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Abstract—We consider wireless mesh networks where informa-
tion is multicasted to multiple terminals in a multi-hop fashion.
Due to their strong interdependence, we seek a joint optimition
of network and physical layer that are coupled by the per link
flow constraint. A common approach is to dualize this constrant
and decompose the dual problem into a layered structure; roting
at the network layer and rate assignment at the physical laye
For the network layer subproblem, linear network coding is
an optimal routing strategy and the solution can be computed
by solving a linear or convex program. The physical layer
subproblem turns out to be more challenging, due to the natue
of the wireless medium and the resulting diminishing effectof
multiple access interference. Existing approaches try to \id
interference by full orthogonalization of the channels or huilding
on the concept of conflict graphs. Contrary to these approaass,
we are taking into account interference management, for exaple
by exploiting the advanced abilities of multiple antenna sgtems.
Our approach is the factorization of the achievable edge ra
region into known rate regions of subgraphs, called Elemerry
Capacity Graphs (ECGs), which allows for taking into accour
the half duplex constraint implicitly. The parametrization of the

achievable rate region of an ECG depends on the transmission
technique used and is in general nonconvex. We demonstrate

how the nonconvexity of the physical layer parametrizationcan
be handled within a primal-dual framework without loss of
optimality. As our solution is optimal for a given factorization

we show by numerically simulations the advances compared to

non-optimal schemes.

I. INTRODUCTION AND PROBLEM STATEMENT

challenging and, to the best of our knowledge, only subogitim
solutions are available. Xiao et al. [3] assume that the latk
is only a function of local resources, which implies thakén
have to be orthogonalized. Cruz and Santhanam [5] assume
a linear dependence of the link rate on the SINR which is
only true for small SINR values. Whereas Yuan et al. [1]
use a convex approximation of how the link rate depends on
the SINR. Multiple antenna systems are considered by Liu et
al. [6] who construct the network by MIMO-BC systems from
each node to its neighbors. The BC systems are orthogodalize
by fixed frequency assignment, which is in general suboptima
In our work we present a major algorithmic framework without
loss of optimality, for a given factorization.

We consider a mesh network with gragh= (N, £), where
N is the set of nodes anfl, L = ||, is the set of all wireless
links in the network. A multicast session is described by its
sources € N and the set of terminal§ts, ..., tx} C N. The
decision of a routing scheme at the network layer determines
the throughput- € R,, and the actual traffic flows on the
links f € R% that are necessary for obtaining it. Choosing an
operating point of the network layer is to select a valid ir
session throughput and traffic assignmentf) € F, where
all possible routing decisions are characterized by thérrgu
regionF C Ry x Ri. For network coding the routing region
has a explicit formulation in linear (in)equalities, anétéfore
F forms a polyhedron. An extention to multiple multicast

Communication over a wireless mesh network needs trasgssions that are coded separately is straightforward[Hee
mission strategies to provide link rates at the physicaéday At the physical layer link rates are assigned to the links in
and a scheme for routing traffic at the network layer. Whilthe network by resource allocation, where due to interfegen
originally being developed for wired networks with fixedKin and jointly used resources link rates are traded off agasst
capacities, network coding, as one possible routing scheméher, described by an achievable edge rate re@oa R .

has recently attracted a lot of attention for being used

{learly, the traffic rates established by the network layer a

wireless networks [1], [2]. At the physical layer, we employimited to the link rates: € R that the physical layer provides,
advanced physical layer techniques and utilize the gainetiich results in the per link flow constraift < c.

flexibility and increased link capacities. This potentialrgcan

In this work we are aiming at the maximization of through-

only be exploited if network and physical layer are optindizeput and the optimization problem can be formulated as

jointly, commonly done via a dual approach, see [1], [3].
Toumpis and Goldsmith [4] give a very general physical layer

characterization by scheduling link configurations withetix

link capcities called basic rate matrices. A similar coricep

is used by Wu et al. [2], who coined the term Elementary

Capacity Graphs (ECGs). We adopt this term for our work

mE @
subjectto  (r, f) e F
f<e
ceR.

and extend it to ECGs with variable rates, where each ECG o
is fully described by its achievable rate region. Having dixeA- The Network Layer Characterization
link rates renders the network optimization problem into a This section is concerned about the constréintf) € F

linear program, while taking into account variable ratan@@e

of the problem statement (1). A fundamental result of nekwor



information theory is that information flows from one sourceate regionR is obviously defined by the convex hull of all
to different terminals do not compete for link capacitiesd a involved rate regions,

the maximal throughput is given by the max-flow min-cu .

theorem and can be achieved by network coding [7]. In othé {(R1,....Rp)t: Ri € Ry,...,Rp € Rp, t € T}
words, a throughput is achievable if it is achievable foreach = co(R1,...,R5). (4)
of the terminals individually. Li et al. [8] prove that optah

A ti int of the physical | is determined b
throughput can be achieved by linear codes, subsequently Operatng point of the pnysica” ayeris determined by

8 scheduling vectar and the parameter vector

et al. [9] show that random linear codes are sufficient. This_ @, 2 )T €X =X x-- x Xp, . e.
allows us to exclude code construction in this work, and the

optimal routing can be found by a flow allocation problem. c=(Ry(x1),...,Rp(xp))t.
For modelling we use additional variables per terminal and

link etr, ... etx € Ri* the so called conceptional flows. The Dealing with InterferencePhysical layer configurations are

actual traffic flow caused on a linke £ is the maximum of cor:ﬁtrluc;t_e(il( by trllr_nte]sharlng betV\éetendECth t’ghat_rr:ay contain
conceptional flows on the link: multiple links, which are exposed to destructive intenfee

Interference is treated as additional noise and no attempt t

e < f. Vi€ {ty,... tx}. @ dgcode it is made. We conside_r three basic ways of dealing
with interference, which describe a strategy on how the
A node cannot send more information than it received. Conggrameterse = (z{,...,z,) )" € X = &} x --- x Xp are
quently, the "Kirchhoff law” for each node, whei&n) is the selected.
set of incoming links of node andO(n) the set of outgoing a) Avoid Interference:The only way to definitely avoid
links, reads interference within one ECG is to have only a single active
. . link, which is operated at its best transmit strategy.
S oeb= > e, meN\{si} ic{t,... tx} b) Selfish Transmissiontnterference causes a decrease

LeO(n) EL(n) of rate at the nonintended receivers. This strategy simply

The throughput for a sink is obviously determined by the Su[(,)dJerates each link assuming there are no other links and take

. N . . . . e decrease in rates into account.
of incoming information flows. By introducing rate incidessc . . i o
i ) . For interference avoidance and selfish transmission we
a' i = ty,...,tx that represent links from the terminals to

. ! : end up with ECGs that correspond to exactly one achiev-
the sink, we can conveniently express the flow constrairas vi . ) . o

o . . able rate pointR;, that might not be optimal. Considering
the incidence matrixA of the network:

only ECGs that are fixed to a single rate point leads to

ah A 0 0 r an physical layer configuration where the edge rate region
t el R = {(R1,...,Rp)t : t € T} forms a polytope, and the
a 0o A ... 0 to Lt . .
e -0 3) optimization problem (1) is a linear program. Note that foz t

special case of one antenna systems wheege the transmit

a’* 0 ... 0 A power levels, these rate points correspond to the basic rate

et'K . .
matrices in [4].
As it is fully characterized by the linear (in)equalitie§ éhd c) Interference ManagemenBy adjusting the parameter
(3), F forms a polyhedron. vector x we can trade off the link capacities against each
other, which requires cooperation of the transmitters. By
opting for interference management we have to include the
B. Factorization of the Rate Region into ECGs parameter vecta into the joint optimization of physical and

gtwork layer, so this approach demands for major algoithm

As there exists a huge manifold of transmission techniqu@ lutions

with complex parametrization, we factorize the achievabf®
edge rate region into known rate regions of subgraphs,calle
Elementary Capacity Graphs (ECGs). As we will see later this Il. ALGORITHMIC SOLUTIONS

factorization allows to reduce the algorithmic complextyd Opting for the simple schemes avoid interference and selfish
when established via timesharing, we can take into accbent transmission results in an edge rate region given by a podyto
half duplex constraint, which prohibits that a node recgivevhere the extreme points are given by the fixed rate vectors
and transmits simultaneously. Formally, an ECG is denoteflthe ECGs, which renders the optimization problem into a
as B, C L, and the set of ECGs we decide for is givefinear program. Operating each ECG in an interference man-

by B = {Bi,...,Bg}. A transmission schedule alternatesgement mode requires to handle complex parametrizations
between ECGs by assigning the fraction of time which that are in general nonlinear and nonconvex. However, the
the ECGB; is active. The vectot = (¢,,...,t5)" € T, resulting individual rate regions of ECGs can always be made

where7 = {t > 0 : ||t|s = 1}, formally describes the convex by timesharing. Having a convex edge rate redon
transmission schedule. The individual rate regions of @&E and the polyhedral routing regio the problem (1) is a
are given byR.,...,Rp and a parameter set; € X; convex problem and the solution may be found via a dual
determines a rate poinR;(x;) from a rate regioriR;, i.e. problem, as for this kind of convex optimization problem the
R; = {Ri(x;) : ¢; € X;}. Thus the factorized overall edgeduality gap is zero. A common approach is to dualize the



constraintf < ¢ and solve the dual problem by a primal- « The optimum scheduling® is found by primal recovery,
dual algorithm. The algorithm iteratively evaluates thealdu which avoids an explicit parametrization of the convex

function which is a function of the Lagrangian multipliexs hull of the edge rate region of the overall network. The
For thei-th iteration and the corresponding? we have to time sharing within the individual ECGs is found via
solve primal recovery as well.
max 7= ADT(f—¢) (5) _ . .
e A. Primal-Dual Algorithms and Primal Recovery
subjectto  (r, f) € A primal-dual algorithm iteratively evaluates the dual un
ceR. tion which means to solve an optimization in the primal
Decomposed into two subproblems, for routing at the netwoY@"i@bles. These optimal primal values are used to update th
layer we obtain dual variables, for example by making an adequate step into
OT the direction of a subgradient. For our problem (1) and the
max 7 — AL (6) chosen dual function (5) the subgradient update rule isngive
subject to (r, f) € F, by _ _ , . N
A — P‘(Z) 1@ (f*@ _ c*@)H ,
which is a linear program. Rate assignment at the physical
layer is where[e] ™ denotesnax(0, ¢), v¥) is determined by a stepsize
max ADTe (7) 'ule and F*@ and ¢*® are the solutions to (6) and (7).
c However, subgradient methods tend to be slow in practice and

subjectto c € R. other update rules for the dual variables should be coreider

We present a Theorem that allows an elegant reformulationfg3r our numerical simulations we used a variant of the well
the physical layer subproblem. known cutting-plane algorithm [10].

Theorem 1:The optimum solution of theth physical layer ~ Primal-dual algorithms guarantee to find the optimal dual
subproblem (7) is always met by exclusively activating gkin variablesA, but the primal variables found by evaluating the

ECG. dual function are in general not feasible to the primal peahl
Proof: Plugging (4) into the physical layer subproblem (7J0 be explicit, the activation of a single ECG is in general
leads to not a feasible physical layer configuration. Feasible prima
@7 , solutions can be constructed by a convex combination of the
max  AY" e subject toc € co(Ry,..., Rp). solutions found in each iteration. For details on recowgtire

It is well known that optimizing a linear function over thePrimal solution of convex optimization problems we refer to
convex hull of a set can as well be solved over the set itsdit1]- The optimal timesharing of physical layer configunat

Therefore. we can write then equals the convex combining parameters, which are
- conveniently calculated as a byproduct by the cutting-lan
max A Te algorithm.
(&)
subjectto ce Ri.
) U ! 1. AN ECGWITH TWO INTERFERINGLINKS

i=1,...,B

We now can search for the optimal weighted sum rate poin_t|_|avIng the algorithmic framework at hand, this Section

in each of the rate regionRy,...,Rp and select the best 9VES an exa_mple for advanced physical "'."Ver techniques,
point (or one of the best points) as solution to the physic aturing multiple antenna systems. We consider two tyfes o

; : " CGs, the single link or peer-to-peer connection and the two
layer subproblem, which corresponds to exclusively atiti : : .
a{;ingle IECG P y Ea user Interference ChannglIFC). Using ECGs with a single

With this Theorem we can reformulate the physical Iayéi,?k effectively relpresents interference a\{oidance, \ghgrin
subproblem as t e case of two links we can gmploy s_elﬂsh transml_ssmn and
interference management which requires cooperation of the
max  max )\(i)Tc, (8) senders. Figure 1 shows some exemplary ECGs. Other config-
urations are considered in [12], where ECGs are constitayed
The new physical layer subproblem has some profound adulticast ChannelsBroadcast ChannejsindMultiple Access
vantages: Channels
o The factorization into smaller problems constituted by In this work, without loss of our general conclusion we
ECGs, of which tractable parametrizations and algorithnlimit our investigation to multiple-input single-output(SO)
are available. transmission instead of utilizing the enhanced capadilitf
« The reformulation provides a clear interface for any typiae full multiple-input multiple-output (MIMO) channel pp-
of ECG that has a parametrization of its rate region whidrties. The MISO two-user interference channel is desdribe
allows for the optimization of the weighted sum ratdy the four channel vectork;; 7,5 = 1,2. The transmit
cost function. Weighted sum rate maximization is a welsymbolsz, € CV for the senders = 1,2 are constructed
researched problem and efficient solutions exist for a widly the scalar data symbol;, € C and the beamforming
range of physical layer setups. vector u; € CV such thatz, = u;s;. The data symbols



vector can be written as a combination@fR" and uZF:

Y ulRT 4 (1 — 1 )udF
[y1uRT 4 (1 — 1) ufF2
YoulRT + (1 — o) udF
|[72uRT + (1 — 2)usF||y’
with v1,72 € [0, 1]. By plugging (11)—(12) into (9)—(10) the
weighted sum rate problem for the weights, Ao can be

formulated as

uy (1) = pmax.

(11)

pmax

(12)

Uy (72)

max A1 - log (02 + |h1TZuz Yo |2 + |h1Tlu1(71)|2) +

1,72 )

Xo -log (02 + [hggua(1)[ + [hggua(12) ) -
) -
)

A1 -log (0% + |h1Tzuz Yo

(

(

(
Az -log (02 + [hggua ()]
subject to 1,2 € [0, 1].

The objective can be split into two functions monotonic in
~v1,7v2 and the problem fits into the framework of optimiz-
ing the difference of increasing functions. Having a simila
structure, we adopted the approach suggested by Jorswieck
and Larsson [15] based on tiRelyblock Algorithm which is
a global optimization method proposed by Tuy [16]. Selfish
transmission coresponds to chooge = v, = 1 and for
interference avoidance by single links the MRT beamformer
is chosen.

Fig. 1. Exemplary ECGs with the Two User Interference Chhnne

s; are circularly symmetric Gaussian with unit variance. The
transmitted symbols interfere additively and noiges added
at the receiver. The received symbols are

IV. RESULTS

By numerical simulations we compare the three strategies
described in Section I-B: avoid interference, selfish trans
y1 = h{j@, +hlox,+n mission, and interference management. The simulatione wer
made for a fully connected network of seven nodes, which
exhibits 42 links. From those we can constru¢20 ECGs
Assuming that the receivers treat all interference as madit with two interfering links each as described in Section llI,

Y2 = hgyxy +hy Ty + N,

noise, the achievable rates are given by an exemplary selection of these is illustrated in Figurenl. |
. general the number of ECGs of this type in a network with
h 2 H H .
R = log[1+ | 11UT1| (9) 1V nodesis given by:
0 + [hypu,|? N
T #ECGs=12- ( ) (13)
|hoatt|® 4
Ry = log|1l+—"—]. (10) _ _ _
0% + |hyuq|? Each node is equipped with two antennas, and the channel

) ] coefficients are complex Gaussian distributed with unii-var
The power of the noise? = E[|n|*] = E[|n2|’] is assumed 06 The results are averaged over 500 channel realigation
to be the same at both receivers. The achievable rate regil SNR value. We include simulation results for 4 and 6
is the qnion of all beamforming vectors that_fulfill a poWetgrminals, see Figure 2 and Figure 3 respectively. Additign
constrainu, ||3, [|u,||3 < Prax and can be written as the solutions of the network optimization problem for one

R U (R (1, 1), Ry, 1)) chanqel rea!ization at 10 dB is given, once for s?x terminals
1151, T2/, 28205, B2/ (flooding), Figure 4, and once for two terminals, Figure 5t Fo
Uy, Uy this example the established link capacities are equal o th
[[ug]13 < Prnax traffic assigned to it, which is not necessarily always theeca
|[u2]13 < Prax The thickness of the arrows is proportional to the assigned

rate.
; - . Interference management by advanced physical layer tech-
(MRT) beamformlng.hTA’ILt*rwstlc or zero-forcing (ZF) bear‘n'niques increases system complexity, so it is a fair question
forming, ufF = h;; — The ]2 hj;, causes no interference to theo ask if it is actually worth all the effort. The simulation
second usef while the own gain is reduced. Shi et al. [13Fesults give a clear answer by showing a significant increase
and Jorswieck et al. [14] show that the optimal beamformirgf the multicast throughput when utilizing the interferenc

For useri, usingu}R"T = b}, is maximum ratio transmission

i
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Fig. 2. Multicast Throughput vs. SNR for 4 Terminals
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Fig. 3. Multicast Throughput vs. SNR for 6 Terminals

step we introduced a factorization of the edge capacityoregi
into multiple elementary capacity graphs, each operatmg i
an interference management mode. The proposed optinmzatio
approach allows to exploit the dual decomposition framéyvor
although the individual rate regions of the introduced ECGs

not fulfill the required convexity properties. For the ploai
layer, we used the two user interference channel to illtestra
the enhancement of throughput by exploiting the advanced
interference management abilities of multiple antenntesys.
Although finding the optimal configuration of the two user
interference channels requires to run the polyblock allyorj

a global optimization method, a solution to the network
optimization problem is found in polynomial time. The atyili

to decompose the physical layer subproblem into a problem
per ECGs keeps the number of variables of the polyblock
algorithm constant, while the number of ECGs grows poly-
nomial with the number of nodes, cf. (13). In contrast the
naive approach to solve the physical layer subproblemljoint
for all ECGs by the polyblock algorithm would result in non-
polynomial complexity. By numerical simulations we show a
significant gain in throughput compared to systems that do no
manage interference. The framework presented in this work
is very general with respect to the transmission techniques
chosen for the ECGs, as long as the ECG has a parametrization
of the rate region and an algorithm to solve the weighted
sum rate problem. In ongoing work we will consider the
a factorization of the edge rate region in ECGs of various
other types. A further direction of future research is on the
Wireless Multicast Advantag@VVMA), which describes the
fact that other nodes then the intended receiver might be
able to decode the transmitted message, allowing nodes to
simultaneously transmit identical data to many receivEhe
benefits of considering the WMA haven been shown in [12],
where each node has one antenna and ECGs are constructed
by BC systems. Motivated by the degradedness of the SISO-
BC channel and the superposition coding used, an adequate
model for the WMA is derived. However, the WMA is difficult

to model in general, and especially for MIMO systems where
channels are in general not degraded.
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