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Abstract—The maximization of an increasing function over the rate region is (in general) nonconvex [3], rendering thétyiti
set of achievable rates in a multi-user, multi-antenna dowlink maximization prob|em a honconvex pr0b|em_ The rate region
is addressed. In general, the set of rates achievable by liae can be convexified by time sharing — but the algorithm needed

precoding and treating interference as noise is honconveXAs a ¢ moute rat ints on th nvex region still corressond
result, the corresponding utility maximization problem is noncon- 0 compute rate points o eco g B

vex. The rate region can be convexified by time sharing, and th {0 @ nonconvex problem.

utility maximization over the convexified region can be soled via We consider two types of utilities, concave and noncon-
Lagrange duality. Still, subproblems in the dual problem remain  cave [7], and two types of rate regions, nonconvex and convex
nonconvex. It is shown how all the aforementioned nonconvex by time sharing, resulting in three types of optimization

problems can be solved to global optimality in the framework ) -
of monotonic optimization. Moreover, it is investigated towhat problems, each having a different structure. For each tyge,

extent utility is increased by time sharing. While all problems develop a solution strategy. Based on the fundamental gssum
can be solved to global optimality, the resulting computatnal tion that the utility function is increasing in the userdas, the
complexity is rather high, thus the proposed solution straegies ytility maximization problem always exhibits a monototyci
mainly provide a benchmark for locally optimum, less comple — iryetyre, which can be exploited to find the global optimum

methods. Numerical results demonstrate that a method which . . i L ;
finds stationary points on the boundary of the rate region can With (relatively) efficient deterministic algorithms [8]as

provide close-to-optimum performance. a result, by proper decomposition and exploitation of the
monotonicity structure, all proposed strategies yieldbglty
. INTRODUCTION optimal solutions.

We consider a multi-user wireless communication system,Despite the relative efficiency of the globally optimum
where a central transmitter (base station, access pointjssestrategies, the resulting computational complexity sfitbws
data toK receivers. The transmitter is assumed to be equippgdickly with the number of users. As a result, the proposed
with multiple transmit antennas, while the receivers aléha strategies mainly serve as a benchmark for sub-optimum, les
a single antenna. The transmitter performs linear pregpditomplex approaches. As a simple, locally optimal strategy,
but, due to complexity reasons, does not employ strategige employ a gradient projection algorithm to find a statignar
to cancel known interference. Optimization of such multipoint on the boundary of the rate region.
user MISO systems under different performance metrics and
constraints has received wide attention in the last decade.
Examples include power minimization under SINR constsint A multi-user downlink is considered, with a central base
[1], minimization of sum MSE or MSE and SINR balancingstation with NV transmit antennas transmitting @ single-
under a power constraint [1], [2]. Treating interference amtenna receivers. The received signal at ikl receiver is
noise usually results in nonconvex optimization problemgiven by
For the power minimization and balancing problems, efficien K
algorithms exist that converge to the globa_ll c_>pt|r_num, Sag, e = Z hilquq + s
[1]. For other problems, such as the maximization of the sum
rate [3], no algorithms exist that have a practically fekesib
complexity for larger problem size and are globally optimunwherehf! € C**¥, w; € CN*!, ands;, € C are the channel,
In [4], sum rate maximization is solved to global optimalily ~precoder, and data symbol of userrespectively, andy is
using an algorithm for deterministic global optimizatidrat circularly symmetric AWGN with zero mean and variance

Il. SYSTEM MODEL

q=1

exploits a monotonicity in the problem structure. The transmitted signal

We assume that the physical layer is described by its K
achievable rate region, and the properties of the upperdaye T = Zwksk
are modeled by a system utility function [5], [6], whose \alu —1

depends only on the rates provisioned to fieusers. Under _ ) .
this simple model, the design objective is to find the rate¢arec is subject to a sum-power constramt[llwl\z} < P, which,
that maximizes utility. In the multi-user MISO downlink,gh under the assumption of uncorrelated, unit power data sym-



bols, translates into a constraint on the precoders Problem (7) corresponds to the maximization of an increasin
K function over a compact set. Even if is assumed to be
Z Hwklli <P (1) concave, problem (7) can in general not be assumed to be
1 convex, due to the potential nonconvexity 7t

IIl. RATE REGION If time-sharing is allowed, the utility maximization prevh

. . . eads as
Treating the interference from other users as noise, tror
given precoder$ws, ..., wr) an achievable rate vectd®® = maxu(r) st recC. (8)
Ri,...,Rk)is given byR € RE : Ry, < rp(wy, ..., wg), " o . .
\(Nitlh K)is g Y * (wr ) Problem (8) corresponds to the maximization of an increpsin
Bl P2 function over a compact convex set.ufis concave, problem
W i
re(wi, ..., wk) = log, <1 + o2 |Zk Tf|LH'w |2> . (8) is convex.
a7k Ik 7 V. MONOTONIC OPTIMIZATION

The set of achievable rfite vectors is defined as thg clqsure Oi'he utility maximization problems (7) and (8) correspond
all such vectors for a given transmit power constraint, i.e. to the maximization of an increasing function over a compact
K ) set in Rf. Optimization problems that exhibit this structure
R=1<r(wi,...,wi): Y Jwills <P (2)  can be solved in the framework of monotonic optimization [8]
k=1 Monotonic optimization provides efficient deterministig@:
Using the duality relation between uplink and downlink [1]rithms for solving monotonic problems to global optimality
a more compact parameterization of the rate reqooan be A basic problem of monotonic optimization is the maxi-
given as follows: mization of an increasing function over a compact normal set
R={r(p):peP} 3) LSC]).rrﬁaT)ut?fetS of RY is said to benormal in RY (or briefly,
,ife e §,0 <y <z =y eS. The rate regiong
with the set of feasible transmit powers in the dual uplink and R are normal: any rate vectar that is smaller than an
P=Ipe Ri{ lply < PY, 4) achievable rate vectar is also achievable.

and the uplink rates A. Polyblock Algorithm
Let f: RE — R be a continuous, increasing function and

-1 S ¢ RP a compact normal set. Then
ri(p) = logy det | I + (oI + thhglpq) hihilpy |, + P

aFk max f(x) st xeS 9)

(5)
di qi h . b constitutes a monotonic optimization problem. The basioal
As discussed in, e.g., [3], the rate regidd may D€ .y, for solving monotonic optimization problems is the so
nonconvex. By allowing for time-sharing between vectors Baiied polyblock algorithm. A polyblock is simply the union

R, za:qy vgctor n thg: convfex 29” Oglz IS alsodachlz\zljable, of a finite number of hyper-rectanglesii’: Given a discrete
resulting in a second set of achievable rates, denotetl as (o, ~ RP, a polyblockP(V) is defined as

C = co(R). PYV) = (J{z eRY,z <v}.
V. UTILITY MAXIMIZATION vey
The setsR an C define the sets of achievable rates forhe set) contains the vertices of the polyblo@k(V).
the system model under consideration. In the following, the pue to the fact thasS is a compact normal subset &
problem of determining a rate vectorior C that maximizes there exists a sev® such thatS € P(V©). Moreover,
a utility function is considered. In this work, a very generaktarting withn = 0, either§ = P(V(™) or there exists a
notion of utility is employed: A utility functiorw is simply a djscrete sep(®t1) ¢ Rf such that

functionw : Rf — R that is increasing, i.e.,
) j S PYrty c p(y), (10)

r<r' =u(r) <ul). (6)

L . , " In other words, the polyblockB(V(™)) represent an iteratively

Moreover, it is assumed that is continuous. An additional refined outer approximation of the st

assumption that is frequently made in the context of utility ~,.<iqer the problem of maximizing an increasing function
maximization is thatu is concave. As argued in [7], non-f over the polyblockP(V(™):

concave utilities represent an important class of apptinat

therefore this work does not requiteto be concave. max f(@). (11)
If no time-sharing mode is provisioned, the utility maxi- z€P(V)
mization problem is given by Let £ denote a maximizer of problem (11). Due to the

monotonicity of f, there exists a maximizer such that” ¢

axu(r) st reR. 7 : . . . .
mrxu( ) ) V(") je., the maximum of an increasing function over a



polyblock is attained on one of the vertices [8]. Due to thBy dualizing the inequality constraist< », the dual function
fact that the vertex set of a polyblock is discrete, problem given by
(12) c(ar)l be solved to global optimality by searching over all g(A) = maxu(s) — ATs + max A"r.
ve P, s>0 reC
It &0 € S, a global maximizer is found. In generalote that evaluatingy at A involves solving aweighted

polyblock represents an outer approximatiqn. problems is discussed in Section VI-D.
The upper right boundarygS of S contains the weakly =~ The optimum dual variable\* is found using an outer
Pareto efficient points of: linearization method [9]. Assuming thahtC # (), strong
S ={zxecS:ta’' €S:al, >z, Vk}. duality holds and the optimum rat€ can be recovered from

the primal iterates in the outer linearization method [9].
Denote byy(™) € dS the intersection betweeflS and the

line segment connecting the origin wigi™ . Let (") denote B. Nonconcave Utility, Convex Region

the best intersection point computed so far, i.e., If the utility function « is not concave, the problem
& =) r* = argmax f(y®). mgxu(r) st. recC
te{1,...,n}

no longer represents a convex problem. Still, as long:as
Moreover, let f* denote the global maximum of (9). Fromjs increasing, the utility maximization problem represeat
&) e S andS C P(V™) it follows that monotonic optimization problem and can be solved using the
- (n) * - (n) polyblock algorithm.

F@™) < f7 < f@). (12) According to Section V-A, the polyblock algorithm requires
Intuitively, as the outer approximation &f by a polyblock is a means to compute the intersection between a line seg-
refined at each stegf,(#(™) eventually converges t¢*. Due ment {zf'(") 0<a< 1} and 0C. Computing the intersec-
to the continuity off, this convergence also holds f&f™), tion point can be formulated as the following optimization
i.e., (") converges to a global maximizer gf over S. See problem:

[8] for a rigorous proof. According to Eq. (12), aroptimal ~(n)
solution is found if f (&) > f(&(™) —e. max @ Stoart e C. (15)

One possible method to construct a sequence of polyblogkscking a suitable parameterization@fhowever, a formula-
P(V(™) that satisfies (10) is as follows [8]: Define tion that is more amendable to a numerical solution approach

K(z)={y e RE Ly > ank € I(@)) is as follows:

. max z st z#™ <r, reC. (16)

with T,r
T(z) = {k: 2, > 0} (13) Problem (16) can be solved via Lagrange duality: after

dualizing the constraint:#(™) < =, all subproblems that
The desired rule for constructing a sequence of polyblocks/olveC are again weighted sum rate maximization problems,
that satisfies (10) is which can be solved using the results from Section VI-D. In
(n+1)y (n) ~(n) particular, (16) is a convex problem, and strong dualitydsol
PV ) =PVTAKET). Thus, the desired intersection point on the boundar¢ a$
The rules for computing the corresponding vertex$&tt!)  given by
are provided in [8]. . Y™ = g = @), (17)
Note that the polyblock method relies on a method for .
computing the intersection poingg™ on the boundary)S. ~ Whered” denotes the dual solution.

V1. SOLUTION STRATEGIES C. Nonconvex Region
A. Concave Utility, Convex Region Due to the fact thalk cannot be assumed to be convex, the
Under the assumpti ili ion i groblem
ption that the utility function is concave,
the problem mgxu(r) st. reR

maxu(r) st rec is in general a nonconvex problem, regardless of the priggert
_ " o of w. Accordingly, it is solved with the polyblock algorithm
is not only a monotonic, but also a convex optimization probyesented in Section V-A.
lem. The proposed solution strategy is based on Lagrangiamnalogous to Section VI-B, computing the intersection
duality [9]. First, introduce additional variablesc R%, and point between a line segmertr#(™ : 0 < z < 1} and IR
define the equivalent problem corresponds to the optimization problem
maxu(s) st 0<s<rreC. (14) max z st ar™ e R. (18)

x



In contrast to Section VI-B, however, the problem cannot hgarameterization of the boundatyR in terms of the uplink

solved by Lagrangian duality, due to the possible noncoibwexpowersp:

of R. To each rate vectar € R corresponds an SINR vector T

~(r), with v, (r) = 2"+ —1. In [1], an SINR balancing problem OR ={r(p):p€P,1'p=P},

is defined to test whether an SINR vectpis feasible. A rate j.e., the boundaryR is fully characterized by the rate points

vectorr is achievable if the SINR vectoy(r) is feasible. As that correspond to using full power in the dual uplink [1].

a result, the SINR balancing algorithm from [1] can be used After defining w(p) = u(r(p)), the utility maximization

to test for membership iR. Based on this test, (18) is solvedproblem (7) can be equivalently stated as

by bisection.

max u(p) st p>0,1Tp=P"P (20)

D. Weighted Sum Rate Maximization Under the assumption that is differentiable, a stationary
One method to compute points &€ anddR is the maxi- point of this optimization problem is obtained using Rosen’

mization of a weighted sum of rates. As shown in Section \projected gradient algorithm [9]. The algorithm is initzd

WsrMax plays a key role in solving the utility maximizatiorwith p® = Z1. Due to the nonconvexity of problem
problem (8). Note that (20), there is no guarantee that the corresponding rat@wect
is globally optimal. On the other hand, the computational
max Al = max Alr. complexity of the gradient approach is significantly lowrair

that of the utility-optimal strategies.
In other words, for maximization of the weighted sum rate, Finally, comparing Equation (20) with (7) shows the im-
time sharing is not required. Accordingly, the weighted sufortance of finding the right representation of the utility
rate problem itself is a problem of type (7) with maximization problem. While (7) is a monotonic optimizatio
problem, (20) does not exhibit this structure — the funcjida
in general not monotone ip, and, except for the special case
_(tthweighted sum rate maximization, there is also no obvious
representation as a difference of increasing functionsisTh
Yor an efficient globally optimum solution, it is importard t
recognize the monotonicity on the rate level, instead ahgy

max ATr(p). (19) to directly optimize the power allocation.
pc

u(r) = ATr,

and can be solved with the methods discussed in Section VI
Alternatively, the optimum rate vector can be found b
determining an optimum power allocation in the dual MAC:

VIII. SIMULATION RESULTS

The objective function in (19) can be written as a differeate . . -
For the numerical results, we consider a system utility

two concave, increasing functions [3]. Accordingly, preriol hich is simol f th il
(19) can be solved in either the framework of differencé which 1s_SImply an average of the users: utiities;,

_ 1 K g .
of convex functions optimization [10], or the framework of!(r) = If{_Z{v:& ur(7x). TWO ddlfferent types of utilitiesu
monotonic optimization. are investigated, concave and nonconcave.

A. Concave utility

First, the case of concave utilities is considered. For each
The solution strategies discussed in Section VI solve thiser, a logarithmic utility is used:

utility maximization problems to global optimality. In ahree

cases, the polyblock algorithm is used to solve monotonic

problems (note that even in the case of the seemingly convexrigure 1 shows the average utility achieved by a system

problem (8), the weighted sum rate problems which havéth N = 4 antennas,K = 3 users, and different values

to be solved to evaluate the dual function are nonconvegf. SNR = U—PQ. The channelsh, are drawn from a circu-

The computational complexity of the polyblock algorithmary symmetric complex Gaussian distribution, the channel

grows quickly with the problem dimension — as a resultoefficients are iid. with unit power, and the users’ chasnel

solving the utility maximization problem to global optinitsl are uncorrelated. Figure 1 shows almost no difference in

is practically feasible only for a small number of usersaverage utility between maximization ov& and(, i.e., on

As a result, the proposed global strategies mainly provideagerage, time sharing is not necessary. Moreover, the local

benchmark for local methods, which do not guarantee glolgladient projection strategy provides the same performasc

optimality, but provide convergence to local optima at muadime globally optimum strategies. Finally, Figure 1 alsovgbo

lower computational complexity. the average utility that is achieved if utility is maximizeder
Consider problems of type (7). From the monotonicity.of the convex hull of the single user points (aka. TDMA with

it follows that the maximum utility is attained on the boungla variable slot length).

OR. Based on this observation, it is obvious to search for In Figure 2, the number of users is increasedte- N = 4,

a local optimum on the boundar§R. A special feature while all other parameters remain unchanged. The results

of the MISO downlink is the availability of a differentiableshow a slight gain achieved by time sharing in the fully

VIl. AL ocAL METHOD

ug(ry) = In(1 +rg)



15 20 25

SNR

30 35 40

Figure 1. Average utility, concave, N =4, K =3
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Figure 2. Average utility, concave, N =4, K =4

loaded system. Moreover, the gradient projection strategy!

again provides optimum performance.

B. Nonconcave Utility

For the case of nonconcaveg,, we adopt the sigmoidal
model from [7]:

1
uk(rk) = ck (1 + exp(—ag(re — br)) " dk) -

The constantse, and d;, are chosen such thag(0)
0,u(c0) =1, while a;, = 1(bit/s/Hz)™! and b, = 3bit/s/Hz.

10 15 20
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Figure 3. Average utility, sigmoidal, N =4, K =4

IX. CONCLUSIONS

We provided strategies to solve different variations of the
utility maximization problem in a multi-user MISO downlink
with linear precoding. Most of the optimization problems in
the linearly precoded MISO downlink are nonconvex. Stilk t
utility maximization problem shows a monotonicity struetu
on the rate level, which we exploited to derive globally
optimum solution strategies.

Numerical results show only modest gains by time sharing.
Moreover, in the scenarios under consideration, a low com-
plexity locally optimum gradient strategy can provide atho
optimum performance. This last conclusion clearly relies o
the availability of globally optimum benchmark strategies
which are the main subject of this work.
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