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Abstract—The maximization of an increasing function over the
set of achievable rates in a multi-user, multi-antenna downlink
is addressed. In general, the set of rates achievable by linear
precoding and treating interference as noise is nonconvex.As a
result, the corresponding utility maximization problem is noncon-
vex. The rate region can be convexified by time sharing, and the
utility maximization over the convexified region can be solved via
Lagrange duality. Still, subproblems in the dual problem remain
nonconvex. It is shown how all the aforementioned nonconvex
problems can be solved to global optimality in the framework
of monotonic optimization. Moreover, it is investigated towhat
extent utility is increased by time sharing. While all problems
can be solved to global optimality, the resulting computational
complexity is rather high, thus the proposed solution strategies
mainly provide a benchmark for locally optimum, less complex
methods. Numerical results demonstrate that a method which
finds stationary points on the boundary of the rate region can
provide close-to-optimum performance.

I. I NTRODUCTION

We consider a multi-user wireless communication system,
where a central transmitter (base station, access point) sends
data toK receivers. The transmitter is assumed to be equipped
with multiple transmit antennas, while the receivers all have
a single antenna. The transmitter performs linear precoding,
but, due to complexity reasons, does not employ strategies
to cancel known interference. Optimization of such multi-
user MISO systems under different performance metrics and
constraints has received wide attention in the last decade.
Examples include power minimization under SINR constraints
[1], minimization of sum MSE or MSE and SINR balancing
under a power constraint [1], [2]. Treating interference as
noise usually results in nonconvex optimization problems.
For the power minimization and balancing problems, efficient
algorithms exist that converge to the global optimum, see, e.g.,
[1]. For other problems, such as the maximization of the sum
rate [3], no algorithms exist that have a practically feasible
complexity for larger problem size and are globally optimum.
In [4], sum rate maximization is solved to global optimalityby
using an algorithm for deterministic global optimization that
exploits a monotonicity in the problem structure.

We assume that the physical layer is described by its
achievable rate region, and the properties of the upper layers
are modeled by a system utility function [5], [6], whose value
depends only on the rates provisioned to theK users. Under
this simple model, the design objective is to find the rate vector
that maximizes utility. In the multi-user MISO downlink, the

rate region is (in general) nonconvex [3], rendering the utility
maximization problem a nonconvex problem. The rate region
can be convexified by time sharing – but the algorithm needed
to compute rate points on the convex region still corresponds
to a nonconvex problem.

We consider two types of utilities, concave and noncon-
cave [7], and two types of rate regions, nonconvex and convex
by time sharing, resulting in three types of optimization
problems, each having a different structure. For each type,we
develop a solution strategy. Based on the fundamental assump-
tion that the utility function is increasing in the users’ rates, the
utility maximization problem always exhibits a monotonicity
structure, which can be exploited to find the global optimum
with (relatively) efficient deterministic algorithms [8].As
a result, by proper decomposition and exploitation of the
monotonicity structure, all proposed strategies yield globally
optimal solutions.

Despite the relative efficiency of the globally optimum
strategies, the resulting computational complexity stillgrows
quickly with the number of users. As a result, the proposed
strategies mainly serve as a benchmark for sub-optimum, less
complex approaches. As a simple, locally optimal strategy,
we employ a gradient projection algorithm to find a stationary
point on the boundary of the rate region.

II. SYSTEM MODEL

A multi-user downlink is considered, with a central base
station with N transmit antennas transmitting toK single-
antenna receivers. The received signal at thek-th receiver is
given by

yk =

K
∑

q=1

hH
k wqsq + ηk,

wherehH
k ∈ C1×N , wk ∈ CN×1, andsk ∈ C are the channel,

precoder, and data symbol of userk, respectively, andηk is
circularly symmetric AWGN with zero mean and varianceσ2.
The transmitted signal

x =
K
∑

k=1

wksk

is subject to a sum-power constraintE
[

‖x‖2
2

]

≤ P , which,
under the assumption of uncorrelated, unit power data sym-



bols, translates into a constraint on the precoderswk:
K
∑

k=1

‖wk‖
2
2 ≤ P. (1)

III. R ATE REGION

Treating the interference from other users as noise, for
given precoders(w1, . . . , wK) an achievable rate vectorR =
(R1, . . . , RK) is given byR ∈ RK

+ : Rk < rk(w1, . . . , wK),
with

rk(w1, . . . , wK) = log2

(

1 +
|hH

k wk|2

σ2 +
∑

q 6=k |h
H
k wq|2

)

.

The set of achievable rate vectors is defined as the closure of
all such vectors for a given transmit power constraint, i.e.,

R =

{

r(w1, . . . , wK) :

K
∑

k=1

‖wk‖
2
2 ≤ P

}

. (2)

Using the duality relation between uplink and downlink [1],
a more compact parameterization of the rate regionR can be
given as follows:

R = {r(p) : p ∈ P} , (3)

with the set of feasible transmit powers in the dual uplink

P =
{

p ∈ RK
+ : ‖p‖1 ≤ P

}

, (4)

and the uplink rates

rk(p) = log2 det



I +
(

σ2I +
∑

q 6=k

hqh
H
q pq

)−1
hkhH

k pk



 ,

(5)

As discussed in, e.g., [3], the rate regionR may be
nonconvex. By allowing for time-sharing between vectors in
R, any vector in the convex hull ofR is also achievable,
resulting in a second set of achievable rates, denoted asC:

C = co(R).

IV. U TILITY MAXIMIZATION

The setsR an C define the sets of achievable rates for
the system model under consideration. In the following, the
problem of determining a rate vector inR or C that maximizes
a utility functionu is considered. In this work, a very general
notion of utility is employed: A utility functionu is simply a
function u : RK

+ → R that is increasing, i.e.,

r ≤ r′ ⇒ u(r) ≤ u(r′). (6)

Moreover, it is assumed thatu is continuous. An additional
assumption that is frequently made in the context of utility
maximization is thatu is concave. As argued in [7], non-
concave utilities represent an important class of applications,
therefore this work does not requireu to be concave.

If no time-sharing mode is provisioned, the utility maxi-
mization problem is given by

max
r

u(r) s.t. r ∈ R. (7)

Problem (7) corresponds to the maximization of an increasing
function over a compact set. Even ifu is assumed to be
concave, problem (7) can in general not be assumed to be
convex, due to the potential nonconvexity ofR.

If time-sharing is allowed, the utility maximization problem
reads as

max
r

u(r) s.t. r ∈ C. (8)

Problem (8) corresponds to the maximization of an increasing
function over a compact convex set. Ifu is concave, problem
(8) is convex.

V. M ONOTONIC OPTIMIZATION

The utility maximization problems (7) and (8) correspond
to the maximization of an increasing function over a compact
set in RK

+ . Optimization problems that exhibit this structure
can be solved in the framework of monotonic optimization [8].
Monotonic optimization provides efficient deterministic algo-
rithms for solving monotonic problems to global optimality.

A basic problem of monotonic optimization is the maxi-
mization of an increasing function over a compact normal set
[8]. A subsetS of RD

+ is said to benormal in RD
+ (or briefly,

normal), if x ∈ S,0 ≤ y ≤ x ⇒ y ∈ S. The rate regionsC
andR are normal: any rate vectorr′ that is smaller than an
achievable rate vectorr is also achievable.

A. Polyblock Algorithm

Let f : RD
+ → R be a continuous, increasing function and

S ⊂ RD
+ a compact normal set. Then

max
x

f(x) s.t. x ∈ S (9)

constitutes a monotonic optimization problem. The basic algo-
rithm for solving monotonic optimization problems is the so-
called polyblock algorithm. A polyblock is simply the union
of a finite number of hyper-rectangles inRD

+ : Given a discrete
setV ⊂ RD

+ , a polyblockP(V) is defined as

P(V) =
⋃

v∈V

{x ∈ RD
+ , x ≤ v}.

The setV contains the vertices of the polyblockP(V).
Due to the fact thatS is a compact normal subset ofRD

+

there exists a setV(0) such thatS ⊆ P(V(0)). Moreover,
starting with n = 0, either S = P(V(n)) or there exists a
discrete setV(n+1) ⊂ RK

+ such that

S ⊆ P(V(n+1)) ⊂ P(V(n)). (10)

In other words, the polyblocksP(V(n)) represent an iteratively
refined outer approximation of the setS.

Consider the problem of maximizing an increasing function
f over the polyblockP(V(n)):

max
x∈P(V(n))

f(x). (11)

Let x̌(n) denote a maximizer of problem (11). Due to the
monotonicity off , there exists a maximizer such thatx̌(n) ∈
V(n), i.e., the maximum of an increasing function over a



polyblock is attained on one of the vertices [8]. Due to the
fact that the vertex set of a polyblock is discrete, problem
(11) can be solved to global optimality by searching over all
v ∈ V(n).

If x̌(n) ∈ S, a global maximizer is found. In general,
however,x̌(n) will lie outside of S, due to the fact that the
polyblock represents an outer approximation.

The upper right boundary∂S of S contains the weakly
Pareto efficient points ofS:

∂S = {x ∈ S : ∄x′ ∈ S : x′
k > xk, ∀k} .

Denote byy(n) ∈ ∂S the intersection between∂S and the
line segment connecting the origin witȟx(n). Let x̂(n) denote
the best intersection point computed so far, i.e.,

x̂(n) = y(ℓ∗), ℓ∗ = argmax
ℓ∈{1,...,n}

f(y(ℓ)).

Moreover, letf∗ denote the global maximum of (9). From
x̂(n) ∈ S andS ⊆ P(V(n)) it follows that

f(x̂(n)) ≤ f∗ ≤ f(x̌(n)). (12)

Intuitively, as the outer approximation ofS by a polyblock is
refined at each step,f(x̌(n)) eventually converges tof∗. Due
to the continuity off , this convergence also holds for̂x(n),
i.e., x̂(n) converges to a global maximizer off over S. See
[8] for a rigorous proof. According to Eq. (12), anǫ-optimal
solution is found iff(x̂(n)) ≥ f(x̌(n)) − ǫ.

One possible method to construct a sequence of polyblocks
P(V(n)) that satisfies (10) is as follows [8]: Define

K(x) =
{

y ∈ RD
+ : yk > xk, k ∈ I(x)

}

,

with

I(x) = {k : xk > 0} . (13)

The desired rule for constructing a sequence of polyblocks
that satisfies (10) is

P(V(n+1)) = P(V(n)) \ K(x̂(n)).

The rules for computing the corresponding vertex setV(n+1)

are provided in [8].
Note that the polyblock method relies on a method for

computing the intersection pointsy(n) on the boundary∂S.

VI. SOLUTION STRATEGIES

A. Concave Utility, Convex Region

Under the assumption that the utility function is concave,
the problem

max
r

u(r) s.t. r ∈ C

is not only a monotonic, but also a convex optimization prob-
lem. The proposed solution strategy is based on Lagrangian
duality [9]. First, introduce additional variabless ∈ RK

+ , and
define the equivalent problem

max
r,s

u(s) s.t. 0 ≤ s ≤ r, r ∈ C. (14)

By dualizing the inequality constraints ≤ r, the dual function
is given by

g(λ) = max
s≥0

u(s) − λTs + max
r∈C

λTr.

Note that evaluatingg at λ involves solving aweighted
sum rate maximization (WsrMax) problem. Solving WsrMax
problems is discussed in Section VI-D.

The optimum dual variableλ∗ is found using an outer
linearization method [9]. Assuming thatint C 6= ∅, strong
duality holds and the optimum rater∗ can be recovered from
the primal iterates in the outer linearization method [9].

B. Nonconcave Utility, Convex Region

If the utility function u is not concave, the problem

max
r

u(r) s.t. r ∈ C

no longer represents a convex problem. Still, as long asu

is increasing, the utility maximization problem represents a
monotonic optimization problem and can be solved using the
polyblock algorithm.

According to Section V-A, the polyblock algorithm requires
a means to compute the intersection between a line seg-
ment

{

xř(n) : 0 ≤ x ≤ 1
}

and ∂C. Computing the intersec-
tion point can be formulated as the following optimization
problem:

max
x

x s.t. xř(n) ∈ C. (15)

Lacking a suitable parameterization ofC, however, a formula-
tion that is more amendable to a numerical solution approach
is as follows:

max
x,r

x s.t. xř(n) ≤ r, r ∈ C. (16)

Problem (16) can be solved via Lagrange duality: after
dualizing the constraintxř(n) ≤ r, all subproblems that
involveC are again weighted sum rate maximization problems,
which can be solved using the results from Section VI-D. In
particular, (16) is a convex problem, and strong duality holds.
Thus, the desired intersection point on the boundary ofC is
given by

y(n) = x∗ř(n) = d∗ř(n), (17)

whered∗ denotes the dual solution.

C. Nonconvex Region

Due to the fact thatR cannot be assumed to be convex, the
problem

max
r

u(r) s.t. r ∈ R

is in general a nonconvex problem, regardless of the properties
of u. Accordingly, it is solved with the polyblock algorithm
presented in Section V-A.

Analogous to Section VI-B, computing the intersection
point between a line segment

{

xř(n) : 0 ≤ x ≤ 1
}

and ∂R
corresponds to the optimization problem

max
x

x s.t. xř(n) ∈ R. (18)



In contrast to Section VI-B, however, the problem cannot be
solved by Lagrangian duality, due to the possible nonconvexity
of R. To each rate vectorr ∈ R corresponds an SINR vector
γ(r), with γk(r) = 2rk−1. In [1], an SINR balancing problem
is defined to test whether an SINR vectorγ is feasible. A rate
vectorr is achievable if the SINR vectorγ(r) is feasible. As
a result, the SINR balancing algorithm from [1] can be used
to test for membership inR. Based on this test, (18) is solved
by bisection.

D. Weighted Sum Rate Maximization

One method to compute points on∂C and∂R is the maxi-
mization of a weighted sum of rates. As shown in Section VI,
WsrMax plays a key role in solving the utility maximization
problem (8). Note that

max
r∈C

λTr = max
r∈R

λTr.

In other words, for maximization of the weighted sum rate,
time sharing is not required. Accordingly, the weighted sum
rate problem itself is a problem of type (7) with

u(r) = λTr,

and can be solved with the methods discussed in Section VI-C.
Alternatively, the optimum rate vector can be found by

determining an optimum power allocation in the dual MAC:

max
p∈P

λTr(p). (19)

The objective function in (19) can be written as a differenceof
two concave, increasing functions [3]. Accordingly, problem
(19) can be solved in either the framework of difference
of convex functions optimization [10], or the framework of
monotonic optimization.

VII. A L OCAL METHOD

The solution strategies discussed in Section VI solve the
utility maximization problems to global optimality. In allthree
cases, the polyblock algorithm is used to solve monotonic
problems (note that even in the case of the seemingly convex
problem (8), the weighted sum rate problems which have
to be solved to evaluate the dual function are nonconvex).
The computational complexity of the polyblock algorithm
grows quickly with the problem dimension – as a result,
solving the utility maximization problem to global optimality
is practically feasible only for a small number of users.
As a result, the proposed global strategies mainly provide a
benchmark for local methods, which do not guarantee global
optimality, but provide convergence to local optima at much
lower computational complexity.

Consider problems of type (7). From the monotonicity ofu,
it follows that the maximum utility is attained on the boundary
∂R. Based on this observation, it is obvious to search for
a local optimum on the boundary∂R. A special feature
of the MISO downlink is the availability of a differentiable

parameterization of the boundary∂R in terms of the uplink
powersp:

∂R =
{

r(p) : p ∈ P ,1Tp = P
}

,

i.e., the boundary∂R is fully characterized by the rate points
that correspond to using full power in the dual uplink [1].

After defining µ(p) = u(r(p)), the utility maximization
problem (7) can be equivalently stated as

max µ(p) s.t. p ≥ 0,1Tp = P. (20)

Under the assumption thatu is differentiable, a stationary
point of this optimization problem is obtained using Rosen’s
projected gradient algorithm [9]. The algorithm is initialized
with p(0) = P

K
1. Due to the nonconvexity of problem

(20), there is no guarantee that the corresponding rate vector
is globally optimal. On the other hand, the computational
complexity of the gradient approach is significantly lower than
that of the utility-optimal strategies.

Finally, comparing Equation (20) with (7) shows the im-
portance of finding the right representation of the utility
maximization problem. While (7) is a monotonic optimization
problem, (20) does not exhibit this structure – the functionµ is
in general not monotone inp, and, except for the special case
of weighted sum rate maximization, there is also no obvious
representation as a difference of increasing functions. Thus,
for an efficient globally optimum solution, it is important to
recognize the monotonicity on the rate level, instead of trying
to directly optimize the power allocation.

VIII. S IMULATION RESULTS

For the numerical results, we consider a system utility
u which is simply an average of the users’ utilitiesuk,
u(r) = 1

K

∑K

k=1 uk(rk). Two different types of utilitiesuk

are investigated, concave and nonconcave.

A. Concave utility

First, the case of concave utilitiesuk is considered. For each
user, a logarithmic utility is used:

uk(rk) = ln(1 + rk)

Figure 1 shows the average utility achieved by a system
with N = 4 antennas,K = 3 users, and different values
of SNR = P

σ2 . The channelshk are drawn from a circu-
lary symmetric complex Gaussian distribution, the channel
coefficients are iid. with unit power, and the users’ channels
are uncorrelated. Figure 1 shows almost no difference in
average utility between maximization overR and C, i.e., on
average, time sharing is not necessary. Moreover, the local
gradient projection strategy provides the same performance as
the globally optimum strategies. Finally, Figure 1 also shows
the average utility that is achieved if utility is maximizedover
the convex hull of the single user points (aka. TDMA with
variable slot length).

In Figure 2, the number of users is increased toK = N = 4,
while all other parameters remain unchanged. The results
show a slight gain achieved by time sharing in the fully



10 15 20 25 30 35 40
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
u

SNR

N=4,K=3

 

 
R
coR
PG
TDMA

Figure 1. Average utility, concaveu, N = 4, K = 3
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Figure 2. Average utility, concaveu, N = 4, K = 4

loaded system. Moreover, the gradient projection strategy
again provides optimum performance.

B. Nonconcave Utility

For the case of nonconcaveuk, we adopt the sigmoidal
model from [7]:

uk(rk) = ck

(

1

1 + exp(−ak(rk − bk))
+ dk

)

.

The constantsck and dk are chosen such thatu(0) =
0, u(∞) = 1, while ak = 1(bit/s/Hz)−1 andbk = 3bit/s/Hz.

For the results shown in Figure 3, the simulation parameters
are the same as in Figure 2, only the utility model was
changed. For sigmoidal utilities, the gain achievable by time-
sharing is slightly larger. This behaviour can be explainedby
the fact that the sigmoidal utility makes a steep transition
between low and high utility value around the inflection point
dk. As a result, there is a higher sensitivity to the enlargement
of the rate region that is provided by time sharing. Even for
sigmoidaluk, the gradient projection method performs as good
as the optimum method. Not shown are results forK = 3
users, in this case all three methods show almost identical
performance.
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Figure 3. Average utility, sigmoidalu, N = 4, K = 4

IX. CONCLUSIONS

We provided strategies to solve different variations of the
utility maximization problem in a multi-user MISO downlink
with linear precoding. Most of the optimization problems in
the linearly precoded MISO downlink are nonconvex. Still, the
utility maximization problem shows a monotonicity structure
on the rate level, which we exploited to derive globally
optimum solution strategies.

Numerical results show only modest gains by time sharing.
Moreover, in the scenarios under consideration, a low com-
plexity locally optimum gradient strategy can provide almost
optimum performance. This last conclusion clearly relies on
the availability of globally optimum benchmark strategies,
which are the main subject of this work.
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