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Abstract—The problem of determining an optimal pa- to multi-user channels. This change also dissolves the
rameter setup at the physical layer in multi-user, multi- strict distinction between MAC and PHY layers, as the
antenna downlink is considered. An aggregate utility, question which users access which channels can only be
which is assumed to depend on the users’ rates, is usedynswered in a joint treatment of both layers.
as performance metric. It is not assumed that the utility In this work. a multiuser. mulfi-antenna downlink
function is concave, allowing for more realistic utility . inal ”’ irel ,t : idered. which
models of applications with limited scalability. Due to In-a sing q-ce ere es's SYys e_m IS consiaered, which,
the structure of the underlying capacity region, a two from the viewpoint of information theory, corresponds
step approach is necessary: First, an optimal rate vector 0 @ MIMO broadcast channe(MIMO BC) [3], [6].
is determined. Second, the optimal parameter setup is While the aforementioned shift to multi-user channels is
derived from the optimal rate vector. Two methods for motivated by the potential gains in system performance,
computing an optimal rate vector are proposed: First, an evident drawback of this shift is the increased de-
based on the differential manifold structure offered by the sign complexity. In other words, multi-antenna, multi-
boundary of the MIMO BC capacity region, a gradient ,ser channels significantly increase the set of design
projection method on the boundary is developed. Being parameters and degrees of freedom at the PHY layer.

a local algorithm, the method converges to a rate vector Clear| trateqi for tuni th ¢ .
which is not guaranteed to be a globally optimal solution. early, stralegies lor tuning these parameters in an

Second, the monotonic structure of the rate space problem OPtimal manner are of great interest.
is exploited to compute a globally optimal rate vector ~ The desire for maximum system performance leads

with an outer approximation algorithm. While the second immediately to the question of optimality criteria. While
method yields the global optimum, the first method is voice and best effort data applications have been predom-
shown to provide an attractive trade-off between utility jnant, future wireless systems are expected to provide a
performance and computational complexity. multitude of heterogeneous applications, ranging from
best effort data to low-delay gaming applications, from
low-rate messaging to high-rate video. The heterogeneity
The majority of current wireless communication sysef these applications requires application-aware optimal
tems is based on the principle ofthogonal multiple ity criteria, i.e., it is no longer sufficient to optimize PHY
access Simply speaking, multiple users compete foand MAC layer with respect to criteria such as average
a set of shared channels, and access to the chanti@sughput or proportional rate fairness.
is coordinated such that each channel is used by aJtility functions have been widely used as a model for
single user only. The decision which user accesses whtble properties of upper layers. In this work, the focus is
channel is made at theedium acces$MAC) layer, on the optimization of the PHY layer parameters, and
with the result that at th@hysical (PHY) layer, trans- a generic utility model in terms of a function that is
mission is over single-user channels. Based on recembnotone in the user’s rates is employed. For a wide
advances in physical layer techniques such as MIM@nge of applications, utility models can be found in the
signal processing and multi-user coding, it has bediterature. In [7], applications are classified based oirthe
shown that significant performance gains can be achiew@dsticity with respect to the allocated rate. Best effort
by allowing one channel to be used by multiple users applications can be modeled with a concave utility [7].
once [1], [2], [3], [4], [5]. In other words, the physicalOn the other hand, less elastic applications result in a
layer paradigm is shifting from single-user channefsonconcave utility model [7], [8]. While most works on

I. INTRODUCTION



utility maximization in wireless systems assume concauvsed:
utilities, the nonconcave setup has received relatively

little attention [8], [9], [10]. Based on the premise that >y < VE:zE 2y,

some relevant application classes can be more precisely x>y < x>y, kx> Yy,

modgled by nonconcave u_tilities, this work proposes a >y o VEiag >y

solution strategy that provides at least locally optimal

performance in the nonconcave case. Order relations<, <, < are defined in the same manner.
There exists a significant amount of literature on utility Il. PROBLEM SETUP

maximization for wireless networks, see, e.g., [11], [12], )

[13], [10] and references therein. The network-oriented At the physical layer, a MIMO broadcast channel
works usually consider a large number of nodes with'4th K receivers is considered. The transmitter as
simple physical layer setup, and focus on computatiofi@nSmit antennas, while receivér is equipped with

ally efficient and distributed resource allocation stratdZ+ '€Ceive antennas. The transmitter sends independent
gies for large networks. In contrast, this work focuses diformation to each of the receivers.

the optimization of a limited-size infrastructure network '€ received signal at receivéris given by

with a complex multi-antenna, multi-user PHY/MAC K
layer configuration. Utility maximization in the MIMO Y = szxi + 7,
BC is also investigated in [14]. The authors solve the i=1

utility maximization problem based on Lagrange dualit

under the assumption of concave utility functiobaial q CV is the sianal t itted Ve

methodsare frequently used in network utility maxi-2n% Tk € IS the sighal ransmitied 1o receivet
urthermore,n, is the circularly symmetric complex

mization [10], but rely on the assumption of probIerE . : ¢ VI with CA(0.1
convexity. This work makes the following contributions:>2USS!an NOISE at receivey with n;, ~ (0, J,”k)'
Let Q; denote the transmit covariance matrix of user

First, a primal gradient-based method for addressing . :
the utility maximization problem in the MIMO BC is . The.total trafl(nsmlt power has to .satlsfy.the power
developed. The proposed method does not rely onc%nStra'”ttngk1 Qk) < Py. Accordingly, with@Q =
convexity assumption and can provide convergence (@1, ---,Qx) the set of feasible transmit covariance
local optima in the nonconvex case. The quality of sud¢hatrices is given by

local solutions depends on the specific problem instance K

and can only be evaluatgd if_ the glopal optimum is 9= {Q L Qp € HY tr <Z Qk) < ptr}

known. The second contribution of this work is the 1

application of methods from the field of deterministic

global optimization to the nonconcave utility maximizawhereHY denotes the set of positive semidefinite Her-
tion problem. It is shown that the utility maximizationmitian N x N matrices.

problem in the MIMO BC can be cast as a monotonic AS proved in [6], capacity is achieved lojrty paper
optimization problem [15]. The monotonicity structur&0ding(DPC). Letr denote the encoding order, i.e.;
can be exploited to efficiently find the global optimun{l.--., K} — {1,..., K} is a permutation and (i)

Yhere H, ¢ CMxN s the channel to receivek

_ _ position. Moreover, lefl denote the set of all possible
Notation: Vectors and vector-valued functions are dgsermutations or{1,.. ., K }.

noted by bold lowercase letters, matrices by bold upper-g,, fixedQ and, an achievable rate vector is given
case letters. The transpose and the Hermitian transpgge.(q. ) — (ry(Q, ), .., rx (Q, 7)), with

of Q are denoted byQ™ and QY, respectively. The

identity matrix is denoted byl. Concerning boldface, det (1 + Hy) (X j5; Qr(i) Hyl)
an exception is made for gradients: The gradient of a "=(:) = log det(1+ Hyi) (3, Qui ) HI )
functionu evaluated at: is a vectorvu(z), the gradient TRy m () A ()

of a function f evaluated at is a matrixV f (x) whose Let R denote the set of rate vectors achievable by
i-th column is the gradient at of the i-th component feasibleQ and:

function of f [16]. The following definitions of order

relations between vectots, y € RX, with K > 1, are R={r(@Qm):QeQmell}.




The capacity region of the MIMO BC is defined as the 1. N ONCONCAVE UTILITIES

convex hull of R [3]: One of the premises of this work is that noncon-

C = co(R). cave utilities are of high practical relevance in future
communication systems. Consider the cdSe= 1. A
Accordingly, each element of can be written as a strictly monotone function: : » — u(r) is concave if
convex combination of elements &, i.e., for each the gain in utility obtained from increasingdecreases
r € C, there exists a set of coefficien{sy, }, a set With increasingr, for all » € R,. A common example
of transmit covariance matrice{gQ(w)}, and a set of for such a behaviour are best effort data applications,
encoding Orders{ﬂ-(w)} such that where any increase in rate is good, but a saturation
effect leads to a decreasing gain for largef7]. Such
W (w) —(w) elastic applications are perfectly scalable. On the other
r= Z (@, ), 1) extreme, applications that have fixed rate requirements
w=1 (such as traditional voice service) are not scalable at
with o, > 0,57y = 1,Q™ € Q, andr(™) € I1. all (inelastic), and are more precisely modeled by a

In other words ,,f,ls achieved by time-sharing betweefionconcave utility: Below a certain rate threshold, wtilit

rate vectorsr(Q), 7)) € R. is zero, above the threshold utility takes on its maximum
Eachr € C can be achieved by time-sharing betweefplue (step function) [7]. o _
at mostK rate vectors:(Q®), 7)) € R, thusW < K. Based on recent advances in multimedia coding, future
Accordingly, the physical layer parameter vector can gRultimedia applications can be expected to lie between
defined as follows: these two extremes: They are scalable to some extent,
but do not provide the perfect scalability of best effort
xp = (v, QM) 7 (WHE_ services. As an example, the scalable video coding ex-

tension of the H.264/AVC standard [17] provides support
Moreover, the set of feasible PHY parameter setupsdsscalability based on a layered video codec. Due to the
given by finite number of layers, the decoded video’s quality only
W increases at those rates where an additional layer can
Xp = {mp > 0, Z Oy = 1,Q(w) c Q’ﬂ_(w) el be t_ransmltted. Moreover, if th_e gain between' Iayers is
not incremental (such as experienced when switching be-
, _ o tween low and high spatial resolution), such a behaviour
Given the setXp, an obvious problem is finding acan pe more precisely modeled by a nonconcave utility,
parameter setupp that is, in a desired sense, optimal.\yhich, in contrast to a concave utility, does not require
In this work, it is assumed that the properties of thg steady decrease of the gain over the whole range of
upper layers are summarized in a system utility functiqgasible rates. To summarize, the flexibility offered by
u : RY — R, whose value depends only on the ratgonconcave utilities allows for more precise models of
vector provided by the physical layer. The parametgiytimedia applications, which only have a finite number
optimization problem is then given by of operation modes and show a non-monotone behaviour
of the gains experienced by an increase in rate.

w=1

max u(r(xp)) S.t. xp € Ap, 2)

- IV. DIRECT APPROACH
where r(xp) follows from Eq. (1). Concerning the

function, it is assumed that larger rates result in higher Based on (2), a first approach may be to directly
utility, i.e., it is assumed that is strictly monotonically CPtimize the composite functiom o r with respect
increasing: Moreover, it is assumed that is continu- © the PHY parametersp. In general, however, this
ous, and differentiable oR%, . The functionu is not approach will fail, due to the discrete nature/éfand the
assumed to be concave. nonconvexity of problem (2), even for a concave utility
function w.
IStrict monotonicity implies that In contrast, the capacity region is convex by definition,
thus the problem
r > = u(r) > ul’). )
maxu(r) st recC 4)

r



is convex for concave:. This motivates solution ap-exist different flavors of gradient projection methods: A
proaches that operate in the rate space and not in gradient projection on arbitrary convex sets [16], requir-
physical layer parameter space. ing a Euclidean projection, and a gradient projection on
A special case for which the direct approach succeeskts equipped with a differential manifold structure [21],
is given by the utilityu(r) = AT, i.e., weighted sum [22], [23]. In this work, the second approach is followed.
rate maximizatiofWsrMax). In this case, time sharingis In the classical gradient projection method of Rosen
not required, i.e.q;, = 0,w > 1. Moreover, the gradient [24], it is assumed that the feasible set is described by
Vu is independent of, and an optimal encoding ordera set of constraint functiond, m such that the set of
m* can be directly inferred from\ [18], [3], [4]. As feasibler is given byh(r) < 0,m(r) =0, with h,m
a result, the problem is reduced to finding the optimdlifferentiable. For the capacity region of the MIMO BC,
transmit covariance matrices, which can be solved sgch a description in terms of constraint functions iis
a convex problem in the dual MAC [4]. Denote bynot available (basically, all that is available is a method
rusf(A, ) the rate vector that maximizes weighted suno compute points on its efficient boundary, by means of
rate for a given weighA and a corresponding optimalWsrMax). The key for a gradient-based optimization in
encoding orderr™, i.e., the rate space is to recognize the differentiable manifold
. . structure offered by the efficient boundary of the capacity
A rus(A, ) = 825“’“(@“ )- () region. By exploiting this structure, a gradient ascent
. . . . on £ that does not rely on a description in terms of
For general utility functions, the optimal solution may . : . .
T . ; . constraint functions is possible.
require time-sharing. In particular, if no further assump-
_t|ons concerning th_e pr.opertlgs afare made, the IossA. Gradient Ascent of
incurred by approximating a time-sharing solution by a
rate vectorr € R may be significant. Moreover, even if The following problem is considered:
the optimal solution does not require time-sharing, it is
not clear how to find the optimal encoding order. f}}ggu(T)- 7)

An optimization algorithm operating in the rate space o ] ] ] ) )
of course still requires a means to compute points fropi'€ efficient set’ is a K —1 dimensional manifold with

C. WsrMax overC can be cast as a convex problenf?oundary [25], where the boundary &fcorresponds to
Moreover, efficient algorithms for solving the WsrMaXaté Vectorsr € & with at least one user having zero

problem in the MIMO BC have been proposed recent&i‘te' Furthermore, it is assumed that for the MIMO BC,

[19], [20]. Based on this observation, the proposed alghi€ interior of the efficient set, defined by

rithm is formulated such that iterates 6nare obtained

as solutions of WsrMax problems. E={ref:r>0f,

is smooth up to first order, i.e is aC! differentiable

25], K — 1 dimensional manifold. Based on this as-

To solve problem (2), a two-step procedure is foE%umption, there exists a s}, .z of differentiable
lowed: First, determine a (possibly locally) optimal SO0 cal parameterizations, : U,  RE—1 — &, with U
lution 7* of problem (4) by operating in the rate SPAC&en andpy(0) = r [25]r " ’ "
Second, given*, determine a parameter setatp such " '

that

V. ITERATIVE EFFICIENT SET APPROXIMATION

For simplicity, it is first assumed that* ¢ £. Based
on this assumption, starting at”), a sequence of iterates
r(xh) = r*. r(™ e £ is generated. At each(™, a parameterization
¢, IS available. Composing parameterization and util-
Due to the assumed strict monotonicity of the functiorty function results in a functiorf,. = uog,., which maps
u, all candidate solutions to problem (2) lie on the Parejg, open subset &~ —! into R. The composite function
efficient boundary of . The Pareto efficient setis definec}cr is amenable to standard methods for unconstrained
as optimization. Based on this observation, a gradient as-
_ W, L centis carried out on the set of functiofis= uog,.. Let
E={rec:iriecur>r}. © r(™ denote then-th iterate, andu(™ its coordinates in
Knowing thatr* € &£, a gradient projection method isthe parameterizatio,...,, i.e., ™ = ¢_ L (r(™) = 0.

'p(")

proposed that generates iterates &nNote that there By definition of f,., u(r) = f.(0). The composite



function f,. is differentiable a0, with gradientV f,. at
0 given by
V fr(0) = Vér(0)Vu(r), (8)

whereV o] is the Jacobian ob,. If Vf,.(0) # 0, then
V f»(0) is an ascent direction of,. at0, i.e., there exists
apf >0 suchthatforallt, 0 <t<p

£V fr(0) € Uy, © <
[tV £(0)) > £2(0), (10)

where (9) follows from the fact thdt,. is open and (10)
from the differentiability of f,., see, e.g., Theore®1
in [26]. This gives rise to the following iteration:

p™ =g L (r™M) =0, (11)
pl"t) =tV f,0,(0), (12)
r ) = o (D), (13)

Figure 1. One iteration of the IEA method.
with ¢ > 0 chosen such that properties (9) and (10)

are fulfilled. The algorithm defined in Eqgs. (11)-(13)
is a so-calledvarying parameterization approacko large. In contrast to Armijo’s rule, however, there is no

optimization on manifolds [23], [27]. test whether the step size is too small, itg.is always
According to Eq. (10), the iterates™ generate an considered large enough.
increasing sequenagr(™). The iteration stops if There exists a choice for the parameterizatignsor

Vn(0) =0 (14) which V¢,.(0), and thusV f,.(0), is particularly simple

" ' to compute. LetB € RX*X~1 denote an orthonormal
In this work, pointsr € £ for which (14) holds are basis of the tangent spad. Choosen such that the
denoted astationary points The tangent space ¢f at columns of [B n] constitute an orthonormal basis of
r is defined as RX. Choose the parameterizatign. as follows:

T, = span (V¢(0)") . ¢r(n) =1+ Bu+nd(p), (16)

Thus, geometrically, stationary points correspond Whereé(u) is chosen such thap,.(u) € € (correction
points on the efficient boundary where the gradient gfep). Then

the utility function is orthogonal to the tangent space,
cf. Eg. (8). In the context of minimizing a differentiable Ve¢,(0) = BT, a7

function over a dlﬁgrentlable ma.nlfol_d, Eq. (.1.4) repreAS shown in Subsection V-B, it is straightforward to find
sents a necessary first-order optimality condition [22].

The step sizef is determined with an inexact line? basisB. Combining Egs. (12),(13),(8),(16) and (17)

search. As evaluations gf. are usually computationally yields

expensive, the step sizés chosen such that an increase 5 (n+1) — () | tBBTVu(r(">) +nd(t), (18)
in the utility value results, while keeping the number of

evaluations off,. as small as possible. Define with 6(t) = 6(tBTVu(r™). Accordingly, the update in

rate space is given by
0(t) = fr(tV[r(0)) = u(Ppn (tV frn (0))).
Starting with an initial step sizeé = ty that satisfies
Eq. (9), the step sizeis halved until The first summand in (19) is the orthogonal projec-
tion of Vu(r(™) on the tangent space. Based on this
0(t) 2 0(0) + aVO(O)t, (15) observation, the proposed method can be interpreted
for fixed o, 0 < a < 1. Note that (15) corresponds toas follows: First, approximate the efficient set by its
Armijo’s rule [28] for accepting a step size as not totangent space at(™). Next, compute a gradient step,

) () — ¢t BBTVu(r™) + né(2). (19)



using this approximation. Finally, make a correction stefthe dual function follows as
from the approximation back to the efficient set, yielding T T ~
r("*+1) Based on the observation that at each iteration, g(X) =sup (z(1 = A"n) + X7 (r — 7))

. . . €R
an approximation of the efficient set is computed, the rec
proposed method is denoted d#srative efficient set +00, ATn # 1,
approximation(IEA). For the case of{ = 2 users, one = maxyec AT (r — 7) ATn =1 (23)

iteration of the IEA method is illustrated in Figure 1.

Eq. (9) defines an upper bound on the step gizeNote that for A\Tn = 1, again a weighted sum-rate
which ensureg:.("t1) stays within the domain of the pa-maximization problem is to be solved. Recall from
rameterizationp,...,. The domain of the parameterizatiorSection IV that WsrMax can be efficiently solved as a
defined in (16) is defined implicitly by the requirementonvex problem in the dual MAC.
that all entries of the resulting rate vector have to be Let *(A) denote a maximizer of the weighted sum-
positive, i.e., rate maximization in (23) for a givel\ € Rf. The

Uy = {10 bo(1) > 0} (20) optimal dual variable\ is found by solving
In fact, the image and domain of the parameterization e AL (A) =7) st Aln=1. (24)
defined in (16) can be extended to also include rate B
vectors with zero entries. From Eqgs. (20) and (18), , N
upper bound on the step sizecan then be derived by at )‘)* of the~cost function of problgm 524) IS given
interpretingr(™+1) as a function oft. An upper bound Y ("(X) = 7). If A has equal entries;*(A) is not

ont is given by the value of where the smallest entryuhnique [4f]' Thus, the sdu_?fgradigngl is ;ot L:;]iqllje ?}nd
in »0+D(1) is exactly zero: the cost function is nondifferentiable. Accordingly, the

minimization in (24) has to be carried out using any of

¢ : min r,(C”“)(i) =0. the methods for nondifferentiable convex optimization,

k . )
_ such as subgradient methods, cutting plane methods, or

N(%e that by Eq. (18), the upper bouriddepends on ihe gliipsoid method [29]. All these methods have in
" — thus the validity rangé < ¢ <t changes ovef, common that they generate iterate® (which converge
and it may get small close to the boundaryof to the optimal dual variabld*), and at each iteratiof
B. Correction Step they require the computation of a subgradienf\&t —
O\p/hich basically corresponds to solving a WsrMax prob-
lem with weightA(”. In this work, an outer-linearization
cutting plane method [16] is used to solve problem (24).
) — 7 4 o, (21)  As strong duality holds§ = g(A*), and

with 7 = » + Bu(™+1)_ Based on (21), the correction r+D) = i 4 (A )n.

step can be interpreted as the projectionrofon £ _ _

by computing the intersection betweéhand the line ~ From the optimal dual variabla™ also follows the
{r =7+ zn,z € R}, cf. Fig. 1. Assume thah > 0 tangent space at"*1). Due to strong dualityy("*1)
(the validity of this assumption is verified at the end ghaximizesL(z*, =, A*) overC [16]. Accordingly,r(" 1)

this subsection). Thed can be found by solving theiS & maximizer of a WsrMax problem with weight".
f0||owing optimization pr0b|em: Recall that for WeraXu(r) = )\T’I‘, with Vu(r) =\

~ The corresponding composite functigi} is given by
0= max v st FHans<r reC (22) fr(n) = AT (). As r"+1D is a maximizer of the
In particular, i\N_erax_ problem, it h_as to b(_a a st_ationari/ point (for
is independent of the utility functiom, i.e., it is con- this particular composite function, with = A*). From
vex regardless whether is concave or not. Moreover, Eq. (14) follows:
Slater’s condition is satisfied, i.e., strong duality holds (AT ppnin) (0) = Vpponin (0)A* = 0,
Accordingly, (22) can be solved via Lagrange duality.
The Lagrangian of problem (22) is given by thus

Lz, 7, A) =z + A (r — 7 — zn). Tpinrn = null (A1) (25)

cording to Danskin’'s Theorem [16], a subgradient

The most involved step is the computation
S(pu D). Write (1) as

Note that (22) is a convex problem.



In other words, the basiB needed in thaeextiteration outer loop. In fact, the convergence of the outer loop is
can be obtained by computing an orthonormal basis @fisured by an increase in the cost function at each step,
the null space of A*)T, where \* is the optimal dual based on condition (10). The inner iteration generates
variable of the current iteration. In addition, in the nextate vectors:(A(®) during convergence ta*. If r(A®))
iteration a unit vector > 0 orthogonal toB is needed. fulfills condition (10) andr(A()) € £, the projection of
From Eq. (25) it follows that (in the next iteration) is 7 on C is sufficiently good to yield an ascent step én

simply In this case, the projection is aborted and the outer loop
A continues with
n=-——. .
A2 p D) — p(A©),
C. Time-Sharing Solutions The resulting reduction in the number of inner iterations

The algorithm described in Subsections V-A and V-Bomes at the price of an evaluation of the functioat
yields a stationary point* of problem (4). The final each inner iteration. As a result, the overall gain in terms
step is the recovery of an optimal parameter setgip of complexity clearly depends on the cost associated with
from r*. The complexity of the recovery step depend@valuatingu.
on the location of-*: If »* ¢ R , thenr* lies in a time-
sharing region. Throughout this work, the tetime- _ _ _
sharing regiondenotes a subset 6fwhose elements are S0 far, it has been assumed that at the optimal solution
only achievable by time-sharing. In case of time-sharig @l users have non-zero rate (i.e, € £). If this as-
optimality, the optimal parameter setup has to be fourf§mPption does not hold, the sequer{oé")} converges
by identifying a set of points irf N R whose convex to a point on the boundary ¢, cf. Section V-F. Define
combination yields-*. I(r)={k:r, =0}. (26)

The recovery is based on the optimal dual variable of o
the last correction step: If at least two entriesNhare 1he boundary of is given by
equal, time-sharing may be required. In the case of equal 9E = €\ &= {re&:I(r) o).
entries in\*, there exist multiple rate vectorse R that
are maximizers of a WsrMax problem with weight Observe that the boundary can be written as the union
[4], and r* is a convex combination of these points. 19f /£ setsd€y, with
the case that all entri(_as m* are equal, all permutations 0Ey = {r € £: {k} C I(r)}.

m are optimal, resulting inK! points ryg(A*, 7). As

a consequence, enumerating &ll points first and then ~ Finally, define a sef(;, by removing thek-th entry
selecting the (at mosfy points that are actually required(Which is zero) from all elements i6&;:

to implementr* is only feasible for small. For larger _ K—1. . _

K, an efficient method for identifying a set of relevant Epp =z €R rae=re L@ (k)T € 08y}
points is provided in [30]. Note that the resulting sét;, is the efficient boundary

If no two entries in\* are equal, the optimum encodof a capacity region of & — 1 user MIMO BC, with
ing orderr* is uniquely definedr* = rys(A*, 7*), and userk removed. It follows immediately that the interior
Q* maximizes(A*)Tr(Q, 7*), cf. Eq. (5). &gk 1s again a differentiable manifold, now of dimension

From an implementation viewpoint, entries i will K — 1. The boundary o, can be decomposed in the
usually not be exactly equal, even if the theoretic§hme manner, resulting in a set Af — 2 dimensional
solution lies in a time-sharing region. As a result, timgnanifolds, and so on. Accordingly, the g&, with D C
sharing between users is declared if the difference bé- ..., K} corresponds to the efficient boundary of a

E. Boundary Points

tween weights is below a certain threshold. capacity region of & — |D| user MIMO BC, with users
o in D removed.
D. Coarse Projection Accordingly, the general case is incorporated as fol-

The proposed algorithm consists of two nested loogsws: Denote by A = {1,...,K} \ D the set of
a gradient-based outer loop and an inner loop for tlaetive users. Only active users are considered in the
correction step at each outer iteration. A significamptimization, i.e., replac&” by |.A| and letk be the index
reduction in computational complexity can be achieveddff the k-th active user in all steps of the algorithm. If the
the required precision of the inner loop is adapted to tlsequence{r(")} converges to a point on the boundary



of &p, the users with zero entries in the rate vector The theoretical convergence results based on Zang-
are removed fromA4 and assigned t®. Initialize with will's Global Convergence Theorem assume infinite pre-
A=1{1,... K},D=@andr® e £ With these modi- cision. Theoretically, ifV f,..,(0) # 0, it is always
fications, the algorithm always operates on differentiabp@ssible to find a step size> 0 such that (10) holds.
manifoldsEp ¢ R, with » > 0,Vr € Ep. In a practical implementation of the IEA method, the
In practice, convergence to the boundary is detectpdrameterization is evaluated numerically, in particu-
as follows: If the rateﬂ,i”) of an active user falls belowlar the correction step is a numerical solution of a
a threshold, and the projected utility gradient results gonvex optimization problem. Due to the convexity of
T](C”“) < r,(g ") the user is deactivated. The decision téhe correction problem, a high numerical precision can
deactivate a user is based on the iterates and notlshachieved. Still, the inherent finite precision of the
the limit point, thus the modified algorithm may lead tgorrection step sets a limit to the precision of the overall
suboptimal results if a user is deactivated that actuajgorithm. This property underlines the importance of
has non-zero rate in the limit. the coarse projection described in V-D: The inner loop
needs a tight convergence criterion in order to yield
F. Convergence of the IEA Method a high precision in cases where it is difficult to find
Concerning the convergence of the IEA method, twan ascent step. In cases where an ascent step is easily
cases can be distinguished: In the first case, the sequefat@d, however, it is not necessary to solve the problem
{r(n)} converges to a point ii. In the second case, theto high precision. The latter case is detected by the
sequence{r } converges to a point on the boundargoarse projection. Also note that the coarse projection
of £. According to Section V-E, after removing the usergoes not impact the convergence behaviour in a negative
with zero rate, the boundary itself isla—1 dimensional way: The global convergence ensures that (theoretically)
manifold with boundary, and the algorithm converges ithe algorithm does not get stuck at a non-stationary
the interior or on the boundary of this manifold. Thgoint. The coarse projection only comes into play if it
argument continues until the dimension of the manifoig possible to move away from the current point.
under consideration i9. Thus, it suffices to consider |t is clearly not guaranteed that a stationary point
the convergence behaviour in the interior&f, which, r* maximizes utility. Due to the fact that the proposed
from the perspective of the algorithm is equivalentto algorithm is an ascent method, howevet, is a good
— an open set equipped with a differentiable manifokblution in the sense that given an initial valué),
structure. utility is either improved, or the algorithm converges at
Accordingly, the IEA method is globally convergenthe first iteration and stays at?, in this case requiring
if convergence to a point* € & implies thatr* € £ no extra computations. That is, any investment in terms
is a stationary point. Convergence can be proved usisfcomputational effort is rewarded with a gain in utility.
Zangwill's Global Convergence Theorem [26]. Not all
parameterizations, however, yield a convergent method. VI. MONOTONIC OPTIMIZATION
For the parameterization defined in Eqg. (16), global The gradient-based approach presented in Section V
convergence (in the sense of the Global Convergerssnverges to a stationary point of the optimization
Theorem) is proved in [31]. problem, and cannot guarantee convergence to global
A more intuitive (and less rigorous) discussion ofptimality, as it relies on local information only.
the convergence behaviour follows from considering the The rate-space formulation (4) of the utility maxi-
updatesu("t1). Convergence to a point* implies mization problem corresponds to the maximization of
a1 n a monotonic function (the utility function:) over a
Ot =109 £ (0) — 0. (27) compact set inRX (the capacity regior?), and hence
Now assume that-* is not a stationary point. Thisis a monotonic optimization problem [15], which can be
implies V f,.«» (0) # 0,Vn, which, by Eqg. (27) implies solved to global optimality.
t(") — 0. For the parameterization defined in Eq. (16), A basic problem of monotonic optimization is the
such a sequence of step sizes results if the sequencenakimization of a monotonic function over a compact
upper bounds(r(™) converges to zero. This behavioumormal set [15]. A subsef of Rff is said to benormalin
however, only occurs if the sequen{:e<”)} converges Rﬁf (or briefly, normal), ifre S,0<y<x=yecS.
to a point on the boundary &, which contradicts the The capacity regiorC is normal: any rate vector’
assumption that* € £. that is smaller than an achievable rate veatas also



achievable. Thus¢ is a compact normal set and theylobal maximizer ofu. See [15] for a rigorous proof.
rate-space problem (4) is a basic problem of monotordeccording to Eq. (30), am-optimal solution is found if
optimization. u(7) > (7)) — e

A. Polyblock Algorithm One possible method to construct a sequence of poly-

_ _ _ _ _ blocks P(V™) that satisfies (28) is as follows [15]:
The basic algorithm for solving monotonic optimizapgfine

tion problems is the so-calledolyblock algorithm A K
polyblock is simply the union of a finite number of K(r)={zeR} x> r, k¢ I(r)},

- K. - - K
hyper-rectangles iR’} : Given a discrete set C RY, a ith I(r) as defined in (26). Clearlg:™ ¢ & implies

polyblock’P(V) is defined as K@#EM™)NC = @. Thus,K(#™) can be removed from
PV) = U {r e RE r <w}. P(V™) without removing any achievable rate vector.
ooy Moreover, if#(") ¢ &,
The setV contains the vertices of the polyblo@k()). K(#™) n Py 5 {f,(n)} > o,

Due to the fact thaC is a compact normal subset
of RE, there exists a se@(®) such thatc € P(V(). thus by removing(#(™), a tighter approximation re-
Moreover, starting withn, = 0, eitherC = P(V™) or sults. Finally, (V™) \ K(#) is again a polyblock
there exists a discrete sgt"+1) ¢ Rf such that [15]. To summarize, the desired rule for constructing a
ccC P(V(n-l-l)) c P(V(")). (28) sequence of polyblocks that satisfies (28) is

n+1)y _ n A(n
In other words, the polyblock® (V™)) represent an PO = PO\ K M).
iteratively refined outer approximation of the capacityhe rules for computing the corresponding vertex set
region. V(41 are provided in [15].
Consider the problem of maximizing utility over th

polyblock p(y(n)); B. Intersection with

If the polyblock algorithm is applied to the rate-space
Terﬁg}fm)“(r)' (29)  problem (4), the only step in the algorithm in which the
o intricate properties of the capacity regiGhcome into
Let 7(") denote a maximizer of problem (29). Due to thg),y is the computation of the intersection betw&eand
monotonicity ofu, 7 eV, e, the maximum of & {he jine connecting the origin with(™. Comparing the
monotonlc_functlon over a polyblock is attained on ongy rection step of the IEA algorithm from Section V-B
of the vertices [15]. Due to the fact that the vertex S¢fit the computation of the intersection point, it turns
of a polyblock is discrete, problem (29) can be solveg; that both operations are almost identical, only the line
to global optimality by searching over all € V@' whose intersection witl§ is computed is different. As a
If 70" € €, the globally optimal rate vector is found.gg it the Lagrangian-based algorithm from Section V-B

In general, however:™ will lie outside the capacity capn also be used to compute the intersection point, by
region, due to the fact that the polyblock represents @Btting

outer approximation. Denote hyf™ € £ the intersection o "
betweenf and the line segment connecting the origin r=7r" n=7r".

with #). Let "Q(n? denote the best intersection poinf, section V, it was stated that the most complex step
computed so far, i.e., in each iteration of the IEA method is the correction

P =y * = argmax u(y(f))_ step. Similar results hold for the polyblock algorithm:
Le{1,...,n} At each iteration, the main complexity lies in the com-
Moreover, letu* denote the global maximum of (4). Itputation of the intersection point. Due to the similarity
follows that between IEAs correction step and the computation of
the intersection point in the polyblock algorithm, the

W) < 0t < u(E™), (30) P Poly ?

complexity of both approaches can be compared by
Intuitively, as the outer approximation ¢f by a poly- comparing the number of gradient iterations with the
block is refined at each step(7(™)) eventually con- number of polyblocks generated until a sufficiently tight
verges tou*. Due to the continuity ofu, this con- outer approximation is found. The convergence proper-
vergence also holds fo#(™), i.e., #(™) converges to a ties of the polyblock algorithm are only asymptotic [15]



— thus, a relatively high complexity of the polyblock If the utility function v« is concave, strong duality
algorithm can be expected. This expectation is confirmédlds, and the optimal primal solutiaff can be recov-
by simulation results, see Section VIII. ered from the dual solution by employing standard meth-
ods for primal recovery, as in [14]. Also, for concang
efficient methods exist to find a set of corner points that
The presentation of the polyblock algorithm in Sedmplementr* in the case of time-sharing optimality [30].
tion VI-A closely follows [15]. In this basic version, Being entirely based on Lagrange duality, a non-
simulations showed very slow convergence of the ajoncave utility poses significant problems to the dual
gorithm, due to the fact that close to regions on thgecomposition. Most importantly, recovering aptimal
boundary where at least on rate gets close to zerop@mal solution (»*,s*) from the dual solution is, in
large number of iterations are needed until a significagiéneral, no longer possible. Moreover, the schemes for
refinement results. A similar behaviour is reported ifecovering all parameteegp of a time-sharing solution
[32]. Following [32], the convergence speed of theely on strong duality to hold. [30]. For nonconcavge
algorithm can be significantly improved by modifyincthowever, strong duality cannot be assumed to hold. In
the direction of the line whose intersection witldefines fact, simulation results in Section VIII show a significant
the next iteratey™. Computationally, this is achievedduality gap in the scenario under consideration.
by settingn = #™) + a, a € RE in the algorithm from  As a result, for nonconcave the following heuristic
Section V-B. is used to obtain a primal feasible solutith s): Given
Aninitial vertex se®’(*) can be determined as follows:the optimal dual variable\*, chooser = rus(A*, %),
Define a rate vectow < ]Rf whose k-th entry v,  wheren* is any optimal encoding order. Moreover, let
corresponds to the maximum rate achievable for user= #. An upper bound on the loss incurred by this
k. ThenV(©® = {wv} with w > 1 defines a polyblock approximation follows immediately from weak duality:
that contains the capacity region. Let »* denote the (unknown) maximum utility value. By
weak duality,g(A*) > u*, thusu* — u(r) < g(A*) —
u(7). The tightness of this bound clearly depends on the
For concave utilities, a dual approach to solve the utiyality gap, which is not known.
ity maximization problem in the MIMO BC was recently
proposed in [14]. The algorithm in [14] represents an VIIl. SIMULATION RESULTS
application of the dual decomposition [10]. Similar to Ultility maximization in a/’ = 3 user Gaussian MIMO
the gradient-based method developed in Section V, tBgoadcast channel wittv. = 6 transmit antennas and
solution is found in two steps: First, an optimal raté/x = 2 receive antennas per user is simulated. The
vectorr* is found by operating in the rate space, seconéf)annelsH; are i.i.d. unit-variance complex Gaussian.

C. Implementation Issues

VII. DUAL DECOMPOSITION

the optimal parameters are derived frarh Furthermore, the maximum transmit powerAg = 10.
In the first step, problem (4) is modified by introducing© obtain rates in kbps, rates are multiplied by a band-
additional variables: width factor W = 60kHz.
In the simulations, the utility: is given by a weighted
maxu(s) St 0<s<rrel (31) sum of the users’ utilities,:
o K
The dual function is chosen as ulr) = ZwkUk(Tk)-
g(A) = maxu(s) — ATs+max ATr. k=1
20 NS The IEA method always uses a sum-rate maximizing
ga(N) gp(X) rate vector as initial point(?). The results are averaged

over 1000 channel realizations.

Two different models for the users’ utilitieg, are
considered: A concave logarithmic utility and a noncon-
cave sigmoidal utility.

Evaluating the dual function & results in two decou-
pled subproblems: Computing,(\) andgp(X) by max-
imizing over the primal variables and r, respectively.
Computinggp(A) is again a WsrMax problem.

The optimal dual variable is found by minimizing theA. Concave Utility
dual function with respect t\. The dual function is e |ogarithmic utility function is defined as

always convex, regardless of the properties of the utility .
function  [16]. up(ry) =bIn(1+c "),
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Figure 2. Average utility (concave utilities) Figure 3. Sigmoid utility functionp = 400kbps

with constants, c. In the simulationsg = 40kbps andh  used:

is chosen such that, (1000kbps) = 1. The weightswy, 1
are chosen according to the following scheme: ur(rr) = ck (1 exp(—ap(rs — by)) T dk) ,
w=(1 7 7%, where ¢;, and d;, are used to normalizey;, such that
- v up(0) = 0 and ux(oco) = 1. The steepness of the
[[ewl1 transition between the minimum and the maximum value
with v € {1,...,5}. Figure 2 shows the average utilityiS controlled by the parametef,, whereas,, determines

for the case of logarithmic utility functions. Shown is théhe inflection point of the utility curve (cf. Figure 3).
average utility for the gradient-based approach (IEAY) the simulations,a; = akbps™!, and a is varied

for the dual decomposition (DD), and, as a referend8, & range between.01 and 0.05, modelling different

the average utility obtained by using for transmissio#egrees of elasticity of the applications. For each chan-
the sum-rate maximizing rate vector that correspondsfg! realization, the constamj, of each user is chosen
encoding orderr = [1 92 3} (SR). Due to the fact randomly in the interval300kbps 500kbpg according
that the utility maximization problem is convex, botH0 @ uniform distribution. Choosing thg randomly can
IEA and DD achieve identical performance. Moreoveb,e understood as a model for fluctuations in the data rate
for identical weightswy, cross-layer optimization doesrequirements of the users over time, e.g., transmission of
not provide a significant gain compared to the Sum-ra@eVideO source with Varying scene activity. All users have
maximizing strategy. The larger the difference betwe&@flual weightw, = 1/K.

the users’ weights, the larger the gain achieved by crossFigure 4 shows the average utility for the case of
layer optimization. This result is not surprising, as fogigmoidal utility functions. Shown is the average utility
asymmetric setups, it is more important to adapt tfer the gradient-based approach (IEA), the polyblock
physical layer to the characteristics of the upper laye@lgorithm (PB), the dual decomposition (DD), and the
Moreover, the decay of the logarithmic utility function igum-rate maximizing rate vector (SR). In addition, the
rather moderate around the optimal rate vector, theref@¢erage minimum value of the dual function in the
a maximizer of the weighted sum-rate is almost optimglal decomposition approach is shown (DUB). The PB

for equal weights. algorithm finds the global maximum for each realiza-
- tion. As a result, the PB curve gives the maximum
B. Nonconcave Utility achievable average utility. In terms of average utility,

The nonconcave utility model is adopted from [8]. Fathe performance of the IEA method is close to optimal.
each uselk, the following sigmoidal utility function is It can be concluded that for the system setup under



1 T T . 0.65¢
—t— [EA : :
== PB 0.67
0.8f| =B =DD . : .
. =0= SR 0.55f
P +  DUB FATERRERNE oy T 2
= nal = 0.5}
S 0.6' \\\\\ -+ =]
G.) llllllllll w
+ 0.45¢
g S
20 - a- ' S 04
© = 0 e .
&= & == -0 0.35}
0.2r :
0.3r
0 : - : 0.25 - : . ' : .
0.01 0.02 0.03 0.04 0.05 0 5 10 15 20 25 30
a iterations
Figure 4. Average utility (sigmoidal utilities) Figure 5. Average utility vs. number of iterations, IEA medth

consideration, the IEA method succeeds in finding the steepness parametera € {0.01,0.03,0.05}. Note
stationary point which is identical or close to the globdhat the rightmost points of each graph corresponds to
maximum for most realizations. In contrast, the du#ite average utility value in Figure 4. Only the gradient
decomposition-based method does not find a good r@sed outer iterations defined in Egs. (11) - (13) are
vector in most cases. The poor performance of the coppunted, the inner iterations in the correction step are
putationally simple SR strategy emphasizes the need f®glected. Figure 5 shows that the IEA method needs
cross-layer optimization. In particular, the performand@n average between five and iterations to get close to
gain achieved by both PB and IEA increases witfrhis the maximum achieved utility value.
behaviour can be explained as follows: With increasingIn Figure 6, average utility is plotted versus the
a, the interval in which the utility function makes anumber of iteration for the polyblock algorithm. The
transition from small to large values becomes smallglot shows three pairs of graphs, with each pair corre-
Therefore, it becomes more and more important to adgponding to a different value of the steepness parameter
the physical layer parameters to the utility charactessti a: a € {0.01,0.03,0.05}. Each pair consists of two
graph, one showing the average of the current best
The results in Figure 4 also show that the dual uppuetility value u(#™) (CBV, dash-dotted line), the other
bound (DUB) obtained from the dual decompositioahowing the average of the upper boum@ (™) (UB,
is rather loose. This implies that there is a significasplid line). Depending on the parameterbetweens0
duality gap in most cases. to 75 iterations are needed until the current best value is
close to the global maximum. Recall from Section VI-A
that the convergence criterion for the PB algorithm is
If average utility is the only figure of merit, thebased on the difference betweeit*(™) and u(+(™).
polyblock algorithm is obviously superior to all othefFigure 6 shows that a large number of iterations may
approaches. From a practical viewpoint, a second methbie required until convergence is declared, due to the
of interest is the computational complexity of the differrelatively slow convergence of the upper bound.
ent approaches. In the following, the utility-complexity In both Figure 5 and Figure 6, the number of inner
trade-offs provided by the different approaches are invaterations required in the correction step and the com-
tigated. All results are for the case of sigmoidal utilityputation of the intersection point, respectively, are not
functions. counted. In each inner iteration, a WsrMax problem is
In Figure 5, average utility is plotted versus theolved. Moreover, a WsrMax problem is also solved at
number of iteration for the IEA method. The plot showsach iteration of the dual decomposition. Accordingly, all
three graphs, corresponding to three different valuestbfee approaches can be compared based on the number

C. Complexity Analysis
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of calls to the WsrMax subroutine. Figure 7 shows the

average utility that is achieved if the maximum numbeurtlllty maximization problem in the rate space represents

of calls to WsrMax is limited to a value maxCall, with‘:‘n kr?]f T(;erir TTer IE'?‘trTeﬂ;f?O: i)i%lo'tiéhf dlffft(?]rentlable
maxCall increased in steps did calls. Again, three i areo'ons uﬁ.llé (:hc; oeleblgci al ?)l:'thri );gl'eseo%afhaec
groups of graphs are shown, each group correspondiﬁ'g glon, while poly gor .

act that maximizing utility over the set of achievable rate

to a value ofa, with a € {0.01,0.03,0.05}. As an ctors represents a monotonic onfimization oroblem
example, the results show that the dual decompositig% P IC optimization p ’

needs between0 and 20 iterations until convergence The polyblock algorithm provides globally optimal
(to a clearly suboptimal solution). Of particular interedt€rformance, at the price of a relatively high com-
are the cross-over points between IEA method and Pgtational complexity. From a practical viewpoint, the
algorithm. Fora = 0.05, the cross-over point is atProposed IEA method provides an attractive trade-off
maxCall = 300, i.e., only if more than a maximum of Petween utility performance and computational com-
300 calls to WsrMax are feasible does the PB algorith@€Xity: In the simulation setup used in this work, the
outperform the IEA method. Moreover, for small value8verage utility achieved by the IEA method is close
of maxCall, the IEA method provides significantly largef® Optimal, at significantly lower complexity than the
average utility. polyblock algorithm.

Throughout this work, it is assumed that users’ rates
are the only relevant performance metrics of the physical

Two methods for solving the nonconcave utility maxayer, implying that rate cannot be traded for delay and
imization problem in the MIMO broadcast channel areliability. In a more general setup, more than one per-
proposed: a gradient-based method that convergesfdomance metric per user may be required to characterize
a locally optimal solution, and an approach based dime physical layer, corresponding to a utility functionttha
monotonic optimization that yields the global optimunis a function of all these metrics [7]. Concerning the
Due to the structure of the MIMO BC capacity regiornresults presented in this work, this would clearly impact
a direct optimization in terms of the physical layethe mapping from physical layer parameters to set of
parameters transmit covariance matrices and encodaahievable performance vectors. The methods proposed
order is not feasible. Thus, as an intermediate stép.this work, however, would still be applicable, provided
both methods first determine an optimal rate vectdhe structural assumptions of each method are still met
The optimal physical layer parameter setup, which mdie., the utility function is monotone in all physical
include a time-sharing solution, is then obtained fromayer metrics, the set of achievable performance vectors
this rate vector. For both methods, the formulation of thie compact and, in case of the IEA method, can be

IX. CONCLUSIONS



equipped with a differentiable manifold structure). Whil¢is]

the

generalized achievable region can still be assumed to Jt_)be]‘ D. Bertsekas, A. Nedic, and A. Ozdagl@onvex analysis and

capacity region is convex, it is not clear whether a

convex. This observation represents a further motivation
for an optimization framework that does not rely on thBg7]
assumption of convexity.
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