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Abstract

This thesis is a contribution to research in the field of Large Eddy Simulation (LES) of
particle-laden flow with a focus on the effect of unresolved small scale turbulence on sus-
pended particles. The first substantial contribution of this thesis is a detailed quantification
of small scale effects. The thesis contains new results from Direct and Large Eddy Simula-
tion of particle-laden forced homogeneous isotropic turbulence. Reynolds numbers based on
the Taylor length scale are Rey = 34, 52 and 99. Stokes numbers based on the Kolmogorov
time scale range from St = 0.1 to St = 100. The main conclusions of these numerical exper-
iments are the following: if subgrid scales are neglected for particle transport in LES, then
particle kinetic energy is underpredicted, particle dispersion is overpredicted but preferential
concentration is predicted satisfactorily.

The second contribution of this thesis is an analytical and numerical analysis of three com-
monly used models that describe the effect of subgrid scales on particles: the Approximate
Deconvolution Method (ADM) and two stochastic models. Kuerten (Phys. Fluids 18, 2006)
proposed ADM for particle-laden flow. The stochastic models were proposed by Shotorban &
Mashayek (J. Turbul. 7,2006) and Simonin et al. (Appl. Sci. Res. 51, 1993). Analytical and
numerical results show that ADM improves the particle dynamics, but for coarse LES, the im-
provement is very small. On the other hand, at high Stokes numbers the predictions from the
stochastic models are less accurate than those obtained by neglecting subgrid scales for par-
ticle transport. Furthermore, the stochastic models were found to destroy preferential con-
centration, whereas ADM preserves preferential concentration. In conclusion, the stochastic
models were found to perform less reliably than ADM.

The third contribution of this thesis is a new model that can be regarded as an extension
of ADM. The new model consists of a specific interpolation method, which is designed such
that statistically the numerical interpolation error can be identified with the effect of the
unresolved scales. The new model was assessed analytically and numerically. For the nu-
merical assessment, simulations of forced homogeneous isotropic turbulence at Re, = 52, 99
and 265 were conducted. Analytical and numerical assessments show very promising results.
In particular, the overall accuracy of the model is higher than the accuracy of ADM. As the
coarseness of LES increases, the gain in terms of accuracy of the new model in comparison
to ADM also increases. This means that for high Reynolds number configurations, where
only coarse LES is possible, the new model can be expected to produce significantly better
results than ADM.



Kurzfassung

Die vorliegende Arbeit stellt einen Forschungsbeitrag zum Thema Large Eddy Simulation
partikelbeladener Stromungen dar. Der Schwerpunkt der Arbeit liegt auf dem Effekt der
nicht aufgelosten kleinskaligen Turbulenz auf suspendierte Partikel. Der erste wesentliche
Beitrag dieser Arbeit zur aktuellen Forschung ist eine detaillierte Quantifizierung klein-
skaliger Effekte. Die Arbeit enthélt neue Ergebnisse aus DNS und LES partikelbeladener
homogener isotroper Turbulenz mit konstanter Energiezufuhr. Die Reynoldszahlen betra-
gen Rey, = 34, 52 und 99, basierend auf dem Taylorschen Lingenmafl. Die Stokeszahlen
reichen von St = 0.1 bis St = 100, basierend auf dem Komogorov’schen Zeitmafl. Die
wichtigsten Ergebnisse dieser numerischen Experimente lauten wie folgt: Falls in LES die
nicht aufgelosten Skalen fiir den Partikeltransport nicht beriicksichtigt werden, dann wird
die kinetische Energie der Partikel unterschétzt, die turbulente Dispersion iiberschétzt aber
preferential concentration zufriedenstellend vorhergesagt.

Der zweite Beitrag dieser Arbeit ist eine analytische und numerische Analyse von drei
iiblicherweise eingesetzten Modellen fiir den Effekt der nicht aufgelosten Skalen auf die
Partikel. Die drei Modelle sind die Approximate Deconvolution Method (ADM) und zwei
stochastische Modelle. Kuerten (Phys. Fluids 18, 2006) schlug den Einsatz von ADM fiir
partikelbeladene Stromungen vor. Die stochastischen Modelle wurden durch Shotorban &
Mashayek (J. Turbul. 7, 2006) und Simonin et al. (Appl. Sci. Res. 51, 1993) vorgeschlagen.
Analytische und numerische Ergebnisse zeigen, dass ADM zu einer verbesserten Vorher-
sage der Partikeldynamik fithrt wobei fiir grob aufgeléste LES die Verbesserung sehr gering
ist. Andererseits liefern die stochastischen Modelle bei hohen Stokeszahlen Vorhersagen,
die weniger genau sind als die Vorhersagen, die man erhélt, wenn man die nicht aufgelosten
Skalen fiir den Partikeltransport negiert. Auflerdem zeigte sich, dass die stochastischen Mod-
elle preferential concentration zerstoren wohingegen ADM preferential concentration erhélt.
Zusammenfassend zeigte sich, dass die stochastischen Modelle weniger zuverldssig sind als
ADM.

Der dritte Beitrag dieser Arbeit ist ein neues Modell, das als Erweiterung von ADM betra-
chtet werden kann. Das neue Modell besteht aus einer spezifischen Interpolationsmethode,
die so konstruiert ist, dass statistisch der numerische Interpolationsfehler mit dem Effekt der
nicht aufgelésten Skalen identifiziert werden kann. Das neue Modell wurde mit analytischen
und numerischen Mitteln bewertet. Fiir die numerische Bewertung wurden Simulationen
homogener isotroper Turbulenz mit Energiezufuhr bei Rey = 52, 99 und 265 durchgefiihrt.
Die analytische und die numerische Bewertung zeigen sehr vielversprechende Ergebnisse. In-
sgesamt ist die Genauigkeit des Modells hoher als die Genauigkeit von ADM. Je grober die
LES, desto hoher ist der Genauigkeitsgewinn im Vergleich zu ADM. Das bedeutet, dass fiir
hohe Reynoldszahlen, wo nur grobe LES moglich ist, erwartet werden kann, dass das neue
Modell signifikant bessere Ergebnisse als ADM liefert.
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1 Introduction

‘Turbulence modelling is dirty work’ I was once told by a professor for mathematics. ‘People
tend to call crude assumptions a model and then they ‘prove’ that the model works by
applying it on two or three test cases which they chose by themselves’. Well, today I would
translate this statement by ‘turbulence modelling is not easy and in order to develop a
model for realistic problems, it is sometimes unavoidable to assume some rather weakly
justifiable relations. If these assumptions lead to good results for a specific test case, then
the model is suited for configurations which are similar to that test case.” Thus, during
my time as PhD student I learned that turbulence modelling is not dirty work but a great
challenge.

1.1 Motivation and background of the
work

The present work focuses on particle-laden flow. Typical background applications are, for
example, sedimentation and deposition of aerosols. Figure 1.1 shows the Mississippi river
sediment plume and aerosol pollution over Northern India and Bangladesh. The aerosol
pollution is a result of human activity (according to NASA the aerosol is rich in sulfates,
nitrates, organic and black carbon, and fly ash), leading to environmental hazards. The Mis-
sissippi sediment plume also has a significant impact on the environment. NASA states that
it extends the coastline by 91m per year. Such problems form the motivation for this work.
The flows under consideration are particle-laden turbulent flows. The work is a contribution
to the challenging task of numerical prediction of such flows.

Particle-laden flow can also be found in other disciplines such as medical science (e.g.
deposition in the respiratory tract) or chemical engineering (e.g. chemical precipitation).
The wide range of applications makes it interesting to develop a general method for numerical
prediction of particle-laden flow in contrast to specialised methods for sedimentation, aerosol
deposition, etc.

In the last decades several such methods were developed. Recently, Guha (2008) reviewed
state of the art computational methods for this field. If direct numerical simulation (DNS)
is possible, then state of the art methods for dilute particle-laden flow produce reliable re-
sults (cf. e.g. Geurts et al., 2007; Balachandar & Eaton, 2010). DNS means solving the
Navier—Stokes equations ‘as is’. This approach is very exact but computational require-
ments are immense. An alternative approach is Large Eddy Simulation (LES). Here, one
solves for the large scales only. This method is less exact than DNS but the computa-
tional requirements are very much lower. The present work focuses on LES of particle-laden
flow.

Often people asked me whether this means that if new, faster computers will be developed
then my work will become meaningless because then particle-laden flow can be computed by
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Figure 1.1: Left: Aerosol  pollution
over Northern India and
Bangladesh, top: Missis-

sippi River Sediment Plume.
Source: NASA, Visible Earth, cf.
http://visibleearth.nasa.gov

DNS. In order to answer that question, let us consider again the example of sediment trans-
port in the Mississippi river. According to U.S. Geological Survey (field measurement data
available online at http://waterdata.usgs.gov), the Mississippi shows at Baton Rouge
an average flow velocity of about 0.9m/s, a maximum depth of 9m and a width of 1km.
With this data, one can estimate that with today’s computers the computation of the flow
at Baton Rouge by DNS requires approximately 7.5 x 106 CPU hours!. For comparison: if
one would use all 9728 cores of the present supercomputer HLRB2 in Garching, Germany,
then 7.5 x 10! CPU hours would still mean 882Mio. years of non-stop computing. But
this is only the flow at Baton Rouge. On top of that, the river basin must be computed.
These requirements greatly outstrip the computational capacities of near future comput-
ers.

'Details of the estimate following Reynolds (1990):
Reynolds number based on flow depth and average velocity: 8.1-10°
Resolution requirements from Reynolds (1990)’s estimates for turbulent (half) channel flow, grid

stretched towards open surface:

Height of domain: 9m, smallest scales: 9m/Re%® = 5.5-10"%m
Length of domain: 18m
Resolve complete transverse length (inhomogeneous): 1km
Number of cells vertical: 64(Re/3300)° = 72000
Number of cells longitudinal: 129(Re/3300)%? = 145000
Number of cells transverse: 1km/5.5-10"%m = 1.8-108
Time step size at CFL =1:5.5-1075s (average velocity: 0.9m/s)
Simulation time: 10 flow through times, 36-10°¢ time steps
Performance: 4 CPU seconds per 108 cells per time step
Overall: 2.7-10%° CPU seconds
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1.2 Modelling tasks for Large Eddy Simulation of
particle-laden flow

The immense computational requirements show the need for methods for LES of particle-
laden flow. This is addressed in the present work. As mentioned above, the idea of LES is
to solve for the large scales only.

In order to understand the modelling tasks in LES, one can assume that the small unre-
solved scales would be known as well. One can think of the large scales as large vortices and
the small scales as small vortices. It is clear that if one generates additional small vortices,
for example by small stirring motions, then these small vortices will affect the large vortices.
This shows an intrinsic problem of LES. The unresolved small scales have an effect on the
resolved large scales. This effect manifests itself in the non linear term of the Navier—Stokes
equations. Thus, already for single phase flow, LES needs a model for this effect. Such
models are hereafter referred to as fluid-LES models.

There are many studies proposing and assessing fluid-LES models, pointing out the re-
spective advantages and disadvantages, limits and capabilities (see e.g. Sagaut, 2006). Nev-
ertheless, this field is very challenging and there still remain many open problems, such as
the treatment of complex geometries or flow detachment. Present research (see Brun, Juvé,
Manhart & Munz, 2009) shows promising progress in tackling the remaining problems, mak-
ing LES reliable for arbitrary single phase flows. Given this background, the present work
focuses on LES of particle-laden flow.

For LES of particle-laden flow, one needs to respect that the unresolved scales of the
carrier flow have an effect on the particles. Again, modelling is necessary. In the present
work these models are referred to as particle-LES models.

1.3 Objective of this work

There is little work available so far concerning quantification and modelling of small scale
turbulence effects on particles. The present work attempts to fill this gap by numerical
experiment and analytical considerations.

In the present work, physical mechanisms that a particle-LES model must emulate are
identified. Furthermore, existing models are assessed with respect to their capability to
emulate these mechanisms. Based on these observations, a new particle-LES model is pro-
posed. The model is based on a completely new idea, making use of numerical errors caused
by interpolation in order to model small scale effects. The model is assessed using the
same numerical and analytical methods that were applied previously on the other mod-
els.

1.4 Outline of the work

The present work is organised as follows. Chapter 2 covers some fundamental issues concern-
ing particle-laden flow. Chapter 3 focuses on numerical tools. Simulation techniques and
numerical methods which are implemented in this work are presented. These two chapters
represent a selection of formerly published results.
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Chapters 4 to 7 cover new results concerning LES of particle-laden flow. Chapter 4
contains the methodology which is the basis of the remaining work. Chapter 5 investigates
the effect of small scale turbulence on particles by numerical experiments. This effect must
be emulated by a particle-LES model. Therefore chapter 5 defines requirements for such a
model. Chapter 6 analyses existing particle-LES models with respect to that. The chapter
focuses on three of the most promising particle-LES models. The analysis shows that all
three models contain significant structural defects. Finally, a new particle-LES model is
presented in chapter 7 which does not contain such defects.
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The present chapter contains a brief literature review on single phase and particle-laden
turbulent flow. The history of research on turbulent flow can be traced back to Leonardo
da Vinci who wrote:

Observe the motion of the surface of the water, which resembles
that of hair, which has two motions, of which one is caused by
the weight of the hair, the other by the direction of the curls; thus
the water has eddying motions, one part of which is due to the

principal current, the other to random and reverse motion.
(Leonardo da Vinci, , circa 1500)

Maybe it was this inspiring quotation which motivated researchers since then to publish a
seemingly endless series of studies on turbulent flow. In view of this, the present chapter can
only be seen as an attempt to extract those findings which are most relevant for the present
thesis.

Section 2.1 focuses on single phase turbulent flow. The Navier—Stokes equations are pre-
sented and the theories of Richardson and Kolmogorov are summarised. In addition, section
2.1 contains a description of isotropic turbulence. Isotropic turbulence will be used through-
out this thesis as reference testcase.

Section 2.2 contains a literature review on particle-laden flow. This section also contains a
precise specification of the type of particle-laden flow which is considered in the present thesis.
Governing equations are presented and physical effects of particles in isotropic turbulence
are explained.

Numerical approaches are not discussed in the present chapter but rather in chapter 3. In
any case, high performance computing surely was not relevant for Leonardo’s work.

2.1 Single phase turbulent flow

This section covers some fundamental aspects of single phase turbulent flow. The focus
is on those aspects which are relevant to the subsequent chapters. For more comprehen-
sive literature on this topic the reader is referred to Batchelor (1982); Tennekes & Lum-
ley (1972); Pope (2000); Landau & Lifshitz (1987); Rotta (1972); Frisch (1995) and Hinze
(1975).

In the following, first the Navier—Stokes equations are presented and a definition of
turbulence is given. Then, two basic theories on turbulent flow are presented, namely
the theories of Richardson (1922) and Kolmogorov (1941). These theories concern the
statistical description of turbulent flow. Finally, isotropic turbulence is defined and dis-
cussed.
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2.1.1 Navier—Stokes equations and turbulence

In this work, incompressible Newtonian fluids, governed by the Navier—Stokes equations

@Ufi
= 2.1
0, 0 (2.1a)
Quy, Ouy, 1 dp Dy,
s . *Y o — 2 2.1b
ot oz p Ox; Y o3 (2.1b)

are considered. uy(x,t) is the velocity of the fluid, p(x,t) the pressure and v denotes kine-
matic viscosity. For particle-laden flow, the Navier—Stokes equations describe the carrier
flow.

Fluid flows can be classified in turbulent and laminar flow. According to Rotta (1972),
turbulent flows

e are irregular,
e show vortices,
e are three-dimensional,
e are unsteady.

Only if a flow shows all these characteristics, then it is called turbulent. Otherwise, it is
laminar.

Reynolds number

One of the first experiments on turbulence was carried out by Reynolds (1883, 1895). He
studied the flow through a long pipe and observed that turbulence occurs if the Reynolds
number Re is high enough. In general, the Reynolds number is defined by a length scale L,
a velocity scale U and the viscosity v

LU

Re — (2.2)

v
L and U are characteristic scales for the flow. For pipe flow, one typically sets L to the pipe
diametre and U to the area-averaged axial velocity. A pipe flow is laminar if Re is less than
approximately 2300 and turbulent if the Reynolds number is higher than 4000. In the range
in between, transition occurs. In that range, the flow can be laminar but small perturbations
of the flow lead to turbulence.

In general, the critical Reynolds number, i.e., the Reynolds number where transition oc-
curs, depends on the configuration. For an arbitrary configuration the critical Reynolds num-
ber can only be determined by numerical or physical experiment.

Reynolds decomposition

Already Leonardo da Vinci observed that turbulent flows can be decomposed in two parts.
He noted that ‘one part of which is due to the principal current, the other to random and
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reverse motion’, cf. page 5. Thus, one might say that Leonardo proposed to decompose a
turbulent flow into mean flow and fluctuations.

However, in general one associates this decomposition with Reynolds (1895) because he
was the first to state this decomposition mathematically. Following Reynolds, one writes

u(x,t) =u(x,t) + u'(x,t) (2.3a)
p(x, 1) = B(x, ) + 7/ (%, 1 (23b)

u and P denotes averaged velocity and pressure, u’ and p’ are called fluctuations.

For general flow, averaging means ensemble averaging, i.e., averaging over several realisa-
tions of the same experiment. It should be noted that in this case also the averaged velocity
depends on space and time.

In the present work, the testcase for numerical simulation is isotropic turbulence, explained
in section 2.1.3. As explained in that section, isotropic turbulence means that ensemble
averaged quantities are independent of space. In addition, in the present work a scheme for
constant application of energy on the flow is implemented. Such a scheme is called forcing
scheme, cf. section 3.2.2. It guarantees that ensemble averaged quantities are independent of
time. Concluding, in forced isotropic turbulence ensemble averaging corresponds to spatial
and temporal averaging.

2.1.2 Richardson’s and Kolmogorov’s theories on
turbulence

In the previous section the decomposition of a turbulent flow into mean velocity and fluc-
tuations was presented. The logical next step consists in a statistical description of the
fluctuations.

In the present section, two theories for the statistical description of a turbulent flow are
presented. One is the theory of Richardson and the other the theory of Kolmogorov. Both
theories aim at a description which holds for all turbulent flows, i.e., there is no specific
geometry assumed.

Richardson’s energy cascade

Richardson (1922) presented one of the first theories on turbulence. His idea was to decom-
pose a flow in motions of various scales. He referred to such motions as eddies. Leonardo’s
description of a turbulent flow (cf. page 5) gives an idea of what an eddy is but there
exists no precise mathematic definition. Pope (2000) writes that ‘an eddy eludes pre-
cise definition’. However, the idea is to regard a flow as a superposition of some coher-
ent rotating chunks, maybe vortices, such that with each chunk some length scale can
be associated and that the length scale defines a typical velocity and life time of this
chunk.

In practice, one often defines eddies from the spatial Fourier transform of the fluid velocity,
(FT (uy)) (k). The argument of the Fourier transform k is refered to as wavenumber. Small
eddies contribute to the Fourier transform at high wavenumbers (i.e. large |k||) and large
eddies contribute at low wavenumbers (i.e. small || k||). The ensemble of all large eddies
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are referred to as ’large scales’ and the ensemble of all small eddies are referred to as 'small
scales’.

FT (uy) is a function with three components and depends on the three-dimensional wavenum-
ber k. For easier presentation, it is useful to define the scalar energy spectrum function
E(||k||) which depends on the scalar value |/k||,

E([k]) = / I(FT (up)) (K)]° dK". (2.4)

(1" [|=1 %]

One rigorous definition of turbulence is that if £ is continuous, then the flow is called tur-
bulent. It should be mentioned that the equivalence of this definition and the definition from
section 2.1.1 was to date only shown heuristically (cf. Ruelle, 2003).

Richardson (1922) postulated that large eddies create small eddies. In other words, the
energy E(r), contained in the scales of size 27 /k, leads to creation of eddies of size k' > k.
This means that the energy is constantly transferred towards higher wavenumbers. Therefore
Richardson’s theory is also referred to as energy cascade.

Richardson furthermore postulated that there is a lower limit for the eddy size. Below that
limit, no eddy can exist because it would be converted instantly into heat due to internal
friction. This conversion of energy is referred to as dissipation (see e.g. Mathieu & Scott,
2000).

Concerning dissipation, one should mention the work of Taylor (1922). At about the same
time as Richardson, Taylor published a work on statistical theory for turbulent flow. He
considered averaged quantities such as average kinetic energy

1—

As above, = denotes ensemble averaging. So far, k depends on time. Now, one can derive
a differential equation for the temporal development of £ and one will find a sink term € in
this equation (see e.g. Pope, 2000),

1 /Our; Ouys
j i

e is referred to as dissipation rate. The higher €, the faster kinetic energy is converted into
heat by viscosity.

Kolmogorov’s hypotheses

With Taylor’s and Richardson’s theories at hand, several researchers worked on a statistical
description of turbulence. Among them are e.g. Karaman, Prandtl and Obukhov. Finally
in 1941, Kolmogorov (1941) formulated a theory based on the results of Goldstein, Kara-
man, Millionshtchikov and Taylor. Kolmogorov’s theory became one of the most important
theories on turbulent flow. It is presented here.

It is clear that a flow field depends on its boundary conditions such as the geometry of
the configuration, driving forces, etc. It is also clear that the large scales depend strongly on
the configuration because the shape of the geometry will determine the large scale motions
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of the fluid.

Concerning small scale motions, the mechanisms involved are somewhat different. Kol-
mogorov (1941) (later translated by V. Levin, see Kolmogorov, 1991) postulated that (in
the wording of Pope (2000))

In every turbulent flow at sufficiently high Reynolds number, the statistics of the small
scale motions have a universal form that is uniquely determined by v and €.

(Kolmogorov’s first similarity hypothesis)

Kolmogorov further introduced a length scale ng and a time scale 7x, based on v and €

1/4
y3/

Nk =— , TK =

14
€ €

(2.7)

Kolmogorov originally introduced these quantities for scaling purposes. His hypothesis
means that the statistics of two turbulent flow fields are equivalent at the length and time
scales ng and Tx. Later, ng and 7k were found to be the smallest length and time scales
of the flow. Many authors state that this follows from Kolmogorov’s hypothesis. How-
ever, Frisch (1995) shows that for this statement more unproved assumptions are neces-
sary.

In the original paper Kolmogorov even went one step further. He postulated that

In every turbulent flow at sufficiently large Reynolds number, the statistics of the motions
of scale | > ni are uniquely determined by € and do not depend on v.

(Kolmogorov’s second similarity hypothesis)

As mentioned above, the large scale motions will depend on the geometry. Of course Kol-
mogorov was aware of that fact but he didn’t mention this explicitly in his second hypothesis.
Therefore Kolmogorov’s second hypothesis must be restricted to scales | with L > | > ng.
Here, L denotes the largest length scale of the flow. The exact value of L depends on the
configuration. For isotropic turbulence, L is usually set to the length scale of the energy
containing scales, cf. section 2.1.3.

Kolmogorov’s second similarity hypothesis means that, taken two turbulent flows, their
statistics differ only in the large scales | > L. For [ < L, the flows’ statistics follow a
universal law.

2.1.3 Statistical and spectral description of isotropic
turbulence
Richardson and Kolmogorov considered turbulent flows in general. The present section

considers one specific turbulent flow, namely homogeneous isotropic turbulent flow. This
flow is characterised by
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e Homogeneity: A flow is homogeneous if its statistics do not depend on the position x.
This means that the statistics are invariant under translation of the coordinate system.

e I[sotropy: A flow is isotropic if its statistics are invariant under rotation or reflection
of the coordinate system.

Homogeneity means that the statistics of the flow can be described by a point value be-
cause they do not depend on x. Isotropy means that the statistics of us;(z,y, z) equal the
statistics of uso(y,x, 2) or uss(z,y,z). Therefore a homogeneous isotropic turbulent flow is
the statistically simplest turbulent flow. This means that if a model for particle-laden flow
shows defects in such a simple flow then it cannot be expected to perform better in a more
complex configuration. This makes homogeneous isotropic turbulence well suited to the aim
of this work.

Often, one speaks of ‘isotropic turbulence’ or ‘homogeneous isotropic turbulence’ instead
of ‘homogeneous isotropic turbulent flow’. Formally there is a difference between these
expressions. For an homogeneous isotropic turbulent flow, the averaged flow field also needs
to be homogeneous and isotropic whereas for homogeneous isotropic turbulence only the
turbulent fluctuations need to be homogeneous and isotropic. In particular this means that
the velocity of a homogeneous isotropic flow is on average zero. Thus, an isotropic turbulent
flow shows isotropic turbulence but not necessarily converse.

However, concerning numerical simulation, it is common practise to speak of ‘isotropic
turbulence’ when refering to ‘homogeneous isotropic turbulent flow’. This wording is adopted
hereafter.

In the present section, some results on the statistical description of isotropic turbulence
are presented. Only those results are shown which are relevant for the subsequent chapters.
Then, a model for the kinetic energy spectrum function E is presented. This model will be
used in chapter 7. Finally, one-dimensional spectra are presented. One-dimensional spectra
will be important in chapter 7 for the construction of a new model.

Statistical description of isotropic turbulence

Kolmogorov’s second similarity hypothesis has consequences on the energy spectrum function
E. In the following this is elaborated for isotropic turbulence.

A dimensional argument shows that in the range || k|| > 27/L and ||k|| < 27/nk, the
kinetic energy spectrum function must follow a power law (see e.g. Onsager, 1945; Eyink &
Sreenivasan, 2006; Sreenivasan, 1995):

E(|Ik]) ~ I for 2n/L < |[k]| < 27 /nx (2.8)

For high wavenumbers, Heisenberg (1948) showed by statistical analysis that E(||k||) must
decay at least as fast as [|k||~".

If one assumes that uy is infinitely differentiable, then E(||k||) must even decay faster than
any polynomial (see e.g. Strichartz, 1994),

E(||k]l) = O(|lk|7?) at ||k|| — oo for any integer p. (2.9)

These findings give an idea on the wavenumber dependence of the energy spectrum
function. Wavenumber 0 corresponds to the mean flow. For isotropic turbulence, the

10
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mean flow is zero and therefore the energy spectrum function must be zero at £ = 0,
E(0) = 0. This means that the energy spectrum function must increase at small k, show
a peak at some wavenumber and then decrease again according to equations (2.8) and
(2.9).

The exact location of the peak cannot be described to date but it is well understood that it
is characterised by two length scales, namely the integral length scale L and the scale of the
energy containing eddies L. These two scales are defined by

_ i _ Ufyl(flf,y7Z)Uf71([E+§,y,Z)
L= Z FOE gl = LTI (2.100)
Ly = %/2 (2.10Db)

f is called longitudinal two point correlation function, plotted in figure 2.1. L; characterises
the length scale over which the field decorrelates and is therefore also called (longitudinal)
correlation length scale. The definition of Ly implies that a turbulent field decorrelates in
space faster than £~!. This question was already addressed by Ruelle (1986) and Egolf &
Greenside (1994) but it seems that it is not fully answered. Tennekes & Lumley (1972) write
that it is ‘assumed that the integral scale is finite’. All experimental and numerical results
support that assumption. Therefore the existence of Ly is a commonly accepted property of
turbulent flows.

gL,
0 0.5 1 15
1~
\\ ———  longitudinal
. NN LT T T transversal Figure 2.1: Longitudinal and transverse two
0.5+ \\\ point correlation functions f(§)
i R and ¢(§), respectively. Computed
\\\ from the model spectrum pro-
| Tl posed by Pope (2000) for Rey =
ol A S R Sl St Py 34. The thin line shows the def-
0 1 2 3 4 5 6 inition of the transverse Taylor
&/ A length scale \.

The definition of Lj is quite convenient because the ratio between L and the Kolmogorov
length scale nk scales with Reynolds number,

VELy,

v

Li Ly 3/4
U_K: i/ = Rejy ", Rep, =

(2.11)

With these findings it is possible to construct a so called ‘model spectrum’, i.e., an analyt-
ical function describing the spectrum of a homogeneous isotropic flow at a given Reynolds
number, cf. section 2.1.3.

Figure 2.1 reveals an interesting fact: As a consequence of conservativity, the first deriva-
tive of the correlation functions must be zero at £ = 0 (see e.g. Pope, 2000). This means that

11
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the Taylor expansion of the correlation functions around £ = 0 shows no linear term. The
prefactor of the quadratic term is referred to as Taylor length scale,

A= 50, gl = L@V EEE)

(2.12)
2 uf,l(my,z)uf’l(x,y,z)

More precisely, A defined above is the transverse Taylor length scale because it is computed
from the transverse correlation function g.
One can also define a longitudinal Taylor length scale Ay = 4 /—% f£"(0). Figure 2.1 shows

that Ay > A, this means that for small values of £ the velocity decorrelates faster in transverse
direction than in longitudinal direction. As a consequence of isotropy and continuity, one
can derive the relation (see e.g. Pope, 2000)

Af

=t (2.13)
which leads to
2
¢ — 151/“;’;8. (2.14)

This equation finally allows to compare the Taylor length scale against the other length
scales defined so far. For example one can derive

Lk ReLk A 1/4
L =1 . 2.1
A 10 ? 77[( OReLk ( 5)

Equation (2.14) further leads to a link between the Reynolds number defined from the
large scales Rey, and the Reynolds number defined from the Taylor scale Rey = Ymsd

v 9

2
Rey, = \/EOReLk. (2.16)

For more information on isotropic turbulence the reader is referred to the studies of Batch-
elor (1982), Tennekes & Lumley (1972), Pope (2000), Landau & Lifshitz (1987), Rotta (1972)
and Hinze (1975).

Pope’s model spectrum

The results from the previous section, in particular equations (2.8) and (2.9), lead to a model
for the energy spectrum function E. Such a model was proposed by Kraichnan (1959). Later,
Pope (2000) refined this model to read

Em k) = O3k fr (kL) f,(kn) (2.17)

with the model constant C' = 1.5. f;, and f, are scalar functions. f; determines the spec-
trum at small wavenumbers and converges to 0 for kL — 0 and to 1 for kL. — oo. f,

12
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determines the spectrum at high wavenumbers (the so called dissipative range) and con-
verges to 1 for knp — 0 and to 0 for knp — oco. Evidently in the intermediate range, where
fr(kL) = f,(kn) ~ 1, this model spectrum represents Kolmogorov’s k53 law, equation
(2.8).

Pope specifies fr, and f, to

5/34po
kL
fr(kL) = ( - 2) (2.18a)
(L) +c1)"

2 +cy
Falom) = exp (=3 ()" +¢) " =) ). (2.18b)

Po, B, c¢r, and ¢, are again model constants. Pope recommends py = 2 and 3 = 5.2 on the
basis of empirical data. The two constants c; and ¢, are set in dependence of Reynolds
number such that E™%(k) and 2vk?E™°4(k) integrate to the flow’s kinetic energy k and

turbulent dissipation rate e, respectively. The model spectrum is shown in figure 2.2 for
Rey, =99 and Re), = 265.

Figure 2.2: Model spectrum propsed by Pope
(2000) for Rey = 52, Rey = 99
and Rey, = 280 together with
lines proportional to x~%/3 and
KT

One-dimensional spectra

So far, the statistical description of the flow field was based on the energy spectrum func-
tion E. Going back to the definition of F, equation (2.4), one can see that E(k) is an
average in spectral space over wavenumbers k' of uniform length, ||k’|| = k. The idea
behind this is that on average the norm of the Fourier transform is a spherical function,

[P = (219)

In isotropic turbulence this is true, but only as long as the Fourier transform of all three
velocity components F7 (uy) is concerned. If one considers the Fourier transform of indi-
vidual components F7 (uy,;), then one will find that these functions are not spherical but
that they are different in direction of k; and k;, j # 7. More precisely, for each velocity com-
ponent uy; one must distinguish between the respective longitudinal wavenumber k; and
the transverse wavenumbers k;, j # i. Because of isotropy, the transverse wavenumbers are

13



2 Fundamentals of particle-laden flow

interchangeable, for example

|.7:T(Uf’1)(l€1, k‘g, k3)|2 = |fT(Uf71)(k’1, ]{?3, ]{?2)|2 = |fT(Uf’2)(l{?2, ]{?1, k3)|2. (220)

On the other hand, transverse and longitudinal wavenumbers are not to be confused,

|.7:T(Uf’1)(]€1, k‘g, k3)|2 7é |.7:T(Uf71)(]€2, ]{?1, ]{?3)|2. (221)

In experiments it is easier to measure only one velocity component along one dimension
instead of all three components in three dimensions. This inspires to use one-dimensional
spectra E, ;,, the one-dimensional Fourier transform of a single velocity component, averaged
in the remaining two directions,

— 1K 5 2
Ej () = / gy p (x)e [ dx. (2.22)
R3

Due to Parseval’s theorem, Ej ;, can also be expressed using the three-dimensional Fourier
transform F7 and the Dirac delta function 9,

Bun(w) = [ 81,09 1T (w, )00 dk 229

For example, E;5 reads

2

k1
Em(li) :/ FT (ul,f) K dk)l dk’g (224)
R2 k3

In isotropic turbulence, Fy;, Fss and FEj33 are statistically identical. These spectra are called
longitudinal spectra Ej,

El = E11 = E22 = E33. (225)
Also the remaining spectra are identical, called transverse spectra Ey,
E, = Ey = Fi3 = Fy = Fy3 = 31 = B3, (2.26)

On first sight it seems that the ensemble of all one-dimensional spectra provides more infor-
mation than the energy spectrum function E. In isotropic turbulence this is not true. For ex-
ample Pope (2000) shows how to compute E; and E; from E and vice versa.

2.2 Particle-laden turbulent flow

The previous section focused on single phase flow, in particular on isotropic turbulence. In
the present chapter, particle-laden flow is discussed.

Actually ‘particle-laden flow’ covers a wide range of two phase flows. The present section
contains a classification of particle-laden flows and a specification of the class under consider-

14



2.2 Particle-laden turbulent flow

ation in this work. The mathematical description of choice for the class under consideration
is the so called Euler—Lagrange approach or, more precisely, point-particle Euler—Lagrange
approach. This approach needs an equation of motion for an individual particle, the Maxey—
Riley equation.

In the following, first a classification of particle-laden flows is presented. The terms ‘point-
particle’ and ‘Euler-Lagrange’ are explained. Then, a section on the Maxey-Riley equation
and its history follows. Finally, physical effects are discussed which can be observed in
isotropic turbulence with the class of particles under consideration.

The presented results are mainly based on the studies of Berlemont et al. (1990), Maxey
& Riley (1983), Taylor (1953, 1954), Maxey (1987), Fessler et al. (1994), Clift et al. (1978)
and Crowe et al. (1998).

2.2.1 Classification and specification

In the introduction (chapter 1), two examples for particle-laden flow were given. One
was sediment transport and the other distribution of aerosols in the atmosphere. These
examples give an idea of what is meant by ‘particle-laden flow’” in the context of this
work.

More precisely, only

e rigid,
e spherical,
e non-rotating particles
are considered. These particles can be further classifed with respect to
e particle diametre,
e material density
e and the number of particles in the flow.

The latter three parameters determine which mathematical description of the particles is
appropriate as well as requirements for coupling of carrier flow and particles. Both questions
are addressed in the present section. At the end of the section, a precise specification of the
class under consideration in the present work is given.

Classification with respect to mathematical modelling

There are various approaches for the mathematical description of particles immersed in a
fluid and none of them is suited for every possible application. In view of a numerical
computation of particle-laden flow, the mathematical description must be such that, on one
hand the computational requirements can be fulfilled and on the other hand the accuracy of
the mathematical description is as high as possible. The particle diametre is a limit for the
accuracy of the description, the number of particles is limited by computational possibilities.
Table 2.1 gives an overview on the possible mathematical descriptions that are dependent
on these two parameters. The listed approaches are described below. The remaining work

15



2 Fundamentals of particle-laden flow

Table 2.1: Classification of particle-laden flow in view of numerical simulation with respect to an

appropriate mathematical description. The mathematical description with the highest
accuracy is listed for each class. d denotes particle diametre, nx is the Kolmogorov
length scale of the carrier flow and N, the number of particles per CPU. Limiting N,
for resolved particle approach is based on the work of Uhlmann (2008), limiting NN,
for Lagrangian approach is based on own computations (one-way coupling, cf. section
2.2.1).

P <10 < 106 > 106

Y

<MK Euler-Lagrange point-particle Euler-Lagrange point-particle Fuler-Euler

or resolved particle

> Nk resolved particle n.a. n.a.

focuses on the Euler-Lagrange approach. More information on up to date developments for
each approach can be found in Balachandar & Eaton (2010).

Table 2.1 is based on state of the art computational methods and todays computers.

Even with the capabilities of todays supercomputers, there does not exist any mathemat-
ical description which allows numerical simulation if the number of particles is high and
the particles are larger than the Kolmogorov length scale (cf. e.g. Balachandar & Eaton,
2010).
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The three approaches mentioned in table 2.1 can be explained as follows:

e Resolved particle approach. The resolved particle approach is the approach with the

least simplifications (and thus with the most details). Here, each particle is treated as
a solid body immersed in the fluid. Similar to for fluid-structure interaction problems,
exact equations can be derived for the force of the fluid acting on the particle and vice
versa. More precisely, the equations describe the force of the fluid on each point on
the particle’s surface. However, this approach is limited to a relatively small number
of particles. Recently, Uhlmann (2008) conducted a simulation with 4096 particles.
This simulation was conducted on 512 CPUs and required approximately 10¢ CPU
hours. Most applications involve far more particles and therefore in the near future
the resolved particle approach will remain a subject of research.

FEuler—FEuler approach. Somewhat to the other extreme is the treatment of all sus-
pended particles as one continuous phase that is transported with the flow. This
means that the particles are described by spatio-temporal fields such as concentration
c(x,t) and velocity u,(x,t). This approach is referred to as Euler-Euler approach
because the carrier flow and the suspended phase are treated in a Eulerian context,
i.e.,, by discretisation in space and time. u,(x,t) denotes the average particle velocity
within the cell assigned to x. With an Euler-Euler approach one cannot derive gov-
erning equations for u,(x,¢) from first principles. Modelling and uncertainties come
into play but, on the other hand, computational requirements can be held relatively
low. Up to date studies on Euler-Euler approaches can be found in Simonin et al.
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(2006) or Shotorban & Balachandar (2007). However, also their models are restricted
to particles which are smaller than the Kolmogorov length scale.

e Fuler—Lagrange point-particle approach. A mathematical description that lies between
the resolved particle and Euler—Euler approach is treatment of the particles as point
particles. Hereafter, this is referred to as Euler-Lagrange approach. The carrier flow
is solved in a Eulerian context, the particles in Lagrangian context, the suspended
phase is discretised by single particles. ‘Point particles’ does not mean that they are
infinitesimally small and massless but it means that the particles are smaller than the
smallest scales of the flow. This allows modelling the effect of the fluid on the particle
through a single point force, located at the centre of the particle. The present work
follows this approach. The constitutive equation for the particles is defined in section
2.2.2.

Classification with respect to coupling of fluid flow and
particles

Independent of the mathematical description for the particles, one must take into consider-
ation that particles and fluid have an effect on each other. Therefore governing equations
for the fluid and governing equations for the particles must be coupled. Table 2.2 gives an
overview on the type of effects.

Table 2.2: C(lassification of particle-laden flow with respect to equation coupling following El-
ghobashi (1991). ® denotes the volume fraction.

) effect(s) coupling approach
<107 fluid — particle one-way coupling
107% to 1073 fluid — particle two-way coupling

and particle — fluid
103 to 1 fluid — particle four-way coupling
and particle — fluid

and particle « particle

>1 collision dominated n.a.

In detail, the coupling approaches and corresponding effects can be explained as fol-
lows.

o One-way coupling. The carrier fluid has an effect on the particles but the effect of
particles on the carrier fluid or inter-particle effects are negligible. This is valid for
dilute suspensions.

e Two-way coupling. The carrier fluid has an effect on the particles (1% way) and the
particles have an effect on the fluid (2"¢ way) but inter-particle effects are negligible.
This is valid for moderately dense suspensions.
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2 Fundamentals of particle-laden flow

e Four-way coupling. The carrier fluid has an effect on the particles (1°° way) and the
particles have an effect on the fluid (2°¢ way). In addition, the particles have an effect
onto each other, because the proximity of one particle affects the surrounding fluid of
another particle (3' way) and because particles may collide (4" way). This is valid
for dense suspensions.

o (Collision dominated regime. For volume fractions higher than 1, the particle’s dynam-
ics become collision dominated. This regime is called granular flow. Such flows must
be treated with very different methods that are beyond the scope of this work.

In table 2.2, the magnitude and significance of the respective effects is rated in dependence
of the particle volume fraction, i.e., the ratio between the volume occupied by particles and
the volume occupied by particles and fluid. These rules of thumb were given by Elgobashi
already in 1991. Later, Sundaram & Collins (1999) showed that the mass fraction must be
taken into consideration as well but they did not give any explicit numbers on volume or
mass fraction. In recent studies (see e.g. Vreman et al., 2009; Apte et al., 2008) it is common
practise to mention the mass fraction and classify the flow according to the volume fraction
as proposed by Elghobashi (1991).

Concerning moderately dense suspensions where two-way coupling is an issue, there are
still open problems. Balachandar & Eaton (2010) point out that state of the art resolved
particle methods are capable to predict such flows correctly but that Euler-Lagrange meth-
ods do not. On the other hand, for dilute suspensions where one-way coupling is admissible,
state of the art methods produce reliable results.

The present work does not concentrate on coupling issues. Therefore the present work con-
siders only dilute suspensions and follows a one-way coupling approach.

Specification of the class of particle-laden flow under
consideration

The present work considers particle-laden flows with the following properties:
1. the particles are rigid and spherical
2. the particles are smaller than the Kolmogorov length scale
3. the particles are non-rotating
4. the volume fraction is smaller than 107°

5. the ratio between the material density of the particles and the material density of the
carrier fluid is higher than 1000

6. the number of particles is small enough such that computational ressources allow treat-
ment in an Euler—Lagrange context.

Property 4 allows for one-way coupling. In some numerical simulations, the volume fraction
® will be higher than 107% in order to obtain more statistical samples. The results from
these simulations must be interpreted as the statistical average of N simulations of one
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2.2 Particle-laden turbulent flow

particle-laden flow. N is such that the volume fraction ®/N in this flow is smaller than
1076,

Property 5 will be of importance concerning the governing equations for the particles,
cf. section 2.2.2. Property 6 evidently means that in the numerical simulations up to 10°
particles can be traced per CPU.

2.2.2 Maxey—Riley equation and its history

As mentioned above, the present work follows a Euler-Lagrange approach with one-way
coupling. With this approach, multiple particles are immersed in a carrier fluid and each
particle can be treated independently of the others.

In addition to the Navier—Stokes equations, the approach needs only one more constitutive
equation, namely an equation of motion for a single immersed particle. The equation must
describe the effect of the flow on the particle.

This effect depends strongly on the particle Reynolds number Re,,, defined by

_ dllu, — uya,l|
v

Re, (2.27)
Here, d denotes the particle diametre and u,, is the velocity of the particle. usa, is the velocity
of the carrier fluid at the absence of the particle and is called fluid velocity seen by the parti-
cle. Re, characterises the complexity of the flow in the immediate surrounding of the particle.
Low Re, means low complexity, high Re, means high complexity.

Even under the assumption that the particle Reynolds number Re, is very small, it took
almost one century to derive an equation of motion for a single immersed particle. This
equation, referred to as Maxey—Riley equation, is presented in the present section. If the
Reynolds number is high, then the state of the art is to include empirical corrections into
the Maxey—Riley equation.

In the following first a brief historical review on the derivation of the Maxey—Riley equation
is given and then corrections for high Reynolds number are presented. Finally, the equation
is simplified for high ratios between the material density of the particles and the material
density of the carrier fluid.

Aiming at an exact equation of motion for a single
particle

More than a century ago, Basset (1888) analysed a settling particle in a fluid that was
otherwise at rest. He derived an equation of motion for the particle under the assumption
that the particle Reynolds number is suffiently small such that the flow around the particle is
a Stokes flow. Later, Boussinesq (1903) obtained the same equation independently. His work
was continued by Oseen (1927), leading to the Basset-Boussinesq-Oseen equation which is
valid for uniform flow at small Re,.

In order to obtain an equation that is valid for non-uniform flows, many authors refined
the Basset-Boussinesq-Oseen equation. Among them are Tchen (1947), Corrsin & Lumley
(1956), Buevich (1966) and Riley (1971), just to mention a few. Tchen aimed at an equation
valid for an unsteady non-uniform carrier flow. His extension showed promising results but
included some unjustified assumptions. It reads (the physical meaning of the individual
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terms is discussed below)

dupi  pp— py duy, Ouy,; 1
dt - pp ) + » at ) xj + Tp (uf@pﬂ U/p:l)
¢
d
ps d d / 2 (Wpapi — Upji)
+ 5 Wrapi — Ups) + 5 dr. 2.28
2ppdt( fap P ) 2Tp 7Tl/<t—7') ( )

The notations stand for
e u,(t): particle velocity,
e p; and p,: material density of carrier fluid and suspended particles, respectively,
e g: gravity,

o Usq,(t) = us(t,x,(t)): velocity of the carrier fluid at the absence of the particle, called
fluid velocity seen by the particle,

e x, (t): particle position,

8Ufl Ouy ;

+ up,j 52 material derivative of the velocity of the carrier fluid following the
J

movmg particle, evaluated at (¢,x, (t)),

o 7,= p; <+ particle relaxation time,
e (: particle diametre,

e 1: kinematic vicosity of the carrier fluid.

Tchens equation showed several deficiencies and was heavily discussed by Corrsin & Lumley
(1956), Soo (1975) and Gitterman & Steinberg (1980). In 1983, almost a century after
Basset’s work, Maxey & Riley (1983) gave an answer to these discussions. They derived
an equation of motion for particles from first principles and arrived at an equation which
is different to Tchen’s equation but coincides with the latter for uniform flow. It reads

dgi,i _ Pp p—ppfgi (2.29a)
L Pr (aat ; %uf,i) (2.29b)
+ Ti,, <Uf@p,i — Up,i + ;lz O;ny ) (2.29¢)
e s 5

t d2 92 Ufl
d 5 (uf@m — Up; t+ 5 07 d

27, ) vt —7)

T. (2.29¢)
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2.2 Particle-laden turbulent flow

Terms (2.29a) and (2.29b) are called buoyancy and fluid acceleration force. The fluid
acceleration force incorporates the effect of the pressure gradient and viscous drag on the
particle’s surface, derived by employing the Navier-Stokes equation with a no-slip condition
on the particle’s surface. These two terms are the only forces acting on the particle if the
effect of the particle on the surrounding fluid is neglected (see Riley, 1971). Of course, this
is only valid if d = 0 which is not very interesting.

Maxey & Riley (1983) considered the effect of the particle on the surrounding fluid as
well. Then, the remaining terms of equation (2.29) come into play. These are grouped with
respect to the time derivatives. Term (2.29¢) is the viscous Stokes drag (also referred to
as aerodynamical drag), mainly resultir;g from the slip velocity between particle and fluid

2 U s
2?1_71,8%?1
(1922) proposed this term as correction term for the Stokes drag on a particle immersed in
a pipe flow at small particle Reynolds numbers. This term actually stands for streamline
curvature effects (see Maxey & Riley, 1983). (2.29d) and (2.29¢) are called added mass
and Basset history term. Added mass can be interpreted as the force which occurs because
the particle cannot move isolated through the fluid but must always move the surrounding
fluid as well. Finally, the structure of the surrounding flow and therefore also the drag force
depends on the history of the particle. This is covered by the Basset history term. Therefore
this term can be interpreted as correction for the Stokes drag.

U — u,||. One often refers to as Faxen correction. Faxen, Wiman & Oseen
f@p P )

Extensions for high particle Reynolds numbers

Maxey and Riley derived their equation for small particle Reynolds numbers. They needed
this assumption in order to describe the modification of the flow induced by the presence of
the sphere. At high Reynolds number, this modification can be very complex.

Taneda (1956) analysed experimentally the flow behind a sphere at various Reynolds
numbers. He dragged a steel ball through water at various velocities and obtained the flow
fields depicted in figure 2.3. At low Reynolds number, the flow simply passes the sphere, no
separation occurs. This is the case which Maxey and Riley analysed. At increasing Reynolds
number (around 20), the flow separates from the sphere, wakes and recirculation zones evolve.
More detailed descriptions of these processes can be found in the original paper by Taneda
(1956) or in the book of Clift, Grace & Weber (1978).

The state of the art is to respect such effects by including empirical correction coefficients in
the equation derived by Maxey and Riley. One defines three correction coefficients, namely
one for Stokes drag (2.29c), one for added mass (2.29d) and one for the Basset history
term (2.29¢) (see Berlemont et al., 1990). Terms (2.29a) and (2.29b) stem directly from
the Navier-Stokes equation. They are independent of Re, and do not need any correction
coefficients.

In the following, only Stokes drag (2.29¢) will be considered (see below). In order to include
corrections for arbitrary particle Reynolds number, (2.29¢) is replaced by

cpRRe, d? 82ufi
247, (uf@p’ i 1 Ba2 (2.30)

where the drag coefficient cp depends on particle Reynolds number Re, due to separation,
recirculation zones and vortex shedding, cf. figure 2.3. With this modification, Stokes drag
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2 Fundamentals of particle-laden flow

Figure 2.3: Flow behind a sphere.  Pho-
tographs taken by Taneda (1956)
(reprinted with permission).

becomes a non-linear term.

Clift et al. (1978) recommend a piecewise defined function for c¢p(Re,), based on 28 studies
of various authors. This function is shown in figure 2.4 together with the widely used
approximation proposed by Schiller & Naumann (1933)

24
cp = e (1 + 0.15R62'687) approximation proposed by Schiller & Naumann (1933).
P

(2.31)

Figure 2.4 shows that Schiller and Naumann’s curve is recommendable up to Re, ~ 800. The
region beyond Re, = 800 can be divded into a ‘high subcritical’ range (400 < Re, < 3.5x10°)
and a ‘supercritical’ (Re, > 3.5x10°) range (see Clift et al., 1978).

\ Clift et al.
100N\ |t Schiller & Naumann
N\ | linear drag
[a]
o 100_

Figure 2.4: Drag coefficient of a sphere as

a function of particle Reynolds

I number according to Clift et al.

10"F N . 7 (1978) and Schiller & Naumann

N TR TR TR T T T (1933). For linear drag, cp —
Re 24/ Re,, holds.
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2.2 Particle-laden turbulent flow

In the high subcritical range, a three-dimensional rotating wake evolves behind the sphere
(see Seeley et al., 1975) and periodical vortex shedding occurs at the rear surface (see Achen-
bach, 1974). Directly behind the sphere, the wake is laminar, further downstream a turbulent
wake evolves (see Brennen, 2005). It seems to be unclear whether in this range the flow be-
hind the sphere should be considered turbulent. Clift et al. (1978) explicitly point out that
it should not, in accordance with the laminar wake near the sphere. On the other hand,
the turbulent wake behind the sphere affects the drag coefficient ¢p and therefore the flow
can be considered turbulent (see Brennen, 2005). However, concerning the boundary layer,
there is no ambiguity. Below Re, = 3.5 x 10°, it is laminar and around Re, = 3.5 x 10°
the boundary layer becomes turbulent, resulting in a drop of the drag coefficient (see Clift
et al., 1978; Achenbach, 1974).

In the simulations presented in this work, the particle Reynolds number computed from
average slip velocity was quite small (only up to Re, = 10). However, this does not nec-
cessarily mean that Schiller and Naumann’s approximation is admissible because, as shown
for example by Toschi & Bodenschatz (2009) or Biferale et al. (2004), high peak values can
occur. The latter authors analysed a configuration which is comparable to the configura-
tions analysed in the present work and found that the particle slip velocity can easily attain
80 times of the rms value. Then, the peak particle Reynolds number is Re, = 800, i.e.,
Re, attains the limit of admissibility for Schiller and Naumann’s approximation. In order
to achieve higher accuracy, Clift et al.’s recommendation was implemented in the present
work.

Simplifications

The equation proposed by Maxey and Riley is rarely solved in the form stated above. The
practical reason is simply that in this form the computational requirements are so high that
one would be limited to a very small number of particles.

However, if the material density of the particles p, is very much higher than the density
of the carrier fluid py, then the prefactors for the fluid acceleration force (2.29b) and the
added mass term (2.29d) are small. Although there is no rigorous justification, it is gener-
ally accepted that fluid acceleration force and added mass are negligible if p,/ps is higher
than 1000 (cf. Nguyen & Schulze, 2003; Fukagata, 1998). A similar and generally accepted
argument states that for small particles the Basset history term is negligible (cf. Nguyen &
Schulze, 2003) and that streamline curvature effects are negligible as long as the focus is not
on near wall effects (cf. Mittal, 1993)

As mentioned above, there is no rigorous justification for these simplifications but the
numerical experiments of Armenio & Fiorotto (2001) and Kubik & Kleiser (2004) are in
accordance with them. Therefore also in very recent studies (e.g. Guha, 2008; Vreman,
2007; Almeida & Jaberi, 2008; IJzermans, Hagmeijer & van Langen, 2007; Gui, Fan & Cen,
2008) the authors rely on these arguments and solve

duy R T . .
Upi _ CDTVC (Upapi — Upi) (simplified Maxey-Riley equation). (2.32)
dt 247,

Hereafter, equation (2.32) is referred to as ‘simplified Maxey-Riley equation’. The present
work follows this approach. It turned out that with the computational resources available,
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2 Fundamentals of particle-laden flow

approximately one million particles per CPU core can be traced simultaneously.
With equation (2.32), the suspended particles can be described by two dimension-free pa-
rameters, namely particle Reynolds number Re, and Stokes number St

d —
Re, — W =Wl g,

14 TK

T

(2.33)

Here, 7 denotes the Kolmogorov time scale (cf. section 2.1.2). For small particle Reynolds
numbers, Stokes drag is linear and equation (2.32) becomes

d—? = T_p (uf@p,i — upﬂ-) . (234)

This equation can be solved analytically,

t
to=t 1 Tt
w,(0) = wlto)e™ + = [, (2.35)
p
to

It should be noted that this equation is implicit in the particle velocity u, because uyaq
must be evaluated along the particle’s path, i.e., along the path determined by u,. In the
present work this equation is only used for analytical assessment of particle-LES models,
sections 6.3 and 7.3.

2.2.3 Turbulent dispersion and preferential
concentration

As mentioned above, the present work considers point particles, goverened by the Maxey—
Riley equation. If such particles are immersed in isotropic turbulence, then one can observe
two important effects, namely turbulent dispersion and preferential concentration. These
two effects are explained in the following.

Turbulent dispersion

Already in 1953, Taylor (1953, 1954) studied particles immersed in a turbulent flow. In that
work, he considered inertia free particles in isotropic turbulence but his results are valid for
inert particles as well.

A cloud of particles immersed in a turbulent flow will always grow in size. This effect can
be observed for example at the smoke leaving a chimney and is called turbulent dispersion.
Turbulent dispersion means that the average distance of two particles in the cloud increases
with time.

In isotropic turbulence, dispersion can be quantified by measuring the distance of a particle
from the point of initialisation ||x,(t) —x,(0)||. The faster this distance increases, the higher
is the rate of dispersion D.

Taylor (1953, 1954) formulated the rate of dispersion D in terms of the kinetic energy of
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the particles k, and a time scale ?,,

t

dllxp(t) = %,(0)[”

D= tlim P =2 tlim Uy i (t)upi(7) dr = 4kyt, (2.36a)
0
. 6
—5 i()Up,i
with &, = ~u2; and t, = lim M dr. (2.36Db)
2" oo ) g () up,i(t)

0

~ denotes averaging over particles. ¢, is called correlation or integral time scale. For tur-
bulent flow, ¢, is finite for ¢ — oo because the velocity seen by a particle usa, decorre-
lates.

The notation above is valid for statistically steady particle dynamics. Otherwise, the time
dependence of k, must be taken into consideration additionally.

Concluding, Taylor’s result was that turbulent dispersion can be quantified via kinetic
energy and integral time scale.

Preferential concentration

Taylor considered a particle cloud as a whole. If one takes a closer look into the cloud then
one will observe another effect, namely preferential concentration. Preferential concentration
stands for particle clustering due to the interaction of centrifugal forces and Stokes drag. It
can be observed in homogeneous and in inhomogeneous turbulent flow.

Actually preferential concentration was first observed without noticing it. Sehmel (1980)
observed that the sink velocity of a particle due to gravity is higher in a turbulent flow
than in the quiescent fluid. He was not aware that this is because of an inhomogeneous
particle distribution. Maxey (1987) analysed this effect by theoretical considerations and
kinematic simulation. He defined a continuous Eulerian particle velocity field, obtained by
averaging over the particles, and showed that the sink velocity depends on the divergence of
the particle velocity field. Then, he showed that the divergence depends on the vorticity and
strain rate of the carrier flow and concluded that particles cluster in regions of low vorticity
and high strain rate. Thus, it was Maxey who explained that Sehmel’s observations were
due to particle clustering.

Later, Squires & Eaton (1990, 1991) and Wang & Maxey (1993) provided DNS data at low
Reynolds number supporting Maxey’s theory. They showed that, in dependence of Stokes
number, particles may not be distributed homogeneously even if the flow is homogeneous.
Squires & Eaton (1990) named this effect as ‘preferential concentration’. Figures 2.5 and 2.6
give an idea of the effect. The figures show that the intensity of preferential concentration
depends on Stokes number.

This dependency was quantified by Fessler, Kulick & Eaton (1994). They provided data
from an experiment of particle-laden turbulent channel flow. Fessler et al. (1994) introduced
a measure for preferential concentration by dividing the test section into boxes and comput-
ing a histogram of the number of particles per box. This histogram leads to the distribution
P,.. For homogeneously distributed particles, P,. is the Poisson distribution Ppeisson. If
preferential concentration occurs then P,. and Ppyjsson differ. The first moment of these
distributions is the average number of particles per box and therefore the first moments of
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Figure 2.5: DNS of Lycopodium in turbu- Figure 2.6: DNS of copper particles in turbu-

lent channel flow (air), instanta- lent channel flow (air), instanta-
neous distribution on channel cen- neous distribution on channel cen-
treplane, Re, = 180, St = 0.6. H treplane, Re, = 180, St = 56. H
denotes channel half height. (for denotes channel half height. (for
details cf. Gobert et al., 2007) details cf. Gobert et al., 2007)

both distributions are equal. Thus, one compares second moments and defines as measure
for preferential concentration

Opc — O Poisson
Y = e CPoiseon, (2.37)

Poisson
Here, o denotes the standard deviation of P,. and o pg;sson denotes the standard deviation of
Ppoisson- For the Poisson distribution, the first moment equals o%,,..,.., therefore it makes
sense to normalise 3 by 0%,

Fessler et al. (1994) found that preferential concentration is strongest around St = 1, i.e.,
Y’ is maximal when particle relaxation time equals Kolmogorov time. Their results were later
supported by DNS and LES of turbulent channel flow and isotropic turbulence at various
Reynolds number (cf. Rouson & Eaton, 2001; Reade & Collins, 2000; Hogan & Cuzzi, 2001;
Bec et al., 2007; Wang & Squires, 1996; Yang & Lei, 1998).

A somewhat open question is the dependence of preferential concentration on Reynolds
number. Several authors attacked this problem by DNS of isotropic turbulence but ob-
tained somewhat contradictory results. Hogan & Cuzzi (2001) could not find a difference
in preferential concentration between Rey = 40, Re), = 80 and Rey = 140. On the other
hand, Reade & Collins (2000) and Wang et al. (2000) found that at Rey = 82.5 preferential
concentration is stronger than at Rey, = 30. Wang et al. even predict linear increase of
preferential concentration with Reynolds number, i.e., no saturation occurs. On the other
hand, Collins & Keswani (2004) conducted DNS of isotropic turbulence up to Rey = 152
and found sublinear behaviour. They predict that preferential concentration saturates with
Reynolds number, in contradiction with the results of Wang et al. (2000). This issue is not
yet clarified.

It is well known that preferential concentration does not lead to clustering in the sense

26



2.2 Particle-laden turbulent flow

that the particles would form compact balls. Figures 2.5 and 2.6 show that the particles
rather tend to align on a surface. All of the previously mentioned authors made the same ob-
servation. Therefore Rouson & Eaton (2001) proposed an alternative measure to ¥, namely
the fractal dimension of the suspended phase. The idea is that if the particles are aligned
on surfaces then they form a two-dimensional shape. This means that if one centres a ball
with radius r on some particle and counts the number N of particles which reside within this
ball, then on average N scales with N ~ r? as long as the curvature of the surface within
the ball is negligible. On the other hand, if the particles are distributed homogeneously then
they form a three-dimensional shape, N ~ r3. Preferential concentration actually leads to
something in between. One assigns to that shape a non-integer fractal dimension d,,., defined
by

N ~ rire, (2.38)

where 7 covers a range of radii. r but must be sufficiently small such that d,. is approxi-
mately constant. At the same time, » must be large enough such that a sufficiently large
number of particles resides within the ball. Grassberger & Procaccia (1983) first introduced
this measure in the context of dynamical systems in their (nicely titled) work ‘Measur-
ing the Strangeness of Strange Attractors’. Tang et al. (1992) were the first to apply this
measure in the context of particle-laden flow. Concerning preferential concentration, d,.
equals 3 for St = 0 and St — oo and in all studies on preferential concentration it was
observed that dp. shows a minimum around St = 1 in accordance with the behaviour of
3.

It should be noted that preferential concentration can only be detected if the number
density of the particles is sufficiently high. In this case, coupling issues come into play (cf.
section 2.2.1). In particular, Geurts & Vreman (2006) and Vreman et al. (2009) showed that
collisions can significantly affect preferential concentration.

As mentioned above, the present thesis follows a one-way coupling approach. Therefore
the results presented here are only valid for sufficiently small volume fractions. In particular,
the results on preferential concentration are only valid for particles with high material density
and small diametre.
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3 Implemented simulation tools

There are 3 rules to follow when parallelizing large codes. Un-
fortunately, no one knows what these rules are.
W. Somerset Maugham as paraphrased by Gary Montry

This chapter covers the numerical tools which were implemented in the present work.
Section 3.1 discusses two different simulation techniques for turbulent flow, namely Direct
Numerical Simulation and Large Eddy Simulation. Section 3.2 covers numerical methods
used for computing the carrier flow. This includes a brief description of the discretisation
schemes and a description of the applied forcing scheme. A forcing scheme is a method to
drive isotropic turbulence, i.e., to compensate for dissipation. Section 3.3 gives details on the
numerical methods used for the computation of the particles. Section 3.4 contains a list of all
implemented simulation techniques and numerical methods.

3.1 Simulation techniques for turbulent
flow

This chapter covers two techniques for simulation of turbulent single phase flow, namely
Direct and Large Eddy Simulation.

Section 3.1.1 focuses on Direct Numerical Simulation (DNS). The section contains a dis-
cussion of the computational requirements for DNS of isotropic turbulence. The discussion
shows that for high Reynolds number DNS is not possible due to high computational re-
quirements.

Section 3.1.2 focuses on Large Eddy Simulation (LES), a simulation technique which is
computationally less expensive but also less accurate than DNS. LES always needs a fluid-
LES model, i.e., some assumption on the flow or the flow’s statistics. All LES results
presented in this work are based on the model proposed by Meneveau et al. (1996). This
model is also presented in section 3.1.2.

For the sake of completeness it should be mentioned that there exists a third major tech-
nique for simulation of turbulent flow, which is Reynolds Averaged Navier—Stokes simulation
(RANS). In RANS, one solves for averaged quantities only. Evidently, RANS is not very
interesting for isotropic turbulence because here all averages are zero. Therefore, no RANS
was conducted in the present work.

3.1.1 Direct Numerical Simulation (DNS)

Solving the Navier-Stokes equations numerically ‘as is’, is referred to as Direct Numerical
Simulation (DNS). DNS with present numerical methods produces very reliable results such
that DNS can be regarded as a substitute for an experiment. However, this holds only under
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3.1 Simulation techniques for turbulent flow

the condition where DNS is possible. Actually for most cases DNS is not possible because
the computational requirements for DNS often exceed computational ressources by far (cf.
section 1.1).

The computational requirements for DNS are determined by the Reynolds number. For
isotropic turbulence, the memory requirements can be estimated as follows. The size of the
smallest scales is given by the Kolmogorov length scale nx. This determines the cell size.
However, in order to exactly represent the large scales, the computational domain would
have to be infinitely large. The best approximation is a large box with periodic boundary
conditions. This introduces artificial two point correlation of the fluid velocity at the scale of
the box size. However, if the box is sufficiently large with respect to the integral length scale
Ly, then this correlation is negligible. Pope (2000) recommends to use a computational box
of 8 integral length scales, Reynolds (1990) recommends 2 integral length scales. Figure 2.1
indicates that, at least for the Reynolds number shown, the recommendation of 8 integral
length scales is rather on the safe side.

Concluding, the ratio between the largest scales 8L and the smallest scales i determines
the size of the computational box and the grid spacing, respectively. The model spectrum
from section 2.1.3 predicts that L;/L; — 0.43 for Re;, — oo. Thus, for high Reynolds
number

L L
L~ 04375 = 0.43Re}! (3.1)
Uiie NK

can be assumed. This result leads to the statement that the number of grid points (and thus
memory) needed for DNS scales with (Rei/k N3 = RegL/k *

CPU time scales with the number of grid points and with the number of time steps required
to obtain a statistically steady state. The number of time steps scales with Rei/k 4 (cf. Pope,
2000). This means that CPU time scales with Re} .

This shows that memory and run time requirements for the numerical computation of the
solution to the Navier-Stokes equations (2.1) increase with Reynolds number. Actually, in
most turbulent flows present in nature and industrial applications, the Reynolds number is
so high that computational ressources are exceeded by far. For these configurations, the
solution to equation (2.1) cannot be computed. A computationally less expensive but also
less accurate alternative to DNS is Large Eddy Simulation (LES), elaborated in the following
section.

3.1.2 Large Eddy Simulation (LES)

In the previous section it was shown that at high Reynolds number DNS is not possible be-
cause of the immense computational requirements associated with the wide range of scales
contained in the flow. The fast decay of the energy spectrum function (cf. section 2.1.3)
inspires to solve for large scales only, leading to Large Eddy simulation (LES). LES per-
mits the use of a relatively coarse grid, i.e., to reduce computational requirements. On
the other hand, LES is not as accurate as DNS. In the following, LES is explained in de-
tail.

In LES, it is not the Navier—Stokes equations but rather filtered Navier—Stokes equations
that are solved. This means that one does not ask for the fluid velocity but for the filtered
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3 Implemented simulation tools

fluid velocity. The filter is a spatial low pass filter. This allows the representation of the
filtered velocity on a coarse grid.

The filtered Navier—Stokes equations are presented below. It will turn out that these are
unclosed, i.e., not all terms can be expressed via filtered fluid velocity and filtered pressure
only. Instead, an additional term, referred to as subgrid scale stress tensor 7, appears. This
tensor must be modelled in terms of the filtered velocity. The tensor 7 represents the effect
of the unresolved scales on the resolved scales. In the present work, models for 7 are referred
to as fluid-LES model, cf. section 1.2. In this thesis, the fluid-LES model proposed by
Meneveau et al. (1996) is implemented.

Each fluid-LES model implicitly defines a filter. This filter can be described a posteriori,
i.e., by comparison of LES and DNS data. One compares the energy spectrum function from
LES with the energy spectrum function from DNS and characterises the filter with respect
to its damping properties of the energy spectrum function.

In the following, first the filtered Navier—-Stokes equations are presented. Then, the fluid-
LES model of Meneveau et al. (1996) is explained and finally transfer functions of the model
and of standard filters are shown.

Filtered Navier—Stokes equation

Assuming that the exact fluid velocity uy is known, one can compute the LES velocity (uy)
by ‘kicking out the small eddies’. Formulated more precisely, this means filtering uy by a
low-pass filter.

In LES, only linear filters are considered. Such a filter operator G can be defined by its
kernel function G(s),

() = Gu(x,t) = jﬂ u(x —s,t)G(s) ds. (3.2)

Apparently for all filters defined via equation (3.2), filtering and differentiation commutes,

o0y _Jo-\ ) _ /o
ot <E> dx;  \Ox; /- (8:3)
Therefore, if one applies the filter operator (- ) on the Navier—Stokes equations (2.1), then one
ends up with the filtered Navier—Stokes equations (LES equations)

O (upi) _

or, 0 (3.4a)
O (ug;) (O{upq)  Omy;  10(p) 0* (uy,;)

Y + (uy;) oz, + 9z, p Om +v 022 (3.4b)

Equations (3.4) are solved for (uy), the LES velocity. By definition, this is the fluid
velocity which consists of large scales only and is therefore representable on a coarse grid.
The tensor 7 is defined by

T = (upitsg) — (upi) (ugg) - (3.5)
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3.1 Simulation techniques for turbulent flow

7 is called subgrid stress tensor. This tensor represents the interaction between resolved large
scales and unresolved small scales. 7 depends on (uyuy ;). Therefore 7 cannot be computed
from the LES velocity directly but one needs an additional model equation. Here, this type
of model is referred to as fluid-LES model. Each fluid-LES model implicitly defines a filter
g.

In the present work only one fluid-LES model was implemented, namely the Lagrangian
Smagorinsky model proposed by Meneveau, Lund & Cabot (1996), presented in the next
section.

The implemented fluid-LES model (Lagrangian Smagorinsky
model)

In all Large Eddy Simulations presented in this work (except for simulations of other au-
thors), 7 was modelled according to the Lagrangian dynamic Smagorinsky model proposed
by Meneveau et al. (1996). The model is based on

1. modelling 7 using the eddy viscosity hypothesis (see Boussinesq, 1877; Smagorinsky,
1963)

2. estimation of the modelling error by the Germano identity (see Germano et al., 1991)
3. minimisation of the estimated model error along trajectories of fluid particles.

These three points are briefly described one by one in the following.

The eddy viscosity hypothesis stems from the observation that large (resolved) eddies
break up and generate small (unresolved) eddies. The unresolved eddies cannot be repre-
sented on the LES grid and therefore the breakup of large eddies can be modelled as dissipa-
tion. This means that 7 can be modelled as dissipative term, i.e.,

1 (Oup;  Ouy;
Ti; = —2v; (S4j) , Sij = 5 ( fo? + 8;J) (3.6)
7 7

with the eddy viscosity v;. Such models are called eddy viscosity models. The first eddy viscos-
ity model for LES was published by Smagorinsky (1963). He proposed

Vy = (CSA)QS with § = \/2 <SZ> <Sl]> (37)

A denotes the filter associated with the LES grid. For a cuboidal cell with dimensions
Ax x Ay x Az one can take for example

A = (Az Ay Az)'3. (3.8)

Cs is a model constant, referred to as ‘Smagorinsky constant’. Lilly (1967) considered the
application of the Smagorinsky model on isotropic turbulence. Based on the spectrum of
isotropic turbulence, he proposes to set

Cs = 0.17. (3.9)
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3 Implemented simulation tools

However, it is clear that arbitrary filtered DNS fields will not show a constant value for Cs.
The consequent refinement is to choose C's in dependence of the resolved scales. Such models
are called dynamic Smagorinsky models. Meneveau, Lund & Cabot (1996) proposed a spe-
cific dynamic Smagorinsky model, making use of the Germano identity.

Germano et al. (1991) had the following idea: The LES equations correspond to filtered
Navier—Stokes equations. If one filters the LES equations again, then one obtains double-
filtered Navier—Stokes equations

0 <<uf7i>1>2 _

5. =0 (3.10&)
O (usi);), O ((ufi) )y ij Dy P ((ugadi),

Here, ()1 and (- )9 are two filters and T is the subgrid stress tensor obtained from double-
filtering, Ti; = ((usits), ), — (s ), ((us;),),- If one applies (- ), on 7, then one obtaines
the Germano identity (see Germano et al., 1991; Germano, 1992):

Tij — (Tij), = <<uf,i>1 <uf,j)1>2 - <<uf7i>1>2 <(uf7j>1>2 (Germano identity) (3.11)

This identity can be used to estimate the error of a LES model. In LES, (uy), is computed.
(-), is implicitly defined by the fluid-LES model. The second filter (- ), is defined explicitly.
This allows to compute the right hand side of equation (3.11). The terms on the left hand
side can be computed by implementing the LES model. If the filter (), is suited to the
model, then the difference between (explicitly computed) right hand side and (modelled) left
hand side gives an idea of the model error.

The Germano identity can also be used to set model parameters. For example, one can
use an eddy viscosity model for 7 and T, and use the Germano identity in order to set
the Smagorinsky constant Cs. However, this gives no good value for C's because this ar-
gumentation neglected the fact that in general one can only expect a LES model to work
in a statistical sense. Therefore, averaging is necessary. Germano et al. (1991) propose to
average in homogeneous directions. If the flow is not homogeneous, then this is evidently
not possible.

One workaround to that was proposed by Meneveau et al. (1996). They propose to average
along trajectories of fluid particles. The authors furthermore respect that for inhomogeneous
flows it does not make sense to average along the whole particle path because the statistics of
the flow seen by the particle are not constant. Therefore Meneveau et al. (1996) additionally
introduce a weighting function such that the recently seen flow has a stronger influence on Cyg
than the flow which the particle saw long time ago. More precisely, Meneveau et al. (1996)
propose an exponential weighting function, i.e., at some instant ty, the error estimation from
to — t is weighted by e(=10)/t“*** " The normalisation factor t“F5 is set in dependence of the
estimated error.

Putting it all together, Meneveau et al. (1996) set C's as follows:
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3.1 Simulation techniques for turbulent flow

Denote by =™ averaging along particle’s trajectories,

F(t,x) X —tLES /f (t',x, (t eftL;:; dt’ (3.12)

where x,(t) is the path of a particle which is transported with the LES velocity (uy).
tr.es 1s defined below.

Define the test filter (- ). Meneveau et al. (1996) propose a sharp spectral filter at
twice the grid scale. In the present work, a box filter at twice the grid scale was
implemented for reasons of computational efficiency. Both filters are defined below.

Compute in each time step the right hand side of Germano’s identity
Lij = ((uga) {upz))e — Cugai))y Cups))y (3.13)

Replace the left hand side of Germano’s identity according to equations (3.6) and (3.7),

ﬂj - <Tz]> - CS ij (314&)
My; = 2A%(S(Si5))2 — 2858@((Sij))e, (3.14b)

D = /2 ({8 (i), (3.14c)

Compute

M M\ /8

Choose Cg such that the averaged square error, computed from Germano’s identity, is
minimised:

M
(Lij - Cg«M”)Q — min. (316&)

This is equivalent to

—M
d M Li; M;
(Lij — C5My;)" =0, e, Ci=—""lm. (3.16b)
dCs M, M,

This formulation is complete but it is computationally expensive because equation (3.12)
requires infinite backward integration Meneveau et al. (1996) circumvent this by formulation
of differential equations for LUM and MijMijM. Furthermore, equation (3.15) shows that
tres depends on averaged values. The time scale for averaging is t;gg again. Thus, equation

(3.15) is an implicit equation. Meneveau et al. (1996) propose to compute LijMZ-jM and

MijMijM by using a value for t;gs which was computed in the previous time step and then
update trpg by equation (3.15).
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In comparison to the standard Smagorinsky model, the dynamic approach has turned out
to be more accurate (cf. e.g. Vreman et al., 1997; Meneveau & Lund, 1997) but of course com-
putationally more expensive. Kuerten et al. (1999) proposed an approach which is less expen-
sive than the dynamic model but seems to perform comparably well.

However, in the present study only the Lagrangian Smagorinsky model was implemented
because with this model experience from several previous studies exists (cf. e.g. Gobert
et al., 2007; Gobert & Manhart, 2007; Link et al., 2008; Gobert & Manhart, 2009; Gobert
et al., 2010). Actually one can expect that for particle-laden flow this model is very well
suited because the model is constructed such that the estimated error is minimised along a
particle’s path.

Characterisation of a fluid-LES model via filter transfer
functions

The quality of a fluid-LES model can be analysed via its filter kernel G and the correspond-
ing Fourier transform F7(G). The latter function is also called filter transfer function.
A somewhat high quality fluid-LES model would correspond to a filter which does not
touch the large scales and removes all scales smaller than a certain limit. More precisely,
the filter transfer function F7 (GS’“””Z’) of such a model would be a Heaviside function,

riowmyw- (3 s

k. is called cutoff wavenumber and G5"@'? is called sharp spectral filter. In a simplified point
of view, all eddies larger than 27 /k. are not modified by G°"*? and all eddies smaller than
27 /K, are removed by Gherp,

Other commonly used filters are the box filter or the Gaussian filter, defined by

Ke i < T 2,2
Gbox(s) — { 6 lf ||S|| — ke , GGGUSS(S) — \/éﬁc eXp <_6HSH K’C) . (318)

otherwise 3/2 T2

For details on the choice of the coefficients, the reader is referred to Pope (2000). The
transfer function of these filters are depicted in figure 3.1. The z—axis shows k/k. =

1K1/ Fic-

0 — 2 - 21 - Figure 3.1: Filter transfer functions of sharp
K/K spectral, box and Gaussian filter.
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3.1 Simulation techniques for turbulent flow

From this point of view one might think that a somewhat ‘perfect’ filter is the sharp
spectral filter because here, all resolvable wavenumbers are resolved exactly. But the sharp
spectral filter also has disadvantages. Because of G%% = #ec/x (.7-" T (GSh‘”"p)), the function
GSharp s identical to /e FT ' (G,

T

GSharr — = -1 (Gbom) — 1]:'7 (Gbox) . (319)

Re Re

The latter equality holds due to the symmetry of G*7.

FT (G™) is depicted in figure 3.1. This shows that G*"P has negative loops. This
means that the sharp spectral filter may invert the velocity, i.e., filtering of a positive velocity
component may lead to a negative component. Evidently this property is undesired. Thus,
it is not clear which filter is the best.

It remains to establish a link between a specific model for the subgrid stress tensor
7 and the corresponding filter G. This link can be obtained via Fourier transformation:

FT() 10 = i (3.20)

For isotropic filters the correspondent filter transfer function depends only on the norm of
k, e, (FT(@)) (k) = (FT(Q@))(||k||). Then one can compute the filter transfer function
from the energy sprectrum functions,

»_ ECI(IK])

(FT@) KD =

(3.21)

Here, E{"? and E denote the energy spectrum functions of filtered and unfiltered veloc-
ity, respectively. For a given fluid-LES model, one computes E{’ by LES and E by
DNS.

An example for a filter transfer function is depicted in figure 3.2. The underlying fluid-
LES model is the Lagrangian dynamic Smagorinsky model. The transfer function was
computed from equation (3.21). E{") and E were computed from instantaneous LES and
DNS data. The underlying flow is homogeneous isotropic turbulence at Re), = 99. Evi-
dently, the transfer functions of box filter and Gaussian filter are different but compara-

ble.

Figure 3.2: Filter transfer function of the
Lagrangian Smagorinsky model
from section 3.1.2 together with
the transfer function of the box
filker and the Gaussian filter.
For the Lagrangian Smagorinsky
model the transfer function was
computed via LES and DNS of
isotropic turbulence at Rey = 99.
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Apparently the transfer function of the Lagrangian Smagorinsky model shows a kink
at k = k.. This can be explained as follows. The simulation was performed on a cube
discretised by an equidistant Cartesian grid. Therefore the wavenumbers which are resolved
in LES also form an equidistant Cartesian grid within a cube [—k,, k.]® in wavenumber space.
For k. < k < V/3k., a sphere with radius « intersects the cube but does not fit within the
cube. E{(k) is computed by integration over the surface of such a sphere and therefore
E{) (k) decays between k. and v/3k, simply because the corresponding wavenumbers are
only partially resolved.

3.2 Numerical methods for the carrier
fluid

The previous section focused on simulation techniques. DNS and LES was explained. Gov-
erning equations were presented but no methods for numerical discretisation were discussed.
Furthermore, it was not discussed how to simulate isotropic turbulence.

Both topics are addressed in the following. First, the implemented methods for discreti-
sation of the Navier—Stokes and filtered Navier—Stokes equations are briefly listed. Then, the
implemented method for generation of isotropic turbulence is presented.

3.2.1 Basic numerical scheme

In DNS the Navier—Stokes equations are solved, in LES one solves the filtered Navier—
Stokes equations. In the present work the same numerical scheme was implemented for both
equations.

This scheme is implemented in the flow solver ‘MGLET’. MGLET is an in-house code
of Fachgebiet Hydromechanik at TU Miinchen. It was developed and successfully used by
Manhart (1995, 2004), Manhart et al. (2001); Manhart & Friedrich (2002) and Peller et al.
(2006). The referenced studies contain details on the flow solver. In the following only the
most relevant characteristics are listed.

Discretisation in space is achieved by a second-order Finite Volume scheme. In particular,
this means that one solves for volume or surface averaged quantities. This peculiarity will
be addressed again in section 3.3.1, the interpolation of the fluid velocity on the particle
position.

The variables are arranged on a staggered grid. As mentioned previously, the only testcase
for the present work is isotropic turbulence. Therefore only equidistant Cartesian grids were
used.

Time advancement was implemented by a third-order Runge-Kutta scheme proposed by
Williamson (1980). Incompressibility was enforced by solving the Poisson equation for the
pressure using an iterative solver proposed by Stone (1968).

Altogether the flow solver consists of standard methods, for example described by Ferziger
& Peric (1999) and Kundu & Cohen (2004).
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3.2 Numerical methods for the carrier fluid

3.2.2 Forcing of isotropic turbulence

The previous section described how the Navier—Stokes and filtered Navier—Stokes equations
were discretised. The present section explains how the flow was driven in order to obtain
isotropic turbulence.

Probably one could write a book on ‘how to generate isotropic turbulence’. This is an old
issue, discussed in many studies. In this work only a brief summary is given. The aim is to
give the reader an idea on what configuration one could think of when referring to isotropic
turbulence.

In experiments, isotropic turbulence is often produced by passing a flow through a grid.
At a sufficiently large distance behind the grid, turbulent fluctuations are quasi homogeneous
and isotropic.

For particle-laden flow, an experimental setup of isotropic turbulence is more difficult
because for inert particles gravity always leads to anisotropies for the particles. Therefore
Hwang & Eaton (2006) conducted an experiment in parabolic flight.

Admittedly, the above experiment is rather exceptional and the experimentators are to
be envied. For numerical simulation, the generation of isotropic tubulence is much less
spectacular. Here, one usually solves the Navier-Stokes equations in a cube with peri-
odic boundary conditions. The necessary dimensions of the cube are discussed in section
3.1.1.

One distinguishes between two types of isotropic turbulence, namely decaying and forced
isotropic turbulence. Decaying isotropic turbulence corresponds to grid generated turbu-
lence. If one travels with the flow in grid generated turbulence, then one observes that
the turbulent fluctuations decay due to dissipation. In a numerical simulation, such a
process can be emulated by specification of the flow at some initial instant and solving
the Navier—Stokes equations (2.1) until the flow is at rest. The initial flow is typically
either taken from experiments or set in accordance with a model spectrum (cf. chapter
2.1.3).

The initial flow field significantly determines the whole process. The statistics of the
flow field are unsteady and the Reynolds number decays. This makes temporal statistical
sampling different to spatial statistical sampling.

In order to increase the number of samples, one aims at a statistically steady field. This
is achieved by simulation of so-called forced isotropic turbulence. Forced isotropic turbu-
lence stands for isotropic turbulence with constant application of energy, called forcing.
Following Kolmogorov’s hypotheses, it makes sense to apply energy only at low wavenum-
bers. Then, statistics of high wavenumbers should correspond to statistics in an arbitrary
flow.

Forcing is established by an additional term in the Navier-Stokes equations. This term
can be either a stochastic process or it can be deterministic. Correspondingly, one distin-
guishes between deterministic and stochastic forcing schemes. Deterministic forcing schemes
typically tend to produce anisotropic flow fields whereas stochastic schemes usually lead to
long-term oscillations (see e.g. Overholt & Pope, 1998; Taylor et al., 2003). This means that
with stochastic forcing schemes one needs to run simulations for a longer period in order to
obtain reliable statistics. The other way round, this means that with the available compu-
tational resources a stochastic forcing scheme leads to less reliable statistics or restricts the
simulations to lower Reynolds number. In order to circumvent this, in the present work a
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deterministic forcing scheme was chosen.

The implemented scheme is a slightly modified version of the forcing scheme proposed by
Sullivan et al. (1994). As for most forcing schemes, Sullivan et al. (1994) start with a spectral
description of the flow. They choose a large scale wavenumber x; and specify the energy
budget contained in the large scales, k;, = 1 Inll<ns |FT (uy)(k)|> dk. Within one time
step, this energy budget will decrease due to energy transfer to smaller scales and due to
dissipation. Therefore the authors propose to enhance after each time step the components
FT(uf)(k), ||&|| < Kk by a wavenumber-independent multiplicative factor « such that
i Inll< |aFT (ur)(k)]|* dr equals the specified energy ky.

Thus, the scheme consists of two parameters, namely k; and k7. This scheme was imple-
mented by various authors (see e.g. Sullivan et al., 1994; Bogucki et al., 1997; Vaillancourt
et al., 2002). Their simulations and also own simulations showed that the scheme does not
lead to an increase of energy in the low wavenumber range, i.e., the spectrum’s peak coin-
cides with the lowest resolved wavenumber. This is in contrast to the spectrum one obtains
using e.g. the forcing schemes by Eswaran & Pope (1988) or Overholt & Pope (1998). In
order to facilitate comparison with studies using one of these forcing schemes, in the present
work only the modes in a given range [k, 1| were forced. Thus, in contrast to the scheme
proposed by Sullivan et al. (1994), the modes at the lowest resolved wave numbers are not
forced. This leads to a decay in the spectrum at the smallest wavenumbers. The factor «
was found to range typically between 1.001 and 1.01.

3.3 Numerical methods for particle-laden
flow

The previous section contained numerical methods for DNS and LES of single phase flow.
The present section contains the counterparts for computation of the particle dynamics.

In addition to the Navier—Stokes equations for the carrier flow, for each particle the particle
transport equation (2.32) must be solved. To this end, the fluid velocity must be interpolated
at the particle’s position.

Interpolation is discussed in section 3.3.1. In section 3.3.2, a numerical method for solving
equation (2.32) is presented. This method was used for all simulations presented in this
work.

The methods presented are based on studies of Yeung & Pope (1988), Balachandar &
Maxey (1989), Meyer & Jenny (2004), Rosenbrock (1963), Kaps & Rentrop (1979) and
Gottwald & Wanner (1981).

3.3.1 Interpolation of the fluid velocity on the particle’s
position

In order to compute the particle velocity (equation (2.32)), one needs to compute the fluid
velocity seen by the particle at every time step. With a second-order Finite Volume method,
cell volume or cell surface averaged values for the fluid velocity are computed. Averaged
values can be regarded as filtered values. The corresponding filter is a box filter (cf. section
3.1.2). On the other hand, the fluid velocity seen by a particle is a point value. Therefore,
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3.3 Numerical methods for particle-laden flow

strictly speaking, in order to compute the fluid velocity seen by a particle at a random
position one would need to ‘invert’ the averaging operator (i.e., ‘defilter’ the field) first and
then interpolate the defiltered field on the particle’s position.

Of course, the averaging operator is not invertible and therefore the problem cannot be
tackled that way. In LES, defiltering is addressed by particle-LES models (cf. chapters 6
and 7). In DNS; this is not a big issue because if the computational cells are smaller than the
Kolmogorov length then surface averaged values do not differ significantly from point values.
In this case, one can treat the results of a Finite Volume simulation as point values and obtain
the fluid velocity seen by the particle by interpolation.

Concerning interpolation of fluid velocity on particle position, there are three major studies
to mention, namely the studies of Yeung & Pope (1988), Balachandar & Maxey (1989) and
Meyer & Jenny (2004). These studies are typically referenced in order to select a scheme for
interpolation (see e.g. Toschi & Bodenschatz, 2009).

Yeung & Pope (1988) and Balachandar & Maxey (1989) analysed different interpolation
schemes for inertia free particles. They conducted an analysis in homogeneous isotropic tur-
bulence and compared polynomial interpolation of various order, cubic splines and trigono-
metric interpolation against each other. Trigonometric interpolation was assumed to give
exact values because the flow is decomposable on a Fourier basis. With this reference so-
lution they computed the error for the other schemes from the differences in particle posi-
tion.

They found that the error from second-order interpolation is significantly higher than the
error from third-order interpolation. Fourth-order shows smaller errors than third-order but
the difference between third and fourth-order is not substantial. The error obtained with
splines turned out to be comparable to third-order polynomial interpolation, but polynomial
interpolation is computationally less expensive than splines due to locality. Therefore the au-
thors recommend the use of third or fourth-order interpolation.

Meyer & Jenny (2004) addressed another aspect, namely artificial clustering due to inter-
polation errors. This occurs if the interpolated fluid velocity is not divergence free. They
showed that standard non-conservative second-order interpolation schemes lead to substan-
tial artificial clustering.

Unless noted otherwise, the data presented in this work is based on a standard fourth-
order interpolation scheme, meeting the requirements stated by Yeung & Pope (1988) and
Balachandar & Maxey (1989). Additionally, simulations were conducted using a second-order
conservative scheme. This scheme is explained in detail in Gobert et al. (2006). It meets the
requirements of Meyer & Jenny (2004). In DNS, both schemes produced very similar results,
the effect of interpolation is negligible due to the fine grid. In LES, an effect was observable
but it is so small that it does not affect the overall conclusions. Special attention was paid to
the effect of interpolation on preferential concentration, sections 5.5.4, 6.4.4 and 7.4.3. Also
here, results from fourth-order non-conservative and second-order conservative interpolation
do not differ substantially. Therefore the results from chapters 4 to 6 are based on fourth-
order interpolation unless noted otherwise. An analysis of the effect of interpolation can be
found in chapter 7, section 7.1.1.
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3 Implemented simulation tools

3.3.2 Computation of particle velocity

After selecting an interpolation method for computing usae,, one can tackle the particle
transport equation (2.32). In the following it is described how this was conducted in the
present work.

In the implemented approach, in each time step of the flow solver the velocity of each
particle is advanced accordingly. In other words, all particles and flow are synchronised after
each time step of the flow solver.

For small Stokes numbers, Stokes drag is a stiff term. In general, stiff differential equations
are computationally expensive because explicit schemes require very small time steps and
implicit schemes require the solution of a system of non-linear equations. One exception are
linear stiff equations. Here, implicit schemes reduce to the solution of a system of linear
equations while allowing for large time steps.

Rosenbrock—Wanner schemes (see Hairer & Wanner, 1990; Deuflhard & Bornemann, 2008)
are schemes for stiff equations which combine an implicit and an explicit approach. The idea
is to decompose the differential equation in a linear and a non-linear term and to discretise
the linear term implicitly and the non-linear term explicitly. More precisely, in the context
of the present work, the particle transport equation (2.32) is first rewritten in the form

cple,

T‘ = f’l <t7 up)a f’L (t7 up) = 247_p (uf@p,i - up7i> (322&)
dup,i af; af; ‘ B f; B of; '
g o t+ —8%] pi T+ (fz(t, u,) o t Bu, Upj | - (3.22b)

8fz

Then, the first terms of equation (3.22b), 88{;
Kutta scheme and the remaining terms by an explicit Runge-Kutta scheme. It should be
mentioned that fl is not zero because uyae, depends on ¢.

In order to obatln a first order Rosenbrock—Wanner scheme one writes

. df; df;
upi(t+ At) = u,,i(t) + At ( 5 At + —— 8um i (t+ At))

j» are discretised by an implicit Runge-

Ofi
e (At 0) - 50500 (3.23)
Up,j
and then sort this equation with respect to knowns and unknowns,

Ofi . Afi A 2
<(5w au—m> ’U/pJ (t -+ At) = up Z( ) a At

+ At ( it uy(t) — ;u—iup,j(t)) . (3.24)

At denotes the time step size of the flow solver, § is the Kronecker delta function and = stands
for first-order approximation. The derivatives of f are evaluated at (¢, u,(t)). It should be

noted that cp and Re, depend on u,, and therefore auf - is not a constant.

Equation (3.24) shows that with this discretisation u,(t + At) can be approximated by
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3.3 Numerical methods for particle-laden flow

solving the system of linear equations <(5ij — 8‘Zfi,>. In the present case this is inexpensive
D3

because the system is only three-dimensional. Furthermore, the linear approximation is very
well suited for the particle transport equation (2.32) because in the low Reynolds number
limit (Re, — 0), cp = 24/Re,, Stokes drag is linear and therefore the linear approximation
is exact. Also for high Reynolds number, the approximation is good. For example Schiller
and Naumann’s model for cp gives only a maximal exponent of 1.687 for u,, i.e., Stokes
drag is not even quadratic.

Equation (3.24) is a first order discretisation. In the present study a fourth-order Runge-
Kutta scheme was used instead. In this case, the right hand side f must be evaluated at
various instants between ¢ and t+At. However, the flow solver provides uq, only at intervalls
of At. Therefore ufa,(t) was interpolated linearly in time.

One might wonder about the effect of this interpolation on the overall accuracy. In the
present work, no effect was observable. The time step size of the flow solver was so small that
the interpolation error from this temporal interpolation is negligible.

This interpolation requires that usa, is known at the new particle’s position, x,(t + At).
This again means that first the fluid must be advanced to ¢t + At, then the particle must be
transported to its new position x,(t + At), then uysq,(t + At) must be computed by spatial
interpolation and finally u,(t+At) can be computed as described. For advancing the particle
to its new position an explicit Euler method was used,

x,(t + At) = x,(t) + At u,(1). (3.25)

% and %. In the
present case, this was done analytically, respecting that ¢p and Re, depend on u,,. ’

The implemented scheme is adaptive with a third-order error estimator, i.e., for the par-
ticles, the time step At was subdivided in smaller time steps such that the difference be-
tween the third-order solution and the fourth-order solution is smaller then an error bound.
The error bound was set to 1072u,,; + 10™* for each component of u,;. This bound is
particularly important if the Stokes number is small but greater than zero. Section 5.4
contains a comparison of simulated data against experimental data at St = 0.1. It shows
that even at this Stokes number the error bound gives satisfactory results. In the present
thesis no particles with Stokes numbers greater than zero and smaller than 0.1 were anal-
ysed. Therefore the error bound can be assumed to be sufficiently small for all Stokes
numbers.

Although not conducted in the present work, Rosenbrock—Wanner schemes are also well
suited if the particle transport equation includes the fluid acceleration force as well. Actually,
linear Stokes drag and fluid acceleration force lead to the test equation proposed by Prothero
& Robinson (1974). Bartel & Giinther (2002) showed that Rosenbrock—Wanner schemes
are well suited for this class of problems. If even more terms are included in the particle
transport equation, then the performance of Rosenbrock-Wanner schemes can be analysed
by extending the Prothero-Robinson test equation, in analogy to the analysis of Simeon
(1998, 2001).

Rosenbrock—Wanner schemes furthermore require the computation of
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3 Implemented simulation tools

3.4 Summary of implemented numerical

methods

Sections 3.1 to 3.3 of this chapter contained descriptions of the numerical tools implemented
in this work. These are summarised in the present section.

Computation of the carrier flow (MGLET):

Governing equations: Navier-Stokes (DNS) and filtered Navier—Stokes with fluid-LES
model (LES)

Fluid-LES model: Dynamic Lagrangian Smagorinsky model proposed by Meneveau
et al. (1996)

Discretisation of Navier—-Stokes equations (DNS) and filtered Navier—Stokes equations
(LES): Second-order Finite Volume scheme

Grid: Staggered equidistant Cartesian grid

Advancement in time: Third-order Runge-Kutta scheme proposed by Williamson
(1980)

Enforcement of Conservativity: Poisson equation for the pressure using an iterative
solver proposed by Stone (1968)

Computation of the particles (additionally implemented in MGLET for the present
work):
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Discretisation: Point-particles, Euler-Lagrange approach
Coupling: One-way coupling
Governing equation: Simplified Maxey—Riley equation, considering Stokes drag only

Empirical corrections: Correction of the drag coefficient for high particle Reynolds
numbers following the recommendations of Clift et al. (1978)

Interpolation of fluid velocity on particle position: Fourth-order Lagrangian interpola-
tion unless noted otherwise

Time advancement of particle velocity: Adaptive fourth-order Rosenbrock—Wanner
scheme with third-order error estimator

Time advancement of particle position: Explicit Euler scheme



4 A methodology for assessment of
particle-LES models

Never trust a statistic you didn’t fake yourself.
Winston Churchill

Chapter 2 covered fundamental issues, chapter 3 focused on numerical tools. In chapters
5 to 7 these tools are used in order to analyse SGS effects and to assess particle-LES models.
To this end, SGS effects must be separated from large scale effects and data must be eval-
uated statistically. The present chapter explains how this is conducted in chapters 5 to 7.
Thus, the present chapter explains the methodology which is implemented in the remaining
chapters.

This and the following chapters concern the main topic of this work, LES of particle-
laden flow. Focus is on the effect of small scales on particles and its reconstruction by a
particle-LES model.

For some applications this effect is negligible, for others it is crucial. Therefore, before
implementing a particle-LES model, one should first clarify if a model is needed and, if
yes, what properties the model should have. Therefore, the first question must be ‘which
quantities are of interest for the given application?’.

The present work addresses particle-laden flow in general. The quantities of interest
are defined by a statistical approach. More precisely, the quantities of interest are first and
second moments of particle position, particle velocity and fluid velocity seen by the particles.
In addition, preferential concentration is taken into consideration. The present chapter
focuses on a methodology to compute these quantities.

For the computation of the statistical moments, an averaging operator must be defined.
This is conducted in section 4.1. That section also contains simplifications for the averaging
operator for forced isotropic turbulence. Section 4.2 lists the quantities which will serve in
chapters 5 to 7 for the analysis of small scale effects and for model assessment. In addition,
transport equations for these moments are presented. Section 4.3 focuses on techniques to
compute the quantities under consideration by numerical simulation with regard to small
scale effects. In particular, different techniques for different purposes are explained. These
techniques will be implemented in the following chapters.

4.1 Definition of an averaging operator for
particles

In this section, an averaging operator for the particles is defined. This operator respects
the Lagrangian nature of the particle dynamics. Therefore it is not equivalent to an average
operator for the carrier fluid flow.
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4 A methodology for assessment of particle-LES models

In forced isotropic turbulence, one can compute statistics of the carrier fluid flow by av-
eraging over space and time (cf. section 2.1.1). Correspondingly, one can compute statistics
of the suspended phase by averaging over particles and time. This holds for forced isotropic
turbulence. In section 6.3 and 7.3, results from analytical computations will be presented
which are not restricted to isotropic turbulence. On the contrary, that analysis also concerns
general turbulent flow. For general flows it is not clear how to average quantities related to
the particles. For example one option would be to record the particle-laden flow at some
instant, divide the domain in small cubes and to average in each cube over all particles
which reside in that cube. In this case, one identifies two particles with each other if they
reside within the same cube at the recorded instant. Such an approach corresponds to the
question ‘What are the statistical properties of particles which arrive at a specific position
at a specific instant?’. This is a Eulerian approach. Another option would be to identify two
particles with each other if they were released within the same cube, independent of their
position at the recorded instant. This approach corresponds to the question ‘What will on
average happen to a particle if I release it at a specific position at a specific instant?’. This
is a Lagrangian approach.

In the following, the latter approach is used. Consider one single particle. Its position x,(t)
and velocity u,(t) at some instant ¢ depends on its initial position and velocity xo = x, (%)
and u, o = u,(tp). In addition, x,(¢) and u,(¢) depend on the flow.

Now, compute an ensemble average for the flow, i.e., average x,(f) and u,(t) over multiple
realisations of the flow. Denote the corresponding quantities by X,,(¢) and T, (t).

More general, denote by f(txo,1,0) the ensemble averaged quantity f. f can be any
operator which depends on t,x,u,0 and the (time dependent) functions x,(t), u,(t) and
Ufap(t). This means that f can be a primitive variable such as f = x, or f = u, but
f can also be a non-primitive quantity such as the integral time scale of particle veloc-
ity.

Ensemble averaging over the flow means that one conducts a large number NV of realisations
of the flow, enumerated by ¢+ = 1,2,3,..., N. For each realisation, one will obtain different
results for the (time dependent) particle position, particle velocity and velocity seen by
the particle. Enumerate these by x/(t), u}(t) and u’q,(t). Then, the ensemble average

f(t|%0,u,0) can be expressed by

N

7 1 i i i

f(txo,up0) = N E f (uf@p,up,xp;ﬂxo, w,0) - (4.1)
i=1

It should be mentioned that in general this averaging operator does not include averaging
over time, space or particles. It stands only for ensemble averaging over the flow. This is im-
portant for the analytical computations in section 6.3 and 7.3.

In a statistically steady flow, ensemble averaging is equivalent to averaging in time. Nev-
ertheless, the averaged quantities are then time dependent because the initial conditions xg
and u, are imposed at ¢ = t;,. More precisely, in a statistically steady flow, equation (4.1)
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4.1 Definition of an averaging operator for particles

is equivalent to

T

f(t|x0,up0) = % / f (u}o@p, w, X5+ 7o[xo, u,) drg (4.2)
-7
where T' is some large time span over which f is averaged. u}%@p, u? and x;* denote fluid
velocity seen by the particle, particle velocity and particle position respectively with initial
conditions x7°(79) = xp and w°(7) = 0.

In forced homogeneous isotropic turbulence, which is the test configuration in the present
work, equation (4.2) further simplifies. The homogeneity of the flow allows to set xo = 0
without loss of generality. Furthermore, due to turbulence the particle’s statistics become
asymptotically independent of the particle’s initial velocity.

Asymptotic independence of initial conditions is widely accepted for turbulent single phase
flows (cf. e.g. Tennekes & Lumley, 1972; Townsend, 1975) although for reasons of complete-
ness it should be noted that this premise might not apply in general (see George, 1989;
Johansson et al., 2003). However, also recent investigations of turbulent flow are conducted
under this assumption, likewise the present work.

Concerning particle-laden forced isotropic turbulence, for example Février et al. (2005)
confirmed that the effect of initial conditions decays. In particular they point out that if ¢
is larger than the integral time scale of the carrier flow and larger than a time scale which
depends on the particle relaxation time, then particle statistics become independent of the
initial conditions. Thus, for sufficiently large ¢, equation (4.2) simplifies in forced isotropic
turbulence to

T
?(t) = %/f(uf@paumxp;t"i_ TO) dTO- (43)
-7

In forced isotropic turbulence all particle statistics are steady. Therefore a simple transform
of variables yields

T

— 1

f= ﬁ/f(uf@p,up,xp;m) dp. (4.4)
“r

This equation is simply the average of f along a particle’s path. Thus, in isotropic turbu-
lence the averaging operator = reduces to Lagrangian averaging. Due to the independence
of x¢, this also corresponds to averaging over several particles. In the present work, both ap-
proaches are conducted for the numerical simulations. Statistics are computed by averaging
over particles and time. It should be noted that this is not equivalent to spatial averaging
because of preferential concentration.
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4.2 Definition of assessment criteria

In the previous section the averaging operator was defined. This operator is used in the
present section for the definition of assessment criteria. These criteria will serve in the
following chapters for quantification of SGS effects on the particles and for assessment of
particle-LES models.

For a specific application the assessment criteria are often self explanatory. For example,
if one wants to predict the transport of air pollutants, then one will be interested in particle
dispersion. If one wants to analyse the impact of particles colliding with a wall, then kinetic
energy of the particles will be an interesting quantity. On the other hand, for chemical
reactions, clustering of particles can be important. In this case, preferential concentration
is an issue.

The present work is not aimed at one single specific application but follows a generalistic
approach. The assessment criteria used here is based on a statistical point of view. Within
the Lagrangian framework, each particle is characterised by its position, its velocity and
the fluid velocity seen by the particle. From a statistical point of view, these three quan-
tities define random processes. In the present work, the corresponding stochastic moments
are considered as assessment criteria. In addition, preferential concentration is taken into
consideration. Altogether, the assessment criteria read

A1l average particle position X, (¢) (first moment in particle position),

A2 fluid velocity seen by the particles Uray,(t) (first moment in velocity seen by particles),
A3 average particle velocity T, (¢) (first moment in particle velocity),

A4 particle dispersion T, ;7,;(t) (second moment in particle position),

A5 kinetic energy of the fluid seen by the particles %uf@p’iuf@pyi(t) (second moment in
velocity seen by particles),

A6 kinetic energy of the particles %umup,i(t) (second moment in particle velocity),
A7 accumulation ¥ (preferential concentration),
A8 fractal dimension d,,. (preferential concentration).

These are the quantities of interest in the following chapters. In chapter 5, the effect of
small scale turbulence on these quantities is analysed. In chapters 6 and 7, particle-LES
models are assessed with respect to these quantities.

Transport equations

The focus of the present work is on small scale effects on particles and on particle-LES
models. The analytical assessment is either directly based on the statistical moments or on
transport equations for these moments. In a Lagrangian framework, a transport equation is
simply an equation for the time derivative. For the moments listed above, one can deduce
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the following transport equations:

dz i
d? = Up,i (45&)
d t
WoiTai (1) = 5 / 0 ()i 3@ dr. (4.5b)
Assessment of some average f is equivalent to assessment of its time derivatve g if the

effect of initial conditions is neglected. It was already explained above that there is sufficient
evidence for this assumption. Therefore in the following it will be assumed that assessment

of f is equivalent to assessment of g.
For the analytical assessment in section 6.3, linear Stokes drag is assumed,

du 1
d_tp = - (uyap — up). (4.6)

In this case one can derive additionally

du,;  Urapi — Upi

= d 4.7
dt Tp (4.72)
1 t T
— t1Ftg—t—7
Upﬂ'(T)Up,i(t) = ﬁ / / Uf@p7i(t1)ltf@p7i(t2)€ 7P dtl dtg (47b)
p

Equations (4.5a) and (4.7a) reflect that @, and X, are exact if and only if Tsq, is exact.
Therefore the analytical analysis of the first moments (section 6.3.2) will be reduced to the
analysis of Uray.

Equation (4.5b) furthermore shows that

Up iUy, and T,,T,; are exact

if and only if wsapi(T)ufap(t) is exact for all 7 < t.

Therefore the analytical analysis of the second moments (sections 6.3.3 and 7.3) will be
reduced to the analysis of utapi(T)ufapi(t).

4.3 A priori and a posteriori analysis

Sections 4.1 and 4.2 concerned the definition of quantities which reflect the effect of tur-
bulence on particles. The present section presents numerical techniques to compute these
quantities such that one can differentiate between small scale and large scale effects. These
techniques are called ‘a priori’ and ‘a posteriori’ analysis.

A priori analysis stands for comparison of filtered DNS data against reference DNS data.
A posteriori analysis stands for comparison of LES data against reference DNS data. Thus,
results from the a posteriori analysis depend on the fluid-LES model, in contrast to the a
priori analysis. The combination of both allows to differentiate between errors from the
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4 A methodology for assessment of particle-LES models

fluid-LES model and effects of unresolved scales on particles.

The idea is to advance step by step from the DNS solution via a filtered DNS solution
to the LES solution. However, if one looks into the details, then one will find that actually
these are more than two steps. In other words, it needs to be clarified in detail what is
meant by a priori analysis.

Figure 4.1 shows all steps which were conducted in a priori analysis in chapters 5 to 7.
Each column corresponds to one data set. The leftmost column is the reference DNS data.
The other columns are explained in the following.

The first step in an a priori analysis is the choice of a filter. In the present work, always
box filters were implemented. After the choice of a filter one can advance to the second
column.

The second step is to decide whether to sample this filtered field on the original DNS grid
or on a grid which is as coarse as an LES grid. The latter choice will increase the error from
interpolation of fluid velocity on particle position. For the analysis of small scale effects
on particles it is desirable to separate effects of filtering from effects of interpolation errors.
Thus, chapter 5 follows the first choice, the filtered field is sampled on the DNS grid. A
priori analysis in chapter 5 stays in the second column. On the other hand, in order to test
the performance of particle-LES models, the increased interpolation error must be taken
into account as well. Therefore chapters 6 and 7 follow the second choice, the filtered field is
sampled on a coarser grid. A priori analysis in these chapters advances to the third, fourth
and fifth column.

The third step for the a priori analysis is to decide whether to compute particle paths
from the filtered or from the unfiltered DNS field. A good particle-LES model will recover
a DNS particle path in a statistical sense. Chapter 5 contains an analysis of the SGS effects
which a good particle-LES model should emulate. Therefore here it makes sense to compute
particle paths from the unfiltered DNS field and to record statistics of the filtered field along
these paths. Consequently, interpolation in the second column feeds from particle positions
from the first column.

The particle-LES models ADM and SOI (cf. chapters 6 and 7) do not take explicitly into
account that the particle paths in DNS and LES deviate. Therefore an assessment of these
models along DNS particle paths is not in contradiction with the respective model assump-
tions. Such an approach is conducted in chapters 6 and 7. On the same basis the models
are assessed by analytical means in sections 6.3 and 7.3. Consequently, columns three and
four also feed from particle positions from the first column.

On the other hand, the stochastic models analysed in chapter 6 are explicitly based on
particle paths computed from the modelled field, cf. Fede et al. (2006). Therefore the
numerical assessment of these models must be performed along the particle paths described
by the models themselves. Thus, column five feeds from particle positions of the same
column.

The stochastic models intend to reconstruct the particle paths in a statistical sense. Con-
sequently the analytical assessment of these models (section 6.3) is partially based on an
assumption on statistical exactness of particle paths. These assumptions are detailed in the
corresponding section.
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Figure 4.1: Schematic of steps in the a priori analysis. ‘Sho’ stands for the model proposed by
Shotorban & Mashayek (2006), ‘Sim’ stands for the model proposed by Simonin et al.
(1993), cf. chapter 6.

4.4 Conclusions of chapter 4

The present chapter consists of two parts. The first part (sections 4.1 and 4.2) focuses on
quantities which reflect the effect of turbulence on particles. These quantities will be used in
chapters 5 to 7 for the analysis of SGS effects on particles and for assessment of particle-LES
models. The second part of this chapter (section 4.3) discusses several types of numerical
experiments which are conducted in chapters 5 to 7 in order to separate SGS effects on these
quantities from large scale effects.

In section 4.1 an averaging operator for particles in a turbulent flow is presented. This
operator is applied throughout the present work. It defines statistical moments which serve
as assessment criteria in the following chapters. In addition, preferential concentration is
included as assessment criterion. In detail, the criteria read:

A1 average particle position X,(¢) (first moment in particle position),
A2 fluid velocity seen by the particles TUra,(t) (first moment in velocity seen by particles),

A3 average particle velocity T, (¢) (first moment in particle velocity),
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A4 particle dispersion T,;7,;(t) (second moment in particle position),

A5 kinetic energy of the fluid seen by the particles %uf@p’iuf@p,i(t) (second moment in
velocity seen by particles),

A6 Kkinetic energy of the particles %, 1,;(t) (second moment in particle velocity),
AT accumulation ¥ (preferential concentration),
A8 fractal dimension d,,. (preferential concentration).

A motivation for these criteria is given in the present chapter. In addition, transport equa-
tions for the statistical moments A1, A3 and A4 are presented. In the following, either the
statistical moments or the respective transport equations are computed. If a particle-LES
model reconstructs the transport equation of one of the moments A1, A3 or A4, then it will
be concluded that it predicts the respective moment correctly.

The second part of this chapter, section 4.3, discusses the techniques of a priori and a
posteriori analysis. These are techniques for the analysis of small scale turbulence or for
model assessment, implemented in the following chapters.

A posteriori analysis means comparison of DNS data against LES data. A priori analysis
means comparison of DNS data against data from filtered DNS. Section 4.3 shows that for
particle-laden flow several types of a priori analysis are possible. The purpose of the analysis
specifies which type is recommendable. Section 4.3 explains which type is to be selected for
which purpose.
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5 A numerical study on requirements for
a particle-LES model

The purpose of computing is insight not numbers.
C. Hastings

In Large Eddy Simulation it is common practice to neglect the effect of the subgrid scales
(SGS) on the particles although for most configurations it is not clear to which extent the
small scales affect the particles’ dynamics. In the present chapter it is shown by numerical
experiments that actually this effect is not negligible. In particular, it is shown that neglec-
tion leads to underestimation of kinetic energy and overestimation of integral time scales. A
particle-LES model is required to compensate for this.

Particles with very high relaxation time 7, (i.e. high inertia) are not very sensitive to
high frequency fluctuations. Therefore it is commonly assumed that for high 7, the effect of
the unresolved scales can be safely neglected, cf. e.g. Yamamoto et al. (2001). The present
chapter shows that this holds for the kinetic energy of the particles but not for the rate of
dispersion.

In particular, the present chapter shows that SGS effects on the particles depend qual-
itatively on Reynolds number. This could only be detected by simulations at very high
Reynolds number. To date, the present study is the only study of SGS effects on particles
at high Reynolds number. Furthermore, there are no other studies at a comparable range
and resolution in Stokes numbers.

With this data, it was for the first time possible to formulate scaling laws for the Stokes
number dependence of kinetic energy and integral time scale seen by the particles. These
scaling laws are important for understanding the physical effects involved. However, they
are only a side product of this study. The main focus is on the effects which need to be
reconstructed by a particle-LES model.

This chapter is organised as follows. Section 5.1 contains an overview of published works
which are strongly related to the present chapter. In sections 5.2 and 5.3, the parame-
ters for the present test configurations are detailed. Section 5.4 presents results for val-
idation of the methods. Section 5.5 contains the core of this chapter, namely results of
an a priori and an a posteriori analysis of the effect of small scale turbulence on parti-
cles.

5.1 Relation to previous works

One of the first studies concerning SGS effects on particles was conducted by Armenio,
Piomelli & Fiorotto (1999). They analysed inertia free particles, i.e. 7, = 0, and found
that SGS turbulence has a significant effect on the particles. For 0 < 7, < oo, there
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5 A numerical study on requirements for a particle-LES model

is little work in this direction. The only two widely referenced works in this field are
the analyses by Kuerten & Vreman (2005), Yamamoto et al. (2001) and Fede & Simonin
(2006).

Kuerten and Vreman (see also Kuerten, 2008) studied particles in a turbulent channel flow.
They found that LES underpredicts the movement of particles towards the wall, i.e., the spa-
tial distribution of particles is not predicted correctly by LES.

Yamamoto et al. conducted an a priori analysis in turbulent channel flow, i.e., they
compared DNS data against filtered DNS data. The authors characterised the effect of
small scale turbulence by comparing particle trajectories computed from filtered DNS against
trajectories from unfiltered DNS. The Reynolds number of the simulation was very high
(Reynolds number based on friction velocity was Re, = 644) but the authors themselves
state that, due to limited computational capacity, they could not resolve all scales present
in the flow.

Fede and Simonin conducted an a priori analysis in isotropic turbulence. In contrast to
Yamamoto et al. they resolved all scales present in the flow. To achieve this, they restricted
themselves to a relatively low Reynolds number of Re) = 34. At this Reynolds number, the
energy spectrum of the flow shows no inertial subrange. Thus it is not clear whether their
results can be applied to high Reynolds number flows. Therefore more investigations at high
Reynolds number are needed.

The present chapter contains results of such investigations. It extends and complements
the findings of Fede and Simonin. Besides the different Stokes and Reynolds numbers, the
focus is also somewhat different. Fede and Simonin focused on effects of SGS turbulence on
particle collision. The present chapter considers configurations where collision is negligible
and focuses on the criteria from section 4.2 at high Reynolds number and a broad range of
Stokes numbers. Particle statistics from simulations of isotropic turbulence up to Reynolds
number Re, = 99 are presented. At this Reynolds number, the energy spectrum of the
carrier fluid clearly shows an inertial subrange, i.e., the Reynolds number is sufficiently high
such that Kolmogorov’s hypotheses are applicable.

The methodology from chapter 4 is applied in order to quantify SGS effects on parti-
cles. This analysis gives insight into the mechanisms which a particle LES model must
emulate.

Thus, this chapter addresses the two questions “What happens if subgrid scale effects are
neglected?” and “Which properties must a particle-SGS model have?”.

5.2 Numerical Simulation of the carrier
flow

As mentioned above, previously published results were confined to low Reynolds number or
to underresolved DNS. The simulations presented in this chapter do not show any of these
deficiencies. This is shown in the following. In addition, spectra from DNS, filtered DNS and
LES are presented. The implemented simulation techniques and numerical methods were
already described in chapter 3.

The flow was computed at four Reynolds numbers, namely Rey = 34, Re, = 52, Re), = 99
and Rey = 265. The Reynolds number Re, = 24ms ig based on the transverse Taylor mi-
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croscale A\ and the rms value of one (arbitrary) component of the fluctuations w,,s. The
highest Reynolds number serves not for SGS analysis but only for code validation, see be-
low.

In all computations the flow was solved in a cube on a staggered Cartesian equidistant
grid. For Rey, = 34, 52 and 99, the size of the computational box and the cell width was
chosen in dependence of the Reynolds number such that all scales are resolved, based on the
criteria stated by Pope (2000). They read (cf. section 3.1.1):

C1 The DNS should resolve k < 1.5/ng, i.e., Az should be smaller than nxm/1.5 ~ 2.1nk.
Table 5.1 shows that this requirement is readily fulfilled.

C2 The computational box size L should be larger than 8 integral length scales L. Ta-
ble 5.1 shows that this requirement is fulfilled for Rey, = 34, 52 and 99 but not for
Rey = 265 if Ly is computed from the model spectrum of section 2.1.3.

Table 5.1: Simulation parameters and Eulerian statistics from DNS of forced isotropic turbulence.
Reynolds number Rey, number of grid points IV, length of computational box L, cell
width Az, range of forced wavenumbers [k, k1], rate of dissipation e, Kolmogorov
length scale ng, Kolmogorov time scale 7x, integral length scale Ly, time scale of
energy containing eddies k¢ /e, filter width A and ratio of kinetic energy of the filtered
field (k) to kinetic energy of the unfiltered field k. Model spectrum from section 2.1.3.

DNS

Rey 34 52 99 265
N 1283 256° 5123 1030°

L/X 16.3 23.8 39.9 48.3

L/L; from simulation 9.77 11.9 12.2 13.4
L/L; from model spectrum 8.0 9.15 9.9 5.75
Az /A 0.127 0.093 0.078 0.047

Ax/ng 1.47 1.34 1.54 1.54

[0, K1 ]\ 0.996,1.49] [0.514,1.54] [0.33,0.881] [0.077,0.33]

XU, v 15.1 14.99 15.8 14.8
MK /A 0.087 0.070 0.050 0.030

TR Upms [ A 0.257 0.248 0.252 0.28

L¢/X from simulation 1.67 2.00 3.27 3.6

L /X from model spectrum 2.04 2.6 4.03 8.4
/€ Urms /A 3.40 5.15 9.38 28.5

A/Azx 5 7 9 n.a.

<kf> /kf 88% 87% 88% n.a.

In the present chapter, the testcase Rey, = 265 serves only for code validation, section
5.4. At this Reynolds number, requirement C2 was not fulfilled due to computational lim-
itations. This means that for this Reynolds number the box size is too small to allow for
reliable statistics. Therefore the analysis of small scale turbulence is restricted to the smaller
Reynolds numbers.

In chapter 7, results at Re, = 265 will be presented for the new model. It should be
noted that due to the too small box size these results have only an indicative charac-
ter.
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5 A numerical study on requirements for a particle-LES model

One crucial point for the simulation of isotropic turbulence is that the reference length
scales g and Ly are a result of the simulation, i.e., if the box is too small or the grid
too coarse then these quantities are not computed correctly. This complicates validation
of the requirements stated above. One way to check that ng is computed correctly is to
compare the numerically computed values for 7, /A against their theoretical counterparts.
The numerically computed values are listed in table 5.1. The theoretical values can be
derived from equation (2.14),

w1 (5.1)

A 15Y4\/Rey
The numerically computed values and the values computed from this formula are identical
for all three Reynolds numbers, indicating that requirement C1 is indeed fulfilled. Of course,
this check is only a necessary and not a sufficient condition for requirement C1 because A
and ng are both computed from the simulation results.

Concerning requirement C2, there is no analytical equation for L;/\. The only workaround
is to compute L;/A from the model spectrum of section 2.1.3. These values are listed
in table 5.1. They are larger than the numerically computed values for L/ (see same
table) indicating that the large scales are not well resolved. Considering that in the present
work the focus is on small scales, the deviations are nevertheless acceptable expect for the
testcase at Rey, = 265. Therefore this testcase was not used for analysis of small scale
statistics. It should be noted that for Rey, = 34, 52 and 99, requirement C2 is fulfilled,
independent whether L;/\ is computed from the model spectrum or from the simulation
results.

The energy spectrum functions from DNS are plotted in figure 5.1. The simulation at
Rey, = 99 shows a well established inertial subrange with F (k) ~ x~°/3. This is a prerequisite
for investigating effects at high Reynolds number turbulence.

Figure 5.2 shows a comparison of the DNS spectra against the model spectrum from
section 2.1.3. Here, scaling on the wavenumber axis is based on the Kolmogorov length scale
Ni. At low wavenumbers, the spectra show deviations, explaining the deviations in Lg/\.
Actually the low wavenumber regime is strongly dependent of the forcing scheme. In the
present work, this regime is of minor interest because the focus is on small scale effects.
In LES and DNS the same forcing scheme was applied and therefore the deviations to the
model spectrum are not an issue.

At all Reynolds numbers, the model spectra show a slightly extended dissipative range in
comparison to the DNS spectrum, i.e., the decay at high wavenumbers is overpredicted in
DNS or underpredicted in the model spectrum. However, for the purpose of the present work
the match between DNS and model spectrum is satisfactory.

The small scale effects on the particles are quantified by a priori and a posteriori anal-
ysis, i.e., by comparison of DNS data against filtered DNS data and LES data respec-
tively.

In the a priori analysis, small scale turbulence is assessed along the DNS particle tra-
jectories, following the reasoning of section 4.3. This means that the particle transport
equation (2.32) is solved using the (unfiltered) fluid velocity usa,. For computing statistical
quantities, the large scale fluctuations were extracted using a box filter (cf. section 3.1.2),
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)t = ][ wplxtrt)dr (5.2)

[~A/2,A/2)3

u; is the fluid velocity computed from DNS and A is the filter width. A is set such that

the energy of the filtered field (ks) = (us;)°/2 is 87 - 88 % of the energy of the unfiltered
field ky = “sz/ 2, cf. table 5.1. As before, = denotes spatial and temporal averaging. The
reader is reminded that for the testcase Rey = 265 no small scale statistics were recorded
and consequently this DNS was not filtered.

(uy) does not contain the high wavenumber fluctuations. In the a priori analysis, the
effect of the small scales is analysed by comparing statistics of uy with those of (uy) on the
particles” positions.

For the a posteriori analysis, the Lagrangian dynamic Smagorinsky model proposed by
Meneveau et al. (1996) (cf. section 3.1.2) was implemented. For each Reynolds number, the
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resolution of the LES was chosen such that the kinetic energy resolved by LES [ky] and the
kinetic energy of the filtered DNS field (kf) are approximately equal. The LES velocity is
denoted by [uf]. Parameters for the LES can be found in table 5.2. [¢] denotes the resolved
dissipation rate

=2+ nBIBL (501 = 5 (5 + 25, (53)

It should be noted that one inherent problem in LES of isotropic turbulence is the com-
putation of the Reynolds number Re, because rms velocity and Taylor length scale depend
on small scale turbulence. Therefore, in the present work, for each Reynolds number first a
DNS was conducted. The range of forced wavenumbers [k, £1] and the energy contained in
that range was set such that the desired Reynolds number is attained. Then, exactly these
parameters were used to conduct the corresponding LES, i.e., the energy contained in the
wavenumber range [k, k1] is equal in LES and DNS.

Instantaneous energy spectra of the LES are plotted in figure 5.3. It should be noted
that the cutoff wavenumber based on A is approximately equal at all Reynolds numbers.
In figure 5.4, the spectra from DNS, filtered DNS and LES can be compared easily. Ev-
idently the match between filtered DNS and LES spectra is very good, which is a pre-
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requisite for a quantitative comparison of results from a priori and a posteriori analy-
sis.

LES Table 5.2: Parameters for LES of forced
Re, 34 52 99 265 isotropic turbulence and time
N 323 493 643 493 scale of energy containing eddies
Az /) 0.509 0.567 0.623 1.15 [k41/l€] computed from resolved
k/]/[] Urms/A 35 59 111 32.76 scales.
\kf] /Ky 8%  86% 8%  92%

5.3 Parameters for the discrete particle
simulations

The previous section contained the parameters for the simulations of the carrier flow. The
present section contains parameters for the simulation of the particles.

In all computations the methods described in section 3.3 were implemented. The density
of the particles was set to p, = 1800p where p is the density of the fluid. In each simulation
the particles were divided in 24 fractions with different diametre d. The maximum diametre
was chosen in dependence of the Reynolds number in such a way that the diametre of the
largest particles equals the Kolmogorov length scale. Thus, the particles can be treated as
point particles, cf. section 2.2.1.

In LES, the SGS effect on the particles was not modelled because this chapter aims at an
analysis of these effects. Therefore, in LES the equation

dlu,]  cpRe,

dt 24Tp ([up] - [uf@p]) (54)

was solved with the same method as in DNS.

For single particle statistics (sections 5.5.1 to 5.5.3), in all simulations 24 fractions of
particles were traced with 80000 particles per fraction. For the analysis of preferential
concentration (section 5.5.4), 8 fractions of particles were traced. Here, the number of
particles in the simulations was set in dependence of the Reynolds number (cf. section
5.5.4).

In all simulations the particles were initialised at random positions (homogeneous distri-
bution) inside the computational box and traced until a statistical steady state was obtained.
Then, 1000 time records were taken within a time span of T' = 250\ /s for computing
statistics. The temporal resolution of the statistics equals approximately the Kolmogorov
time scale. With this temporal resolution, the Lagrangian correlation functions could be re-
solved for all Stokes numbers. The time span was large enough to guarantee that averaging
in time cancels out oscillations caused by the forcing scheme.

Also in terms of particle time scales, T is large enough to guarantee reliable statistics. With
e = 15vu?,,,/A? (cf. section 2.1.3), T/7, can be written as T)/7, = 2504/15/St ~ 968.2/St.
In all simulations, St < 100, thus 7'/7, > 9.68. Hence, statistics were sampled over at least
9.68 times the particle relaxation time.
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5 A numerical study on requirements for a particle-LES model

5.4 Validation

The code was validated via probability density functions (PDFs) for the particle accelera-
tion. To this end, data from the DNS at Re) = 265 was compared with data from a DNS
conducted by Biferale et al. (2004) and an experiment conducted by Ayyalasomayajula et al.
(2006).

Biferale et al. conducted a DNS at Re) = 280 with inertia free particles (i.e. St = 0).
Ayyalasomayajula et al.’s experiment was at Re) = 250 with particle Stokes numbers St =
0.09 4+ 0.03. Correspondingly, in the present simulation two particle fractions were traced,
one at St = 0 and another at St = 0.1. Each fraction consists of 960000 particles. Figure
5.5 shows that the results from the present simulations agree very well with the referenced
data.

2
10°F | ———— present DNS, St=0
103 |- present DNS, St=0.1
af A reference DNS
107 .
sl ! reference experiment
10 Figure 5.5: Probability density function of
8 10'6%— particle acceleration a. X-axis
o 10-7; is normalised with respect to the
af rms value of a. Triangles: ref-
10 ? erence DNS of St = 0 parti-
10'95 cles conducted by Biferale et al.
10k MAL S 2 an (2004). Squares: reference exper-
; R TN iment of St = 0.09 4 0.03 parti-
0 20 40 60 80 cles conducted by Ayyalasomaya-
ala, jula et al. (2006) (renormalised).

5.5 Effect of the SGS turbulence on the
particles

The present section contains the core of this chapter, namely the analysis of SGS effects
on the particles. As mentioned above, the testcase Re, = 265 was excluded due to the
small box size. The statistical moments listed in chapter 4 define the criteria for this analy-
sis.

First, kinetic energy and integral time scales are analysed. Then, dispersion and prefer-
ential concentration follow.

5.5.1 Kinetic energy

In the following, SGS effects on kinetic energy seen by the particles and on kinetic energy of
the particles are presented. In particular,

e scaling laws for the kinetic energy of the fluid seen by the particles are formulated,
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5.5 Effect of the SGS turbulence on the particles

e it is shown that the SGS kinetic energy seen by the particles depends strongly on
Stokes number,

e and it is shown that the kinetic energy of the particles is underpredicted in LES.

Scaling laws for the kinetic energy of the fluid seen by the
particles

The first quantity under consideration is the kinetic energy seen by the particles. This
quantity depends on Stokes number due to clustering. In the following it is shown that the
analysed data indicates the existence of two universal subranges of Stokes numbers where the
Stokes number dependence can be described by scaling laws.
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Figure 5.6: A priori analysis: Unfiltered and Figure 5.7: A posteriori analysis: Kinetic en-
filtered kinetic energy of the fluid ergy seen by the particles in DNS
seen by the particles computed and LES.
from DNS.

In figure 5.6, the unfiltered and filtered kinetic energy of the fluid seen by the particles

1 1 1 1
Fuap = 50aps = 500500 and  (huay) = 5 (upana)’ = 5z’ (5,(t).1) - (5.5)

computed from DNS are depicted. In figure 5.7, the corresponding result from LES is shown,

us] = g gspal” = 5 gl Geyl0), ). (56)

Figure 5.6 shows that filtering leads to a decrease in the kinetic energy seen by the particles,

as expected. Both, filtered and unfiltered kinetic energy, show clear Stokes number depen-
dence due to clustering. Particles with Stokes numbers smaller than one tend to cluster in
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regions where kinetic energy is higher than average, particles with Stokes numbers greater
than one tend to cluster in regions where kinetic energy is lower than average. Reynolds
number dependence will be discussed below.

First, consider the LES result, figure 5.7. On first sight it seems that the LES result is
equal to the filtered DNS result. For a more detailed comparison, both results are plotted
on top of each other in figure 5.8. In that figure, the filtered and LES kinetic energy seen by
the particles is rescaled to (ks) and [k], respectively. Now one can clearly observe a shift
along the St-axis between LES and DNS. This leads to the hypothesis that if the St-axis is
rescaled by the correct characteristic time scale, then a match between DNS and LES results
can be obtained.

In the present work, a good match was achieved by scaling with the resolved Kolmogorov
time scale for low particle relaxation times and with the resolved eddy decay time for high
particle relaxation times. In the following, this hypothesis is first formulated in terms of two
scaling laws. Then, numerical data is provided supporting these laws.

Scaling Law 1. Scaling of kinetic energy seen by particles at small relaxation time.
Define the Stokes number Stg based on the smallest resolved scales, i.e.,

_ T, ToV/ € , T/ €]
DNS set Stg =St = -2 =2 LES set Stg = —Y——. .
in DNS set Stg = S - Nk in LES set Stg NCET) (5.7)

Then, kuyap/ks, (kuap) / (k) and [kuap)/[ks] scale with log Sts around Stg = 1. The scaling
factor is approximately —0.14,

ky Tp\/ €
Bz~ —0.141og 2yt

ku@p TpV €
<<k:>> ~ —0.14log \\[V[; around Stg =~ 1. (5.8)

ruap] —0.141og /[

[kf} a2
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5.5 Effect of the SGS turbulence on the particles

Scaling Law 2. Scaling of kinetic energy seen by particles at high relaxation time.
Define the Stokes number Sty based on the large eddy decay time scale, i.e.,

in DNS set Sty = E, in LES set Sty = Tp[e]. (5.9)
ky [Ff]

Then, kyap/ks, (kuap) / (kf) and [kyap)/[ks] scale with log Sty around St;, = 0.9. The scaling
factor is approximately 0.9,

ku@p Tp€
W ~ 0910g E’

<k“@P> Tp€ ~
Wy ™ 0.91log T ( around St~ 0.9. (5.10)
[ku@p} TP[E}

iy~ 0-91og 75

The numerical results support both scaling laws. In figure 5.9, DNS and filtered DNS
data is plotted with the scaling of law 1. Around Sts = 1, all data collapse into a linear
function in accordance with the scaling law. In figure 5.10, the corresponding LES data is
plotted. Here, only the DNS result from the highest Reynolds number is included for reasons
of clarity. Again, the data is in accordance with scaling law 1.
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LES.

For validation of scaling law 2, data from DNS and filtered DNS is shown in figure 5.11,
scaled by St;. Again, the data shows good agreement with the scaling law. Figure 5.12
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shows the corresponding LES result. Apparently no good match between DNS and LES
data can be observed. The deviations are actually due to the interpolation error in LES. In
contrast to DNS, the LES grid is coarse enough to show significant interpolation error. The
implemented fourth-order scheme does not preserve kinetic energy, i.e., the kinetic energy
of the interpolated data is smaller than the kinetic energy of the original data. Therefore,
the results from figure 5.12 were compared to results obtained from LES with second-order
conservative interpolation, cf. figure 5.13. The latter scheme is described in more detail in
Gobert et al. (2006) and analysed in chapter 7. It is not a standard interpolation scheme
and in the present case it leads to higher kinetic energy than the fourth-order interpolation
scheme. With this scheme, the scaling proposed in law 2 leads to good agreement between
DNS and LES data.
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Figure 5.11: A priori analysis: Kinetic energy = Figure 5.12: A posteriori analysis: Kinetic en-

of the fluid seen by the particles,
scaled by resolved kinetic energy
and large eddy decay time. Con-
tinuous lines: DNS, dashed lines:
filtered DNS.

ergy of the fluid seen by the parti-
cles, scaled by resolved kinetic en-
ergy and resolved large eddy de-
cay time. Continuous line: DNS
at Rey, = 99, dash-dotted lines:

LES with 4th-order interpolation.

However, the second-order interpolation leads to significant overprediction of kinetic en-
ergy, clearly visible in figure 5.13 at Rey = 34 and Sty > 2.5. Therefore in the following no
more results from this scheme are discussed.

Concluding, the numerical data supports the two scaling laws. In summary, they state
that the range of particle relaxation times can be divided in two regimes, namely Stg =~ 1
and Sty ~ 0.9. In these regimes, particle dynamics are governed by high frequency and low
frequency fluctuations, respectively. In the first regime, increasing particle relaxation time
means decreasing kinetic energy seen by the particles, in the second regime increasing relax-
ation time means increasing kinetic energy. The relaxation time where kinetic energy seen by
the particles attains its minimum is in between these two regimes.

A particle-LES model should recover the regime around Stg ~ 1 where particle dynamics
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are governed by short living eddies. Concerning the second regime, a particle-LES model
would have to modify the large time scales in order to recover the DNS result. This is in
contrast to the idea of a particle-LES model. If for some application this regime is of absolute
importance, then a proper choice of a fluid-LES model can help out. Equation (2.14) provides
a link between v; and the large eddy decay time. It holds

k) _ D b2

i 100w 1) and =10 (5.11)
Thus,

kf] ko e (P

oo if and only if 1, = (V — 1) v. (5.12)

If the fluid-LES model provides v; such that (5.12) holds, then the regime around St should
be recovered by LES.

Concerning Reynolds number dependence, the two scaling laws mean that at high Reynolds
number, where a large bandwidth of length and time scales is observable, the two regimes are
well separated. This again means that, at sufficiently high Reynolds number, a subrange in
between these two regimes must exist where the kinetic energy seen by the particles follows
a universal law. A particle-LES model must be capable to recover that subrange. However,
to this end reference data from very high Reynolds number is necessary. Currently compu-
tational capabilities are not sufficient to generate this reference data and state of the art
experimental techniques are not capable to produce data at the required accuracy. Therefore
the existence of this subrange remains a hypothesis for now.

Furthermore, figures 5.6 and 5.8 show that the shift in k,q, caused by filtering is essentially
independent of Stokes number,

(Fuap) (St) __ kuap(St)
(kuap) (0) ™ huap(0) °

(5.13)
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5 A numerical study on requirements for a particle-LES model

The reader is reminded that in filtered and unfiltered DNS, the particles were traced along
the same paths. Thus, a comparison of filtered and unfiltered results gives no indication
on the scales which drive clustering but only on the scales which determine locations for
clustering. If these locations were determined by small scales only, then filtering would
obscure the Stokes number dependence. Figures 5.6 and 5.8 show that this is untrue and
therefore mainly the large scales determine locations for clustering. Thus, a particle-LES
model must retain locations for clustering.

Stokes number dependence of SGS kinetic energy seen by the
particles

The stochastic particle-LES models of Shotorban & Mashayek (2006) and Simonin et al.
(1993) (cf. chapter 6) use the SGS kinetic energy seen by the particles as model parameter.
They assume that this parameter is independent of Stokes number. In the following it is
shown that this assumption is questionable.

First, decompose uya, in large scale velocity (usa,) and small scale velocity u’f@p, com-
puted from u’f@p = Usap—(Ufap). The kinetic energy can be decomposed by

11— 1
kU@p = iufc@p,i = <kU@p> + <uf@p,i> u/f@p,i + §U’lf@p,iu}@p,i ' (514)
—_—
:k;@p

(Ufap,i) Upqy,; 15 the covariance of large and small scales. It should be noted that for

sharp spectral filters, (urap.i) u}@p’i = 0 but for most other filters, including Smagorin-
sky and top hat filter, this does not hold. This can be readily verified by writing (uy ;) v’
in terms of the filter transfer function F7 (G)(x) and the Fourier transformed velocity:

(up) s = [[[ FT(G)(k) (1= FT(G)(K)) |FT(up)(x)|? dr (5.15)

Apparently, F7 (G)(k) (1 — F7T (G)(k)) is not zero in general.

In figures 5.14 and 5.15, (ufap;) u}@p’i and kq, are depicted. At Rey = 34 most of the
residual turbulent kinetic energy is in the covariance between large and small scales. Due to
the limited spectral range, the filter cannot clearly separate the small scales from the large
scales. With increasing Reynolds number, the magnitude of the covariance (uyap,;) Urap.;
decreases whereas the magnitude of k,q, increases. This is due to the broadening of the
energy spectrum and increase of filter width with respect to the Kolmogorov length scale.
For LES at very high Reynolds numbers, the filter width will be very large in comparison
to the Kolmogorov length scale and it can be expected that kjq, becomes dominant in
comparison to (ufap,;) Usq,,; in this case.

Furthermore, figure 5.15 shows that at small Reynolds numbers, k;@p shows little Stokes
number dependence but with increasing Reynolds number, Stokes number dependence evolves.
For typical LES it can be expected that kg, becomes strongly dependent on Stokes num-
ber. Shotorban & Mashayek (2006) and Simonin et al. (1993) assume for their models that
k@, is independent of Stokes number. The present results indicate that this assumption is

questionable.
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5.5 Effect of the SGS turbulence on the particles

Figure 5.15 shows further that particles with St ~ 1 tend to cluster in regions with lower
SGS kinetic energy than the ones with very small or very large Stokes numbers. They
even cluster in regions with sub-average SGS kinetic energy. At the same time it is well
known that preferential concentration is maximised around St = 1. This means that one
might model k,q, in dependence of Stokes number. However, to date there is no physical
explanation for such a model. Furthermore, this hypothesis would need to be verified by
simulations at even higher Reynolds number. Only if these two issues are solved, then a

reliable model can be constructed.
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Underprediction of kinetic energy of the particles in LES

For most applications the kinetic energy seen by the particles is not as important as the
kinetic energy of the particles themselves. In the following it is shown that this quantity is
underpredicted in LES as expected.

Figure 5.16 shows the kinetic energy of the particles in DNS and LES

1— 1
kp = suz, and [k)] = §[up7i]2. (5.16)

For all Reynolds and Stokes numbers, [k,] is smaller than k,. For St — oo, [k,] converges to-
wards k,; the effect of the small scale turbulence onto £, becomes negligible.

An analytical estimate for k,/kya, can be obtained by assuming an exponential form of
the autocorrelation function of fluid velocity seen by particles (see Fede & Simonin, 2006).
This estimate reads

— -1
k, 1 , 1 (epRe
= th St, = — L . 5.17
ku@p 1+ Stn W K tu@p ( 24Tp ) ( )
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5 A numerical study on requirements for a particle-LES model

tuap is the Lagrangian integral time scale of the fluid velocity seen by the particle (cf. also
section 5.5.2). If a biexponential form of the autocorrelation function of fluid velocity seen

by particles is assumed, then the following estimate can be obtained (see Fede & Simonin,
2006):

k, 2 St,2*
Fuop 250, + 258 + 22

(5.18)

z is the ratio between Taylor and Lagrangian time scale. These two estimates are depicted
in figure 5.17 together with results from the numerical simulations. Apparently, DNS and
LES produce at all Reynolds numbers results close to these two estimates. At the highest
Reynolds number, however, slight deviations can be found for large values of St,, in LES and
DNS.
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5.5.2 Integral time scale

This section contains an analysis of Lagrangian integral time scales of fluid velocity seen
by the particles and of particle velocity. The former is a crucial parameter for Langevin-
based particle SGS models (see Shotorban & Mashayek, 2006; Simonin et al., 1993; Fede
et al., 2006) whereas the latter determines particle dispersion (see Taylor, 1922). Thus, both
quantities are important for modelling issues.

Scaling law for the integral time scale of the fluid seen by the
particles

Figure 5.18 shows the integral time scales of the fluid velocity seen by the particles computed
from unfiltered and filtered DNS data

oy -
uf@pz<t>
(tuo) / Usap,i) (t) (upap) (t+ 5) ds. (5.19b)
[ e 0?

For St — oo, this time scale approaches the Eulerian integral time scale of the flow and for
St = 0 this time scale is equivalent to the Lagrangian time scale of particles which follow
the fluid exactly. The theory of Sawford (1991) gives an estimate for the latter particles:

2R6)\
CoV/15

where Cj is the Kolmogorov constant at infinite Reynolds number. Rodean (1991) deduced
a value of Cy = 5.7 from theoretical considerations but experiments (see Mordant et al.,

tuap = (St = 0) = 7 (14 7.5C5 Rey ™), (5.20)
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5 A numerical study on requirements for a particle-LES model

2001; Reynolds, 2003; Ouellette et al., 2006; Lien & D’Asaro, 2002; Sawford, 1991; Pope,
2000) show that C can range from 4 to 7 . Reynolds number dependence can be included
following the recommendations of Fox & Yeung (2003):

8.1817 110\ \
Co=65(1 1 . 5.21
0 < + R@)\ ( + Re)\)) ( )

This formula was obtained by fitting data from DNS of isotropic turbulence. The estimates
from this equation are presented in table 5.3 for the present Reynolds numbers.

Table 5.3: Kolmogorov constant C following Fox & Yeung (2003) (equation (5.21)).

Rey, 34 52 99 265
Co 322 436 553 6.23

In figure 5.18 the estimate from equation (5.20) is plotted for Cy € [4,5.7). It can be
seen that in the present study DNS produces results within these limits at all Reynolds
numbers.
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Filtering leads to a smoother field and therefore filtering increases the integral time scale
tuap at all Reynolds and Stokes numbers. The effect of filtering increases with Reynolds
number (the reader is reminded that the filter was chosen such that for all Reynolds numbers
the percentage of resolved kinetic energy is approximately equal). This means that the small
scales have a significant effect on ¢,aq, at all Stokes numbers.

In accordance with the findings of Fede & Simonin (2006), t,a, shows a local maximum
and a local minimum due to clustering. Section 5.5.1 showed already that particles with
1 < St < 10 cluster in regions of low kinetic energy. Figure 5.18 shows that these par-
ticles additionally see longer integral time scales in the surrounding flow. This result is
in accordance with the results of Chen, Goto & Vassilicos (2006) and Goto & Vassilicos
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5.5 Effect of the SGS turbulence on the particles

(2006). These authors found that particles tend to cluster in zero acceleration points. A
particle-SGS model that reconstructs the seen fluid velocity would have to respect this,
accordingly.

LES produces qualitatively the same result. Figure 5.19 shows the integral time scale of
the fluid velocity seen by the particles in LES,

u@p

/ usapi(t)][urapi(t + 5] ds. (5.22)
J [usapi?(t)

Additionally the corresponding quantities from DNS and filtered DNS are shown. Apparently
|[tuap) — tuap| is greater than | (tuap) — tuap|, i.e., the integral time scale computed from
LES data shows greater error than the integral time scale computed from filtered DNS
data.

I LTI

\‘l\\

Figure 5.19: Integral time scale of the fluid
velocity seen by the particles
in DNS, filtered DNS and LES.
Continuous lines: DNS, dashed
lines: filtered DNS, dash-dotted
lines: LES. Thin continuous line
with symbols (lowermost line):
data of Fede & Simonin (2006),
unfiltered DNS at Re) = 34.1.

[

This might be due to two effects, namely either because of different particle paths in filtered
DNS and LES or because of approximation errors of the fluid-LES model, i.e., differences in
the statistics of filtered DNS and LES velocity. In order to separate these effects, one DNS
at Re), = 99 was conducted where particles with St = 0.1 were traced along the particle
path computed from the filtered DNS result. This means that here the second effect, an
approximation error of the fluid-LES model, was excluded.

Figure 5.20 shows the autocorrelation of the fluid velocity seen by the particles

e from the original DNS,
e from the filtered field recorded along DNS particle paths,

e from the filtered field recorded along particle paths which were computed from the
filtered field

e and from LES.
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5 A numerical study on requirements for a particle-LES model

Evidently the correlation function from filtered particle paths is very much closer to the DNS
result than to the LES result. This means that the different particle paths do not affect the
integral time scale as strongly as approximation errors from LES. With other words, the eddy
life time in LES is larger than the eddy life time of the filtered fluid velocity, both computed
along the particle paths which the large scales prescribe.

Figure 5.20: Autocorrelation of fluid veloc-
ity seen by particles at Re) =
99,5t = 0.1. Continuous line:
DNS, dash-dotted line: LES,

02: ________ unfiltered path dashed line: filtered DNS ve-

-t filtered path locity, recorded along path from

e ey unfiltered field, dotted line: fil-

0 1 2 3 tered DNS velocity, recorded

tu_ /A along path from filtered field.

rms

Concluding, it is clear that a particle-LES model must decrease the integral time scale of
the fluid velocity seen by the particles. On the other hand, with the present fluid-LES model
the DNS result can only be obtained if the particle-LES model modifies even the resolved
scales. It is questionable whether the better alternative might be to improve the fluid-LES
model.

For the kinetic energy seen by the particles, two scaling laws were formulated (law 1 and
2). They concern the scaling of the kinetic energy seen by the particles in dependence of
the particle relaxation time. Concerning the integral time scale, a similar rescaling can
be conducted. Figure 5.21 shows the integral time scale of the fluid velocity seen by the
particles in DNS and filtered DNS, rescaled with respect to the time scale at St = 1. The
corresponding LES result is shown in figure 5.22. Stokes number is again based on the
smallest resolved time scale. In constrast to the kinetic energy, figures 5.9 and 5.10, the
integral time scale does not show a linear regime around St = 1 but the tangent of all
lines is identical. In a first-order approach, only the tangent is of interest. This allows to
formulate the following scaling law.

Scaling Law 3. Scaling of integral time seen by particles at small relazation time.
Define the Stokes number Stg as in scaling law 1, i.e.,

. T,  Tp\/€ , T/ €]
DNS set Stg = St = 2 = -2 LES set Stg = —2—. 2
in DNS set Stg =S Vo in LES set Stg NoES (5.23)

Then, tyap/tuap(Sts = 1), (tuap) / (tuap(Sts = 1)) and [tuap]/[tuap(Sts = 1)] scale in first-
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5.5 Effect of the SGS turbulence on the particles
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order with log Stg around Sts = 1. The scaling factor is approximately 0.22,

tuy oy
st ~ 0.22log 2,
& ~ /€
(tuap(Sts=1)) 0.22log \/\/;_,

[tu@ ] ™ [e}
Toas(sts=my ~ 0-221log 2=

Scaling law 3 corresponds to scaling law 1.

around Stg ~ 1.

(5.24)

Both concern particle dynamics around
Sts = 1. Law 2 concerns scaling of kinetic energy around St; = 1. In order to analyze
the scaling of the integral time around St; = 1, one plots the integral time against Stj,
figures 5.23 and 5.24. From this data no scaling law around St; can be deduced, thus there
is no one to one correspondence between law 2 and the respective formulation for the integral
time.
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filtered DNS.

Stokes number dependence of SGS integral time scale seen by the
particles

On page 64, the SGS kinetic energy seen by the particles was analysed because this quantity
is a parameter for the models of Shotorban & Mashayek (2006) and Simonin et al. (1993)
(cf. chapter 6). The second parameter for these models is the SGS integral time seen by
the particles. Similar to the kinetic energy, both models assume that the SGS integral time
scale is independent of Stokes number. In the following it is shown that this assumption is
questionable.

The integral time scale of the fluctuations seen by the particles is defined by

Oou/ (e (t+ s
t;@p:/ f@lpﬂ() f@lp”( )ds. (5.25)
Wy i ()W, (1)

The particle LES models by Shotorban & Mashayek (2006) and by Simonin et al. (1993) need
an estimate for ¢/, Currently, information about the Stokes number dependence of t,q,
is unavailable. Therefore, for both models the authors assume that ¢, is independent of
Stokes number. Figure 5.25 shows that in the configurations analysed the validity of this as-

sumption is questionable. It seems that the effect of St on ¢}, is stronger at higher Reynolds
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numbers, which introduces an additional difficulty into modelling.
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Overprediction of the integral time scale of the particle velocity in
LES

In the following, SGS effect on the integral time scale of the particle velocity are analysed.
This quantity is defined by

t, = / w9 g0 and 1] = / CHOICIIGULIY (5.26)

vi (1)

for DNS and LES, respectively. Both quantities are plotted in figure 5.26. For all Reynolds
and Stokes numbers, the integral time scale computed from LES is higher than the integral
time scale from DNS, in accordance with the results of Yang et al. (2008).

As expected, LES and DNS results collapse for high Stokes numbers. For LES this
means that, concerning t,, the effect of the SGS turbulence can be safely neglected for

large Stokes numbers. For low Stokes numbers, LES shows larger integral time scales than
DNS.

5.5.3 Particle dispersion

For applications, often SGS effect on the rate of dispersion are very relevant. This is analysed
in the following.

As mentioned above, long time particle dispersion D can be computed from the product
of kinetic energy and integral time scale,

_ 2
D= i W) =50l
5§—00 S

— dkyt,. (5.27)

73



5 A numerical study on requirements for a particle-LES model

Figure 5.26: A posteriori analysis: Integral

time scale of particle velocity.

Lines with symbols: DNS, lines

T B B without symbols: LES. Error-

10* 10° 10* 102 bars: Estimates for ¢,(St = 0)
St according to equation (5.20).

tuns/Aand [t]u /A

D is plotted in figure 5.27. At the smallest Reynolds number, small scale effects on the
kinetic energy and small scale effects on integral time scale cancel out each other. This is in
accordance with the findings of Fede & Simonin (2006).

On the other hand, for the higher Reynolds numbers (Re) = 52 and Re) = 99), small scale
effects on the integral time scale are stronger than on the kinetic energy, resulting in a higher
rate of dispersion in LES than in DNS. This suggests that for very high Reynolds numbers
one cannot assume that LES predicts dispersion correctly.

As discussed in section 5.5.2, this might also be an effect of the fluid-LES model. In
particular, at low Reynolds number or highly resolved LES other authors also reported that
dispersion is predicted correctly in LES (see e.g. Armenio et al., 1999; Fede & Simonin, 2006;
Yang et al., 2008). Therefore the present finding extends their findings in the sense that,
concerning rate of dispersion, SGS effects in highly resolved LES and in coarse LES can
differ qualitatively.
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5.5 Effect of the SGS turbulence on the particles

5.5.4 Preferential concentration

In section 2.2.3 the effect of preferential concentration was explained. In that section, also
two measures for preferential concentration, namely accumulation ¥ and fractal dimension
d,. were presented. In the present section the effect of the unresolved scales on preferential
concentration is analysed.

In order to analyse preferential concentration, the number of particles must be large enough
to resolve the scale on which clustering occurs. In isotropic turbulence, these scales are known
to be in the range of 2 — 61k (cf. e.g. Hogan & Cuzzi, 2001). Therefore in the present work
¥ was computed by using boxes of dimensions (37 ). Here, 800,000 particles per fraction
were traced for Rey, = 34 and 5 Mio. particles per fraction for Rey, = 52. Then, in a box of
dimensions (37 )3 one will find on average 3.4 particles.

In these simulations, the particles” Stokes numbers range from 0.1 to 10. In each simu-
lation, 10 time samples were taken. The time lag between the samples is approximately 10
Kolmogorov time scales.

Meyer & Jenny (2004) pointed out that non-conservative interpolation of the fluid velocity
on the particle position can lead to artificial particle clustering. Therefore all simulations for
preferential concentration were run with two different interpolation methods, namely a stan-
dard Lagrangian (non-conservative) fourth-order interpolation and a conservative second-
order interpolation scheme. The results do not differ substantially, therefore in the following
only the results from fourth-order interpolation are shown.

In figure 5.28 the accumulation ¥ and the fractal dimension d,. is depicted for both
Reynolds numbers. Evidently DNS and LES results differ somewhat but nevertheless LES
gives qualitatively the same result, namely that preferential concentration is strongest around
St = 1. This is in accordance with the findings of Wang & Squires (1996) who also found
that LES predicts preferential concentration quite well.

At this point, the results concerning preferential concentration are not very interesting.
However, it will be shown later that models which enhance single particle statistics may
destroy preferential concentration, cf. section 6.4.4.
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Figure 5.28: A posteriori analysis of preferential concentration: Continuous lines: DNS, dashed
lines: LES. Lines with symbols: ¥ (left axis), lines without symbols: d,. (right axis).
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5.6 Conclusions of chapter 5

Chapter 5 contains an investigation of the effect of small scale turbulence on suspended
particles. These effects need to be emulated by a particle-LES model. The investigation
was conducted by a priori and a posteriori analysis of homogeneous isotropic turbulence at
Reynolds numbers Re, = 34, 52 and 99. Stokes numbers based on the Kolmogorov time
scale range from 0.1 to 100.

The analysis focuses on the criteria stated in chapter 4, namely kinetic energy of fluid seen
by the particles, kinetic energy of the particles, rate of dispersion and preferential concen-
tration. Additionally, the integral time scales are analysed.

The results presented here show that the kinetic energy of suspended particles is smaller in
LES than in DNS. On the other hand, the integral time scale of particle velocity is higher in
LES than in DNS. In consequence, the rate of dispersion, being the product of kinetic energy
and integral time scale, shows smaller differences between LES and DNS.

At small Reynolds number (Rey = 34), the rate of dispersion is predicted correctly by
LES. This is in accordance with the findings of other authors (see e.g. Armenio et al., 1999;
Fede & Simonin, 2006; Yang et al., 2008). On the other hand, the present results show that
at high Reynolds numbers (Re), = 52 and 99), the overprediction of the integral time scale
in LES is stronger than the underprediction of the kinetic energy, resulting in a higher rate
of dispersion in LES than in DNS. This suggests that for very high Reynolds numbers one
cannot assume that LES predicts dispersion correctly.

This shows that in general modelling is necessary. The most promising models which
were published to date are based on the reconstruction of the fluid velocity seen by the
particles ufap, cf. chapter 6. In particular, some models take the kinetic energy of the
unresolved scales kg, as input parameter (e.g. the models of Shotorban & Mashayek (2006)
and Simonin et al. (1993)). The present study shows that clustering has a significant effect
on this quantity. This complicates modelling especially if clustering is determined by non-
resolved scales (cf. Fede & Simonin, 2006).

Furthermore, the study shows that particles with intermediate relaxation times tend to
cluster in regions with low turbulent kinetic energy. The relaxation time where this effect is
maximised is significantly larger than the Kolmogorov time scale. Results indicate further-
more that locations for clustering are determined by large scales. The mechanisms leading
to clustering are determined by large and small scales. The strong influence of the large
scales on clustering is a promising result for LES because even if the dissipative scales are
unresolved then still the effect of clustering on velocity statistics might be predicted almost
correctly.

As a by-product, the present study showed that the kinetic energy seen by the particles
as a function of Stokes number can be divided in two regimes such that the first regime
is governed by the Kolmogorov time scale and the second regime is governed by the large
eddy decay time. In each regime, the Stokes number dependence was described by a scaling
law. The law is valid for DNS, filtered DNS and LES. Concerning integral time scale seen
by the particles, only one regime could be identified, namely the regime governed by the
Kolmogorov time.

Furthermore, in the present configurations the effect of small scale turbulence on preferen-
tial concentration was found to be negligible. This means on the one hand that a particle-LES
model does not need to reconstruct mechanisms leading to preferential concentration. On
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5.6 Conclusions of chapter 5

the other hand, a particle-LES model must preserve preferential concentration. In the fol-
lowing chapter it will be shown that the models proposed by Shotorban & Mashayek (2006)
and Simonin et al. (1993) do not fulfil this requirement.
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6 Presentation and statistical
assessment of existing particle-LES
models

In theory, there is no difference between theory and practice. But
in practice, there 1s.

Chuck Reid

The works of Armenio et al. (1999); Yamamoto et al. (2001); Fede & Simonin (2006) and
the results form the previous chapter show that in general SGS effects on particles cannot be
neglected. Thus, the need for a corresponding model arises.

In this chapter, three such models are analysed in detail with respect to the criteria listed
in chapter 4. The analysis focuses on the Approximate Deconvolution Method (ADM) as
proposed by Kuerten (2006b0) and two Langevin-based models proposed by Shotorban &
Mashayek (2006) and Simonin et al. (1993).

In the following, first a notation is introduced and an overview on available particle-LES
models is given. Then, results from analytical and numerical assessment of the models are
presented.

6.1 A word on notation in this chapter

In the previous chapters, the notation ‘Qp’ stood only for the fluid velocity at the particle
position uya,. In the present chapter, the notation ‘Qp’ is adopted for arbitrary functions

f(x, 1), ie.,
fap(t) = f (%, (1) ;1) (6.1)

For example uy refers to the space- and time-dependent solution of the Navier—Stokes equa-
tions whereas uyq, refers to the time-dependent fluid velocity seen by the particle. Cor-
respondingly, Guy refers to the space- and time-dependent solution of the filtered Navier—
Stokes equations whereas (Guy)g, refers to the time-dependent filtered fluid velocity seen
by the particle.

6.2 Particle-LES models

It is clear that there cannot be one model which is the best choice for all applications. For
example, in general a model with high accuracy will be expensive in terms of CPU time.
CPU time is limited and therefore one must decide between accuracy of the particle-LES
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6.2 Particle-LES models

model and grid refinement. The present work focuses on assessment of particle-LES models
with respect to their accuracy, neglecting the computational requirements. In this section,
several particle-LES models are presented.

6.2.1 Overview on particle-LES models

One of the first particle-LES models for inert particles was proposed by Simonin, Deutsch
& Minier (1993). Their model is based on a model for inertia free particles by Haworth &
Pope (1986). With this model, Simonin et al. generated reference data in order to construct
a Eulerian model for the correlations between particle and fluid velocity. In 1996, Wang &
Squires (1996) proposed another particle-LES model. This model is based on a transport
equation for the unresolved kinetic energy and the authors used this model in order to
predict preferential concentration in turbulent channel flow. In recent years, development
of particle-LES models has increased rapidly. Within the last 3 years, at least seven new
models (see Shotorban & Mashayek, 2006; Kuerten, 2006b; Amiri, Hannani & Mashayek,
2006; Gobert, Motzet & Manhart, 2007; Shotorban, Zhang & Mashayek, 2007; Bini & Jones,
2007, 2008) were proposed.

Most of the models mentioned are stochastic models. These are often obtained by extend-
ing models developed for Reynolds Averaged Navier-Stokes (RANS) simulations. Among
these stochastic models is the large class of Langevin-based models (see Haworth & Pope,
1986; Pope, 2000). For these models, stochastic differential equations need to be solved.

An intrinsic problem of stochastic models is that the modelled quantity (such as particle
position or particle velocity) is not differentiable. This means that statistics of time deriva-
tives of the modelled quantity are not available. Stochastic models for higher order time
derivatives (i.e., particle acceleration or second derivative of particle velocity) circumvent
this problem to a certain extent but introduce other unphysical effects, such as incorrect
particle velocity spectra (see Sawford, 1991).

Problems of differentiability can be circumvented by deterministic models. A very promis-
ing deterministic model is the approximate deconvolution method (ADM) for particle-laden
flows (see Kuerten, 2006b; Shotorban et al., 2007; Shotorban & Mashayek, 2005). Here, the
barely resolved scales are improved significantly. However, scales which are smaller than the
LES grid cannot be reconstructed with this method (see Kuerten, 20060).

6.2.2 Analysed particle-LES models

Section 5.5.1 showed already that, except for the sharp spectral filter, the filter transfer
function F7 (G) decays continuously from 1 at wavenumber 0 to zero at the highest resolved
wavenumber k.. Thus, ‘reconstruction of the unresolved scales’ actually has two meanings:
(a) reconstruction of scales which are resolvable on the LES grid but damped due to filtering
and (b) reconstruction of the effect of scales smaller than the LES grid. ADM addresses the
first issue and stochastic models rather focus on the second issue.

Approximate Deconvolution Method (ADM)

ADM is well established for incompressible single phase flows (see Stolz & Adams, 1999;
Schlatter, 2004; Stolz, Adams & Kleiser, 20015). Kuerten (2006a,b), Shotorban & Mashayek
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6 Presentation and assessment of existing particle-LES models

(2005) and Shotorban et al. (2007) analysed the capabilities of ADM for particle-laden flow.
With ADM, the fluid velocity seen by the particle u?&” is computed from

uf) = (uf?) = (T -6)"Guy)g,- (6.2)

n=0

Here, 7 stands for identity. N is the number of deconvolution steps. Equation (6.2) is solved
once per time step and the particle velocity is computed from

ADM
du, ™™ _ cpRe, (WM _ yADM) (6.3)
dt 247, e v ) '

The operator H = Z — G can be interpreted as extractor of subgrid scales. With this

operator, uf”M can be written as

N N
up Pt = ZH”QW = ZH" (Z—H)uy = (T —H"")uy=H"Muy. (6.4)
n=0 n=0

For N — oo the transfer function of H¥*! equals zero for the resolvable scales
(k|| < k.) and one for the unresolvable scales (||k|| > k.). This shows that for large N,
the effect of ADM can be interpreted as improving the LES filter towards a sharp spectral
filter.

Langevin-based model proposed by Shotorban &
Mashayek.

ADM cannot reconstruct scales smaller than the LES grid. In order to circumvent this,
Shotorban & Mashayek (2006) propose a stochastic model based on a Langevin equation for
the fluid velocity seen by a particle. This model is based on works for single phase or reacting
flows by Pope (1983), Heinz (2003) and Gicquel et al. (2002). These authors proposed and
analysed stochastic models for the Lagrangian fluid velocity for inertia free particles. These
models are called generalised Langevin models.

Shotorban & Mashayek adopted this type of model for inert particles. They propose to
compute the fluid velocity seen by the particles uf}é"p from the stochastic differential equation

(Langevin equation)

. ) uSha o gu :
dufe,; = (Q (a““ +u aﬁ)) dt — Lo T( Wy gy JGoe AW (6.5
Qp L

The reader is reminded that ‘@Qp’ denotes ‘at the particle position’, cf. equation (6.1). The
first term on the right hand side of equation (6.5) is the filtered material derivative of the fluid
velocity and can be computed from the right hand side of the filtered Navier—Stokes equation.

The second term is a drift term for the random variable uf}é’;, leading to a relaxation of u%‘;

against (Gu f)@p' The last term is a diffusion term for u?}é‘;. W denotes a Wiener process and
e is the (modelled) dispersion of subgrid scale kinetic energy.

Two parameters need to be specified, namely the time scale T, and the Kolmogorov con-
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stant Cy (cf. section 5.5.2). For single phase flows, the choice

ksgs

T, = —F—— 6.6
G300 o
with the subgrid kinetic energy k.4, guarantees that the rate of dissipation predicted by the
model is correct in decaying isotropic turbulence (see Pope, 2000). Cy can be set such that
experimental data from a thermal wake are fitted well (see Pope, 2000). This gives Cy = 2.1,
in good accordance with the experimental findings of Walpot et al. (2007) in turbulent
channel flow. In isotropic turbulence, the relation proposed by Fox & Yeung (2003) (cf.

equation (5.21)) can be used.

Shotorban & Mashayek propose to compute the particle velocity from

, cpRe o R

p

The model is closed by additional estimates for ks and e.

Berrouk et al. (2007) propose a similar model where Cj is computed from flow statistics.
In the present analysis, () is not restricted to any value. Therefore the present analysis
holds for the model proposed by Berrouk et al. as well.

Langevin-based model proposed by Simonin et al.

Simonin et al. (1993) also propose to model the fluid velocity seen by the particles by a
stochastic process. Fede et al. (2006) presented in detail how to deduct Simonin et al.’s model
for particle-laden flow starting from the Navier—Stokes equations. This results in a different
Langevin equation than the equation proposed by Shotorban & Mashayek.

In contrast to Shotorban & Mashayek, Simonin et al. propose to transport the resolved
scales by particle velocity (and not by fluid velocity). The model can be formulated via a
Langevin equation for the unresolved scales

im/ im/ agu )i 87'@‘ im/
du?@pyi - <_u?@p,j ( ax]f )@ + (8[)3]])@ + Fz’jU?@pJ) dt + / C()E dW;. (68)
4 P

7i; = G (wiu;) — Gu;Gu; is the SGS stress tensor. The matrix I' is comparable to —1/T7, 17,
being the relaxation time scale of the model of Shotorban & Mashayek. The model constant
Cp is equivalent to Cj of Shotorban & Mashayek’s model.

The fluid velocity seen by the particles is computed from u?é@”; = (Gu f)@p + u?g;/. This is
equivalent to solving

dufgy = d(Guy)g, + dufay. (6.9)
Then, the particle velocity is computed from

cple, (

d Sim _
H 24r,

ufer —ul™) dt. (6.10)

In the context of Reynolds averaged Navier-Stokes simulations (RANS), similar models
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6 Presentation and assessment of existing particle-LES models

were analysed and successfully used in many works (see Oesterlé & Zaichik, 2004; Beishuizen,
Naud & Roekaerts, 2007; Minier, Peirano & Chibbaro, 2004; Sawford, 2001). There, a
common choice for I' is (¢;; is the Kronecker delta function)
1.3
5+ 50
r.o__latiC)e 5is (6.11)

%
! ksgs

because this gives the correct rate of dissipation in decaying isotropic turbulence for iner-
tia free particles. Fede et al. (2006) showed that this also holds in an LES context. In
general, I' must lead to relaxation of the modelled subgrid scales, i.e., must be negative
definite.

Again, the model is closed in the sense that estimates for kg4, and € are needed.

6.3 Analytical assessment

Most authors of the models listed above present the performance of their model through
results from Direct Numerical Simulation (DNS) and LES. Besides this data, there is little
data available for model assessment.

An alternative method for model assessment is provided by an analytical approach, con-
ducted in the present section. Here, no numerical simulation is involved. Instead, the
stochastic moments Al to A6 (cf. chapter 4) are computed analytically for each model.
Comparison to the exact moments gives the model error.

Model assessment by analytical means in comparison to numerical simulation evidently
bears the advantage that the results are not only valid for a specific configuration. Another
advantage is that model errors in particle statistics can be related back to their sources,
i.e., to specific terms in the model equation. This enables efficient model improvement. For
example Reeks (2005) could clarify a discrepancy between two models for particles in RANS
by a similar analysis.

On the other hand, an analytical approach is often based on several simplifications lead-
ing to systematic error sources. Therefore in section 6.4 additional results from numerical
simulation are presented.

6.3.1 Framework for the analytical
computations

For the analytical computations, two simplifications are made. One is that preferential
concentration is neglected, i.e., it is assumed that the particles are distributed homogeneously
in space. The second is that Stokes drag is assumed to be linear, i.e., (2.32) is replaced by

du 1

Actually both simplifications are quite restrictive. Therefore the analysis is backed by numer-
ical simulation where the original equation (2.32) was solved, cf. section 6.4.
However, the aim of this chapter is not to predict particle dynamics but to assess particle-
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LES models. The results show that even for linear Stokes drag the models under consider-
ation show significant defects. In configurations where Stokes drag is non-linear, these defects
will show up as well. Thus, equation (6.12) is suited for the purpose of this work.

In the following, the models presented in section 6.2.2 are assessed by computing the statis-
tical moments which result from the models and comparing these to their exact counterparts.
The analysis focuses on the structure of the models and not the model parameters, i.e., for
the Langevin-based models it is assumed that kg and € are correct and no restrictions for
the model parameters Cp, I' and T}, (such as equations (6.6) or (6.11)) are assumed. The
question addressed is ‘how good can a model be that is based on respective modelling strat-
egy, assuming an optimal choice of model parameters’. Consequently, all model parameters
are assumed to be independent of the modelled quantities.

6.3.2 First moments

In chapter 4, the first moments X,, u, and u; were listed as assessment criteria. In the
present section the first moments are computed for the solution one obtains when neglecting
SGS effects and for the solutions which result from the three models under consideration. It is
shown that all three models lead to error prone first moments.

First these errors are derived for each model respectively and then the errors are compared
against each other in a spectral analysis further down in this section.

Section 4.2 showed that for the analysis of first moments it is sufficient to analyse the first
moment of the fluid velocity seen by the particles e, because the other first moments (t,
and X,,) are correct if and only if Urq, is correct.

First moments neglecting subgrid scale turbulence.

One might wonder whether SGS modelling for the particles is necessary at all. If no model
is used, the transport equation for the first moment of the fluid velocity seen by the particle
reads

dujcv@p’i _ d(guf’i)@p _ dUfapi d(Huﬁi)@p

dt dt dt dt (6.13)

It should be noted that (Hu f,i)@p is a Lagrangian average, i.e., it is not zero in an arbitrary
flow field even if the filter is constructed such that the Eulerian average is zero.

Furthermore, for most LES models the implicitly defined filter is not a sharp spectral
cutoft filter but affects all wavenumbers. Therefore the unresolved field Huy can contain
significant low-wavenumber contributions. Thus, the first moment of ufa, is not predicted
correctly if no model is used. Consequently also the first moments of u, and x, show
deficiencies.
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6 Presentation and assessment of existing particle-LES models

First moments using ADM.

With respect to the first moments, ADM performs better. The transport equation for u?@DIf”

reads

dt dt dt ’ ’

With respect to the infinity-norm, the error in the transport equation for the first moment
is

d(HN—s—luf’i)@p
dt

eADM —

(6.15)

o0

This result was to be expected. It means that, if N is sufficiently large, then all scales which
can be represented on the LES grid are resolved correctly whereas all scales smaller than the
LES grid contribute to errors in the first moment.

For specific flows HV*1uy is negligible. Then the first moment is preserved in ADM. In gen-
eral this cannot be assumed and the first moment is error prone.

First moments using the model of Shotorban &
Mashayek.

Now the first moments of the model proposed by Shotorban & Mashayek are analysed. The

first moment of u%‘; can be computed directly from equation (6.5),

d Sho d gu i . . UShO i gu i
ujapi _ d(Gusi)a, s <%) + (g (uﬂjauf’Z)) _ Uydps — (Guy )@p. (6.16)
Qp Q@p

dt dt P ij 3xj TL

In the following it is shown that the first moment is not conserved with this model, i.e.,

W, # W, (6.17)

If the contrary would be true, i.e., uf¥’ = Ura,, then also dufy / dt = duje, / dt. This

is equivalent to

du?’é‘;’i _ d(Guyi)a, . d(Huyi)q,
dt dt dt ’

(6.18)

thus

aufi 8ufi u%}i - (guf,i)@p anZ‘ 8ufi
: i ’ = e — Up . (6.1
(H( o + Up,j oz, ))@p+ T, G| uy; oz, Up,j D o (6.19)

The left hand side of equation (6.19) is a high-frequency signal, the right hand side is at low
frequency. Thus, equation (6.19) holds for an arbitrary flow field u; only if both sides are
Zero.
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For 7, = 0, particle velocity equals fluid velocity and the right hand side vanishes. This
means that the low-frequency components of u, are exact for 7, = 0. Gicquel et al. (2002)
showed this in an FDF context. For 7, > 0, u, # uyq, and the right hand side of equation
(6.19) is not zero.

Also the left hand side cannot be zero for all values of 7, because u, depends on particle
relaxation time but all other terms do not. Shotorban & Mashayek chose T}, such that in
decaying isotropic turbulence the model predicts the correct rate of dissipation for 7, = 0.
This means that in the best case T}, is set such that the left hand side is zero for 7, = 0,

3Huf, 3Huf1 uﬁlézjl - (guf,l)@p
: —— : =0. 6.20
( at + uf@PJ 8l’j )@p + TL ( )
Then the overall model error reads

Our,; Our,;

ShO f77' va
= — — — 6.21
e <up,3 D Utap,j D )@p . ( )

Evidently, if 7, > 0 then the error e°" is not zero for an arbitrary flow field u;. Thus,

the model proposed by Shotorban & Mashayek does not predict the first moments correctly.
Therefore equation (6.17) is true.

First moments using the model of Simonin et al.

For the model proposed by Simonin et al. (1993), the transport equation for the first moment
of uf™ reads

dud  d(Guys) _ OGu ., OGur 7 _
fQp,i _ fi)ap _ o Sim Uf.i Uyilf,j L. Sim’ 6.22

With the same argumentation as above, the first moment is correct if and only if

Ous; Ouj Sim ! sim QUi uy,i
(H( ot + Up,; oz, ))@p—rijuf@pJ =9 | —uia,, ey + uy; oz, @p. (6.23)

Again, equation (6.23) is sorted with respect to high- and low-frequency components and
thus again, u%’; = Uyq, if and only if the left hand side and the right hand side of equation

(6.23) are zero. Now, it’s possible to distinguish between

e a best case estimation: If the model works well then u?i@”; X Ufap and the model
error in the low-frequency components is negligible in comparison to the error from
the high-frequency components.

With the same argumentation as above, the error from high-frequency components
cannot be zero for all Stokes numbers and in the best case I' is set such that the left
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hand side is zero for 7, = 0,

( Mugi A—H“f’> . (6.24)
@p

at f@p,j a xj

This means that the model error reads

@p

J

J
e a worst case estimation: In the worst case, the deviations between uﬁg@”; and uyq, are
significant and the modelling error reads

/

Sim
=L iUfap,;

87‘(%167 8HUf7i )
Q@p

pv.j 8xj

( aguf, L Sim aguf,i)
Qp

o

+

Ufap,j 8 fQp,j axj

(6.26)

Concluding, the first moment is error prone for all models considered. However, for specific
flows and/or specific particles, these errors can be small. This is discussed in the following
section.

Spectral analysis of error terms.

In the following the error terms derived so far are discussed by spectral analysis. Two
questions are addressed. The first is Stokes number dependence of the error. The discus-
sion shows that in general for small Stokes number the Langevin-based models show less
error in the first moment than ADM whereas for high Stokes number ADM performs bet-
ter.

The second question concerns dependence between error in first moments and the flow
structure. It is analysed to which extend eddies of a specific size affect the error in the first
moment. For ADM it is clear that all eddies smaller than the LES grid are not reconstructed
and are therefore error sources for u ?DM For the Langevin-based models it is shown that,
given two eddies of different size but same kinetic energy, the smaller eddy has a greater
effect on the first moment error.

Equations (6.21) and (6.25) show that for both Langevin-based models the first moments
are exact for inertia free particles but not if u, # uyq,, assuming the presented best case
estimation for the model by Simonin et al. The error terms %" and e¥™ are convective terms
stemming from the fact that in the models, the (SGS) fluid velocity seen by the particles is
convected by fluid velocity instead of particle velocity. Especially for the model by Simonin
et al. this defect cannot be circumvented easily because convection of SGS velocity involves
the unclosed SGS stress tensor.

However, in the following it is shown that the error in the first moments can be small if
either the particle velocity is not very different to fluid velocity or if the fluid velocity is very
smooth such that uy(x,(to) + urapAt) = us(x,(to) + u,At).
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According to equations (6.21) and (6.25), the relative averaged error from the convective
term reads in a best case estimation

(Upj — Usap,;) (g%;)
rel —

i e ——
ov;
up,k <8$k ) Q@p

For the model by Shotorban & Mashayek, v equals u; and for the model by Simonin et al.,
v equals Huy.

In order to analyse the effects of the carrier flow’s structure, it is useful to conduct a
spectral analysis. First, define the field

o, (6.27)

(155 = ) K F T (0)(K)

~rel _
&rel (k) = g D (6.28)
Upk <axk>@p
It holds
6;’el _ (‘T‘Tfl (égel(k)))@p. (629)

érl can be regarded as the Fourier transform of the (non-averaged) model error. Now, define

i
a wavenumber dependent function e;(||k||) which links the spectrum of v to the error &7,

~re ’FT</UZ)(k)|
¢l (k) < ex((lKll) = == (6.30a)
ei(k) = Iy = ol Omms ey, 2. (6.30D)
(&)
D, 8gjk @p

The inequality is a result of the Cauchy-Schwarz theorem. The denominator is not Fourier
transformed because the denominator only serves as a normalisation factor for the error
analysis.

e expresses the sensitivity of the error to the scales present in the flow field v in dependence
of u,. Now, this dependence is reformulated in terms of Stokes number.

Dependence of e on 7,. The denominator of e; can be transformed to

(%i Up, 5 8?&
Up,j 9 = Up,rmsUrms 9 = Up,rmsVUrmsCi (631)
T @p Up,rmsUrms T Q@p

where u, ,ms denotes the particle’s rms velocity

(6.32)
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The term ¢; = m <37”;>@ is the scaled covariance between particle velocity and
gradient of v. v is either the fluid velocity uy (for the model proposed by Shotorban &
Mashayek) or the SGS fluid velocity Huy (for the model proposed by Simonin et al.). Thus,
for 7, = 0, c is the averaged convective term from the Navier-Stokes equation for the (SGS)
fluid velocity. Therefore, c is in general not 0 for 7, = 0. For 7, — oo the particles are not
affected by the fluid. The direction of the particle velocity w, ;/t,ms is not correlated with
the gradient of the fluid velocity and thus ¢(7, = 0o) = 0. Therefore, in a first estimate, c
can be assumed to decrease with particle relaxation time.

In order to obtain a relation between e and 7,, the following two results from Tchen’s

theory (see Hinze, 1975) are employed:

tu@p

2 2 2
up,rms - Ypa T uf@p,i tu@p + Tp (633)
and
2 _ 3 Tp
(upi — upap;)” = Urap,i tuap + Ty (6.34)

tuap denotes the integral time scale of the fluid seen by the particle. Tchen originally de-
veloped his theory for isotropic turbulence but by appropriate substitution of ¢,a,, formulas
(6.33) and (6.34) can be extended to arbitrary flow configurations (cf. Hinze, 1975; Wang &
Stock, 1993; Issa & Oliveira, 1997).

With equations (6.30b) to (6.34) a scaling law for the rms value of e can be deducted:

rms _ 2 _ \/Fp
ei™ (k) =/ei (k) = m/ﬁ. (6.35)

If the flow field is known then equation (6.35) gives together with equation (6.30a) an esti-
mate for the error in the first moment for the stochastic models in terms of c.

The function k; .(7,) = 7 2¢, is an isoline of ef™* ie., e]™*(k;.) = const. This function is
depicted in figure 6.1. Along this isoline, the contribution of an eddy to the error in the first
moments is constant for the Langevin-based models. This means for the Langevin-based
models that the error increases with particle relaxation time. The reader is reminded that
this refers to the error in the first moment of the fluid velocity seen by the particles and not
to the error in the particle velocity.

In figure 6.1, an arbitrary positioned highest resolved wavenumber (cutoff wavenumber)
k. is denoted. The effect of ADM is to reduce the defect at wavenumbers smaller than k.,
independent of the Stokes number. Therefore with ADM, e™*(k) is quasi zero for k < k.
and large for Kk > k..

Figure 6.1 shows that for each stochastic model, a critical particle relaxation time 7, can
be defined such that ADM is more accurate for 7, > 7, and the stochastic model is more
accurate for 7, < 7.. Of course, 7, depends on the flow as well.
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Figure 6.1: Sketch for modelling errors depen-
dent on particle relaxation time
and wavenumber. ‘Correct’ means
that the corresponding scales are
transported correctly, for all other
scales the modelled convection is
error prone.
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Figure 6.2: Sketch for modelling errors for 7, >

7.. The filter transfer function is
arbitrary. Again, ‘correct’ means
that the corresponding scales are
transported correctly, for all other
scales the modelled convection is
error prone.

Comparison of the two stochastic models against each other. Now the two stochastic

models are compared against each other. In the previous analysis, v stands for u; and
(Z — G) uy for the model of Shotorban & Mashayek and Simonin et al., respectively. The
relation between the corresponding Fourier transformed velocities is expressed by the transfer
function F7 (G) of the LES filter,

IFT(Guy)(®)|* dk' = |FT(G)(|Ik])I’

1" [|=[ /%]l (1" [|=1 %]

| FT (uy) (k)] dk'. (6.36)

FT(G) is sketched in figure 6.2. The area below F7 (G) corresponds to resolved eddies, the
area above F7 (G) corresponds to unresolved eddies.

Deficiencies of the model of Simonin et al. can be assigned to the unresolved velocity
Huy, i.e., the area above the transfer function, cf. figure 6.2. Furthermore, figure 6.1 allows
to restrict this area to the region x > k;.. For the model of Shotorban & Mashayek, all
scales with wavenumbers greater than £; . are not transported correctly. The filter transfer
function does not come into play here.

Figure 6.2 reveals that, if the particle relaxation time is greater than 7., then the first
moment error is smaller with the model proposed by Simonin et al. than for the model
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proposed by Shotorban & Mashayek. This gives a clue to the relation between the critical
particle relaxation time of the two models. By definition, 7, depends on the model error in
the first moment. For the model proposed by Simonin et al., this error is smaller than for
the model by Shotorban & Mashayek and thus the critical particle relaxation time is higher
for Simonin et al.’s model,

7Sim < rSho (6.37)

[

This means that, concerning first moments, at high particle relaxation time (7, > 7.°™),
ADM is the best choice considering accuracy of the first moment. For intermediate particle
relaxation time 75 > 7, > 7% the model proposed by Simonin et al. is advantageous
towards ADM and for 7, < 75", the model by Simonin et al. and the model proposed by
Shotorban & Mashayek give acceptable results.

With these results, it is possible to select a problem-specific particle-LES model such that
the errors in the first moments are minimised. If the first moments are all zero such as in
isotropic turbulence, then of course all models analysed predict them exactly. In this case,

the second moments come into play.

6.3.3 Second moments

In this section, it is shown that with ADM the second moment of particle velocity is only
predicted correctly for high particle relaxation time and that the second moment in particle
position is not correct, independent of particle relaxation time. For the stochastic models,
it is shown that for low particle relaxation time (where first moments show little error), the
error in the second moments is small.

In section 4.2 it was already stated that for the analysis of second moments, it suffices to
analyse usap;(T)Urap,;(t) for arbitrary ¢ and 7 < ¢. Furthermore, for the analysis of second
moments it can be assumed that errors in the first moments are negligible because only in
this case errors in the second moments are relevant.

Thus, for the following analysis of the second moments, it is assumed that a small number
0 > 0 exists such that

e for the model of Shotorban & Mashayek

0
eSho ~ § = H ((um — Uy ;) au;k) < 4, (6.38)
J Q@p

e for the model of Simonin et al.

S <5 = (up; —ufin ) Ouy,i <6 (6.39)

5] fQp,j axj a — :
Plloo

e for ADM

N — oo. (6.40)
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This is a necessary condition for [[u!P" — || < ¢ if no statistical properties of the
flow are known.

In the following it is shown that for the stochastic models the error in the second moments
is at the order of ¢ if the conditions (6.38) and (6.39) are extended as follows:

e for the model of Shotorban & Mashayek

ou 2
H (6 (1w - m G24)) | =0, (6.41)
J Qp 50
e for the model of Simonin et al.
. ou i 2
H (g ((uﬁj —uja ) axff )) = O(6?). (6.42)
J Qp 0o

Equations (6.41) and (6.42) are not necessary conditions for small errors in the first moment.
For specific flows it is possible that (6.38) (resp. (6.39)) holds but (6.41) (resp. (6.42)) holds
not. On the other hand, it was stated previously that for the stochastic models the first
moment error is small if the particle relaxation time is small, independent of the flow. In that
case, equations (6.41) and (6.42) hold as well. Thus, it can be stated that if the particle re-
laxation time number is small enough such that the error in the first moment is negligible for
an arbitrary flow field then equations (6.41) and (6.42) hold.

Second moments using ADM.

For ADM with N — oo (assumption (6.40)), the resolved velocity uf&" does not correlate
with the unresolved velocity HY ™ uya,, cf. equation (5.15). Thus, with ADM the second
moment of the fluid velocity seen by the particles reads

UL U et = Urapitrapi — (HN T ugi)q, (KN ugs) g, (6.43)

This means that, as expected, the second moment of the fluid velocity seen by the particles
is underestimated by ADM for all Stokes numbers.
Much more interesting for applications is the second moment of particle velocity and parti-

cle position. Equation (4.7b) allows to express the autocovariance of uﬁD M Yy

up M (T)up PY () = upi(T)up(t)

t T
1 ti+to—t—7
- ﬁ / / (HN+1Uf’i)@p (tl) (HN+1Uf7i>@p (tg)@ P dtl dtQ (644)
p

—0o0 —0O0

The last term is the model error. For 7, — 0, the integrand is a Dirac function and the
error reads (HN"uy;)q, (7) (KN up)q, (¢), ie., for 7, = 0 the error is identical to the
autocovariance of the high-frequency fluctuations. For 7, — oo one might get the impression

91



6 Presentation and assessment of existing particle-LES models

that the error is negligible,

lim uADM(T)UADM(t) = lim m
Tp—00 b o0 ’ ’

— lim — / / HNJrl'LLfZ) (tl) (HN+1Ufl) (tg) dtl dtg

Tp— 00 7-
—00 —00

= lim wu,,;(7)up(t). (6.45)

Tp—00

However, in terms of relative error this is not true:

U PP @) = (7 ()

lim 12" =
. Upi(T)tipi(t)
t T
f f HN+IUf7Z')@p (tl) (HNJ'_lUf,i)@p (tg) dtl dtz
= lim == (6.46)
’ I wrepi(t)usap(ts) dty dts

This term is the (positive) covariance of the high-frequency fluctuations divided by the au-
tocovariance of the fluid velocity. Thus, this term is not zero.

The second moment error can be analysed further in homogeneous isotropic turbulence.
In this case, the easiest (and most common) assumption for the shape of the autocovariance of
the unresolved scales is an exponential function (see e.g. Hinze, 1975),

s

(Y ug) o) (5) (KN g o) (0) = (HNHlug,)? e o (6.47)

It should be pointed out that t;; depends on particle relaxation time because due to the
interaction of centrifugal forces and Stokes drag, particles tend to cluster even if the flow is
homogeneous.

With equation (6.47), the autocovariance of uADM can be written as (see Wang & Stock,
1993)
HN+1U T—t T—t
WADM (2 uADM (1) = (7Y o(0) — (ﬂ—f)@p (t T — by, € ) . (6.48)
hi p
With 7 = t, equation (6.48) gives the second moment of particle velocity wsPMutPM,
(HN+1y fi)é
W ADM (1) ADM (1) — i)@p
Uy () M () = upi(t)uy(t) — Wthi' (6.49)

Thus, kinetic energy of the particles is underestimated by ADM and the error vanishes for
Tp, — 00.
For the second moment in particle position, one obtains from equations (4.5b) and (6.48)
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ADM . ADM N
dxp;i Tpi dz, Ty,

5 A 2t (HY £i) (6.50)

As mentioned above, t;; depends on particle relaxation time due to clustering. The same

holds for (HN* 1uf7,~)<2@p. However, for all values of 7, these quantities are greater than
zero. This means that for all values of 7, the rate of dispersion is not predicted cor-
rectly.

This might seem surprising because for the limit 7, — oo the particles don’t move and
thus rate of dispersion is zero. Of course, ADM gives the correct result here. Equation (6.50)
seems to state otherwise.

Equation (6.50) was derived from equation (6.48) by integration. In the present case
computing the limit 7, — oo of equation (6.50) corresponds to computing the limit of an
integral. On the other hand arguing that particles with 7, — oo possess velocity 0 and thus
do not disperse corresponds to computing the integral of the limit. In the present case, these
two expressions are not equivalent:

t t T—1

lim eq. (6.48) dr: lim Zp ‘ TPQ dr =1 (6.51a)
Tp—00 Tp—00 ty: — T
t t Tt
. . Tp € 7
lim eq. (6.48) dr: lim — 5 dr =0 (6.51Db)
Tp—00 mp—oo by, — T

The physical mechanism behind this is that particles with high but finite Stokes number
move slowly but are not decelerated by the flow. This means that their kinetic energy is
very small but their integral time scale is very large. The rate of dispersion, being the
product of both quantities, is therefore not necessarily small.

Second moments for the model of Shotorban &
Mashayek.

Now the second moments for the model proposed by Shotorban & Mashayek are analysed us-
ing identity (4.7b). It is shown that, if conditions (6.38) and (6.41) hold, then the second mo-

ments show little error if the model parameters are set optimal.

It is useful to split up uf}éop in filtered velocity seen by the particle (Gu f)@p and modeled

fluctuations u%‘; = u?’éop —(Guy)q,- Then it is possible to rewrite the autocovariance of the

fluid velocity seen by the particles as

uine J(Tugte (8) = (Gupi)a, (7) (Guri)a, (t) + (Gupi)a, (T)uk (t)
+ u?g;;l,i(ﬂ (g“f,i)@p (t) + U?é%z(ﬂ“?%%z(t) (6.52)

In the following the three rightmost terms will be analysed under the assumptions listed
above, equations (6.38) and (6.41).
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The differential equation for uf’& along a particle path reads
Sho ug,i IGuy, /Coe Ui
duyen,; = (G | uy, ol Bl dt + /Coe dW,; — ~7 dt (6.53)
R J J @Q L

=f; (t)

The function f characterises the influence of the model errors from the first moment on u?’é‘;.

Equation (6.38) states that ||f||s is small but nevertheless f can not be set to zero at this point
because for the computation of the second moment 3" (7)us"(t) the function f will be inte-
grated and averaged and it must be shown that this term is small.

In order to separate the undesired effect of f from the desired effects of the model, define
a stochastic process u by

¢

~ 1 o . T—t

U; = \/ﬁ <uf}ép’i — gi) with g;(t) = / fi(r)e™ dr. (6.54)
0

One can verify by substitution that u is solution of the SDE

dit = —— dt + AW, (6.55)
11

Thus, 1 is independent of Guy, the first moment error f and its history g.
Rewriting uf}ég as u?’g}; = /Cpeu + g, one obtains

(Gusi)a, (T)uftn (1) = (Gugi)q, (1) gi(t) (6.56a)
and ey (r)ufe () = Coets(T)wi(t) + g:(7)gi(t). (6.56b)

Equation (6.56a) can be reduced to (Guy,)q, (7)gi(t) = O(d) due to equations (6.54) and
(6.41) and the Cauchy-Schwarz inequality. It should be noted that for 7, = 0, u, = usa,

|

S =]
and § = 0. Finally, equation (6.55) gives @;(7)%;(t) = Zke” 7o . Thus, equation (6.52) reads

CoeTr, _lz=tl
(&

Ui (T)Ufei (1) = (Gupi)ay (7) (Gupi)a, (1) + —5—¢ T+ 0(9) (6.57)
and equation (4.7b) gives
t T
Sho Sh 1 tqtto—t—7
Uy (T)up(8)™ = — (Guyi)a, (1) (Guyi)a, (t2)e 7 diy diy
P
CoeT? Tt T
m (Tp ecr — TLe > + O((S) (658)

The first term on the right hand side corresponds to u;lD M with N = 0. Equation (6.48) can
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be derived for all values of N (of course, ,; will depend on V) and gives

(Hug,)e, —t r—t
uSh (T )y i (1) 510 = i (T)upi(t) — s . (thﬂp e —teth )
p hi
CoeT? Tt Tt
ﬁ (Tp e —Tpe™ ) +0(5). (6.59)
D L

For 0 — 0 evidently the second moment is exact if

2(Hu i 2
Ty =ty and Cy = % for all 1. (6.60)
€l

This is only possible if the SGS velocity is isotropic. In the context of PDF methods for forced
isotropic turbulence a common choice is (see Pope, 2000)

B ] [
L — 73 - ’
5006 3006

(6.61)

in accordance with equation (6.60).

For anisotropic flows appropriate extensions are possible (see Haworth & Pope, 1986).
Thus, if the model parameters are set correctly, then the errors in the second moments are
insignificant for the model of Shotorban & Mashayek if particle relaxation time is small
enough such that § from (6.38) is negligible.

Second moments using the model of Simonin et al.

For the model proposed by Simonin et al. the second moments can be computed analogous to
the second moments for the model of Shotorban & Mashayek with

; 0Guy; 0G (uguy;)
. _ Sim fs falfj
fi(t) = Ufap,; ( D, ) . - ( D, ) p' (6.62)

In the model of Simonin et al. anisotropy is directly included via the matrix I". This
leads to more complicated terms for the second moments than for the model of Shotor-
ban & Mashayek but the computational steps are similar. Again, due to equation (6.42) and

a;(T)u;(t) = —3 (eF‘T_”F_l)Z.Z. the following equation can be derived:
- - (HUJ{Z‘)2@ T—t T—t
“5’5” (T)up,i ()5 = w4 (T)up i (t) — Tﬂp (thiTP ewr — tiie thi )
p hi
-1
4 Coe (T - 1) (er(m) i e—)
Coe (T + 7,1) " =t

4 Gl ZTP ) (e”t—ﬂ e ) +0(5). (6.63)

If one substitutes I' = —1/7, I in this equation, then one obtains equation (6.59). As men-

tioned previously, the model of Shotorban & Mashayek can be extended for anisotropic flows
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with the method proposed by Haworth & Pope (1986). Then, for the model of Shotorban &
Mashayek one obtains equation (6.63) instead of equation (6.59). Therefore with the same
argumentation as above, also for Simonin et al.’s model it can be stated that with the correct
choice of model parameters the errors in the second moments are insignificant if particle relax-
ation time is small enough such that ¢ from (6.42) is negligible.

6.4 Numerical assessment

The present section contains results from a priori and a posteriori analysis for assessment of
the three models presented in section 6.2.2. The section reviews published numerical results
(section 6.4.1) and results from own simulations (sections 6.4.2 and 6.4.3). In all numerical
simulations the particle transport equation (2.32) was solved.

For the present simulations, the testcase is isotropic turbulence at Rey = 52. Details on
the simulation parameters can be found in chapter 5. The models were assessed on this
testcase by a priori and posteriori analysis. For the a priori analysis, the DNS field was
filtered in each time step by a top hat filter as described in chapter 5. In contrast to the
method described in that chapter, in the present analysis the filtered field was sampled on
a mesh which corresponds to the LES grid. This field was taken as a field comparable to a
LES field.

The a priori analysis was conducted differently for ADM than for the stochastic models in
order to account for the respective model assumptions. More details on this issue are given
in the respective sections.

In isotropic turbulence, all first moments are zero. Of course all models recover this.
Therefore only second moments are analysed numerically.

For each model, some parameters must be set and additional equations must be solved.
This is explained in detail for each model before the respective results are presented.

6.4.1 Numerical results from literature

Published numerical results with ADM are in accordance with the results of the analytical
assessment, section 6.3. Kuerten (2006b) analysed ADM in particle-laden turbulent channel
flow. The Reynolds number based on friction velocity was Re, = 150. He analysed ADM
for particles with Stokes numbers of St = 1, 5 and 25 by a posteriori analysis. He found that
ADM significantly improves rms values of the wall normal component of the particle velocity,
indicating that the second moments are improved by ADM, in accordance with equation
(6.49). Also in accordance with equation (6.49), Kuerten found greater improvement for
high Stokes number than for low Stokes number. However, his analysis was restricted to
low Reynolds number and consequently small filter widths because at that time no reference
data for higher Reynolds number was available.

Shotorban & Mashayek (2005) conducted simulations of particles in a turbulent shear
layer. Also in their simulations the Reynolds number is low (Rey = 24) and the filter width
is small (ke pns = 2kerrs). The Stokes numbers read St = 0.35, 1.2 and 4.6. The authors
found that ADM improves particle dispersion and that the improvement is independent of
Stokes number, in accordance with equation (6.50).

Also for the Langevin-based models, numerical results are available in literature. Shotor-
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ban & Mashayek (2005) analysed their model in decaying isotropic turbulence and found that
for small Stokes numbers (St < 2.5) the model leads to correct second moments whereas
at higher Stokes number significant deviations can be observed. In their paper they sus-
pect that this might be due to the ‘assumption that the velocity of the seen fluid particles
evolve similar to that of the fluid particles’. This is in accordance with the present findings

Ouy i
oz
(equation (6.41)), then the model predicts second moments correctly, equzjltions (6.57) and
(6.59).

Fede et al. (2006) analysed the model of Simonin et al. (1993) in forced isotropic turbulence
and found that the model leads to correct kinetic energy for the particles. Also in their
simulations, Stokes numbers only ranged up to St = 5. Therefore, Fede et al. (2006) could
not observe the errors predicted in the present study for the second moment at high Stokes
number.

Concluding, all published results from numerical simulation are in accordance with the
present analytical estimates but this data is not satisfactory. For ADM, only data at small
Reynolds numbers and small filter widths is available and for the Langevin-based models to
date only data at small Stokes numbers is published. Furthermore, the data density over
the Stokes number range is not satisfactory. Data rather correspond to probes at specific
Stokes numbers but from this data no Stokes number dependent behaviour of the models
can be deduced. Therefore in the present work additional simulations for analysis of these
models were conducted.

from the analytical computations. These show that, if ||(G((us; — up ;) ))aplloo is small

6.4.2 Numerical assessment of ADM

Section 4.3 discussed already the various possibilities for an a priori analysis. In the present
work, in the a priori analysis for ADM for each particle two different values for the particle
velocity were computed simultaneously, cf. figure 4.1. One value, referred to as DNS particle
velocity, is the velocity obtained from the DNS flow field and the particle transport equation
(2.32). The second value, referred to as modelled particle velocity, is the velocity obtained
from a filtered DNS field together with the respective model. The particles were tracked
with the DNS particle velocity as in chapter 5 and statistical samples were taken from
the modelled velocity. With this method the numerical results should correspond to the
analytical results except for the non-linearity of the Stokes drag. For ADM, this approach is
not contradictory with the model assumptions because the model does not explicitly include
the small scale effects on the particle path.

There is no explicit parameter in the model but the filter needs to be presumed. This
actually allows for a huge number of parameters.

In the present work, the ADM defiltering operator was computed in three different ways.
First, it was computed as proposed by Kuerten (20060). Second, it was computed making use
of the DNS spectrum and third, a model spectrum was used.

The first approach was conducted in order to test Kuerten’s approach directly. In this
model, a box filter is presumed. As mentioned above, the present study focuses on the
structure of the models. Therefore ADM was generalised by allowing more general presumed
filters. This leads to the second and third approach.

In the following, all results from the first approach are labeled ADMXUerten results from the
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second approach ADMPNS and results from the third approach ADM™4.

Kuerten’'s ADM approach

Kuerten (20060) states that it is important to choose the defiltering operator such that
it matches the fluid-LES model. He tested two fluid-LES models, namely ADM and the
dynamic Smagorinsky model proposed by Germano et al. (1991). The latter model is very
similar to the fluid-LES model implemented in this work, presented in section 3.1.2. As
test filter, Kuerten implemented a box filter at twice the grid scale, like in the present
work. Kuerten stresses that for deconvolution of the fluid velocity for the particles, the
defiltering operator should be constructed from the same filter. He proposes to approximate
the defiltering operator with a Taylor expansion up to second-order in the filter width. More
precisely, this means that the filter is approximated in 1D by

er%
1
Gup(w) = 5 | ugl§) dg
:E—i—%

%/( )+ G- )+ 3 56— 02+ Ol — ) @

r—

8 uf A 3
53 gy TOBY) (6.64)

= us(z) +

where A denotes the cell width of the LES. Then, one truncates the O(A®)-term and the
operator H = Z — G simplifies to

82uf A2
Hug(x) = 502 0 (6.65)
For n > 1, H"u; consists only of terms of order O(A?), for example
2 Az 4 A4
Heup(z) = — 2w Oy (6.66)

o2 24 Oat 247
Therefore, truncation of all O(A?)-terms yields for the defiltered velocity (cf. equation (6.4))

82Quf A_Q
or? 24°

ADM ZH gUf — gUf o

(6.67)

It should be noted that this effectively means N = 1, as remarked by Kuerten (2006b)
himself. With a second-order disretisation of the second derivative on an equidistant grid
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r; = 1 one obtains

Gug(zit1) + Gup(wio1) — 2Gug(z;) A
AZ? 24
13 1 1
= Eguf(xi—l) - ﬂguf(%) - ﬂguf(mzﬂrl)' (6~68)

U?DM(%) = Guy(z;) —

For extension to three dimensions, the dimensional splitting technique is implemented as
proposed by Stolz et al. (2001a). For an equidistant Cartesian grid z; = i,y; = j, 2z, = k
this technique reads

- ADM,3D L
wpPMG G k) = Y D Y wi Gus(i o, g + o, + ko) (6.69)
190=—00 jo=—00 ko=—00
ADM3D _ . ADM, ADM, ADM
i0,jo, ko T “io Wy, ko : (669b)
ADM,3D

Thus, the three-dimensional stencil w is the product of three one-dimensional stencils

wAPM_ For Kuerten’s stencil, equation (6.68) defines wPM to
% for io =0
whPM = ¢ —L for ig = +1 (6.70)
0 else.
This stencil is plotted in figure 6.6. The corresponding transfer function F7 (w4PM) is shown

in figure 6.7. In the following this approach is referred to as ADMKuerten,

ADM approach via spectra

In addition to Kuerten’s approach, two different ADM stencils were implemented. For both
stencils, the presumed filter is computed by comparison of the LES spectrum against target
spectra.

The overall approach is somewhat similar to the approach of Stolz et al. (2001a). In order
to reduce numerical complexity, they restricted the ADM stencil to a maximum of 5 LES
cells in each direction, i.e., the stencil covers 5 = 125 cells. It should be mentioned that this
means higher computational costs than the ADMXuerten approach which covers only 33 = 27
cells.

Furthermore, Stolz et al. (2001a) implemented the dimensional splitting technique men-
tioned above. The ADM stencil is then defined by the five-dimensional vector wAPM (sub-
scripts running from —2 to 2).

Stolz et al. (2001a) considered that for inhomogeneous flow it is desirable to use a de-
filtering operator with non-uniform filter width. For such filters, filtering and differentiation
does not commute, a so called commutation error arises. This is not desirable because the
LES equations were derived under the condition that filtering and differentiation commutes.
Therefore Stolz et al. (2001a) required wAPM to be such that the commutation error is
of third-order in terms of cell width. Furthermore they required constants to remain con-
stant after defiltering. Among the possible defilter operators they chose the one which is as
symmetric as possible.
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In the present work the commutation error is not an issue because all numerical exper-
iments were conducted in isotropic turbulence. Therefore the restrictions imposed on the
defiltering operator are slightly different to those proposed by Stolz et al. (2001a). In accor-
dance to Stolz et al. (2001a), the stencil spans also 125 cells using the dimensional splitting
technique and constants are required to remain constant after defiltering. In contrast to Stolz
et al. (2001a), the stencil is completely symmetric. Additionally, a target spectrum FE'@"9¢
is imposed. This spectrum predicts a specific kinetic energy below the cutoff wavenumber
foﬁ“‘ E'r9¢ (k) dr. The defiltering operator is required to produce this kinetic energy. Among
these operators one is selected by optimisation such that the defiltered spectrum below the
cutoff wavenumber is as close as possible to the target spectrum, i.e., wAPM is solution to

Ke

/ (1FT(w)(x)[2 B3 () — E“"(x))> dr — min (6.71a)
w_q = w; (6.71Db)

W_g = Wy (6.71c)

d wi=1 (6.71d)

/ |FT (w)(r)|]> ELES (k) dk = / B9 (k) dr. (6.71e)

FT(w)(k) = 25272 wje~" denotes the continuous Fourier transform of the discrete vector
w € R°. Condition (6.71d) guarantees that constants remain constant after deconvolution
and condition (6.71e) provides for correct large scale kinetic energy.

ETES is the LES spectrum. The idea is to enhance the spectrum below the LES cutoff
wavenumber #,. such that |F7 (w)(k)|[?EL®5 (k) approaches the target spectrum. Following
this logic, for the a priori analysis EX%° should be replaced by the spectrum of the filtered
DNS velocity. On the other hand, figure 5.4 shows that for the present testcase (isotropic
turbulence at Re), = 52), the spectrum of the filtered field and the LES spectrum do not
differ significantly. Therefore also for the a priori analysis the LES spectrum was used for
construction of the ADM stencil w, facilitating comparison of results from a priori and a
posteriori analysis.

In the following, two choices for E"9¢ are taken, namely first, £'9¢ is replaced by the
spectrum computed by DNS and second, E%"9¢ is replaced by Pope’s model spectrum from
section 2.1.3. The first approach is referred to as ADMPNS the second as ADM™°¢, In both
cases equations (6.71a) to (6.71e) were solved numerically.

The second approach, i.e., using a model spectrum as target spectrum, is important
because for a realistic LES, there is usually no DNS spectrum available. On the other
hand, this approach includes errors from the model spectrum. This spectrum is shown
in figure 6.3 together with the DNS spectrum. Evidently the model spectrum shows a
larger inertial subrange than the DNS spectrum, the x~%/3-regime extends towards higher
wavenumbers. Although the differences between the two spectra are not negligible, this
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model spectrum was used because it is known that for high Reynolds numbers, the model
spectrum fits very well with experimentally and numerically computed spectra (cf. Pope,

2000).

Taking the DNS spectrum as target spectrum (ADMPNS) one obtains for the isotropic
turbulence test case at Rey, = 52 (for details on this test case cf. chapter 5), the stencil
wAPM depicted in figure 6.4 and the corresponding transfer function F7 (wAPM), shown in
figure 6.5 (continuous line). The dashed line of figure 6.5 shows /ELES /EPNS Tts inverse,

/ EPNS |ELES s the target function for F7T (wAPM). FT (wAPM) cannot be identical to

'0.2:“"l“”l““l‘“‘l‘\\\lwwwwl

-3 -2 -1 0 1 2 3
AV
Figure 6.4: ADM stencil for Rey, = 52

obtained by optimisation against
DNS spectrum (ADMPNS),

Figure 6.3: Spectrum from DNS and model
spectrum propsed by Pope (2000)

for Rey = 52.
1.6
| ————— FTWw"™)
R ( ELES/ EDNS ) 1/2
LAE s product of both

transfer function

Figure 6.5: Continuous line: Transfer function
of ADM stencil shown in figure 6.4,
dashed line: LES transfer function
\/ ELES |EPNS ghtained a posteri-
ori from DNS and LES of isotropic
turbulence at Re), = 52, dash-
dotted line: product of both trans-
fer functions.
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6 Presentation and assessment of existing particle-LES models

\/ EPNS | FLES hecause the stencil’s support is restricted.

The dash-dotted line represents |F7 (wAPM)|,/ELES | EFDNS  The target function (6.71a)
of the optimisation aims at | F7 (wAPM)|\/ELES |EDNS = 1,

With ADM™°4, one obtains the stencil shown in figure 6.6 and the transfer function
shown in figure 6.7. Evidently this approach leads to a very much stronger amplification
around k. than if one takes the DNS spectrum as target spectrum. This was to be ex-
pected because around k. the model spectrum is higher than the DNS spectrum, cf. figure
3.2.

Some more results on ADMPNS and ADM™? can be found in section 7.1.2.

ADMDNS
ADMKuerten

transfer function

.o

-0.2F i
TRRTEE RRRTERNNEN SRR NN NI SR R 0.8 . T T T - T - - |
-3 -2 -1 0 1 2 3 0 0.2 0.4 0.6 0.8 1
X [ AX K/K

Figure 6.6: ADM stencil for Rey = 52 ob- Figure 6.7: Transfer function of ADM stencils
tained by Kuerten’s approach (dot- shown in figure 6.6.
ted line), by optimisation against
the DNS spectrum (continuous
line) and by optimisation against
Pope’s model spectrum, cf. section
2.1.3 (dashed line).

Second moments computed with ADM

As mentioned above, in isotropic turbulence the first moments are predicted exactly for all
models. Therefore numerical results concerning second moments follow.

Figures 6.8 to 6.10 show second moments of the velocity seen by the particles, particle
velocity and particle position for all three ADM stencils. In addition, results from filtered
DNS and LES without particle-LES model are shown. In order to obtain comparable results,
the presented data from filtered DNS without model corresponds to the data which ADM
receives, i.e., in particular in the filtered DNS the particles were traced along unfiltered paths
and the filtered data was sampled on the LES grid, cf. section 4.3. In contrast, the filtered
DNS results from chapter 5 were obtained by filtering on the DNS grid. This means that the
filtered DNS results from this section contain a higher interpolation error than the filtered
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6.4 Numerical assessment

DNS results from chapter 5.

The kinetic energy seen by the particles (figure 6.8) shows qualitatively the same effects
which were already observed when neglecting subgrid fluctuations, cf. section 5.5.1. Also
results from a priori and a posteriori analysis are qualitatively equal. All ADM solutions
show a shift along the Stokes axis in comparison to DNS. The reason for that was already
explained in section 5.5.1. Furthermore, ADM results show smaller kinetic energy seen
by the particles than DNS, in accordance with equation (6.43). Kuerten’s model shows
strongest deviations from DNS, the other two ADM stencils recover k,q, significantly bet-
ter. This is not surprising because Kuerten’s approach corresponds to a single defiltering
step, N = 1, cf. equations (6.65) to (6.67). The other two approaches must perform bet-
ter here because the wider stencils allow for larger values of N, leading to higher kinetic
energy.

At first sight, the comparison of ADMPNS against ADM™°? is surprising. ADM™? shows
closer resemblance to the unfiltered result than ADMPNS although ADMPNS is based on the
unfiltered field. Actually this is an effect of two errors cancelling out each other. Around the
cutoff wavenumber the model spectrum is higher than the DNS spectrum but interpolation
leads to strong damping around the cutoff wavenumber. In other words, for ADM™ the
damping properties of the interpolation scheme brings the spectrum seen by the particles
closer to the spectrum of the DNS flow field. More details on that issue can be found in
section 7.1.2.

Figure 6.9 shows k,, the kinetic energy of the particles themselves. In accordance with
equation (6.49), k, is underestimated by ADM and with St — oo the error vanishes.

Most interesting is the rate of dispersion, shown in figure 6.10. Here, results from a priori
and a posteriori analysis differ qualitatively. In accordance with the analytical predictions,
equation (6.50), the a priori analysis shows that ADM leads to an underprediction of the
rate of dispersion for all Stokes numbers.

1.1F apriori analysis ] 11f a posteriori analysis 7

1.05F . 1.05F .

1} | 1} :
X E ] v F
= 0.95?\\% § 0%
@ i ] © i
< 0.9k . =~ 009F
0.85F 0.85}
0.8} 0.8k
10" 10° 10* 10° 10"

St
(unfiltered) DNS, - — - filtered / LES, —=— ADM"*™" —— ADM""®, —— ADM™

Figure 6.8: A priori (left) and a posteriori (right) analysis of ADM, kinetic energy seen by particles
(second moment in fluid velocity seen by particles).
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6 Presentation and assessment of existing particle-LES models

The a posteriori analysis shows that actually in LES the rate of dispersion is overesti-
mated by ADM. The qualitative difference between a priori analysis and a posteriori anal-
ysis is due to a defect in the fluid-LES model, cf. section 5.5.2. The fluid-LES model
leads to too high life times for the large eddies and thus to an overprediction of particle
dispersion.

Concluding, all results are in accordance with the previously presented analytical compu-
tations. The kinetic energy of the particles is, especially for small Stokes number, under-

1.2 12r 7
a priori analysis a posteriori analysis

0.8F . o8F .
= 06F . = 06f .
S filtered ] 04p ------ N .
: ADMKuerten : : ADMDNS
0.2 ADMPNS - 0.2} ADM
i ADM™ . i ADM™*
07 TR TR T 07 T | T L
10" 10° 10" 10° 10" 10° 10" 10°
St St

Figure 6.9: A priori (left) and a posteriori (right) analysis of ADM, particle kinetic energy (second
moment in particle velocity).

- a priori analysis - - a posteriori analysis

10 L [ | L [ | L L
10" 10° 10" 10°
St

(unfiltered) DNS, - — - filtered DNS,

ADMKuenen' ADMDNS, ADMmod

Figure 6.10: A priori (left) and a posteriori (right) analysis of ADM, rate of dispersion D = 4kyt,,
(second moment in particle position). Result from LES without particle-LES model
(not shown for reasons of clarity) is very similar to the results from LES with ADM.
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estimated by ADM. Particle dispersion is not predicted correctly by ADM, independent of
Stokes number. Analytical computations and a priori analysis showed that ADM underes-
timates the rate of dispersion. On the other hand, the a posteriori analysis showed that
ADM overestimates dispersion due to an approximation error in the fluid-LES model. Thus,
with ADM the second moment in particle velocity is predicted correctly for high Stokes
number but the second moment in particle position is error prone, independent of Stokes
number.

6.4.3 Numerical assessment of the Langevin-based
models

For the stochastic models, the a priori analysis was conducted differently than for ADM.
For ADM, the particles were traced along the path computed from DNS. For the stochastic
models, this would be in contradiction to the model assumptions. Both stochastic models
take explicitly into account that the particle path depends on the small scale fluctuations
which are modelled (see Shotorban & Mashayek, 2005; Fede et al., 2006). Therefore here the
particle paths were computed from the modelled fluid velocity.

Concerning 77, and I', the analytical assessment showed that these model parameters

should be set to 17, = —% = é’gg: in forced isotropic turbulence, cf. equation (6.61).
On the other hand, Shotorban & Mashayek (2005) and Fede et al. (2006) recommend
T, = —Fiij = (1/24%’%’ independent of the flow configuration. Therefore both approaches

were tested in the a priori analysis. The results from the a priori analysis are not very
promising. Therefore the a posteriori analysis was only conducted with one choice for 717,
namely 77, = —F%_j = O/Qfg—;’jco)e

For the a priori analysis, the model of Shotorban & Mashayek (2005) is closed with this
choice of parameters. For the model of Simonin et al. (1993), the subgrid stress tensor 7 must
be computed additionally. Here, two approaches are possible. Either one computes 7 from
the original definition, equation (3.5), or one takes into account that the underlying fluid-LES
model is based on an eddy viscosity hypothesis, equation (3.6). The first approach would
involve less modelling assumptions. Therefore this approach would simplify comparison
between results from filtered and unfiltered DNS. The second approach simplifies comparison
of results from filtered DNS and LES. Therefore this approach was chosen for the present
work.

For LES both Langevin-based models need additional estimates for k4, and €. Here, the
present work follows the recommendations of the original authors. Based on the work of
Lilly (1967), the subgrid kinetic energy is estimated by

2
Vi

@. (6.72)

ksgs =
A denotes the LES cell size.

The constant Cy is a model constant. Lilly (1967) proposed Cy = 0.094, Yoshizawa (1982)
proposed Cy = 0.065. It is clear that the best value for C'; depends on the configuration. For
the present simulations, C5 was set such that for St = 0 the kinetic energy of the particles ap-
proximates the DNS result reasonably well. This gives Cy = 0.033.
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6 Presentation and assessment of existing particle-LES models

Following Yoshizawa (1982), € can be estimated by

]{33/2
T.
Following the recommendation of Gicquel et al. (2002) and Berrouk et al. (2007), C, was set
to 1. Cy was set to Cy = 2.1.

Concerning the effect of variations of the model parameters, the reader is referred to
Berrouk et al. (2007). The present chapter focuses on the structure of the models and not
on the parameters.

The stochastic differential equations (6.5) and (6.8) were solved by an Euler-Maruyama
scheme (see e.g. Kloeden & Platen, 2000). The stiff terms —u%‘;ﬂ/TL and Fiju?g;:j were
discretised implicitly. Shotorban & Mashayek (2005) and Fede et al. (2006) used an explicit
Euler-Maruyama scheme. These authors focused on small Stokes numbers. In the present
simulations no significant differences between explicit and implicit discretisation was found
at small Stokes numbers. At high Stokes numbers, the explicit scheme was found to produce
significantly worse results. In particular, the kinetic energy seen by the particles explodes at
high Stokes numbers when using an explicit scheme. It should be noted that the terms under
consideration are linear and therefore implicit schemes do not produce any computational
overhead.

In the following, ‘Sho’ denotes results from the model proposed by Shotorban & Mashayek
(2005) and ‘Sim’ denotes results for the model proposed by Simonin et al. (1993). ‘filtered’
refers to statistics of the filtered fluid velocity. In contrast to ADM, in the ‘filtered’ simula-
tions, the particle trajectories were computed from the filtered fluid velocity and not from the
unfiltered velocity. The reasons for this were stated above.

e =C, (6.73)

Second moments computed with the Langevin-based
models

The testcase for the Langevin-based models is again isotropic turbulence at Rey = 52. Figure
6.11 shows the kinetic energy of the fluid seen by the particles. In particular the results from
the a priori analysis are very disappointing. Up to St = 5, the prediction of the kinetic
energy seen by the particles from the Langevin-based models is not very well but still within
the range of the DNS result. Around St = 5, the model proposed by Simonin et al. (1993)
leads to an excessive overshoot in the kinetic energy seen by the particles. This is because
an error in the modelled quantity u%’z further increases 9, the error of the kinetic energy
seen by the particles, cf. equations (6.42) and (6.57). This means that with the model of
Simonin et al. (1993), errors build up. It is interesting to denote that the authors of both
models only published results up to St = 5.

As expected, the choice T;, = —% = %
ij

T, = _rlij = é’é{i’e, cf. equations (6.59) and (6.63). However, both choices lead to poor
performance in the a priori analysis.
Surprisingly, the result from the a posteriori analysis is very much better. Here, both

models predict the kinetic energy seen by the particles relatively well. One reason is that for

leads to smaller kinetic energy than
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the a posteriori analysis the model parameter C5 was set such that the kinetic energy seen
by inertia free particles is close to the DNS result. Another reason is linked to the fact that
the velocity gradients of the filtered field are about 5% higher than those of the LES field,

|~ oo

‘ . (6.74)

As in chapter 5, (-) denotes filtered DNS field and [-] denotes LES field. The velocity
gradient affects the error ¢ of the kinetic energy seen by the particles, cf. equations (6.41) and
(6.57). Therefore the higher gradients lead to larger errors and in particular for the model of
Simonin et al. (1993), the errors build up as mentioned above.

The error in the kinetic energy of the particles is simply a consequence of the error in the
kinetic energy seen by the particles, cf. figure 6.12. The a priori analysis is very interesting
for the model of Simonin et al. (1993) with —% = ng—oge At low Stokes numbers, this model
predicts particle kinetic energy well but at high Stokes numbers, this model overpredicts
kinetic energy. The same can be observed in the a posteriori analysis for the model of
Shotorban & Mashayek (2005) with 77, = m

The same observations can be made in the rate of dispersion, figure 6.13. The result
from the a priori analysis is very discouraging, the a posteriori results are somewhat better
concerning accurracy of the models. Nevertheless, these tests show that both models do not
neccesarily improve the result of the LES in comparison to an LES without particle-LES
model or LES with ADM. In particular at high Stokes numbers it might be recommendable
to use no model instead of one of the stochastic models, in accordance with the numerical

results of Shotorban & Mashayek (2005).
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Figure 6.11: A priori (left) and a posteriori (right) analysis of the Langevin-based models, kinetic
energy seen by particles (second moment in fluid velocity seen by particles). Open

symbols: Ty = _F%j = % following the original papers, cf. (6.6). Filled
symbols: T, = —=— = Aksgs following the results from the analytical assessment, cf.

Fi]' - 3Cphe
equation (6.61).
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Figure 6.13: A priori (left) and a posteriori (right) analysis of the Langevin-based models, rate

k,/K,

1

of dispersion (second moment in particle position). Open symbols: T, = —¢~ =

ksgs

ij
1 4ksgs

at3/1C0)e following the original papers, cf. (6.6). Filled symbols: Ty, = T = 3Ce

following the results from the analytical assessment, cf. equation (6.61).
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Figure 6.12: A priori (left) and a posteriori (right) analysis of the Langevin-based models, particle
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following the results from the analytical assessment, cf. equation (6.61).



6.5 Conclusions of chapter 6

6.4.4 Preferential concentration

Preferential concentration was analysed by numerical means only. Figure 6.14 shows the re-
sult of the a posteriori analysis. An a priori analysis was not conducted for preferential con-
centration because of the high computational requirements (see Gobert & Manhart, 2009).
Evidently the results from the stochastic models are far off the other results. This means
that the stochastic terms destroy preferential concentration.

On the other hand, the result from ADM is quite satisfactory. Although ADM slightly
overestimates preferential concentration for Stokes numbers smaller than one, ADM performs
much better than the stochastic models. In particular, maximal preferential concentration
is attained around St = 1 with ADM but not with the stochastic models. According to this
result, ADM is advantageous over the stochastic models concerning preferential concentra-
tion.

15

stochastic models

0.5
stochastic models

10" 10° 10" 10" 10° 1C
St St
—— DNS, - - - LES, —— ADM®*™" —— ADM"™S, — ADM™, — Sho, —— Sim

Figure 6.14: A posteriori analysis of preferential concentration. For the stochastic models (i.e. the

models proposed by Shotorban & Mashayek (2006) and Simonin et al. (1993)), T7,
1 _ k'sgs

and I" were set to TL = 71«7” = m,

following the original papers, cf. (6.6).

6.5 Conclusions of chapter 6

For Large Eddy Simulation of particle-laden flow, there exists a multitude of models for the
effect of the unresolved scales on the particles. The present chapter focuses on the selection
of such a model prior to simulation. To this end, an analytical method for model assessment
is presented and applied on three very prominent models, namely approximate deconvolution
(ADM) as proposed by Kuerten (2006b) and two stochastic models, based on the works of
Shotorban & Mashayek (2006) and Simonin et al. (1993).

The analysis consists of two parts, namely analytical computations and numerical simu-
lation. The analytical part is based on assessment of the statistical moments Al to A6 from
chapter 4. For the analytical computations, preferential concentration was neglected, Stokes
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6 Presentation and assessment of existing particle-LES models

drag was assumed to be linear and all model parameters were assumed to be set optimal. In
particular the latter assumption means that the analysis does not focus on model constants
but on the structure of the models.

The first moments are average particle position and particle velocity. According to the
analysis presented, these moments are error prone for all models considered unless the flow’s
properties (such as homogeneity) cancel out these errors.

The error magnitude depends on Stokes number, flow structure and LES resolution. For
ADM, only scales which are smaller than the LES grid contribute to the error. For the
stochastic models, in the present work a wave- and Stokes number dependent function is
defined which characterises the influence of eddies of a specific size on the error in the first
moments. The scalar product of this function with the energy spectrum of the flow is an
estimate for the first moment error.

According to the analysis presented, at low Stokes number the stochastic models show
less error in the first moments than ADM whereas for high Stokes number ADM performs
better. The critical Stokes number depends on the resolution of the LES grid and the energy
spectrum of the flow. The reader is reminded that this result was obtained assuming optimal
parameters for all models. This means that the defects cannot be remedied by a better choice
of model constants.

Furthermore, the error in the stochastic models was traced back to a defect in the con-
vective term. This defect is greater in the model proposed by Shotorban & Mashayek than
in the model proposed by Simonin et al., promising a higher accuracy for Simonin et al.’s
model concerning first moments.

The second moments are average kinetic energy and turbulent dispersion of the parti-
cles. These moments are only of concern if the defects from the first moments are neg-
ligible. For the stochastic models this means that Stokes number must be small. It was
shown that, if Stokes number is small enough, then the stochastic models predict first
and second moments correctly. Again, this result presumes optimal parameters. Further-
more it was shown that ADM leads to defects in the second moments for any Stokes num-
ber.

It should be noted that the presented analytical computations are valid for arbitrary flows
unless noted otherwise. In specific configurations the models might perform very much
better than predicted herein. In particular, all first moments in isotropic turbulence are
zero, predicted correctly by all models.

The analysis shows that it is very difficult to predict the first moments exactly for arbi-
trary configurations but that with the correct choice of LES model(s), the defects can be
minimised.

The second part of the present chapter, the analysis by numerical simulation, considers
the same models as the analytical part. In contrast to the analytical computation, Stokes
drag is not assumed to be linear but the non-linear particle transport equation (2.32) was
solved instead. Another difference to the analytical computations is that in numerical simu-
lation preferential concentration occurs. The testcase was isotropic turbulence at Rey = 52.
Evidently first moments are not of concern in this flow.

The analysis was conducted by a priori and a posteriori analysis. Both analyses serve for
model assessment and the a priori analysis serves additionally for validation of the analytical
computations.

ADM was implemented in three different ways, one following Kuerten (2006b) and two
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approaches via optimisation against spectra. It should be noted that ‘ADM by optimisation
against spectra’ does not refer to ADM as proposed by Hickel et al. (2006). They presumed
a flow at infinite Reynolds number for computing the SGS viscosity 1, whereas the present
work uses model spectra for computing the ADM coefficients.

With all three approaches the analytical predictions could be verified. In particular,
the defect in the rate of dispersion could be observed. In accordance with the analytical
computations, ADM was found to underestimate the rate of dispersion if applied on the
filtered DNS field. In LES however, ADM was found to overpredict the rate of disper-
sion. This discrepancy was explained as an effect of approximation errors in the fluid-LES
model.

The stochastic models showed very poor performance in the numerical simulations. In par-
ticular for high Stokes numbers, LES or filtered DNS with stochastic models showed larger
difference to DNS results than LES or filtered DNS without particle-LES model.

Finally, the models were analysed with repect to preferential concentration. Here, only
results from numerical simulation are presented but not from analytical computations. The
reader is reminded that chapter 5 showed already that no particle-LES model is necessary to
predict preferential concentration correctly for the present testcases.

ADM was found to modify preferential concentration slightly. It seems that for St < 1,
ADM tends to overpredict preferential concentration whereas for St > 1, ADM has a slighty
negative effect on preferential concentration, i.e., LES without particle-LES model is slightly
closer to DNS than LES with ADM. On the other hand, the stochastic models were found to
destroy preferential concentration. With these models, preferential concentration is merely
observable.

According to these results, the stochastic models are not recommendable because, in de-
pendence of the configuration, LES without particle-LES model can perform better, some-
times even tremendously better, than LES with a stochastic particle-LES model. On the
other hand, results from ADM are quite promising. At least ADM was found to lead to an
improvement in first and second moments for all Stokes numbers. Preferential concentration
was slightly mispredicted by ADM.

On the other hand, ADM only enhances the resolved scales but does not actually model
scales which cannot be represented on the grid. At high Reynolds numbers, where the LES
grid is very coarse due to computational limitations, ADM can be expected to perform worse
than at low Reynolds numbers. For LES at high Reynolds numbers a new particle-LES model
is needed. Such a model is presented in the following chapter.
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7 A Novel Particle-LES Model based on
Spectrally Optimised Interpolation
(SOl)

Essentially, all models are wrong, but some models are useful.
George E. P. Boz

In this chapter, a new model for the effect of unresolved scales on particles is presented.
The model can be regarded as an extension of ADM towards higher wavenumbers. It is con-
structed such that the interpolation of fluid velocity on the particle positions reconstructs
unresolved scales. The model takes advantage of the interpolation error such that the spec-
trum seen by the particles attains a model spectrum. Thus, the model is called Spectrally
Optimised Interpolation (SOI).

In this chapter, the SOI model is only presented in the framework of homogeneous
isotropic turbulence. Possible extensions for more general configurations are only briefly
sketched.

As mentioned above, the model is based on the spectral interpretation of interpolation
errors and is an extension of the idea behind ADM. These two topics are discussed in detail
in section 7.1. Based on these analyses, the complete model is developed in section 7.2. Then,
in sections 7.3 and 7.4, the model is discussed and assessed by analytical computation and
numerical experiment. A comparison of the new model against other particle-LES models
can be found in section 7.5. Finally, section 7.5 contains ideas for extensions of the model
regarding non-homogeneous turbulence.

In the following, all considerations are presented for an equidistant grid with Az = Ay =
Az = 1. Extensions to non-equidistant grids are mainly technical modifications. These are
not very interesting and, therefore, are not presented in this work.

7.1 Preliminary considerations

The present section discusses the bases of the particle-LES model that will be developed in
section 7.2.

The first basis is the spectral interpretation of interpolation errors. Therefore, section 7.1.1
considers the effect of interpolation on the spectrum seen by particles.

The second basis of the model is extending the idea behind ADM. Therefore, section 7.1.2
discusses ADM again, with a focus on the spectrum seen by the particles.
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7.1.1 The spectrum seen by particles

The present section addresses the effect of interpolation on the spectrum seen by the par-
ticles. The particle-LES model, which is presented in section 7.2, takes advantage of this
effect.

In chapter 6, several particle-LES models were presented. None of these models take into
account the effect of interpolation. All models inherently assume that interpolation does not
modify the spectrum of the flow, i.e., that the spectrum of the flow seen by the particles
equals the spectrum of the flow computed from the discretised flow field. This assumption
is correct for spectral interpolation, i.e., interpolation based on Fourier modes. In general,
spectral interpolation is too expensive in terms of numerical costs. Instead, polynomial
interpolation schemes are implemented. These modify the spectrum seen by the particles,
and in particular, they introduce high wavenumber content, as explained in the present
section.

For simplicity, all results are first formulated for one-dimensional interpolation and then
extended to three-dimensional interpolation.

Considerations in one dimension

Consider a one-dimensional grid x; and denote the grid points by x; = j such that the particle
resides at some position z € |[xg, z1[. In particular, allow for negative values of j. Denote the
fluid velocity in z; by u;. Consider interpolation schemes that can be formulated as a linear
combination of the sample values u; and some functions w;(z)

usap(r) = ij (x — x5) uj. (7.1)

The functions w; define the scheme. For polynomial interpolation schemes, w; are the
Lagrangian base functions,

wipay (€)= ]| ( £ 1) . (7.2)

ig N !

Taking advantage of the fact that z —z; € [—j, 1—j[, the subscript j in w; can be omitted.
More formally, construct a function w by

w(§) = ij (€) O¢e[—j1—j]- (7.3)

where ¢ denotes the Kronecker delta function. w is referred to as interpolation kernel. With
this notation, the interpolation scheme reads

Usap(z) = Zw (x — z;) ;. (7.4)

With formula (7.4), the fluid velocity seen by particles usaq) is a continuous function and its
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Fourier transform can be computed for an arbitrary wavenumber x,

f,]-(uf@p)(’%> = / uf@p(:c>eiilix d,fC = / Z w (:C _ xj) ujefilﬁx dx
—0 s j
= FT(w)(r) 3 wye™"™. (7.5)
J
=FT (uys)(x)

This means that the spectrum seen by the particle equals the spectrum of the interpolation
kernel, multiplied by the continuous spectrum of the sample data,

FT (usap) (6)|* = |FT (w)(8)* |FT (ug) (x)|* (7.6)

It should be noted that F7 (us)(k) is not zero beyond the cutoff wavenumber . = 7. For
example for k = k. + k', 0 < K < K, it holds

FT(up)(k) = Y uje  Cretlmedlts = % e = (FT (ug) (ke — #))". (7.7)
J J

Here, (-)* denotes the complex conjugate. Following this argument, the spectrum | F7 (us) ()|
can be computed by piecewise reflection of the spectrum for x < k. (cf. figure 7.1). This
result is well known under the name of aliasing.

Figure 7.1: 1D-spectra of isotropic turbu-
lence at Rey = 52 (cf. chapter
5). Continuous lines: longitudi-
nal spectra, dashed lines: trans-
verse spectra. LES spectra are
prolonged for k¥ > k. according
e N to equation (7.7). Scaling on the
10™ 15)0 | 10 wavenumber axis is based on LES
KIK, Ke.ons cutoff wavenumber.

Considerations in three dimensions

The argumentation presented above is based on one-dimensional considerations. Turbulence
is three-dimensional and must be treated as such. Therefore, the following focuses on issues
in three-dimensional interpolation.

Three-dimensional interpolation is an issue by itself, in particular if arbitrarily located
data needs to be interpolated (see e.g. Kincaid & Cheney, 2001). However, this is not the
case in the present work because only data on Cartesian grids are considered. Again, all
results are presented for equidistant grids Ax = Ay = Az = 1 for reasons of simplicity,
although they are also valid for non-equidistant grids.
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In three dimensions, the interpolation formula (7.1) must be extended. In general, the
interpolation kernel becomes a matrix W:

Usap(T) = ZW (&ismjs Gr) g (@i, vy, 21) (7.8)
1,7,k
with §i=x— ni =Y =Y Gk =2 — 2. (7.9)

The one-dimensional spectra seen by the particles read

BJ0) = [ 61(0) |PT (gm0 dk =

R3

= [ 3 IET OV 09)" T (05, )09 (7.10)

R3

where k denotes the three-dimensional wave vector and F7 (W) (k) is the component-wise
three-dimensional Fourier transform of the matrix W.

For the one-dimensional case, the spectrum seen by the particles |F7 (usqp)|® equals the
product of |F7 (w)]* and |F7 (us)|* (cf. equation (7.5)). This means that, in 1D, the spec-
trum seen by the particles is simply the product of the transfer function of the interpolation
and the spectrum of the flow. In three dimensions, this does not hold,

| 2

B0 # | [ 8,00 FTOV) M dic | EL (o) (7.11)

R3

However, the reflection property (7.7) holds in three dimensions,

Eyj(k) = / B, () | FT (s ) (k) dlk = / 61, () | FT () (k + (e + ' — Ky ey)[ i

R3 R3
_ / 5 (ke — &) | FT (s ®)I? dk = By (e — #) (7.12)
R3

with the j-th unit vector e; and k = k.+ ', 0 < k' < k.. For the model proposed in section
7.2, this property plays a crucial role.

The reflection property holds for the one-dimensional spectra E;; but not for the energy
spectrum function E. Therefore, the present section focuses on one-dimensional spectra
instead of the energy spectrum function.

Spectra from standard 3D interpolation schemes

To simulate particle-laden flow, commonly used interpolation schemes are semi-linear, tri-
linear and fourth-order Lagrangian interpolation. In the following, these schemes are anal-
ysed with respect to the spectrum seen by the particles.

Semi-linear interpolation means that each velocity component is interpolated linearly in
its respective direction. For the other directions, nearest-neighbour interpolation is con-
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ducted. This means that uy; is linear in x; and piecewise constant in x;,7 # ¢. This
interpolation scheme is the simplest conservative interpolation scheme for staggered grids.
The corresponding interpolation kernel W, reads

wSl (€7 777 C) 0 O
Wsl (57 n, <) = 0 Wg (na 57 C) 0 (713)
0 0 Wg (Ca 67 77)

with

wSl(é-a n, C) = wlin(§> wconst(n) wconst(()‘ (7-14)
wy, denotes the longitudinal interpolation kernel which is defined by

. [ 1—¢ for || < 1
wiin(§) = { 0 otherwise (7.15)

and we,ns denotes the transverse interpolation kernel, defined by

1 for |n| < 3
0 otherwise

Weonst (1) = { (7.16)

Weonst 18 Simply a rectangular function. wy, is shown in figure 7.2.

Semi-linear interpolation is often referred to as ‘second-order interpolation’, although the
interpolation of each component wy; is only second-order in the direction of x; but not in
xj, j # . If one interpolates the velocity components linearly in all directions, then one
obtains trilinear interpolation. Trilinear interpolation is second-order in all directions but
not conservative (cf. Meyer & Jenny, 2004). The kernel for trilinear interpolation reads

Wy (f, 7, C) = wlm(f) wzm(n) wlin(C) L (7-17)

A straightforward extension of trilinear interpolation to a higher order is Lagrangian
fourth-order interpolation. Its kernel reads

W (€1, C) = Weub(§) Weun (1) Weun(¢) (7.18)

where I denotes identity and

(—E+1)(=¢/2+ 1)(=€/3+1)  for e [L,2]
(€+1)(—¢ +1)(=€/2+ 1) for € € [0,1]
wen(€) = ¢ (€/2+ D(E+1)(—€+1) for € € [~1,0] (7.19)
&/3+1)E/2+1)(E+1) fOI;EE [—2,—1]
0 otherwise

Weyup 1S also shown in figure 7.2. w can be interpreted as the answer of the interpolation
scheme to a Dirac peak, i.e., to ug = 1 and u; = 0 for ¢ # 0. This explains the undershoots
of the fourth-order scheme in |£| €]1,2].
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CFT(w, )F
CFT(w,,, )T
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OF T (w)(K)F

Figure 7.2: Interpolation kernels for piecewise Figure 7.3: Transfer functions for piecewise
linear and cubic interpolation. linear and cubic interpolation.

Figure 7.3 shows the transfer functions |F7 (wyn)|” and |F7T (wew)]. It should be noted
that the spectrum seen by the particles is not equal to the product of the spectrum of the flow
and these transfer functions (cf. equation (7.11)). Nevertheless, the transfer functions show
some important properties of the interpolation schemes. Both schemes lead to significant
damping close to the cutoff wavenumber (note the logarithmic scale). Furthermore, both
schemes lead to periodic enhancement at unresolved scales. For k < k., the fourth-order
scheme leads to less damping than the second-order scheme, whereas for k > k., the higher
order scheme shows stronger damping.

The last scheme analysed here is a linear conservative interpolation scheme proposed by
Gobert et al. (2006). Its kernel reads

Wel (gv 7, C) 0 0
Wa (§,1,¢) = 0 wa (1, €, €) 0 (7.20)
0 0 wcl(Ca 57 77)
with
wcl<£7 n, C) = wil(ﬁ? n, C) le(n) wil(C) (721)
The longitudinal and transverse interpolation kernels w!; and w,; are
1—|¢| for |¢] < 1 and max{|n|,|¢|} < 0.5
w', (€,1,0) = 0.5 for |¢] < 1 and max{|n|,|¢|} > 0.5 (7.22a)
0 otherwise
1 for |£] < 1/2
wh(§) =< LB for 1/2 < |€] < 3/2 . (7.22b)
0 otherwise

This scheme was used throughout the present work to quantify interpolation errors. Re-
sults from fourth-order interpolation were compared against results from this interpolation
scheme.
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It should be noted that W and W lead to discontinuities in uya,. This has conse-
quences for the respective transfer functions. If a function w is n-times differentiable, then
the absolute value of its Fourier transform |F7 (w)(k)| decays for k — oo faster than " (see
e.g. Strichartz, 1994). Therefore, at high wavenumbers, the Fourier transforms F7 (W) and
FT (W) can be expected to decay faster than F7 (W) and F7T (W ).

This can be readily verified by computing the 1D-spectra seen by the particles. They are
shown in figures 7.4 and 7.5 for all considered schemes. Again, the test case is isotropic
turbulence at Rey, = 52. For this test case, 100 million particles were regularly posi-
tioned on 100 planes, each normal to the z-axis. Then, the xz-component of the interpo-
lated fluid velocity at the particle positions was computed for a single time step. More
premsely, an instantaneous value of uy f@p( ) was s computed for x = (zAm jAy, kAz) with
1,] = , 1000,k = 1,...,100. Ax Ay and Az were set_such that the complete com-
putatlonal box is Covered ie., Az = Ay L/1000 and Az = L/100. L is the length
of the computational box. The data g rap(x) allow the 1D spectra Ej; and Ejs to be
computed.

Figure 7.4: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic turbu-
lence at Rey = 52, computed by DNS. Dash-dotted line (sl): semi-linear interpolation,
long-dashed line (tl): trilinear interpolation, dotted line (cl): second-order conservative
interpolation, short-dashed line (cub): fourth-order interpolation. For reference, the
spectrum computed from the grid points is also shown (continuous line).

The DNS results (figure 7.4) already show an interesting behaviour. In the range k <
Ke,pns/2, all interpolation schemes give identical spectra. However, starting around half
the DNS cutoff wavenumber, even the fourth-order scheme shows significant deviations from
the spectrum computed from the flow. This behaviour was not expected from the transfer
functions shown in figure 7.4. However, this is simply a consequence of the difference between
1D and 3D transfer functions (cf. (7.11)).

For k > kK. pns, the semi-linear, trilinear and second-order conservative scheme show the
damped reflected spectrum nicely. Damping is weaker in the transverse spectrum than in
the longitudinal spectrum because of the discontinuities of the schemes in the transverse
direction. Accordingly, the fourth-order scheme does not show the reflections due to its
smooth solution, i.e., strong damping for k > K. pns.

The trilinear scheme shows stronger damping around k. than the fourth-order scheme.
Therefore, the spectrum from trilinear interpolation is closer to the spectrum computed from
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Figure 7.5: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic turbu-
lence at Rey = 52, computed by LES. Dash-dotted line (sl): semi-linear interpolation,
long-dashed line (tl): trilinear interpolation, dotted line (cl): second-order conserva-
tive interpolation, short-dashed line (cub): fourth-order interpolation. For reference,
the spectra computed from the grid points in DNS and LES (plus reflections) are also
shown (continuous lines).

the flow than the spectrum from fourth-order interpolation.

Even more interesting are the results from LES (figure 7.5). Below the cutoff wavenumber
ke, the spectra from semi-linear, conservative second-order and fourth-order interpolation
are basically on top of each other. The trilinear scheme shows the strongest damping in that
range. The 1D spectra demonstrated that it is expected that the trilinear scheme shows
stronger damping in that range than the fourth-order scheme. The fact that the trilinear
scheme also shows stronger damping than the semi-linear and the conservative second-order
schemes is a result of the discontinuities of the latter schemes.

Beyond the cutoff wavenumber, the damped reflected spectra can be clearly identified.
Because of the low Reynolds number, the DNS spectrum decays rapidly. Figure 7.5 shows
that this is not the case for the spectra seen by the particles. The high order scheme shows
the strongest damping in that range and, therefore, the closest similarity to DNS at that
Reynolds number.

At higher Reynolds numbers, the DNS spectrum approaches the x=%/3 line. The re-
sults of the low order schemes seem to follow this trend in contrast to the fourth-order
results. This can be explained because of the link between the continuity of a function and
its Fourier transform. The higher order scheme produces a smoother interpolated veloc-

ity. The smoother the signal, the faster its Fourier transform decays (see e.g. Strichartz,
1994).

7.1.2 ADM revisited - ADM and interpolation

The previous section discussed the effect of interpolation on the spectrum seen by the parti-
cles with a focus on DNS and LES without a model. The present section analyses the effect of
interpolation for LES with approximate deconvolution (ADM, cf. section 6.2.2). This anal-
ysis opens the possibility of extending the idea behind ADM towards higher wavenumbers,
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which is performed in section 7.2.

Details on the implementation of ADM were presented in section 6.4.2. In that section,
three approaches for ADM were presented. One approach follows Kuerten (2006b), and
the other two approaches are based on reconstruction of target spectra. The latter two
approaches showed higher accuracy in section 6.4.2. Therefore, in the following, only these
two approaches are considered.

The spectrum seen by particles when using ADM depends on the ADM stencil and on
the interpolation scheme. The first dependency can be analysed by translating the ADM
velocity field in spectral space (cf. equation (6.69a))

FT(up?")(k) = (FT (wAPM2) (1))" FT ((uy)) (k). (7.23)

Again, (-)" denotes the complex conjugate. Including the effect of interpolation, one obtains
(cf. equation (7.10))

FT(iBM) (k) = (FT (W) (k) FT (wAP92) (10)" FT ((uy) (k) (7.24)

where W denotes the interpolation kernel. Accordingly, the spectrum seen by particles in
ADM is

E[fAPM (k) = / 51, (K) [ (FT (W, ) (k) FT(wAPM3P) (k)" (FT (up)(k))|” dk (7.25)

In order to separate the effect of interpolation from the effect of ADM, it is tempting to
. f@p,ADM /N -
write Ej; (k) in terms of

| o ETV 0005 FTap) deand [ [FTA) 0 d
(7.26)

but this is not possible (cf. equation (7.11)). Therefore, the effect of ADM and inter-
polation cannot be analysed separately. Thus, an analysis of the combined effect fol-
lows.

ADM based on optimisation against DNS spectrum

First, the effect of ADMPNS on the spectrum seen by particles is analysed; i.e., the ADM
stencil is optimised against the DNS spectrum. Deviations between spectra from ADM and
DNS are due to inherent limitations of the model and not a result of any secondary closure
assumptions.

In figure 7.6, one-dimensional spectra from LES of isotropic turbulence at Re, = 52
are shown with and without ADM. In both simulations, the Lagrangian fourth-order in-
terpolation W, was implemented. As expected, ADM enhances the longitudinal and the
transverse spectra, especially in the low wavenumber range. However, figure 7.6 shows that
ADM also has an effect beyond the cutoff wavenumber. Moreover, in that wavenumber range
ADM enhances the spectrum seen by the particles.

Figure 7.7 shows the spectra from ADM with second- and fourth-order interpolation. The
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second-order interpolation is the conservative scheme W,. Again, the different interpola-
tion schemes lead to different spectra, in particular at high wavenumbers. The effect is
qualitatively identical to the effect without ADM, which is discussed in section 7.1.1. It is
remarkable that for a wide range of wavenumbers the spectrum from low order interpolation
is closer to the DNS spectrum than the spectrum from high order interpolation. This means
that the enhancement of wavenumbers beyond the cutoff spectrum by low order interpolation
might be a desired effect.

The analysis of ADM presented so far was based on ADMPNS, In the following, the same
analysis is conducted for ADM™°4,

0 0
10 L 10 ¢ AL
10 LES 10 LES
< 10° W ~ 107 VI
<y 10° <y 10°
g -4 £ -4
s 10, X\ LES + ADM 5 10 LES + ADM
~ 10 LES w/o ADM ~ 10 LES w/o ADM
W 1qg® W 100}
10”7 ONS 107k
108  DINo T T 0% PNe A
10™ 10° | 10 10™ 10° | 10
K/KC Kc,DNS K/Kn Kc,DNs

Figure 7.6: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic turbu-
lence at Rey = 52, computed by LES with ADMPNS (continuous line) and without
ADM (dashed line). For reference, the spectra computed from the grid points in DNS
and LES (plus reflections) are also shown (continuous lines).

10° 10°F
10" 107k
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~p 107 ~p 107 " —ADM+2"o0.
€10 - £107} Y
~ 10° ADM+4". ~ 10°F ADM+4"0.
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10-8 I | L L T | L L TEETAN I w"w‘l:‘."é‘““"" 10-8 ;_ I | L L TR | L L L T | "\"
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Figure 7.7: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic turbu-
lence at Rey = 52, computed by LES with ADMPNS with fourth- and second-order
interpolation. For reference, the spectra computed from the grid points in DNS and
LES (plus reflections) are also shown (continuous lines).
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ADM based on optimisation against model spectrum

The following focuses on ADM™°¢ i.e., the defiltering operator that was obtained optimising
against the model spectrum. Figure 6.7 from section 6.4.2 showed that this approach leads
to a much stronger amplification around k. than the defiltering operator from the preceding
section.

The one-dimensional spectra seen by the particles are depicted in figure 7.8. Again,
interpolation is Lagrangian fourth-order. Here, the higher amplification factor around k.
leads to better results at low wavenumbers. This is an effect of two errors cancelling each
other. First, the fact that the model spectrum is higher than the DNS spectrum around
ke leads to strong defiltering in that wavenumber range. Second, this effect is partially
compensated by interpolation due to damping.

0 0
" A &
F ADM S
~< 107 \/W ~ 10°F based o YUY
o, 107 =~ 10°} DNS
£ 10" model E 10} Spectrum model
] spectrum sf spectrum
~ 10° \ 10°F
W 10 ADM based on W 10%F ADM based on
107 model spectrum 10.73_ model spectrum
0% o PNSTAIT 0% . DNSTN
10” 10° |10t 10” 10° |10t
K/KC Kcons K/KC Kcons

Figure 7.8: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic turbu-
lence at Rey = 52, computed by LES with ADMPNS (continuous line) and ADM™°4
(dashed line). For reference, the spectra computed from the grid points in DNS and
LES (plus reflections) are also shown (continuous lines).

On the other hand, both ADM stencils have decay that is too rapid between k. and 2k..
These observations motivate the idea of constructing an interpolation scheme that has good
spectral properties in the whole spectrum. Here, ‘good’ refers to the difference between the
spectrum seen by particles in LES and in DNS.

7.2 Construction of the SOl model

In the present section, the findings of section 7.1 are combined to construct a new particle-
LES model. In 1D, the modelling strategy involves the following:

1. Compute the LES spectrum |F7 ((ug))(r)|* for & < k.. Extend this spectrum by
reflection for higher values of x (cf. equation (7.7) and figure 7.1).

2. Define a target spectrum E'9¢ (k) for the fluid velocity seen by the particles.

3. Search for an interpolation kernel w such that |F7 ((us))[* |FT (w)|* ~ Eterset.
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4. Apply w in order to interpolate the fluid velocity seen by the particles.

Step 3 cannot be transferred to 3D one to one because of inequality (7.11). In the present
section, a possible extension is presented.

The ~-sign in step 3 is a consequence of additional admissibility conditions for the interpo-
lation, such as compact support and order of the interpolation. Section 7.2.1 contains a list
of all admissibility conditions respected. In sections 7.2.2 and 7.2.3, the model is formulated
as an optimisation problem. For simplicity, the admissibility conditions are neglected in this
first step. They are imposed in the second step, which is described in section 7.2.4. The
complete model is summarised in section 7.2.5.

The model can be regarded as an interpolation scheme that is optimised with respect
to the spectrum seen by the particles and is therefore referred to as ‘Spectrally Optimised
Interpolation’ (SOI).

7.2.1 Properties of the model (admissibility
conditions)

The idea of the novel model was laid out above. In the present and following three sec-
tions, this novel model is elaborated in detail. The present section states the properties
of the model. In the following sections, a model is constructed such that these properties
hold. The model is referred to as the SOI model, which stands for ‘Spectrally Optimised
Interpolation’.

In step 3 of the strategy presented above, replacing the ~-sign with an =-sign, does not
guarantee a compact interpolation stencil w, which leads to high computational costs. With
a compact stencil, only an approximate spectral match can be attained in general; thus, the
~2-sign is used.

In detail, the resulting scheme has the following properties:

A1 Compact support (4-point stencil).
A2 Constant functions are interpolated exactly everywhere (first-order interpolation).
A3 Linear functions are interpolated exactly in grid points (second-order in grid points).

A4 The fluid velocity seen by the particles is continuously differentiable and twice contin-
uously differentiable almost everywhere.

A5 Distinct interpolation in the longitudinal and transverse directions.

A6 The spectrum seen by particles is optimised with respect to a model spectrum in a
least square sense (spectral accuracy).

Properties A1, A2 and A4 are commonly desired properties for accurate interpolation at
low computational costs. Property A6 was already motivated above. Properties A3 and A5
require more explanation.

Property A3 is related to the fact that the resulting scheme only ensures that ufa,(z;) = u;
if the data (x;,u;) correspond to a constant or linear function. This means that in general

123



7 A Novel Particle-LES Model based on Spectrally Optimised Interpolation (SOI)

if a particle resides on a grid point, then it might not see the fluid velocity assigned to
that grid point, likewise for ADM. Thus, the expression ‘interpolation scheme’ might be
misleading. Monaghan (1985) refers to such schemes as smoothing schemes. However,
in the present context, this term is also misleading because the scheme does not smooth
but rather roughens the data. Therefore, the scheme is called ‘interpolation scheme’ here-
after.

Property A5 corresponds to the fact that longitudinal and transverse spectra are different.
Correspondingly, it makes sense to interpolate differently in the longitudinal and transverse
directions.

The properties listed above are realised by unconstrained optimisation. Properties Al to
A5 are realised by construction, and property A6 defines the target function. Properties
A1l to Ab are referred to as admissibility conditions because they define which stencils are
admissible for optimisation.

The optimisation is implemented in two pre-processing steps. In the first step, the ad-
missibility conditions Al to A4 are omitted for computational efficiency. The solution is a
non-admissible interpolation stencil denoted by w;* and w®. The superscript ‘na’ stands
for non-admissible.

In the second step, another optimisation is conducted. It consists of finding admissible
solutions w; and w; that match w;** and wj** respectively as closely as possible with respect
to their transfer functions.

The first step is described in sections 7.2.2 and 7.2.3; the second step is described in section
7.2.4.

As mentioned above, the model is formulated for isotropic turbulence, and extensions to
other flows are sketched in section 7.5.

7.2.2 Formulation of the model as optimisation
problem

In the previous section, properties of the SOI model were listed. This section and the
following two concern the implementation of these properties. They are incorporated one
by one. In this section, only properties A5 and A6 are observed. The other properties are
incorporated in section 7.2.4.

The model is characterised by two interpolation stencils. One stencil is for interpolation
in the longitudinal direction, and the other is for interpolation in the transverse direction.
They are denoted by by w; and w;, respectively. The three-dimensional interpolation kernel
is defined by

wi(§)wy(n)w(C) 0 0
Wisor (§,1,¢) = 0 wy(§)wi(n)w(C) 0 ‘ (7.27)
0 0 wy (§)we(n)wi(C)

The scalar sub-kernels w; and w; are now specified such that the spectrum seen by the
particles is optimised.
Wsor is applied on a LES velocity field (uy). Then, the longitudinal and transverse
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spectra seen by the particles are

Ef9! (ky) = IFT(wz)(k’x)\2/\J’”T(wt)(ky)fT(wt)(kz)fT(wﬁl))(k)\2 dky, dk.

E9 (k) = !FT(wt)(ky)IZ/!FT(wz)(k‘x)FT(wt)(kZ)FT(<Uf,1>)(k)\2 dk, dk.

The aim is to set w; and w; such that £°°7 and ES°! approximate target spectra F;""* and
E}“"9¢ yespectively. For simplicity, the admissibility conditions Al to A4 from page 123 are
omitted for now. Then, the optimisation problem reads

ESO[ _ Etarget
find w;® and wy® such that H <EISOI B E%arget) H — min (7.29)
t

The Euclidean norm is used; w;* and wj* denote the solution of the optimisation prob-
lem.

7.2.3 Reduction of computational overhead: Optimisation against
1D-spectra

The previous section ended in the optimisation problem (7.29). In that form, the optimi-
sation would be computationally expensive. Therefore in the present section the optimisation
problem is reformulated such that the computational costs are reduced.

Problem (7.29) takes as input data the whole (Fourier transformed) LES field F7 ((ur1)) (k).
In this formulation, for each test solution (wj,w;) the spectra EP9I(k) and EP9T(k) must
be computed by two-dimensional integration. Integration must be conducted for each value
of k separately because k = (k;, ky, k,) depends on k, and k,. Thus, the computational
overhead for the optimisation is high.

In the present section the computational overhead is reduced by including modelling as-
sumptions. The optimisation problem is reformulated such that F7 ((us1))(k) is replaced
by the one-dimensional LES spectra EfFS and EFFS.

Introduce the notation

a=|FT (i), b=[FT(wy)l’,  [=|FT(up))l*. (7.30)
Then, problem (7.29) reads

E[" 9 (x) — a(x) Rf2 b(y)b(2) f(z,y,2) dy dz
E; 9 y) = b(y) [ a(@)b(2)f(z,y,2) do dz

R2

find w;"* and w;* such that — min.

(7.31)

The one-dimensional spectra of the LES velocity (i.e., the spectra of the fluid, not the spectra
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seen by the particles) can be expressed as

EFFS (2 /f x,y,z) dy dz, (7.32a)
EFES(y) :/f(x,y,z) dz dz:/f(x,z,y) dz d=. (7.32b)

The next aim is to express problem (7.31) in terms of these functions.
To this end, first apply the mean value theorem,

[ o 2 dy dz = i) b / f(r.0.2) dy dz (7.3
R ::chf@:)
/a(x)b(z)f(x,y,z) dz dz=a(&(y)) b /f z,y,z) dr dz (7.33b)
R2 ,Csoz(y)

where £, 1, (1, (o, C7T and C5°1 are some unknown functions.
Now, the first modelling step comes into play. Approximate CY97 and C5°! by a model
for f. Set

wpt for [|(z,y. 2)|| <
J N,y 2) = q @y, 2) | for kg < (2,9, 2)]) < Re - (7.34)
0 for [|(z,y, 2)]| > ke

k1, denotes the smallest resolved wavenumber of the simulation and k. denotes the LES cutoff
wavenumber. For k; < ||(z,y,2)|| < ke, f™%x,y,2) corresponds to a x~°/3 spectrum,

f||(;ryz)||:/@ fmod(z,y,z) ~ k73 (cf. equation (2.19)). It should be noted that the model

function f™°¢ assumes isotropy of a single velocity component which does not hold. However,
for the present purpose the model is accurate enough. It only serves to estimate CY9! and
C5°% which are computed from

f b(y)b(z) f"Nz,y,z) dy dz
[ fred(z,y, z) dy dz
R2
[ a(z)b(z) fmo%(z,y, 2z) dz dz
SOI __ R?
Gy (y) = [ fred(z,y,z) do dz

R2

Cool(z) = for z < k. (7.35a)

for y < k. (7.35b)

For z > k.and y > k., continue by reflection according to equation (7.12).

Figure 7.9 shows typical samples of transfer functions a and b together with the correspond-
ing functions CY97 and C5°7. As for ADM, the transfer functions are larger than unity below
the cutoff wavenumber k. and therefore CY97 and C597 increase below k...

Now, implement these estimates in the optimisation problem. Then, the problem is to

126



7.2 Construction of the SOl model

I AN A WA ¥ WA NN W N

Figure 7.9: Samples of the functions a, b,
CP9T and €597, Scaling on
wavenumber axis is based on LES
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find w'® and w}* such that H <Efarget(y) B b(y)CﬁgOI(y)EfEs(y)) H — min. (7.36)

It should be noted that CY°! depends on b and C5°! depends on a. Thus, the problem is
two-dimensional.

In order to avoid Fourier transformations, it is desirable to solve problem (7.36) not for
wp® and w® but for a and b. This is only possible if 7 (w;*) and F7 (w}*) can be computed
from a and b, i.e., if the phase of the Fourier transform is known.

In the present framework the admissibility conditions define the phase. Actually, in section
7.2.4 the stencils will be restricted to be symmetric. This restriction can also be imposed on
wp® and wy*. Then, FT (w}*) and FT (w®) are real functions, i.e., FT (w*) = £y/a and
FT (wp*) = +v/b.

However, the sign is known to be positive because one wants to avoid that an eddy changes
its direction by interpolation. Therefore,

FT (w*) = ++va and FT (wl) = +Vb. (7.37)

Equation (7.37) allows to solve problem (7.36) for a and b. These constraints result from the
admissibility conditions, but are not sufficient for admissibility. Therefore, the superscript
- ™ is retained at that point.

As initial conditions, one can set

Eltarget (.T) E:arget (1’)

ap(r) = =2, bo(x) = . 7.38
0= Ty O (759
In order to reduce computational costs, in the present work CY°7 and C5°7 were not up-
dated in every iteration of the optimisation. Actually, for most tests, it turned out that it
suffices to compute CY91 and C597 from ay and by and retain these functions for all iter-
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ations. This reduces the optimisation problem to two one-dimensional optimisation prob-
lems.

In the above steps, the problem was formulated for the continuous functions w;* and wj*
and their Fourier transforms a and b, respectively. The LES spectra are given in discrete
form, and, therefore, the optimisation problem must be solved in discrete form as well. This
issue is very simple: The discretised LES spectra EFES and ELPS define a grid on which the
target spectrum must be evaluated and on which the terms of problem (7.36) are discretised.
This way, one obtains a and b in discretised form.

7.2.4 Imposing admissibility conditions

In the previous section, the optimisation problem was formulated by omitting the admis-
sibility conditions Al to A4 from page 123. The present section describes a method of
constructing an admissible solution (w;, w;) from the solution of the unconstrained problem

(a,b).

Considering the list on page 123, the solution (a, b) guarantees the properties A5 and A6.
The remaining properties are incorporated by designing a compact (property Al) symmetric
(property A3, cf. below) interpolation stencil based on cubic splines (property A4). Property
A2 is incorporated by normalisation of the stencil.

More precisely, admissibility is realised as follows:

e Compact support (Al):

w; and wy are only admissible if their support is within | — 2, 2[, i.e., w;(z) and w,(z)
are zero for |x| > 2. This leads to a 4-point stencil.

The inverse Fourier transform of the functions a and b would not possess compact
support. This shows that compactness of the support limits the accuracy of the model.

e First-order interpolation (A2):

The conditions

[e.9] (e 9]

Yowr+i)= Y wlr+i)=1 (7.39)

1=—00 i=—00

guarantee first-order interpolation. This means that, given functions w; and w; with

o0 [e.e]

Z wi(x+1) #0 and Z wy(x+1i) #0 for any x € R, (7.40)

1=—00 1=—00
the functions

wy(x) = : wi(z) = — : (7.41)
> (x4 1) S (x4 1)

1=—00 1=—00

define a first-order interpolation stencil.

128



7.2 Construction of the SOl model

In the present work, w; and w; are computed from a and b by another optimisation
step. Details on this step are given on page 130. Then, the interpolation stencils w;
and w,; are computed from equation (7.41).

Second-order interpolation in the grid points (A3):

In general, second-order interpolation means that us(z) = x + £ must be interpolated
exactly. € can be an arbitrary value. Second-order in the grid points only means that
ur(x) = x 4+ £ must be interpolated exactly in x;. In order to obtain this, w; and
are chosen symmetric around = = 0,

wy(z) = wy(—x), wy(x) = Wy (—2x). (7.42)

Then, also w; and w; are symmetric.

Second-order accuracy can be shown by interpolating us(x) = £ +x —x;. Respect that
constant functions are interpolated exactly and that x; = i. Now, compute usap(z;),

[e.e]

“f@p(l’j):'z w(zy —x)(§ +a —x5) =&+ Z w(j —1)(i —j)
+Z w(j —1) Z—j)zé—Zim(i)%—Ziqu(—i)zf
ey (7.43)

Therefore the scheme is second-order in the grid points.

Actually it is even second-order in the intermediate points (z; + x;11)/2 because the
interpolation yields for us(z) =z — (x; + x;41)/2

J
Urap (%) = " w(j+05—i)(i —j —0.5)

1=—00

T+ Tjp
—I—Z j+05—2)(z—j—05)—0—uf<32—]+),
_j+1

Smoothness of the interpolation (A4):

Taking advantage of symmetry and compact support, the functions w; and w; only
need to be specified on the interval [0,2[. In the present work, @; and w; are defined
via cubic splines. Each spline is defined on 64 equidistantly placed nodes on the interval
0,2[. Imposing

Wiy (=2) = ip(2) = (i)' (=2) = (i)' (2) = 0 (7.44)

as boundary conditions for the spline ensures that w; and w,; are continuously differ-
entiable on R and twice continuously differentiable on | — 2, 2[. Equation (7.41) shows
that this holds for w; and w; as well as long as Y .o wy(x+14) and > > (2 +17)
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have no roots. Equations (7.8) and (7.27) show that smoothness properties of w; and
wy transfer to use,. This meets property A4.

Remark. Evidently the size of the support of w; and w; affects the computational costs of
the method. On the other hand, the number of nodes for the splines w; and w; merely
affects the overall computational costs (cf. appendix). The choice presented here re-
sults in 32 nodes per LES cell and, therefore, makes sense if the LES cell covers 32 Kol-
mogorov length scales or less. For coarser resolutions, the number of nodes should be in-
creased.

Computation of w; and

The remaining task is to compute w; and w; from a and b. More precisely, this means
computing the splines w; and w; on their 64 nodes with boundary conditions (7.44) such
that |F7 (w;)|* is close to a and |F7T (w;)]? is close to b. The exact meaning of ‘close’ must
be defined in this context.

In the present work, ‘close’ refers to the two-norm. Therefore, a least squares approxima-
tion is implemented in two steps. First, a preliminary approximation @} and @ is computed
from a and b by solving the following optimisation problem:

find splines @ and w{ with boundary conditions (7.44) such that

|IFT @) () = aze) | = min
and H IFT(w?) (k)| — b(s5e®) ‘ ~ min (7.45)
with
wl(z wh (z
wi@) = L () = D) (7.4
S owl(z+1) PDIRTACEE)
and
ki €{0,Kkp, 260, ..., 32K} . (7.47)

k" denotes the discretised wavenumbers. As above, k; denotes the smallest resolved
wavenumber by the LES, and k. denotes the LES cutoff wavenumber. The factor 32 stems
from the fact that the splines were discretised by 32 nodes per LES cell.

In a second (and final) step, w} and w7 are corrected such that the estimated kinetic energy
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is correct. To this end, the following optimisation problem is solved:

find splines w; and @; with boundary conditions (7.44) such that

o0

[ Bl @) do - 630 3 FT () (1) €507 (7) LS (477)| — i

)

0
oo

and /Efarget(x) dz — C5% Ky Z | FT (w)(k5°%)|? C5O1 (k7°) EXPS (k7°%)| — min .

0

w} and @) are used for initialisation. CY97 and C§97 are computed from a and b, according
to equations (7.35a) and (7.35b).

C59T is a model constant. This model constant affects the kinetic energy seen by the
particles. It was set on the basis of a single instantaneous LES field such that the kinetic
energy seen by inertia-free particles in that field corresponds to the (averaged) DNS kinetic
energy.

The kinetic energy of the LES field varies in time. Therefore, the accuracy of the results
could be improved by computing C5°7 from a time-averaged field, but this is not possible in
a realistic application where the resolution of the LES is set as high as possible and time av-
eraging is computationally expensive. Therefore, C5%! was computed from an instantaneous
field.

It should be noted that C;°7 is the only model constant in SOI. In the present simulations,
it ranges from C597 = 0.98 to Cy97 = 1.13.

7.2.5 The SOl model formulated as cooking
recipe

This section summarises sections 7.2.1 to 7.2.4. The complete model is described again, but
no derivations are given.

Pre-processing. Compute the interpolation stencil in a pre-processing step:

Eltar get E;far get

1. Define longitudinal and transverse target spectra and from the model

spectrum proposed by Pope (2000), for example.

2. Compute the longitudinal and transverse LES spectra EFPS and ELPS from a single
phase LES. Extend these spectra beyond the cutoff wavenumber by reflection, equation
(7.12).

3. Solve

| (el ~56) Ghonty) sty )| = i .
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for the discretised functions a and b. The discretisation grid in the wavenumber space
is defined by the LES grid. Compute C7°7 and C5°7 from

) R for |[(,y, 2)]| < e
N @y, 2) = |z, y,2)|| 73 for k< ||(z,y, 2)|| < Ke (7.49a)
0 for ||(x,y, Z)H > Re

J by)b(z) [y, 2) dy da
C0l(z) =B IR for z < kK, (7.49Db)
R2
[ a(z)b(z) fmoY(z,y, 2) dz dz

CSOI :R2
> (W) [ fred(a,y, z) do dz
R2

for y < k. (7.49¢)

k1 denotes the smallest resolved wavenumber of the simulation, and k. denotes the
LES cutoff wavenumber. For # > k. and y > k., continue CY°!(z) and C5°!(y) by
reflection according to equation (7.12).

4. Choose the support size of the interpolation stencil; e.g., for a four point stencil, impose
the support (in cell units) | — 2, 2].

5. Define the stencil using two symmetric cubic splines: one for the longitudinal and one
for the transverse direction. Choose the number of nodes for the splines, e.g., 32 nodes
per LES cell. Distribute these nodes equidistantly on the positive half support of the
stencil, taking advantage of symmetry. Denote the splines by w; and w;. Impose the
boundary conditions (here formulated for a four point stencil)

di(~2) = e(2) = () (~2) = (i)' (2) = 0. (7.50)

6. Set the preliminary stencils
wy ()
— ;o wi(r) =

S wl(z+1) STl (x4 1)

i=—00 1=—00

wy(z) =

(7.51)

and compute the corresponding preliminary splines @} and @} by solving the optimi-
sation problem (here formulated for a four-point stencil, 32 nodes per LES cell)

find splines w7 and w, with boundary conditions (7.50) such that

17T @) 0e) P = aly=)

; — min

— min (7.52)

and ||| FT (wf) (5" = b(s7)
with k[ € {0,kr, 2Kk, ...,32K.} . (7.53)
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7. Use the preliminary splines @) and @} as initial conditions to solve the following

optimisation problem:

find splines w; and w; with boundary conditions (7.50) such that

1

B (@) da = G5k Y 1FT (w) (5)[* CFO" () B S ()| — min

K3 K3

0/
and
o/

B0 (@) da = G5 3 IFT (w)()°)? €5 (57 EFPS ()| — min

with  w(z) = () and w(x) =

wy(x)

Sz +1) > ay(x +1)

1=—00 1=—00

(7.54)

Set the model constant C5! such that the kinetic energy seen by inertia free particles
in a single instantaneous LES field corresponds to the target kinetic energy.

8. Store the cubic splines w; and w; on hard disk.

With these eight pre-processing steps, the interpolation stencils are defined.

At runtime. Compute the fluid velocity seen by the particles from

Usap(z) = Z Wisor (&i,nj: ) (ug) (i, Y 2x) (7.55a)
with SZ =x— 1, N =v—y;, Ch=12— 2z (7.55b)
wi(§)wi(n)w(C) 0 0
and Wisor (§,1,¢) = 0 wy(§)wi(n)w(C) 0
0 0 w(§)we(n)wi(C)
and w(zr) = — () , wy(z) = — () : (7.55¢)
i:Z:OO wy(z + 1) i:Z:OO wy(x + 1)

Concerning computational requirements, the CPU time required for the SOI model with
a four-point stencil is comparable to the CPU time for fourth-order interpolation. The
only difference is that, for SOI, the interpolation weights equal the quotient of two cubic
splines (equation (7.55¢)), whereas for fourth-order interpolation, the weights equal a cubic
polynomial (equation (7.19)). The denominator of equation (7.55¢) can be computed very
efficiently and, therefore, the number of floating point operations is only 7% higher for SOI
than for fourth-order interpolation (cf. appendix).

Furthermore, the appendix contains a comparison of SOI against other particle-LES mod-
els in terms of computational costs. The other models are analysed in combination with
fourth-order interpolation. According to that analysis, SOI is much less expensive than the
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stochastic models of chapter 6 and, for sufficiently dilute suspensions, also less expensive
than ADM.

7.3 Analytical assessment of the SOI
model

In the previous section, the SOI model was introduced. In this section, the accuracy of SOI
with respect to the first and second moments listed in chapter 4 is discussed. The present
section focuses on a theoretical discussion; the corresponding numerical results are presented
in section 7.4.

The present section is the counterpart to section 6.3, which is the analytical assessment
of ADM and the stochastic models. In particular, the same assumptions are made; i.e.,
the particles are assumed to be distributed homogeneously, Stokes drag is assumed to be
linear, and the analysis focuses on the structure of the model and not on the parameters.
Concerning the last issue, for ADM, it was assumed that the energy spectrum below the
cutoff wavenumber is predicted exactly by ADM. Correspondingly, for SOI, it is assumed
that the one-dimensional spectra F; and E; are reconstructed for all wavenumbers. This is
possible if the SOI stencils are chosen large enough.

This means that the energy spectrum function E is reconstructed because (see Pope, 2000)

B(r) = —K% GE,(K) + Et(ﬁ)) | (7.56)

SOI was developed for isotropic turbulence. In isotropic turbulence, all first moments are
zero in the exact solution and in the solution computed with SOI. Therefore, the first mo-
ments are predicted correctly by SOI in isotropic turbulence.

Concerning second moments, it was already argued in section 6.3.3 that it is sufficient to
analyse U rap.i(T)Ufap,i(t) because of equations (4.5b) and (4.7b).

SOI was constructed such that the spectrum seen by the particles is optimised against a
model spectrum. This means that if this model spectrum is correct, then the second moment
in fluid velocity seen by the particles, urap;(t)u rap,i(t), is predicted correctly by SOI (as noted
above, it is assumed that the complete spectrum is reconstructed).

The autocovariance uray,i(7)urap,i(t) is a Lagrangian quantity; it equals the Fourier trans-
form of the Lagrangian spectrum (cf. e.g. Pope, 2000). This means that predicting
Usap,i(T)Urap,(t) correctly is equivalent to predicting the Lagrangian spectrum correctly.

For SOI, this is not guaranteed because SOI works on the Eulerian spectrum. If the Eule-
rian spectra of two space- and time-dependent velocity fields are equal, then this does not nec-
essarily entail equality of the Lagrangian spectra. This can be demonstrated by a simple one-
dimensional example. Let the two velocity fields u; and uy be

uy(z,t) = sin(z) us(x,t) = sin(z + t). (7.57)

Notably, both fields show the same Eulerian spectra, namely, a Dirac peak at k = 1.
Now, initialise inertia free particles equally distributed on the interval z € [0,27]. Com-
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pute the corresponding particle paths for both velocity fields,

t

21(t) = 2,(0) + / uy (21 (), 7) A aa(t) = 22(0) + / (22 (7),7) dr. (7.58)

0

Then, compute the Lagrangian spectra from wu; (z1 (7),7) and wug (22 (7),7). These are
shown in figure 7.10. Notably they are not equal.

102} —— FT(u,(x,(t).1))
101 i_\\\ ———————— FT(UZ(Xz(t)vt))

FT(u(®)
2

Figure 7.10: Example showing that the
equality of FEulerian spectra
does mnot necessarily entail
equality of the Lagrangian
spectra.

However, turbulence is not an arbitrary flow field. In particular, if Kolmogorov’s hy-
potheses are extended to Lagrangian spectra, then one can derive a model to relate Eulerian
spectra to Lagrangian spectra. Corrsin (1963) proposed one of the first of such models, which
was later refined by Tennekes & Lumley (1972). Fung et al. (1992) and Lien et al. (1998)
extended Corrsin’s model by postulating that ‘the energy at each wavenumber is spread over
a range of frequencies around a characteristic frequency’. The idea behind this model is that
a spatial wave generates a temporal Lagrangian wave.

More precisely, Lien et al. (1998) define a distribution F'(w, k) by

1 (w— 61/3:%2/3)2 (w+ 61/3/<;2/3)2
Flw, k) = orel/3,:2/3 (eXp <_ 9¢2/34/3 +exp | — 0¢2/34/3 - (7.59)

F(w, k) quantifies the transfer of energy from wavenumber x to frequency w and vice versa.
F is shown for fixed x and for fixed w in figure 7.11.

0.6
— -
< 3 I
8 B o4l
X xXx04
Y= U= |
- S
g8
2 3
D 0.2
o W -
-
w -
LL L
0

Figure 7.11: The distribution F' from equa-
1 2 3 .
w £ ?? (for fixed k) tion (7.59) for fixed x and for

23 _1/3 fixed w

K*"® €% w* (for fixed w)
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With the model of Lien et al. (1998), one can compute the Lagrangian spectrum Ep,4(w) of
an inertia-free particle from the energy spectrum function E(k),

oo

Erag(w) = IFT (usep)(w)|* = /F(w,fi)E(ff) ds. (7.60)

This holds for the DNS spectra. For SOI, the integrand in equation (7.60) can be retained
in the range k < k., i.e., below the cutoff wavenumber, because SOI reconstructs the energy
spectrum function. Beyond k., SOI produces a damped reflection of low wavenumbers by
construction. For example, for k. < k < 2k., SOI reflects the energy at wavenumber
2ke — K to k. This reflection produces the correct energy spectrum function E(k), but the
temporal behaviour of this spatial wave depends on the temporal behaviour of the wave with
wavenumber 2k, — k. The wave at k exists exactly as long as the wave at 2k.—x. This means
that, with SOI, the energy at wavenumbers beyond the cutoff wavenumber is spread over
a range of frequencies that is determined by the corresponding resolved wavenumber. For
example, for k. < kK < 2k, the integrand reads F(w,2k. — k)E(r) instead of F(w, k)E(k).
Consequently, SOI produces the Lagrangian spectrum

Effgl(w) = H]-—T(u?g;)(w)HQ = /F(u),?”(li))E(li) dk (7.61)
0
where r denotes the reflection,
r(k) =min{x mod 2k, 2k. — (k mod 2k.)} . (7.62)

Here, mod isthe modulo operator. Evidently, F'r., and Ef(?gf are not equal, which indicates
that the second moments in the particle velocity and particle position are not predicted
correctly by SOI. However, the difference between E7,, and Efaogl may be small. Figure 7.12
shows Fr,, and Efc?g[ , which are both computed from the model spectrum of section 2.1.3
for Rey = 265 and k. = m/(37.7nk). This is the cutoff wavenumber from table 5.2. Figure
7.12 shows that Ep., and Efg)gl differ only at high frequencies.

Figure 7.12 also shows the Lagrangian spectra for ADM,

Ke

EAPM () = || FT (w9 (w) | = / Flw, k) E(k) dr (7.63)

Lag
0

and for LES without particle-LES model,

Ke

Ew/o(w) = “f’]’(u?&i)(w)”z = /F(w,/i) (FT (G)) (k) E(k) dk. (7.64)

Lag
0

The spectrum for ADM (equation (7.63)) is valid under the best case assumptions for ADM
from chapter 6. F7 (G) is the filter transfer function of the Lagrangian Smagorinsky
model (cf. section 3.1.2). Figure 7.12 shows that the spectrum from SOI is much closer

136



7.3 Analytical assessment of the SOI model

o
10'47 ‘ ‘ A\ 0" P R TR T
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w/(e°k2%) tu /A
Figure 7.12: Lagrangian spectra computed  Figure 7.13: Autocorrelation functions that
from the model spectrum of correspond to the spectra plotted
section 2.1.3 for Re) = 265 and in figure 7.12.

equation (7.61). Scaling on the
frequency axis is based on the
frequency associated with the
cutoff wavenumber k.. The value
for k. is 7/37.7nx" (cf. table
5.2).

to the reference spectrum Er,, than the spectrum from ADM or LES without particle-
LES model. This fact demonstrates potentially higher accuracy for SOI than for the other
approaches.

The above considerations are only strictly valid for inertia-free particles because Lien et al.
(1998) defined the distribution F'(w, k) for inertia-free particles. For other particles, a similar
distribution could be defined that leads to comparable results.

However, the quantity of interest is the autocovariance usap;(7)usap;(t). It has already
been mentioned that, for 7 = ¢, SOI predicts the correct value. For 7 # ¢, the autocovariance
can be computed from the correlations

(1) = Ugapi(T)trapi(T+1) _ FT(Epa)(1) (7.650)
uf@pJ(T)uf@p,J( )

oty = eI T ey psony 7650
UGy (TIufep,(7)

/oty = FT Y ELO)(t) (7.65¢)

APM(t) = FTHEp ")), (7.65d)

These are plotted in figure 7.13. The figure shows that, for all ¢ > 0, the correlations ¢%°7,

/o and ¢*PM are higher than c¢. This indicates an overprediction of the integral time
scale. For ¢ < 0.3\ /Upms, the correlations ¢®©!, ¢*/° and ¢APM are very similar. Beyond
this value, ¢®©! approaches ¢ much faster than the other correlations, which indicates that
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the overprediction with SOI is the lowest. The integral time scales, i.e., fooo ¢(t) dt and
oot ()t) dt, differ only by 2.2%, whereas [;° c(t) dt and [;° c¢*/°(t) d¢ differ by 7.3% (cf.
table 7.1).

Table 7.1: Integral time scales computed from the model presented in section 7.3 for SOI, ADM
and LES without particle-LES model.

‘ reference value SOI  ADM  w/o particle-LES model
tuapUrms/ A 4.50 460 4.81 4.83
ratio to reference value n.a. 1.022  1.069 1.073

To conclude, if the optimisation of the interpolation stencils leads to correct spectra (i.e., if
the target spectra are correct and the stencils are sufficiently large), then SOI predicts second
moments almost correctly in isotropic turbulence. This means that, in isotropic turbulence,
SOI is expected to be advantageous compared to ADM or the stochastic models presented
in chapter 6.

7.4 Numerical assessment of the SOI
model

The previous section contained an analytical assessment of SOI. In the present section, SOI
is assessed using numerical simulation.

The present section corresponds to section 6.4, which describes the numerical assess-
ment of ADM and the stochastic models. In particular, SOI is compared to ADM because
ADM was found to be superior to the stochastic models and because SOI is an extension of
ADM.

The test case is again forced isotropic turbulence. Unlike in section 6.4, in this section,
three Reynolds numbers are considered: Rey = 52, 99 and 265. At all Reynolds numbers,
DNS, LES with ADM, LES with SOI and LES without particle-LES model were conducted.
At Rey = 52, ADM and SOI were tested with two different target spectra: the DNS spectrum
and the model spectrum from section 2.1.3. At Rey = 99 and 265, only the model spectrum
was used as target spectrum.

In section 7.4.1, the interpolation stencils of SOI and ADM are presented. Section 7.4.2
shows one-dimensional spectra for ADM and SOI; section 7.4.3 contains statistics on the
particle dynamics.

7.4.1 Interpolation stencils

Figure 7.14 shows stencils for ADM and SOI. The ADM stencils were computed as proposed
in section 6.4.2, while the SOI stencils were computed as explained above. For each of the
four parts of the figure, the input data for ADM and SOI are the same: the LES spectrum
and a target spectrum, which is either from DNS or from the model spectrum from section
2.1.3.
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Figure 7.14: Left: Stencils for ADM and SOI. Right: Corresponding transfer functions. Con-
tinuous line: ADM stencil, dashed line: longitudinal SOI stencil, dash-dotted line:
transverse SOI stencil. a) for Rey = 52 with the DNS spectrum as target spectrum,
b) for Re) = 52 with the model spectrum from section 2.1.3 as target spectrum, c)
for Rey = 99 with the model spectrum from section 2.1.3 as target spectrum, d) for
Rey = 265 with the model spectrum from section 2.1.3 as target spectrum.

In all configurations, the extrema of the SOI stencils are higher than those of the ADM
stencils. It is remarkable that all SOI stencils show very steep gradients close to the bound-
aries |z/Ax| — 2~. The reader is reminded that, by construction, the SOI stencils are all
continuously differentiable. In particular, the gradients in x/Ax = +2 are zero. For the
Rey = 52 testcase, one can observe that the steep gradients reoccur at each integer value of
x/Ax because of normalisation (cf. equations (7.41) and (7.55¢)).

Furthermore, all SOI stencils resemble a Mexican hat function (1 — (z/0)?)e~*/?)°/2 with
o =~ 0.9Az. Longitudinal and transverse SOI stencils differ only slightly, which illustrates
the isotropy of the LES filter.

Figure 7.14 also shows the transfer functions of these stencils. It is remarkable that all
SOI transfer functions attain their maximum below the LES cutoff wavenumber k., which

accounts for the slight increase in the transfer function of the fluid-LES model just below «.
(cf. figure 3.2).

7.4.2 One-dimensional Spectra

The SOI model is based on the reconstruction of one-dimensional spectra. As a result of the
admissibility conditions A1l through A4, the model cannot reproduce the one-dimensional
spectra exactly. Therefore, it is interesting to analyse the capability of the SOI model to
improve one-dimensional spectra.

In figure 7.15, the longitudinal and transverse spectra at Re, = 52 from DNS, LES with
ADM and LES with SOI are presented. Here, the DNS spectrum was used for stencil
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Figure 7.15: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic tur-
bulence at Rey) = 52, computed by LES with ADM and SOI. ADM and SOI stencils
were obtained by optimisation against the DNS spectrum.’

construction for ADM and SOI.

In section 7.1.2, the ADM spectrum was already shown, especially the gap between ADM
and DNS at K < k. that results from interpolation. Figure 7.15 shows that this gap is
quasi-non-existent for SOI'. On the other hand, SOI produces strong overshoots of the
spectra just beyond the LES cutoff wavenumber k.. This is because of the low Reynolds
number of the test case. At Rey, = 52, the inertial subrange is quasi-non-existent. The
LES cutoff wavenumber is within the dissipative range. SOI is not capable of producing
an interpolation stencil that can enhance the spectrum at low wavenumbers as requested
and, at the same time, dampen in the dissipative range. At high Reynolds numbers, the
inertial subrange extends to higher wavenumbers, and SOI produces better results, see be-
low.

Now, an analysis of the effect of the target spectrum follows. Figure 7.16 shows the
results from Rey, = 52 with the model spectrum from section 2.1.3 as the target spectrum.
As already observed in chapter 5, the inertial subrange from the model spectrum extends to
higher wavenumbers than the DNS spectrum. Chapter 6 showed that, concerning the kinetic
energy seen by the particles, ADM based on the model spectrum more closely resembles DNS
than ADM based on the DNS spectrum. The findings of the present chapter explain this
effect. The overestimation of the DNS result by the model spectrum is compensated by
damping due to interpolation.

This does not happen with SOI, and, therefore, the difference between ADM and DNS
spectra is smaller than the difference between SOI and DNS spectra. On the other hand,
during construction, ADM and SOI were both requested to produce the model spectrum
and not the DNS spectrum. The spectrum from SOI is closer to this spectrum than the
spectrum from ADM. Thus, the poor performance of SOI in comparison to DNS is not a
result of model limitations but rather a result of deviations between the DNS spectrum and

'Remark for figures 7.15, 7.16, 7.17 and 7.18: The results for ADM were obtained by fourth-order interpo-
lation. For reference, the spectra computed from the grid points in DNS and LES (plus reflections) are
also shown (continuous lines). Scaling is with reference to the LES cutoff wavenumber «..
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Figure 7.16: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic tur-
bulence at Rey = 52, computed by LES with ADM and SOI. ADM and SOI stencils

were obtained by optimisation against the model spectrum (dotted line).!
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Figure 7.17: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic tur-
bulence at Rey = 99, computed by LES with ADM and SOI. ADM and SOI stencils

were obtained by optimisation against the model spectrum (dotted line).!
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Figure 7.18: Longitudinal (left) and transverse (right) spectra seen by particles in isotropic turbu-
lence at Rey = 265, computed by LES with ADM and SOI. ADM and SOI stencils

were obtained by optimisation against the model spectrum (dotted line).!
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the model spectrum.

The present SOI stencil shows smaller overshoots of the spectra beyond k. than the SOI
stencil constructed from the DNS spectrum. This is also an effect of the wider inertial
subrange of the model spectrum.

Figures 7.17 and 7.18 show results from Rey, = 99 and 265. One can observe that,
as the Reynolds number increases, performance of SOI improves due to the long inertial
subrange. In particular, the overshoots become smaller with higher Reynolds numbers.
This is a very promising result that illustrates the accuracy of SOI at very high Reynolds
numbers.

7.4.3 Particle dynamics

The previous section concerned the accuracy of SOI with respect to one-dimensional spectra.
The present section analyses the accuracy of SOI with respect to particle dynamics, such as
kinetic energy, dispersion and preferential concentration. This section corresponds to section
6.4, which is model assessment by numerical simulation.

Again, results from a priori and a posteriori analysis are presented. As in section 6.4,
the a priori analysis was conducted in isotropic turbulence at Rey = 52. In the a posteriori
analysis, SOI was assessed for the three Reynolds numbers Rey = 52, 99 and 265. All results
are summarised at the end of the section in table 7.2.

In the a priori analysis of ADM (section 6.4.2), the particles were traced along paths
computed from DNS. The same procedure was followed in the a priori analysis for SOI,
which is presented in this section. It is questionable to what extent integral time scales
along such a path are relevant. Therefore, in the following, integral time scales are only
presented in the a posteriori analysis.

Figure 7.19 shows the kinetic energy seen by the particles. It should be noted that with
the proper choice of the model constant Cy°!, the SOI model could be adapted such that,
for one specific Stokes number, the kinetic energy seen by the particles with SOI equals
the DNS result. In the present work, C59! was set based on one single instantaneous
LES field such that, in that instant, the kinetic energy seen by an inertia-free particle
equals the DNS kinetic energy. Because of temporal variations in the resolved turbulent
kinetic energy, this method does not lead to a perfect match between SOI and DNS re-
sults.

Of course, an ADM stencil can also be constructed such that, for one Stokes number, the
kinetic energy seen by the particles matches the DNS result, but this contradicts the idea of
the model. With ADM, only wavenumbers up to the cutoff wavenumber are resolved; the
small scale energy is unresolved in contrast to SOI. Thus, ADM must always underpredict
the kinetic energy seen by the particles.

The results from a priori and a posteriori are in accordance with each other. At Rey, = 52,
ADM recovers the subgrid kinetic energy well. The ADM stencil that was constructed from
the model spectrum leads to higher kinetic energy than the stencil that was constructed
from the DNS data, in accordance with the observations from the one-dimensional spectra.
Again, in accordance with the one-dimensional spectra, SOI shows still higher kinetic energy
and closer resemblance to DNS results than ADM.

The shift along the Stokes number axis is not compensated by SOI. This is not sur-
prising because the generated small scales are generated with high lifetimes (cf. section
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7.3).

At Rey = 99 and 265, the qualitative results are comparable to the Rey = 52 testcase, but
the quantitative results differ greatly. At Rey = 99 and 265, ADM shows poor performance.
This is expected because the range of unresolved scales is larger at the higher Reynolds
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number. These scales are recovered by SOI but not by ADM, and, therefore, at the higher
Reynolds number, SOI shows significantly better results than ADM.

Similar trends can be observed in the kinetic energy of the particles themselves, as illus-
trated in figures 7.20 and 7.21. Again, the results from a priori and a posteriori analysis
are in agreement and again, SOI shows higher accuracy than ADM, in particular at high
Reynolds numbers. As expected, the results from DNS, LES, ADM and SOI collapse at high
Stokes numbers.

Figures 7.22 and 7.23 show the integral time scales of fluid velocity seen by the particles
and particle velocity. At the smallest Reynolds number, SOI performs only slightly better
than ADM. This is in accordance with the one-dimensional spectra at Rey = 52 (cf. figures
7.15 and 7.16). It was explained above why the spectral match of SOI improves with a higher
Reynolds number.

Accordingly, figures 7.22 and 7.23 show that, at Rey = 99, the match of integral time
scales between SOI and DNS is very satisfactory. At this Reynolds number, ADM shows
poor performance. In comparison to LES without particle-LES model, ADM merely improves
the integral time scale.

At Rey, = 265, SOI performs satisfactorily regarding the integral time scale seen by the
particles, especially for high Stokes numbers. ADM actually leads to a slightly worse result
than LES without particle-LES model. The reason for this is unclear. This may be a
statistical artefact.

On the other hand, the integral time scale of the particle velocity at Rey = 265 (figure
7.23), is merely improved by SOI or ADM in comparison to LES without model. However,
the results at Re), = 265 are not very reliable because the computational box for these
simulations was too small to resolve all scales due to computational limitations (cf. section
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5.2). In particular, a comparison of the predicted time scale from table 7.1 and the DNS
result shows that the time scales are far overpredicted in all simulations. However, the ana-
lytical assessment showed that integral time scales are overpredicted by SOI. The analytical
assessment predicted an overestimation of about 2% for Rey = 265 but figure 7.23 shows
that the error is higher than 2%. This is because of a defect in the fluid-LES model which
leads to an increase of integral time scales, cf. section 5.5.2. It is not surprising that this
defect is very strong at Rey, = 265 because at that Reynolds number the filter width is very
large.

The rate of dispersion (figure 7.24) is in accordance with the previous results. In particular,
SOI performs best at Re), = 99. Again, at Re, = 52, the unsatisfactory spectral match leads
to overpredicting the rate of dispersion with SOI, and at Re), = 265 the error from the
fluid-LES model becomes apparent.

Concerning preferential concentration, ADM was found to lead to overprediction for St < 1
(cf. section 6.4.4). SOI leads to even stronger overprediction in that range (cf. figure 7.25).
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This might be because SOI is non-conservative.

In the range St > 1, excellent agreement between SOI and DNS can be observed in the
accumulation X and the fractal dimension d,.. In particular, SOI performs much better with
respect to preferential concentration than the stochastic models proposed by Shotorban &
Mashayek (2005) and Simonin et al. (1993) (cf. chapter 6).

To conclude, most particle statistics with SOI are closer to DNS than with ADM. In
particular, all statistics that are improved by ADM are even more improved by SOI. On the
other hand, for the present testcase, preferential concentration is for St < 1 better predicted
by LES without model than by LES with ADM or SOI. All results are summarised in table
7.2.

Table 7.2: Qualitative summary of the results from section 7.4.3.

Re,\ =52 Re,\ =99 Re)\ = 265
ADM SOI ADM SOI ADM SOI
kuyap | good  very good | poor excellent | poor excellent

k, good  very good | poor excellent | poor excellent
tuap good good poor excellent | poor good
tp good good poor excellent | poor poor
D poor poor good good poor poor

poor for St < 1,

n.a. n.a. n.a. n.a.
excellent for St > 1

The present results confirm the hypothesis that, as the Reynolds number increases, the
performance of ADM worsens. On the other hand, the present results show that SOI is
well-suited for high Reynolds number.

In contrast to ADM, the stochastic models of Shotorban & Mashayek (2005) and Simonin
et al. (1993) also reconstruct scales that are smaller than the LES grid. From this point of
view, the stochastic models are an alternative for SOI at high Reynolds numbers. However,
chapter 6 showed that the stochastic models are very unreliable in the sense that the results
from stochastic models are often worse than the results without particle-LES model. This
holds in particular for preferential concentration. Consequently, SOI is also more accurate
than the stochastic models overall. Therefore, SOI can be regarded as the most accurate al-
ternative for particle-LES models at high Reynolds numbers.

7.5 Relation of SOl to other models and outline of
extensions for arbitrary flow

In the previous sections, the new model, Spectrally Optimised Interpolation (SOI), was
presented and assessed with respect to accuracy and with respect to computational require-
ments. The present section contains a summary comparison of SOI against other particle-
LES models. In particular, it contains a discussion of the relationship between ADM and
the two stochastic models that were analysed in chapter 6.
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The models are compared against each other with respect to their structure and with
respect to their accuracy. Concerning accuracy, the results that were presented in this thesis
are summarised. Furthermore, the present section contains two possible extensions of SOI
for arbitrary flow because, at present, SOI was only constructed for and applied to forced
isotropic turbulence.

SOI can be regarded as an extension of ADM towards kinematic simulation (see e.g. Fung
et al., 1992; Malik & Vassilicos, 1999) In kinematic simulation, a velocity field is generated
such that its spectrum attains a given model spectrum. Likewise, for SOI, the model spec-
trum is used as target function for the interpolation stencil.

The basic idea of SOI is similar to the idea of implicit LES proposed by Adams et al. (2004)
(see also Hickel et al., 2006, 2008; Hickel & Adams, 2007). Implicit LES stands for numerical
discretisation of the Navier—Stokes equations such that the numerical error models small scale
effects. Likewise, in SOI, the interpolation stencil is designed such that the interpolation error
models the effect of small scale fluctuations on the particles.

In contrast to ADM, SOI also models scales that are smaller than the LES cell width.
This is important for most applications that are relevant for LES because, in general, the
Reynolds number is so high that the LES cell size is several orders of magnitude larger than
the Kolmogorov scale. Such an example was given in the introduction on page 2. Assuming
that the flow of the Mississippi river at Baton Rouge must be computed within one week
using an 8-core computer that meets current standards, this computation requires an LES
cell size of about 13000 times the smallest length scales®. At this resolution, the unresolved
scales are surely significant.

The stochastic models reconstruct scales smaller than the cell size, but the model as-
sessment in chapter 6 showed that these models have severe deficiencies in the first and
second moments and destroy preferential concentration. Thus, these models are often not
an option.

SOI, on the other hand, remedies these defects. Small scales are reconstructed, and
the results concerning the prediction of second moments and preferential concentration are
very promising. Concerning the computational overhead, SOI outperforms the stochas-
tic models and, for sufficiently dilute suspensions, SOI outperforms also ADM, cf. ap-
pendix.

One big disadvantage of SOI is that the model was only developed for isotropic turbulence.
However, extensions to arbitrary flow are possible, such as using wavelets. Wavelets can be
regarded as a localised decomposition of the flow field into its scales. Wavelets were success-

2Details of the estimate (cf. page 2):
Available CPU time: 8-7-24-3600 = 5Mio. CPU seconds
Length of domain: 18m
Resolve complete transverse length (inhomogeneous): 1km
Height of domain: 9m
Average velocity: 0.9m/s
Cell size: 0.07m x 0.07m x 0.07m, results in 257 x 14285 x 129 cells
Time step size at CFL = 1: At =0.077s
Simulation time: 10 flow through times, 2600 time steps
Performance: 4 CPU seconds per 106 cells per time step
Overall: 5Mio. CPU seconds
Smallest scales (see page 2): 5.5-10"%m

Filter width: % = 12727
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fully implemented to analyse turbulent flow (see Farge, 1992). These could be a substitute
for the Fourier transforms in order to compute the SOI stencil.

Another option would be to substitute the target spectrum with a £=°/3 spectrum, i.e.,
using the spectrum of flow with an infinite Reynolds number and replacing the LES spectrum
by the filter transfer function of the LES model multiplied by the target spectrum. Thus,
one can obtain an SOI stencil that is independent of the actual LES spectrum. This stencil
might serve as a general purpose stencil for arbitrary flow.

7.6 Conclusions of chapter 7

In the present chapter, a novel particle-LES model is proposed. The idea of the model is to
take advantage of the numerical error of the interpolation of fluid velocity on particle position
such that the spectrum seen by the particles attains a model spectrum.

It was observed that, because of interpolation, the spectrum seen by the particles is not
limited by the cutoff wavenumber of the grid. On the contrary, the spectrum may extend
to infinite wavenumbers if the interpolation scheme does not damp these wavenumbers suf-
ficiently.

In DNS, this is an undesired property. Beyond the cutoff wavenumber, the spectrum is sup-
posed to be negligible, and, therefore, damping is a desired property in that range.

In LES, the above argument does not hold. The spectrum beyond the cutoff wavenumber
is not resolved due to the coarse grid, but the spectral content in this range is not negligible.
Therefore, it is questionable whether damping is desired in that range.

It is the task of a particle-LES model to reconstruct this high wavenumber content. There-
fore, not-damping can be regarded as modelling.

The second task of a particle-LES model is to enhance the spectrum just below the cutoff
wavenumber. Concerning this objective, ADM is the method of choice. Therefore, the new
model was constructed as an extension of ADM. With regard to reconstruction of the spec-
trum beyond the cutoff wavenumber, the new model makes use of the spectral content that
falls within that range as a result of the interpolation error. The model was constructed as
an interpolation scheme with damping such that the high wavenumber content approaches
a model spectrum. Therefore, it is referred to as ‘Spectrally Optimised Interpolation’ (SOI).
The construction presented in this thesis is restricted to isotropic turbulence. Possible ex-
tensions for arbitrary flow are only briefly outlined.

It should be mentioned that SOI only reconstructs the high wavenumber spectrum in a
statistical sense. SOI was constructed such that the Fourier modes that are generated at
wavenumbers beyond the cutoff wavenumber show the correct amplitude on average. The
model links the phase of these modes directly to the phase of the corresponding resolved
modes. Therefore, all quantities that are related to the phase might not be predicted correctly
by SOI.

SOI was assessed with respect to accuracy and with respect to its computational re-
quirements. The assessment with respect to accuracy was performed through analytical
considerations and numerical simulation at Rey = 52,99 and 265. The analytical and nu-
merical results are in agreement with each other. Assessment criteria are statistical moments
and preferential concentration (cf. chapter 4). Concerning statistical moments, only second
moments were considered because the SOI model was only constructed for isotropic turbu-
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lence.

Kinetic energy seen by the particles is predicted correctly by SOI for very small and
very high Stokes numbers. For Stokes numbers where clustering affects the kinetic energy
seen by the particles, SOI shows the same shift in the Stokes number axis as LES without
particle-LES model and LES with ADM.

Concerning kinetic energy of the particles and rate of dispersion, the analytical assessment
showed that SOI can be expected to show a slight error, but it also showed that SOI can be ex-
pected to perform better than ADM or LES without particle-LES model. The numerical as-
sessment showed that the kinetic energy of the particles is actually predicted significantly bet-
ter by SOI than by LES with ADM or without particle-LES model.

Preferential concentration was found to be predicted well by SOI for St > 1 but overpre-
dicted for St < 1. LES with ADM or without particle-LES model also overpredicts prefer-
ential concentration, but the effect is strongest with SOI.

In comparison to the stochastic models, SOI was found to be more accurate for all crite-
ria.

According to this study, SOI seems to be the best alternative for applications with high
Reynolds numbers. The stochastic models were found to be very inaccurate. At Reynolds
numbers that are much higher than the Reynolds numbers considered here, the LES reso-
lution must be very coarse due to computational requirements. In this case, the accuracy
of SOI can be expected to increase in comparison to the accuracy of ADM. The presented
results confirm this trend.

Concerning computational requirements, SOI was found to require only about 7% more
CPU time than LES without particle-LES model and fourth-order interpolation. By com-
parison, the CPU times for the stochastic models are at least twice as high. For ADM,
the computational requirements cannot be compared directly against the requirements for
SOI, but for sufficiently dilute suspensions, ADM was found to require more CPU time than
SOL.

In conclusion, SOI shows very promising results, and an extension for arbitrary flow might
make SOI the particle-LES model of choice.
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8 Conclusions

The present thesis concerns Large Eddy Simulation (LES) of particle-laden flow with a focus
on the effect of unresolved scales on the particles. This thesis contains new results concerning
quantification and modelling of such effects. The corresponding models are referred to as
‘particle-LES models’.

8.1 Summary of results

The main findings can be grouped into three parts: analysis of requirements for a particle-
LES model (chapter 5), model assessment (chapter 6) and development of a new model
(chapter 7).

Part 1: Requirements for a particle-LES model
(chapter 5)

The first part (chapter 5) analyses requirements for a particle-LES model, i.e., it contains
a quantification of small scale effects. To this end, a series of numerical experiments was
conducted. The configurations are forced homogeneous isotropic turbulence at Rey = 34, 52
and 99. Stokes numbers based on the Kolmogorov time scale range from 0.1 to 100. Small
scale turbulence was quantified by a priori and a posteriori analysis. Currently, there is no
comparable published work that addresses such high Reynolds numbers and such a wide
range of Stokes numbers. The motivation for these experiments is to provide insight into
physical mechanisms that a particle-LES model must emulate.

With these new data, it was possible to detect that particles tend to cluster in regions
where the kinetic energy of the carrier flow is higher or lower than average for the first
time. Particles with Stokes numbers greater than one tend to cluster in regions with sub-
average kinetic energy, whereas particles with Stokes numbers smaller than one tend to
cluster in regions with super-average kinetic energy. Furthermore, the data provided enough
information to formulate scaling laws for the Stokes number dependence of kinetic energy
seen by the particles and the corresponding integral time scale. The analyses further showed
that neglecting subgrid turbulence effects on particle transport merely affects the rate of
particle dispersion, as long as the LES is very well resolved. This result is in accordance with
previously published results. On the other hand, the new data with high Reynolds numbers
showed that, in coarse LES, neglecting subgrid scale turbulence leads to overprediction of
the rate of dispersion. This finding is based on the LES model proposed by Meneveau et al.
(1996). For other models, a similar behaviour is expected.

Altogether, the first part of this thesis illustrates that the effect of the subgrid scale tur-
bulence on the particles cannot be neglected. A corresponding model (particle-LES model)
must increase kinetic energy seen by the particles and decrease the corresponding inte-
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gral time scale. Furthermore, a particle-LES model must preserve preferential concentra-
tion.

Part 2: Model assessment (chapter 6)

The second part of this thesis (chapter 6) analyses three of the most commonly used particle-
LES models: the Approximate Deconvolution Method (ADM) and two stochastic Langevin-
based models. The application of ADM to particle-laden flow can be attributed to Kuerten
(2006b). The stochastic models were proposed by Shotorban & Mashayek (2006) and Si-
monin et al. (1993).

The three models were analysed by analytical and numerical means. The analytical com-
putations are relevant for arbitrary turbulent flow and the numerical simulations are relevant
for isotropic turbulence. Where applicable, the analytical results are in good agreement with
the numerical results. Both assessment methods provide substantial new insight in sources
for model errors.

In particular, the stochastic models show an error in the first and second statistical mo-
ments of particle position and velocity for general turbulent flow. The error was found to
result from a structural deficiency of the models that had not been discovered yet. Fur-
thermore, the analytical computations demonstrate that the stochastic models can predict
kinetic energy and rate of dispersion correctly if the Stokes number is sufficiently small and
if the model parameters are chosen optimally. In accordance with that finding, the numer-
ical results illustrate that, for small Stokes numbers, kinetic energy and rate of dispersion
are predicted acceptably well, but for high Stokes numbers, the stochastic models lead to
unacceptably high errors. With high Stokes numbers, not-modelling showed better results
than stochastic modelling.

Concerning ADM, analytical and numerical results demonstrate that the model improves
first and second statistical moments of particle position and velocity. However, the results
also show that for realistic applications where only coarse LES is possible, the improvement
is very small. The reason for this is that ADM cannot generate scales smaller than the LES
grid. This is a known conceptual restriction of ADM. However, the analytical computa-
tions of the present thesis prove for the first time that this restriction leads to a significant
error in the rate of dispersion at all Stokes numbers. The numerical results support this
statement.

Furthermore, the numerical results illustrate that preferential concentration is preserved
by ADM but destroyed by the stochastic models. To conclude, the stochastic models were
found to deliver unsatisfactory results. ADM, on the other hand, was found to deliver
acceptable results at the analysed Reynolds number. However, for simulations with a high
Reynolds number, only coarse LES is possible. In this case, ADM leads to little improvement
because of the conceptual restriction mentioned above. Therefore, a new particle-LES model
is necessary that overcomes this restriction.

Part 3: Development of a new model (chapter 7)

In the third part (chapter 7), a new particle-LES model is proposed. The idea behind the
model is to identify small scale effects with numerical errors that occur at interpolation
of fluid velocity at the particle position in a statistical sense. The model consists of an
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interpolation scheme that is constructed such that the spectrum seen by the particles ap-
proximates a model spectrum. The focus of this interpolation scheme is not on the order of
interpolation but on smoothness and the spectral properties of the fluid velocity seen by the
particles.

In the present thesis, the model is constructed for application in isotropic turbulence. It is
assessed by the same analytical and numerical means that were applied to assess the models
mentioned above. The numerical simulations were conducted at Rey = 52, 99 and 265. For
reference, ADM was also assessed at these Reynolds numbers. The new model shows very
promising results. In particular, the model shows high accuracy in coarse LES with a high
Reynolds number, in contrast to ADM.

8.2 Possible extensions of this thesis

The proposed model was developed for isotropic turbulence only. In this thesis, possible
extensions for general configurations are briefly outlined but not worked out in detail. With
these extensions, the new model might become the particle-LES model of choice. Therefore,
it is very desirable to continue model development in that direction.

For model refinement, one could allow for an unsteady interpolation stencil. Then, one
could decouple the phase of the resolved and modelled scales. The analytical computations
from section 7.3 demonstrate that such a measure could improve time scale prediction. It
would be desirable to design the decoupling such that the scaling laws from chapter 5 are
recovered.

Other possible extensions of the present thesis concern further analysis of physical mech-
anisms in particle-laden flow. In chapter 5, a universal subrange of the kinetic energy seen
by the particles is postulated. It remains to prove its existence by DNS or experiments
with higher Reynolds numbers. With current computers, such a DNS is not possible, but
experiments could fill this gap.

Furthermore, there are few reference data available from experiments of particle-laden
isotropic turbulence at the absence of gravity. The absence of gravity is important in or-
der to differentiate between the effect of gravity and the effect of turbulence. With such
experiments the provided numerical data could be validated and extended towards higher
Reynolds number.

Finally, there are still modelling issues for DNS of particle-laden flow if the particles are
larger than the Kolmogorov length or as soon as two- or four-way coupling comes into play.
These issues are very challenging because they involve a multitude of skills. High performance
computing is necessary in order to obtain reference data, and new ideas for modelling must be
formulated that require a deep understanding of the involved physical mechanisms. In order
to solve these issues, experience with computing, data generation and data analysis; deep
knowledge of physics in particle-laden flow, and additionally mathematical and engineering
skills for the formulation of an efficient model are necessary. In my opinion, such issues can
only be tackled by an interdisciplinary team. Therefore, I want to close this thesis with an
appeal for closer collaboration among different disciplines.
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Appendix: Computational requirements

for SOI

Chapter 7 showed that SOI performs well in terms of accuracy. In the present chapter
the numerical costs for SOI are computed. It is shown that the number of floating point
operations with SOI is only 7% higher than for fourth order interpolation without particle-
LES model.

The preprocessing step for SOI consists mainly of 1D and 2D optimization. Thus, the com-
putational costs in preprocessing are negligible in comparison to the 3D simulation.

At runtime, SOI consists of interpolation only. It should be remarked that the number
of nodes for the splines w; and w; merely affect the computational costs of the method. If
the number of nodes is increased then only the memory requirements for storing the spline
coefficients will increase slightly. However, regarding the overall memory requirements, the
memory for storing the splines is negligible.

In the following, a four point stencil for SOI and a five point stencil for ADM will be as-
sumed. This corresponds to the implementations of the previous chapters.

Table A.1 gives an overview on the computational costs with ADM, stochastic models
and SOI. Where interpolation is necessary, always fourth order interpolation is assumed. N,
denotes the number of particles, N3 the number of grid points. In the following, these costs
are computed in detail.

Table A.1: Computational costs for computation of fluid velocity at particle position in terms of
floating point operations (flops). N, denotes the number of particles, N3 the number
of grid points. Where interpolation is necessary, always fourth order interpolation is

assumed.
flops
no particle-LES model 609V,
ADM 249N + 609N,
stochastic models > 1218N,
SOI 651N,

Denote in the following the position of a particle by (z,y, z) and enumerate the grid points
x;, Y;, 2, such that

T <To<T<x3<Ty, Y1<Yp<y<ys<ys and 2z <z <z<2z23<2z4 (Al
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Appendix: Computational requirements for SOI

Computational costs of Lagrangian fourth order interpolation. For Lagrangian fourth
order interpolation, one computes first for each particle the distance to the neighbouring
grid points,

Si=x—x, 1, =Y—Y, Ck=2— 2k, i,k €{1,2,3,4}, 12 flops. (A.2)

‘flops’ stands for floating point operations, a measure for numerical costs. Then, one eval-
uates the polynomials we,, cf. section 7.1.1, with a Horner scheme (cf. e.g. Deuflhard &
Hohmann, 2008; Stoer & Bulirsch, 2002; Freund & Hoppe, 2007)

wcub(£i>7 wcub(nj); wcub(Ck); i; j7 k c {17 27 37 4}7 12 ' 6 = 72 ﬂOpS. (AB)

In the next step one computes usap = >, ik Weub (&) Weub (1) Weun (Cr )i ;' Where u; j i, denotes
the z—component of the fluid velocity (given data) in (z;, y;, 2x),

4 4 4
Ufrap = Z Weup (&) Z Weun(1;) Z Weub(Cr ) Wi j ks 147 flops. (A.4)
i=1 j=1 k=1

In total, this amounts to 231 flops.

For computing the other two velocity components, the weights can be partially recy-
cled but not fully due to the staggered grid. In detail, for the y—component the weights
Weup(&;) and weup(n;) need to be recomputed whereas we,,((;) can be retained. For the
z—component, only we((x) must be recomputed. Altogether this results in 609 flops per
particle.

Computational costs of SOl. For SOI, one would likewise compute first for each particle
the distance to the neighbouring grid points,

gi:x_xia nj =Y —Yj, Ck:z_zka i)jaké {1727374}7 12 ﬂOpS, (A5)

then evaluate the cubic splines w; or w; with a Horner scheme (denoted for the first velocity
component uy),

wl(&i); ﬁ)t(nj)v wt(Ck)a iaj? ke {17 27 374}7 12-6 =72 ﬂOpS, (AG)

divide by the respective sums,

4 4 4
a=Y (&), B=) ), v=_ w(G), 3-3=9flops  (A.7a)
i=1 j=1 k=1
wi(&) = wl(&), wy(n;) = wt(nj), we(Cr) = wt((k)’ 3-4 =12 flops (A.7Dh)
o p gl
and compute ura, = Y ik wi (& )we(nj)we(Ce)wi ji,
4 4 4
Urap = Z wy (&) Z w(n;) Z Wi (G ) Wi j ks 147 flops. (A.8)
i=1 j=1 k=1
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In total, this amounts to 252 flops. For computing the other two velocity components,
the weights can again be partially recycled but less than for fourth order interpolation
because the stencils in longitudinal and transversal direction differ. Thus, for three di-
mensions the costs read 651 flops, only 1.07 times the costs for fourth order interpola-
tion.

Thus, the numerical costs of SOI are almost equal to the numerical costs of fourth order
interpolation without particle-LES model. From this point of view, modelling with SOI is
almost ‘for free’.

Computational costs of the stochastic models. For comparison, the computational over-
head for the stochastic models stems mainly from interpolation of further terms such as the
material derivative, cf. equations (6.5) and (6.8). If these are also interpolated with a fourth
order scheme, then the computational costs of the stochastic models are approximately twice
as high as the costs for SOI.

Computational costs of ADM. For ADM, the computational costs depend on the number
of LES grid points. This means that if the ratio between the number of particles and the
number of grid cells is high, then ADM is computationally less expensive than SOI and vice
versa. The exact limit depends on the size of the ADM stencil.

For a comparison, assume that the particles are distributed homogeneously over the whole
domain. Then, one can compute the limit of the number of particles per cell above which
ADM is computationally less expensive than SOI.

Concerning the parameters of both models, assume the same choice with which all com-
putations in this thesis were conducted. In particular, assume a five point ADM stencil, the
fourth order Lagrangian interpolation with ADM and the interval [—2,2] as support of the
SOI stencil.

Denote by N, the number of particles in the domain and by N3 the number of grid cells.
For SOI, the computational costs for interpolation of fluid velocity at particle position read
651N, flops. For ADM, one needs to multiply for each grid point the neighbouring 5° grid
points with the ADM coefficients, and add them up. This makes N3 - (125 + 124) flops. In
addition, the interpolation requires 609N, flops. Concluding, ADM requires less CPU time
than SOT if 249N3 4+ 609N,, < 651N,. This is equivalent to N, > 6N3, i.e. if the number of
particles per cell is higher than 6. However, this will not occur in a typical application because
regarding computational requirements, it is reasonable to limit the number of particles per
CPU to 10° and the number of cells per CPU to 4-10°. Thus, if the number of particles
per CPU is higher than 6 times the number if grid points, then the CPU time for the
particles would outreach the CPU time for the carrier flow by far. All these considerations
are only relevant in LES. In LES, one would make the grid as fine as possible, i.e. the CPU
time for the particles cannot be significantly higher than the CPU time for the carrier flow.
Therefore, in a typical application N, < 6N?, i.e. the CPU time for ADM is higher than for
SOL.
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