Without

a system model it is hard to decide which material is the better choice for the system.
The fidelity function of the system is calculated assuming the original settings with
an air velocity of v = 1m/s and a pipe cross section surface of A = 0.1m2. The resulting
system fidelity is fd(Hh(s)) = 0.848 for the copper based system and fd(Hh(s)) = 0.843
for the aluminum based system. The copper heating element produces a higher

5The highest reachable fidelity value of a coupling system is one
6The calculation is done for clearness without units.
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Figure 5.5: Heating System - Different Air Velocities

system fidelity than the steel heating element and the aluminum heating element,
but the delay in heat transportation is even more important for the fidelity. The three
materials are leading to nearly the same results (figure 5.6). The fidelity value reflects
this behaviour in a very good way.
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Figure 5.6: Heating System - Different Materials

5.5 Comparison of Different Coupling Systems

CHILS and other HIL solutions are only comparable if the solutions are intended for
the same application. The presented pre-analysis approach is suitable to compare
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different HIL system implementations for the same application. The procedure is
shown in figure 5.7. The coupling system is divided in the analogue part and the
digital part. Afterwards the fidelity values of both parts are calculated.

Figure 5.7: System Comparison Modelling

5.5.1 Simulation Scenario

Typical automotive systems require sampling times of 1ms while 0.5ms or 0.25ms are
feasible for Formula One applications [dSp09]. Based on that information, sample
times between 0.1ms and 1ms are chosen for a comparison with the focus on engine
control, the main application of the TC1796/TC1766 µC.
The TC1796/TC1766 µC series has hundreds of digital I/O lines and several analogue
input lines. The simulation scenario respects these facts.

5.5.2 Interpretation of data sheets

Data sheets are a general source of information for a comparison. It is necessary to be
able to interpret the data sheets correctly.

In the Texas Instruments application report Understanding Data Converters [Tex99]
the following explanations to ADC and Digital to Analogue Converter (DAC) data
sheets can be found.
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Least Significant Bit (LSB) For ADC, the width of one conversion step is defined
as one LSB, 1LSB = FS

2n−1
7. For a DAC, one LSB corresponds to the height of a

conversion step between successive analogue outputs. The LSB is a measure of
the resolution of the converter because it defines the number of units of the full
analogue range.

Full Scale Range (FSR) The FSR defines the range of analogue values that can be
generated or measured.

Gain Error The gain error is defined as the difference between the nominal and the
actual gain points on the transfer function after the offset error has been corrected
to zero. For an ADC, the gain point is the midstep value when the digital output
is full scale, and for a DAC it is the step value when the digital input is full scale.

Offset Error The offset error is defined as the difference between the nominal and
actual offset points. For an ADC, the offset point is the midstep value when the
digital output is zero, and for a DAC it is the step value when the digital input
is zero.

Integral Linearity The integral linearity error (sometimes seen as simply linearity
error) is the deviation of the values on the actual transfer function from a straight
line. For an ADC the deviations are measured at the transitions from one step
to the next, and for the DAC they are measured at each step.

Differential Linearity The differential nonlinearity error (sometimes seen as simply
differential linearity) is the difference between an actual step width (for an ADC)
or step height (for a DAC) and the ideal value of one LSB. Therefore if the step
width or height is exactly one LSB, then the differential nonlinearity error is
zero.

Absolute Accuracy Error The absolute accuracy or total error of an ADC is the max-
imum value of the difference between an analogue value and the ideal midstep
value. It includes offset, gain, integral linearity errors and also the quantization
error in the case of an ADC.

Settling Time The settling time is the maximal time which a DAC needs to reach an
output value of a defined accuracy after the digital input value changed.

Conversion Rate The conversion rate is the maximum number of conversion per
second which an ADC can achieve.

7Full Scale (FS) defines the upper limit of convertible values of an ADC
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5.5.3 Scenarios

Two scenarios for the comparison are defined. Scenario I contains only digital I/O
lines. Setups with 16 or 128 digital input and output lines are compared. Scenario II
also includes 8 or 32 analogue input lines.

Scenario I - Digital I/O only:

Digital µC Input Lines: 16, 128

Digital µC Output Lines: 16, 128

Analogue µC Input Lines: 0 , 0

Scenario II - Digital I/O and Analogue I/O:

Digital µC Input Lines: 16, 128

Digital µC Output Lines: 16, 128

Analogue µC Input Lines: 8 , 32

5.5.4 CHILS vs. DeskPODTM

The DeskPODTM from the SimPOD company is a hardware box with individual
connector boards to connect all I/O pins of the µC. DeskPODTM couples the device
with a simulator frontend on the PC. The solution addresses the market of early
silicon validation and HW/SW-Co-verification. Normally, the DeskPODTM has full
control over the device by bypassing the PLL, so the µC can be started and stopped
by switching the clock on or off. The DeskPODTM has two modes of operation. In
the engaged mode, the DeskPODTM is under full control of the simulator. In this case
DeskPODTM and simulator exchange the data at each clock cycle, both simulated and
real. The performance is limited to 5000-10.000 clock cycles per second.
In the disengaged mode, the DeskPODTM is executing a cycle and checks for engage
conditions or an engage request from the simulator. If the conditions are met it
sends the data to the simulator and receives data from the simulator. Otherwise the
DeskPODTM executes the next clock cycle. Depending on the setup, the performance
can be as low as 15.000 clock cycles per second and as high as 250.000 clock cycles per
second.
A non preferred mode is to let the device run free without bypassing the PLL. So the
DeskPODTM has no control over the device. It will read and write values from and to
the µC as fast as possible (5000-10.000 interactions per second). In that scenario the
µC runs at full speed.
Further details can be found in chapter 9 in section 9.2.



74 CHAPTER 5. OPTIMIZATION - COUPLING SYSTEM ANALYSIS

DeskPODTM Hardware

Based on the given technical datasheets (see table D.2.1 in chapter D subsection D.2.1)
the following parameters for the LTI system representation can be extracted.

Interactions between DeskPODTM and Simulation: 5000-10000 per sec 8

Network Latency: approx. 0.25ms 9

SimPOD could not deliver any data regarding the quality of the D/A converters.

Scenarios

In scenario I, which includes only digital I/O, the DeskPODTM is bypassing the PLL.
Therefore full control of the system is possible, so the maximum accuracy of the
DeskPODTM solution is reachable. The hardware to simulation coupling is cycle ac-
curate but not very fast. The DeskPODTM is assumed to run in the disengaged mode,
which provides more performance.
In scenario II, which includes digital I/O and analogue I/O, the DeskPODTM configu-
ration has to be changed. The analogue I/O is needed, so the PLL of the µC cannot
be bypassed because the ADC will probably not work at such low frequencies (5000-
10.000Hz). The DeskPODTM has no direct control of the device. The consequence is
that the device runs at full speed and the DeskPODTM exchanges with its maximum
data rate. In this case events can be lost. This is a significant problem for communica-
tion interfaces like CAN, FlexRay or SSC and ASC. Especially bus interfaces like CAN
and Flexray have to run synchronously to the bus system. Data losses, time-outs and
varying bit lengthes will break the connection. Furthermore, the simulation has to be
realtime capable for scenario II.

5.5.5 CHILS vs. dSPACE

dSPACE [dsp] offers a wide variance of DAQ cards with digital and analogue inputs
and outputs which are used within their simulation computer racks. Special inter-
faces like CAN are also supported. The user can connect up to 16 I/O boards via the
the PHS bus, a special communication bus, within a simulation computer. dSPACE
hardware is mostly used to couple a complete ECU with a simulation of the ECU
environment, for example a combustion engine. The simulation and the simulator
have to be real-time capable. A non real-time use case is not intended.
A real-time simulation of a 6-cylinder gasoline engine including I/O with the dSPACE
Automotive Simulation Models Engine Simulation Package can achieve a cycle time
of 0.15ms [dSp09]. Table 9.3 Performance of 6 cylinder engine simulation with dSPACE in
chapter 9 shows some performance values of different simulation configurations.

8An average value of 7000 is chosen for the calculation (see chapter 9 in section 9.2)
9This is a typical value for a local area network.
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dSPACE Hardware

The following dSpace Hardware is needed for the chosen scenarios:

• 3x DS4003 Digital I/O Board

• 1x DS2103 Multi-Channel D/A Board

• 1x DS1006 Processor Board

• 1x DS2211 HIL I/O Board

From the data sheets (see table D.2.2 in chapter D subsection D.2.2) the following
values can be interpreted as LTI system: gain error, conversion time and settling time.
The other values are properties of nonlinear systems. This is the limitation of the
presented approach.

Based on the given technical data sheets the following parameters for the LTI
system representation can be extracted:

D/A Converter Settling Time: 0,010 ms

D/A Converter Gain Error: 0,2%

Bus Type: single master bus with 16 clients

Bus Latency (PHS Bus): 0,001 ms

The bus latency of the PHS bus is approximated based on its transfer rate and the bus
structure10. Measured values from a real system are not available.

Scenarios

Unlike the SimPOD solution and the CHILS approach, all scenarios require a realtime
capable simulation. Communication interfaces like CAN, FlexRay or SSC and ASC
can be included with special I/O boards.

5.5.6 Comparison Results

The results in figure 5.8 and figure 5.9 show a good fidelity of all systems in the range
of 0.1ms to 0.25ms exchange cycle time11. The DeskPODTM system has a disadvantage
because of the high network latency. The network latency influences the transfer of
the halt-signal from the simulation in the disengaged mode, so the data transferred
from the DeskPODTM to the simulation and from simulation to the DeskPODTM is
delayed by this time. If the DeskPODTM halts the µC because of an internal condition,

10The PHS bus is a single master bus, so no concurrency between different masters occurs.
11The weight functions for the fidelity calculation can be found in Appendix A
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Figure 5.8: Scenario I - Results

the transfer is also delayed because the simulation has to be stopped in addition. In
the free running mode without a PLL bypass all transfers are delayed by the transfer
via network, too.
The dSPACE solution produces also a delay, which is caused by the internal bus
system. However, this delay is much smaller than the delay caused by an ethernet
connection used by the DeskPODTM solution. The CHILS approach has the advantage
that the transfer latency of the data, which is exchanged between hardware and
simulation, does not influence the fidelity. While the data is transferred both side, the
µC and the simulation, are halted.
The results reflect this behaviour. The CHILS approach normally has the highest
fidelity value, so the quality of the coupling system itself is better. Especially at the
rigid boundary of 1ms cycle time, the differences are visible. The DeskPODTM setup
delivers a worse fidelity value because the real cycle time exceeds the boundary much
more than the other systems ones.

5.6 Summary

The coupling system analysis calculates the fidelity of HIL simulation coupling sys-
tems in a formal way. The calculation is based on the transfer function in the fre-
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Figure 5.9: Scenario II - Results

quency domain of the coupling system. SISO and MIMO systems are covered by this
approach. The approach can be used to compare different HIL simulation coupling
systems. An optimization process, which is based on the fidelity value, can be exe-
cuted in order to find the best possible configuration of a coupling system.
The comparison between the CHILS hardware to simulation coupling systems and
other HIL solutions, the dSPACE system, a classical HIL solution, and the DeskPODTM

from the company SimPOD, a special solution for µC to simulation coupling, shows
that the CHILS approach has a higher coupling system fidelity and quality in a typical
simulation scenario of a passenger car.
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Chapter 6

Optimization - Analysis of the Real
System and Environment

The pre-analysis of the system helps to determine the influence of errors introduced
by the coupling system. The error depends strongly on the algorithms used on
both sides, the simulation side and µC side, in order to process the exchanged data.
First, the current chapter presents the analysis of algorithms executed on the µC.
Afterwards, concepts for the analysis of the simulated environment are presented.
These analysis techniques were partly presented on the 16th International Conference
Mixed Design of Integrated Circuits and Systems in the paper Chip Hardware-In-The-Loop
Simulation (CHILS) Coupling Optimization Through New Algorithm Analysis Technique
[KMH09].

6.1 Analysis of Algorithms

Algorithm analysis is a part of numerical mathematics. A classical problem of nu-
merical mathematics is the estimation of the error introduced by the numerical
calculation. Most of the standard books about numerical mathematics like [SW93]
cover error estimation. The numerical error analysis calculates the relative or ab-
solute output error depending on the relative or absolute input error. The relation
between input and output error is called condition number. Algorithms are tolerant
to input errors if the condition numbers are small. A problem with a low condition
number is said to be well-conditioned, while a problem with a high condition number
is said to be ill-conditioned. The condition number is a good indicator to prove the
error tolerance of an algorithm. Based on that knowledge it is the basis of the follow-
ing algorithm analysis. The condition number calculation is very computationally
intensive because it does not only depends on the operation itself but also on all input
variables. There is more than one condition number for an algorithm. It is a spectrum
of condition numbers depending on a spectrum of inputs. The numerical basics are
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presented in subsection 6.1.2, including the definition of errors and the calculation of
condition numbers.

The next section presents related work on the topic of numerical algorithm analysis
techniques.

6.1.1 Related Works

A numerical analysis normally focuses on a limited number of algorithms, because
of the high complexity of calculations. The paper A Comparison of Two Algorithms for
Predicting the Condition Number[HZ07] describes a method to predict the condition
number of matrices by a combination of modified k-nearest neighbors (k-NN) algo-
rithm and a Support Vector Machine Support Vector Machines (SVM). The condition
number of matrices is a measure of stability or sensitivity of a matrix to numerical
operations. It gives a bound of how accurate or inaccurate the solution of a given
problem is if it is numerically solved. This is interesting for the numerical solving of
differential equations in terms of stability analysis, but not for a general algorithm
analysis. Marina Epelman and Robert M. Freund focus on the condition number
complexity of an algorithm for resolving a conic linear system [EF97]. Such considera-
tions for single algorithms are supposed to be very time-consuming and hard to solve.

In Computational Graphs and Rounding Errors [Bau74] computational graphs are
used to calculate the error propagation of relative errors. The presented approach
can be applied in general to all algorithms representable as computational graphs.
The study of an algorithm is limited by the input data of the algorithm. Only the
error propagation for a specific set of input data can be solved, but this is acceptable
as long as the input range of data is known. A graph framework for computation
idea is presented by Linnainmaa in 1976 to compute the Taylor series expansion of
an accumulated rounding error with respect to the local rounding errors.
P. Y. Yalamov extends the idea in the article Graphs and stability of algorithms to study
classes of algorithms. The work on graphs falls under the term of automatic error
analysis, while the previously presented approaches are a combination of theoretical
analysis and numerical experiments. Other approaches are summarized in the book
Accuracy and Stability of Numerical Algorithms written by Nicholas J. Higham [Hig02a].
An automatic error analysis can be regarded as an optimization problem so direct
search methods can be applied. An other idea is to perform the calculation based on
intervals, which is called interval analysis. So the calculation directly includes the
fuzziness of the variables. Affine arithmetic or affine analysis was invented to reduce
the range explosion by calculating intervals. An application of affine analysis can be
found in the paper Floating-Point Error Analysis based on Affine Arithmetic [FCR03].

Beyond the numerical analysis other methods are used to analyze programme
structures. Often a combined Control Flow Graph (CFG)-Data Flow Graph (DFG) is
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used. For example, the applications are the design space exploration of SoC architec-
tures described by Mario Schölzel in [Sch06a] and by Victor S. Lapinskii in [Lap01] or
compiler techniques. A classical approach in compiler techniques is register allocation
based on graph colouring, which can be found in [Bri92] and [BCT94]. This popular
technique constructs a graph representing the constraints that the register allocator
must preserve. The information is primarily taken from the data flow dependencies
of the programme.

6.1.2 Numerical Basics

In [EMR87] the numerical stability is defined as follows:

Definition 6.1.1. An algorithm applied to a numerical method is called stable, weak-stable or
instable depending on wether an error admitted in the n-th step of calculation is decreasing,
of the same order or growing in the following steps of exact calculation.

Ein Algorithmus für ein numerisches Verfahren heiß stabil, schwach stabil oder
instabil, je nachdem ob ein im n-ten Rechenschritt zugelassener Rechnungsfehler
bei exakter Rechnung in den Folgeschritten abnimmt, von gleicher Größenord-
nung bleibt oder anwächst.

This definition describes the idea of analysis of the error propagation. An ideal
calculation process is assumed which is disturbed by the introduced error. If the exact
calculation leads to a fast growing error, the algorithm is not applicable to solve the
numerical problem. The stability of an algorithm depends on the problem to solve. In
Accuracy and Stability of Numerical Algorithms [Hig02b] Nicholas J. Higham mentions
the Gram-Schmidt method as an example. The method is stable when used to solve
the least square problem, but if it is applied to compute the orthonormal basis it can
produce poor results.

Error Propagation

The analysis of the error, for example the input error of a programme, can be done by
looking at the propagation of the absolute perturbation ∆x = (∆x1,∆x2, . . . ,∆xn)εRn of
the argument x = (x1,x2, . . . ,xn) of a mapping f :Rn

→R to the result f (x+∆x) [SW93].
If f is continuously differentiable then the absolute error is defined as:∣∣∣ f (x +∆x)− f (x)

∣∣∣ =

∣∣∣∣∣∣ n∑
j=1

∂ f
∂x j
|x+τ∆x(∆x j)

∣∣∣∣∣∣
with τε(0,1)

(6.1)
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The factor of growths is primarily determined by the derivative. For the analysis
of relative perturbation εk = ∆xk/xk one can approximate that:∣∣∣∣ f (x+∆x)− f (x)

f (x)

∣∣∣∣ ∼ ∣∣∣∣∣∣ n∑
j=1

∂ f
∂x j
|x+τ∆x ·

∆x j
x j
·

x j
f (x)

∣∣∣∣∣∣
with τε(0,1)

(6.2)

[SW93]

Definition 6.1.2. The condition of a problem is defined as the worst case growth factor of the
influence from the input error to the result error.

The relative condition number ck and the relative result error εy for a function
y = f (x1,x2, . . . ,xn) with nεN and a relative perturbation of input arguments εk = ∆xk/xk
with k = 1,2, . . . ,n can be determined by [Ern07]:

εy =
f (x1+∆x1,x2+∆x2,...,xn+∆xn)− f (x1,x2,...,xn)

f (x1,x2,...,xn)

∼

n∑
k=1

ckεk

with

ck =
xk

f (x1,x2,...,xn)
∂ f (x1,x2,...,xn)

∂xk

(6.3)

6.1.3 Arithmetic Basic Operations

The condition number calculation for specific arithmetic operation is based on the
numerical basics mentioned before. In [SW93], the development of the error for
arithmetic basic operations is defined in the following way.

Lemma 6.1.3. Let be x, yεR \ {0} and let be ◦ one of arithmetic operations +, · and /. The
relative errors εx = (x̃−x)/x ,εy = (ỹ− y)/y and ε◦ = (◦(x̃, ỹ)−◦(x, y))/◦ (x, y) regarding two
approximations x̃ of x and ỹ of y are described by

ε◦ � εx +εy for ◦ (x, y) = x · y
ε◦ � εx−εy for ◦ (x, y) = x/y

ε◦ � x
x+yεx +

y
x+yεy for ◦ (x, y) = x + y , 0

(6.4)

� means that products of errors can be ignored.
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Combination of Arithmetic Basic Operations

The combination of the arithmetic basic operation is the basis of the condition number
calculation of complete algorithms. An algorithm is normally defined by a sequence
of basic operations. The following proof presents the equivalence of condition number
calculation using the sequential calculation of basic operations and using one complex
operation. The calculation is based on equation 6.3.

Proof 6.1.4. Let f1(x1,x2) = x1◦1 x2 be a function with the operator ◦1 and let f2(y1,x3) = y1◦2
x3 be a function with the operator ◦2. It is given that f1(x1,x2) = y1 and f2(y1,x3) = y2. The
function f2 gets the result of f1 as input. In addition f3(x1,x2,x3) = (x1◦1 x2)◦2 x3 is a function
which is equivalent to sequential computation of f1 and f2, so f3(x1,x2,x3) = f2( f1(x1,x2),x3))
is true. The input error of xn is given as εn with nε{1,2,3}. The relative errors ε f 1,ε f 2,ε f 3
produced as a result of the functions f1, f2, f3 can be calculated as follows (see equation 6.3).

ε f 1 =
∂ f1
∂x1
·

x1

f1(x1,x2)
·ε1 +

∂ f1
∂x2
·

x2

f1(x1,x2)
·ε2 (6.5)

ε f 2 =
∂ f2
∂y1
·

y1

f2(y1,x3)
·ε f 1 +

∂ f2
∂x3
·

x3

f2(y1,x3)
·ε3 (6.6)

ε f 3 =
∂ f3
∂x1
·

x1

f3(x1,x2,x3)
·ε1 +

∂ f3
∂x2
·

x2

f3(x1,x2,x3)
·ε2 +

∂ f3
∂x3
·

x3

f3(x1,x2,x3)
·ε3 (6.7)

The next step is to form the partial derivative of f3(x1,x2,x3)) = (x1 ◦1 x2)◦2 x3). x1 ◦1 x2
is the inner function which is equal to the function f1 with the result y1. The outer function is
given by y1◦2 x3 which is equivalent to f2. Applying the chain rule 6.12 the partial derivatives
∂ f3
∂x1

and ∂ f3
∂x2

are formed.

∂ f3
∂x1

=
∂ f2
∂y1
·
∂ f1
∂x1

∂ f3
∂x2

=
∂ f2
∂y1
·
∂ f1
∂x2

(6.8)

Inserted in equation 6.7 the following expression is derived.

ε f 3 =
∂ f2
∂y1
·
∂ f1
∂x1
·

x1

f3(x1,x2,x3)
·ε1 +

∂ f2
∂y1
·
∂ f1
∂x2
·

x2

f3(x1,x2,x3)
·ε2 +

∂ f3
∂x3
·

x3

f3(x1,x2,x3)
·ε3 (6.9)

Equation 6.5 is now inserted in equation 6.6.

ε f 2 =
∂ f2
∂y1
·

y1

f2(y1,x3)
·

(
∂ f1
∂x1
·

x1

f1(x1,x2)
·ε1 +

∂ f1
∂x2
·

x2

f1(x1,x2)
·ε2

)
+
∂ f2
∂x3
·

x3

f2(y1,x3)
·ε3 (6.10)
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Canceling this equation yields to the following result:

ε f 2 =
∂ f2
∂y1
·

x1

f2(y1,x3)
·
∂ f1
∂x1
·ε1 +

∂ f2
∂y1
·

x2

f2(y1,x3)
·
∂ f1
∂x2
·ε2 +

∂ f2
∂x3
·

x3

f2(y1,x3)
·ε3 (6.11)

Because of the equivalence of f2(y1,x3) and f3(x1,x2,x3) the equivalence of ε f 2 (6.11) and
ε f 3 (6.9) is proved.

Remark 6.1.5. Chain rule from [BS63]:

y = f (u)
u = ϕ(x)

dy
dx = f ′(u) ·ϕ′(x)

(6.12)

6.1.4 Algorithm Analysis Process

The algorithm analysis process is based on the idea of using computational graphs to
estimate the error propagation of an algorithm [Bau74]. This principle is comparable
to an automatic error analysis. It is in the nature of the principle that the complexity
of the calculations needed for such analysis is very high. The error propagation
depends strongly on the input data. For each different input data set, the calculation
has to be done again. The idea is to reduce the complexity of calculations of a single
algorithm by precalculation of algorithm parts and result storage in a database. The
presented approach transforms the algorithm described in a programming language
into a structure similar to a computational graph.
The analysis flow is set up as a bipartite process. The analysis starts with the profiling

flow (figure 6.1) which is a training flow to build up a database of analysis results.
The input contains the source code of an algorithm and input data sets. This part of
the analysis is very costly in computation time.

The classification of algorithms is based on the results of the analysis. A new
programme can be analyzed by classifying the graph of the programme and getting
the corresponding results out of the database. The classification flow is described
later in section 6.2.

CFG-DFG Analysis

The computational graph is the starting point for the analysis approach. The ap-
plication is transformed into a combined CFG-DFG, while the CFG is the primary
structure. A DFG is similar to a computational graph used in [Bau74]. The numerical
analysis, regarding the condition of the programme algorithms, can be executed on
the DFGs. Each vertex of the CFG is called a basis block. A basis block contains a
pure DFG, so it contains no control flow information. The DFG is a set of operations
with partial order. A directed acyclic graph can be used to create this order.
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Figure 6.1: Profiling Flow

Definition 6.1.6. A DFG d f g = (V,Ei, type,var,cond,err) is a directed acyclic graph with a
set of vertices V, the set of arcs Ei =⊆ V×V, which are called internal arcs, and the labeling
functions type : V→ O, var : V→ R, cond : V→ R and err : V→ R. The set of arcs is
defined as follows: Ei is a subset of the global set of data flow arcs ED (Ei ⊆ ED). The set of
operations is defined as: O = {+,−,∗, /} is a set of unary and binary operations (see subsection
6.1.3).

The basic block is an extension of a DFG. In addition to the arcs, vertices and labels
of the DFG there are external data flow arcs to model the data flow connections to
other basic blocks or to the same block1.

Definition 6.1.7. A basic block b = (V,Ei,Ee, type,var,cond,err) is a directed graph with
a set of vertices V, the set of arcs Ei ⊆ V ×V (called internal arcs), an additional set of
arcs Ee ⊆ V×V, which are called external arcs, and the labelling functions type : V→ O,
var : V→R, cond : V→R and err : V→R. The sets of arcs are defined as follows: Ei and
Ee are a subset of the global data flow arc set ED (Ei ⊆ ED , Ee ⊆ ED). The basic block b is an
element of the global set B (b ∈ B).

The CFG models the control flow connections between the basic blocks.

Definition 6.1.8. A CFG c f g = (B,Ec) is a directed graph with a set of basic blocks B and the
set of arcs Ec =⊆ B×B. Ec is a subset of the global set EC.

1Connections of a basic block to itself are cyclic connections.
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Additionally the following definitions are used.

Definition 6.1.9. The degree of a vertex (or node) of a graph is the number of edges incident
to the vertex.

Definition 6.1.10. A source vertex (or node) is a vertex with indegree zero.

Definition 6.1.11. A sink vertex (or node) is a vertex with outdegree zero.

Definition 6.1.12. A vertex V1 is called a direct predecessor of a vertex V2 if (V1,V2) ∈ E.
E is the set of arcs of a graph. The function pred : V→ {V} yields the direct predecessors of a
vertex. If the vertex v has no direct predecessor pred(V) returns ∅.

Definition 6.1.13. A vertex V1 is called a predecessor of a vertex Vn if a sequence
(V1,V2), . . . , (Vn−1,Vn) ∈ E exists. E is the set of arcs of a graph. The function preds : V→V
yields all predecessor of a vertex. If the vertex v has no predecessor suc(V) returns ∅.

Definition 6.1.14. A vertex V1 is called a direct successor of a vertex V2 if (V2,V1) ∈ E. E
is set of arcs of a graph. The function suc : V→ {V} yields the direct successors of a vertex.

The input language of the analysis approach is a reduced C dialect, called C−−.
The C−− to CFG-DFG converter is based on the frontend of the compiler for the
DESCOMP approach, which the author developed as seminar work for the PhD
thesis of Mario Schölzel [Sch06a].

The programme (listing 6.1) is transformed to a CFG-DFG structure (figure 6.2).
The dotted lines represent the control flow between the basic blocks while the solid
lines show the data flow. The start nodes are labelled with the name and the value
of the variable they represent. The other nodes are labeled with the internal variable
names. The values of the internal variables are set while the calculation process on
the graph is executed.

It is possible to execute the programme flow based on the CFG. All control flows
and data dependencies are available. The execution is necessary to calculate the values
of the internal variables (figure 6.3). If all internal variables of a DFG are calculated,
the condition of each algorithmic part of the programme can be calculated. The arcs
are labeled with the condition numbers of the single operations (figure 6.4). The
calculation of operation results and condition numbers is an incremental process.

In order to calculate the relative error εi all previous errors ε j of the predecessor
nodes have to be calculated. The calculation is described in lemma 6.1.3. For example
the error ε6 in figure 6.4 is the result of

ε6 = ε5
out

out + accu
+ε3

accu
out + accu

(6.13)

.
It is clear that the labeling depends on the current state of execution, so the labeling

functions var, cond and err are changing. It is necessary to create a couple of execution
scenarios to build the database. These scenarios are called a training set.
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Figure 6.2: Example-CFG-DFG

Training Set

The classification database is filled with a training set of data. The set contains a
couple of programs with a spectrum of input data. The previous calculation is done
to create a spectrum of relative errors or condition numbers. The training programs
are transformed to the CFG. The different execution paths in the CFG are mapped
to a couple of DFGs. Every DFG represents one execution path. Afterwards these
DFGs are subdivided into DFG subgraphs. Every subgraph has a minimum of three
nodes, is connected, acyclic, and has one or more source vertices. A spectrum of input

Figure 6.3: Example-DFG
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f i x 2 4 . 8 const = 2 0 ; f i x 2 4 . 8 accu = 0 ;

void main ( ) {
f i x 2 4 . 8 in = 4 . 1 ;
f i x 2 4 . 8 out ;
f i x 8 . 0 end = 0 ;

while ( end !=1) {
out = accu / ( in ∗ const ) ;
accu = accu+out ;

}
}

Listing 6.1: Example-C−−Code

values and (relative) errors is applied to every subgraph. The result of the analysis,
the condition number and the calculation results of the sink vertices, is stored into
the database. The DFG is used as index into the database to retrieve the results. Each
DFG is a binary tree. This is due to the fact that the operations are unary or binary.
Based on that knowledge a unique signature can be easily applied to each DFG. Each
signature can be inserted into a search tree to create a very efficient retrieval process.
In order to build the signature we need first a numbering function for binary trees
which adds a unique index to every node.

Remark 6.1.15. The DFG has a natural order in the nodes so it is possible and necessary to
differ between the left and the right successor of a node.

Definition 6.1.16. A numbering function index : V→N is defined as

index(V) =


1 if pred(V) = ∅

2 ∗n(pred(V)) if V is the left successor of pred(V)
2 ∗n(pred(V)) + 1 if V is the right successor of pred(V)

(6.14)

Afterwards the signature function for binary tree DFGs can be defined as follows:

Definition 6.1.17. A signature sign(d f g) of a binary tree DFG can be defined as a list of
operator types o with O = {+,−,∗, /} which is unique for each binary tree DFG. The list is
defined as a set of tuples (o,n) with o = type(v) as operator type of the DFG node v and
n = index(v) as index of the node.

sign(d f g) = {(type(v), index(v))|v ∈ V} (6.15)

Complexity of Subgraph Training Set Calculation

The number of calculations based on one training set with n ∈N different input grows
exponentially. Each binary graph has k-inputs with k ∈N and one output. Each of the
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Figure 6.4: Example-DFG-Condition-Labels

n input values is applied to each input. From the combinatorics it is known that the
number of variations with repetition in k places from a set with n elements is nk. So
nk calculations are caused and nk result sets are produced by an input data set with n
values.

6.2 Classification of Algorithms

The classification of algorithms depends strongly on the goal to be achieved by the
classification. In [scr] the four types of classifications are mentioned, classification
by purpose, by implementation, by design paradigm and by complexity.
The classification by purpose forms groups of algorithms depending on the task of
the algorithm, for example search algorithms, cryptographic algorithms or compres-
sion algorithms.
The classification by implementation differs between the basic implementation prin-
ciples of algorithms. These basic principles are for example recursive or iterative,
logical or procedural, serial or parallel and deterministic or non-deterministic.
The design paradigm does not describe the implementation of an algorithm, but
the kind of problem solving. Simple design paradigms are “divide and conquer”,
reducing the problem by creating smaller instances, which are easier to solve, linear
programming, express the problem as a set of linear inequalities and minimize the
inputs, or using graphs.
The classification by complexity depends on the time to complete the problem de-
pending on the size of the input. The algorithm can be linear in time, exponential in
time or above exponential.
Another possibility is to classify algorithms by the structure of an algorithm. The
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idea is that similar structured algorithms have similar characteristics. The structure
is given by the data flow and control flow.

6.2.1 Related Work

Classification of graphs or using graph models to classify documents are actual do-
mains of research. Especially automatic classification technologies become more and
more important due to the exponential growth of data 2. For example data-mining3

uses classification techniques to transform this data into extracted information. A
large amount of literature to this topic can be found.
One of the most import classification algorithms is the k-NN. The k-NN is a method
for classifying objects based on closest training examples in the feature space [Wikb].
It is a type of instance-based learning. In Classification of Web Documents Using a Graph
Model Adam Schenker, Mark Last, Horst Bunke and Abraham Kandel use k-NN al-
gorithms to classify documents which are represented as graphs [SLBK03]. Classical
techniques use numeric vectors in the feature space to classify the documents. The
presented approach works with graphs as a fundamental data structure. The web
documents are converted to graphs containing the most frequently occurring words
of the document and the relations between them. A graph-theoretical distance mea-
sure is applied to calculate the distance needed by the k-NN method.
Kernel methods are another solution for graph classification. The function giving
the inner products, for example a scalar quantity dealing with vectors, is called the
kernel. So the kernel reduces a high dimensional problem into a low dimensional
one. A learning machine does not access the high dimensional feature vector of a
representative, only the low dimensional inner product is accessed. Hisashi Kashima
and Akihiro Inokuchi present the method in Kernels for Graph Classification [KI02]. The
design of the feature space and the kernel function is the critical task.
Guido Del Vescovo and Antonello Rizzi present an approach called Automatic Classi-
fication of Graphs by Symbolic Histograms [VR07] in 2007. The graph is converted into
a vector signature consisting of so-called symbols. This signature or feature vector is
called a symbolic histogram. Each symbol represents a cluster of subgraphs of equal
size. This technique can be applied for non-exact matchings.

6.2.2 Classification Process

The classification of algorithms is based on the results of the analysis presented in
the previous section. A new programme is analyzed by classifying the graph of the
program and getting the corresponding results out of the database. For the retrieval
process, the graph is converted to a couple of signatures (see definition 6.1.4). Unlike
to the symbolic histogram in [VR07], the signature is used for exact matchings. Figure

2The amount of data doubling every three years [LV03]
3Data mining is the process of uncovering and extracting patterns from large data sets.
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6.5 shows the different steps of the classification flow. The application is transformed
into a combined CFG - DFG structure. Afterwards single DFGs with one end node
are created representing the different control flows of the application for each result.
From the DFGs signatures and sub signatures are generated as a search profile for the
database. This graph matching process is explained later. The search profile yields the
numerical data from the algorithm analysis process. This data has to be recombined
depending on the structure of the original graph.

Figure 6.5: Classification Flow

Graph Matching

The graph matching maps the programme graph to graphs which are used as database
indices. The problem to find a matching can be formulated as follows. A cover of
the whole DFG with subgraphs from the database has to be found. Starting at the
end node of a single DFG, the largest available binary subgraph is chosen from the
database. All covered nodes are removed from the DFG, except for the start nodes of
the subgraph. These start nodes are the new end nodes for the next database search
(see figure 6.6). If the whole DFG is separated into binary subgraphs the algorithm
terminates. A complete profile for the whole DFG is reconstructed by recombining
the data of the profiles retrieved from the database by the binary subgraphs.
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Figure 6.6: Graph Matching - Covering the DFG

Before the following description of the matching algorithm in pseudocode further
down, some additional functions are introduced:

Definition 6.2.1. subSign(d f g,v) returns the signature of the largest binary subgraph of the
DFG d f g = (V,Ei, type,var,cond,err) starting from the node v ∈ V.

Definition 6.2.2. cutSign(s) returns a sub signature s′ of signature s =
{(type(v), index(v))|v ∈ Vs}. The sub signature s′ is retrieved by deleting the tuple
(type(vi), index(vi)) with the highest value of index(vi) from s.

Definition 6.2.3. getNodes(s,v,V) returns a set V′ ⊆V of nodes which are corresponding to
signature s starting from node v ∈ V

Algorithm 6.2.4.

d f g = (V,Ei, type,var,cond,err): the DFG

DBsign: set of signature of the DFGs stored in the database

Ssign: set of signatures

while V , ∅
get ve ∈ V with suc(ve) == ∅
ssub = subSign(d f g,ve)
while ssub <DBsign

ssub := cutSign(ssub)
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end
Vclean = getNodes(ssub,ve,V)
remove ∀vr ∈ Vclean from V if ∀suc(vr) ∈ Vclean

end

Remark 6.2.5. The described algorithm will not find the optimal covering of the graph with
given subgraphs. This problem is known as NP complete4, so the efficient implementations
are currently unknown.

Recombination

The recombination of the results is needed if the whole programme graph cannot
be found within the database. The retrieved results from the sub graph analysis are
combined to the result, which is valid for the whole graph. Of course only an approx-
imation of the profile can be produced but the database retrieval and recombination
process is much faster than the calculation of the numerical profile. The process of
recombination is based on scaling and matching of the results from the database. The
produced result is an upper bound of the real condition numbers.

Proof 6.2.6. Graph A and graph B are two graphs to be combined into graph C (figure 6.7).
The arcs of the graphs are labeled with the condition numbers cn with nε{1, . . . ,4} depending
on the operations o1 and o2. The errors εnεR+ with nε{1, . . . ,6} are taken from the database
while ε̄e is unknown. The preconditions are ε5 = ε4

5 and ε3 ≥ ε4. ε̄e can be calculated by
multiplication of a factor d with ε6. It is assumed that d =

ε3
ε5

fulfills this demand.

ε̄e = ε6
ε3

ε5
(6.16)

assuming that
ε̄e ≥ εe

ε̄e =
(ε4c3 +ε5c4)ε3

ε5
≥ ε4c3 +ε3c4

and so
4NP (“nondeterministic polynomial time”) is one of the most fundamental complexity classes. NP

is the set of decision problems which are solvable in polynomial time by a non-deterministic Turing
machine. NP-complete problems are a subset of the NP class. Currently, there are no polynomial-time
algorithms known for NP-complete problems [Wikc].

5The initial errors of the graphs in the database are identical.
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ε3c4 +
ε4c3ε3

ε5
≥ ε4c3 +ε3c4 (6.17)

ε4c3ε3

ε5
≥ ε4c3

ε3

ε5
≥ 1

ε3 ≥ ε5

So the assumption ε̄e ≥ εe is true because ε5 = ε4 and ε3 ≥ ε4.
If ε3 < ε4 the precalculated error ε6 is an upper bound of the real error εe.

Figure 6.7: Result-Recombination

Experimental Results

The actual implementation is very limited regarding the size of the database and the
storage results. The input language is a subset of the C-language focusing on the
algorithmic parts of programs. This is a proof-of-concept of an analysis framework to
be developed. The example implementation is limited to storing of 100000 data sets
per analyzed subgraph, while during the analysis more data sets can be analyzed.
An average value of a couple of sets is stored. The database is fed by some initial
graphs and an initial analysis spectrum for the input variables. If the spectrum has
n-Values and a graph has k input values nk combinations are analyzed. The example
spectrum has 92 values, so 92k values are analyzed while 17k result values are stored.
Table 6.2 shows some results from the database filling process. An input with four
input nodes and overall seven nodes needs about 800 seconds run time. The retrieval
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of the results (table 6.3) of the same graph takes less than 10 seconds. The run time
for analysis increases exponentially to the graph size. The analysis of a graph with
eight input nodes would take approximately several hours, while a combination of
results for the same graph takes ten seconds (table 6.3, last line). Of course this result
is less exact and just an upper bound of an analysis, but it is much faster to compute.

database size in MB 284
number of graphs in the database 41
result data sets in the database 1 519 273

Table 6.1: Database Size

Result Set Size Run Time (sec) Number of Input
Nodes

Number Of
Nodes

289 0.109 2 3
4913 7.235 3 5
83521 793.277 4 7

Table 6.2: Time for Database Filling

Number of Com-
binations

Run Time (sec) Number of Input
Nodes

Number of Nodes

0 0.078 2 3
0 0.609 3 5
0 9.25 4 7
4 10.124 8 15

Table 6.3: Time for Database Retrieval

6.3 Analysis and Classification of Systems

The analysis and classification of systems is a well studied field. The following con-
templations are taken from standard literature of control theory and system theory.
Lutz Wendt’s book Taschenbuch der Regelungsthechnik (handbook of control technol-
ogy) [Wen07b] and the book Lineare Regelungs- und Steuerungstheorie (linear control
theory) are just two examples of a wide range of literature. Stability criteria of linear
and nonlinear time invariant systems are presented. The example of the section 6.4
uses the criteria for the LTI systems defined below.
Figure 6.8 shows a simple example for stable and unstable systems. Only the system
on the right hand side will return to the initial rest position if it is disturbed. The bowl
shown in the system on the left and in the middle will leave its position if a force is
applied.
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Figure 6.8: Rest Positions of a Mechanical System

6.3.1 Stability of Linear Time Invariant Systems

For LTI systems a complete consistent theory of stability exists. This theory can be
applied to systems with linear or nearly linear behaviour around the operation point.
The following definitions are done for SISO systems, similar considerations can be
made for MIMO systems, too.
A general definition for the stability of transfer functions of LTI systems can be found
in [Rei06a]. A SISO LTI system is called stable if the system response of every limited
input signal causes every time a limited output signal. This property is called BIBO-
property (bounded input - BI , bounded output - BO). In a more formal way stability
can be defined as follows:

Definition 6.3.1. A LTI SISO system is called stable if the transfer function g(t) (time
domain) is bounded for all t and

h(t) −→
t→∞

M (6.18)

M has to be a finite limit. Otherwise the system is called instable.

The next lemma gives criteria to determine the stability. The calculation is based
on the system transfer function within the frequency domain.

Lemma 6.3.2. A LTI SISO system with rational transfer function h(s) =
y(s)
x(s) is stabile if and

only if all poles of the transfer function are located within the open left half plane 6 of complex
plane C 7.

The analysis can be done by calculating the zeros of the denominator polynomial.
The calculation of the zeros is expensive for equations of higher order. But it is not
necessary to calculate precisely the value of the zeros, it is just of interest if the real
part is negative 8. Standard literature like [Wen07c] differs between algebraic and
geometric criteria.
The algebraic approach determines the stability based on the coefficients of the char-
acteristic equation. The Routh criterion and the Hurwitz criterion are popular.
The geometric criteria uses the locus of the characteristic equation, the so-called
Nyquist plot, to decide about the stability. The is the Nyquist or Strecker-Nyquist
criterion.

6The open half plane does not include the separating straight line.
7It is given that y(s) and x(s) are relatively prime, so their greatest common divisor is one
8Being negativ is equivalent to being situated within the open left half plane of complex plane.
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Definition 6.3.3. The characteristic equation of a transfer function

h(s) =
y(s)
x(s)

=
b0 + b1s1 + · · ·+ bmsm

a0 + a1s1 + · · ·+ amsm (6.19)

is formed by setting the denominator polynomial to zero.

a0 + a1s1 + · · ·+ amsm = 0 (6.20)

6.3.2 Stability of Nonlinear Time Invariant Systems

The linearity principle (see definition 5.3.2) is not valid for nonlinear systems, that
means that the superposition property or the homogeneity of the transfer function are
not given. Nonlinear elements in control loops appear in different forms. Analytic
differentiable functions like y = sin(x) y = x4 y = ex are a possible form. Differentiable
functions have a Taylor series, so a linearization around the working point is possible.
The analysis can be done with techniques for linear systems.
Piecewise linear functions are not differentiable everywhere. At the transition points
of the function pieces the function or the derivative can be discontinuous. The signum
function sign(x) is a typical piecewise linear function.

sign(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(6.21)

Linear system analysis can be applied for the different function parts and combined
for the whole system.
In ambivalent functions for every co-domain value multiply values in the function
range can exist. This is typical for system elements with memory. The next element
state depends on the previous states.
Nonlinear system elements can be classified by the attributes in table 6.4 [Wen07a].

Differentiability analytic, continuously dif-
ferentiable

partial differentiable

Function Graph continues discontinuous
Function Derivative continues discontinuous
Characteristic Curve unique ambivalent
Function (Characteris-
tic Curve)

even (symmetric) odd (skew symmetric)

Time Dependency static (without energy
store)

dynamic (with energy store)

Table 6.4: Attributes of Nonlinear Elements [Wen07a]
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For LTI systems a complete consistent theory exists, but this is not the case for
nonlinear systems. An exact method would use nonlinear differential equations.
In fact it is still a problem to solve nonlinear differential equations, so an analytic
solution is often not available [Wen07d]. As alternative linearization is used to
analyze nonlinear systems. The nonlinear system is approximated by a linear system.
This contemplation is limited by boundary conditions and preconditions. The results
are not exact.
In [Wen07d] different variations of linearization are presented.

Linearization with Elements with Inverse Characteristic Curve The nonlinear el-
ement is compensated by adding another nonlinear element into the path which has
an inverse characteristic curve.

Linearization with Feedback The output of the nonlinear element is lead back to
the input and is compared with the input. The nonlinear behaviour is reduced.

Linearization within the Working Point by Cutting Higher Order Derivatives of
the Taylor Series The Taylor Series of the transfer function is created, but only the
linear term of the first derivative is used.

Linearization by Cutting Higher Order Derivatives of the Fourier Series The
principle of frequency analysis in linear systems is adapted to nonlinear systems. A
harmonic input signal, for example a sinus function, causes a signal response which
is described as a Fourier Series.

Beyond linearization, that uses finite linear methods for stability analysis, other
methods were developed. The methods to acquire information about a nonlinear
system differ from system to system and from research criteria to research criteria.
In the book Taschenbuch der Regelungstechnik [Wen07d] the following methods for
stability analysis are explained:

Phase Space Analysis A graphical representation can be used to judge the be-
haviour of II. order systems. The precondition is that the function is not directly time
dependent and has the form ẍ = f (x, ẋ,u). Using state variables x1 and x2 the system
is transformed into a I. order system ẋ1 = x2 , ẋ2 = f (x1,x2,u). The solution is printed
as phase space of ẋ2 = f (x1).

Ljapunow’s direct method Ljapunow’s direct method can be applied for linear and
nonlinear dynamic systems. It determines the system stability without calculation
of the differential equations. The method uses a general energy function and the
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progression of energy over time. The system is called asymptotic stable if the system
energy decreases after a displacement from the rest position. The system energy has
to be zero within the rest position.

Criteria of Popow With Popow’s Method not only a single characteristic curve but a
class of characteristic curves can be examined regarding stability criteria. The method
can use the Nyquist Plot of the system function.

6.4 General Analysis

A general analysis of the whole system is possible by combining the presented meth-
ods. The stability of the whole in-the-loop system is given if the control loop is stable
in addition to an error tolerant control algorithm which is executed on the µC.

6.4.1 Stability of Control Loops

A stability definition for the complete (closed) control loop can be found in Kurt
Reinschke’s book Lineare Regelungs- und Steuerungstheorie (Theory of Linear Control)
[Rei06b].

Assumed that the SISO transfer functions of the control path and the controller
are defined as

h(s) =
yh(s)
xh(s)

and k(s) =
y(s)k

xk(s)
(6.22)

the transfer function of the open control loop is

ho(s) = h(s) · k(s) =
yh(s)yk(s)
xh(s)xk(s)

(6.23)

It is given that yh(s) and xh(s) are relatively prime, and yk(s) and xk(s) are relatively
prime, too.

Definition 6.4.1. The Closed-Loop Characteristic Polynomial (CLCP) of the SISO control
loop

ho(s) = h(s) · k(s) =
yh(s)yk(s)
xh(s)xk(s)

(6.24)

is defined as
yh(s)yk(s) + yk(s)yk(s) (6.25)

Lemma 6.4.2. The SISO control loop is stable if its CLCP has no zeros within the closed right
half plane of the complex plane of C. 9

9The closed half plane includes the separating straight line.
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6.4.2 Example

The example is based on the CHILS-demonstrator from chapter 10 in subsection
10.2.1. The following system parts are analyzed:

• the control path

• the control - Proportional–Integral–Derivative (PID)-Algorithm analytical anal-
ysis

• the control loop

• the control - PID-Algorithm numerical analysis

6.4.3 Control Path Analysis

For the control path analysis the transfer function in the frequency domain is used:

h(s) =
1.345

s2 + 1.026s + 0.77
(6.26)

Based on lemma 6.3.2 the poles of the transfer function are situated at s =
−0.5130000000−0.7119206416i and s =−0.5130000000+0.7119206416i within the open
left half plane of complex number plane. So the LTI system is stable.

6.4.4 Control Analysis - Analytical

The PID algorithm has the following transfer function:

k(s) =
ki + kps + kds2

s
with ki,kp,kd εR (6.27)

Often an easy rule can be applied for this kind of transfer functions: if the numerator
polynomial order m is bigger than the denominator polynomial order n the system is
instable because at least one pole is located at∞ (see [Rei06a]).
The PID algorithm from chapter 10 subsection 10.2.1 has the following parameters:

• Integral gain ki = 0.3

• Proportional gain kp = 0.5

• Derivative gain kd = 0

Unfortunately the parameter kd = 0 is zero, so the rule cannot be applied. But we can
calculate the poles of the transfer function. The transfer function has one pole at s = 0,
so it is not stable.
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6.4.5 Control Loop Analysis

Combining the PID algorithm transfer function k(s) with the control path transfer
function h(s) we can analyze the whole control loop. According to lemma 6.4.2, the
calculation of the zeros of CLCP

CLCP(s) = yh(s)yk(s) + yk(s)yk(s) (6.28)

is feasible.

CLCP(s) = (s2 + 1.026s + 0.77) · (s) + (1.345) · (0.3 + 0.5s) (6.29)

The zeros of CLCP are s = −0.3465029413 − 1.044829570i, s = −0.3465029413 +
1.044829570i and s = −0.3329941173. All of them are situated within the open left
half plane of complex number plane, so the control loop is stable.

6.4.6 Control Analysis - Numerical

The numerical analysis yields the error influence on the control algorithm implemen-
tation. Different implementation variations of the same algorithm can be compared.
A spectrum of condition numbers retrieved from the result database is used to show
the differences. The following example is based on the PID algorithm implementation
used by the CHILS-demonstrator presented in chapter 10. The core algorithm of the
PID controller is analyzed.
Listing 6.2 shows the original implementation of the PID core algorithm. Listings
6.3 to 6.5 are variations with small changes in line 18 of listing 6.2. The most critical
operations are addition and substraction (see subsection 6.1.3). An addition is critical
if one operand is negative and the absolute value of both operands is nearly equal.
The substraction has a bad condition if both operands are nearly equal. The effect of
small changes in the source code is mostly invisible.

1 / ∗ PID−Algor i thm V e r s i o n 1 ∗ /
2 f i x 2 4 . 6 Kp = 0 . 5 ;
3 f i x 2 4 . 6 Ki = 0 . 3 ;
4 f i x 2 4 . 6 Kd = 0 ;
5 f i x 2 4 . 6 esum = 0 ;
6 f i x 2 4 . 6 Ta = 0 . 0 0 5 ;
7 f i x 2 4 . 6 e a l t = 0 ;
8 f i x 2 4 . 6 w_in ;
9 f i x 2 4 . 6 x_in ;

10 f i x 2 4 . 6 y_out ;
11 f i x 2 4 . 6 e = 0 ;
12
13 void main ( ) {
14 f i x 2 4 . 6 run = 1 ;
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15 while ( run ) {
16 e = w_in−x_in ;
17 esum = esum + e ;
18 y_out = Kp∗ e + Ki ∗Ta ∗esum + (Kd / Ta ) ∗ ( e−e a l t ) ;
19 e a l t = e ;
20 }
21 }

Listing 6.2: PID Algorithm Version 1

Version 2 changes the position of the brackets. This causes an additional multipli-
cation.

/ ∗ PID−Algor i thm V e r s i o n 2 ∗ /
. . .
void main ( ) {

while ( run ) {
e = w_in−x_in ;
esum = esum + e ;
/∗+ l i n e changed ∗ /
y_out = Kp∗ e + Ki ∗Ta ∗esum + (Kd∗ e − Kd∗ e a l t ) / Ta ;
e a l t = e ;

}
}

Listing 6.3: PID Algorithm Version 2

Version 3 adds an additional division.

/ ∗ PID−Algor i thm V e r s i o n 3 ∗ /
. . .
void main ( ) {

while ( run ) {
e = w_in−x_in ;
esum = esum + e ;
/∗+ l i n e changed ∗ /
y_out = Kp∗ e + Ki ∗Ta ∗esum + (Kd∗ e ) / Ta − (Kd∗ e a l t ) / Ta ;
e a l t = e ;

}
}

Listing 6.4: PID Algorithm Version 3

Version 4 precalculates two constants to reduce the number of operations. This
eliminates the division from the code snippet.

/ ∗ PID−Algor i thm V e r s i o n 4 ∗ /
. . .
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f i x 2 4 . 6 KdTa = 0 ;
f i x 2 4 . 6 KiTa = 0 . 0 0 1 5 ;

void main ( ) {
while ( run ) {

e = w_in−x_in ;
esum = esum + e ;
/∗+ l i n e changed ∗ /
y_out = Kp∗ e + KiTa ∗esum + (KdTa ) ∗ ( e−e a l t ) ;
e a l t = e ;

}
}

Listing 6.5: PID Algorithm Version 4
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Figure 6.9: Numerical PID Control Analysis Results

The results in figure 6.9 and 6.1010 show that version 1 and 2 have only a few
differences. Version 3 has a fluctuating behaviour while version 4 is more stable.
The first two algorithm implementations yield the best stability behaviour within the
analyzed data range.

10Figure 6.10 is an extract of figure 6.9. The highest result values are cut off to show the differences
between the PID versions.
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Figure 6.10: Numerical PID Control Analysis Results - Extract

Remark 6.4.3. The basis of analyzed data is very limited a the moment. For a deeper analysis
the analysis database has to be extended. Furthermore, it makes sense to find a suitable limit of
the input value range depending on the application. Other numerical criteria can be analyzed
in future implementations. An option is to use affine arithmetic for algorithm analysis (see
subsection 6.1.1 in chapter 6.

6.5 Summary

The over-all analysis of the real system and the system environment consists of the
analysis and the classification of algorithms executed on a µC and of the general
system analysis. Algorithm analysis as a part of numerical mathematics estimates the
error introduced by the numerical calculation. The used algorithm analysis flow is a
bipartite process. It starts with the profiling flow to build up a database of analysis
results. The input contains a set of source code and set of input data. The application
is transformed into a kind of computational graph. The graph is a combination of
control and data flow graphs. This analysis is very costly in computation time. The
classification of algorithms is based on the results of the analysis. A new programme
can be analyzed by classifying the graph of the programme and getting the corre-
sponding results from the database. The results of the numerical analysis show the
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influence of errors on the programme.
The analysis and classification of systems is a well studied field, so the contemplations
are taken from standard literature of control theory and system theory. The stability
analysis of LTI systems is done by calculating the poles of the transfer function of
the system. For nonlinear systems no complete consistent theory exists because an
analytic solution of nonlinear differential equations is often not possible. As an alter-
native linearization is used to approximate the nonlinear system by a linear system.
A general analysis of the whole system is possible by combining the presented meth-
ods. The stability of the whole in-the-loop system is given if the control loop is stable
in addition to an error tolerant control algorithm which is executed on the µC.
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Chapter 7

Optimization - Runtime Analysis

The runtime analysis, or analysis within the runtime, completes the previously pre-
sented analysis approaches. The pre-analysis yields to determine a suitable step size
for data exchanges. However, the runtime information is needed to see if this choice
is right. The runtime analysis primarily measures the rate of lost events and the
delay of distributed events. Different metrics have to be introduced to evaluate this
information.
The analysis itself is implemented by the CHILS monitor. The CHILS monitor col-
lects the event information and pre-evaluates it. Afterwards the CHILS device yields
the evaluated information directly to the user or to the simulation, for example as
criterion to adapt the simulation step size.

7.1 Metric Basics

Before a metric for runtime analysis can be defined, the target of the measurements
have to be defined. We have to take into account what we have to measure and how the
measurement is done. The influence of the measurements depends also on the target
simulation, so different strategies are necessary if a continuous or a discrete simulation
system is used. The following contemplations concern the runtime analysis of µC
generated events. The CHILS event exchange mechanism, which has been presented
in chapter 3 in section 3.4, will delay and can even result in loss of µC events.

Basically, these lost or delayed µC events are measured for the runtime analysis.

7.1.1 Events

In chapter 2 an event is defined as an indicator for a change (see definition 2.1.3).
That means for our coupling system, that if the output of the simulation or of the µC
changes, an event has to occur. Conversely, this means that if no change happens no
event occurs. So the coupling is event-driven in terms of simulation.
Two coupling quality influencing cases are possible. Events can get lost, so they are



108 CHAPTER 7. OPTIMIZATION - RUNTIME ANALYSIS

not distributed to the receiver, or events can be delayed. The maximum delay time
is limited by the exchange step size, so by the time between two exchanges. The loss
of events is determined by the step size and by the interval between multiple events
from the same source. Events get lost if this interval is smaller than the step size.

7.1.2 Simulation Coupling

Why should metrics for lost events be defined? Isn’t it always a knock out criterion?
No, it is not. For example if the coupling is done with a continuous simulation
environment and the input of the simulation is a quasi-continuous signal, like control
or measurement values, lost signal changes reduce the accuracy but they normally
do not drive the simulation into a false state. A metric for lost events makes sense
in that case. On the other hand, if the simulation models a state-machine and a lost
event leads to a false state, it is not acceptable to lose events.

7.2 Metric Definitions

For the following definitions it is assumed that the execution time of the user appli-
cation running on the µC is finite.

7.2.1 Execution Time Accuracy

The execution time accuracy is based on the time the application needs to fulfill a
certain task, so it is based on the runtime of a piece of code.

Definition 7.2.1. The execution time accuracy is defined as a division of the runtime of
a well defined piece of code within a simulated or emulated system and of the runtime of the
same piece of code within the real target system.

accex = (1−
‖Tr−Ts‖2

Tr + Ts
) ∗100% (7.1)

Tr runtime within the real target system

Ts runtime within the simulated/emulated system

‖...‖2 euclidian norm

7.2.2 Event Distribution Accuracy

The relative event distribution accuracy is based on the rate of event losses. The high-
est accuracy is reached if all of the detected events were distributed to the simulation.
The rate of event losses is defined for each event source s.
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Definition 7.2.2. The relative rate of event losses is defined as difference of all detected
events and all lost events normalized by the number all events. A lost event is a detected event
but it is not distributed to the event sink1.

rtloss(s) =


|Ea(s)| − |El(s)|
|Ea(s)|

for |Ea(s)| > 0

1 for |Ea(s)| = 0
(7.2)

with

Ea(s) set of all detected events of the event source s

El(s) set of all lost events of the event source s

|...| cardinality of a set

In order to calculate the event distribution accuracy it is not necessary to store the
exact value of an event. It is sufficient to gather the information of event appearance
in relation to other events. The event appearances can be recorded in a vector of
changes.

Definition 7.2.3. A vector of changes ~c(s) of the event source s is defined as a binary vector
of variable length. The indices of the vector correspond to the index of the event detection
step. If an event has been detected in step n, the vector of changes holds a one at index n.
Otherwise the corresponding index is holds a zero.

This definition requires an equidistant step size of the event detection mechanism.

Figure 7.1: Measure of Changes of an Event Source

A measure of changes of an event source can now be created by a piecewise linear
function which corresponds to the binary vector of changes. The vector of changes is

1rtloss(s) == 0 means that all detected events are lost.
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interpreted beginning from the lowest index. Each index is equivalent to a function
piece of the length of one. If the vector holds a zero at the index n, the function is
zero in the range of n+ε to n+1 (ε is the smallest number which is greater than zero).
Otherwise if the vector holds a one, the function is continued with the function value
at the position n and a slope of one in the range of n +ε to n + 1.

Definition 7.2.4. The function of changes is defined as follows:

f uch(i, ~ch(s)) =


0 for i ≤ 0
1 + f uch(i−1, ~ch(s)) for ~ci(s) = 1 ∧ |~ch(s)| ≥ i > 0
0 for ~ci(s) = 0 ∧ |~ch(s)| ≥ i > 0
0 for i > |~ch(s)|

(7.3)

with

~ch(s) vector of changes of the event source s

f uch(i, ~ch(s)) function of changes s

Definition 7.2.5. The measure of changes is now defined by the area covered by the function
of changes.

meach(~ch(s)) =

∫
|~ch(s)|

0
f uch(i, ~ch(s))di (7.4)

meach(~ch(s)) measure of changes of the event source s

The advantage of this measure is that events which are detected directly one after
another get a higher value than separately detected events. The measure of changes
is now defined as an absolute measure. For further considerations a relative measure
is needed to be independent from the steps of event detection. This measure is called
relative order of changes.

Definition 7.2.6. The relative grade of changes is defined as a division of the measure of
changes of the event source s and the highest possible value for the measure of changes of this
source limited by the number of event detection runs.

f umaxch(i, ~ch(s)) function of the maximum of changes of the event source s

meamaxch(s) measure of changes for the maximum of changes of the event source s

gdch(~ch(s)) relative order of changes of the event source s
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f umaxch(i, ~ch(s)) =


0 for i ≤ 0
1 + f umaxch(i−1, ~ch(s)) for |~ch(s)| ≥ i > 0
0 for i > |~ch(s)|

(7.5)

meamaxch(~ch(s)) =

∫
|~ch(s)|

0
f umaxch(i, ~ch(s))di (7.6)

gdch(~ch(s)) = meach(~ch(s))/meamaxch(~ch(s)) (7.7)

The relative order of changes reflects the quantity of the difference of a single
event source between two exchange cycles and includes also the time component in
the difference.

The event distribution accuracy can now be defined as relative rate of event
losses (see definition 7.2.2) weighted by the relative order of changes.

Definition 7.2.7. The event distribution accuracy is defined as follows:

accdis(s, ~ch(s)) = rtloss(s) ∗ (1− gdch(~ch(s))) ∗100% (7.8)

7.2.3 Event Occurrence Accuracy

The event occurrence accuracy is based on the time between the event detection by
the monitor and the event distribution by the monitor. The highest event occurrence
accuracy is given if the distribution happens right after the detection. The mea-
sured time between detection and distribution is generally not the exact delay of the
event, because the CHILS monitor detects events only passively. The measured time
is here called the measured event delay. The discussion about different event ex-
change mechanisms can be found in chapter 3 in section 3.3 Exchange of Events between
Microcontroller and Simulation and in section 3.4 CHILS Event Exchange Mechanism.

Definition 7.2.8. The measured event delay is defined as the time between the detection of
an event e and the distribution of this event.

devt(e) = tdis(e)− tdet(e) (7.9)

with

tdis(e) time of the distribution of the event e

tdet(e) time of the detection of the event e
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Definition 7.2.9. The event occurrence accuracy is defined by the difference between the
sum of all event delays and the time between two exchange cycles.

accocc =


(
|Edis(s)| ∗ tr−

∑
e∈Edis(s) (devt(e))

|Edis(s)| ∗ tr

)
∗100% for |Edis(s)| > 0

100% for |Edis(s)| = 0
(7.10)

tr time between two exchanges cycles of µC and simulation

Edis(s) number of all distributed events of the event source s

7.3 Example

Figure 7.2: Electric Motor Control via PID Controller

An electric motor control has been modelled as a demonstration for runtime
analysis and measurement. Figure 7.2 presents the MATLAB R©/Simulink R© model of
an electric motor2 which is controlled by an application on the TC1796ED µC. The
application implements a PID control algorithm. The TC1796ED controls the motor
speed depending on a step input, the setpoint of the system, and the actual motor
speed measured by a speed sensor. An external force simulates a ramp which is set
after 10s. The control output of the application, in this example the electric current, is
a quasi-continuous signal.

In figure 7.3, the measured motor speed over a period of 20s is presented. Within
2s the motor speeds up to 1rad/s, approximately 8s later the motor speed slows down
to 0.9rad/s caused by the external force. After that the motor speeds up again. The

2This model is taken from [Hof98].
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Figure 7.3: Results Electric Motor Control
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Figure 7.4: Results Electric Motor Control (Detailed Section)

system was simulated with a simulation step size of 0.005s, 0.007s, 0.009s, 0.010s and
0.012s. The software PID controller on the TC1796ED has a cycle time of 0.005s. The
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Step Size Grade of
Change

Event
Distri-
bution
Accuracy

Relative
Rate of
Event
Losses

Detected
Events
per Ex-
change

Lost
Events
per Ex-
change

0.005 0.002 99.795 % 1 6.5 0.0
0.007 0.003 82.517 % 0.827 11.0 2.8
0.009 0.005 55.800 % 0.560 14.8 7.4
0.010 0.005 40.607 % 0.408 16.7 10.2
0.012 0.006 38.529 % 0.387 18.1 11.4

Table 7.1: Event Distribution Accuracy (Mean Values)

event detection is set to sampling rate of ten 3.
Figure 7.3 shows that the overall difference between the step sizes is small. Only the
enlarged section in figure 7.4 makes the differences visible. The maximal variance is
about 5%.

Table 7.1 prints the event distribution accuracy and other measurement values
from the different simulation step sizes. Only at the step size of 0.005s none of the
detected events is lost. This corresponds to the expectations because of the cycle time
of 0.005s of the PID algorithm. The event distribution accuracy decreases from 99.8%
to 38.5%. This is caused by the high rate of lost events, which exceeds 60% at the step
size of 0.012s. On the other hand, the grade of change is very small. This means that
the value changes of the event source are very small between two exchange cycles, so
the influence of the lost events is small. The similar results in figure 7.4 support this
conclusion. The presented measurement values help the modeller to decide between
performance and accuracy of the simulation.

7.4 Summary

The runtime analysis yields the rate of lost events and the delay of the distributed
events to determine if a chosen step size for the data exchange between the hardware
and the simulation is correct. Lost events are not always critical for the hardware
to simulation coupling. Depending on the signal type and simulation scenario, only
the accuracy is reduced but the simulation is not driven into a false state. Especially
if the signal is quasi-continuous, like a control or a measurement value, lost signal
changes can be tolerated. The event detection is realized by oversampling. The
CHILS monitor becomes active between the data exchanges of the simulation and the
µC. In addition to the basic functionalities, the CHILS monitor captures the changes
of the µC outputs and calculates the event distribution accuracy and the relative rate
of event losses.

3If the step size is for example 0.005s, the monitor is activated every 0.0005s to detect changes.
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Chapter 8

CHILS Framework - Concept

The current chapter introduces the overall CHILS framework. Implementation is-
sues, the range of applications and the features of the framework are presented. The
implementation realizes the previously discussed concepts of hardware to simula-
tion coupling, interface implementation, and coupling analysis. The CHILS frame-
work currently embeds a 32Bit Infineon TriCore R© µC in the simulation environments
SystemC and MATLAB R©/Simulink R©. The implementation supports the TC1796ED,
TC1766ED, TC1767ED and the TC1797ED µC. The so-called emulation devices com-
bine the unchanged standard µC and an additional emulation extension located on
the same silicon die.

8.1 Functionality - CHILS Basics

The CHILS framework implementation uses the features of the emulation devices to
implement the coupling system. The CHILS monitor is executed from the extended
memory of the emulation extension, so no memory resources are lost for the user
application except for a small part for the CHILS monitor call stack. The time stepping
is done by the internal debug resources of the emulation devices. The Multi Core
Debug System (MCDS) on the emulation devices provides a counter and trigger
systems which extends the normal µC debug resources. The counters are used to
starts the CHILS monitor and to suspend the peripherals, while the monitor is active.
Figure 8.1 shows a so-called EasyKit which offers a µC evaluation board combined
with an onboard Wiggler to connect the board directly to the PC via Universal Serial
Bus (USB).

8.1.1 Data Exchange and Synchronization

The coupling between theµC and different simulation environments is the major topic
of this work. A low hardware effort for coupling is one of the objectives of CHILS.
The complete data exchange between the simulation and the µC is realized via the
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Figure 8.1: TC1767ED µC-EasyKit-Board

standard debugger interface, so the hardware effort for the coupling is minimal in
comparison to other HIL simulation approaches, where every I/O pin itself has to be
connected to the interface of the simulation computer.

The simulation and the device run in parallel as explained in chapter 3 in section
3.4. The data exchange is executed after a predefined time which is configured by
the simulation and can be changed at every synchronization step. The µC and the
simulation are waiting for each other for synchronization. Two applications are
executed by the µC, first of all the user application, for example a control algorithm,
and the CHILS monitor. As mentioned before the CHILS monitor controls the data
exchange and the synchronization with the PC side (the CHILS device). It is non-
intrusive to the user application so the coupling is nearly transparent to the user
application. The CHILS monitor is a device specific application while the CHILS
device is the same application for all supported devices.

The device is physically connected to the host computer via a Joint Test Action
Group (JTAG) or a Device Access Port (DAP) interface (see figure 8.2 label 1). The
Device Access Server (DAS) Server (2) manages the connection on the host computer
(3). DAS abstracts the physical connection, for example a JTAG Wiggler connected
via USB, to the µC. The CHILS device (4) is implemented as DAS client within a single
Dynamic Link Library (DLL). A thin adaption layer (5) realizes the connection to the
simulation environment (6), for example MATLAB R©/Simulink R© or SystemC. CHILS
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Figure 8.2: CHILS Coupling Implementation between µC and Simulation

offers a C/C++ interface that can be included into most environments. The interface
is independent from the specific µC.

8.1.2 Interface Abstraction

The data exchange is realized on different levels of abstraction, which were defined
in chapter 4 in section 4.2 Interface modelling and Abstraction. Four levels of interface
abstraction are defined: the Message-Level for non-fixed size generic data types (for
example CAN), the Byte-Level for primitive fixed size data types (for example ASC),
Digital-Level for fixed bit vector data types (for example GPIO) and the Analogue-
Level for analogue input values. The CHILS device interfaces are implemented on
these different levels of abstraction, depending on the interface type. This approach
reduces the amount of data shared between the µC and the simulation environment.

8.2 Microcontroller Requirements

The implementation of the CHILS approach has specific µC hardware demands. The
most import demand is the possibility to run the CHILS monitor independently
from the user application on the same µC hardware. On the TriCore R© devices this
is realized by the implemented debug monitor mechanism. A dedicated trap, the
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breakpoint trap, is designed to be used to enter a debug monitor even if the interrupts
are disabled. This trap is raised on trigger conditions by the debug system. The
multiple counters of the MCDS can be used as triggers, so an automatic context
switch to the CHILS monitor after a predefined number of CPU cycles is possible.
Such a counter system is necessary to generate the time steps between the exchanges.
A configurable suspend of the peripherals of the µC is also very import for the context
switch between the monitor and the user application. The peripherals are supposed
to be inactive while the CHILS monitor is active. The previously mentioned Delayed
Suspend allows a soft suspend of the peripherals, so no read or write operations to
the peripherals are lost.
A useful feature is an additional memory region. An available additional memory
avoids the reduction of resources for the user application. The CHILS monitor has a
size of about 50 to 75KByte. The set of data exchange structures and virtual registers,
which were introduced in chapter 4 in section 4.2, require approximately 50KByte of
memory. The emulation devices TC1766ED, TC1796ED, TC1767ED and TC1767ED
have an extra memory of 256KByte to 512KByte which is used for debug traces or as
overlay memory for software optimization. This emulation memory is used to host
the CHILS monitor in this case.

8.2.1 Microcontroller Adaptations for Future Version

The currently used TriCore R© µCs supports the most import features needed for the
CHILS approach. Nevertheless further adaptations will allow to extend the support.

Microcontroller Peripherals

The first idea concerns the µC peripherals. As explained in chapter 4 in section 4.2,
two option exist to make the µC interfaces available for the user application via the
CHILS approach. Option one is to use the real hardware registers. This is currently
only possible for the GPIO and for the GPTA which uses the GPIO ports. Option two
is to use sets of virtual registers which are located in the emulation memory. Virtual
registers are necessary if the real hardware registers are not accessible (especially the
writable ones) from the CHILS monitor. The user application has to be adapted on
driver level. The drivers of the application have to be changed if the application runs
in a real scenario or in a simulated scenario via CHILS. For the normal application
development supported by CHILS this is only a small drawback. But for driver
development this poses problems.
The requirement is to make all input and output registers of the peripherals readable
and writable for the CHILS monitor. In addition, the reaction of a peripheral to
write actions of the monitor has to be equivalent to the normal reaction on a new
external input value. For example if a new value is written to the ADC peripheral
capture register by the CHILS monitor, the ADC has to generate a trigger condition
to write the value via Direct Memory Access (DMA) directly to the memory if this is
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configured by the user.
The implementation of shadow registers is an alternative for these input values.
These special registers are only writable for the monitor and they emulate an external
input. It is important that these registers are writable if the peripheral is suspended,
in difference to the normal peripheral registers.
The generated peripheral output also needs to be transferred to the monitor. This is
possible by shadow registers or by a DMA transfer to a special memory region. The
peripheral has to write its output data, for example a CAN message, to the shadow
register set or to a defined memory region, where the CHILS monitor can read it.

Monitor Context

The next improvement concerns the CHILS monitor context and the programme
context. Currently only the most important registers are stored by the breakpoint
trap mechanism. The so called lower and upper context, the general purpose register
of the TriCore R© and some other core registers, are saved manually. An automatic
context save of all registers would be a desirable feature.
Even more interesting is the range of the context save of the user application and the
monitor, and the position of the heap and stack memory. This memory areas should
also be located in the range of the additional memory.

8.3 Range of Applications

The CHILS approach is manifoldly applicable in the development of complex µC
based systems. The essential advantage is the possibility to start the development of
the software for the final system in a very early stage of development. If the system
is only available as a high-level model on functional level, CHILS already allows the
development of the control software on the real µC hardware. CHILS is positioned as
advanced alternative to PIL solutions. In difference to PIL solutions, CHILS enables
the developer to include the peripherals into the software development (see chapter
2 section 2.2 Possibilities of Hardware-Simulation-Coupling).

8.3.1 CHILS and the V-Model

The V-model is a project-management structure often used for the development of
complex system. The origin of the V-model is located in guidelines for the IT software
development project-management of the German government [V-M]. The V-model
was established in 1986. At present, it is also used in other industrial sectors, for
example for the hardware and the system development in the automotive, the com-
munication or the IT industry. So different adapted versions of the V-model exist in
parallel to the actual software development version V-Modell XT 1.3 [Rau09].
The advantage of the V-model, in contrast to models like the waterfall model, is that



120 CHAPTER 8. CHILS FRAMEWORK - CONCEPT

the phases of the design and the testing are connected. The knowledge of the design
is used to generate test scenarios on the same level of detail. The classical V-model
allows iterations in the vertical direction, so between different levels of abstraction.
CHILS can be applied for system design and system testing, architecture design and
architecture testing and for module design and unit testing (figure 8.3).

Figure 8.3: CHILS Application in the V-Model

8.3.2 Rapid Control Prototyping

RCP is a methodology especially for control applications. The method combines and
integrates older methods, for example the V-model, to reduce their disadvantages
(see Rapid Control Prototyping, Univ.-Prof. Dr.-Ing. D. Abel [Abe03d]). The V-model
does not allow horizontal iterations. RCP offers the possibility to run the system
testing directly followed by the system design and to iterate between these points.
RCP requires a closed tool chain to enable the iterations in vertical and horizontal
direction.
The CHILS approach can be integrated in such a tool chain to support RCP pro-
cesses. An advantage of control software development with the help of CHILS was
mentioned before. The software for the final system and the software for the system
model can be nearly similar. So from control software side a change between the real
µC environment and the virtual µC environment is easy to realize.
M. Deppe’s, M. Robrecht’s, M. Zanella’s paper [MD01] introduces a prototyping envi-
ronment for a complex mechatronic system. The so-called X-mobile is an autonomous
experimental vehicle. The pure model representation was stepwise transformed to
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a real world system by replacing the simulated components with mechanical, elec-
trical and hydraulic components. A similar, but smaller setup, was used to evaluate
the CHILS approach. The results can be found in chapter 10 in subsection 10.2.1
CHILS-Demonstrator.

8.3.3 Test Applications

Testing is an important area of application for HIL systems as mentioned in chapter
2 in section 2.2 Possibilities of Hardware-Simulation-Coupling. CHILS can be used for
automatical software tests, tests of critical scenarios or complex conditions. The
virtual environment can be modified easily, so a real control can be tested in different
control loops. A current disadvantage is that the tested software is not 100 percent
identical to the final software on the target system. For example the real drivers
for some peripherals cannot be tested because CHILS needs some adaptations (see
chapter 4 section 4.2 Interface modelling and Abstraction).

8.3.4 Estimation of the Real-Time Capability of Software with
CHILS

CHILS can be used for early estimations of the real-time capability of software. The
application can be profiled in an early stage of system development. For this purpose
the environmental simulation does not need to be real-time capable. The test or
profiling bench can be implemented on the PC side, for example in SystemC, while
the µC is connected via CHILS.

8.4 Features

The CHILS framework offers a couple of features for integration into existing tooling
environments and to support the user. The framework covers coupling capabilities
with different simulation environments, different µC devices, debugger support and
tools for simulation to hardware coupling optimization.

8.4.1 Simulation Coupling - CHILS-API

The CHILS-Application Programming Interface (API) encapsulates the CHILS device
implementation. The interface can be used by any C/C++ application in a Microsoft
Windows environment1. CHILS wrappers can be easily implemented for different
simulation environments which support the integration of own C or C++ code. In
appendix C Listing in listing C.1 the interface is printed. The following code snippets
describe the start-up procedure.

1Tests were made under Windows 2000 and Windows XP.
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1. Include the header-file

# include " d a s _ i f x _ d e v i c e s _ i n f o . h"
# include " dhi l_device . h"

2. Create and init a CHILS device instance (here a TC1766ED instance)

FILE ∗ l o g F i l e = stdout ;
/ / C r e a t e CHILS d e v i c e
CDhilDevice ∗dev = dhi lCreateDevice (

DAS_DID0_IFX_JTAG_TC1766ED_B , l o g F i l e ) ;
unsigned e r r o r = DHIL_ERR_NO_ERROR ;
/ / I n i t CHILS d e v i c e
e r r o r |= dev−>s e t u p I n i t ( ) ;

3. Set application start adress

/ / S e t MC programme s t a r t a d d r e s s
dev−>setApplStartAddress (0 xD4000000 ) ;

4. Set used interfaces (for example ASC1)

/ / Setup ASC1
e r r o r |= dev−>setupASCIn ( 1 ) ;
e r r o r |= dev−>setupASCOut ( 1 ) ;

5. Set-up device (the parameter is the number of TriCore cycles between to data
exchanges)

e r r o r |= dev−>setupDevice ( cyclesPerExchange ) ;

Now the device is ready for data exchange.
6. Set values

/ / send new v a l u e i f p r e v i o u s v a l u e has be en r e c e i v e d
e r r o r |= dev−>setASCInValue (1 ,& valueASCIn , &valueReceived ) ;

8. Exchange data between PC and MC

e r r o r |= dev−>exchangeWithDevice ( ) ;

9. Get values

/ / Get ASC1 v a l u e
e r r o r |= dev−>getASCOutValue (1 ,&valueASCOut , &valueTransmitted ) ;

The time-steps are generated after each call of the function exchangeWithDevice().
The get and set methods of all defined µC interfaces are used to read or write the data
to the device.
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8.4.2 Device Coupling - DAS Architecture

The coupling to the physical device is realized via the Infineon DAS architecture (see
also figure 8.2). The DAS architecture is a TCP/IP based client server architecture
[DAS07]. The DAS server abstracts the physical connection to the µC. The DAS client
can exchange data with the device over a TCP/IP connection to the DAS server. The
CHILS device, as a DAS client, can connect to the different supported TriCore R© µCs.
Multiple instances of the CHILS device can run in parallel to use more than one µC
in a simulation.

8.4.3 Debugger Support - MCD-API

The Multi-Core Debug (MCD) API is a new debug and analysis interface [MCD09].
The API addresses the debugging of multi-core platforms. Adopting the interface on
both tool- and target-side, debug and analysis solutions can be attached easily to the
latest available SoC prototype, no matter if it is a virtual prototype or a real silicon.
The DAS based Infineon MCD-API implementation was adopted to support CHILS.
The abstraction of the debugger interface allows to hide the CHILS monitor while
the debugger is active. So the user debugs the user programme and not the CHILS
monitor programme. This is implemented by inhibiting the µC to stop within the
monitor program range. The simulation and the debugger are connected in parallel
to same device via DAS.

8.4.4 Tools for Coupling Optimization

Chapters 5 to 7 present different techniques for coupling optimization between hard-
ware and simulation. The goal of the HIL simulation system analysis is an optimized
setup for the data exchange between hardware and simulation.

Coupling System Analysis

The coupling system analysis is based on a model of the coupling system as LTI
system. MATLAB R© scripts were written for the comparison of different coupling
systems in section 5.5 in chapter 5. These scripts can be also adapted for other
systems, if the system parameters are known.

Algorithm Analysis

Chapter 6 presents an algorithm analysis technique to determine the stability of al-
gorithms executed on the µC. A command line tool, which is called Programme
Graph Analysis (PGA), was implemented to realize the analysis. The current imple-
mentation is limited to small algorithm sizes and simplified structures of analyzable
programs but it shows the value of such tools. The algorithm input has to be written



124 CHAPTER 8. CHILS FRAMEWORK - CONCEPT

in a simplified C dialect, called C−−. The PGA uses an object oriented database with
the capability to store some hundreds of thousand of analysis entries.

f i x 8 . 0 x_1_in = 0 ;
f i x 8 . 0 x_2_in = 0 ;
f i x 8 . 0 y_out = 0 ;

void main ( ) {
y_out = x_1_in + x_2_in ;

}
Listing 8.1: C−− Example Listing

The short programme in listing 8.1 produces the following output. The analysis
results are stored as tables in csv-files.

analyzing: syn_test_1_add.c--
parsing source file... done
building symbol tables... done
checking semantic... done
creating intermediate code... done
creating target code... done
// $$globalConstantInit -> BasicBlock 0
// main -> BasicBlock 1

BasicBlock 0 {
node 0: (0) const ((bit 8:0, x_1_in))
node 1: (0) const ((bit 8:0, x_2_in))
node 2: (0) const ((bit 8:0, y_out))
stop

}

BasicBlock 1 {
node 0: ((0:0:0, bit 8:0, x_1_in),(0:1:0, bit 8:0, x_2_in)) + ((bit 8:0, y_out))
stop

}

Open Database from G:/Park/Private_Park/CK/DB4O/
... storage object retrieved from db ...
Retrieve Analysis Results...
Decomposition started...
... Decomposition finished
[][+][const][const]
number of combinations: 0

running time for result retrieval: 157
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running time: 219 result list size: 144 completed with 0 errors and 0 warnings

CHILS Runtime Profiling

The CHILS runtime profiling provides information about lost events and the event
distribution accuracy which is explained in chapter 7. The data is stored in a log file.
In addition to this, it can be retrieved from a CHILS-API function to implement an
automatic step size control.
A short extract from the log file is printed below. The log file also includes information
about the runtime of the exchange process, the CHILS monitor idle time and the
CHILS monitor status.

DHIL: Connecting over DAS
Host computer address: localhost
Device class ID: 0x100E2083, instance 0

JTAG frequency set to 10.000 MHz

DHIL: Device connected
DHIL: DHIL device monitor hex file loaded TC1796/main.hex
DHIL: DHIL device programme hex file loaded TC1796/prog.hex
DHIL: Device configured
DHIL: run cycles 20000
DHIL: mDeviceState->waitCycles = 1000
DHIL: mDeviceMonitorRunCycles = 245000
DHIL: ExchangeTime 0.001043
DHIL: mDeviceState->instr_id = 65534
DHIL: dhilLastInstrId = 65534
DHIL: mDeviceState->instruction = 94
DHIL: User Configuration Read Time 0.001670
DHIL: DetectedEvents 0
DHIL: LostEvents 0
DHIL: grade of change 0.000000
DHIL: event distribution accuracy 100.000000
DHIL: relative rate of event losses 0.000000
DHIL: measure of changes 0

CHILS Simulation Step Size Calculation

The CHILS Step Size Calculator (CSSC) is a tool to calculate a suitable exchange step
size based on the µC-CPU frequency, the frequency of the signal to sample, the sample
frequency and the over sampling rate. It also predicts the simulation performance
and the simulation accuracy based on previously taken measurements.
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Figure 8.4: CHILS Step Size Calculator

8.5 Optimization Flow

The whole optimization flow contains the techniques which are presented in chapter
5, chapter 6 and in chapter 7. Figure 8.5 shows the three major steps of the flow.
In step one the hardware to simulation coupling system is designed. The coupling
system analysis approach in chapter 5 helps to find an optimized setup. The model
of the coupling system is analyzed and as the result the fidelity value for the system
is calculated.
Step two covers the system modelling and the algorithm design for the final hardware-
software system. The system and the control algorithm form the control loop of the
whole system. The algorithm analysis approach in chapter 6 is used to determine
the stability of the algorithm implementation. In parallel, the stability of the whole
control loop can be analyzed. System models and algorithm models are the basis
for this analysis. As a result information regarding the stability of the whole system
simulation are retrieved. These information show the tolerance on errors which are
introduced by the coupling if the the coupling is not ideal. The knowledge about the
error tolerance can be used to speed up the simulation.
Step three presents the runtime analysis approach in chapter 7. The step size of the
simulation can be adapted on the basis of the profiling information from previous
simulation loops.

8.6 Summary

The CHILS framework embeds diverse TriCore R© µCs into different simulation en-
vironments. It covers coupling capabilities with different simulation environments,
differentµC devices, debugger support and tools for simulation to hardware coupling
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optimization. A device specific monitor application, the CHILS monitor, runs in par-
allel with the normal user application. The monitor execution is nearly transparent
to the user application. The generic CHILS device is the counterpart of the CHILS
monitor. It provides a C/C++ interface that can be used to program wrappers for
every simulation environment which supports C or C++ modules. The physical data
exchange is realized over the standard debug interface of the µC devices by the use
of the DAS API.
The CHILS approach requires some specific features to be realized for a specific µC.
The most important demands are an automatic switch between user application and
monitor context, a non-destructive peripheral suspend feature, and additional mem-
ory to host the monitor and virtual register sets.
The CHILS approach is applicable in the development of complex µC based sys-
tems manifoldly. Applications are for example RCP and early software development.
CHILS can be applied for system design and system testing, architecture design and
architecture testing and for module design and unit testing in the context of a V-model
based project-management.
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Chapter 9

CHILS Framework - Classification

The classification of the CHILS framework compares the framework withµC software
models of different abstraction levels and hardware replacements. In this chapter the
advantages and disadvantages of the different techniques are covered to underline
the value of CHILS for the design process of complex hardware/software systems.

9.1 Software Models on Different Levels of Abstraction

For more than 20 years, software models of SoCs and µCs are an evolving field of
research. Different levels of abstraction are introduced, mostly to speedup the models.
As mentioned in chapter 2, the available performance grows slower than the needs,
caused by the rising complexity of such systems.
In [GJ00] Lovic Gauthier and Ahmed Amine Jerraya mention the following ‘classic’
methods to model a µC in software.

Software simulations based on hardware description languages: here we have
for instance VHDL and Verilog. These languages allow to describe circuits
from the behavioural level down to the gate level. These simulations have
the advantage of being very precise and offering opportunity of visualiz-
ing the behaviour details of the circuit. However these precise simulations
of complex circuits such as microcontrollers are very slow (typically 5 to
10 instructions per second for a VHDL simulator).
Software simulations based on instruction-set simulators: ISS are programs
that simulate the execution of the instructions of a processor. There are
instruction-set simulators at different specification levels but most of the
time they act at the instruction level. These simulators are much faster than
the ones mentioned above (most of the time, they are compiled programs
and no longer interpreted descriptions). However they are less precise
than the first two simulations. Moreover, by definition they do not really
simulate the circuit (they only simulate the instruction set). Electronic
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factors are thus not taken into account: input/output gates are not sim-
ulated, neither are the microcontroller peripherals. Even some cycletrue
behaviour such as accesses to external buses may be difficult to handle.
([GJ00])

In their paper Cycle-true simulation of the ST10 microcontroller including the core and
the peripherals [GJ00], they introduce a cycle accurate “C-model” of a µC. During
the last years, additional methods occur. Especially the transactional level simulation
becomes even more important as state-of-the-art technique in research and in industry
(see for example [BBB+03], [Mar03], [FFP04] and [Ghe05]).

Abstraction Level Typical Programming
Languages

Explicit Concepts

System Level MPI, Simulink All Functional
Virtual Architecture Untimed SystemC +Abstract Resources
Transaction Accurate TLM SystemC +Resource Sharing and

Control Strategies
Virtual Prototype Cosimulation with ISS +ISA and Detailed I/O In-

terrupts
RTL HDL +CPU Implementation

and Reset Sequences

Table 9.1: Abstraction Levels [JBP06]

A general overview of different abstraction levels can be found in [JBP06]. The
authors define five levels, RTL, Virtual Prototype, Transaction Accurate, Virtual
Architecture and the System Level (see table 9.1).

Abstraction Level / Modelling Tech-
nique

Modelling Language or Environment (Ex-
ample)

Functional Model MATLAB R©/Simulink R©

Instruction Accurate Model Instruction Set Simulator (ISS) as propri-
etary C/C++ programme

Transactional Level without Time (Pro-
grammer’s View without Time)

un-timed SystemC

Transactional Level with Time (Program-
mer’s View with Time)

timed SystemC

Cycle Accurate Model ‘C model’
Register Transfer Level (RTL) HDL like VHDL
Physical Level SPICE

Table 9.2: µC Modelling Abstraction Levels and Techniques
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Table 9.2 shows a more differentiated view on abstraction levels and modelling
techniques which is chosen for the following comparison. The presented order does
not necessarily imply a higher abstraction level.

9.1.1 Functional Simulation

A Functional Model describes the high-level functionality of a system. The separation
of hardware and software is ignored on this level. Functional Models are often
modelled in environments like MATLAB R©/Simulink R© or with languages like the
Unified Modelling Language (UML).

9.1.2 Instruction Accurate Simulation

Instruction Accurate Models focus on the accurate simulation of the functional be-
haviour of the source code execution of µCs. Especially an ISS primarily simulates the
instruction set and skips the additional µC modules like bus systems and peripherals.
An ISS is a simulation model which mimics the behaviour of a processor by ’read-
ing’ instructions and maintaining internal variables which represent the processor’s
registers. That means an ISS is a purely functional processor simulator. Complex pro-
cessor internal behaviour like pipelining and caching is mostly abstracted. Infineon
provides the TSIM[Tri02b] as ISS for the TriCore R© architecture.
Instruction Accurate Models and TLM models are not necessarily on different ab-
straction levels. For example an ISS is sometimes coupled with models of peripherals.

9.1.3 Transactional Level with/without Time

TLM is a high-level modelling approach where details of communication between
modules are separated from the details of the implementation of functional units.
TLM does not denote a single level of abstraction. It is a modelling technique. More-
over, we can differentiate between Transactional Level with Time and Transactional
Level without Time depending on wether timing information is included in mod-
elling or not.
In a report of CoWare [CoW06] four levels of abstraction for TLM modelling are
mentioned. The Functional View represents an executable specification of the whole
application. The Architects View targets at architectural exploration. The separation
of the hardware and the software part of a system is often done on that level. The
Programmer’s View is a use case for embedded software design. The model shall be
used as virtual prototype. The Verification View is used for cycle accurate system
validation and HW/SW-co-verification. In this comparison the focus is on Program-
mer’s View models.
TLM is strongly connected with SystemC. SystemC is not a dedicated programming
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language, it is a C++ based modelling library 1. C/C++ allows different integrations
of the software part. The software can be executed from a simulated memory re-
gion and interpreted by a simulated instruction set, or it can be executed as a native
programme which is coupled to a hardware model.

9.1.4 Cycle Accurate Models

Cycle Accurate Models set the level of abstraction to the simulation of single cycles.
They are often programmed as proprietary “C models”. Cycle Accurate Models and
RTL allow an execution of µC software in the model.

9.1.5 Register Transfer Level

The RTL is the currently used level of Integrated Circuit (IC) design, before the
mapping to the physical domain 2 is done. Description languages like VHDL or
Verilog are used for the digital design. Language extension, for example VHDL-
AMS, are used to model analog-mixed-signal designs. IC descriptions down to the
gate level are possible.

9.1.6 Physical Level

The lowest level of abstraction is the Physical Level. The IC is modelled as a system of
differential equations to cover physical effects. Attempts to integrate the simulation
of quantum mechanics and molecular dynamics into a normal IC design flow are a
field of research (see VHDL-AMS extension in [LCBF08]).

9.2 Embedding of Hardware in Simulations

Emulation and the established HIL simulation are described as concepts for embed-
ding hardware in simulations in chapter 2 of this thesis. This section presents further
details on the specific solutions, while a formal comparison of the CHILS coupling
system and other HIL coupling systems is presented in chapter 5 in section 5.5 Com-
parison of Different Coupling Systems.

9.2.1 Original Microcontroller

Embedding a real µC into simulation environments can be implemented in two dif-
ferent ways. The first solutions connects every µC pin via specialized hardware to the

1SystemC is also not coupled to a concrete level of abstraction.
2The mapping includes IC layout, routing and so on.
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simulation computer. The other possibility is to use only a connection via a dedicated
communication interface.

Pin-based Connection

The SimPOD-solution connects each I/O pin of the µC by the use of the DeskPODTM

hardware box. The company addresses the market of early silicon validation
and HW/SW-Co-verification. The specialized hardware has more than 1200 user-
programmable I/O [Des] and is able to exchange data between the µC and the simu-
lation at each clock cycle. This is possible by controlling the µC clock by the external
hardware box. SimPOD places the solution as provider of cycle-accurate ’models’ of
µCs, which can be coupled to logic simulators, software debuggers, or other applica-
tions [Simb].
SimPOD announces a model performance of 250k cycles/sec. The simplest way to
interface with the DeskPODTM is through the ’simulator’, the PC software controlling
the DeskPODTM. In that case it behaves like a module and has a generated Verilog or
VHDL shell. It can also interface directly through the Program Language Interface
(PLI) functions or the software can link to an API.

SimPOD describes the functionality of the DeskPODTM solution as follows. The
DeskPODTM has two modes of operation: the engaged and dis-engaged one. In the
engaged mode the DeskPODTM is under full control of the simulator and in that case
the limiting factors are simulator speed, network round-time and processing time
of the DeskPODTM unit. In this mode processing speed is limited to few thousands
of cycles per-second and probably no more than 7000. In the dis-engaged mode
situation is more complex. In this case, DeskPODTM is executing a cycle and checks
for engage conditions or an engage request from the simulator. If conditions are met
it sends the data to the simulator, otherwise it executes another cycle. DeskPODTM

processing speed can be as low as 15000MIPS and as high as 250000 MIPS depending
on the way it is set up.

The next possibility is to use evaluation boards and connect the board I/O via
DAQ cards to the simulation computer. In chapter 2 in subsection 2.2.2 Commercial
Hardware-in-the-Loop Solutions several HIL solutions are mentioned, for example from
dSPACE, ETAS, Visual Solutions and National Instruments. The solutions are very
similar, so the dSPACE offers are used as an example.
dSPACE [dsp] offers a wide variance of DAQ cards with digital and analogue inputs
and outputs, which are used within their simulation computer racks. These solutions
are mostly used to couple a complete ECU with a simulated environment. In this case
the simulation and the simulator have to be real-time capable because the complete
ECU cannot be slowed down. dSPACE provides classicalHIL solutions.
The systems of a typical passenger car require sampling times of 1ms. A real-time
simulation of a 6-cylinder gasoline engine including I/O with the dSPACE Automotive
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DS1005 - 1GHz DS1006 - 2.6GHz
simulation cycle time

Engine Gasoline 173µs 46µs
Engine Gasoline + Turbo
Charger

212µs 52µs

Engine Diesel 250µs 64µs
Engine Diesel + Turbo
Charger + Diesel Exhaust

772µs 194µs

Internal Cylinder Pressure
Diesel

1516µs 360µs

Internal Cylinder Pressure
Diesel + Turbo Charger

1543µs 381µs

Internal Cylinder Pressure
Diesel + Turbo Charger +
Diesel Exhaust

1551µs 389µs

Internal Cylinder Pressure
Gasoline

1549µs 390µs

Internal Cylinder Pressure
Gasoline + Turbo Charger

1562µs 393µs

Table 9.3: Performance of 6 Cylinder Engine Simulation with dSPACE

Simulation Models Engine Simulation Package can achieve cycle time of 0.15ms [dSp09].
The table 9.3 shows measured performance data of the dSPACE engine simulation
package without the time for I/O operations. A simulation including the inner pres-
sure of a cylinder can only be performed by the more powerful DS1006 system. The
simulation demands a cycle time less than 1ms.
The dSPACE systems are primarily designed for HIL testing purposes and not for
debugging of the control software. dSPACE does not delivers debugging tools but it
is possible to start and stop remotely the simulation environment.

Embedding via Communication Interface

PIL solutions are using communication interfaces like the standard serial interface or
debugger interfaces like JTAG. In [JLD+04] an approach is presented using the JTAG
interface to connect an evaluation board with the Virtual Test Bed (VTB) simulation
environment. PIL solutions embed just the computational capabilities of the µC, the
CPU core, into the simulation. The peripherals of the device are not included, unlike
CHILS.
Commercial solution often provide an automatic code generation from control al-
gorithms in high level simulation environments like MATLAB R©/Simulink R© as men-
tioned in chapter 2 in subsection 2.2.2.
PIL solutions use special I/O functions. The simulation and the target device run
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Figure 9.1: VTB-PIL Coupling from [Len04]

alternately. The control algorithm on the target device, theµC on an evaluation board,
is executed for one sample cycle. Afterwards the calculated output is sent to the
simulation. Now the simulation steps forward and sends its data back to the target
device.

In [Len04] Santiago Lentijo describes the PIL approach of the VTB as follows (see
also figure 9.1).

During PIL simulation, the VTB solver manages the simulation of the
plant dynamics by using a variable-time step approach as reported in. The
sampling action of the control is managed as an event. The PIL model
identifies when the event is going to happen and forces the VTB solver
to move the simulation to the exact event time. When this occurs, VTB
exports the output data (output of the plant) to the control system under
test via a serial communications link. When the target processor receives
signals from the plant model, it executes the controller code for one sample
step. The controller returns its output signals (output of the controller)
computed during this step to VTB, via the same communications link. At
this point one sample cycle of the simulation is complete and the plant
model proceeds to the next sample interval. The process repeats and
the simulation progresses. When the controller code is not executed the
simulation is performed assuming a zero order hold action on the control
output. ([Len04])
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9.2.2 Emulation

Emulation is defined in chapter 2 in section 2.3 as a duplication of the functions of one
system using a different system, so that the second system behaves like the first sys-
tem. The focus is on the exact reproduction of external behaviour, so the unchanged
binary code of the original system can be executed on the emulated system. Three
version of emulators are mentioned. The classical emulator is a processor based emu-
lator that contains between tens of thousands to hundreds of thousands of ALUs and
registers [Tur05]. Caused by the enormous hardware effort, this kind of emulators
are not popular any more.
FPGA based emulators map the SoC design to the configurable logic blocks of an
FPGA. FPGAs are a flexible solution as long as the complete design can be mapped
to one FPGA device. Otherwise the separation of the design and the mapping to
more than one FPGA are a very complex tasks. FPGA boards are available as exter-
nal stand-alone boards or as plug-in cards for a workstations or a PC. Plug-in cards
have the advantage of a fast communication over the system bus to the simulation
on the PC. Examples can be found in Integrierte Simulation und Emulation eingebetteter
Hardware/Software-Systeme[Sch05], Run-Time Reconfigurable Co-Emulation for Hardware-
Assisted Functional Verification and Test of FPGA Designs [Sir06] and Accelerated Logic
Simulation by Using Prototype Boards [HSBG98].
VLIW based emulators use the computation power of VLIW processors for emu-
lation tasks. VLIW processors provide a highly parallel architecture with multiple
ALUs. RTL descriptions are translated into a VLIW programme [Hau01]. Also
combinations of VLIWs and FPGAs can be found in literature. In his thesis Zyklen-
genaue Binärkodeübersetzung für die schnelle Prototypenentwicklung von System-on-a-Chip
[Sch06b] Jürgen Schnerr presents such a system.

9.3 Comparison

The comparison of CHILS and the different hardware and software solutions covers
diverse properties of the solutions. Absolute values for performance and accuracy
are not mentioned due to the strong dependence on the simulated or emulated µC ar-
chitecture. Some performance approximations are presented in chapter 2. Functional
models of µC architecture can reach realtime performance or more than realtime per-
formance. Figure 2.1 presents some performance data for instruction accurate and
cycle accurate models from Target Compiler Technologies [ReT]. A cycle accurate ISS
has a performance of about one MIPS. This is very fast for cycle accurate models,
but this model is only an ISS without peripheral units and bus systems simulated.
Less accurate models can achieve about 100 MIPS for example if the focus is set to
instruction accuracy and not additional to timing accuracy. A complete µC modelled
on that abstraction level can have a performance which is the tenth part of the ISS
performance. RTL models run normally at a speed of less than thousand instructions
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per second. The Physical Level is skipped in the table, because it is not realistic to
simulate complete µC architectures on that level.
As the comparison shows, the CHILS approach combines high performance and high
accuracy with a low effort for simulation coupling in difference to other ‘in-the-loop’
solutions. The primary difference to PIL solutions is the availability of the peripherals
for the user application on the µC. Software models are either fast or accurate but they
provide the highest observability. Software hooks for debugging and tracing can be
easily implemented in difference to hardware hooks.
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Solution Properties Hardware (Original) Hardware (Emulation)
CHILS PIL (µC Evalu-

ation Board)
ECU-in-the-
Loop

SimPOD µC-
in-the-Loop

FPGA VLIW

Hardware Effort for Cou-
pling With Simulation En-
vironment

less3 less4 very high very high5 less6 less7

Hardware Costs8 approx.
500Euro

approx.
500Euro

approx.
30.000Euro

approx.
70.000Euro

approx. 200 to
2000Euro

approx.
400Euro

Synchronization Fre-
quency

every ’n’ CPU
cycles

after each al-
gorithm evalu-
ation

every ’n’ CPU
cycles

after each CPU
cycle

after each CPU
cycle

after each CPU
cycle

Data Exchange Mecha-
nism (µC Software View)

real or vir-
tual HW-IO-
Register

special IO-
Functions

HW-IO-
Register

HW-IO-
Register

HW-IO-
Register

HW-IO-
Register

CPU + Memories Included yes yes yes yes yes yes
Peripherals Included yes no yes yes9 yes10 no
Coupling Transparent to
the Application

yes no yes yes yes yes

Application Reuse in Real
System

complete only algorith-
mic applica-
tion part

complete complete complete partly

Peripherals Usable in Ap-
plication

yes no yes yes yes no

Type of Application complete
application

just algorith-
mic part

complete
application

complete
application

complete
application

application
without pe-
ripheral usage

3The standard debugger interface is used for the physical connection.
4A standard serial interface is used for the connection.
5Special hardware is needed to connected each of the µC pins to the simulation computer.
6A FPGA board as a plug-in device for the simulation computer uses standard interfaces like the PCI bus.
7The effort is less if the VLIW processor board is a plug-in device for the simulation computer.
8The hardware cost do not include the simulation computer.
9The connection of analogue peripherals causes problems (see subsection 5.5.4 in chapter 5)

10Peripherals can be included as components in the FPGA based emulation.
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Solution Properties Hardware (Original) Hardware (Emulation)

CHILS PIL (µC Evalu-
ation Board)

ECU-in-the-
Loop

SimPOD µC-
in-the-Loop

FPGA VLIW

Simulation Performance mid to high11 high12 high13 low high high
All µC Resources Avail-
able for Application

yes no yes yes yes no

Time Accuracy high N.A. very high high high mid to high
Application Execution is
Independent from Syn-
chronization with the Sim-
ulation Environment

yes no yes yes yes yes

Data Abstraction of the µC
Interfaces

yes yes no no yes yes

Demands Environment
Simulation in Real Time

no no yes no no no

Observability mid14 low low mid15 mid16 low

11The performance depends on the exchange frequency between the hardware and the simulation.
12Only the algorithmic part of the software is included in the simulation setup.
13The simulation and the hardware run in real time.
14The connection of a debugger is supported.
15The connection of a debugger is supported.
16The connection of a debugger is supported.
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Solution Properties Software Models
RTL Model Cycle Accurate

Model
TLM Model
Programmer’s
View with
Time (for
example in
SystemC)

TLM Model
Programmer’s
View with-
out Time (for
example in
SystemC)

Instruction Set
Simulator

Functional
Level

Hardware Effort for Cou-
pling with Simulation En-
vironment

no HW needed no HW needed no HW needed no HW needed no HW needed no HW needed

Simulation Model Costs potentially
costs of sim-
ulator and
model

potentially
costs of sim-
ulator and
model17

potentially
costs of sim-
ulator and
model18

potentially
costs of sim-
ulator and
model19

potentially
costs of sim-
ulator and
model

potentially
costs of sim-
ulator and
model

Synchronization Fre-
quency

after each Sig-
nal change

after each CPU
cycle

after each
transaction

after each
transaction

after each al-
gorithm evalu-
ation

Data Exchange Mecha-
nism (µC SW view)

simulated reg-
isters

simulated reg-
isters

simulated reg-
isters

simulated reg-
isters

special IO-
Functions

N.A.

CPU + Memories Included yes yes yes yes yes no
Peripherals Included yes yes yes yes no no
Coupling Transparent to
the Application

yes yes yes yes no

Application Reuse in Real
System

complete complete complete complete partly only algo-
rithm, no
HW/SW parti-
tioning

Peripherals Usable in Ap-
plication

yes, if mod-
elled

yes, if mod-
elled

yes (if mod-
elled)

yes (if mod-
elled)

no N.A.

Type of Application complete
application

complete
application

complete
application

complete
application

application
without pe-
ripheral usage

N.A.

17If available at all.
18If available at all.
19If available at all.
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Solution Properties Software Models

RTL Model Cycle Accurate
Model

TLM Model
Programmer’s
View with
Time (for
example in
SystemC)

TLM Model
Programmer’s
View with-
out Time (for
example in
SystemC)

Instruction Set
Simulator

Functional
Level

Simulation Performance very low very low to low low to mid low to mid high (only al-
gorithmic part
of sw is used)

high to very
high

All µC Resources Avail-
able for Application

yes, if mod-
elled

yes (if mod-
elled)

yes (if mod-
elled)

yes (if mod-
elled)

no no

Time Accuracy very high high mid to high N.A. low N.A.
Application Execution is
Independent from Syn-
chronization with the Sim-
ulation Environment

yes yes yes yes no N.A.

Data Abstraction of the µC
Interfaces

yes yes yes yes yes N.A.

Demands Environment
Simulation in Real Time

no no no no no no

Observability high high high high mid N.A.
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9.4 CHILS Performance and Accuracy

9.4.1 CHILS Accuracy

The execution time accuracy is defined in definition 7.2.1 as division of the runtime of
a well defined piece of code within a simulated or emulated system and of the runtime
of the same piece of code within the real target system. Based on the measurements
in chapter 3 in section 3.5 Effects caused by Coupling , the execution time accuracy is
calculated.

Application Step Size (CPU Cycles) STM Timing Accuracy
Monitor - Non Cached

NOPS - Flash 20000 99.91%
10000 99.81%
5000 99.62%

NOPS - SRAM 20000 99.91%
10000 99.82%
5000 99.65%

Sieve - Flash 20000 99.92%
10000 99.86%
5000 99.66%

Sieve - SRAM 20000 99.91%
10000 99.82%
5000 99.65%

Monitor - Cached
NOPS - Flash 20000 99.93%

10000 99.86%
5000 99.73%

NOPS - SRAM 20000 99.93%
10000 99.86%
5000 99.73%

Sieve - Flash 20000 99.94%
10000 99.89%
5000 99.75%

Sieve - SRAM 20000 99.93%
10000 99.86%
5000 99.73%

Table 9.6: STM Time Accuracy Measurements
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Monitor Step Size (CPU
Cycles)

PWM Frequency (Hz) GPTA Timing Accuracy

Monitor - NonCached
4040 3750.00 99.37%
440 3750.00 94.38%
300 3750.00 91.63%
15000 1000.00 99.81%
1500 1000.00 98.26%

Monitor - Cached
4040 3750.00 99.46%
440 3750.00 95.16%
300 3750.00 92.76%
15000 1000.00 99.85%
1500 1000.00 98.49%

Table 9.7: GPTA Time Accuracy Measurements

9.4.2 CHILS Performance

All measurements are done on a Pentium 4 PC with 2.4 GHz and 1 GB RAM and
a TC1796ED evaluation board. A low cost DAP MiniWiggler is used to connect
theµC board and the PC. The TC1796ED is configured to run with a CPU frequency
of 150 MHz and a system frequency of 75 MHz. The reference for the simulation
performance is a CPU frequency of 150 MHz. Table 9.8 presents the simulation
performance values of two applications. Application one is the PID controlled
air-screw rocker model which is presented in chapter 10 in subsection 10.2.1. The
measurement values for activated and deactivated oversampling for event detection
are listed. The application one does not need high exchange rates between the
MATLAB R©/Simulink R© model and the µC control programme. Step sizes between
10ms and 1ms are chosen.
Application two is a PWM signal generation and measurement application. The GPTA
of the TC1796ED generates a 1 KHz PWM signal while the MATLAB R©/Simulink R©

model captures and measures the signal. This application is used in chapter 3 to
determine the influence of the CHILS monitor to the user application. A sampling
rate of 10KHz or higher is needed to capture and evaluate the 1 KHz PWM signal
with a duty cycle of 20%. So the step size is chosen between 0.1ms and 0.01ms.

Figure 9.2 shows the simulation performance values which cover the full range
of reasonable step sizes for CHILS applications (from 10ms up to 0.003ms). Two
synthetic test applications are used to show the difference between a setup with more
or less I/O lines but without influence of a simulation. In appendix B more detailed
tables can be found in section B.3. The overhead of the runtime analysis mechanism,
the event detection and event evaluation, is a strongly influenced by the amount of
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data to be captured and evaluated, as it can be seen in the synthetic test with all
configured GPIO pins. In the normal application, this influence is reduced by two
facts: a limited number of configured pins and the runtime of the simulation. It
can be assumed that the simulation on the PC is the limiting factor for the overall
performance in real setups.

GPIO
pins

ADC
chan-
nels

Step
Size
(ms)

Step Size
(CPU Cy-
cles)

Simulation
Time (sec)

Simulation
Runtime
(sec)

Simulation
Perfor-
mance
(MHz)

PID Controller + Air-Screw Rocker Model - No Oversampling for Runtime Analysis
32 3 1 150000 60 242 37.19
32 3 2 300000 60 139 64.75
32 3 5 750000 60 73 123.29
32 3 10 1500000 60 63 142.86
PID Controller + Air-Screw Rocker Model - 10x Oversampling for Runtime Analysis

32 3 120 150000 60 246 36.59
32 3 2 300000 60 147 61.22
32 3 5 750000 60 85 105.88
32 3 10 1500000 60 78 115.38

PWM Generation (1000Hz) - No Oversampling for Runtime Analysis
65 0 0.01 1500 1 426 0.35
65 0 0.02 3000 1 225 0.67
65 0 0.05 7500 1 101 1.49
65 0 0.1 15000 1 61 2.46

Table 9.8: CHILS-MATLAB/Simulink Sample Application Performance

9.5 Summary

The CHILS approach combines high performance and high accuracy with a low effort
for simulation coupling in contrast to other ‘in-the-loop’ solutions. The primary
difference to PIL solutions is the availability of the peripherals for the user application
on the µC. Software models are either fast or accurate, but they provide the highest
observability.

20The CHILS monitor is activated every 0.1ms if the step size is 1 ms and 10 times oversampling is
configured.
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Simulation Performance
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Figure 9.2: CHILS Synthetic Performance Values (Full Range of Application)
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Chapter 10

CHILS Framework - Applications

The current chapter presents some CHILS applications as case studies. Wrapper
modules for SystemC and MATLAB R©/Simulink R© are programmed as part of the
thesis. The CHILS PC interface is realized as a DLL as it is explained in chapter 8
in section 8.1. Wrappers can be programmed in any language which can access the
C-interface of the DLL.

10.1 SystemC-Coupling

The SystemC wrapper consists of different parts. Listing C.3 in appendix C presents
the generic wrapper for CHILS. This wrapper is independent from the specific µC.
It provides the possibility to configure the input and output pins of the device and
to connect them with SystemC channels to the environment. The time stepping
is configured at the beginning of the simulation. The CHILS device wrapper will
generate SystemC events after each data exchange with the CHILS monitor.
Listing 10.1 shows a simple TC1796 SystemC CHILS model with two input channels
and three output channels. This model can be easily instantiated.

1 # include " chi ls_sc_module . h"
2 /∗+ TC1796 CHILS model ∗ /
3 c l a s s tc1796_p0 : public chils_module {
4 public :
5 /∗+ Input / Output pins ∗ /
6 sc_in <bool> r e s e t _ n _ i ;
7 sc_in <bool> p0p0_i ;
8 sc_in <bool> p0p1_i ;
9 sc_out <bool> p0p2_o ;

10 sc_out <bool> p0p3_o ;
11 sc_out <bool> p0p4_o ;
12

13 tc1796_p0 ( sc_module_name name ,
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14 double cpuFrequency ,
15 double c h i l s P e r i o d ,
16 sc_ t ime_uni t chilsTimeUnit ,
17 FILE ∗ c h i l s L o g F i l e )
18

19 : chils_module ( name , IFX_JTAG_ID_TC1796ED_BC , c h i l s L o g F i l e )
20 , p0p0_i ( " tc1796_p0p0_i " )
21 , p0p1_i ( " tc1796_p0p1_i " )
22 , p0p2_o ( " tc1796_p0p2_o " )
23 , p0p3_o ( " tc1796_p0p3_o " )
24 , p0p4_o ( " tc1796_p0p4_o " )
25 {
26 /∗+ Setup Input / Output Pins and connect l i n e s ∗ /
27 c h i l s _ s e t u p P o r t P i n ( p0p0_i , 0 , 0 ) ;
28 c h i l s _ s e t u p P o r t P i n ( p0p1_i , 0 , 1 ) ;
29 c h i l s _ s e t u p P o r t P i n ( p0p2_o , 0 , 2 ) ;
30 c h i l s _ s e t u p P o r t P i n ( p0p3_o , 0 , 3 ) ;
31 c h i l s _ s e t u p P o r t P i n ( p0p4_o , 0 , 4 ) ;
32

33 c h i l s _ s e t u p R e s e t P i n ( r e s e t _ n _ i ) ;
34 ch i l s_se tupDevice ( cpuFrequency , c h i l s P e r i o d , chi lsTimeUnit ) ;
35 }
36 void s c _ t r a c e ( s c _ t r a c e _ f i l e ∗ t r f ) { c h i l s _ t r a c e ( t r f ) ; }
37 } ;

Listing 10.1: TC1796 SystemC CHILS Model

Figure 10.1 shows the output of the simulation. The programme on the TC1796ED
reads the input of p0p1 (Port 0 , Pin 1) and copies the value to p0p2. In addition, the
programme generates pseudo random values for pins p0p3 and p0p4.

Figure 10.1: SystemC Output

CHILS also offers the possibility to have more than one µC model. The number
of models is limited to the number of µC devices which are connected via DAS to
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the simulation computer. Listing 10.2 presents a SystemC model consisting of a
cross-connected TC1766 and TC1796 device.

1 # include " chi ls_sc_toplevel_TC1766_TC1796 . h"
2 /∗+ Coupled TC1796 and TC1766 CHILS model ∗ /
3 toplevel_TC1766_TC1796 : : toplevel_TC1766_TC1796 ( sc_module_name name ,
4 double c h i l s P e r i o d ,
5 sc_ t ime_uni t chilsTimeUnit ,
6 FILE ∗ c h i l s L o g F i l e )
7 : sc_module (name)
8

9 , c h i l s _ p e r i o d ( " c h i l s _ p e r i o d " , c h i l s P e r i o d , chi lsTimeUnit )
10 , r e s e t _ n ( " r e s e t _ n " )
11

12 /∗+ Cross−Connection between TC1796 and TC1766 ∗ /
13 , mcu0_p0p2_to_mcu1_p0p1 ( " mcu0_p0p2_to_mcu1_p0p1 " )
14 , mcu0_p0p3_to_mcu1_p0p0 ( " mcu0_p0p3_to_mcu1_p0p0 " )
15

16 , mcu0 ( "MCU0" , 150 .0 E6 , c h i l s P e r i o d , chilsTimeUnit , c h i l s L o g F i l e )
17 , mcu1 ( "MCU1" , 150 .0 E6 , c h i l s P e r i o d , chilsTimeUnit , c h i l s L o g F i l e )
18 {
19 mcu0 . r e s e t _ n _ i ( r e s e t _ n ) ;
20 mcu1 . r e s e t _ n _ i ( r e s e t _ n ) ;
21 /∗+ Connect Channels to TC1796 ∗ /
22 mcu0 . p0p2_o ( mcu0_p0p2_to_mcu1_p0p1 ) ;
23 mcu0 . p0p3_o ( mcu0_p0p3_to_mcu1_p0p0 ) ;
24 /∗+ Connect Channels to TC1766 ∗ /
25 mcu1 . p0p1_i ( mcu0_p0p2_to_mcu1_p0p1 ) ;
26 mcu1 . p0p0_i ( mcu0_p0p3_to_mcu1_p0p0 ) ;
27 }

Listing 10.2: Coupled TC1796 and TC1766 SystemC CHILS Model

10.1.1 Virtual Peripheral Extension

The virtual peripheral extension is a demonstration of the CHILS capabilities to
extend an existing µC by new peripheral units which are not implemented within the
current version (see figure 10.2). The real µC can be used as replacement of a future
µC for early software development. The virtual peripheral can be accessed by the µC
software through a virtual register set (listing 10.3). Synchronous and asynchronous
communication modes are possible.

typedef s t r u c t ext_sync_t {
v o l a t i l e unsigned i n t OUT;
v o l a t i l e unsigned i n t IN ;
v o l a t i l e unsigned i n t OUT_ACK;
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v o l a t i l e unsigned i n t IN_ACK ;
v o l a t i l e unsigned i n t OUT_REQ;
v o l a t i l e unsigned i n t IN_REQ ;
v o l a t i l e unsigned i n t IS_SYNCHRONIZED ;

} ex t_sync_t ;

Listing 10.3: Virtual Registers for Virtual Peripheral Extension

Figure 10.2: CHILS Virtual Peripheral

Listing 10.4 and listing 10.5 show extracts from the header files of the SystemC
modules. The TC1796 module is implemented as bus master device while the virtual
peripheral is connected as slave to the simulated bus system.

1 # include <systemc . h>
2 # include " ch i l s_sc_ tc1796_master_p0 . h"
3 # include " SimpleCHILSSlave . h"
4

5 /∗+ TC1796 Wrapper i s Bus Master ∗ /
6 c l a s s top leve l_ tc1796_master : public sc_module {
7 public :
8 s c _ c l o c k c h i l s _ p e r i o d ;
9 s c _ s i g n a l <bool> r e s e t _ n ;

10 / / Input t o MC f o r s t i m u l a t i o n
11 s c _ s i g n a l <bool> p0p0_sin ;
12 s c _ s i g n a l <bool> p0p1_sin ;
13

14 / / Output o f MC
15 s c _ s i g n a l <bool> p0p2_sout ;
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16 s c _ s i g n a l <bool> p0p3_sout ;
17 s c _ s i g n a l <bool> p0p4_sout ;
18 s c _ s i g n a l <sc_time > c l k ;
19 s c _ s i g n a l <bool> i r q ;
20 s c _ s i g n a l <bool> iLineIRQ ;
21

22 /∗+ Input / Output Lines of V i r t u a l P e r i p h er a l ∗ /
23 s c _ s i g n a l <char> s impleSlaveIn ;
24 s c _ s i g n a l <char> simpleSlaveOut ;
25

26 tc1796_master_p0 mcu0 ;
27 /∗+ Include of the V i r t u a l P e r i p h er a l a l s Slave ∗ /
28 SimpleCHILSSlave s lave ;
29

30 top leve l_ tc1796_master ( sc_module_name name ,
31 double c h i l s P e r i o d ,
32 sc_ t ime_uni t chilsTimeUnit ,
33 FILE ∗ c h i l s L o g F i l e ) ;
34 void s c _ t r a c e ( s c _ t r a c e _ f i l e ∗ t r f ) ;
35 } ;

Listing 10.4: TC1796 SystemC with Virtual Peripheral - toplevel_tc1796_master

1 # include <systemc . h>
2 # include " i f x _ b a s i c s . h"
3 # include " i f x _ s t a n d a r d s . h"
4

5 using namespace SC_BSX ;
6 using namespace SC_STD ;
7 /∗+ The V i r t u a l P e r ip h er a l i s a Bus Slave ∗ /
8 c l a s s SimpleCHILSSlave : public vp_bus_slave {
9 public :

10 sc_in <sc_time > iClk ;
11 sc_out <bool> oIRQ ;
12 sc_out <bool> oIRQiLine ;
13 sc_in <bool> i R e s e t ;
14 /∗+ Input / Output Lines of V i r t u a l P e r i p h er a l ∗ /
15 sc_in <char> iL ine ;
16 sc_out <char> oLine ;
17 SimpleCHILSSlave ( sc_module_name mn,
18 uint32 base , uint32 s i z e ) ;
19 SC_HAS_PROCESS( SimpleCHILSSlave ) ;
20 protected :
21 / / i L i n e P r o c e s s i n g
22 void iLineCB ( ) ;
23 void clockCB ( ) ;
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24 / / R e s e t
25 void resetCB ( ) ;
26 } ;

Listing 10.5: Virtual Peripheral SimpleCHILSSlave

Figure 10.3: CHILS Virtual Peripheral Simulation Output

10.2 Matlab/Simulink-Coupling

MATLAB R©/Simulink R© offers the possibility to include C or C++ code in a simulation
via a mechanism which is called S-function. This code is compiled and executed
within the MATLAB R©/Simulink R© simulation context. The C-interface of a standard
Windows DLL can be directly used within an S-Function.

An extract of the CHILS MATLAB R©/Simulink R©wrapper can be found in appendix
C in section C.2. S-Functions have a predefined structure and predefined C or C++
functions, which are called by the simulation environment. The most important
functions are mdlStart to initialize the model parameters and mdlOutputs to execute
the next simulation step (see listing 10.6). These functions use the CHILS interface
functions directly.

s t a t i c void mdlStart ( SimStruct ∗S ) {
. . .
dev = dhi lCreateDevice ( DAS_DID0_IFX_JTAG_TC1796ED_BC , l o g F i l e )
. . .
/∗+ Setup i n i t ∗ /
e r r o r |= dev−>s e t u p I n i t ( ) ;
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/∗+ Setup Input Ports ∗ /
for ( i = 0 ; i < mChilsMaxPortPinIn ; i ++){

e r r o r |= dev−>setupPortPinIn ( mChilsPortPinIn [ i ] . portIndex ,
mChilsPortPinIn [ i ] . pinIndex ) ;

}
. . .
e r r o r |= dev−>setupDevice ( systemRunCycles ) ;
. . .

}
s t a t i c void mdlOutputs ( SimStruct ∗S , int_T t i d ) {

. . .
/∗+ Set Input Values ∗ /
for ( i = 0 ; i < mChilsMaxPortIn ; i ++){

InputBooleanPtrsType uPtr =
( InputBooleanPtrsType ) s s G e t I n p u t P o r t S i g n a l P t r s ( S , i ) ;

for ( j = 0 ; j < mChilsPortIn [ i ] . pins ; j ++){
bool b = ( ∗ uPtr [ j ] != 0 ) ;
e r r o r |= dev−>se tPortPinInValue ( mChilsPortPinIn [ c ] . portIndex ,

mChilsPortPinIn [ c ] . pinIndex , b ) ;
c++;

}
}
/∗+ Exchange Data with MC ∗ /
e r r o r |= dev−>exchangeWithDevice ( ) ;
. . .
c = 0 ;
/∗+ Get Output Values f o r Simulat ion ∗ /
for ( i = 0 ; i < mChilsMaxPortOut ; i ++){

boolean_T ∗pY = ( boolean_T ∗ ) ssGetOutputPortSignal ( S , i ) ;
for ( j = 0 ; j < mChilsPortOut [ i ] . pins ; j ++){

e r r o r |= dev−>getPortPinOutValue ( mChilsPortPinOut [ c ] . portIndex ,
mChilsPortPinOut [ c ] . pinIndex , &valueInOut ,
&valueChanged ) ;

pY[ j ] = valueInOut ;
c++;

}
}
. . .

}

Listing 10.6: Virtual Registers for Virtual Peripheral Extension

A Simulink R© block is created for the graphical modelling environment. The block
allows the configuration of theµC model and generates the necessary interconnections
dynamically. Figure 10.4 shows the block and the configuration mask.
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Figure 10.4: TC1796 Simulink R© Block

10.2.1 CHILS-Demonstration Platform

Heide Schenk’s master thesis contains the development of a demonstration platform
for the CHILS approach [Sch09]. The goal of the thesis was to evaluate the value of
CHILS for a model-driven development process of an electromechanical system. A
complete development process from the model to the final system is demonstrated.
The process started with the concept of the electromechanical system. A rocker with
an attached air-screw was chosen. The task for the controller component, a TC1796
µC, was to keep the balance of the rocker. Figure 10.5 shows the design of the system.
The next step was to model the system with MATLAB R©/Simulink R©. Controller and

control path were simulated.
Afterwards the controller was replaced by the real TC1796 µC with the control soft-
ware. CHILS enables this replacement. A fully functional version of the control
software was developed at this stage of development.
The simulated environment was replaced by the real rocker hardware in the next step.
Only slight adoptions were implemented for the final version of the control software.

Results

Results from the final system and the simulated system, the CHILS based µC ’model’,
are shown in figure 10.6. The control software used in the simulation and in the
real system is nearly identical. All parameters of the control are the same. Only the
virtual registers were replaced by the real registers. The blue curve represents the
values from the real system. The noise of the sensor signal is clearly visible. The
red curve shows the measurements from the simulation. Ignoring the noise, which
is not modelled in the simulation, both curves are similar in their progression. The
simulation is more dynamic while the damping in the real system is stronger. This
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Figure 10.5: Rocker with Air-Screw [Sch09]

effect is primarily caused by the model of the control path, which is derived from a
system prototype.

The conclusion from [Sch09] can be summarized as follows. The CHILS approach
is suitably for support and acceleration of the development of µC based system in an
early stage of development as well as in the test phase. Within the V-model it can
be applied for system design and system testing, architecture design and architecture
testing and for module design and unit testing.
Short iterations between the CHILS based simulation and the final system are possible
to speed up the software development. CHILS can be used in addition in the develop-
ment of mission critical software. Mistakes regarding exceeded boundaries, control
algorithms or data type conversions can be checked and found within the simulated
environment. Source code corrections can be easily ported to the final system by the
easy transferring supported by CHILS.
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Figure 10.6: CHILS-Based Simulation and Real Control Path Measurements [Sch09]
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Chapter 11

Summary and Outlook

The raising of the abstraction level of models primarily addresses the biggest problem
of current SoC and µC modelling. The available performance grows slower than the
needs, caused by the rising complexity of such systems, so one can say: “Simulation
Can’t Keep Pace with Design Size” [DMMN03].
Another important part is the verification of the correctness of the model. The model
is useless if the functional correctness is not verified. Special model test benches are
required for models of a high abstraction level because the silicon test benches of the
real SoC and µC require a cycle accurate behaviour.
This situation leads to the idea of using the real µC as a replacement for a µC model
inside of a system simulation. The µC is already verified and the maximum perfor-
mance is much higher than any simulation model. The overall system performance
is primarily limited by the coupling system between the real hardware and the sim-
ulation.

11.1 Summary

The sub problems of the simulation to µC coupling can be divided into three main
areas: the connection between hardware and simulation, the interface abstraction,
and the event exchange optimization. Furthermore the implementation and the
combination of the main approaches are of interest.

11.1.1 Connection between Hardware and Simulation

First off all the connection between hardware and simulation, so the exchange of
information (events), has to be realized. This concerns the exchange modes, syn-
chronization aspects and the hardware needed for the coupling. It also includes
possibilities to connect the real hardware with different simulation environments.
The hardware to simulation coupling concept used in this work is based on concepts
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for simulator coupling in Co-Simulation environments. The approach covers connec-
tions to continuous and discrete simulations which differ in interpretation of time,
communication and activation of simulation modules. The most practical way with
the highest performance is to run the simulation and the µC in parallel. Events that
can be seen as changes of a signal are exchanged after a predefined time between sim-
ulation and hardware. A fixed exchange step size or a variable step size is possible.
The coupling between the simulated environment and the µC is nearly transparent to
the executed software on the µC. Furthermore, there is no difference between a real
and a simulated µC for the simulation.

11.1.2 Interface Abstraction

The interface abstraction, especially the level of abstraction, is a problem that is
independent from the exchange of events itself. The level of abstraction only defines
what an event is but it does not define how it is published. Four levels of interface
abstraction are defined (see table 4.3) with respect to the available µC interfaces:
Message-Level, Byte-Level, Digital-Level and Analogue Level. The highest suitable
level of abstraction for an interface is chosen to reduce the amount of data to be
shared between the µC and the simulation environment. This reduction accelerates
the simulation-µC coupling. Each interface module consists of two parts. One part
is located on the µC; the other part is located on the simulation computer. The
simulation computer part of each interface module is able to convert data between
the different levels of abstraction. The µC part of an interface consists of real or virtual
registers which are readable and writable by the user application. Normally a driver
layer hides the implementation, so the user software does not need to be changed to
run on the final system if it is developed within a CHILS based simulation.

11.1.3 Event Exchange Optimization

The event exchange optimization has the goal to find an optimized setup for the data
exchange between hardware and simulation by analyzing the system. Two techniques
can be used: an analysis of the running system and a pre-analysis of the overall
system and the coupling system analysis. The coupling system analysis calculates
the fidelity of HIL simulation coupling systems in a formal way. The calculation
is based on the transfer function in the frequency domain of the coupling system.
SISO and MIMO systems are covered by this approach. The approach can be used to
compare different HIL simulation coupling systems. An optimization process, based
on the fidelity value, can be executed to find the best possible configuration of a
coupling system.

The overall analysis of the real system and the system environment consists of an
analysis and a classification of algorithms executed on a µC and of a general system
analysis. Algorithm analysis as a part of numerical mathematics. It estimates the
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error introduced by the numerical calculation. The used algorithm analysis flow is a
bipartite process. It starts with the profiling flow to build up a database of analysis
results. The input contains a set of source code and a set of input data. The application
is transformed into a kind of computational graph. The graph is a combination
of control flow and data flow graphs. This analysis is very costly in computation
time. The classification of algorithms is based on the results of the analysis. A new
programme can be analyzed by classifying the graph of the program and retrieving
the corresponding results from the database. The results of the numerical analysis
show the influence of errors on the programme.

The analysis and classification of systems is a well studied field, so the con-
templations are taken from standard literature of control theory and system theory.
The stability analysis of LTI systems is done by calculating the poles of the transfer
function of the system. For nonlinear systems no complete consistent theory exists
because an analytic solution of nonlinear differential equations is usually not avail-
able. As alternative, linearization is used to approximate the nonlinear system by a
linear system.
A general analysis of the whole system is possible by combining the presented meth-
ods. The stability of the whole in-the-loop system is given if the control loop is stable
in addition to an error tolerant control algorithm which is executed on the µC.

The runtime analysis yields the rate of lost events and the delay of distributed
events to determine if a chosen step size for the data exchange between hardware
and simulation is correct. Lost events are not always critical for the hardware to
simulation coupling. Depending on the signal type, only the accuracy is reduced
but the simulation is not driven into a false state. Especially if the signal is quasi-
continuous, like a control or a measurement value, lost signal changes can be tolerated.

11.1.4 CHILS Framework

The CHILS framework embeds diverse TriCore R© µCs into different simulation en-
vironments. It covers coupling capabilities with different simulation environments,
different µC devices, debugger support and tools for simulation to hardware cou-
pling optimization. The framework provides a C/C++ interface that can be used to
programme wrappers for every simulation environment which supports C or C++
modules. The physical data exchange is realized over the standard debugger interface
of the µC devices.
The CHILS approach is applicable in the development of manifold complex µC based
systems. Applications are for example RCP and early software development. CHILS
can be applied for system design and system testing, architecture design and archi-
tecture testing and for module design and unit testing in the context of a V-model
based project.
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11.1.5 Conclusion

Adopting the CHILS concept for system simulation opens new possibilities in mod-
elling complex hardware/software systems with existing µCs. The solution is able
to speed up the simulation, improves the accuracy, and allows to develop and to
execute the software on real µC hardware at an early stage of system development.
The required hardware is cost effective because the standard debugger interface of
the µC is used. The comparison between the CHILS hardware to simulation coupling
system and other HIL solutions, the dSPACE system, a classical HIL solution, and
the DeskPODTM from the company SimPOD, a special solution for µC to simulation
coupling, shows that the CHILS approach has a higher coupling system fidelity and
quality in a typical simulation scenario of a passenger car.

11.2 Outlook and Future Work

Outlook and future work for the CHILS approach can be divided into different sec-
tions: driver support, hardware support, µC extensions, system analysis and integra-
tion into commercial solutions.

11.2.1 Driver Support

A common abstraction like AUTOSAR supports the application of the CHILS ap-
proach. The driver adaptations can be implemented within this layer so CHILS
becomes absolutely transparent to the user software. The development of AUTOSAR
driver modifications for the TC1766 has already started and an early prototype is
available.

11.2.2 Hardware Support

CHILS currently supports four devices of the TriCore family: TC1766ED, TC1796ED,
TC1767ED and TC1797ED. Adaptations for other TriCore based ED devices can be
realized with small effort. CHILS implementations for other µC families might be
more complex. The µCs need a breakpoint trap mechanism and internal counters,
which can be configured as a trap source, to allow an automatic switch between the
user application and the CHILS monitor. Additional memory and peripheral suspend
capabilities are also needed. Otherwise the restrictions for a CHILS setup are too high.

11.2.3 Microcontroller Extensions

A current disadvantage of CHILS is that the tested software is not 100 percent iden-
tical to the final software on the target system. For example the real drivers for some
peripherals cannot be tested because CHILS needs some adaptations (see chapter
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4 section 4.2). Adaptations for future versions are already described in chapter 8
in subsection 8.2.1. The most important adaptations concern the input and output
registers of the µC peripherals. Virtual registers are currently necessary for some pe-
ripherals because the real hardware registers are not accessible by the CHILS monitor.
Mechanisms like shadow registers can be implemented to overcome this drawback.

Another improvement regards the CHILS monitor context and the programme
context. Only the most important registers are stored by the breakpoint trap mecha-
nism of the actual TriCore µCs. An automatic context save of all registers would be
an improvement.
In some application the usage of virtual registers can be an advantage, because the
input and output values of a system have to be bypassed. Classical HIL does not work
in all situations. In very high integrated systems, like sensor elements and calculation
elements which are implemented on the same silicon die, the simulated sensor values
have to be replayed to the system, because the effort for the generation of real sensor
input is too high. A good example is an integrated radar sensors system.

11.2.4 Integration into Commercial Solutions

The integration of CHILS into commercial solutions, for example auto-code genera-
tors, is of interest because a larger group of users can be addressed. An integrated
tool suite is necessary to allow a fast progress of prototyping, especially for RCP
applications. Currently CHILS supports execution of a debugging environment in
parallel to the simulation. The debugging environment has to be based on the MCD
API.

11.2.5 Coupling System Analysis

The future scope of activities will be to find optimal coupling strategies regarding
the simulation environment and the simulated system. The basics for the coupling
system analysis were introduced in this work.

11.2.6 Algorithm Analysis

The completion of the analysis framework would be an important task. The current
implementation is very limited regarding code sizes and programming language
expressions. The database supports a relatively small number of some hundreds of
thousands of data sets.
The algorithm analysis approach is currently defined for the calculation of condition
numbers of algorithms. This is an important criterion in numerical calculation but not
the only one. Other possibilities include algorithm analysis using affine arithmetic
as an extension of interval analysis [FCR03]. The calculation directly includes the
fuzziness of the variables.
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Appendix A

Formulars

A.1 Chapter 5

A.1.1 Fidelity Functions of System Comparison

Weight function digital part

wi =


0 for i ≤ 15000
minW(i) for i ≤ 75000
midW(i) for i ≤ 150000
maxW(i) for i > 150000

(A.1)

minW(i) = (i−15000) ∗5 ∗10−10 (A.2)

midW(i) = (i−75000) ∗5 ∗10−9 + minW(75000) (A.3)

maxW(i) = (i−150000) ∗5 ∗10−6 + midW(150000) (A.4)

Weight function analogue part

wi =

10 for i < 1
100000 ∗ i ∗wi−1 for i ≥ 1

(A.5)
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Appendix B

Tables

B.1 Chapter 3

B.1.1 Time Difference Measurement

Application Monitor
Step
Size
(CPU
Cycles)

Sampling
Rate

PWM
Fre-
quency

Measured
PWM
Fre-
quency

Period
Differ-
ence

CPU
Cycles
Differ-
ence
per Ex-
change

Monitor - Cached
PWM -
Main-Prog.

1500 100.00 1000.00 1019.75 1.94% 29.04

150 1000.00 1000.00 1268.52 21.17% 31.75
PWM - In-
terrupt

1500 100.00 1000.00 1016.46 1.62% 24.25

150 1000.00 1000.00 1265.82 21.00% 31.50

Table B.1: STM Time Difference Measurements - PWM Generation

B.1.2 Time Difference Measurement - dsync/isync
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Monitor
Step Size
(CPU Cy-
cles)

Sampling
Rate

PWM Fre-
quency
(Hz)

Measured
PWM Fre-
quency
(Hz)

Period
Length
Difference

CPU Cy-
cles Dif-
ference per
Exchange

Monitor - Non Cached
Sieve - SRAM 20000 33406093 33445130 3338 35.39

10000 33406093 33465151 6671 35.38
5000 33406093 33641483 13323 35.34

Monitor - Non Cached (no isync / no dsync)
Sieve - SRAM 20000 33406093 33445130 3338 23.39

10000 33406093 33484111 6671 23.39
5000 33406093 33561507 13323 23.33

Table B.2: STM Time Difference Measurements (isync/dsync Difference)

Monitor
Step Size
(CPU Cy-
cles)

Sampling
Rate

PWM Fre-
quency
(Hz)

Measured
PWM Fre-
quency
(Hz)

Period
Length
Difference

CPU Cy-
cles Dif-
ference per
Exchange

Monitor - Cached
Sieve - SRAM 20000 33406093 33451799 3338 27.38

10000 33406093 33497451 6671 27.39
5000 33406093 33588188 13323 27.34

Monitor - Cached (no isync / no dsync)
Sieve - SRAM 20000 33406093 33446806 3338 24.39

10000 33406093 33487316 6671 24.35
5000 33406093 33568757 13323 24.42

Table B.3: STM Time Difference Measurements (isync/dsync Difference)

B.2 Chapter 5

B.2.1 Result Tables of System Comparison

Scenario I

Digital µC Input Lines 16, 128

Digital µC Output Lines 16, 128

Analogue µC Input Lines 0 , 0
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Step Size/Cycle
Time (ms)

CHILS fidelity
Simulation to
Hardware

CHILS fidelity
Hardware to
Simulation

Approx. CHILS
performance
(kHz)

0,10 1,00 1,00 16071
0,25 0,96 0,96 34615
0,40 0,94 0,94 48648
0,50 0,94 0,94 56250
0,75 0,84 0,84 71052
1,00 0,80 0,80 81818
1,20 0,17 0,17 88524

Step Size/Cycle
Time (ms)

dSPACE fidelity
Simulation to
Hardware

dSPACE fidelity
Hardware to Sim-
ulation

dSPACE perfor-
mance (kHz)

0,10 x x x
0,25 0,96 0,96 150000
0,40 0,94 0,94 150000
0,50 0,93 0,93 150000
0,75 0,84 0,84 150000
1,00 0,70 0,70 150000
1,20 0,17 0,17 150000

Table B.4: System Comparison - Scenario I

Scenario II

Digital MC Input Lines 16, 128

Digital MC Output Lines 16, 128

Analogue MC Input Lines 8 , 32
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Step Size/Cycle
Time (ms)

CHILS fidelity
Simulation to
Hardware

CHILS fidelity
Simulation to
Hardware

Approx. CHILS
performance
(kHz)

0,10 1,00 1,00 16071
0,25 0,89 0,89 34615
0,40 0,85 0,85 48648
0,50 0,84 0,84 56250
0,75 0,65 0,65 71052
1,00 0,58 0,58 81818
1,20 0,07 0,07 88524

Step Size/Cycle
Time (ms)

dSPACE fidelity
Simulation to
Hardware

dSPACE fidelity
Simulation to
Hardware

dSPACE perfor-
mance (kHz)

0,10 x x x
0,25 0,89 0,89 150000
0,40 0,85 0,85 150000
0,50 0,83 0,83 150000
0,75 0,65 0,65 150000
1,00 0,45 0,45 150000
1,20 0,07 0,07 150000

Table B.5: System Comparison - Scenario II

B.3 Chapter 9

B.3.1 Synthetic Simulation Performance
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ASC
Chan-
nels

Step
Size
(sec)

Exchanges Step
Size
(CPU
Cycles)

Simulation
Time (sec)

Simulation
Runtime
(sec)

Simulation
Perfor-
mance
(MHz)

TC1796 ASC0 Application - No Oversampling for Runtime Analysis
1 0.000003 72000 500 0.24 76.73 0.47
1 0.000007 72000 1000 0.48 77.19 0.93
1 0.000017 72000 2500 1.2 77.93 2.31
1 0.000033 72000 5000 2.4 77.62 4.64
1 0.000067 72000 10000 4.8 77.28 9.32
1 0.000167 72000 25000 12 81.74 22.02
1 0.000333 72000 50000 24 81.89 43.96
1 0.000667 72000 100000 48 79.89 90.12
1 0.001667 36000 250000 60 69.81 128.92
1 0.005000 12000 750000 60 64.35 139.86
1 0.010000 6000 1500000 60 63.5 141.73
GPIO
Pins

Step
Size
(sec)

Exchanges Step
Size
(CPU
Cycles)

Simulation
Time (sec)

Simulation
Runtime
(sec)

Simulation
Perfor-
mance
(MHz)

TC1796 Ports Application - No Oversampling for Runtime Analysis
123 0.000003 72000 500 0.24 85.79 0.42
123 0.000007 72000 1000 0.48 87.41 0.82
123 0.000017 72000 2500 1.2 86.43 2.08
123 0.000033 72000 5000 2.4 86.31 4.17
123 0.000067 72000 10000 4.8 86.64 8.31
123 0.000167 72000 25000 12 87.41 20.59
123 0.000333 72000 50000 24 89.12 40.39
123 0.000667 72000 100000 48 101.03 71.27
123 0.001667 36000 250000 60 87.16 103.26
123 0.005000 12000 750000 60 69.18 130.10
123 0.010000 6000 1500000 60 64.78 138.93

Table B.6: Synthetic Performance Values (no Oversampling for Event Detection)
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ASC
Chan-
nels

Step
Size
(sec)

Exchanges Step
Size
(CPU
Cycles)

Simulation
Time (sec)

Simulation
Runtime
(sec)

Simulation
Perfor-
mance
(MHz)

TC1796 ASC0 Application - 10x Oversampling for Runtime Analysis
1 0.000003 72000 500 0.24 100.57 0.36
1 0.000007 72000 1000 0.48 100.94 0.71
1 0.000017 72000 2500 1.2 100.83 1.79
1 0.000033 72000 5000 2.4 102.15 3.52
1 0.000067 72000 10000 4.8 105.62 6.82
1 0.000167 72000 25000 12 113.66 15.84
1 0.000333 72000 50000 24 126.45 28.47
1 0.000667 72000 100000 48 149.93 48.02
1 0.001667 36000 250000 60 111.39 80.80
1 0.005000 12000 750000 60 77.16 116.64
1 0.010000 6000 1500000 60 68.69 131.02
GPIO
Pins

Step
Size
(sec)

Exchanges Step
Size
(CPU
Cycles)

Simulation
Time (sec)

Simulation
Runtime
(sec)

Simulation
Perfor-
mance
(MHz)

TC1796 Ports Application - 10x Oversampling for Runtime Analysis
123 0.000003 72000 500 0.24 577.48 0.06
123 0.000007 72000 1000 0.48 579 0.12
123 0.000017 72000 2500 1.2 578.56 0.31
123 0.000033 72000 5000 2.4 581.86 0.62
123 0.000067 72000 10000 4.8 593.02 1.21
123 0.000167 72000 25000 12 590.31 3.05
123 0.000333 72000 50000 24 601.03 5.99
123 0.000667 72000 100000 48 625.1 11.52
123 0.001667 36000 250000 60 349.27 25.77
123 0.005000 12000 750000 60 157.37 57.19
123 0.010000 6000 1500000 60 109.16 82.45

Table B.7: Synthetic Performance Values (10x Oversampling for Event Detection)
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Appendix C

Listings

C.1 Chapter 8

C.1.1 CHILS-API

1 / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗

3 ∗ DESCRIPTION : DAS Hardware in t h e Loop ( HIL ) i n t e r f a c e f o r d e v i c e s
4 ∗

5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ /
6

7 # ifndef __dhi l_device_h
8 # define __dhi l_device_h
9

10 # include <s t d i o . h>
11

12 # include " das_api . h"
13 # include " das_dad . h"
14

15 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 typedef enum {
17 DHIL_ERR_NO_ERROR = 0 ,
18 DHIL_ERR_WRONG_STATE,
19 DHIL_ERR_DEVICE , / / DHIL moni t o r in d e v i c e not working p r o p e r l y
20 DHIL_ERR_DEVICE_PORT_INDEX_TOO_HIGH,
21 DHIL_ERR_DEVICE_PIN_ALREADY_SETUP ,
22 DHIL_ERR_DEVICE_PIN_NOT_EXISTING ,
23 DHIL_ERR_DEVICE_PIN_NOT_SETUP , / / Pin or whole p o r t not s e t u p
24 DHIL_ERR_DEVICE_ASC_INTERFACE_INDEX_TOO_HIGH,
25 DHIL_ERR_DEVICE_ASC_INTERFACE_ALREADY_SETUP,
26 DHIL_ERR_DEVICE_ASC_INTERFACE_NOT_SETUP ,
27 DHIL_ERR_DEVICE_SSC_INTERFACE_INDEX_TOO_HIGH ,
28 DHIL_ERR_DEVICE_SSC_INTERFACE_ALREADY_SETUP ,
29 DHIL_ERR_DEVICE_SSC_INTERFACE_NOT_SETUP ,
30 DHIL_ERR_DEVICE_ADC_INTERFACE_INDEX_TOO_HIGH,
31 DHIL_ERR_DEVICE_ADC_INTERFACE_ALREADY_SETUP,
32 DHIL_ERR_DEVICE_ADC_INTERFACE_NOT_SETUP,
33 DHIL_ERR_DEVICE_FADC_INTERFACE_INDEX_TOO_HIGH,
34 DHIL_ERR_DEVICE_FADC_INTERFACE_ALREADY_SETUP,
35 DHIL_ERR_DEVICE_FADC_INTERFACE_NOT_SETUP,
36 DHIL_ERR_DEVICE_EXTENSION_REGISTER_INDEX_TO_HIGH ,
37 DHIL_ERR_DEVICE_EXTENSION_REGISTER_ALREADY_SETUP ,
38 DHIL_ERR_DEVICE_EXTENSION_REGISTER_NOT_SETUP ,
39 DHIL_ERR_DAS, / / DAS c o n n e c t i o n t o d e v i c e ( f o r d e t a i l s r e f e r t o l o g f i l e )
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40 DHIL_ERR_DEVICE_START_FAILED ,
41 } eDhi lError ;
42

43 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 typedef enum {
45 CHILS_TRACE_MODE_NONE = 0 ,
46 CHILS_TRACE_MODE_MIN,
47 CHILS_TRACE_MODE_MAX,
48 } CHILSTraceMode ;
49

50 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
51 c l a s s CDhilDevice {
52

53 public :
54

55 / / 1 . Setup
56 v i r t u a l eDhi lError s e t u p I n i t ( ) = 0 ;
57 / / Has t o be c a l l e d f i r s t in s e t u p p h a s e . I t w i l l r e s e t a l l p in / p o r t s e t t i n g s e t c .
58

59 / / Pin d i r e c t i o n i s d e v i c e p o i n t o f view
60 v i r t u a l eDhi lError setupPort In ( unsigned portIndex , unsigned short pinMask ) = 0 ;
61

62 eDhi lError setupPortPinIn ( unsigned portIndex , unsigned pinIndex )
63 {
64 return setupPort In ( portIndex , 1<<pinIndex ) ;
65 }
66

67 v i r t u a l eDhi lError setupPortOut ( unsigned portIndex , unsigned short pinMask ) = 0 ;
68

69 eDhi lError setupPortPinOut ( unsigned portIndex , unsigned pinIndex )
70 {
71 return setupPortOut ( portIndex , 1<<pinIndex ) ;
72 }
73 / / ASC
74 v i r t u a l eDhi lError setupASCIn ( unsigned ascIndex ) = 0 ;
75 v i r t u a l eDhi lError setupASCOut ( unsigned ascIndex ) = 0 ;
76

77 / / SSC
78 v i r t u a l eDhi lError setupSSCIn ( unsigned ascIndex ) = 0 ;
79 v i r t u a l eDhi lError setupSSCOut ( unsigned ascIndex ) = 0 ;
80

81 / / ADC
82 v i r t u a l eDhi lError setupADCIn ( unsigned adcIndex ) = 0 ;
83

84 / / E x t e n s i o n Module
85 / / s l a v e i n p u t r e g i s t e r −> a p p l i c a t i o n r e a d s −> s l a v e w r i t e s
86 v i r t u a l eDhi lError setupExtModuleRegIn ( unsigned index ) = 0 ;
87

88 / / s l a v e ou tp ut r e g i s t e r −> a p p l i c a t i o n w r i t e s −> s l a v e r e a d s
89 v i r t u a l eDhi lError setupExtModuleRegOut ( unsigned index ) = 0 ;
90

91 / / Has t o be c a l l e d l a s t in s e t u p p h a s e . I t w i l l exchange CHILS s e t t i n g s with t a r g e t
92 v i r t u a l eDhi lError setupDevice ( unsigned long systemRunCycles ) = 0 ;
93

94 / / f u n c t i o n a l i t y l i k e s e t u p D e v i c e ( . . . ) , but no moni to r / program r e l o a d
95 v i r t u a l eDhi lError changeDeviceSetup ( unsigned long systemRunCycles ) = 0 ;
96

97 / / method t o change r u n c y c l e s w h i l e d e v i c e i s running
98 v i r t u a l eDhi lError changeSystemRunCycles ( unsigned long systemRunCycles ) = 0 ;
99

100 / / method t o s e t e v e n t d e t e c t i o n s t a t u s ( i n i t i a l e a c t i v a t e d )
101 v i r t u a l eDhi lError se tEventDetec t ion ( bool a c t i v e ) = 0 ;
102

103 / / 2 . O p e r a t i o n
104 v i r t u a l eDhi lError exchangeWithDevice ( ) = 0 ;
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105

106 / / r e s e t ( mon i t o r + u s e r program r e s e t )
107 v i r t u a l eDhi lError r e s e t ( ) = 0 ;
108

109 / / r e s t a r t ( r e s e t + r e l o a d moni to r and u s e r program )
110 v i r t u a l eDhi lError r e s t a r t ( ) = 0 ;
111

112 / / P o r t s
113 v i r t u a l eDhi lError se tPor t InValue ( unsigned portIndex ,
114 unsigned value ) = 0 ;
115 v i r t u a l eDhi lError setPortPinInValue ( unsigned portIndex ,
116 unsigned pinIndex , bool value ) = 0 ;
117

118 / / Get p o r t / pin v a l u e s from d e v i c e .
119 / / Return t r u e i f v a l u e has changed
120 v i r t u a l eDhi lError getPortOutValue ( unsigned portIndex ,
121 unsigned ∗ value , bool ∗valueChanged ) = 0 ;
122 v i r t u a l eDhi lError getPortPinOutValue ( unsigned portIndex ,
123 unsigned pinIndex , bool ∗ value ,
124 bool ∗valueChanged ) = 0 ;
125

126 / / ASC
127 v i r t u a l eDhi lError getASCOutValue ( unsigned ascIndex ,
128 char ∗ value , bool ∗ valueTransmitted ) = 0 ;
129

130 v i r t u a l eDhi lError setASCInValue ( unsigned ascIndex ,
131 char ∗ value , bool ∗ valueReceived ) = 0 ;
132

133 / / SSC
134 v i r t u a l eDhi lError getSSCOutValue ( unsigned sscIndex ,
135 char ∗ value , bool ∗ valueTransmitted ) = 0 ;
136

137 v i r t u a l eDhi lError setSSCInValue ( unsigned sscIndex ,
138 char ∗ value , bool ∗ valueReceived ) = 0 ;
139

140 / / ADC
141 v i r t u a l eDhi lError setADCInValue ( unsigned adcIndex , double ∗ value ) = 0 ;
142

143 / / Get e x t e n s i o n module v a l u e s from d e v i c e . Return t r u e i f v a l u e has changed
144 v i r t u a l eDhi lError getExtModuleRegOutValue ( unsigned index ,
145 unsigned ∗ value , bool ∗valueChanged ) = 0 ;
146

147 / / S e t e x t e n s i o n module v a l u e s t o d e v i c e . Return t r u e i f v a l u e has changed
148 v i r t u a l eDhi lError setExtModuleRegInValue ( unsigned index , unsigned ∗ value ) = 0 ;
149

150 / / Event D e t e c t i o n
151 v i r t u a l unsigned i n t getDetectedEvents ( ) = 0 ;
152

153 v i r t u a l unsigned i n t getLostEvents ( ) = 0 ;
154

155 / / s e t a p p l i c a t i o n s t a r t a d d r e s s
156 v i r t u a l void setApplStartAddress ( unsigned i n t startAddr ) = 0 ;
157

158 v i r t u a l void e x i t ( ) = 0 ;
159 } ;
160

161 extern c l a s s CDhilDevice ∗ dhi lCreateDevice ( unsigned long deviceClassId ,
162 FILE ∗ l o g F i l e ,
163 unsigned deviceInstanceIndex = 0 ,
164 const char ∗ serverHostAddress = 0 ) ;
165

166 / ∗ The s t a n d a r d way t o use t h e DAS API , i s t o d e f i n e a g l o b a l p o i n t e r d h i l d e v i c e ,
167 ∗ and i n i t i a l i z e i t wi th d h i l C r e a t e D e v i c e ( )
168 ∗ /
169 extern CDhilDevice ∗ dhi ldev ice ;
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170

171

172 # endif / / _ _ d h i l _ d e v i c e _ h

Listing C.1: DLL Header File

C.2 Chapter 10

C.2.1 MATLAB R©/Simulink R© s-function

1 # include " d a s _ i f x _ d e v i c e s _ i n f o . h"
2 # include " dhi l_device . h"
3 # include <s t d i o . h>
4 # include <a s s e r t . h>
5 # include <iostream >
6

7 # i f d e f __cplusplus
8 extern "C" { / / use t h e C fcn− c a l l s t a n d a r d f o r a l l f u n c t i o n s
9 # endif / / d e f i n e d w i t h i n t h i s s c o p e

10

11 # define S_FUNCTION_NAME sfun_tc1796
12 # define S_FUNCTION_LEVEL 2
13

14 # include " s imstruc . h"
15 # include <a s s e r t . h>
16

17 / ∗=========∗
18 ∗ D e f i n e s ∗
19 ∗========= ∗ /
20

21 # define TRUE 1
22 # define FALSE 0
23

24 # define PORTINPUTS 10
25 # define PORTOUTPUTS 10
26

27 # define ASCINPUTS 1
28 # define ASCOUTPUTS 1
29

30 # define ADCINPUTS 3
31

32 # define NINPUTS PORTINPUTS + ASCINPUTS + ADCINPUTS
33 # define NOUTPUTS PORTOUTPUTS + ASCOUTPUTS
34

35 # define NKPARAMS NINPUTS+NOUTPUTS
36

37 / / Por t p in masks f o r TC1796
38 const unsigned short CHILSPortPinInMaskTC1796 [ 1 6 ] =
39 { 0xFFFF , 0xFFFF , 0xFFFC , 0xFFFF , 0xFFFF , 0x00FF ,
40 0xFFF0 , 0x00FF , 0x00FF , 0x01FF , 0 , 0 , 0 , 0 , 0 , 0 } ;
41 const unsigned short CHILSPortPinOutMaskTC1796 [ 1 6 ] =
42 { 0xFFFF , 0xFFFF , 0xFFFC , 0xFFFF , 0xFFFF , 0x00FF ,
43 0xFFF0 , 0x00FF , 0x00FF , 0x01FF , 0 , 0 , 0 , 0 , 0 , 0 } ;
44

45 / / DHIL d e v i c e c o n f i g u r a t i o n s i n g l e a s c i n t e r f a c e s t r u c t
46

47 s t r u c t c h i l s _ a s c _ i n t e r f a c e {
48 unsigned char ascIndex ;
49 } ;
50

51 s t r u c t ch i l s_adc_pin {
52 unsigned char adcIndex ;
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53 } ;
54

55 s t r u c t c h i l s _ p o r t P i n {
56 unsigned short portIndex ;
57 unsigned short pinIndex ;
58 } ;
59

60 s t r u c t c h i l s _ p o r t {
61 unsigned short portIndex ;
62 unsigned short mask ;
63 unsigned short pins ;
64 } ;
65

66 const unsigned CHILS_MAX_PORT_PINS = 2 5 6 ;
67 const unsigned CHILS_MAX_PORTS = 1 6 ;
68 const unsigned CHILS_MAX_ASC_INTERFACES = 4 ;
69 const unsigned CHILS_MAX_ADC_PINS = 4 4 ;
70 const unsigned CHILS_MAX_PORT_SIZE = 1 6 ;
71

72 unsigned mChilsMaxPortPinIn = 0 ;
73 unsigned mChilsMaxPortPinOut = 0 ;
74 unsigned mChilsMaxPortIn = 0 ;
75 unsigned mChilsMaxPortOut = 0 ;
76 unsigned mChilsMaxASCIn = 0 ;
77 unsigned mChilsMaxASCOut = 0 ;
78

79 unsigned mChilsMaxADCIn = 0 ;
80 double systemFrequency = 150 .0 E6 ;
81

82 FILE ∗ l o g F i l e ;
83

84 / ∗=========∗
85 ∗ G l o b a l s ∗
86 ∗========= ∗ /
87

88 unsigned short pXo [NOUTPUTS] ;
89 unsigned short pXi [NINPUTS ] ;
90

91 c h i l s _ p o r t P i n mChilsPortPinIn [CHILS_MAX_PORT_PINS ] ;
92 c h i l s _ p o r t P i n mChilsPortPinOut [CHILS_MAX_PORT_PINS ] ;
93

94 c h i l s _ p o r t mChilsPortIn [CHILS_MAX_PORTS ] ;
95 c h i l s _ p o r t mChilsPortOut [CHILS_MAX_PORTS ] ;
96

97 c h i l s _ a s c _ i n t e r f a c e mChilsASCIn [CHILS_MAX_ASC_INTERFACES ] ;
98 c h i l s _ a s c _ i n t e r f a c e mChilsASCOut [CHILS_MAX_ASC_INTERFACES ] ;
99

100 ch i l s_adc_pin mChilsADCIn [CHILS_MAX_ADC_PINS ] ;
101

102 . . .
103

104 CDhilDevice ∗dev ;
105

106 / ∗====================∗
107 ∗ S− f u n c t i o n methods ∗
108 ∗==================== ∗ /
109

110 . . .
111

112 # define MDL_START / ∗ Change t o # unde f t o remove f u n c t i o n ∗ /
113 # i f defined (MDL_START)
114 / ∗ Func t i on : m d l S t a r t =======================================================
115 ∗ A b s t r a c t :
116 ∗ Thi s f u n c t i o n i s c a l l e d once a t s t a r t o f model e x e c u t i o n . I f you
117 ∗ have s t a t e s t h a t s h o u l d be i n i t i a l i z e d once , t h i s i s t h e p l a c e
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118 ∗ t o do i t .
119 ∗ /
120 s t a t i c void mdlStart ( SimStruct ∗S )
121 {
122 i n t i = 0 ;
123 unsigned e r r o r = 0 ;
124

125 l o g F i l e = fopen ( " l o g f i l e 1 7 9 6 . t x t " , "w" ) ;
126

127 i f ( dev==0){
128 dev = dhi lCreateDevice ( DAS_DID0_IFX_JTAG_TC1796ED_BC , l o g F i l e ) ;
129 a s s e r t ( dev != 0 ) ;
130 }
131

132 i f ( dev ! = 0 ) {
133 f p r i n t f ( l o g F i l e , "CHILS�STATUS : �CHILS� device � crea ted \ n" ) ;
134 f f l u s h ( l o g F i l e ) ;
135 } e lse {
136 f p r i n t f ( l o g F i l e , "CHILS�ERROR: �CHILS� device � c r e a t i o n � f a i l e d \ n" ) ;
137 f f l u s h ( l o g F i l e ) ;
138

139 }
140 / / Setup i n i t
141 e r r o r |= dev−>s e t u p I n i t ( ) ;
142

143 / / Setup in p o r t
144 for ( i = 0 ; i < mChilsMaxPortPinIn ; i ++){
145 e r r o r |= dev−>setupPortPinIn ( mChilsPortPinIn [ i ] . portIndex ,
146 mChilsPortPinIn [ i ] . pinIndex ) ;
147 }
148 / / Setup out p o r t
149 for ( i = 0 ; i < mChilsMaxPortPinOut ; i ++){
150 e r r o r |= dev−>setupPortPinOut ( mChilsPortPinOut [ i ] . portIndex ,
151 mChilsPortPinOut [ i ] . pinIndex ) ;
152 }
153

154 for ( i = 0 ; i < mChilsMaxASCIn ; i ++){
155 e r r o r |= dev−>setupASCIn ( mChilsASCIn [ i ] . ascIndex ) ;
156 }
157

158 for ( i = 0 ; i < mChilsMaxADCIn ; i ++){
159 e r r o r |= dev−>setupADCIn ( mChilsADCIn [ i ] . adcIndex ) ;
160 }
161 for ( i = 0 ; i < mChilsMaxASCOut ; i ++){
162 e r r o r |= dev−>setupASCOut ( mChilsASCOut [ i ] . ascIndex ) ;
163 }
164

165 double c h i l s P e r i o d = ssGetSampleTime ( S , 0 ) ;
166 unsigned systemRunCycles =
167 ( unsigned ) ( systemFrequency ∗ c h i l s P e r i o d ) ;
168

169 / / Setup d e v i c e
170 e r r o r |= dev−>setupDevice ( systemRunCycles ) ;
171 a s s e r t ( e r r o r == 0 ) ;
172

173 / / i n i t v a l u e s
174 for ( i = 0 ; i < mChilsMaxPortPinIn ; i ++)
175 {
176 e r r o r |= dev−>se tPortPinInValue ( mChilsPortPinIn [ i ] . portIndex ,
177 mChilsPortPinIn [ i ] . pinIndex , 0 ) ;
178 }
179

180 e r r o r |= dev−>exchangeWithDevice ( ) ;
181 }
182 # endif / ∗ MDL_START ∗ /
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183

184

185

186 / ∗ Func t i on : mdlOutputs ==============================================
187 ∗ A b s t r a c t :
188 ∗ In t h i s f u n c t i o n , you compute t h e o u t p u t s o f your S− f u n c t i o n
189 ∗ b l o c k . G e n e r a l l y o u t p u t s a r e p l a c e d in t h e ou tp ut v e c t o r ,
190 ∗ ssGetY ( S ) .
191 ∗ /
192 s t a t i c void mdlOutputs ( SimStruct ∗S , int_T t i d )
193 {
194 unsigned e r r o r = 0 ;
195 i n t i = 0 ;
196 i n t j = 0 ;
197 i n t c = 0 ;
198 bool valueInOut = 0 ;
199 bool valueChanged = 0 ;
200 bool valueTransmitted = 0 ;
201 bool valueReceived = 0 ;
202 char valueASCOut ;
203

204 / / s e t i n p u t v a l u e s
205 for ( i = 0 ; i < mChilsMaxPortIn ; i ++){
206 InputBooleanPtrsType uPtr =
207 ( InputBooleanPtrsType ) s s G e t I n p u t P o r t S i g n a l P t r s ( S , i ) ;
208 for ( j = 0 ; j < mChilsPortIn [ i ] . pins ; j ++){
209 bool b = ( ∗ uPtr [ j ] != 0 ) ;
210 e r r o r |= dev−>se tPortPinInValue ( mChilsPortPinIn [ c ] . portIndex ,
211 mChilsPortPinIn [ c ] . pinIndex , b ) ;
212 c++;
213 }
214 }
215 c = 0 ;
216 for ( i = mChilsMaxPortIn ; i < mChilsMaxASCIn + mChilsMaxPortIn ; i ++){
217 InputUInt8PtrsType uPtr =
218 ( InputUInt8PtrsType ) s s G e t I n p u t P o r t S i g n a l P t r s ( S , i ) ;
219 e r r o r |= dev−>setASCInValue ( mChilsASCIn [ c ] . ascIndex ,
220 ( char ∗ ) uPtr [ 0 ] , &valueReceived ) ;
221 c++;
222 }
223

224 c = 0 ;
225 for ( i = mChilsMaxASCIn + mChilsMaxPortIn ;
226 i < mChilsMaxASCIn + mChilsMaxPortIn + mChilsMaxADCIn ; i ++){
227 InputRealPtrsType uPtr =
228 ( InputRealPtrsType ) s s G e t I n p u t P o r t S i g n a l P t r s ( S , i ) ;
229 e r r o r |= dev−>setADCInValue ( mChilsADCIn [ c ] . adcIndex ,
230 ( double ∗ ) uPtr [ 0 ] ) ;
231 c++;
232 }
233

234 double c h i l s P e r i o d = ssGetSampleTime ( S , 0 ) ;
235 unsigned systemRunCycles = ( unsigned ) ( systemFrequency ∗ c h i l s P e r i o d ) ;
236 / / change run c y c l e s
237 e r r o r |= dev−>changeSystemRunCycles ( systemRunCycles ) ;
238 e r r o r |= dev−>exchangeWithDevice ( ) ;
239 a s s e r t ( e r r o r ==0);
240

241 / / g e t ou tp ut v a l u e s
242 c = 0 ;
243 for ( i = 0 ; i < mChilsMaxPortOut ; i ++){
244 boolean_T ∗pY = ( boolean_T ∗ ) ssGetOutputPortSignal ( S , i ) ;
245 for ( j = 0 ; j < mChilsPortOut [ i ] . pins ; j ++){
246 e r r o r |= dev−>getPortPinOutValue ( mChilsPortPinOut [ c ] . portIndex ,
247 mChilsPortPinOut [ c ] . pinIndex , &valueInOut , &valueChanged ) ;
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248 pY[ j ] = valueInOut ;
249 c++;
250 }
251 }
252

253 for ( i = mChilsMaxPortOut ; i < mChilsMaxASCOut + mChilsMaxPortOut ; i ++){
254 uint8_T ∗pY = ( uint8_T ∗ ) ssGetOutputPortSignal ( S , i ) ;
255 / / XXX t e s t c o d e !
256 e r r o r |= dev−>getASCOutValue ( mChilsASCOut [ c ] . ascIndex ,&valueASCOut ,
257 &valueTransmitted ) ;
258 c++;
259 pY [ 0 ] = ( uint8_T ) valueASCOut ;
260 }
261 }
262 . . .
263

264 / ∗=============================∗
265 ∗ R e q u i r e d S− f u n c t i o n t r a i l e r ∗
266 ∗============================= ∗ /
267

268 # i f d e f MATLAB_MEX_FILE / ∗ I s t h i s f i l e b e i n g c o m p i l e d as a MEX− f i l e ? ∗ /
269 # include " simulink . c " / ∗ MEX− f i l e i n t e r f a c e mechanism ∗ /
270 # else
271 # include " cg_sfun . h" / ∗ Code g e n e r a t i o n r e g i s t r a t i o n f u n c t i o n ∗ /
272 # endif
273 # i f d e f __cplusplus
274 } / / end o f e x t e r n "C" s c o p e
275 # endif

Listing C.2: MATLAB/Simulink 1796ED s-Function

C.2.2 SystemC

1 # include " chi ls_sc_module . h"
2 # include " d a s _ i f x _ d e v i c e s _ i n f o . h"
3 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 chils_module : : chils_module ( sc_module_name name ,
5 unsigned long ch i l sDeviceClass Id ,
6 FILE ∗ c h i l s L o g F i l e )
7 : sc_module (name)
8 {
9 mChilsMaxPortPinIn = mChilsMaxPortPinOut = 0 ;

10 mChilsPeriod = 0 ;
11 mChilsMyDeviceInstanceIndex = mChilsMaxDeviceInstanceIndex ;
12 mChilsMaxDeviceInstanceIndex ++;
13

14 mDhilDevice = dhi lCreateDevice ( ch i l sDeviceClass Id , c h i l s L o g F i l e ) ;
15

16 s c _ a s s e r t ( mDhilDevice != NULL) ;
17 eDhi lError d h i l E r r = mDhilDevice−>s e t u p I n i t ( ) ;
18 s c _ a s s e r t ( d h i l E r r == DHIL_ERR_NO_ERROR ) ;
19 SC_THREAD( chils_exchangeWithDeviceScThread ) ;
20 }
21 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 chils_module : : ~ chils_module ( )
23 {
24 mDhilDevice−>e x i t ( ) ;
25 }
26 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 void chils_module : : chils_exchangeWithDeviceScThread ( )
28 {
29 s c _ a s s e r t ( mChilsPeriod != 0 ) ;
30 eDhi lError d h i l E r r ;
31 unsigned i ;
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32 while ( t rue ) {
33 wait ( mChilsPeriod , mChilsTimeUnit ) ;
34 / / low a c t i v e r e s e t
35 i f ( ( scResetPin−>read () )== f a l s e ) {
36 d h i l E r r = mDhilDevice−>r e s e t ( ) ;
37 }
38 for ( i = 0 ; i < mChilsMaxPortPinIn ; i ++) {
39 d h i l E r r = mDhilDevice−>se tPortPinInValue (
40 mChilsPortPinIn [ i ] . portIndex ,
41 mChilsPortPinIn [ i ] . pinIndex ,
42 mChilsPortPinIn [ i ] . scPinIn−>read ( ) ) ;
43 s c _ a s s e r t ( d h i l E r r == DHIL_ERR_NO_ERROR ) ;
44 }
45

46 d h i l E r r = mDhilDevice−>exchangeWithDevice ( ) ;
47 s c _ a s s e r t ( d h i l E r r == DHIL_ERR_NO_ERROR ) ;
48

49 for ( i = 0 ; i < mChilsMaxPortPinOut ; i ++) {
50 bool value , valueChanged ;
51 d h i l E r r = mDhilDevice−>getPortPinOutValue (
52 mChilsPortPinOut [ i ] . portIndex ,
53 mChilsPortPinOut [ i ] . pinIndex ,
54 &value , &valueChanged ) ;
55 s c _ a s s e r t ( d h i l E r r == DHIL_ERR_NO_ERROR ) ;
56 i f ( valueChanged ) {
57 mChilsPortPinOut [ i ] . scPinOut−>write ( value ) ;
58 }
59 }
60 }
61 }
62 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63 void chils_module : : ch i l s_se tupDevice (
64 double cpuFrequency ,
65 double c h i l s P e r i o d ,
66 sc_ t ime_uni t chi lsTimeUnit )
67 {
68 mChilsPeriod = c h i l s P e r i o d ;
69 mChilsTimeUnit = chi lsTimeUnit ;
70

71 sc_t ime scPer iod ( c h i l s P e r i o d , chi lsTimeUnit ) ;
72

73 for ( i n t i =0; i <mChilsMaxPortPinIn ; i ++){
74 mDhilDevice−>setupPortPinIn (
75 mChilsPortPinIn [ i ] . portIndex ,
76 mChilsPortPinIn [ i ] . pinIndex ) ;
77 }
78

79 for ( i n t i =0; i <mChilsMaxPortPinOut ; i ++){
80 mDhilDevice−>setupPortPinOut (
81 mChilsPortPinOut [ i ] . portIndex ,
82 mChilsPortPinOut [ i ] . pinIndex ) ;
83 }
84

85 unsigned systemRunCycles =
86 ( unsigned ) ( cpuFrequency ∗ scPer iod . to_seconds ( ) ) ;
87

88 eDhi lError d h i l E r r =
89 mDhilDevice−>setupDevice ( systemRunCycles ) ;
90 s c _ a s s e r t ( d h i l E r r == DHIL_ERR_NO_ERROR ) ;
91 }
92 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 void chils_module : : c h i l s _ s e t u p P o r t P i n (
94 sc_in <bool>& pinIn ,
95 unsigned portIndex ,
96 unsigned pinIndex )
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97 {
98 unsigned i = mChilsMaxPortPinIn++;
99 s c _ a s s e r t ( mChilsMaxPortPinIn < CHILS_MAX_PORT_PINS ) ;

100

101 mChilsPortPinIn [ i ] . portIndex = portIndex ;
102 mChilsPortPinIn [ i ] . pinIndex = pinIndex ;
103 mChilsPortPinIn [ i ] . scPinIn = &pinIn ;
104 }
105 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 void chils_module : : c h i l s _ s e t u p P o r t P i n (
107 sc_out <bool>& pinOut ,
108 unsigned portIndex ,
109 unsigned pinIndex )
110 {
111 unsigned i = mChilsMaxPortPinOut++;
112 s c _ a s s e r t ( mChilsMaxPortPinOut < CHILS_MAX_PORT_PINS ) ;
113 mChilsPortPinOut [ i ] . portIndex = portIndex ;
114 mChilsPortPinOut [ i ] . pinIndex = pinIndex ;
115 mChilsPortPinOut [ i ] . scPinOut = &pinOut ;
116 }
117 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
118 void chils_module : : c h i l s _ s e t u p R e s e t P i n ( sc_in <bool>& pinIn )
119 {
120 scResetPin = &pinIn ;
121 }
122 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123 void chils_module : : c h i l s _ t r a c e ( s c _ t r a c e _ f i l e ∗ t r f )
124 {
125 unsigned i ;
126 for ( i = 0 ; i < mChilsMaxPortPinIn ; i ++) {
127 mChilsPortPinIn [ i ] . scPinIn−>add_trace ( t r f
128 , mChilsPortPinIn [ i ] . scPinIn−>name ( ) ) ;
129 }
130 for ( i = 0 ; i < mChilsMaxPortPinOut ; i ++) {
131 mChilsPortPinOut [ i ] . scPinOut−>add_trace ( t r f
132 , mChilsPortPinOut [ i ] . scPinOut−>name ( ) ) ;
133 }
134 scResetPin−>add_trace ( t r f , scResetPin−>name ( ) ) ;
135 }

Listing C.3: SystemC CHILS Generic Wrapper

1 / ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗

3 ∗ C o p y r i g h t ( c ) 2007 , I n f i n e o n T e c h n o l o g i e s AG
4 ∗ I n f i n e o n C o n f i d e n t i a l P r o p r i e t a r y
5 ∗

6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 ∗ MODULE:
8 ∗ $Id : c h i l s _ s c _ t c 1 7 9 6 _ p 0 . h , v 1 . 2 2 0 0 8 / 0 1 / 1 1 1 3 : 4 1 : 2 8 k o e h l e r c Exp $
9 ∗

10 ∗ VERSION :
11 ∗ $ R e v i s i o n : 1 . 2 $
12 ∗

13 ∗ $Date : 2 0 0 8 / 0 1 / 1 1 1 3 : 4 1 : 2 8 $
14 ∗

15 ∗ $Author : k o e h l e r c $
16 ∗

17 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

18 ∗ DESCRIPTION :
19 ∗

20 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ /
21

22 # ifndef __ch i l s_sc_ tc1796_p0_h
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23 # define __ch i l s_sc_ tc1796_p0_h
24

25 # include " chi ls_sc_module . h"
26

27 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 const unsigned IFX_JTAG_ID_TC1796ED_BC = 0 x100E2083 ;
29 / / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 / / TC1796 CHILS model j u s t wi th p o r t 0
31 c l a s s tc1796_p0 : public chils_module {
32

33 public :
34

35 sc_in <bool> r e s e t _ n _ i ;
36

37 sc_in <bool> p0p0_i ;
38 sc_in <bool> p0p1_i ;
39

40 sc_out <bool> p0p2_o ;
41 sc_out <bool> p0p3_o ;
42 sc_out <bool> p0p4_o ;
43

44 tc1796_p0 ( sc_module_name name ,
45 double cpuFrequency ,
46 double c h i l s P e r i o d ,
47 sc_ t ime_uni t chilsTimeUnit ,
48 FILE ∗ c h i l s L o g F i l e )
49

50 : chils_module ( name , IFX_JTAG_ID_TC1796ED_BC , c h i l s L o g F i l e )
51 , p0p0_i ( " tc1796_p0p0_i " )
52 , p0p1_i ( " tc1796_p0p1_i " )
53 , p0p2_o ( " tc1796_p0p2_o " )
54 , p0p3_o ( " tc1796_p0p3_o " )
55 , p0p4_o ( " tc1796_p0p4_o " )
56 {
57 c h i l s _ s e t u p P o r t P i n ( p0p0_i , 0 , 0 ) ;
58 c h i l s _ s e t u p P o r t P i n ( p0p1_i , 0 , 1 ) ;
59 c h i l s _ s e t u p P o r t P i n ( p0p2_o , 0 , 2 ) ;
60 c h i l s _ s e t u p P o r t P i n ( p0p3_o , 0 , 3 ) ;
61 c h i l s _ s e t u p P o r t P i n ( p0p4_o , 0 , 4 ) ;
62 c h i l s _ s e t u p R e s e t P i n ( r e s e t _ n _ i ) ;
63 ch i l s_se tupDevice ( cpuFrequency , c h i l s P e r i o d , chi lsTimeUnit ) ;
64 }
65 void s c _ t r a c e ( s c _ t r a c e _ f i l e ∗ t r f ) { c h i l s _ t r a c e ( t r f ) ; }
66 } ;
67 # endif / / _ _ c h i l s _ s c _ t c 1 7 9 6 _ p 0 _ h

Listing C.4: MATLAB/SystemC 1796ED Module (with Port0 Pins)
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Appendix D

Datasheets

D.1 Chapter 2

Block diagram of the TC1796 µC

D.2 Chapter 5

D.2.1 DeskPODTM Datasheet

D.2.2 dSpace Datasheets

Datasheets for the following dSpace Hardware:

• 3x DS4003 Digital I/O Board

• 1x DS2103 Multi-Channel D/A Board

• 1x DS1006 Processor Board

• 1x DS2211 HIL I/O Board

Simulator Interface 10/100 BaseT Ethernet
Simulation Performance (Engaged
Mode)

5000-10000 cycles per second

Simulation Performance (Disengaged
Mode)

15000-250000 cycles per second

Digital I/O Lines (Bidirectional) 608
Other I/O Lines user specific I/O lines possible (for example

D/A , A/D)

Table D.1: DeskPODTM Hardware Datasheets
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Figure D.1: Block Diagram TC1796
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DS2211 HIL
I/O Board

CAN Bus 2 CAN channels

max. 1Mbaud
Serial Interface single UART (universal asynchronous receiver

and transmitter)
Digital Inputs 16 digital inputs (shared with PWM inputs)

24 PWM measurment inputs
Digital Outputs 16 digital ouputs (shared with PWM ouputs)

9 PWM outputs
D/A Channels 20 channels

0-10V output voltage
12Bit resolution
0,020ms settling time
+/- 0,5% gain error (of FSR)
+/- 5mV offset error

A/D Channels 16 channels
14 Bit resolution
0,0011ms conversion time
+/- 0,5% gain error
+/- 10mV offset error
0-60V input voltage

DS2103
Multi-
Channel
D/A Board

D/A Channels 32 parallel D/A channels

14-bit resolution
+/- 5 V or +/-10 V ouput voltage range
0,010 ms settling time
+/- 1mV offset error
+/- 0,2% gain error (of FSR)
+/- 1 LSB Differential linearity error

DS2211 HIL
I/O Board

Digital I/O 96 bidirectional digital I/O lines arranged in three
ports

PHS Bus Transfer Rate 20 Mbyte/s
Master 1
Clients 16
Bit Width 32

Table D.2: dSPACE HW datasheets
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Glossary

A

Absolute Accuracy Error The absolute accuracy or total error of an ADC is the max-
imum value of the difference between an analogue value and the ideal midstep
value. It includes offset, gain, integral linearity errors and also the quantization
error in the case of an ADC. 72

ACSL The Advanced Continuous Simulation Language (ACSL) is a computer
language designed for modelling continuous systems described by time-
dependent, nonlinear differential equations. 18, 207

ALU An Arithmetic Logic Unit (ALU) is a digital circuit performing arithmetic and
logical operations. One or more ALUs are central blocks of the central processing
unit (CPU) of a microprocessor or microcontroller. 22, 136, 207

AUTOSAR AUTOSAR (Automotive Open System Architecture) is an open and stan-
dardized automotive software architecture, jointly developed by automobile
manufacturers, suppliers and tool developers [AUT]. The partnership of au-
tomotive OEMs, suppliers and tool vendors aims to create and establish open
standards for automotive electrics and electronics architectures for all applica-
tion domains. 160

C

CFG A Control Flow Graph (CFG) represents all paths that might be traversed
through a programme during its execution as a directed graph. Each node
of a CFG is called a basic block. A basic block is piece of code without any
control flow instructions. The edges of the graph represent the control flow of
the programme. 80, 84–87, 91, 207

CHILS Chip-Hardware-in-the-Loop Simulation (CHILS) is a technique that is used
in the development and test of complex embedded systems which are build
of a existing microcontrollers. The CHILS approach has been developed as
part of this thesis. The current CHILS implementation embeds a high-end
Infineon TriCore R© microcontroller into different simulation environments like
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MATLAB/Simulink R© and SystemC as a replacement for a model of the micro-
controller. 2, 3, 10, 12, 13, 16, 17, 19, 24, 37–42, 44–46, 52–56, 61, 70, 75–77,
100, 101, 107, 111, 114–121, 123, 125, 126, 128, 129, 132, 134, 136, 137, 143, 144,
147–149, 152, 154, 155, 158–161, 207

Conversion Rate The conversion rate is maximum number of conversion per second
which an ADC can achieve. 72

CSSC The CHILS Step Size Calculator (CSSC) is a tool of the developed CHILS
framework whose objective it is to find valid and suitable step sizes for the data
exchange between hardware and simulation. 125, 207

Cycle Accurate Cycle Accurate models set the level of abstraction to the simulation
of single cycles. They are often programmed as proprietary “C models”. 5

D

DAS The Infineon Device Access Server (DAS) provides an abstraction of the physical
(debugger) interface of chip for debugging, tracing, calibration and measure-
ment applications. During operation the physical connection (for example JTAG
for real device or directly for C-models) is fully transparent to the tool. The tool
interface is on software level (DAS API) and implemented in a generic DLL
[DAS07]. 116, 123, 128, 148, 207

DESCOMP The basic idea of Design Exploration by Compilation (DESCOMP) ap-
proach is the usage of an compiler to generate an optimized processor architec-
ture for a set of predefined algorithms. The DESCOMP approach is described
in the PhD thesis of Mario Schölzel [Sch06a]. 86

DFG A Data Flow Graph (DFG) is a representation of a programme which describes
the data dependencies of program instructions as a directed graph. Each node
represents an instruction while the edges are data dependencies between in-
structions. 80, 84–88, 91, 92, 208

Differential Linearity The differential nonlinearity error (sometimes seen as simply
differential linearity) is the difference between an actual step width (for an ADC)
or step height (for a DAC) and the ideal value of one LSB. Therefore if the step
width or height is exactly one LSB, then the differential nonlinearity error is
zero. 72

E

ECU Electronic Control Unit (ECU) is an embedded system that controls one or more
electrical systems or subsystems in a motor vehicle. 1, 14–16, 18, 22, 61, 74, 133,
208
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F

FS The Full Scalle (FS) defines the upper limit of convertible values of an ADC. 72,
208

FSR The Full Scale Range (FSR) defines the range of analogue values that can be
generated or measured. 72, 208

G

Gain Error The gain error is defined as the difference between the nominal and the
actual gain points on the transfer function after the offset error has been corrected
to zero. For an ADC, the gain point is the midstep value when the digital output
is full scale, and for a DAC it is the step value when the digital input is full scale.
72

H

HIL Hardware-in-the-loop (HIL) simulation is a technique that is used in the de-
velopment and test of complex embedded systems. In a HIL simulation the
represented system consists of the simulated part and a real part, the “hardware-
in-the-loop.” The real hardware interacts with the simulation. 2, 14–20, 22–24,
59–61, 67, 68, 70, 71, 76, 77, 116, 121, 123, 132–134, 158, 160, 161, 208

I

Instruction Accurate Instruction Accurate models focus on the accurate simulation
of the functional behaviour of the source code execution of µC. Timing aspects
are mostly ignored. 5

Integral Linearity The integral nonlinearity error (sometimes seen as simply linearity
error) is the deviation of the values on the actual transfer function from a straight
line. For an ADC the deviations are measured at the transitions from one step
to the next, and for the DAC they are measured at each step. 72

ISS An instruction set simulator (ISS) is a simulation model which mimics the be-
haviour of a processor by “reading” instructions and maintaining internal vari-
ables which represent the processor’s registers. 5, 16, 21, 129, 130, 136, 208

K

kNN The k-NN is a method for classifying objects based on closest training examples
in the feature space. It is a type of instance-based learning. 80, 90, 208

L
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LSB For ADC the width of one conversion step is defined as one LSB (one least sig-
nificant bit), 1LSB = FS

2n−1 . For a DAC, one LSB corresponds to the height of a step
between successive analogue outputs. The LSB is a measure of the resolution
of the converter since it defines the number of units of the full analogue range.
72, 202, 208

LTI A Linear Time Invariant (LTI) system is signal processing systems that fulfills
the linearity principle (the relationship between the input and the output of the
system is a linear map) and that is independent from time (the output does not
depend on the particular time the input is applied). The primarily mathematical
representations of LTI are linear differential equations. 60, 62, 63, 67, 74, 75, 95,
96, 98, 100, 105, 123, 159

M

MCD Multi-Core Debug (MCD) API is a generic debug and analysis interface devel-
oped as part of the Open SoC Design Platform for Reuse and Integration of IPs
(SPRINT) Project [SPR]. The MCD API is a C-interface providing the necessary
means in order to perform efficient application debugging for multi-core SoCs.
123, 161, 208

MCDS The Infineon Multi Core Debug System (MCDS) is a configurable and scalable
trigger, trace qualification, and trace compression logic block. The MCDS can
record the trace of one or several cores in parallel with scalable time-stamping,
conserving the order down to cycle level. This allows accurate tracing of con-
currency related bugs, including shared variable-access problems for the devel-
oper’s viewing. The MCDS is part of the emulation extension which consists
also of a large RAM for overlay and tracing. 115, 118, 208

MIL Model-in-the-Loop (MIL) or System-Simulation has the target to map a real
or a to-be-built system into a simulation. The system is mapped to a repre-
sentation in form of equations (continuous simulation) or event sources (event
driven simulation). All components of the simulation are executed as simulation
models (the object of control and the control) on a developing system. Often
Co-Simulation techniques are used to simulate complete system by coupling
different simulation environments. 20, 21, 23, 209

MIMO Multiple Input Multiple Output (MIMO) refers in in control engineering a
complex control system with more than one input and/or more than one output.
64, 66, 77, 96, 158

O

Offset Error The offset error is defined as the difference between the nominal and
actual offset points. For an ADC, the offset point is the midstep value when the
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digital output is zero, and for a DAC it is the step value then the digital input is
zero. 72

P

PGA Programme Graph Analysis (PGA) is command line tool for the numerical
analysis of algorithms written in a C dialect called C−−. The tool has been
developed as part of this thesis. 123, 124, 209

Phase-Locked Loop A phase-locked loop (PLL) is a signal generating system that
generates a signal that has a fixed relation to the phase of a reference signal.
PLL are often used to clock timing pulses in digital logic circuits. 73, 74, 76

PID A Proportional–Integral–Derivative (PID) controller is a control loop feedback
mechanism involving three separate parameters: the proportional value, the
integral value and derivative value. The proportional value defines the reaction
to the current error between control variable and measuring variable, the integral
value defines the reaction based on the sum of recent errors, and the derivative
value determines the reaction based on the error change rate. 100, 101, 103,
112–114, 143, 209

PIL Processor-in-the-Loop (PIL) simulation is special kind of a HIL or a SIL sim-
ulation for complex embedded systems which consist of a plant part and a
controller part. The control algorithm interacts with the model of the plant. It
can be executed either on the real Microcontroller (µC) or on an Instruction Set
Simulator (ISS). In difference to the CHILS approach, PIL does not cover the
peripherals of a µC. 16, 19, 20, 30, 119, 134, 135, 137, 144, 209

R

RCP Rapid Control Prototyping (RCP) is a methodology especially for control ap-
plications. The real vehicle is controlled by a model of the software which can
be rapidly adapted and optimized. The method combines and integrates older
methods, for example the V-model, to reduce their disadvantages. 22, 120, 128,
159, 161, 209

Realtime Simulation It is called realtime simulation if the simulated time and the
runtime of the simulation are identical. 11

Register Transfer Level The Register Transfer Level (RTL) is the currently used level
of integrated circuit (IC) design, before the mapping to the physical domain (IC
layout, routing and so on) is done. Description languages like VHDL or Verilog
are used for the digital design. IC descriptions down to gate level are possible.
22, 40
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S

Settling Time The settling time is the maximal time which a DAC needs to reach an
output value of a defined accuracy after the digital input value changed. 72

SIL Software-in-the-Loop (SIL) simulation is a technique that is used in the develop-
ment and test of complex embedded systems which consist of a plant part and
a controller part. Instead of a model of the (control) software is the real control
algorithm is used. The control algorithm interacts with the model of the plant.
16, 20, 21, 209

Simulated Time See Simulation Time. 11

Simulation Runtime The runtime of the simulation is the time which is consumed
be the simulation from an external observer point of view. 11

Simulation Time The state change of a model during a simulation can be seen as
simulated time or simulation time. The simulated time is the internal time base
of the simulation. It is independent from the runtime of the simulation. 11, 13,
14, 26, 33, 34, 46

Simulink R© MathWorks Simulink R© is a commercial tool for modeling, simulating
and design of complex dynamic systems. Systems can be designed on a high
level by modelling the interactions between functional blocks. Simulink R© is
tightly coupled with MATLAB R©. The MATLAB R©engine is used to evaluate the
equations of the Simulink R© blocks. 12, 15–18, 26, 28, 29, 40, 112, 115, 116, 130,
131, 134, 143, 147, 152–154

SISO Single-Input Single-Output (SISO) usually describes in control engineering a
simple control system with one input and one output. 63, 64, 67, 77, 96, 99, 158,
209

SoC System-on-Chip (SoC) refers to the integration of all components of a computer
or electronic system into a single integrated circuit. SoC describes typically
powerful processors with more than one processing elements in difference to a
microcontroller. 9

SPICE Simulation Programme with Integrated Circuit Emphasis (SPICE) is a general-
purpose analogue electronic circuit simulator which has been originally devel-
oped at the Electronics Research Laboratory of the University of California,
Berkeley. The integrated circuit (IC) is described elements like transistors, resis-
tors, capacitors and their connections. The elements are modelled by nonlinear
differential algebraic equations. 18, 130, 209

SVM Support Vector Machines (SVM) are a class of supervised learning methods.
A support vector machine constructs a hyperplane or set of hyperplanes in a
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high-dimensional space. The hyperplanes can be used for classification and
regression. 80, 209

SystemC SystemC is a library of C++ classes and macros which provides an event-
driven simulation kernel in C++. SystemC is defined and promoted by
OSCI (Open SystemC Initiative) [Sys]. SystemC is often associated with with
Transaction-level modeling (TLM) of digital electronic systems. 6, 115, 121,
130–132

T

Target Code Generation A target code generator is able to transform the an high-
level description of an algorithm into source code (for example C-code) for a
target system (normally a µC). 16

TLM Transactional Level Modelling (TLM) is a high-level modelling approach where
details of communication between modules are separated from the details of the
implementation of functional units. TLM denotes not a single level of abstrac-
tion. TLM is strongly connected with the C++ modelling library SystemC. 6,
131, 209

U

UML Unified Modelling Language (UML) is a standardized general-purpose model-
ing language for the design and development of software systems created by the
Object Management Group (OMG) [UML]. UML is also used for architectural
design of hardware or hardware/software systems. 131, 209

V

V-model The V-model is an often used project-management structure for the devel-
opment of complex system. The advantage of the V-model, in difference to
models like the waterfall model, is that the phases of detail in design and testing
are connected. The knowledge of the design is used to generate test scenarios
on the same level of detail. 119, 120, 128, 155, 159

Verilog Verilog is a hardware description language (HDL) for the design, verification,
and implementation of digital electronic systems at the Register Transfer Level
(RTL). 129, 132, 133

VHDL Very High Speed Integrated Circuit Hardware Description Language (VHDL)
is a hardware description language (HDL) for the design, verification, and
implementation of digital electronic systems at the Register transfer level (RTL).
129, 130, 132, 133
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VHDL-AMS VHDL-AMS VHDL-AMS is a derivative of VHDL which includes an
analogue and mixed-signal extension (AMS). VHDL-AMS enables the modeller
to define the behaviour of analogue and mixed-signal systems. 132

VLIW Very Large Instruction Word (VLIW processors are highly parallel architec-
tures containing multiple ALUs. The parallelization of code is realized on
compiler level.) 22, 136, 138, 209

VTB The Virtual Test Bed (VTB) [vtb], developed by Electrical Engineering depart-
ment of the University of South Carolina, is a software for prototyping of large-
scale, multi-technical dynamic systems. The VTB embeds models from different
simulation environment into a unified simulation environment. 18, 134, 135, 209

W

Wiggler A Wiggler is an interface used in the debug, design and programming of
µCs and SoCs based embedded systems. An Wiggler Box provides the physical
connection between the On Chip Debug System (OCDS) of a µC or a SoC and a
PC with development tools. 115, 116
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Abbreviations

µC Microcontroller 1–3, 5–7, 9, 10, 12, 15–17, 19,
20, 22, 24, 30–40, 43, 44, 46, 47, 49, 52, 53, 56,
60, 71, 73–77, 79, 99, 104, 105, 107, 108, 112,
114–123, 125, 126, 128–141, 143, 144, 147–149,
153–155, 157–161, 183

ABS Anti-Lock Braking System 15
ACSL Advanced Continuous Simulation Language

199
ADC Analogue to Digital Converter 54, 55, 71, 72,

74, 118
ALU Arithmetic Logic Unit 199
API Application Programming Interface 121, 123,

125, 128, 133, 161
ASC Asynchronous Serial Channel 20, 53, 56, 74,

75, 117

CAN Controller Area Network 20, 56, 74, 75, 117,
119

CFG Control Flow Graph 199
CHILS Chip-Hardware-in-the-Loop Simulation 200
CLCP Closed-Loop Characteristic Polynomial 99,

101
CPU Central Processing Unit 5, 6, 20, 40, 41, 43–45,

118, 125, 134, 140, 143
CSSC CHILS Step Size Calculator 200

DAC Digital to Analogue Converter 71, 72
DAP Device Access Port 116, 143
DAQ Data Acquisition 14, 16–18, 74, 133
DAS Device Access Server 200
DE Driving Environment 51
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DESS Differential Equation System Specification
12, 30

DEVS Discrete Event Systems Specification 11, 30
DFG Data Flow Graph 200
DLL Dynamic Link Library 116, 147, 152
DMA Direct Memory Access 118, 119
DSP Digital Signal Processor 5
DTSS Discrete Time System Specification 11
DUT Device under Test 51

ECU Electronic Control Unit 200

FADC Fast Analogue Digital Converter 55
FIFO First In - First Out 50
FPGA Field Programmable Gate Array 17–19, 22,

23, 30, 136, 138
FS Full Scale 201
FSR Full Scale Range 201

GPIO General Purpose Input/Output 53, 54, 117,
118, 144

GPTA General Purpose Timer Array 5, 40, 54, 118,
143

HDL Hardware Description Language 29, 30, 51,
130

HIL Hardware-in-the-Loop 201

I/O Input/Output 2, 16–19, 71, 74, 116, 133, 134,
143

IC Integrated Circuit 132
ISS Instruction Set Simulator 130, 131, 201

JTAG Joint Test Action Group 116, 134

kNN k-nearest neighbors 201

LSB Least Significant Bit 202
LTI Linear Time Invariant 202

MCD Multi-Core Debug 202
MCDS Multi Core Debug System 202
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MIL Model-in-the-Loop 202
MIMO Multiple Input Multiple Output 202
MIPS Million Instructions per Second 5, 6, 133, 136

PC Personal Computer 5, 14, 16, 20, 37, 43, 52,
73, 116, 121, 133, 136, 143, 144, 147

PGA Programme Graph Analysis 203
PID Proportional–Integral–Derivative 203
PIL Processor-in-the-Loop 203
PLI Program Language Interface 133
PLL Phase-Locked Loop 203
PWM Pulse-Width Modulation 28, 40, 41, 143

RCP Rapid Control Prototyping 203
RTL Register Transfer Level 49–51, 130, 132, 136,

203

SCE-MI Standard Component Emulator Modelling
Interface 51, 54

SIL Software-in-the-Loop 204
SISO Single Input - Single Outpout 204
SoC System-on-Chip 6, 10, 22, 23, 50, 81, 123, 129,

136, 157, 204
SPICE Simulation Programme with Integrated Cir-

cuit Emphasis 204
SSC Synchronous Serial Channel 20, 55, 56, 74, 75
STM System Timer 40, 43
SVM Support Vector Machines 205

TCS Traction Control System 15
TLM Transactional Level Modelling 205

UML Unified Modelling Language 205
USB Universal Serial Bus 115, 116

VLIW Very Large Instruction Word 206
VTB Virtual Test Bed 134, 206
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