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Abstract

The deployment of technical systems in complex and unstructured everyday environments

has become an essential direction of robotic research, where the limited computation ca-

pacity and the real-time requirements become the bottleneck of the system development.

Cognitive abilities to interpret and select essential information from a large amount of

sensory data are important and necessary, especially for a mobile robotic system.

From the extensive works in biology, cognitive psychology, and neuroscience, visual

attention is considered to be one of the most powerful cognitive processes dealing with

visual information selection. Considering the challenges arising in the aforementioned con-

text, both biologically plausible and technically applicable robot visual attention strategies

should be developed to bridge the gap between fundamental studies and specific technical

realizations.

This thesis focuses on the investigation of goal-directed visual attention strategies for au-

tonomous mobile robots, explored from three different perspectives: the stimulus-dependent

aspect, the task-relevant spatial aspect, and the task-relevant temporal aspect. Two

information-based metrics are proposed to enable well-timed perception of temporal and

spatial stimuli, which is a critical factor for awareness of unexpected events and for ensuring

the working order of robots. Integrated approaches to top-down and bottom-up attention

selection are elaborated, where the determination of robot spatial attention allocation for

task-relevant information is investigated. A human-inspired temporal attention control

strategy is proposed, considering the challenge of a limited field of view in multi-object

tasks. Evaluation and demonstration are carried out in simulations and experiments. The

main contributions are qualitative improvements of sensitive awareness of environment dy-

namics, efficient, flexible, and adaptable enhancement of task-relevant information, as well

as significant reduction of the overall perception uncertainty through temporal attention

planning.

In this work, application-oriented attention control considering characteristics of mobile

robots functioning in dynamic environments is studied in a general and integrated manner

for the first time. The contributions advance the state of the art in cognitive robot design

and provide valuable insights for future research.
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Zusammenfassung

Eine wesentliche Forschungsrichtung im Bereich der Robotik ist der Einsatz von tech-

nischen Systemen in komplexen, unstrukturierten, alltäglichen Umgebungen, in denen die

begrenzte Rechenleistung und die Echtzeitanforderungen die Engpässe der Systementwick-

lung darstellen. Kognitive Fähigkeiten spielen eine Schlüsselrolle, um die wesentlichen In-

formationen aus umfangreichen Sensordaten zu extrahieren und zu interpretieren, insbe-

sondere für mobile Robotersysteme.

In zahlreichen Arbeiten in Biologie, kognitiver Psychologie und Neurowissenschaft wird

die visuelle Aufmerksamkeit als eine der mächtigsten kognitiven Prozesse für die Auswahl

visueller Information angesehen. Unter Berücksichtigung der obengenannten Herausforde-

rungen, sollen biologisch plausible und technisch anwendbare visuelle Aufmerksamkeits-

strategien für Roboter entwickelt werden, um die Lücke zwischen den fundamentalen For-

schungen und spezifischen technischen Realisierungen zu schließen.

Der Fokus dieser Arbeit befasst sich mit der Entwicklung zielgerichteter visueller Auf-

merksamkeitsstrategien für mobile Roboter, die aus drei verschiedenen Perspektiven unter-

sucht wird: der reizbasierte Aspekt, der aufgabenorientierte räumliche Aspekt und der auf-

gabenorientierte zeitliche Aspekt. Zwei informationsbasierte Metriken werden vorgeschla-

gen, um eine rechtzeitige Wahrnehmung der räumlichen und zeitlichen Reize zu ermöglichen,

die einen kritischen Faktor für die Erkenntnis unerwarteter Erreignisse und Garantie des

Arbeitszustandes eines Roboters darstellt. Integrierte Konzepte für top-down und bottom-

up basierte Aufmerksamkeitsselektion sind entwickelt, wobei die räumliche Bestimmung

der Roboteraufmerksamkeit für aufgabenrelevante Objekte betrachtet wird. Eine Strate-

gie zur zeitlichen Koordination der Aufmerksamkeitssteuerung inspiriert vom menschli-

chen Verhalten wird vorgeschlagen, die die Problematik begrenzter visueller Sichtfelder in

Multi-Objekt-Aufgaben berücksichtigt. Evaluierung und Demonstration erfolgen in Simu-

lationen und Experimenten. Beiträge sind die qualitative Verbesserung der Empfindlichkeit

für Wahrnehmung einer dynamischen Umgebung, effiziente, flexible und anpassungsfähige

Performanzsteigerung der aufgabenrelevanten Informationsselektion, sowie eine signifikante

Reduktion der gesamten Wahrnehmungsunsicherheit durch die zeitliche Aufmerksamkeits-

planung.

In dieser Arbeit werden erstmalig anwendungsorientierte Aufmerksamkeitssteuerungen,

die Eigenschaften von Robotern berücksichtigen, in einer integrierten und allgemeinen

Form untersucht. Die Beiträge verbessern den Stand der Technik im Design kognitiver

Roboter und liefern wertvolle Einblicke für die zukünftige Forschung.
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1 Introduction

A wealth of information creates a poverty of attention

and a need to allocate that attention efficiently.

Herbert A. Simon 1971 [173]

In recent years, developing cognitive abilities for technical systems has become a very

popular focus of robotics research. Humans, capable of elegant cognitive mechanisms such

as perception, attention, memory, action, learning, and planning in everyday concerns, can

be regarded as an efficient biological model for technical systems. Fundamental cognitive

processes in the human brain have been intensively studied in cognitive psychology and

neuroscience, and can be modeled as a perception-action closed loop, illustrated in Fig. 1.1,

in which humans perceive the environment via various sensor modalities such as vision,

hearing, taste, smell, touch etc, select and process essential information, and make an

action decision to interplay with the world. A mapping of the fundamental findings in

cognitive psychology and neuroscience about human cognitive information processing on a

robot system is envisioned such that a robot system can be more reliable, flexible, adaptive,

and robust.

perception

   sensors

cognitive

  control

 action
actuators

world

Fig. 1.1: Perception-action closed loop.

Among various sensor modalities, vision is a very strong source of information and can

provide a large amount of information about the world. Through continuous development

of visual sensor technology, more and more information can be acquired in a fixed time

interval. Real-time information acquisition is no longer a major problem.
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1 Introduction

However, due to the limited processing capacity or the real-time constraints, not all the

information can be further processed in detail. Relevant information should be selected

and processed either at a higher resolution or earlier, while the others should be inhibited

by the cognitive process concurrently. This kind of visual information selection process is

called visual attention, and it plays an essential role in human perception and cognition.

Consistent selection of the environment fraction of interest is called attention selection,

which is facilitated by rapid eye movements named saccades.

Studies about human visual perception show that visual attention selection is affected

by two distinct types of attentional mechanisms: top-down and bottom-up. Top-down

signals are derived from the task specification or the previous knowledge and highlight

the task-relevant information. It is goal-directed and efficient for task accomplishment.

In contrast, bottom-up attention selection is inspired by neuronal architecture of early

vision and driven by distinct stimuli based on primary visual features. Interaction and

coordination of both proceed gaze fixation point selection and guide the visual behavior.

To deal with the limited processing capability of the most technical systems, especially

autonomous mobile robots, a biologically plausible and technically applicable visual at-

tention system is to be developed, in order to bridge the gap between the fundamental

cognitive studies and the robotics research.

The main challenges faced by developing robot attention control in the perception-action

closed loop are summarized below.

1.1 Challenges

Vision and attention have been intensively studied in cognitive psychology and neuro-

science work. Various computational models of attention selection have also been proposed

to achieve a human-like visual attention behavior in a natural environment. However, at-

tention modeling and implementation are a relatively new research topic in the robotics

domain. Up to now, technical realizations of visual attention control have only been ac-

complished for very limited scenarios. Most technical attentional mechanisms for camera

control in mobile robotics are based on principles of task-relevant information maximiza-

tion, neither considering bottom-up influences nor capacity limitations of computational

resources. An integrated attention control for robot operation in complex environments is

missing. The key issues of the challenges for an advanced exploration of various aspects of

robot attention considered in this thesis are illustrated in Fig. 1.2 and summarized in this

section.

How to perceive “task-irrelevant” stimuli while performing a task

An ordinary robot system usually performs a specific task with quantifiable purposes.

Computational resources have been mainly applied in the primary robot task. In recent

years, the deployment of mobile robotic systems in an unstructured environment has be-

come a trend in robotic research. Since both robot mobility and dynamic environment are

key factors increasing task performance uncertainty, robot attention should also be paid

to task-irrelevant stimuli such as abrupt appearing and disappearing of objects, dynamic

2
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Robot Robot RobotRobot Robot

a) b) c) d) e)

camera

  head

Fig. 1.2: Various aspects of robot attention behaviors: a) initial state; b) attending to a task-
irrelevant (implicitly task-relevant) stimulus; c) promoting task-relevant information;
d) attending to one of task-relevant objects; e) temporal attention selection of task-
relevant objects. Stars: task-relevant information/objects; human-shaped symbols:
task-irrelevant stimuli.

objects, or abrupt variation of object appearance. This stimuli-driven bottom-up percep-

tion means a lot to an operating robot for its own and users’ safety, and contributes to an

adaptive task accomplishment as well as a complete environment modeling. Therefore, it

can also be regarded as an implicitly task-relevant aspect.

Two essential questions arise in this context. The first one is how to define stimuli

with respect to robot applications. Most works consider bottom-up stimuli from a static

perspective at a given time point. However, temporal novelty is a more interesting per-

spective for an uncertain environment than static saliency. Furthermore, continuous or

random attending to task-irrelevant stimuli is ineffective in terms of task accomplishment.

Therefore, the second question is how to select the best moment to perceive task-irrelevant

stimuli, in order to avoid severe loss of task-relevant information. A stimulus-dependent

property of robot attention control should be explored.

How to promote task-relevant information

Considering robot applications, an efficient enhancement and prediction of task-relevant

visual information in the early vision processing are the most goal-directed improvements

to a robot system that attention can provide. Thereby, top-down information is integrated

into bottom-up attention processing to replace the conventional exhaustive search in the

large amount of visual information. This integration is commonly conducted by applying a

previous offline training to find a best representation of a target object in terms of low-level

features, which fails, if appropriate top-down information is not available.

The environment changing due to robot mobility is another big issue, since the top-

down information of one target object resulting from an offline training is inflexible. For

mobile robots, a flexible and efficient environment adaptation of top-down information

enhancement is envisioned.
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In addition, for a complete robot system, the robot attention behavior dealing with

task-relevant information may vary in different internal robot states. Decision making in

searching for and operating more than one object should be considered, which is also a key

issue for robot autonomy.

How to plan robot attention when facing multiple task-relevant

objects

For a robot system with a limited field of view (FOV) in an application scenario containing

multiple task-relevant objects, in a multi-robot system for instance, attention selection in

a temporal sense strongly influences the evaluation of task performance. Conventional at-

tention selection has only been considered in the 2D image space. A spatio-temporal robot

attention control has been accomplished in a way that a sequential scan path is determined

to process the information with a higher priority first. The priority is usually decided using

2D appearance in visual data input, which, however, cannot be always consistent with the

task relevance. A task-oriented quantitative evaluation of robot attention behavior in the

3D task space is still missing.

1.2 Main Contributions and Outline of the Thesis

In this thesis, various aspects of robot visual attention according to the aforementioned

challenges are explored, in which a general and integrated attention control concept is

developed. Fig. 1.3 illustrates the outline of the thesis. The information contained in

visual data input can be classified into three categories: “task-irrelevant” stimuli, task-

relevant information, and task-irrelevant non-stimuli such as background, etc. Above all,

attention distribution on task-relevant information can be studied from a spatial and a

temporal point of view. After the state of the art is surveyed extensively in Chapter 2,

Chapters 3, 4 and 5 investigate robot attention control from the stimulus-dependent aspect,

the task-relevant spatial aspect, and the task-relevant temporal aspect, respectively.

Stimulus-Dependent Aspect: Bottom-Up Perception Considering

Environment Dynamics

To deal with uncertainty caused by environment dynamics, a mobile robot should be

endowed with the ability to be aware of the environment changing while performing its task.

Since this kind of environment changing is not always explicitly correlated with the current

robot task, it is considered in bottom-up perception. Inspired by the expectation-based

perception of humans, two metrics are proposed: local surprise and global surprise. Local

surprise is defined as Bayesian surprise of two consecutive saliency maps. A maximum local

surprise in a 2D image indicates a large temporal novelty and/or a large spatial saliency in

comparison to the other image regions. Since consistent attending towards local surprise is

ineffective for robot tasks, global surprise is defined to represent the current environment

dynamics and used to alert the robot system reasonably and economically when a shift of

attention onto local surprise is necessary. In Chapter 3, a surprise-driven vision system is
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Visual data input

Task-relevant

 information

“Task-irrelevant”

       stimuli

Spatial aspect Temporal aspect

Background
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Chapter 3

Chapter 4

Chapter 5

tim
e

Fig. 1.3: Outline of the thesis.

described based on the interconnection of local surprise and global surprise. A significant

extension and improvement of robotic perception and cognition in terms of high sensitivity

is realized.

Spatial Aspect: Combination of Top-Down and Bottom-Up Attention

Control for Task-Relevant Information

For an efficient promotion of task-relevant information, the recent tendency is to use top-

down information to bias bottom-up attention selection. In order to overcome the chal-

lenges such as envisioned flexibility, adaptation to changing environment, and autonomous

task changing, two complementary visual attention selection strategies for the detection

of task-relevant objects are proposed in Chapter 4, in which the combination and coordi-

nation of top-down and bottom-up mechanisms are explored. The first one is a variation

of top-down biased bottom-up attention selection, considering target objects with similar

appearance and changing backgrounds due to robot locomotion. The conventional offline

training of task-relevant information is replaced by an online extraction of top-down infor-

mation of the first recognized target object. Successively, adaptation of model parameters

on environments using a Kalman-filter (KF) is developed, which manifests itself in an im-

proved efficiency in terms of fewer necessary fixations. The second one is an autonomous

switching between top-down and bottom-up attention selection, which fills the gap in the

first combination strategy for the situation where totally different targets are searched for

while contexts vary. This application oriented robot attention system makes a further step

towards efficient visual information selection and cognitive visual behavior planning in the

robotics domain in terms of efficiency, flexibility, and autonomy.
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Stereo vision system

Animated mouth for interaction

Touch-screen for interaction
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LMS200 laser range �nder 

for navigation
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Di�erential wheel platform
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and interaction
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Lithium polymer batteries

Fig. 1.4: The Autonomous City Explorer robot [213]

Temporal Aspect: Human-Inspired Temporal Attention Control When

Facing Multiple Task-Relevant Objects

After task-relevant information is enhanced in the 2D image space in Chapter 4, Chapter

5 addresses the temporal planning issue of robot attention control. Conventional visual

scan paths are conducted according to saliency value indicating relative importance of the

salient objects in a Winner-Take-All (WTA) manner, not considering more than one target

with the same importance to tasks. In this chapter, an optimal fixation sequence is to be

determined in terms of task-relevant quantitative evaluation in 3D task space including

how long the current focus of attention (FOA) is to be fixated and which task-relevant

environment fraction is selected for the next fixation. Here, an experimental investigation

of human behavior is conducted, to study how humans behave (gaze and body) in the

state with or without dominant intent when they are facing more than one target object.

Human eye movement and body movement are recorded and analyzed. Inspired by the

experimental results, a temporal attention planning algorithm for visual sensor with limited

FOVs in single- and multi-robot systems is proposed in Chapter 5, achieving significant

improvements in reduced perception uncertainty and extended FOV.

High-Speed Implementations on an Autonomous Mobile Robot

A vision-guided mobile robot, the Autonomous City Explorer (ACE) developed at the

Institute of Automatic Control Engineering of the Technische Universität München (see

Fig. 1.4), was used to demonstrate the strategies and evaluate the performance experi-

mentally. The ACE robot is equipped with a high-performance active multi-focal camera

system, which can be used to resemble visual behaviors such as scan, saccade and fixation.

Details about ACE can be found in Appendix A.

In dynamic robot vision, high-speed processing of early vision can enable high-speed
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perception and recognition of sudden events, which reduces the overall latency of image

processing and ensures real-time decision making. Another practical advantage of a

high-speed image processing is to reduce the influence of inter-frame motion such that

the motion blur or the ego-motion component can be ignored in computation. Bottom-up

attention selection is implemented on a platform containing multiple Graphics Processing

Units (GPUs) to significantly accelerate the compute-intensive but highly parallelizable

computation of bottom-up attention. In this implementation, the Compute Unified Device

Architecture (CUDA) technology is used. The implementation details can be found in

Appendix B.

The various aspects addressed in this thesis contribute to a robot-centered visual

attention system. The objective is to bridge the gap between fundamental studies in

cognitive psychology/neuroscience and technical realizations in the robotics domain by

developing biologically plausible and technically applicable robot attention strategies.

A variety of applications and examples are presented to highlight the integrated and

applicable characteristics of the proposed robot attention control concept.
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2 Related Work

Attention is a general term for selectivity in perception, which is important for selecting

and inhibiting visual information over space and over time [34]. It plays an essential

role in perception and cognition and has already been studied intensively in the cognitive

psychology and neuroscience area. However, visual attention selection is a relatively young

research area in the robotics domain. Since the topic of this thesis is an interdisciplinary

problem, it is considered how the findings from the fundamental studies can be mapped

into the robotics domain and facilitate robot task performance.

In this chapter related works around visual attention are reviewed in four different

parts. The first part gives a brief introduction to the terminology of human eyes. Then,

an overview about the fundamental theoretical findings in cognitive psychology and neu-

roscience is given. The third section reviews computational models of visual attention

selection. Finally, technical realizations in the computer vision and robotic systems are

surveyed from various application aspects. More specific methodological introductions of

the state-of-the-art approaches strictly related to the concepts in this thesis are given and

discussed in the following three chapters.

2.1 Biological Terminology

Firstly, a brief introduction to the biological system is given, taking human eyes as an

example. Definitions of some terms related to this thesis are summarized.

Retina

Fovea

Macula

Optic nerve

Vitreous gel

Iris

Cornea

Pupil

Lens

Iris

Fig. 2.1: Human eye diagram. Source: NEI Catalog number NEA09, National Eye Institute
(URL: www.nei.nih.gov).
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2.2 Fundamental Theories in Cognitive Psychology and Neuroscience

Eyes are organs that provide visual information of the environment to the brain. The

lights reflected from the surroundings are refracted by the lens and imaged on the retina.

The retina photo-receptors provoke nerve impulses which are transmitted by the optic

nerve from the retina to the brain (see Fig. 2.1).

The small central area of the retina is called macula. The central pit in the macula

which provides the sharpest vision is called fovea, while the vision extracted from the

stimuli perceived by other retinal areas is named peripheral vision [30]. The foveal vision

with a high visual acuity (resolution) is sensitive to color and shape, while the peripheral

vision with a low visual acuity has a better ability to detect motion [76].

Due to the limited processing capacity in biological systems, an attention mechanism

is deployed to determine “where-to-look”, such that the most interesting parts of the

surroundings can be projected on to the fovea and can be processed at a high resolution.

Redirecting attention is realized by shifting of attention, which can be overt or covert. The

overt attention indicates attention shifts with the eye moving, while the covert attention

indicates attention shifts with the eye remaining fixated [204]. In this thesis, overt attention

accompanied by eye saccades is mainly focused on.

2.2 Fundamental Theories in Cognitive Psychology and

Neuroscience

In 1890 a principle was proposed, suggesting that two factors determine the distribution of

visual attention: the properties of the image and the goals and expectations of the observer

[86]. The former is today called bottom-up or stimulus-driven attention selection, while the

latter is called top-down or goal-directed attention selection. Fundamental theories have

studied how both attention selection mechanisms perform and interplay to guide human

visual attention. In those works, visual search is a conventional experimental paradigm,

in which the reaction time is investigated when subjects search for a target item among

various distractor items. Three representative theories are introduced below, serving as

foundations for many computational models of attention selection.

Treisman’s Feature Integration Theory (1980)

Feature Integration Theory (FIT) [185] suggests two different kinds of visual search: feature

search and conjunction search. Features are assumed to exhibit activations on specific

retinotopic feature maps. If the target item owns a unique feature in comparison to the

other distractors, feature search occurs, which performs a parallel and fast visual search.

If the target item cannot be distinguished based on a unique feature but based on a

conjunction of features, attention must be directed serially to each stimulus, in order to

characterize objects. Therefore, conjunction search is more costly than feature search.

Duncan & Humphreys’s Attentional Engagement Theory (1989)

Another theory of search and visual attention, the Attentional Engagement Theory [45],

argues that visual search efficiency is not just subject to parallel or serial search. The
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difficulty of visual search is a continuum that increases with increased similarity of targets

to distractors. The larger the difference between the target and the distractors is, the

more efficiently the visual search is. Moreover, the more heterogenous the distractors are,

the harder visual search performs. This theory supports perceptual grouping and parallel

display segmentation and serves as foundations for object-based attention models.

Wolfe’s Guided Search Theory (1990)

Guided search theory [34, 201, 202] explores how attention can be guided and be more

efficient due to limited resources. Like FIT proposed in [185], the original model also has a

pre-attentive stage executing a parallel process and a following attentive stage deploying a

serial process. The contribution of this model is to show that the attentional deployment of

limited resources is guided by the output of the earlier parallel processes. The feature maps

in the parallel stage are combined into a general activation map. The item with higher

activation value is attended to firstly. Here, a weighted sum of top-down and bottom-up

components for attention control becomes possible.

Other Findings of Visual Attention

– Bottom-Up Attention First of all, bottom-up visual attention is attracted by salient

stimuli that pop out from their surroundings which are potentially important to observers.

It is shown in [36] that focal attention has a strong spatial component at the physiological

level. The attentional response enhancement extends to behaviorally irrelevant objects

around the target object. In addition, attention involves a complex modulation of responses

to other stimuli in the surrounding visual space. Different cues and binding problems

influencing visual search are experimentally investigated [65, 182], while the influence of

distracters has also been considered [70]. Unexpected events are also proved to be an

essential factor for attention control [87, 131].

– Top-Down Attention Moreover, visual attention is also guided to task-relevant in-

formation which is currently important to the observers. In [33] shows that top-down

perceptual knowledge limits expectations and guides the eye in deciding where to attend.

Thereby, the learned associations between novel visual shapes and regularities in dynamic

visual environments facilitate search behavior.

– Top-Down Biased Bottom-Up Attention Recent neurophysiological experiments ex-

plore the biasing effect of top-down information on bottom-up visual search and show that

attention sometimes appears as a non-linear property that results from a top-down bias-

ing effect. A dynamical analysis of this biased competition and cooperation of neuronal

spiking mechanisms is made in [42], in which the interaction between top-down attention

and bottom-up stimulus contrast effects is modeled. It is shown that top-down attentional

effects bias neurons by changing their nonlinear activation functions. A review of the

interconnection of top-down and bottom-up is given in [93].
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2.3 Computational Models of Visual Attention

2.3 Computational Models of Visual Attention

Originating in computational neuroscience, various attention selection models have been

proposed to resemble and implement human visual attention distribution. Above all,

attention models combining and coordinating top-down and bottom-up attention selection

mechanisms vary in different aspects: static vs. dynamic, space-based vs. object-based,

bottom-up vs. top-down, feature saliency vs. information representation, etc. A brief

overview of some representative attention models is given here.

Koch & Ullman (1985) The rudiment of many feature-based attention models has been

proposed in [94]. They suggest that elementary features are processed in parallel in different

topographical maps during an early representation. Locations with outstanding features

with respect to their neighborhood are encoded in these feature maps. Then, the feature

maps are combined in a central saliency map, representing the relative conspicuity of each

location. A WTA network selects the most salient location. Accompanied by an Inhibition-

Of-Return (IOR) mechanism, WTA guides the attention to shift to the next most salient

location.

Tsotsos et al. (1990) The central thesis of [186, 187] is that attention acts to optimize

the search procedure inherent in a solution to vision, stated by Tsotsos et al. The primate

visual attention performance is computationally explained by using the concept of selective

tuning of visual processing network: Based on the divergent feed-forward pathways acti-

vated by stimuli in the visual field, task guidance or bias is selected at the top level of the

processing architecture (a processing pyramid). Then, the competition losers are inhibited

by the feed-back pathways. Features such as luminance, orientation, and opponent colors

have been implemented.

Milanese (1993) Based on [94], one of the earliest implementations of visual attention

model is proposed in [125, 126]. Three subsystems are contained: a bottom-up subsystem,

an alerting subsystem and a top-down subsystem. In the bottom-up subsystem, feature

maps and conspicuity maps considering orientation, curvature, and color contrast differ-

ence with respect to pixels surroundings are computed and combined into a saliency map.

Moreover, an object moving against a static background is integrated in the alerting sub-

system, which can control attention movement. Top-down cues are analyzed in Distributed

Associated Memories (DAM) through previous trainings and used in object recognition.

Itti et al. (1998) Based on [94], one of the standard bottom-up computational attention

models is proposed in [84]. In this model, an input image is sub-sampled into dyadic

Gaussian pyramids in three channels (intensity, orientation, and opponent color). Then,

center-surround differences are calculated for the images in the Gaussian pyramids between

the fine scales and the coarse scales. In this phase, feature maps (FM) are generated in

which the salient pixels with respect to their neighborhood are highlighted. Using across-

scale combinations, the FMs are combined and normalized into a conspicuity map (CM)

in each channel. CMs are combined linearly into a final map, in which the bright pixels
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are the salient and interesting pixels with respect to their backgrounds. The so-called

saliency map model is widely used in many research groups as reference and serves as a

basis for many visual stimulus-driven attention control algorithms. Moreover, a Bayesian

definition of surprise is proposed in [79], in order to combine temporal novelty and spatial

saliency. Further integration of top-down bias, extensions, and detailed evaluations are

also introduced in [83, 134]. Since both the saliency map model and the surprise model

are relevant for this thesis, a detailed description will be given in Chapter 3.

Hamker (2000) The bottom-up part of the attention model proposed in [67, 68] is similar

to the saliency map model in [84]. Top-down factors are however also considered here. The

system can learn feature values of a stimulus and memorize them in a working memory.

Moreover, match detection units are applied on the fixation candidate region to compare

this region with the target template pattern and determine if an eye movement towards

this region is needed.

Sun & Fisher (2003) A hierarchical object-based visual attention model is presented in

[179], consisting of two new mechanisms: grouping-based visual salience computation of

objects and hierarchical selectivity of attentional shifts. The first one is responsible for

attentional competition among features, objects, or groupings of features and objects. In

this process, object-based and feature-based visual attention are combined. The second

mechanism is used to guide covert attentional movements, considering spatial locations,

features, objects, and their conjunctions.

Backer & Mertsching (2003) Considering dynamic vision, another novel object-based

model for efficient attention selection is introduced in [10]. A semi-attentive stage is im-

ported between the pre-attentive stage and the attentive stage. A symbolic representation

of each selected item is generated in which objects are labeled with an object file contain-

ing position, size, trajectories, selection histories, feature values, and the result of object

recognition. Dynamic neural fields are used for multiple objects selection and tracking.

Ouerhani & Hügli (2003) In the attention model implemented in [138], a saliency map

related to static features and a saliency map related to dynamic scene features are weight-

edly combined into a final saliency map to predict stimuli locations. Static features used

are opponent colors and intensity, while they use optical flow at different scales to compute

motion component. The most salient point is then found and tracked.

Frintrop (2005) A computational attention system VOCUS is proposed in [53], improv-

ing the saliency map model of [84] by merging top-down and bottom-up attention into a

single system. From feature maps in intensity, color, and orientation, a bottom-up map

and a top-down map are computed and integrated into a global saliency map by a linear

weighting. The top-down map is a combination of an excitation map and an inhibition

map weighted by known target information. The system is able to select regions of interest

in a bottom-up way and detect predefined target objects in a top-down manner.
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Gao & Vasconcelos (2005) A hypothesis that all saliency decisions are optimal in a

decision-theoretic sense is suggested in [59, 60], denoted as discriminant saliency, which

means minimum probability of error. Two classes of stimuli are defined: stimuli of interest

and null hypothesis, the latter consisting all the non-salient stimuli. The computational

measure for saliency is defined as the mutual information between features and the class

label indicating one of the classes. The consistency with psychophysics and the plausibility

of this simple and generic definition of saliency detectors are proved in features such as

color, intensity, orientation, and motion field as well.

Bruce & Tsotsos (2006) In [25, 26], Attention based on Information Maximization

(AIM) is proposed using information theoretic formulation in attention modeling. They

claim that the localized saliency computation serves to maximize information of the en-

vironment. An information measure is defined as an estimate of the likelihood of content

within a central patch on the basis of its surroundings. The results show that AIM behaves

more like the human visual system than the model proposed by [84].

Zhang et al. (2008) Another information-based approach for saliency evaluation is

presented in [212]. Two measures are defined: the self-information for the bottom-up

saliency and pointwise mutual information between the features and the target for overall

saliency, namely top-down biased bottom-up saliency. People’s fixations in free viewing

natural images are well predicted using this efficient algorithm with few free parameters.

Other attention models with minor differences to the aforementioned models can be

found in [85, 107, 118]. Above all, the robotic attention concept proposed in this thesis is

principally based on [84] and [79], which is not only based on primary features in a static

image, but also based on information variation in an image sequence.

2.4 Technical Realizations in the Robotics Domain

Most traditional robotic vision systems apply a task-oriented information selection, given

the predefined task-relevant features in 2D images such as color, geometry, motion, etc.

An exhaustive search or search in a defined search window is conducted to find the current

target object. Due to the large amount of visual information, visual attention has recently

been playing an essential roll in robot vision. Enhancing task-relevant visual information

while inhibiting the others, visual attention endows robots with the ability to process

information quickly and efficiently with limited resources. Robotic applications of visual

attention are reviewed below.

Demonstration of Visual Interest

One of the earliest implementations of visual attention on robots is introduced in [164].

A camera is mounted passively on a mobile robot. A segregation of visual stimuli based

on connectionist model by means of synchronization of spiking neurons is used to bind

image features corresponding to objects. Then, the largest one of the segregated objects,
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is selected and approached by the robot. Although only edge features are used, this system

exhibits a primary version of visual attention of mobile robots.

Visual attention for eye and head animation of a realistic virtue human head is applied

in [81], using an extended version of the neurobiological model proposed in [84]. In this

animation, flicker features and motion features are included as well to deal with the tem-

poral changes and moving objects. Moreover, coordination of eye and head movement is

also concerned to achieve a realistic animation and rendering.

In [163, 194], a saliency-driven vision system is also applied to a robot head, which uses

a bottom-up visual attention mechanism to focus on interesting objects in the environment

in real time and attends to them.

In [13], a biologically motivated saliency map model based on a stereo saliency map

is presented. Two bottom-up static saliency maps are first separately computed on two

monocular cameras. Then, top-down information of human-like preference and refusal

trained by a fuzzy ART network supervised by an interacting human is applied. The final

saliency maps are used to compute the depth information for vergence control such that

the vision system attends to the closest objects.

Active Visual Attention and Gaze Control

In [123], a neural active vision system is proposed which explores the environment using an

attention model considering symmetry, eccentricity, and color contrast to locate interesting

objects and recognize them. Gaze control is conducted differently in different modes: In a

hypothesis generation mode, an inhibition map is brought into consideration to inhibit at-

tending to an already fixated image region. In a hypothesis validation mode, an excitation

map is also considered, in order to highlight the points of a generated object hypothesis.

If a moving object is detected, the gaze control is converted into a tracking mode.

A few active vision systems in the context of humanoid development have been imple-

mented. In [177], a generic, real-time scalable visual attention system is built. A number

of human visual attributes such as log-polar mapping, feature maps, and featureGate are

considered for the system to determine fixation points. Another overt attention system

based on visual flow for a humanoid robot is proposed in [195]. In [147], a humanoid robot

is demonstrated, which is able to grasp a waving object using a biologically inspired active

vision system. Four basic human-like visual behaviors are implemented: saccade, smooth

pursuit, vergence, and vestibulo-ocular reflex. A sensory processing module processing

bottom-up and top-down signals to create a saliency map for fixation guidance, a motion

planning module driving oculomotor system, and an interaction issues module dealing with

robot self-motion are contained. Various features such as color, intensity, edges, stereo,

and motion are used in [189] to drive the gaze of a humanoid head toward potential regions

of interest, where a distributed implementation on a computer cluster ensures the real-time

ability of the multi-focal vision system containing foveal vision and peripheral vision.

In [18], another multi-focal camera system is presented, consisting of foveal vision and

peripheral vision. This system is able to locate and recognize objects in the real world using

the top-down object characteristics: hue saliency and 3D size. The attentional process is

performed in a relatively wide FOV, while recognition is conducted in the high-resolution

foveal center.
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Facilitation in Computer Vision

– Object Detection in the 2D Image Space Visual attention is commonly used as

a front-end for object recognition to reduce computational cost. Bottom-up attention

provides a prediction of potential location of target objects. Then, further processing can

be applied in the pre-selected image regions to verify the existence of the target.

In [197], a marriage between bottom-up attention based on a saliency map and Scale

Invariant Feature Transform (SIFT) feature-based object recognition is applied to demon-

strate that bottom-up attention can contribute to object detection and reduce computa-

tion time. This paper serves as a basis for attention-based object detection. However,

as discussed in this paper, many points regarding a complete detection system should be

improved, for instance, top-down feedbacks and foveated vision. In [196] a salient proto-

object detection model is suggested, where hierarchical models of object recognition in

cortex based on Max-like operation on the inputs to certain cortical neurons are used,

such that the objects are attended to before recognized. In [135], target detection speed

is maximized, defined as the ratio between the strength of the signal detecting the target

over that detecting the distracting background, such that the weights between top-down

and bottom-up attentional influences are optimized.

In [43], a Toolkit “SAFE” is proposed to deal with the problem of invariance of 2D sim-

ilarity transformation in the selective attention system, the Neuromorphic Vision Toolkit

(NVT) developed at CalTech and USC (see ilab.usc.edu/bu). This improvement enables

SAFE to be more suitable for an object recognition system.

In contrast to feature-based attentional object detection, an object recognition approach

based on an information theoretic saliency measure is proposed in [57]. Local saliency is

determined by information content using entropy computation and used to model sparse

object representation.

An approach combining visual attention and a cascade classifier is proposed in [128]

for ball recognition. The classifier is trained previously and used directly on input images

to find a ball. Then the feature weights of the detected ball are learned by the attention

system to predict regions of interest. Afterwards, the classifier is only applied in the regions

of interest to avoid false positives.

In [46], a robot explores the environment, discovers actively controllable perceptual

categories such as its hand or fingers, and adapts its controllers to place the hand within

the visual field or uses arm information to predict 2D fingertip location. A visual attention

system is used here to select a few salient image patches corresponding to fast moving

regions for further hand detection.

In addition, an attention system as a front-end for image processing such as scene

decomposition or traffic sign detection in a driving assistance system is introduced in

[124].

– Attentional Face Detection Specifically, biologically inspired attention models also

benefit human face detection. Face detection is accomplished in two steps in [14]. In

the first step, a saliency map is computed considering face-related features such as color

opponent, edge, intensity, and symmetry information. Then, face selection is conducted

on the saliency map by using an auto associative multilayer perception model to classify
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face and non-face. In [171], instead of searching for faces in an exhaustive way, face part

detection is conducted on a saliency map at a certain scale, which is predicted by the image

gist computed by using a Discrete Fourier Transform of the whole image. Starting from

the most salient position, some local salient points are selected to be candidates of face

parts, until a face is declared to be detected. Using this approach, computational cost is

reduced significantly.

– Object Segmentation A segmentation approach using visual attention is proposed in

[69]. The bottom-up saliency map computation proposed in [84] is used firstly to encode

the attention value. Then, a few salient locations are regarded as attention seeds. A

Markov random field model is used to grow the attention objects from those attention

seeds and extract attention objects without the need to understand the image semantic or

help from an interacting user.

– Object Tracking Aided by visual attention, object tracking can be conducted before

an object is precisely recognized [10, 55, 123, 138]. Objects are now labeled by primitive

features obtained by a previous training or an online selection and pop out from bottom-up

or top-down biased bottom-up saliency maps.

– Object Detection in the 3D Task Space To solve the problem of visual search for a

given target in an arbitrary 3D space for robot vision systems, the probability of finding

the target is optimized in [188], given a fixed cost limit in terms of total number of robotic

actions the robot requires to find its visual target, facilitated by attentive processes.

Action/Intention Understanding

In [74], a pointing gesture recognition is conducted using a bottom-up feature map based on

entropy, symmetry, corners, as well as skin color, and a top-down propagated recognition

based on a pointing gesture classifier. Then, the 2D pointing angle is estimated, through

which the pointed object is recognized.

The saliency of top-down elements and the saliency of bottom-up components are com-

bined in [90], in a way that the top-down part is initialized by the bottom-up part, hence

resulting in a selection of the behaviors that rightly require the limited computational

resources.

In developmental robotics, attention is also essential for intention prediction and recog-

nition [62, 66, 95, 132, 207], in order to establish a joint attention between communicating

agents and imitations.

Context Guided Robot Attention

Context guided visual attention is also beneficial for robotic applications, especially for

object detection tasks in terms of reduction of false positives and improvement of efficiency.

Bottom-up saliency, scene context, and top-down mechanisms are combined by the

contextual guidance model of attention in [183, 184] at an early stage of visual processing,

which profits object search in real-world scenes.
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Similarly, in [16] the COBA (COntext-BAsed) model of attention is proposed, in which

the spatial context of an object is important for its localization. In experiments for face

detection in natural images, false positives are reduced.

Since the spatial contextual information is essential for robot attention selection, vari-

ous algorithms are proposed for complex scene understanding and categories using “gist”

[172], Bayesian network and SIFT [77], Bayesian hierarchical model [106], spatial pyramid

matching [102], human action analysis [127], informative features for city-scale location

recognition [166], and Hidden Markov Model [170].

In [153], the weights of top-down and bottom-up factors are combined, in which an

offline optimization of the top-down weighting and a context learning based on a neural

network are conducted using a large set of examples. The balance between top-down

and bottom-up components is not fixed, but influenced by a simple context vector, which

improves object searching tasks.

Assistance for Robot Navigation

In comparison to conventional landmark selection in the robot localization and navigation

tasks, more and more applications consider visual attention approaches, in order to select

landmarks more naturally, robustly, and efficiently.

For a reliable vision-based control of an autonomous vehicle, a saliency map, which is

based upon a computed expectation of the input contents at the next time step, is used to

emphasize the important task-relevant features in [12].

Information sampling is used in [200] to select the most interesting image data repre-

senting highly attentive regions of the environment. Based on that, the qualitative position

of the robot in a topological context can be determined.

In [129], a visual attention control algorithm for a legged mobile robot is proposed. It

functions by observing the direction which has the largest expected information gain calcu-

lated by a decision tree constructed using information gain by time, and the compensation

mechanism for walking and locomotion.

Robot self-localization using visual attention is also introduced in [139], in which the

robustness of the selected salient landmarks is evaluated during navigation. Only the most

robust features remain as landmarks.

In [53], a biologically motivated attention system is proposed for landmark selection of

visual simultaneous localization and mapping (SLAM). In the selected region of interest,

Harris corners are detected. The re-detectability of the selected regions and the stability

of Harris corners are combined, enhancing the whole task performance. Moreover, active

gaze control for visual SLAM using features detected by an attention system is applied in

[54], which supports the system with tracking, re-detection, and exploration behaviors.

Robot navigation based on active multi-focal vision is elaborated in [96], where the

localization accuracy, events or objects of interest to be observed and the predicted visibility

of objects are considered. High accuracy and large FOV are combined using this novel

multi-focal view direction planning strategy.
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Behavior-Based Robot Systems

In behavior-based robot systems, robot attention is commonly adapted to the predefined

robot behaviors such as top-down or bottom-up attention selection, searching for different

target objects in different behaviors, as well as attention enabled or inhibited processes.

In [180], a recurrent neural network (RNN) is used to learn the sequence of events

encountered during navigation and to make predictions for the future. Attention between

object recognition and wall-following tasks is switched by the top-down prediction made

by the RNN.

Another visual attention system, VOCUS, is proposed in [53] for object detection and

goal-directed search. This system can detect regions of interest in images in an explo-

ration mode with no specified target and can search for a specific target using top-down

information obtained from previous training process as well.

In [209], a task-driven object-based visual attention model for robot applications

is proposed, which involves five components: pre-attentive object-based segmentation,

bottom-up still attention, bottom-up motion attention, top-down object-based biasing,

and contour-based object representation. Task-specific moving object detection and still

object detection are operated based on this model.

A highly competent object recognition system on a mobile robot is proposed in [51],

which is capable of locating numerous challenging objects amongst distracters. The poten-

tial objects are ranked using a bag-of-features technique and identified using an attention

mechanism in a limited time. Three visual behaviors are defined: exploration behavior,

coverage behavior, and view point selection behavior. The first behavior is more a robot

exploration behavior in terms of path planning than a visual behavior. In the second be-

havior, the potential objects are scanned by the peripheral vision. After the environment

is fully covered, novel perspectives of the objects are captured and object recognition is

conducted in view point selection behavior.

Human-Robot Interaction

A context-dependent attention system for a social robot is proposed in [23]. This atten-

tion system integrates perceptions (motion detection, color saliency, and face pop-out)

with habituation effects and influences from the robot’s motivational and behavioral state

to create a context-dependent attention activation map, which is used to direct eye move-

ments. Using an image size of 64× 64 pixels, the processing is in real-time.

An epigenetic model is proposed, consisting of the acquisition of intentionality, iden-

tification, and social communication. To recognize human intentions, robots are able to

detect human eyes and track human gaze [207].

In [178], human-robot interaction is simulated for learning a sensorimotor map for

joint attention, investigating the causality inherent in face-to-face interaction quantified

by transfer entropy.

Multi-Modal Attention Systems

Multi-modal attention systems have been proposed in [27, 56, 121, 161]. Various sensor

modalities such as vision, haptic sensor, lasers, sonars, and auditory sensors are applied
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and integrated to decide on the current attention of the robots. Most systems imitate

human behavior and the objective is to achieve a cognitive and natural interaction between

human and the robots. Attention architectures for machine vision and mobile robots with

an emphasis on multi-modal information fusion are reviewed in [143].

Multi-Robot Systems

Visual attention is also a key point in multi-robot interaction [89]. A two-robot cooperation

scenario is investigated in [58], in which one robot observes the hand movement of the other

robot, who is going to manipulate an object, and try to recognize how the other robot will

grasp the target object. However, the intention recognition is not autonomously started.

High-Speed Implementations of Visual Attention

A high-speed implementation of the early vision means a lot to robotics applications.

Therefore, researchers are making great efforts to achieve this using various hardwares,

algorithms, or implementation structures [109, 120, 140, 148, 189, 203]. A detailed survey

can be found in Appendix B.

2.5 Summary

The state-of-the-art visual attention research can be mainly summarized into two different

categories.

In the first category, researchers from biology, cognitive psychology, and neurosience

backgrounds are aiming at developing a human-like attention selection model and normally

focusing on static images or video clips. The models are sophisticated, compute-intensive,

and sometimes not appropriate for robot applications. Many implications and findings

from their perspective cannot be easily transferred and implemented. Only few works

consider robot task-oriented evaluations.

In the second category, researchers from the computer vision and the robotics domain

are aiming at developing application-oriented attention systems for robotic applications.

However, most works are too specific and not generalizable. Generally, higher-level func-

tions are missing. Most works have not considered implicitly task-relevant factors such as

unexpected events and environment safety, while only few works have considered mobile

robot applications including locomotion.

Although visual attention has been intensively studied in the fundamental research,

it is still a young research area in the robotics domain. Many aspects of robotic vision

have not been comprehensively and integratedly considered, such as robot mobility, adapt-

ability, flexibility, reactivity, and applicability. Task- or application-oriented performance

evaluation of robot attention is limited. Therefore, the objective of this thesis is to map

the cognitive neuroscientific models onto robot visual attention design and to develop bio-

logically plausible and technically applicable visual attention strategies for mobile robots,

bridging the gap between these two categories.
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3 Information-Based Bottom-Up Perception for

Attention Control

3.1 Introduction

Visual perception is the ability to obtain, represent, and interpret visual sensor information

about the external environment. The starting point of this process in a robot system is

the input images captured by visual sensors – cameras. From visual data input, a large

amount of information about the robot’s operating environment is obtained. Conventional

robot applications have only considered the extraction of task-relevant information, while

stimulus-dependent perception has been ignored. However, due to robot mobility and

environment dynamics, task-irrelevant stimuli such as abrupt appearing/disappearing of

objects (e.g. a person entering a room), dynamic characteristics (e.g. a car passing by) or

appearance variation of objects (e.g. changing neon lights or billboards), etc, can influence

robot task accomplishment strongly, increasing environment uncertainty or even inhibiting

robot tasks. Although they are not directly related to robot tasks, they definitely play a

key role in cognitive technical systems. Being sensitive to unexpected stimuli is a critical

problem for task-driven systems [87]. Moreover, if a robot is accomplishing a task, when

and how should the attention be modified, scheduled, or distributed to the unexpected

events that will obviously impair the on-going task?

In this chapter, two metrics for image sequences understanding are proposed – local

surprise (LS) and global surprise (GS) – to describe dynamic characteristics of an image

sequence and provide a more sensitive cue for robot attention control in dynamic envi-

ronments. The concept of surprise defined in [79, 80] is borrowed, which measures the

distance between the prior belief and the posterior belief of the environment computed by

Kullback-Leibler (KL) divergence of the posterior and prior distributions.

LS and GS are complementary to each other. LS is computed to detect unexpected

stimuli in the environment which provides a possible front-end for further recognition

of the stimuli and avoids information loss, while GS is used to determine when a robot

should attend to the unexpected stimuli during its on-going task and provide an economical

timing to take a saccade behavior towards the unexpected stimuli. Combining LS and

GS, a surprise-driven active vision system is developed based on the high-performance

implementation of bottom-up attention. A perception-decision-action loop is conducted.

The remainder of this chapter is organized as follows. In Sections 3.2 and 3.3 LS

and GS are defined, respectively. Relevant experiments are conducted and discussed.

A surprise-driven robot attention control using the active vision system based on the

interconnection of LS and GS is proposed in Section 3.4. A summary containing discussions

of the contributions and limitations is given in Section 3.5.
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3.2 Local Surprise for Unexpected Stimuli

3.2 Local Surprise for Unexpected Stimuli

Spatial salient stimuli have already been considered in bottom-up attention selection mod-

els for a human-like prediction of attentional allocation in natural scenes [84]. In dynamic

environments, temporal novelty plays a more important role for robot applications. LS is

proposed as a measure of unexpected stimuli, which is a combination of the spatial saliency

and the temporal novelty.

3.2.1 State of the Art

To integrate unexpected stimuli, especially dynamic variations, into attention selection,

the intuitive approach is to integrate motion detectors into saliency map computation

[15, 29, 38, 103, 117, 209]. However, appropriate weighting between a static saliency map

and a motion map has not yet been explored.

Bayesian modelling of visual perception has been proved to be a convenient and natural

framework to study perceptual decision, consisting of the task, prior knowledge about the

environment, and knowledge of the way the environment is sensed [49, 116, 152, 210].

Applications in video compression using Bayesian foveation [20], image change detection

[114], and landmark detection [151] based on Bayesian theorem have been proposed.

The definition of Bayesian surprise was firstly proposed in [79, 80] by Itti & Baldi

to detect temporal novelty in video clips. Surprise is defined as the distance between

the posterior and prior belief distributions about the environment computed by using the

relative entropy or Kullback-Leibler divergence. Surprise measures how data affects an

observer, in terms of difference between posterior and prior beliefs about the world. The

hypothesis that Bayesian surprise attracts human attention in dynamic natural scenes is

proved by comparing Bayesian surprise locations with human saccades.

Itti & Baldi’s surprise model is aiming at a best explanation of human gaze behavior.

Each feature map according to color, orientation, intensity, flicker, or motion at different

scales is considered to contain surprise detectors. In this thesis, the focus is to detect

the unexpected event/stimulus such as abrupt appearing, disappearing, motion, and ap-

pearance variation of foreground objects. Objects which are totally obscure and do not

appear as spatial stimuli themselves are not taken into account due to limited attentional

resources. Therefore, in contrast to Itti’s model, the saliency map [84] is first used here as

a segmentation of interesting objects from their background. Then, the Bayesian surprise

definition proposed in [79, 80] is applied directly on consecutive static saliency maps and

merge the spatial saliency and temporal novelty together.

Since the LS computation is conducted directly on static saliency maps and, therefore,

has a tight link to saliency map computation, an introduction to the saliency map model

is given in the following section.

3.2.2 The Saliency Map Model

Among all the attention selection models and applications, the saliency map model pro-

posed in [84] is one of the most well-known standard computational models for bottom-up
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 Linear filtering

Center-surround differences and normalization

Linear combination

Intensity                   Orientation (0°, 45°, 90°, 135°)           Color (RG, BY)

Input image

saliency map

conspicuity

maps

Across-scale combinations and normalization

feature maps

Fig. 3.1: The saliency map computation model

attention selection, illustrated in Fig. 3.1. From an input image, a saliency map is gener-

ated to predict the salient positions which potentially attract human visual attention. The

saliency map computation is described here.

Dyadic Gaussian Pyramids

Firstly, the input image is subsampled into dyadic Gaussian pyramids in three channels

(intensity (I), orientation (O) for 0◦, 45◦, 90◦, 135◦, opponent color (C) in red/green (RG)

and blue/yellow (BY)). A separable kernel of a 6× 6 Gaussian kernel [1 5 10 10 5 1]/32 is

used for the successive image size reduction. In the end, the input image at a resolution

of for example 640× 480 pixels is subsampled into 8 other scales: 320× 240 (scale σ = 1),

160× 120 (σ = 2), ..., 2× 1 (σ = 8) (see Fig. 3.2).
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3.2 Local Surprise for Unexpected Stimuli

Fig. 3.2: Example images in a dyadic Gaussian pyramid. From left to right: 640×480 at scale
0; 320× 240 at scale 1; 160× 120 at scale 2; 80× 60 at scale 3.

Fig. 3.3: Example images from left to right: I-map, RG-map and BY-map at scale 3 in the
Gaussian pyramids.

I-, C-, O-Maps Computation

Then, the I-, RG- and BY-maps in the dyadic Gaussian pyramid in each channel are

computed. According to [196], the I-map MI(σ) at scale σ is computed as follows:

MI(σ) =
r + g + b

3
, (3.1)

where r, g, b are the pixel values for red, green, and blue in RGB color space.

The opponent C-maps are computed as follows:

MRG(σ) =
r − g

max(r, g, b)
, (3.2)

MBY (σ) =
b−min(r, g)

max(r, g, b)
. (3.3)

The image regions in which max(r, g, b) < 0.1 are set to 0. Example resulting images are

shown in Fig. 3.3.

To compute the O-maps in different scales, a Gabor-filter truncated to 19× 19 pixels is

used [196], which is formulated as follows:

Gψ(x, y, θ) = exp

(

x′2 + γ2 y′2

2ǫ2

)

· cos
(

2π
x′

χ
+ ψ

)

, (3.4)

with

x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ), (3.5)

where (x, y) is the pixel coordinate in the Gabor-filter. The parameter values of this

implementation are set according to [196], where γ stands for the aspect ratio with the
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3 Information-Based Bottom-Up Perception for Attention Control

Fig. 3.4: Example images from left to right: O-maps at scale 3 in the Gaussian pyramids for
orientations 0◦, 45◦, 90◦, and 135◦.

value 1 and χ is the wavelength and has the value of 7 pixels. The standard deviation ǫ of

the Gaussian envelope is equal to 7/3 pixels, and the phase offset ψ ∈ {0, π
2
}. θ stands for

the orientation angles with θ ∈ {0◦, 45◦, 90◦, 135◦}.
As defined in Eq. 3.4, the Gabor-filter consists of a combination of a 2D Gaussian

bell-shaped curve and a sine (ψ = π/2) and cosine function (ψ = 0). In each direction,

the image should be filtered twice and summed as follows:

Mθ(σ) = |MI(σ) ∗G0(θ)|+ |MI(σ) ∗Gπ/2(θ)|, (3.6)

with MI(σ) the I-maps at scale σ. Fig. 3.4 illustrates the O-maps in different orientations

at scale 4.

After the steps above, 9 I-maps, 18 C-maps and 36 O-maps are generated. It is followed

by center-surround differences and across-scale combinations. In these two steps, images

at different scales are subtracted and combined.

Center-Surround Differences

In center-surround differences, 6 feature maps (FMs) in the I-channel, 12 FMs in the

C-channel and 24 FMs in the O-channel are computed as follows:

I(c, s) = |I(c)⊖ I(s)|, (3.7)

RG(c, s) = |(R(c)−G(c))⊖ (R(s)−G(s))|, (3.8)

BY (c, s) = |(B(c)− Y (c))⊖ (Y (s)−B(s))|, (3.9)

O(c, s, θ) = |O(c, θ)⊖O(s, θ)|, (3.10)

with c referring to the fine scale and s indicating the coarse scale: c = {2, 3, 4}; δ =

{3, 4}; s = c + δ. θ is the orientation of the Gabor-filter. ⊖ means the subtraction

between two images at different scales c and s. To execute this subtraction, the images

should be enlarged or reduced into the same size and then a point-by-point subtraction is

accomplished. Fig. 3.5 shows an example of center-surround differences.

After an iterative normalization of the output images of the subtraction, feature maps

are generated in which the distinctive pixels with respect to their neighborhood are high-

lighted.
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3.2 Local Surprise for Unexpected Stimuli

Fig. 3.5: Example images. Left: a BY-map at scale 3; Middle: a BY-map at scale 6; Right:
BY (3, 6), a BY feature map at scale 3-6.

Fig. 3.6: Example images from left to right: Conspicuity maps Ī, C̄, and Ō in intensity, color
and orientation channels as well as the resulting saliency map S.

Iterative Normalization

The iterative normalization N(·) is an important component in the whole computation.

It simulates local competition between neighboring salient locations [84]. Each iteration

contains self-excitation and neighbor-induced inhibition, which can be implemented using

a difference-of-Gaussian (DoG) filter [82]:

DoG(x, y) =
c2ex

2πσ2
ex

e
−x2

+y2

2σ2
ex − c2inh

2πσ2
inh

e
−x2

+y2

2σ2
inh , (3.11)

with σex = 2% and σinh = 25% of the input image width, cex = 0.5, cinh = 1.5. At each

iteration the given image M is computed as follows [82]:

M ← |M +M ∗DoG− Cinh|≥0, (3.12)

with the constant inhibitory term Cinh = 0.02, where | · |≥0 discards negative values.

Across-Scale Combinations

Using across-scale combinations, the FMs at different scales are combined and normalized

into a conspicuity map (CM) in each channel. It is only a question of point-by-point

integration of the FMs into CMs Ī, C̄ and Ō as follows [84]:

Ī =
4
⊕
c=2

c+4
⊕

s=c+3
N(I(c, s)), (3.13)

C̄ =
4
⊕
c=2

c+4
⊕

s=c+3
[N(RG(c, s)) +N(BY (c, s))], (3.14)
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Ō =
∑

θ∈{0◦,45◦,90◦,135◦}

N(
4
⊕
c=2

c+4
⊕

s=c+3
N(O(c, s, θ))). (3.15)

Final Saliency Map

The saliency map S is a linear combination of the normalized conspicuity maps, defined

by

S =
1

3
(N(Ī) +N(C̄) +N(Ō)). (3.16)

The conspicuity maps, shown in Fig. 3.6, illustrate the conspicuous pixels regarding

color, intensity, and orientation. The bright pixels in the saliency map (the right one in

Fig. 3.6) are the most salient and interesting pixels predicted by the saliency map model.

The saliency map computation is implemented on a multi-GPU platform in order to

achieve a high-speed performance. The implementation details can be found in Appendix

B.

3.2.3 Local Surprise Definition

The saliency map model computes spatial saliency in a static image which potentially at-

tracts human attention. In technical systems, the saliency map can be used as a segmenta-

tion of potentially interesting objects from their background. Since dynamic characteristics

of the current environment are also an essential cue for robot vision control, temporal nov-

elty in an image sequence should be integrated. Temporal novelty can be modeled as a

Bayesian Surprise proposed in [79], evaluated by the difference between the belief and the

perceived information about the world, which measures how novel, surprising, or unex-

pected the new information is observed. The image region with a higher surprise value is

worth being further processed.

Inspired by [79], an LS map is constructed, computing the LS value of salient image

regions which have already been predicted in the saliency map computation. LS is defined

by applying the Bayesian surprise definition directly on two consecutive saliency maps (see.

Fig. 3.7).

input image k-1

input image k

saliency map k-1

saliency map k local surprise map k

Fig. 3.7: Computation structure of LS maps.

The computational details of the surprise map are described as follows. From two

consecutive input images, two saliency maps are computed as described in the previous

section. Each pixel i with its normalized saliency value λi in the saliency map is regarded as

a detector for LS and is modeled as a probability distribution, representing the observed

saliency value and the observation uncertainty. The choice of probability distribution

is trivial. For instance, Gaussian mixture is used in [19]. Since the data input of the
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3.2 Local Surprise for Unexpected Stimuli

local detector can be regarded as Poisson distributed events (neuron spikes) [80], Gamma

probability density function (pdf), which maintains its functional form when Poisson-

distributed data is observed, is used to model the saliency of a pixel as follows:

pi = γ(λi, αi, βi) =
βαi

i λ
αi−1
i

Γ(αi)
· e−βiλi , (3.17)

with the shape αi > 0 with an initial value A, the inverse scale βi > 0 with an initial value

B, and Γ(·) the Euler Gamma function.

At time step k, an observation is conducted in which an input image is captured and

a respective saliency map is computed. Each pixel in the saliency map is considered as

an LS-detector and obtains a saliency value of λi,k. Due to the new data input, the belief

or observation of each detector is changed, in which the parameters αi and βi evolve as

follows [80]:

αi,k = A +N1D(λi,k), and βi,k = ξ · B + 1. (3.18)

where N1D is a 1D-normalization and ξ ∈ (0, 1) is a forgetting factor.

At the next time step k + 1, before a new observation is conducted, it is assumed that

the environment does not change. The belief is based on the observation at time step k.

The sensed information at each detector or each image pixel is the prior belief distribution

and is formulated as follows:

pi,k = γ(λi,k, αi,k, βi,k). (3.19)

After a new image is captured at time step k+1, the detector/pixel i has a new saliency

value of λi,k+1. The belief of the environment is updated, in which the parameters αi and

βi of this pixel evolve as follows:

αi,k+1 = αi,k +N1D(λi,k+1), and βi,k+1 = ξ · βi,k + 1, (3.20)

Then, the posterior belief distribution can be formulated as follows:

pi,k+1 = γ(λi,k+1, αi,k+1, βi,k+1). (3.21)

To quantify the distance of the prior belief and the posterior belief of a detector about

the sensed environment, the LS for the pixel i is defined as Kullback-Leiber-divergence

τ(x, y) (also the relative entropy) between the posterior and prior saliency distributions,

formulated as follows:

τi,k+1 = KL(pi,k+1||pi,k)

= −αi,k + αi,k log
βi,k+1

βi,k
+ log

Γ(αi,k)

Γ(αi,k+1)

+βi,k
αi,k+1

βi,k+1
+ (αi,k+1 − αi,k)Ψ(αi,k+1) in [bit], (3.22)

where Ψ(·) is the Digamma function.
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Example: Given two pixels with the saliency values λ1 and λ2, λ1,2 ∈ [0, 255] in the saliency

maps, the computed LS values at time step k + 1 are listed in Tab. 3.1.

Group 1 Group 2 Group 3 Group 4

Time step λ1 λ2 λ1 λ2 λ1 λ2 λ1 λ2

k 200 100 200 100 200 200 200 150

k + 1 200 100 255 155 255 230 210 250

LS [bit] 0.9228 0.4583 1.1878 0.7121 1.1878 1.0666 0.9705 1.1655

Tab. 3.1: LS values computed using different sample saliency values of two pixels λ1 and λ2.
Group 1 and 2: If the saliency value variations are the same, the pixel with a higher
saliency value wins a higher LS value; Group 3 and 4: The pixel with a higher
saliency value variation wins a higher LS value.

The LS is an indicator of a bottom-up robot gaze control. It combines the temporal

novelty and the spatial saliency in a way that the larger the inter-frame saliency variation

of the pixel i is and the higher the saliency value the pixel i contains, the higher the LS

value τi,k+1 is. For applications on mobile robots, the saliency map is rescaled to a small

dimension to simplify the computation and ensure the real-time capability.

3.2.4 Performance Evaluation

Three experiments are conducted to demonstrate and investigate LS in different aspects:

LS induced by salient object onset, LS induced by temporal novelty and spatial saliency,

and how LS guides robot attention flexibly to facilitate robot tasks.

Experiment 1: LS Induced by Salient Object Onset

Fig. 3.8 illustrates an example of LS map computation. In the second input image, a

human entered into the scene suddenly. Consequently, a large intensity value appears in

the respective position in the surprise map. The other bright pixels show the LS value due

to higher saliency value and small saliency value variation.

Experiment 2: LS Induced by Temporal Novelty and Spatial Saliency

Fig. 3.9 shows the performance of this strategy combining the spatial saliency and the

temporal novelty. A red cylinder with high spatial saliency and a cup held by a hand with

relatively low spatial saliency were investigated. The cylinder was mounted on the wall

and had no self-motion at all during this experiment.

At first, the camera’s attention was directed to the cylinder. Then, the hand and the

cup shifted in front of the camera at time steps k and k + 1 without camera ego-motion

(see Fig. 3.9, left). Although the cylinder had a larger saliency, the hand/cup had a

high LS value evaluated by the surprise map at this time. The camera head then moved

towards the hand/cup to bring them into the center of the view. After the change of the

camera gaze direction, the hand/cup stopped moving at time step k + 2 and k + 3 (see

Fig. 3.9, middle) and lost, therefore, their high LS value. Due to the higher saliency value,
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local surprise map

input image 1

input image 2

saliency map 1

saliency map 2

Fig. 3.8: LS induced by salient object onset – a human entering the scene.

        

robot gaze shift to

local surprise induced

by temporal novelty

robot gaze shift to

local surprise induced

by spatial saliency

k k+1 k+2 k+3 k+4 k+5

Fig. 3.9: Robot gaze shift towards the position of the LS maximum, which is induced by tem-
poral novelty (hand/cup movement in the left two columns) and by spatial saliency
(salient red cylinder mounted on the wall in the middle two columns). Upper row:
original images; Middle row: the respective saliency maps; Lower row: LS maps.

the cylinder succeeded in attracting the camera’s attention again. After the camera gaze

direction changed at time steps k+4 and k+5, the cup was moved by the hand again and

acquired a high LS value in the LS map (see Fig. 3.9, right).

This experiment shows evidently that this strategy successfully combines the spatial

saliency and the temporal novelty for robot gaze control.

Experiment 3: LS Facilitating a Robot Task

In this experiment, an object search task is combined with the surprising event detection.

Fig. 3.10 shows the image sequence in this experiment. The objective was to detect a

traffic sign, which was not located in the FOV at the beginning. The left columns show the
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# 1

# 2

# 3

# 7

# 4

# 5

# 6

# 8

# 9

# 10

# 11

# 12

Fig. 3.10: Image sequence for object detection task. Left sub-columns: the original input
images. Right sub-columns: the respective masked result images with the frame
number. Masked regions: the robot FOA; Rectangles: image regions containing
the maximum LS; Circles: the detected objects.

original input images. Aiming at efficient information selection and processing, the object

detection algorithm ran only in the preselected regions limited by the white rectangles in

the images of the right columns which indicate regions with maximum LS values in the
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surprise maps. A human tried to bring the traffic sign into the camera FOV by moving a

salient green cylinder near to the traffic sign. The human and the cylinder were detected

successfully as a surprising event. The camera platform was controlled to look straightly

towards the surprising event in every five images. Through tracking of an LS, the limited

FOV is flexibly extended, which made object detection in this case possible.

3.2.5 Discussion

From the experimental results above, the performance of LS in terms of combining spa-

tial saliency and temporal novelty is demonstrated. This information-based extension of

saliency map model integrates motion cue into bottom-up attention and detects the un-

expected changes in the environment, which is advantageous for world model exploration

and update. The preference for surprising events in the bottom-up attention model enables

safe operations of mobile robots or manipulations in dynamic environments.

Other Definitions of Surprise

LS has been already defined in [111] to quantify the difference between the perception and

the knowledge of a Belief-Desire-Intention-Surpise (BDIS) agent about his intention. An

abstract model of an agent’s mental state considering surprise-based filter of belief update is

established. An agent should update his beliefs only with surprising and intention-relevant

inputs. The definition is general and not specific for visual perception. Other Bayesian

modellings of visual perception have been defined in different applications such as video

compression using Bayesian foveation [20], image change detection [114], and landmark

detection [151]. Generally, all the works have only considered goal-directed surprise.

LS and Motion Map

The LS can be regarded as another interpretation of motion map, considering the inter-

frame saliency variation of each pixel instead of the inter-frame intensity variation. The

main difference between LS and explicitly combining a motion map into saliency map com-

putation is that no optimized weight for motion map is needed to be explored. Moreover,

from common motion maps the temporal change of intensity is obtained, which is usually

the contour of a dynamic object (see motion map in Fig. 3.11). Compared with a motion

map, in an LS map the object with varying appearance is detected as a whole, which is

more interesting for robot attention control. Compared with a difference map of two con-

secutive saliency maps, an LS map also considers spatial saliency, if no temporal novelty

occurs at that time (see middle column in Fig. 3.9).

LS and Itti & Baldi’s Surprise

Itti & Baldi’s Bayesian surprise model [80] is aiming at a best explanation of human

behavior in an active search for non-specific information of subjective interest, namely

purely bottom-up attention. It is a general surprise definition. In this thesis, this concept

is used for detection of onset, offset, and motion of salient foreground objects, focusing on

31



3 Information-Based Bottom-Up Perception for Attention Control

input image k

input image k+1

saliency map k

saliency map k+1

motion map k+1 diff. saliency map k+1 local surprise map k+1

Fig. 3.11: Comparison of LS map, motion map, and difference map of consecutive saliency
maps computed using two consecutive input images.

robot applications. A saliency map is used to segment the scene and determine interesting

image regions, namely the salient regions.

Furthermore, in the computation, in Itti & Baldi’s model, the distribution parameters

(α and β in Eq. 3.18) are updated consistently to resemble a short-term, human-like

surprise damping behavior. In this model, the initial values of the distribution parameters

are constant to emphasize saliency variation at the current time step and enhance the

sensitivity of awareness of dynamic environments on the one hand. On the other hand,

another metric GS is defined in the next section to describe the global dynamics of the

environment and resemble the damping effect. In this way, LS and GS are independent of

each other and can be flexibly applied alone or together in different contexts.

Limitations

Since a robot is supposed to operate in the environment, a permanent attending to the

maximum LS is inefficient and will cause possible loss of task-relevant information. The

maximum LS is the maximum compared with the other image regions in the FOV. Two

maximum LS values in consecutive input images can not be compared with each other

along the time scale, since they are relative measures in terms of importance for attention

in comparison to other image regions. Therefore, a measure is needed to trigger attention

towards the current maximum LS. Aiming at this, GS is defined in the following section.

3.3 Global Surprise for Representation of Environment

Dynamics

As discussed, if a robot always directs its FOA to the LS determined in the input image,

the on-going task accomplishment will be impaired. Therefore, a metric for a good timing

to take this saccade behavior should be derived, which the robot can quickly rely on to

determine how uncertain the environment is and how it should behave in this situation;

for example, to stop moving in a chaotic environment to avoid crashes.
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3.3.1 State of the Art

Psychological research has studied the human attention control considering unexpected

stimuli while one or more tasks are to be conducted concurrently. Some works suggest

that high perceptual load reduces interference from distractors [101]. Top-down guidance

tends to dominate in real-world visual search [32]. Unexpected/task-irrelevant stimuli can

be detected if percetual/cognitive resources are available. The inattentional blindness the-

ory [113] states that when subjects are engaged in one task, they are remarkably insensitive

to other perceptual tasks due to limited human attention capacity. This indicates the rela-

tionship between the attention distribution and the subject internal state. This inspiration

can be applied to robots; for instance, if the task is accomplished satisfactorily according

to certain task-oriented measures, a gaze control towards the LS can be conducted as the

decision making strategy proposed in [168]. Since the focus in this chapter is image-based

information perception, internal robot states are not considered at this step. Further in-

formation about attention control relying on internal robot state can be found in Chapter

4.

Other works suggest that subjects are sensitive to environmental events and modify

the distribution of attention accordingly to detect unexpected stimuli, because peripheral

vision can actively monitor other moving objects in the field [87]. This indicates that the

external environment also plays an important factor in attention selection. A global metric

should be proposed to describe the environment dynamics and be applied as a trigger for

LS.

By now, scene or context representation can be divided into two categories: object-

based [192], and gist-based [172, 183, 184]. The former pre-supposes recognized objects

and their pre-defined relations, while the latter provides a stable prediction on what kind

of object could be expected in this scene or context [156]. However, the object-based and

gist-based scene representations are static. Another approach for context recognition is

behavior-based [127, 170], in which behavior or intention of manipulators is recognized and

guides the attention allocation. However, behavior-based context representation focuses

on intention recognition of the local motion and can not represent the global environment

dynamics.

An effect called mindsight is reported in [157], in which people can have a strong feeling

about the environment changing without seeing it. This feeling can then alert the attention

system to be aware of the change. Inspired by this phenomenon, another metric is defined,

the GS, to interpret how surprising or uncertain the current environment is. Based on this

interpretation, an economical timing for robot attention shift towards LS is determined.

3.3.2 Global Surprise Definition

In humans, feature contrast affects the speed of performance more than feature values

themselves [187]. GS is computed as the relative entropy between the prior image variation

and posterior image variation along the time scale to compute the variation rate of motion

in the environment between two consecutive time steps.

Firstly, a static environment is regarded as an unsurprising, certain, and familiar envi-

ronment for the robot and the dynamic environment as a surprising environment because
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3 Information-Based Bottom-Up Perception for Attention Control

of changes and danger caused by the moving objects. Three consecutive input images

without camera ego-motion are converted from RGB color space into grayscale, denoted

by Ik−2, Ik−1 and Ik, indicating the image intensity. Large intensity variation can be re-

garded as motion. Therefore, motion maps are calculated as the difference between two

consecutive input images with pixel number i:

Mi,k−1 = Ii,k−1 − Ii,k−2, (3.23)

and

Mi,k = Ii,k − Ii,k−1. (3.24)

Then, the histograms Hk−1(j) and Hk(j) for each motion map are computed, in order

to represent the motion distribution in the pixel value range j ∈ [0, 255].

Each normalized histogram of motion map can be regarded as a discrete distribution.

The relative entropy T of the histograms of the two consecutive motion maps is computed

as the GS of the current scene as follows:

Tk = KL(N1D(Hk)||N1D(Hk−1)) =
∑

i

N1D(Hk) log
N1D(Hk)

N1D(Hk−1)
in [bit]. (3.25)

where N1D(·) is the 1D-normalization function.

GS indicates the rate of motion variation in the current environment. The larger T

is, the more chaotic the current scene is. This metric can be used to alert the robot

system when the current environment contains unpredictable dynamics, whereas an FOA

towards the current LS may be necessary. A threshold is needed to distinguish between

the relatively dangerous environment and relatively tame environment.

3.3.3 Experimental Investigation

The threshold is determined experimentally. Different representative scenes were gathered,

shown in Fig. 3.12, and their GS values were calculated.

• Scene 1: a floor without moving objects present

• Scene 2: a square with crowded people

• Scene 3: a floor with people suddenly appearing

• Scene 4: a street with a vehicle moving very fast

The rows show the consecutive time steps k − 2, k − 1 and k at a frame rate of 30 fps.

It is obvious that the environment almost does not change in the first scene. Therefore,

the GS value is very small, namely 0.0526 bit. In comparison to the first scene, in scene

4 the environment changes very significantly because of the vehicle movement. Hence, the

GS value in this environment is large, namely 0.1761 bit. For the second scene a small GS

value is obtained, namely 0.0473 bit, because the scene dynamics change is relatively small

although there is motion. This environment can be regarded as a non-chaotic environment,

since no surprise exists. In the third scene the GS value is large, because a person entered

suddenly into the FOV. Therefore, the scene dynamics change is relatively large.
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k-2

k-1

k

GS [bit] 0.0526 0.0473 0.1231 0.1761

Fig. 3.12: Experimental investigation of GS using four different scenes with different scene
dynamics. From left to right: a static indoor scene; a city-center scene with slight
pedestrian movement; an indoor scene with an unexpected event – a human entering
the scene; a street scene with a high-velocity vehicle.

The threshold is empirically determined and may differ in different contexts. For the

experiment in the next section, it is equal to 0.1 bit.

3.3.4 Discussion

As mentioned, permanent looking at LS can cause a loss of the current task-relevant target

and is computationally inefficient for robot task. Moreover, LS, as a relative and normalized

measure, cannot be used temporally to direct robot attention towards the maximum LS

itself. Therefore, it is reasonable and necessary to introduce a global metric to alert the

robot system about the current environment dynamics.

GS can also be classified into a gist-based description of the environment. In comparison

to the other gist-based scene recognition approaches [172, 183], GS does not provide a

typical scene classification for, for example, object position prediction. The focus of this

metric considers environment uncertainty, which is a key factor for robot operation in

an unstructured real world. Compared to this definition, another GS is defined in [111],

regarded as the global maximum of the LS, which is in a totally different domain.

Although the definition of GS is still limited in some aspects at the current step, e.g.

sensitive to lighting conditions, only an empirical determination of the threshold and diffi-

cult quantitative evaluation, the necessity, and possibility of using such a global metric to

facilitate robot tasks are shown.

A more sophisticated concept may be to apply an extra vision sensor with a wide FOV,

e.g. omni-directional camera, to monitor the operating environment. Similar research

topics are multi-object tracking and scene classification.
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3.4 Surprise-Driven Robot Attention Control

LS is an extension of bottom-up attention selection, which interprets input images with-

out any pre-defined task information. However, it is not easy to apply this metric for a

conventional robot operation. For a robot task, in which LS detection and tracking only

hold a secondary meaning, a novel combination of LS and GS is designed for this kind of

robot attention control.

3.4.1 Robot Decision-Action Design

The whole robot decision-action design is shown in Fig. 3.13. In the perception/decision

block, the GS of the current environment is computed along with task-oriented information

perception and interpretation. A decision is made in the way that if the GS value is smaller

than a pre-defined threshold, which means the environment is safe enough, the robot

performs its primary task for the next time point. If the value of the GS is larger than the

pre-defined threshold, the robot should stop its primary task and attend to the position

with maximum LS for its own safety. In the control application block, the determined

action is carried out, which results in an update of camera orienting or robot locomotion.

Perception/DecisionCamera

      Camera 

Orienting and

  Locomotion

   External

Environment

Physical Informative

Control Application

Fig. 3.13: Robot decision-action design.

3.4.2 Performance Demonstration

An experiment is conducted using the ACE robot. The primary task is vision-based robot

self-localization. The GS value is used as an indicator to alert the ACE robot to distribute

attention to the LS in the environment during its task.
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Artificial landmark

ACE robot

Active camera platform

Fig. 3.14: Left: the ACE robot with an active camera head and four artificial landmarks
mounted on the wall. Right: color-based landmark detection in 2D input images.
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Fig. 3.15: A top view of the robot locations and view directions during the robot locomotion,
considering or not considering the GS. Triangles: the actual robot positions; Solid
circles: the artificial landmarks; Solid lines: robot view directions for the self-
localization task; Dashed line: robot view direction toward the maximum LS.

Experimental Setup and Task Description

The experiment was executed in a corridor (see Fig. 3.14 left). An active stereo camera

(Bumblebee I with focal lengths of 2mm each from Point Grey Research Inc., see Appendix

A) was used for this experiment. Four artificial landmarks were installed at the same

height as the camera, such that only robot attention distribution in a horizontal plane was

considered. The landmark positions were known.

A world frame S0 is defined, shown in Fig. 3.15. The ACE robot, illustrated as triangles

in Fig. 3.15, moved from its start point (0, 1.25)m to (5.0, 1.25)m straight forward. About

every 0.5m a view direction planning was executed and an optimal view direction was

applied for the next 0.5m. Three measurements for position estimation were executed

at each time step. The view direction Ω is defined as the angle between the locomotion

direction and the camera optical axis in the horizontal plane. At the start point (0, 1.25)m

the camera had an initial view direction 0◦ towards the locomotion direction.
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Landmark Detection

In each measurement, a color-based landmark detection was conducted on the stereo input

images. The color images were converted first from the RGB color space into the HSV color

space. In the hue-channel, the lower and upper bounds were determined to classify image

pixels into landmark pixel and background pixel. After dilation and erosion processes,

an ellipse was fitted for each landmark. The landmark positions in the left and right

input images were represented by the ellipse center points. Using stereo triangulation, the

3D landmark positions with respect to the camera were obtained. Through coordinate

transformations, the robot location with respect to the world frame S0 was calculated.

Information-Based View Direction Planning

For vision-based self-localization using landmarks, the view direction of a robot has an

important impact on the accuracy of the estimation. An active vision system should

decide autonomously where to pay its attention to. The view direction planner for self-

localization uses an information-based strategy derived from [169]. The goal is to achieve

a maximum information gain after each view direction change.

The information measure νk for this task at step k is defined as follows:

νk =
1

2

2
∑

l=1

√
el,k, (3.26)

where el,k are the eigenvalues of the robot position covariance matrices and l is the index

for x- and y-direction. A Kalman-filter (KF) is used to predict the robot position and

the covariance matrices. For possible view directions Ωk+1|k of the camera, the respective

information measures νk+1|k at step k + 1 will be predicted. The view direction Ω∗
k+1|k

with the strongest increase of the information content, which is defined as the maximum

decrease of the covariance, is regarded as the optimal view direction and applied to the

active vision system at the next time step k + 1.

Ω∗
k+1|k = arg max

Ωk+1|k

(νk − νk+1|k(Ωk+1|k)). (3.27)

Experimental Results

Without considering the possible surprising events in the environment, the robot should

concentrate itself on the localization task and attend to the landmarks in order to achieve

an accurate position estimation [220]. In this experiment the information content for

10 different view directions Ωk+1|k ∈ {0◦, 10◦, ..., 80◦, 90◦} (because all the landmarks are

allocated in the right hand side of the mobile platform) was estimated and compared with

the information content of the last view direction. The view direction which could provide

the maximum information gain was chosen. In Fig. 3.15 the solid lines with arrows show the

view directions, while Fig. 3.16 shows an image sequence captured in the self-localization

task, with the respective optimal view directions at the respective robot positions in x-

direction.
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   0°                      70°                    50°                    60°                    50°                    70°

   80°                    70°                    50°                    70°                   90°

0 m 0.5 m 1 m 1.5 m 2 m 2.5 m

3 m 3.5 m 4 m 4.5 m 5 m

Fig. 3.16: Image sequence captured at different locations (x-coordinate on the images) for the
self-localization task without consideration of GS and LS. The numbers under the
images denote the camera view directions with respect to the locomotion direction.
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Fig. 3.17: Robot position estimation errors using constant view directions without planning
(red, dash-dot line with point markers), using planned view directions (blue, dashed
line with square markers), and using planned view direction and considering LS/GS
as well (black solid line).

The active vision system calculated the robot position using the optimal view directions

and stereo-vision triangulation. The odometry data is taken as the ground truth, which is

very accurate on ideal indoor floor. However, systematic errors mainly due to coordinate

transformation errors are not considered here. Fig. 3.17 visualizes the position estimation

results. Ω = 0◦ was used as reference for the position estimation to show the improvement

of estimation accuracy using active vision. The red, dash-dot line with point markers shows

the estimated robot positions without active vision, while the blue, squared-dashed line

shows the results with the planned view directions. The robot position estimation result

using active vision is better than that using the constant view direction.

Taking GS and LS into consideration, the robot also computed the GS value from the

three consecutive input images during the position estimation. If the GS value in the

current environment was higher than a threshold defined empirically, set to 0.1 in this

experiment, the robot attended to the LS at the next time step. Fig. 3.18 illustrates the

GS value at each time step. At position (1.969, 1.19)m the GS value was higher than the
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Fig. 3.18: GS values during robot locomotion. The threshold was set to 0.1 bit.
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Fig. 3.19: Image sequence captured at different locations (x-coordinate on the images) for
the self-localization task taking visual stimuli (LS and GS) into consideration. The
numbers under the images denote the camera view directions with respect to the
locomotion direction.

threshold. Then, the robot attended to the LS at position (2.452, 1.19)m. Fig. 3.19 shows

the view directions for self-localization tasks with consideration of environment uncertainty.

The human that suddenly entered into the FOV was attended to by the robot.

Fig. 3.17 also illustrates the robot position estimation result considering surprising

events in a black, solid line. Without considering surprising events, the robot planned

its view direction towards the task-relevant information – the landmarks and the posi-

tion estimation error is about 0.001m in x-direction and 0.0417m in y-direction. With

consideration of a surprising event at the previous time step – a human entering into the

FOV – the camera tried to locate the surprising event in the environment and changed its

view direction from 50◦ to 10◦. The position estimation errors in x- and y-direction are

0.1538m and 0.0441m. The self-localization task is impaired by considering GS and LS

at this moment.
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3.4.3 Discussion

Although the self-localization task is impaired by considering GS and LS, the surprising

event in the environment should also attract the robot’s attention considering environment

exploration and safety. Through interaction between LS and GS, a robot has the chance

to perceive the not-explicitly task-relevant stimuli while performing its primary task.

Both metrics are indispensable. Since LS indicates the relative importance of an image

location in comparison to other locations, without GS the robot has to compute LS con-

sistently, which is a waste of computation capacity. Moreover, if the robot always attends

to the LS, the robot task is ruined. Without LS, the robot does not know the surprise

origin. Not attending towards the LS means that, at the very least, an information loss

occurs. Worst of all, the robot may become damaged. For the situation that the robot

has a primary task and is also envisioned to be aware of its operation environment, these

two metrics are combined to give the robot the possibility to choose an adaptive behav-

ior, and detect and track the surprising event without weakening its primary task all the

time. A high GS indicates a high environment uncertainty and alerts the robot system to

attend to the current LS maximum, which has probably caused the uncertainty increase.

Through interconnections of LS and GS, the sensitivity of robot systems to the operating

environment is highly improved while preserving primary robot tasks.

The main limitation is that a quantitative evaluation is still missing. However, under

different task loads, in different environments (indoor/outdoor, familiar/strange surround-

ings), different subjects would also behave differently when facing the same unexpected

stimuli. Therefore, this ability to attend to unexpected stimuli in an uncertain environ-

ment is not a question about “right”, “wrong”, or “how much”, but concerning whether

a robot can or cannot have this kind of cognitive ability. Therefore, although a quanti-

tative evaluation is not easy, the reasonability and necessity of the existence of GS and

LS to reduce information loss and computation waste are experimentally demonstrated.

This pre-attention ability enables a high sensitivity to the environment and benefits a con-

current world exploration during robot operation. The more sensitive the perception is

conducted, the more accurately and quickly a response can be achieved.

3.5 Summary

Conventional robot applications emphasize task-relevant information explicitly. Task-

irrelevant (not directly task-relevant) stimuli in the environment are commonly ignored,

which are, however, a critical point for perception of unexpected events and a guaran-

tee of the robot’s working order in an uncertain environment. This chapter addresses

this bottom-up perception problem during a robot performing a task by solving two main

issues: definition of task-irrelevant stimuli and determination of a reasonable and economi-

cal time point to attend to task-irrelevant stimuli considering environment dynamics. Two

metrics, local surprise and global surprise, are defined in this context.

Local surprise combines static saliency and temporal novelty in the 2D image space using

an information-based approach, while global surprise emphasizes the dynamic changing of

the robot’s operating environment. A high global surprise indicates a high environment
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uncertainty and alerts the robot system to attend to the current local surprise maximum,

which has probably caused the uncertainty increase. Both metrics are complementary to

each other and can also be separately applied in different contexts.

Through interconnections of local surprise and global surprise, the sensitivity of robot

systems to the operating environment is highly improved while preserving primary robot

tasks. These results open up the possibilities and future directions of developing cognitive

technical systems, which can also concern their own existence and safety issues in addition

to scheduled tasks. Limitations are mainly located in expensive quantitative evaluations

and the need for a more sophisticated means of environment monitoring, which are subject

to future work.
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Bottom-Up Attention Control

4.1 Introduction

Considering goal-directed robotic applications, visual attention has become a popular topic

of robotics research to deal with the limited processing capability and the real-time require-

ment of technical systems, especially autonomous and/or mobile robots. A pure bottom-up

attention selection is neither sufficient nor efficient for task-relevant information enhance-

ment. Goal-directed guidance of gaze control based on coordinated task and stimulus

parameters plays a key role in robot attention development.

Currently, the related works about visual attention in the robotics domain can be mainly

divided into two different categories: computer vision aiming at perfecting bottom-up

attention selection models in the 2D image space, and task-oriented robotics applications

in the 3D task space. The former category usually ignores robot characteristics such as

locomotion in the 3D space, the real-time requirement, or the goal-directed evaluation,

while the latter commonly deals with specific tasks and uses simple features in structured

work spaces to reduce system complexity. In addition, to search for task-relevant target

objects, most works are tightly based on a costly offline training procedure. An optimal

representation of a target object is learned from the training procedure, which is, however,

not always the best representation of the current environment.

Two complementary visual attention selection strategies are proposed, to deal with the

aforementioned problems and realize a complete robot attention system concerning top-

down information, bottom-up stimuli, and robot behaviors such as active vision control and

locomotion. The combination and coordination of top-down and bottom-up mechanisms

especially in a changing environment due to robot mobility are explored here.

The first strategy is a variation of top-down biased bottom-up (TBB) attention selection,

considering target objects with a similar appearance. In TBB, the conventional offline

training of task relevant top-down information is replaced by an online extraction of top-

down information of the first recognized target object. Successively, adaptation of model

parameters to the changing environment using a Kalman-filter (KF) is developed, which

shows improved efficiency in terms of fewer necessary fixations.

The second strategy is autonomous switching between top-down and bottom-up atten-

tion selection (TOB, abbreviated for Top-down Or Bottom-up), considering target objects

with different appearances. In TOB, autonomous switching between a pure top-down and

a pure bottom-up attention selection mechanism is proposed for the first time, which en-

ables a vision-guided mobile robot to be “autonomous” in the aspect of visual behavior

planning. Moreover, three different internal robot modes – exploring, searching and oper-

ating – are also considered. The visual behavior is then properly adapted to the internal

43



4 Integrated Approaches to Top-Down and Bottom-Up Attention Control

robot modes.

These two strategies complement each other. TOB fills the gap in TBB for the situation

in which totally different targets are searched for while contexts vary. Moreover, integrating

TBB into TOB can improve the overall task performance.

This chapter is organized as follows. In Section 4.2 and 4.3, attention selection strategies

TBB and TOB are presented. The experimental results are presented and discussed,

respectively. A summary is given in Section 4.4.

4.2 Top-Down Biased Bottom-Up Attention Strategy

(TBB)

In this section, the scenario is considered, in which several objects of the same type are

located in the environment and searched for. The central problem is how to promote

task-relevant objects using bottom-up attention without a previous training process. A

variation of the top-down biased bottom-up attention selection strategy is proposed to

realize object representation on the one hand and adaptation of the representation to the

changing environment on the other.

4.2.1 State of the Art

Bottom-up attention selection has been applied as a front-end for object detection in a

few works. In [197], a marriage between bottom-up attention based on a saliency map and

SIFT feature-based object recognition is applied to demonstrate that bottom-up attention

can contribute to object detection and reduce computation time. This paper serves as

a basis for attention-based object detection. An improved version considering similarity

transformations for object recognition is proposed in [43]. However, as mentioned in those

works, some points regarding a complete system need to be improved, for instance, top-

down feedbacks and foveated vision.

If the features of the searched target object are known, top-down information can be

used to bias the attention selection, conventionally named top-down biased bottom-up

attention. The effect of attentional weighting of a target-defining dimension has been

investigated in cognitive psychological and neuroscientific studies [149, 196]. When com-

puting a bottom-up saliency map, weighting the features contained in the target objects

can accelerate the searching process. A few works have assigned weights for top-down and

bottom-up attentional signals and conducted offline learning to achieve the optimal value

of the weights for different feature dimensions such as color, orientation, and intensity

[9, 22, 57, 199], considering maximized target detection speed [135], context sensitivity

[71, 153], and color invariance [128]. In [135], target detection speed is maximized, defined

as the ratio between the strength of the signal detecting the target over that detecting the

distracting background, such that the weights between top-down and bottom-up atten-

tional influences are optimized. By now, a previous offline training for the target object

has become an inevitable prerequisite. Common offline learning processes are conducted

using optimization algorithms [21, 22, 135], neural network [153, 180], or reinforcement

Learning [142].
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Without previous training, top-down information can be acquired from the first input

image containing the target object, such as for object tracking in [55] or for object recog-

nition in [47]. However, adaptation of the top-down information has not yet been applied.

If the target object in the first input image has a different appearance than that in the

other images, the detection in the following images will probably fail.

Furthermore, active multi-focal camera systems with peripheral vision and foveal vi-

sion or active zooming cameras aiming at assembling visual attention behavior have been

developed [18, 51, 189]. Only limited functions such as saliency map computation and

saccades as well as fixation on salient objects are currently available. Moreover, attention

systems are usually studied decoupledly. Few works have applied concurrent locomotion

or manipulation.

4.2.2 Model of TBB

Consider a scenario that a robot is assigned a task to bring four beer mugs lettered with

“Munich”. The target objects can be in different colors and forms. The only feature in

common is the letters on them, which cannot be directly used in bottom-up attention

models. Here, it is desired to avoid conventional offline training, which consists of captur-

ing images containing target objects and manual selection of the target objects from the

background. In this system, a robot is given a sample image of a certain kind of target

object and can start to search for all the target objects in a room. A similar approach to

acquire a sample image is described in [47]. It is not wise to use the information in the

sample image directly, since the environment in the sample image can be different from

the one in which the target objects are searched for.

A variation of top-down biased bottom-up attention selection, TBB, is proposed. Once

an object is recognized as the target object, the bottom-up attention model is adapted to

the current environment, using the top-down information extracted from this target object.

A KF is used here to estimate the model parameters based on the previous knowledge and

the current measurement. Moreover, bottom-up attention is applied to a wide-angle stereo

camera to select a sequence of fixation points. Successive snapshots of high foveal resolution

using a telephoto camera enables highly accurate object recognition.

Fig. 4.1 illustrates the operating structure of a multi-focal vision system, searching for

M target objects with similar appearances. Before detailed information processing, the

vision system first scans the environment. A wide-angle stereo camera is used to acquire

the rough information due to its wide FOV. Bottom-up attention selection is computed on

the low-resolution wide-angle image to predict potentially interesting objects, the target

object candidates, at first glance. On the saliency map, thresholds Tmin and Tmax for the

grayscale value of each pixel are set, to achieve a binary map. Based on this binary map,

an object map consisting of target object candidates is constructed. In the object map,

the candidates are numbered in an order that the more salient a candidate in the saliency

map is, the earlier this candidate is processed in detail, to ensure that the most likely

object candidate has the highest priority if the time condition is critical. Since object

recognition is highly dependent on image resolution, object recognition is executed on the

telephoto images. A telephoto camera with high resolution focuses on and processes the

previously selected areas consecutively. This saccade/fixation behavior is facilitated by a
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Fig. 4.1: Overview of the TBB model consisting of prediction, verification and adaptation.

pan-tilt platform. Once a candidate is verified as a target object, the bottom-up attention

selection model parameters are newly estimated using the top-down information extracted

from this object. The parameter adaptation to environments is accomplished online by

using a KF. No previous training is needed and the whole process is more efficient in this

perception-verification-action loop.

It is worth mentioning that the target objects are not assumed to be salient. The

vision system starts searching in the most salient positions. If the salient positions firstly

determined in the object map do not contain any target object, the threshold of the saliency

value for determination of the binary map is reduced to the next [Tmin, Tmax]. The most

salient positions only have a higher priority to be attended to than the other positions.

For the bottom-up attention selection, a standard computational model, the saliency

map model proposed in [84], is used. Since the object recognition algorithm is not the focus

of this strategy, Scale-Invariant Feature Transform (SIFT) feature matching between the

sample image and the high-resolution images is chosen to verify whether a pre-selected

attentional allocation contains a target object. The saliency map model and the SIFT

algorithm are implemented using the CUDA technology on the multi-GPU platform, which

highly accelerates image processing. Further details about the multi-GPU implementation

of bottom-up attention selection can be found in Appendix B.
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Object Recognition
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Fig. 4.2: Saliency map computation illustrated in the feed-forward connections and model
parameter update illustrated in the feedback connections.

Bottom-Up Attention

For the bottom-up attention, the saliency map model proposed in [84] is applied in this

model, which is illustrated by the feed-forward connections in Fig. 4.2. As introduced in

Chapter 3, an input image is sub-sampled into a dyadic Gaussian pyramid with 9 scales

in three channels (intensity (I), orientation (O) for 0◦, 45◦, 90◦, 135◦, opponent color (C) in
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red/green (RG) and blue/yellow (BY)). Then, center-surround differences are calculated

for the images in the Gaussian pyramids between the fine scale {2, 3, 4} and the coarse

scale {5, 6, 7, 8}. In this phase, 42 feature maps (FM) are generated in which the salient

pixels with respect to their neighborhood are highlighted. Using across-scale combinations

the FMs are combined and normalized into a conspicuity map (CM) in each channel.

The saliency map is a linear combination of the CMs. The bright pixels are salient and

interesting pixels with respect to their backgrounds. If no previous knowledge is available,

the saliency map predicts purely bottom-up attention selection.

Model Parameter Definition

To combine top-down information into the saliency map model, 45 weights are defined in

the saliency map model, which represent the importance of the contributions of 3 CMs and

42 FMs in building a saliency map. They are divided into 8 groups, namely the CM group

containing 3 maps CM-I, CM-C and CM-O, as well as 7 FM groups: FM-I, FM-RG,

FM-BY , FM-O0, FM-O45, FM-O90, and FM-O135, containing 6 center-surround differ-

ence maps between different scales (2-5, 2-6, 3-6, 3-7, 4-7, 4-8) each. A weighting vector w,

representing the 45 weights for 45 maps in the model, can be formulated as follows:

w =







































wCM -I

wCM -C

wCM -O

wFM -I[2-5]
...

wFM -RG[2-5]
...

wFM -BY [2-5]
...
...







































. (4.1)

If there is no top-down information available, which means the model works as bottom-

up, w is a vector of ones. If top-down information should be integrated into the saliency

map, the components of w will be adjusted to certain values to present the characteristics

of the task-relevant information.

As shown in Fig. 4.2, once a candidate region m in the object map is verified as a target

object, this candidate’s coordinate information is fed back to the 45 maps. Then, the

corresponding region in these maps can be ascertained. An average gray value V in those

regions in each map is reckoned, to identify how much each map (CM or FM) contributes

to the saliency of this location. Fig. 4.3 illustrates the conspicuity maps CM-I, CM-C,

and CM-O of an input image. The pixels limited by the rectangles are involved in the

contribution computation. The contribution (c) of each map can be computed through

Eq. (4.2) and (4.3).
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CM-I CM-C CM-O

Fig. 4.3: Contribution of CMs in building a salient image region, illustrated by the squares.
Upper image: the object map; Lower images: the conspicuity maps in I-, C-, and
O-channels from left to right.

For CMs

cCM -i(n) =
VCM -i(n)

∑

i

VCM -i(n)
i ∈ {I, C,O}; (4.2)

For FMs

Intensity: cFM -I[j](n) =
VFM -I[j](n)

∑

j

VFM -I[j](n)
,

Color: cFM -C[j](n) =
VFM -C[j](n)

∑

C

∑

j

VFM -C[j](n)
,

Orientation: cFM -O[j](n) =
VFM -O[j](n)

∑

O

∑

j

VFM -O[j](n)
,

(4.3)

where C ∈ {RG,BY }, O ∈ {O0, O45, O90, O135}, and j ∈ {2-5, 2-6, 3-6, 3-7, 4-7, 4-8}.

In system initialization, to build a saliency map, three CMs are weighted equally, namely

wCM -i = wCM -c = wCM -o = 1. To build a CM, the different features are also weighted
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equally. Therefore, the sum of weights remain constant as follows:

∑

i

wCM -i,k ≡ 3,

∑

j

wFM -I[j],k ≡ 6,

∑

C

∑

j

wFM -C[j],k ≡ 12,

∑

O

∑

j

wFM -O[j],k ≡ 24,

(4.4)

where k is the current time step.

If an interesting area in the current saliency map is selected as target object candidate

and also confirmed to be a target object, the more a CM or an FM contributes to building

the current saliency map in this area, the more weight this map should be assigned for

the next step, such that the characteristics of the target object are enhanced in the next

saliency map. The weights of maps for the next saliency map computation are proportional

to the contributions of the maps in the current step, formulated as follows:

CMs: wCM -i,k+1 = 3× cCM -i,k;

FMs: wFM -I[j],k+1 = 6× cFM -I[j],k,

wFM -C[j],k+1 = 12× cFM -C[j],k,

wFM -O[j],k+1 = 24× cFM -O[j],k.

(4.5)

Parameter Adaptation Using Kalman Filtering

Eq.(4.5) means that the adaptation of the new weights for next cycle is completely ac-

cording to the top-down information in the current cycle. In other words, the system

learns only once from the current result. However, instead of “one-shot” adaptation, the

model parameter is updated not only based on the latest measurement but also considering

previous measurements.

Investigating a sequential attentional task, a phenomenon called attentional priming is

reported [115]. In visual search tasks, trial-to-trial repetition of a target-defining feature

or target location substantially reduces the reaction time. Two arguments can be implied

[130]: First, based on past experience, a probabilistic model of the environment can be

dynamically constructed by the perceptual system; second, control parameters of the atten-

tional system are tuned so as to optimize the performance under the current environmental

model. Dealing with the attentional priming phenomenon, in [130] a probabilistic model

of the environment is proposed which is updated after each trial. A memory constant is

introduced to represent how much the past experience affects the current result. Based on

this only free parameter, results from diverse experimental paradigms are explained.

For a mobile robot, the background and the light conditions are always changing. The

changes due to the movement can be continuous, while the changes due to entering or

facing a totally new environment can be very sudden. Therefore, the parameter update

cannot only be based on the latest measurement, since it will be difficult to find a new
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target if the last measurement is unique. Moreover, the more recently the measurement

was taken, the more representative the contributions/parameters according to the current

environment are.

KF is an efficient recursive filter that estimates the state of a dynamic system from

a series of incomplete and noisy measurements. Here, the memory constant proposed in

[130] is replaced by using the Kalman gain Kk, which evolves dynamically in the correction

phase in the Kalman filtering and bias the weights between the past experience wk−1 and

the new measurement ck.

In this case, the system state is the weight vector of the bottom-up attention model at

time k:

xk = wk =

















wCM -I,k

wCM -C,k

wCM -O,k
...
...

















, (4.6)

where xk is assumed to be constant for one kind of object. The system equation can be

formulated as follows:

xk = A · xk−1 + zk−1, (4.7)

where zk−1 is process noise and the state transition matrix A is a unit matrix of a dimension

of 45× 45. There is no control input in this case.

The measurement is the contributions of CMs and FMs:

yk = ck =

























cCM -I,k

cCM -C,k

cCM -O,k

cFM -I[2-5],k
...

cFM -RG[2-5],k
...

























, (4.8)

with

yk = H · xk + vk, (4.9)

where vk is the measurement noise and the measurement matrix and

H =













1
3
I3 0 · · · 0

0 1
6
I6 0

...
... 0 1

12
I12 0

0 · · · 0 1
24

I24













, (4.10)

where In, n ∈ {3, 6, 12, 24}, is a unit matrix with n-dimension.

zk and vk are assumed to be zero mean Gaussian white noise with covariance matrices

Qk and Rk obtained empirically.
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The main contributions of this strategy based on the prediction-verification-adaptation

loop are as follows:

• This is a general concept which can be applied for various objects and scenarios. The

top-down information is extracted from the detected target objects in the current

scenario. Therefore, no previous training is necessary.

• The KF-aided model parameter tuning enables autonomous adaptation to the oper-

ating environment that changes along with the robot locomotion.

• The proposed adaptation strategy, the implementation on multi-GPU platform, and

the multi-focal camera system facilitate an efficient and high-speed object detection.

4.2.3 Performance Evaluation

Experiments using the ACE robot were conducted for performance evaluation. An object

detection task was applied. Since object recognition is not the focus of this strategy, for

simplicity, posters with “emergency exit” written on them were chosen as target objects.

Four posters were hung around the initial robot position. Because of the low resolution and

the limited effective range of the wide-angle stereo camera, the average distance between

the posters and the robot was 3 m. The robot rotated 90◦ after investigating one side of

the room. Four rotations were needed to accomplish the object detection task.

Four different strategies are considered: exhaustive searching without attentional pre-

selection (abb. B0T0K0 ), purely bottom-up attentional pre-selection (abb. B1T0K0 ),

top-down biased bottom-up attentional pre-selection but without KF estimation (abb.

B1T1K0 ), and the proposed TBB (abb. B1T1K1 ). The symbol definition is shown in

Tab. 4.1. The “0” in the symbols indicates “without”, while “1” indicates “with”. To be

consistent with the other strategies, the proposed TBB is referred to as B1T1K1.

Symbol Bottom-up Top-down KF

B0T0K0 − − −
B1T0K0 + − −
B1T1K0 + + −
B1T1K1 (TBB) + + +

Tab. 4.1: Symbol definition for different strategies. “+”: with; “−”: without.

The object detection result using B1T1K1 is shown first. Then, the performance en-

hancement of Kalman filtering is discussed by comparing strategies B1T1K1 and B1T1K0.

After that, a comparison of four strategies in terms of detection rate and computation time

is conducted.

Object Detection Using Online Top-Down Information Update

The left two columns in Fig. 4.4 show the object maps and the respective saliency maps

using B1T1K1. In the first image, eight target candidates in the image were selected

using the initialized saliency map without top-down information. After the first candidate
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Fig. 4.4: Column 1: object maps predicted using B1T1K1; Column 2: saliency maps computed
using B1T1K1; Column 3: object maps predicted using B1T0K0; Column 4: saliency
maps computed using B1T0K0. Numbers on the object maps indicate the fixation
sequence along with a descending saliency value of the selected image region candi-
dates. “Yes” on the object maps indicate that an image region candidate contains a
target object.

was fixated by the telephoto camera and recognized as a target, this candidate region was

marked by “Yes” and the weight vector was adapted. Only two target candidates remained

in the newly computed saliency map (in the second row) and were investigated further.

For the following three totally different scenes (the last three rows) the target objects had

always been selected for a detailed processing.

If B1T0K0 is used, shown in the right two columns in Fig. 4.4 for the first scene, all the

seven candidates were processed in more detail. For the following three scenes, the target

objects were not even selected for a saccade/fixation.

The sample image used for the object recognition is shown in the left-most image in
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  NOT AUSGANG

           BITTE 

     FREIHAL TEN

ALARMGESICHERT

Fig. 4.5: The sample image of the target object used in the experiment (left) and four images
of the target objects captured by the high-resolution telephoto camera during the
experiment using B1T1K1. Blue circles: the matched SIFT feature points.

Fig. 4.5, . Since the proposed strategy should be general, a grayscale image was used which

contains no top-down information such as color. The high-resolution images captured

by the telephoto camera are also shown in Fig. 4.5. The blue circles are the matched

SIFT features with the sample image. In each object recognition cycle, once the matched

feature number is beyond the predefined threshold, it means a target object was detected.

Otherwise, up to 10 SIFT feature extractions and matchings are computed to reduce the

influence of noise.

Fig. 4.6 shows a new update of the thresholds Tmin and Tmax in building a new object

map, if no target object was found in the previously selected task-relevant image region

candidates (the left column). In the right column, the less salient image regions were

investigated. The threshold update is defined in this experiment only once to save time

and energy. It can be adapted to different tasks with different specifications, which require

either time/energy minimization or maximization of the number of the detected target

objects.

Performance Enhancement of Kalman Filtering

To show the performance of Kalman filtering, strategy B1T1K0 and B1T1K1 are compared

here. Fig. 4.7 shows the changing of the weights for CM-I, CM-C, and CM-O. The

weights were initialized to be 1. After a target object was recognized, the weights were

updated. wCM -C increased from 1 to 2.980217. Respectively, wCM -I and wCM -O decreased.

At time steps 2, 3, 4, and 7, target objects were detected. Using B1T1K1, wCM -C converged

to about 2.99, illustrated by the lines with circular markers.

The lines without circular markers in Fig. 4.7 are the results using B1T1K0 using the

same input images. Without Kalman filtering, the model parameter for the third fixation

totally depends on the second measurement, which has a lower weight for CM-C and a

higher weight for CM-I. After a rotation of 90◦, the target position was not chosen as

the first candidate if KF was not used (see the right column in Fig. 4.8). In contrast,

using B1T1K1, the target position was chosen to be first processed, marked with “1” in

the object image (see Fig. 4.8, top left). In summary, the utility of the KF is one of the

possibilities to find an efficient updated parameter value to represent the target object itself

and the current environment by weighting the past experience and the new measurement.

Another example is illustrated in Fig. 4.9. A stop sign was searched for in this exper-
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Fig. 4.6: Update of thresholds for object map. Left column: object map (upper) and saliency
map (lower) computed using the initial thresholds; Right column: object map (upper)
and saliency map (lower) using the updated thresholds. Numbers on the object maps
indicate the fixation sequence along with a descending saliency value of the selected
image region candidates. “No” on the object maps indicate that an image region
candidate contains a target object.

2 4 6 8 10

1

2

3

Fixation number

W
e

ig
h

ts

 

 

CM−I    (B1T1K1)

CM−C  (B1T1K1)

CM−O  (B1T1K1)

CM−I    (B1T1K0)

CM−C  (B1T1K0)

CM−O  (B1T1K0)

0

2.980217

2.473773

2.996526

2.994795

Fig. 4.7: The weights variation for CM-I, CM-C, and CM-O using and not using KF.

iment. The upper row shows three successive object maps, while the respective saliency

55



4 Integrated Approaches to Top-Down and Bottom-Up Attention Control

1
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Fig. 4.8: Left column: object map (upper) and saliency map (upper) with Kalman filtering;
Right column: object map (upper) and saliency map (upper) without Kalman fil-
tering. Numbers on the object maps indicate the fixation sequence along with a
descending saliency value of the selected image region candidates.

maps are shown in the lower row. In each image of column a and b, one sign was detected.

Between two consecutive maps, a parameter update is conducted. The circles drawn in the

object maps indicate the image region with a descending saliency value from a previous

image to a current image, while the circles drawn in the saliency maps indicate the image

region with an ascending saliency value. Through the KF-aided parameter update, the

task-relevant regions are enhanced, while the task-irrelevant regions are inhibited.

Investigation of the Computational Cost

The performances of four strategies defined in Tab. 4.1 are compared in terms of the average

detection rate and the approximate necessary fixation times for this task in Fig. 4.10. The

performance was experimentally evaluated in three different scenarios. In each scenario

three to five experiments were conducted. The detection rate is defined as the ratio of the

detected and actual target object number M in the environment. In this comparison, the

adaptation of Tmin and Tmax is not considered.

In B0T0K0, the telephoto camera would have to scan the whole environment and process

the object recognition for each input image. Therefore, more than 500 fixations of the

telephoto camera would be needed, which indicates a high computational cost. If the

target objects are not captured completely in a telephoto image, the recognition could fail,

which causes a detection rate of approximately 80%.
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a b c

Fig. 4.9: From left to right: update of the object maps (upper) and the saliency maps (lower)
aided by a KF. Rectangles: image regions selected as candidates; Circles in the object
maps: image regions with a descending saliency value from a) to c), inhibited by the
Kalman filtering; Circles in the saliency maps: image regions with an ascending
saliency value from a) to c), enhanced by the Kalman filtering.
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Fig. 4.10: Comparison of the approximate necessary fixations (left) and detection rates (right)
for 4 target objects using four different strategies.

Only with the bottom-up attention model B1T0K0 is it difficult to detect all the target

objects. The detection rate is only 50%, although the computational cost is low. Only the

positions selected by the bottom-up model need to be focused on and be further processed.

Using B1T1K0 and B1T1K1, the detection rate is higher, namely about 65% and 90%.

However, without KF, the weights vary strongly after each recognition, causing a difficult
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selection for next step or that the target object is selected but not numbered to be firstly

processed, if the top-down information totally depends on the last measurement. Aided

by KF, the telephoto camera has only fixated nine times in 3D room to detect all the four

target objects.

Process Computation time Mechanical time

Initialization T0 T1

Saliency map T2(n1 + 1)
SIFT T2(n2 · n3)
Saccade n2 · T3

Robot motion T4

Sum T1 + T2(n1 + 1 + n2 · n3) n2 · T3 + T4

Tab. 4.2: Computational and mechanical time cost for object detection. The constants T0 +
T1 = 6 s, T2 = 0.033 s, T3 = 1 s, T4 = 20 s. n1: total number of saliency maps
computed using top-down information; n2: total number of target object candidates;
n3: the average times for SIFT computation in one candidate region.

Tab. 4.2 shows the time cost for one experiment including both computation and me-

chanical times. n1 indicates the number of the detected target objects. After a target

object is detected, the saliency map will be computed with the updated weights. In addi-

tion to the first saliency map with equal weights, there are n1 saliency maps computed. As

mentioned in Appendix B, using cameras at 30 Hz, no time delay is noticed for saliency

map computation and SIFT algorithm, since they are implemented on a multi-GPU plat-

form. Therefore, T2 = 0.033 s is taken for image capturing. The total number of the

candidates predicted in the saliency maps, as well as the necessary fixation number, is

denoted by n2, while n3 means the average times of SIFT computation and matching for

one candidate. Here, n3 is inversely proportional to n1/n2. The more target objects there

are under the total target candidates, the shorter the average time for SIFT computation

is. For each saccade a time delay of 1 s was manually added to stabilize the telephoto

image. For the robot motion, 4 rotations of 90◦ cost T4 = 20 s in total.

To sum up, the computation time will decrease if the total number of the candidates n2

decreases and n1/n2 increases for the same number of target objects M . Using B1T1K1,

an improvement in computational cost is achieved.

4.2.4 Discussion

Contributions

Repeated object detection is solved by integrating top-down information of the recognized

target object into the bottom-up attention model, such that the most likely objects are

promoted by the bottom-up attentional pre-selection. The approach proposed here is a

general concept for object detection, which can be applied for various objects and scenar-

ios. No previous training of model parameters is necessary. The model parameters can be

adapted to the changing environment and tuned online. A KF facilitates the parameter
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Fig. 4.11: Saliency map computed directly from a sample image. Left: sample image. Right:
the respective saliency map.

estimation and provides a rational combination of the current measurement and the pre-

vious knowledge. Significant improvements in terms of accuracy, flexibility, and efficiency

are achieved.

TBB(B1T1K1) can be regarded as an online training process. For the object recogni-

tion, a sample image about the target object is available. But the top-down information,

which can be directly integrated into the bottom-up attention, is not available. From the

sample image, the detailed SIFT features can be extracted for instance, but not the colors,

intensity, and orientation needed in a bottom-up attention model. The sample image can

be a gray image or an image containing a target object and a totally different background

than the later searched environment. If the top-down information is directly extracted

from the sample image, more detailed features may be detected which can not represent

the whole object (see Fig. 4.11). To avoid manual selection of the target in the temporar-

ily unknown environment, the attention system is initialized using a purely bottom-up

attention. After the first target is found, the system works the same as the one with an

initialization using top-down information. It is more costly than using a conventional top-

down biased bottom-up strategy before the first target is found, but more flexible since

no bottom-up feature related top-down information is needed. Moreover, if there is no

obvious task-relevant objects in the current FOV, several fixations on other salient objects

may be also informative.

Possible Overfitting

Fig. 4.12 illustrates the weights for feature maps at different scales in channel I, RG,

BY , and O0. The influence of scale on the attention model is investigated. As previously

mentioned, the same kind of target objects could also have the similar scale with respect

to its surroundings. It can be seen that the FM with scale 2-5 and 2-6 have the maximal

weights in each channel, which indicates that it is meaningful to define weights for feature

maps at different scales.

However, the different distances of the object positions may cause an overfitting due

to the weighted scales. Possible solutions are zoom camera utilization or robot motion

controlled to achieve the best view of the target [188].
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Fig. 4.12: Weights update of FMs at different scales in different channels: I-channel (top
left), RG-channel (top right), BY -channel (bottom left), and O0◦-channel (bottom
right).

Experimental Setup

Occluded scenes are not considered in the experiments, since the matched SIFT feature

number is the only crucial factor to verify if an image region contains the target object. If

only a small part of the target object can be seen, the recognition rate decreases strongly.

The background is complicated with distractors such as the blue ceilings and the red table

which are also significantly salient with respect to colors, which can be ignored for humans

attention, since the knowledge is available that the target objects can not be in the ceiling

from the context. A context recognition approach can be integrated [172, 183].

Limitations

This efficient strategy can only be applied if the searched targets have a similar appearance,

for example, a kind of objects is repeatedly searched for. If the targets change with the

context, a top-down biased bottom-up strategy could impair the search process, since the

top-down information does not converge.

As with other works using top-down biased bottom-up attention selection for object

detection, there is no guarantee that the weightings for one object are unique to that

object. A set of objects may be represented by the same weighting vector. An increase

of the number of the feature dimensions in the bottom-up attention model could improve
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the performance but cannot solve this problem absolutely. The work could be improved

by modeling the distractors, which are also fixated by the telephoto camera.

Currently, the scan path of the telephoto camera is selected according to the priority of a

candidate image region, namely the task-relevant saliency value. Task-oriented evaluations

and rewards should be considered for further improvements.

4.3 Autonomous Switching of Attention Mechanisms

(TOB)

As mentioned previously, a top-down biased bottom-up attention strategy can help a lot in

terms of efficiency. However, it fails if a group of objects is searched whose appearances can

not be uniquely described by low-level features used in a bottom-up computation model.

For example, different traffic signs are all salient in color but different in geometry and

have different patterns on them. They are, therefore, not distinguishable from each other

only relying on low-level features used in bottom-up attention selection. An exhaustive

search is still needed. To lower the computational cost, a search window is usually defined

for exhaustive search as the robot FOA, in which the exhaustive search is conducted.

A search window based on bottom-up attention can predict image regions with higher

probability to contain a target object, while a search window based on top-down attention

is efficient for task accomplishment. Both bottom-up attention and top-down attention

are essential for robot attention control. On the one hand, if a task-relevant object is

not located in the robot FOV, pure top-down attention selection can also use position

data in 3D task space to direct robot attention towards the target, while bottom-up or

top-down biased bottom-up attention selection only relies on the 2D image data. On the

other hand, if there is no task-relevant information in the FOV at all, a pure bottom-up

attention can guide the robot attention to explore the environment in a flexible way. In this

section, autonomous switching between top-down and bottom-up attention mechanisms is

proposed, which are also adapted to the internal robot states.

4.3.1 State of the Art

Only a few works have up to now considered switching between top-down and bottom-

up visual behavior. In [53], top-down object search and bottom-up environment explo-

ration using the same saliency map model and robot platform are proposed. However, the

switching between them is manual. In [90], a top-down part is initialized by a bottom-up

part to recognize actions, track the actions, and determine the current context. In [23],

visual attention is switched between different targets. Instead of a pure bottom-up or

top-down state, visual attention allocation is determined by varyingly weighted top-down

and bottom-up signals to demonstrate the robot gaze preference. In [209], a task-driven

object-based visual attention model for robot applications is proposed which involves five

components: pre-attentive object-based segmentation, bottom-up still attention, bottom-

up motion attention, top-down object-based biasing, and contour-based object representa-

tion. Task-specific moving object detection and still object detection are operated based
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on this model. In [51], three visual behaviors are defined: exploration behavior, coverage

behavior, and view point selection behavior. The first behavior is more a robot exploration

behavior than a visual behavior. In the second behavior, potential objects are explored by

the peripheral vision using bottom-up attention. After the environment is fully covered,

novel perspectives of the objects are captured and the object recognition is conducted in

view point selection behavior. The top-down state has been started only once. Strictly

speaking, none of the above works have applied autonomous switching between pure top-

down and bottom-up attention.

Moreover, most visual attention systems are studied decoupledly, where a goal-directed

robot operation is commonly ignored. A robot should always be supposed to do something

with the target object, such as approaching or manipulating. Considering this, robot visual

attention behavior should be adapted to the internal robot state to achieve a complete

system.

Therefore, a switching between top-down visual state and bottom-up visual state is

proposed to deal with different situations, which enables autonomy of robots in terms of

visual behavior. This autonomous switching between these two kinds of attention selection

mechanisms is also adapted to different internal robot states and fills the gap for object

searches not solvable using a conventional combination of them, such as TBB.

4.3.2 Model of TOB

The switching mechanism of attention selection for an autonomous robot is illustrated in

Fig. 4.13. Three different robot internal modes are considered:

• Exploring mode, in which the robot has no specific task and just explores the world

by looking at interesting parts of the environment;

• Searching mode, in which the robot has a specific task and searches for its current

target object;

• Operating mode, in which the robot is accomplishing its task, e.g. moving to or

manipulating the detected target object.

Four attention selection states are assigned to the robot visual behavior: the bottom-up

state in the exploring mode (abb. BUe), the bottom-up state in the searching mode (abb.

BUs), the top-down state in the searching mode (abb. TDs), and the top-down state in the

operating mode (abb. TDo). Seven transitions are defined. In this section it is discussed

how the robot FOA is determined in each state and how the autonomous switching between

the states is conducted.

Bottom-Up State

In the bottom-up state, the robot focuses on an interesting area in the FOV, which is

computed using the local surprise map introduced in Chapter 3. The FOA is directed

towards the image region which is salient or surprising and is, therefore, attractive.

In the example shown in the left column in Fig. 4.14, the rectangles in solid lines are

the FOA predicted by the surprise map. A moving human is selected as the FOA because
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tb: target lost and l>L

Top-down (TDs)

bt: target found 

start

tt: target lost 

    and l<=L

Top-down (TDo)

t2: target lost or current 

task accomplished

Searching

Operating

Exploring

Bottom-up (BUe)

b1: no present task b2: new task 

Bottom-up (BUs)

t1: observation 

uncertainty is small

Fig. 4.13: Finite state machine of the autonomous switching mechanism. Three internal
robot modes: exploration, searching and operation. Four different attention states:
bottom-up state in exploring mode (BUe), bottom-up state in searching mode
(BUs), top-down state in searching mode (TDs), and top-down state in operating
mode (TDo).

of its high surprise value. In the bottom-up state, the robot attends to the image region

limited by the rectangle in solid lines, although no robot task such as human detection is

assigned to the robot. The FOA (the masked image region) and the most salient/surprising

position (the rectangle) indicate the same position. More examples of the surprise map

can be found in [225]. In the bottom-up state the salient/surprising image regions in the

input image are viewed sequentially according to their descending saliency/surprise values.

The difference between the visual behaviors in the state BUs and BUe is whether ex-

haustive search is applied in the selected FOA. In the BUs state, the object detection

algorithm is applied in the selected FOA, since the robot has a specific task in the search-

ing mode. In the BUe state, the robot only attends towards the salient/surprising region.

No further information processing has been applied at the current step.
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Fig. 4.14: Left column: bottom-up state; Right column: top-down state; Upper images: origi-
nal input images; Lower images: the resultant robot attention windows. Rectangles:
the salient/surprising image regions (the same as the masked region in bottom-up
state); Masked regions: the current robot FOA; Circle: the detected target object.

Top-Down State

In the top-down state, the robot concentrates on the image region containing task-relevant

information. The conventional robot tasks can be approaching, avoiding, or grasping an

object in which the position estimation of the object is the main objective. To perform

this task, the robot should attend to the region which contains the target object to get a

better accuracy.

The right column in Fig. 4.14 shows an example of the FOA selection in the top-

down state. A robot is supposed to detect a traffic sign and approach it. The region

around a target object, the masked region in the right-bottom image, is selected as the

current robot FOA and is further processed in detail, although this region is not the most

salient/surprising region at this moment; this is in fact the region in the rectangle.

In short, in the top-down state, the position of the target object is known. No matter

how salient and surprising the other features are, to perform its task, the robot attends to

the detected target object.

The difference between the behaviors in the state TDs and TDo is that in the TDs state

the observation of the target object has a higher priority, while in state TDo the robot

starts to accomplish its task based on the complete observation acquired in TDs state.
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Switching Mechanism

The main contribution of this section is to realize autonomous switching between the top-

down and the bottom-up visual attention selection considering robot task performance.

The transition conditions illustrated in Fig. 4.13 are defined as follows.

After initialization, the image region to be further processed is selected in the BUs state,

since the position of the target object is unknown at this moment. Once a target is found

in the selected FOA, the TDs state is activated (bt). In this state, the image region around

the target is selected constantly, ignoring the other salient features. If the target is lost, for

example due to lighting condition change or humans and vehicles hiding the target object,

the robot should initially continue focusing on the last region for L frames to see if the

target object is re-detectable (tt). If the robot stays in top-down state for l frames, l > L,

and the target is still unseen, the BUs state is triggered again to search for the previous

target (tb).

If the observation of the target object in the TDs state is accurate enough, the robot

starts to operate (t1). To evaluate the observation uncertainty, the n-dimensional system

state x ∈ R
n of the current robot task is modeled as a n-dimensional Gaussian distribution

with mean value µ and covariance matrix P x in the task space computed using a KF. The

system state x is chosen according to the current task and can be the robot position and

velocity for a self-localization task or object position and velocity for an object tracking

task. The distribution at the previous time step k − 1 is regarded as the prior probability

density function (pdf) pk−1, while the posterior belief distribution about the system state

at the current time step k is pk with a continuous variable x for specific tasks. Both of

them are defined as follows:

pk−1 =
1

(
√

2π)n(det P x,k−1)1/2
exp(−1

2
(xk−1 − µk−1)

T (P x,k−1)
−1(xk−1 − µk−1)), (4.11)

and

pk =
1

(
√

2π)n(det P x,k)1/2
exp(−1

2
(xk − µk)

T (P x,k)
−1(xk − µk)). (4.12)

Then, the observation uncertainty is defined as the Kullback-Leibler divergence or rel-

ative entropy computed as follows:

KL(pk||pk−1) =

∫ ∞

−∞

pk · log
pk
pk−1

dx in [bit]. (4.13)

An empirical threshold is defined for the relative entropy between the predicted and the

updated state estimate as one of the criteria for evaluating the observation uncertainty. The

smaller the observation uncertainty is, the less the estimation and its expected value vary,

and therefore, the more certain the position estimation is. If the observation uncertainty

at the k-th step is smaller than this threshold, the observation at this step is regarded as

successfully executed. Upon this value the robot takes the decision what action to perform

next: operating or observing. Correspondingly, if the task is finished or the target is lost,

the robot stops the current operation, turns into the BUs state, and observes (t2).

If the predefined task is accomplished in total, the robot explores the world by directing
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Fig. 4.15: Experimental setup consisting of three different signs.

its attention towards interesting areas in the environment selected in a pure bottom-up

state BUe (b1). If a new task with new target objects arrives, the robot attention selection

is in the BUs state again (b2).

To sum up, the robot’s visual behavior with different emphases of information acqui-

sition is now adapted to the internal robot state. The switching of robot FOA selection

mechanisms is autonomously conducted.

4.3.3 Performance Evaluation

To demonstrate the strategy, experiments were conducted using the ACE robot. Sign

detection and approaching tasks were assigned to the ACE robot. Fig. 4.15 shows the ex-

perimental scenario in the institute laboratory from the robot perspective. Three different

signs were placed in different distances to the initial robot position.

These signs can not be uniquely described by low-level features used in the saliency map

model and therefore can not be easily recognized and distinguished by enhancing certain

bottom-up features using top-down information. Previously trained classifiers based on

Haar-like features are used for object recognition [217]. To lower the computational cost

of object recognition, the classifiers were only applied in the FOA selected in the input

images. The whole input image represents a peripheral sensor input, while the focus region

represents a foveated sensor input with a higher resolution.

Experiment 1: Searching → Operating → Exploring

In the first experiment, the robot was supposed to detect the blue sign and move toward

this sign. If the robot reached its desired position, namely 1m in front of the sign, it should

turn 180◦ and move back to its initial position.

Fig. 4.16 illustrates some representative original input images and their respective results

of the attention selection (the masked region). The frame number and the attention
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# 20 # 24 # 26 # 120

# 144 # 153 # 176 # 177

Fig. 4.16: Results of experiment 1 comprising original input images (the first and third rows)
and their respective resultant images with the robot FOA (the second and the fourth
rows). Numbers on the original images indicate the frame number. The markers
on the left top corner of the resultant images are defined as follows: Rectangle:
bottom-up attention in searching state (BUs); Diamond: top-down attention in
searching state (TDs); Circle: top-down attention in operating state (TDo); Star:
bottom-up attention in exploring state (BUe). Rectangles: the salient/surprising
image regions; Masked regions: the current robot FOA; Circle: the detected target
object.

selection state of each image are also given. The robot first searched for the traffic sign in

theBUs state. The object detection algorithm was applied in the selected salient/surprising

image regions (frame 20 and 24). After the sign was detected in the FOA in frame 24, the

robot kept focusing on the sign and computed the relative position (frame 26) in the TDs

state. After the position estimation of the sign was accurate enough, the robot started to

move towards the sign and tracked the sign during the movement (frame 120) in the TDo

state. The threshold for the observation uncertainty was set to 0.12ḃit. After the task

was accomplished, the robot turned back and looked at the salient/surprising parts in the

environment (frame 144, 153, 176 and 177) in the BUe state. The size of FOA varied with

the size of the detected target object or the size of the salient/surprising image regions.
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Experiment 2: Searching ↔ Operating

In the second experiment, the ACE robot was supposed to detect three different signs one

after another. The positions of the signs were unknown. Once a sign was detected and the

position of this sign was satisfyingly estimated, ACE moved straight ahead and tracked the

sign using the active camera head during the movement, until it reached the position one

meter in front of the sign. Then, the head of the robot should turn to another direction

randomly and search for another signs and so on.

Fig. 4.17 illustrates the experimental results. Images with the FOA (the masked region)

and salient/surprising region (the region in the rectangle in solid lines) as well as the frame

number are shown. At the first step, ACE looked straight ahead and the BUs state was

activated. In frame 1, the blue sign was detected. The FOA changed into the TDs state.

The image region around the blue sign was selected in the following frames, until the

robot reached the position one meter in front of the blue sign (frame 44). Then, the robot

turned its head randomly to the right side and detected the yellow sign (frame 45). After

the position estimation was satisfyingly accomplished, the robot started to move and track

the yellow sign. In frame 111 the sign was lost and the BUs state was activated after

several frames. In frame 127, the yellow sign was re-detected in the FOA. The TDs state

was triggered again. After the robot reached the position one meter in front of the yellow

sign, the head was randomly directed and the state was the BUs state again (frame 149).

In frame 151 and 214 the red sign was detected and tracked. For 228 frames in total, there

are 18 frames in the bottom-up state and 210 frames in the top-down state.

Fig. 4.18 illustrates the evolution of the observation uncertainty and the switching mech-

anism between the top-down and the bottom-up states. The semi-transparent time inter-

vals indicate the operating state in which the robot was moving. The blank areas indicate

the time intervals in which the robot was in the searching mode. The frame numbers

near the arrows show several representative time points. In frame 1, the first sign was

detected. The observation uncertainty reached its maximum in frame 4 and decreased in

the searching mode, since repeated viewing of the same object reduced the observation

uncertainty. In frame 36, the observation uncertainty reached its threshold, here 0.12 bit.

The robot was triggered into the operating mode and started to move towards the first

sign. In frame 45, the second sign was detected coincidently in the top-down search window

of the first sign in the operating mode. Therefore, the robot attention state was switched

from this top-down state to the top-down state in the searching mode for the second sign.

The observation uncertainty reached a local maximum in frame 50. The second sign was

lost in N frames before frame 120 and re-detected in frame 127. A local maximum of the

observation uncertainty was reached in frame 128. In frame 156, a local maximum of the

observation uncertainty was reached again, after the third sign was detected.

To evaluate the visual guidance performance separately, the other sensors on ACE such

as laser range finders were deactivated. To avoid possible crashes with the signs, a very

low threshold value was set to the observation uncertainty, which caused a relatively long

period in the searching mode before the robot started to operate. However, this can be

easily improved if other sensor modalities are used for obstacle avoidance as well.

Tab. 4.3 shows the average computation time which was taken in different phases.

Since the bottom-up attention selection was implemented on the multi-GPU platform,
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The ACE robot

sign 1

sign 2

sign 3

# 1

# 44 # 45

# 111
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# 214

Fig. 4.17: Results of experiment 2 comprising the resultant images of robot FOA. Numbers
indicate the frame numbers. The solid circles: the ACE robot. The arrows on the
robot: the view direction of the active camera head. The dashed line: the robot
trajectory. Rectangles: the salient/surprising image regions; Masked regions: the
current robot FOA; Circle: the detected target objects.

real-time processing in this part is ensured. The most expensive processing is the object

recognition using the previously trained classifiers. There is a large improvement in the

performance if the robot searches for the signs only in the FOA but not in the whole image.

4.3.4 Discussion

In this experiment, the searched targets, namely three different signs, have different ap-

pearances. However, it is impossible to use uniform or similar model parameters such

as the weights of feature maps in bottom-up attention selection models to represent and

distinguish between them. Purely bottom-up attention facilitates the robot task accom-

plishment by providing FOA candidates and reducing the detection time. Image regions
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Fig. 4.18: Relative entropy (observation uncertainty) evolution (dashed line) and the respective
attention state (solid line). The semi-transparent areas indicate the time intervals in
which the robot was in operating state. The blank areas indicate the time intervals
in which the robot was in searching state. Some representative time points are
shown with their frame numbers.

Task Time [ms]

Image capture (approximately) 67
Surprise map computation 20
Search for a sign in the FOA 31
Search for 3 signs in the FOA 33
Search for a sign in the whole image 183
Search for 3 signs in the whole image 373

Tab. 4.3: Average computation time in the experiment.

with higher saliency are regarded as positions with a higher probability of containing a

target object and are processed first. Moreover, inhibition-of-return (IOR) is used here to

extend the robot FOA to less salient regions.

In this experiment, the resolution of the vision sensor is still sufficient for sign recogni-

tion. If more resolution is required to further process the selected region, the bottom-up

state is a must for efficient utilization of high-resolution cameras, providing potential image

region candidates before a target object is found. Otherwise, the high-resolution camera

has to search for objects in the environment randomly and inefficiently.

In addition, the pure bottom-up state guides the robot attention to explore the envi-

ronment in a flexible way if top-down information does not exist in the current FOV at

all.

To accelerate the whole task performance, it is obvious that the pure bottom-up atten-

tion selection should be used as little as possible, although the bottom-up state is necessary.

Three solutions are suggested:
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• Reduce the computation time for the bottom-up state, which has already been

achieved using the multi-GPU implementation.

• Use TBB for a more efficient search in the top-down state after a target object has

been found.

• Apply IOR in the 3D task space to avoid repeated view of the positions which have

already been observed. Currently, a simple IOR is integrated in our implementation

in the way that the current FOA is suppressed in the searching and exploring modes

where the robot is not in motion.

4.4 Summary

Visual attention has become a popular topic of robotics research to deal with the limited

processing capability and the real-time requirement of technical systems. Especially for

autonomous and/or mobile robots, goal-directed guidance of gaze control based on coor-

dinated task and stimulus parameters plays a key role in robot attention development. To

enhance the ability of the bottom-up attention in facilitating robot task performance and

solve the problem of resource limitations, two integrated approaches, TBB and TOB, are

proposed.

In TBB, conventional offline training of task-relevant top-down information is replaced

by the online extraction of top-down information of the first recognized target object.

Successively, adaptation of model parameters to changing environments using a KF is de-

veloped. Compared to the state-of-the-art approaches, TBB displays improved efficiency in

terms of reduced necessary fixations, higher flexibility with reference to unnecessary offline

training, and enabled adaptability in relation to changing backgrounds mainly caused by

the robot mobility.

In TOB, autonomous switching between top-down and bottom-up attention selection

is realized, which fills a gap in TBB for the situation where totally different targets are

searched for while contexts vary. The capability of autonomous switching of visual atten-

tion selection mechanisms enables a vision-guided mobile robot to be “autonomous” in

this aspect for the first time. Visual behavior, the selection mechanism of the robot FOA,

is adapted to the internal robot state.

To demonstrate the strategies, the active camera system placed on the ACE robot was

used in the experiments to imitate peripheral and foveal vision as well as scan, saccade,

and fixation behaviors. Here, the cooperation of the hardware and the parallel implemen-

tation aiming at real-time robot visual attention control during robot motion is established

sufficiently. This application-oriented robot attention system makes a step forward in ef-

ficient visual information selection and also contributes to a further development towards

cognitive visual perception in the robotics domain.
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5 Human-Inspired Temporal Attention Control

for Multi-Object Tasks

5.1 Introduction

In the preceding chapters, robot attention is studied in the spatial aspect: Chapter 3

contributes to the selection of task-irrelevant stimuli from the environment, while task-

relevant information is selected in Chapter 4. Robot attention focuses on the winner(s) in

the current image data in terms of 2D appearances.

However, in most robot tasks, multiple task-relevant target objects exist concurrently,

which may even have different appearances and different saliency values in 2D images, but

each of them earns a detailed observation for task performance. Some example scenarios

such as environment monitoring or multi-robot manipulation/cooperation are shown in

Fig. 5.1. For robots with limited FOVs, the temporal aspect of robot attention is a key

factor, since the task-relevant target objects may not be located in the FOV concurrently.

The central problem is how robot attention should be distributed along the time scale.

While the preceding chapters consider the spatial aspect of attention, this chapter considers

the temporal aspect of fixation.

Fig. 5.1: Example scenarios for robots with limited FOV facing more than one task-relevant
object. Left: the robot teacher SAYA looking at her students [208]. Middle: the
cooperation of two robots for repairing a broken water pipe [28]. Under restricted
communication, each robot should not only observe the water pipe but also monitor
the manipulators of the other robot. Right: Nao robots in RoboCup 2009 [158].

Fundamental research in cognitive psychology and neuroscience has investigated sequen-

tial attention planning of human subjects, but few works consider it during coordinated

multi-agent motion. Therefore, an experimental investigation of human eye movement dur-

ing body movement is conducted. The results show that, in addition to the switched eye

and body movements, repeated viewing of multiple task-relevant objects and the preference

for dynamic task-relevant objects are investigated in human eye movements.
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5.2 Experimental Study of Human Attention during Motion

Inspired by the analytical results of this experiment, a human-inspired temporal at-

tention planning strategy for a multi-object task is proposed, which is formalized as an

optimization problem considering multiple objectives such as perception uncertainty, cov-

erage of objects, and acquisition of new information under mechanical constraints such

as the limited FOV of the camera, solving the “when and where” components of camera

movement control. A significantly improved perception uncertainty and a similarity to

human behaviors are achieved.

Furthermore, inspired by the human attention behavior, the temporal aspect of a co-

ordinated behavior between visual attention and body motion in a multi-robot system is

studied exploratively. The new contribution to existing studies is the first-time utilization

of active vision sensors with limited FOV in a multi-robot formation task, deploying a

coordination of attention and motion.

The remainder of this chapter is organized as follows. In Section 5.2, human motion and

gaze behavior are experimentally investigated. In Section 5.3, a human-inspired sequential

attention selection strategy is proposed to solve the problem of multi-object tasks. In

Section 5.4, a behavior-based robot formation strategy is designed, combining attention

control and motion control. The performance of the strategy is simulated and discussed.

A summary is given in Section 5.5.

5.2 Experimental Study of Human Attention during

Motion

Human behavior is assumed to be efficient in many tasks [44, 133]. Especially in this

aforementioned context, a human eye with the limited FOV is a suitable biological example.

Therefore, human attention behavior is to be studied for inspirations.

In cognitive psychology and neuroscience, experimental studies about visual scan path

selection under task demands have been conducted extensively, especially in recent years

since modern eye trackers have become available. Most studies investigate eye saccades

facing artificial scenes [108, 211] or static pictures [52, 165] in the 2D image space according

to image saliency, while some others use virtual environments [87, 160]. Only a few studies

put subjects into a real-world scene to perform a natural task and investigate human

visual behavior during subjects’ activities, such as tea making [99, 100], arm movement

[91], making a sandwich [73] or navigating on a sidewalk [72]. Furthermore, differences

may be observed in a scenario where other unpredictable, autonomous humans or objects

exist.

Therefore, an experiment is designed to investigate human eye movements, considering

various relevant aspects for the objective of robot attention planning, such as existence

of multiple dynamic or static task-relevant objects as well as eye movements during body

movements. Subjects are actively and naturally involved in the task and perform a goal-

directed behavior. For the sake of future work such as realization of joint attention or

coordinated attention in robotic systems, a scenario is chosen, where subjects also cooper-

ate with each other in the experiments.
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object (O)

reference bar (0.8m)
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Fig. 5.2: Experiment overview captured by the overlooking camera. Left: Start positions of
participant P1, P2, P3, object (O), as well as a reference bar of 0.8 m; Right: final
positions of the participants. An equal distribution around the object is built.

5.2.1 Experiment: Materials and Procedure

In this experiment, three participants were asked to perform a formation task. First they

were located around an object at a distance of 0.8m, as illustrated by a reference bar in

Fig. 5.2. The participants were supposed to move around the object and to distribute

themselves equally, which means that any two of them should build an angle of 120◦ with

the target object in the center as the endpoint. During the movement, they should also

keep the same distance to the object. Seven healthy participants were divided into three

groups. Each group performed the task three times with different participants at different

initial positions. The first trial in each group was a test trial. The starting points were

fixed. During the experiments, the participants’ eye movements while performing this task

were recorded.

In the experiments, conventional (mobile) eye trackers are abandoned for the following

reasons:

• The set-up of more than one portable head-mounted eye tracker [72] is costly.

• In addition to the eye movement, the body movement for the formation task should

also be investigated, which may be different when subjects act in a scene or in front

of a scene (virtual environment) with real partners or virtual partners.

• A perfect modeling and illustration of human behavior in a virtual environment is

difficult and costly at the current step.

To record the eye and body movements, each participant used a rectangular paper

scroll to cover his/her eyes, such that each participant only had a narrow FOV during

the experiment. A similar set-up was used in [112], in order to investigate human visual

behavior while avoiding obstacles in movement. The paper scrolls were in different colors

(white, green, and red) for each person. An overlooking camera (Firefly camera from Point

Grey Research Inc. with a resolution of 640 × 480 pixels at 30Hz) was mounted on the
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ceiling and used for recording the whole process. Two example input images are shown

in Fig. 5.2. The gaze directions and the body positions of each participant were collected

frame by frame manually.

It is worth mentioning here that the focus of this experiment is not an investigation of

the targeting of the eye/head movement like the studies in other conventional visuomotor

research [72, 73, 91, 99], but the scheduling of the eye/head movement. It is assumed that

the subjects know what the task-relevant objects in this task are, namely the static object

in the center and the other participants. The focus examined here is when and which of

the task-relevant objects is attended to by which subject. Therefore, the relatively lower

spatial resolution compared to a conventional eye tracking system is not a severe problem.

Moreover, this artificial delimitation can effectively

• inhibit the concurrent view of two or more task-relevant objects/participants in order

to ease the identification of the present FOA,

• slow down the saccade velocity by registering the head movement instead of the eye

movement,

• and reduce the dimension of the gaze location from 3D to 2D,

such that the participants’ gaze behavior is goal-oriented, intended, and recordable. Fur-

thermore, the direction and the length of the longer borders of the rectangular paper scrolls

in 2D images indicates the 3D gaze direction. Different colors denote different initial po-

sition, such that the body position and gaze direction could be automatically recorded.

5.2.2 Results and Inspirations for Robotic Systems

The hypothesis is that humans’ gaze behavior during movement is different to that while

they are standing still.

In the experiments, three participants were involved and named P1, P2, and P3. In the

following analysis, three different states of the participants were observed, namely actor,

observer, and idler with the following characteristics:

• An actor is acting towards his/her temporal goal.

• An observer is standing still, observing the other participants, the object or the

environment, and making decisions for their own future action.

• An idler approaches the final position and is investigating the environment without

a dominant intent.

Firstly, the participants’ movement and the switching of their gaze direction were an-

alyzed. Then, a further investigation of the gaze distribution was conducted. The body

movements and gaze distributions showed a high similarity across subjects.
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Fig. 5.3: Participants’ state variation among actor, observer and idler. The solid line: P1; the
dash-dot line: P2; The dashed line: P3.

Motion and Attention

A typical participants’ state variation in an experimental trial is shown in Fig. 5.3. Since

the view angle of the participants was limited, the states of the participants switched

between actor and observer. A possible reason could be that the task-relevant objects

including the static object (O) and the other participants were not able to be located in

the FOV concurrently. Along with the increasing time, the measurements of the object

positions became uncertain due to self-motion and motion of others, etc. The participants

had to stop and observe the environment to reduce perception uncertainty, such that the

task could be performed at all.

Moreover, the motion of the participants was totally asynchronous and decentralized,

since no communication occurred in the experiments. In 9 trials, P2 always started as an

observer and then become an actor later than P1 and P2. A possible reason is that the

initial angle built by P1 and P3 with O was the largest. Therefore, P1 and P3 started

to move earlier than P2. The relative positions could be an important factor for the

determination of the movement. A small position difference may cause a higher probability

of collision.

In addition, each actor started to move toward the direction where the furthest partic-

ipant was located, in order to balance the relative position between him-/herself and the

other participants and achieve the desired equal distribution (see Fig. 5.4). For instance,

as illustrated in Fig. 5.2, when facing the target object, P3 moved to his/her right, P1

moved to his/her left and P2 moved to his/her right. Each participant only moved about

the half of the absolute difference between his/her left and right angle, spanned with the

neighbored participants to the left or right and the target object. It is suggested that the

participants have assumed that the neighbored participant would coordinately help reduce

the formation error.
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Fig. 5.4: Participants’ body movements computed as the relative angle between the reference
bar and the line formed by each participant and the target object in [deg]. Solid lines:
P1; Dash-dot lines: P2; Dashed lines: P3; Dotted lines: difference between the left
relative angle and the right relative angle of each participant (the formation error).

FOA Switching

Fig. 5.5 shows the gaze direction of P1, P2 and P3 in the same trial as illustrated in Fig. 5.3.

The participants’ gaze directions in each frame were recorded in this figure. Possible targets

are the other participants (P), the object (O), and other task-irrelevant distractors (X).

During the movement, the FOA of the participants switched mostly and repeatedly among

the task-relevant objects (P and O). The reason for this repeated switching of FOA may be

that repeated viewing of multiple target objects can reduce perception uncertainty, which

is mainly caused by discontinuous existence of targets in the FOV.

The data from 6 formal trials are normalized over trial time, defined as the time interval

from the beginning to the time point that all of the participants reached the final positions

and stayed. Fig. 5.6 left shows the mean value and the standard deviation of the percentage

switching number of the FOA pSNξ in state ξ = {a(ctor), o(bserver)} given by:

pSNξ = 100% · SN in state ξ

SN in the trial time
, (5.1)

where SN denotes FOA switching number.

The pSNs in different states differ from each other significantly, indicated by a one-way

ANOVA with F1,34 = 55.95, p = 1.1119e-008 < 0.05. About 85% of attention switching

occured when the participants were in the observer state, which means that the participants

barely changed their FOA when they were in motion, probably to avoid motion blur or
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Fig. 5.5: Participants’ gaze direction switching among other participants (P1, P2, or P3), the
target object (O), and other distractors (X). Solid lines: P1; Dash-dot lines: P2;
Dashed lines: P3.
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Fig. 5.6: Left: Percentage number of the participants’ FOA switchings pSNa in the actor
state and pSNo in the observer state, shown in the mean values and their stan-
dard deviations; Right: Percentage FOA duration attending to the other partici-
pants (P) pFOAP,a/o/i, to the object (O) pFOAO,a/o/i, and to other distractors (X)
pFOAX,a/o/i in the state actor, observer or idler, shown in the mean values and their
standard deviations.

difficult estimation of relative motion. The motion task added to the participants in the

actor state occupied the computation resources of the perception behavior.

FOA Targeting

The percentage FOA duration pFOAξ,η in each system state ξ =

{a(ctor), o(bserver), i(dler)} on object η = {P,O,X} are illustrated in Fig. 5.6

right and computed as follows:
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pFOAξ,η = 100% · fixation time on η in state ξ

fixation time in state ξ
. (5.2)

As an actor, the participants attended to the task-relevant targets P and O, while as an

observer, the participants attended to the dynamic targets, namely the other participants,

much longer than to the static target, namely the object. pFOAP,o and pFOAO,o differ

significantly in the observer state, denoted by ANOVA F1,10 = 35.54, p = 0.00014 < 0.05,

while the difference between pFOAP,a and pFOAO,a is not significant in the actor state

(ANOVA F1,10 = 0.27, p = 0.6160 > 0.05). In the state actor and observer, few distractors

were attended to, possibly due to higher workload. For the idler state, part of the attention

of the participants was drawn by task-irrelevant distractors such as the other persons in

the room who were not involved in the experiments. The investigation corresponds with

cognition studies about human visual attention in [101, 113].

If the relative angle between the view direction and the line spanned by the observing

participant and the observed participant/object is smaller than 5◦, the FOA is regarded

to be on the observed participant/object. The fixation duration illustrated in Fig. 5.5

includes a small fraction of time for searching for task-relevant objects besides the real

fixation duration, which is excluded in the computation in Eq. 5.2.

5.2.3 Discussion

From the results above, the hypothesis is verified. It can be concluded that the distin-

guishing of the behavior in states observer, actor, and idler is reasonable and significant.

Macroscopically, the observer and the actor state switch with each other until the idler

state is reached. The detailed results are summarized as follows:

In the observer state

• FOA switches frequently and repeatedly among different target objects;

• Attention is directed towards dynamic objects more frequently than static objects.

In the actor state

• FOA rarely switches;

• There is almost equal attention distribution towards dynamic objects and static

object;

In the idler state

• Evidently, more attention is distributed to distractors.

Although a mapping of all the results directly on robotic implementations is not pos-

sible, this experimental investigating of human gaze behavior during movement provides

inspirations for robot attention control development. Based on these results, strategies are

proposed in the following sections to deal with temporal attention planning of robots in
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a multi-object system. Human-inspired observer and actor states are applied to robotic

systems.

5.3 Temporal Attention Planning for Multiple Target

Objects

As discussed in the previous section, humans switch their FOA from one target object to

another when they are dealing with more than one task-relevant target object, in order to

update task-relevant information. Inspired by this kind of attention selection behavior, an

overt attention selection strategy for visual sensors with limited FOVs is developed and

described in this section. The attention selection along the time scale is embodied as a

view direction planning in the 3D task space for active vision systems.

5.3.1 State of the Art

Most conventional active vision systems are aiming at bringing the target into the center

of the FOV, e.g. object tracking [18, 137]. Some others consider active search for features

or objects with a pre-defined view direction sequence [41] or continuous camera panning

[167]. The mechanisms in those works can hardly be regarded as view direction planning,

since no re-planning mechanism is presented.

It is indicated that there is a tight link between eye movements and goal-directed motor

actions [176]. The programming of eye movements can be understood within a framework

of sequential information maximization [155]. View direction planning can be formulated

as an optimization problem to maximize the information gain [98, 129, 155, 165, 168], to

minimize the ambiguity of recognition [8], to optimize the probability of finding the target

in a fixed cost limit with relation to the number of robotic actions needed [188], to achieve

a maximum reward using reinforcement learning [176], or to optimize multiple objectives

such as tracking accuracy and joint comfort [48], the physical, subjective, and perceptive

situations [146], as well as detection probability, new informations and motion cost [162].

From the experimental results of the human attention investigation in the previous

section, it is found that humans as observers switch their FOA towards task-relevant

objects frequently and repeatedly. More attention is paid to moving target objects and

less attention is paid to static target objects. The possible reason is that humans try

to reduce the perception uncertainty and obtain a continuously updated modeling of the

environment. Then, reduction of the overall perception uncertainty can be considered as

one of the criteria for answering the attention-shift-in-time problems raised in [187]:

• In which order should the regions be selected?

• When should a previously selected region be re-selected?

• If the visual world is time-varying, how are the changes in the image contents taken

into account in determining the selected regions?
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In order to solve these problems, the view direction planning problem is formulated as

a multi-objective optimization problem and an optimal solution considering the evaluation

criteria of a technical system such as perception precision and accuracy under system

constraints, e.g. limited FOV of the visual sensor, is searched for.

5.3.2 System Definition

If M equally task-relevant objects are located in the environment, a complete and certain

observation of the internal representations of all target objects is desired. The repre-

sentations could be concrete information such as color, shape, position, motion, etc, or

abstract information such as saliency, surprise, identity, etc. The information can be static

or vary dynamically. Through a repeated fixation, limited resources are allocated to the

task-relevant objects to update the information.

Since conventional technical tasks consider object position estimation or manipulator

position estimation relative to a reference position, positions of the task-relevant objects

are regarded here as the major task-relevant information for further consideration. It is

worth mentioning that the following modeling is not limited to this assumption and can

be extended to consider other aforementioned features.

A scenario containing a robot equipped with an active camera with multiple task-

relevant objects is illustrated in Fig. 5.7. Frames of reference are defined conventionally:

the world frame S0, the robot frame Sr, the camera frame Sc, as well as the image plane

Si (not illustrated in Fig. 5.7). The camera on the robot has a limited FOV of Π(Ψ,L),

constrained by limited view angle Ψ = (Ψpan,Ψtilt)
T and limited confident sensing range

along the optical axis of the camera L = (Lmin, Lmax)
T .
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Fig. 5.7: Definition of frames of reference.
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The robot position in the world frame is denoted by 0xr ∈ R
n (n = 2, or 3 for 2D or 3D

task space), while the robot orientation in the world frame and the view direction angle

with respect to the robot frame are indicated by Θ and Ω = (Ωpan,Ωtilt)
T . M task-relevant

objects are located in the surrounding with the coordinate 0xj for object j in the world

frame. The relation between the object position in the world frame 0xj and it position in

the camera frame cxj can be described by the following equation:

0x̂j = 0T r · rT c · cx̂j , (5.3)

where 0x̂j and cx̂j denote homogeneous coordinates and 0T r and rT c homogeneous trans-

formation matrices.

The objects 1 to M are assumed to be static or to move with a slightly varying velocity

between two consecutive time steps k and k + 1. Then, the system state is defined as the

object position and velocity in the world frame as follows:

x = (xT1 , · · · ,xT
j , · · · ,xTM)T ,

where xj = (0x
T
j , 0ẋ

T
j )T for object j. Therefore, the linear dynamic system equation for

object j can be written as follows:

xj,k+1 = Aj · xj,k + wj,k, (5.4)

with the 2n× 2n state transition matrix

Aj =

(

In In
0n In

)

, (5.5)

where In denotes a unit matrix of dimension n × n and wj,k is the process noise, which

is assumed to be Gaussian white noise with covariance Qj,k of a dimension of 2n× 2n. A

matrix of zeros with a dimension of n× n is denoted by 0n.

From the visual data, only object position can be calculated. Therefore, the system

measurement is the measured positions of the objects in the camera frame

y = (yT1 , · · · ,yTj , · · · ,yTM)T ,

with yj = cxj . Then, the system measurement equation is conducted as:

yj,k = Hj · cxj,k + vj,k, (5.6)

where Hj = (In, 0n) is the n × 2n observation model, and vj,k the observation noise of

a dimension of n, which is assumed to be Gaussian white noise with covariance Rj,k of a

dimension of n×n. From the Eq. 5.3, an equation with homogeneous coordinates cx̂j , and

0x̂j can be rewritten in

cx̂j =
(

0T r · rT c

)−1 · 0x̂j . (5.7)
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5.3.3 Temporal Attention Planning

The fundamental problem is to predict an optimal view direction Ω∗
k+1|k for time step

k + 1 based on the object position estimation result at time step k. Considering task-

relevant evaluation criteria, a decomposed multi-objective optimization problem is defined

as follows:

Ω∗
k+1|k = arg min

Ωk+1|k

(

J1(Ωk+1|k), J2(Ωk+1|k), J3(Ωk+1|k)
)

, (5.8)

where Ωk+1|k denotes the predicted possible view directions the robot can provide at time

step k+1. The objective functions J1, J2, and J3 favor a low overall perception uncertainty,

a large number of covered objects by the visual sensor, and low energy cost vs. a large

amount of newly-arriving information, respectively. The definitions of Ωk+1|k, J1, J2, and

J3 are presented as following in detail.

Optimal View Direction Candidates Ωk+1|k

Due to limited capacity, attentional resources should be allocated to task-relevant objects.

Therefore, the optimal view direction candidate Ωk+1|k comprises all the possible view

directions for individual task-relevant objects:

Ωk+1|k ∈ {Ω∗
1,k+1|k, · · · ,Ω∗

j,k+1|k, · · · ,Ω∗
M,k+1|k}.

Experiments were conducted to investigate visual sensor error models (see Section 5.3.4).

The results in Fig. 5.8 show that the 3D locations with the minimum perception uncertainty

are along the optical axis of the visual sensor. Therefore, the optimal view direction

candidates Ω∗
j,k+1|k are predicted using the predicted (a priori) object position x -

j,k+1|k

based on the previously estimated object position xj,k:

x -
j,k+1|k = Aj · xj,k. (5.9)

Overall Perception Uncertainty J1 using Adaptive Kalman-Filter Concept

The overall perception uncertainty J1 depends on both accuracy and precision. It is as-

sumed that no systematic error exists in measurements and therefore no accuracy problem

occurs. Before an optimal view direction for time step k + 1 is found and applied, multi-

ple KFs are applied to predict the perception uncertainty for each possible view direction

Ωk+1|k and for each task-relevant object. The overall perception uncertainty of the system

can then be formulated similarly to [168] as follows:

J1(Ωk+1|k) =
1

n

M
∑

j=1

n
∑

l=1

√

e2j,l(Ωk+1|k), (5.10)

where ej,l(Ωk+1|k) are the first n eigenvalues of the system state estimation covariance

matrix P j,k+1|k of object j predicted using Ωk+1|k (position components only). The dimen-

sion of the object position is denoted by n, while index l denotes x-, y-, and/or z-direction.

Note that the velocity estimation covariance is not considered here. A conventional KF
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for object j consists of a prediction phase using the dynamic system model:

P -
j,k+1|k = Aj · P j,k ·AT

j + Qj,k. (5.11)

and a correction phase using the predicted optimal Kalman gain Kj,k:

Kj,k+1|k = P -
j,k+1|k ·HT

j,k(Hj,kP
-
j,k+1|kH

T
j,k + Rj,k)

−1, (5.12)

P j,k+1|k = (I −Kj,k ·Hj,k)P
-
j,k+1|k. (5.13)

Here, P -
j,k+1|k denotes the predicted, prior state estimation covariance, while Kj,k+1|k and

P j,k+1|k denote the predicted Kalman gain and the posterior state estimation covariance

computed based on the true state estimation covariance P j,k at time step k and using the

predicted possible view direction Ωk+1|k.

Note The prior and posterior system state xk+1|k
- and xk+1|k are only predicted for compu-

tation of Ωj,k+1|k (see Eq. 5.15), but not corrected at this step (see 5.15), since no measurement

yj,k+1|k is conducted at all in the planning phase.

x -
j,k+1|k = Aj · xj,k, (5.14)

xj,k+1|k = x -
j,k+1|k + Kj,k · (yj,k+1|k −Hx -

j,k+1|k). (5.15)

The state error covariance matrix P j,k+1|k can be predicted and corrected based on the

dynamic system model Aj , the process and measurement noise Qj,k and Rj,k using various view

directions Ωj,k+1|k.

When using conventional KFs, the process noise Qj,k and the measurement noise

Rj,k are normally measured and tuned offline [198]. However, if they are constant,

the state error covariance matrix P j,k usually converges to a constant along with the

increasing prediction/correction cycles, although the state estimate may be far away from

the real value. In this case, J1 would be the same for all possible view directions Ωk+1|k.

To deal with this problem, an adaptive KF (AKF) concept is considered. AKF solves

the problem of balancing the contributions of the system model and the measurements

on the state estimation by adjusting the stochastic properties online [75, 206]. Here the

predicted state estimation covariance matrix P k+1|k is biased by modifying the process

noise covariance Qj,k and the measurement noise covariance Rj,k.

• Measurement Noise Rj,k Biased by Object Position

For different view direction Ωk+1|k, the predicted location cxj,k+1|k of object j relative

to the camera is different. Different sensors have different sensing range and perception

process error models [110, 181]. Taking this into account, the measurement noise Rj,k of

n× n is strongly influenced by the location of the object j:

Rj,k = Rj,k(cxj,k), (5.16)
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while in Eq. 5.7

cx̂j,k+1|k =
(

0T r · rT c(Ωk+1|k)
)−1 · 0x̂j,k+1|k. (5.17)

Commonly, the magnitude of the measurement error covariance matrix Rj,k decreases

if the object position with respect to the vision sensor cxj,k is near to the optical axis and

the vision sensor, and increases if the object position cxj,k is near to the sensor limitation

of the FOV. The relationship between Rj,k and cxj,k is determined offline and illustrated

in Fig. 5.8 later in Section 5.3.4.

An extreme case occurs if the object j would not be located in the FOV when Ωk+1|k is

applied. Then, the posterior state error covariance matrix P j,k+1|k is equal to the prior state

error covariance matrix P -
j,k+1|k and will not be corrected, which results in a significant

increasing of P j,k+1|k.

• Process Noise Qj,k Biased by Object Dynamics

The process noise Qj,k consists of process noise in position Qj,k,pos of n × n and process

noise in velocity Qj,k,vel of n× n as follows:

Qj,k =

(

Qj,k,pos 0n
0n Qj,k,vel

)

. (5.18)

While the measurement noise is dependent on the visual sensor characteristics and

the object location with respect to the visual sensor, the process noise is usually biased

dynamically by the current system state dynamics. In this system, the process noise is

proportional to the velocity and acceleration of the respective object as follows:

Qj,k,pos ∝ cẋj,k, and Qj,k,vel ∝ cẍj,k. (5.19)

Then, the magnitude of the process noise increases if the object velocity increases or if

the changes of the object velocity increases.

It can be seen from Eq. 5.10 that the overall perception uncertainty J1 increases if

the magnitude of the predicted posterior state error covariance matrix P j,k+1|k increases.

Together with Eq. 5.11, 5.12, and 5.13, the following conclusions can be made:

• The overall perception uncertainty J1 increases if the process noise Qj,k increases;

• The overall perception uncertainty J1 increases if the measurement noise Rj,k in-

creases;

• The overall perception uncertainty J1 is large if the state error covariance P j,k (at

the previous time step) is large.

For each possible view direction Ωk+1|k, the predicted overall perception uncertainty

J1(Ωk+1|k) is computed. The view direction minimizing the predicted overall perception

uncertainty is desired.
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Visual Coverage J2

Achieving the same J1 using more than one view direction, it is also envisaged having a

wide visual coverage J2, which is proportional with the ratio between the number of objects

located in the FOV Mseen and the total number of the target objects M :

J2(Ωk+1|k) = −Mseen(Ωk+1|k)/M, (5.20)

In J2 the maximization of the object number located in the FOV is considered, which

implicitly integrate the mechanical constraints, such as the limited FOV of the visual

sensor, since Mseen is dependent on the camera FOV.

Energy Cost or New Information J3

The energy J3 which would be consumed by changing view direction from the previous view

direction Ω∗
k to the predicted view directions Ωk+1|k is proportional to the view direction

variation:

J3(Ωk+1|k) = ς · |Ω∗
k −Ωk+1|k|, (5.21)

while the parameter ς = {−1, 1}, favoring constantly attending to different targets while

ς = −1 or attending to the same object to lower energy cost while ς = 1. The choice of ς

may vary in different application scenarios. Here, it is emphasized to view a different side

of the environment to acquire new information and, therefore, ς = −1.

Decomposed Optimization

Three aspects are considered for an optimal solution: the overall perception uncertainty

J1, visual coverage J2, and new information J3. Because of the different importance and

priorities for task accomplishment, J1 > J2 > J3, this optimization problem is decomposed

and the minimization of the objective functions is solved one by one. A list is constructed

for each view direction candidate containing the predicted objective function values at the

time step k as follows:


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


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. (5.22)

The first column is sorted descendingly, to find the optimal candidate with the minimum

overall uncertainty J1. If more than one view direction candidate is determined, the J2

values of those candidates are compared with each other. If more than one view direction

candidate still remains after this sorting, the J3 values of those remaining view direction

candidates are compared with each other. After the third sorting, if no uniquely optimal

view direction is found, a random selection from those remaining optimal view direction

candidates is conducted, which happens very seldom.
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After the predicted optimal view direction Ω∗
k+1|k is found, it is applied at the next

time step k + 1. The position and velocity estimation of the task-relevant objects are also

accomplished by using another KF. If object j is located in the FOV now, prediction and

correction using the KF is performed. If object j is not located in the FOV now, only a

prediction using the KF is carried out.

Using this attention planning algorithm, the overall perception uncertainty from an

observer’s point of view is minimized, the number of the target objects located in the

FOV is maximized, and the new information content, which is embodied by a large view

direction change, is also maximized.

5.3.4 Simulation Results

To evaluate the proposed attention planning strategy from different perspectives, simula-

tions are conducted. The first two simulations are implemented in Matlab, in which two

attention planning strategies are compared in terms of the position estimation performance

of multiple objects:

• Attention Planning (AP): the proposed attention planning strategy;

• Round-Robin Algorithm (RR): FOA is equally distributed, namely directed toward

the left-most object and switched towards the right objects one by one and in reverse

order.

A multi-robot system is then further investigated in the third simulation using Play-

er/Gazebo in C++ [4]. Player provides a simple interface to robot sensors and ac-

tuators and allows the simulation codes to work on the real hardwares without any

changes required. Gazebo is a multi-robot simulator capable of simulating a population

of robots, sensors, and objects in a 3D world. It generates realistic sensor feedback and

physically plausible interactions between objects. Further information can be found at

playerstage.sourceforge.net. Real input images from a simulated camera were pro-

cessed to provide the position measurements of the task-relevant objects/robots.

The sensor error model of the simulated camera used in the third simulation was estab-

lished and applied in all the simulations. Moreover, task-relevant objects are assumed to

be located on the ground surface. Therefore, only the horizontal pan-angle of the camera

Ωpan is considered in the simulations. The object position has a dimension of 2, namely in

the x- and y-direction of the world frame.

Sensor Error Modeling

To estimate the perception uncertainty of a visual sensor, its characteristics should be

taken into account and serve for the sensor planning. A biological model is human vision,

which consists of foveal vision in the center of the FOV and peripheral vision. The foveal

vision, with a high visual acuity (resolution), is sensitive to color and shape, while the

peripheral vision, with a low visual acuity, has a better ability to detect motion [76].

To explore the sensor model, experiments were conducted using a simulated single cam-

era (Sony VID30 PTZ model in Player/Gazebo simulation environment with a horizontal
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Fig. 5.8: Standard deviations of the vision-based position measurement errors σx(cxj) in the
xc-direction (upper row) and σz(cxj) in zc-direction (lower row) at different positions

cxj. Left column: real measurements; Right column: interpolated surfaces f based
on the real measurements.

FOV of 60◦ with a resolution of 320× 240 pixels [4]). The positions of three reference ob-

jects at different positions cxj in front of the camera were measured: spheres with known

radiuses and different colors. The systematic errors were corrected first. Then, the stan-

dard deviation of the position measurement errors (σx, σz) at different positions in front of

the camera were calculated. A 3-degree polynomial surface f is fitted to the data obtained

from the experiments:

(σx, σz) = f (cxj), (5.23)

indicating the standard deviations of the position measurement errors of object j with the

coordinate cxj in the camera frame Sc (see Fig. 5.8). The standard deviation (σx, σz) is

used to model the measurement noise Rj,k in the simulations (see Eq. 5.12).

It is worth mentioning that the standard deviations of the position estimation errors

illustrated here are not only due to sensor noise or sensing range but also affected by

the shape and size of the objects used in the experiments as well as the image processing

algorithms. Experiments were also conducted using a real stereo camera (Bumblebee stereo

camera from Point Gray Research Inc. with focal lengths of 2mm each and at resolutions

of 640 × 480 pixels each [5]) and a planar chess board pattern with known square size.
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2

3

4

x [m]

y 
[m

]

O4 (0.5, 1.74)

O1 (1.5, 4)

O2 (3, 2)

Robot (0, 0)

O3 (1.75, 3)

Fig. 5.9: Overview of simulation 1. A robot with position (0, 0) m and four static objects are
located in this scenario. The blue solid line indicates the initial view direction of the
robot.

The standard deviation of position measurement errors shows a high similarity with the

simulated ones except a much higher standard deviation due to varying lighting conditions

in the environment.

Simulation 1: Static Objects

In this simulation, a robot is facing four static objects in the environment. The objects are

distributed in a way that the rightmost object can not be seen if the robot attends towards

the leftmost object, and vice versa. Possible applications are surveillance/monitoring using

active cameras or human-robot interaction such as the robot teacher shown in Fig. 5.1.

Four objects O1 to O4 are located at (1.5, 4)m, (3, 2)m, (1.75, 3)m, and (0.5, 1.74)m,

respectively, while the robot is located at (0, 0)m (see Fig.5.9). The initial view direction

is 45◦ with respect to the x-direction of the world frame. The horizontal FOV is 60◦. At

the initial position, all the objects can been seen by the robot. The simulation takes 20

time steps. The actual positions of the robot and the objects are shown in Fig. 5.10 as

solid circles. The solid lines indicate the camera valid sensing range with limited horizontal

view angle. The stars denote the simulated position estimations using a KF.

The top sub-figure in Fig. 5.11 shows the predicted optimal angle towards each object

and the actual pan-angle of the robot at each time step. The middle and the bottom sub-

figures in Fig. 5.11 illustrate the respective values of the estimation uncertainty variation

of each object computed as the sum of the square root of the system state estimation

covariance eigenvalues using the selected pan-angle and the respective position estimation

error at each time step.

At the beginning, the robot attends to the objects 1, 3, and 4 at time step 2 to reduce the

estimation uncertainty of the objects 1, 3, and 4, in order to reduce the overall perception

uncertainty. Then, the robot regards the objects 1, 3, and 4 as a group, since they are

near to each other and can be seen concurrently if one of them is attended to. The robot
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Fig. 5.10: Observation at each time step. Solid circles: the robot and the static objects;
Solid lines: limited FOV of the robot; Stars: estimated object positions; Top-right
number in each sub-figure: frame number (time step).

switches its attention between them and the object 2. The reason for this switching is that

if the robot focuses on object 2, the uncertainty of the position estimation of objects 1, 3,

and 4 increases. Attending to one of the objects 1, 3, and 4, the other two are also visible.

Then, the uncertainty of their position estimation also decreases. The robot then decides

to turn towards object 2, which was not located in the FOV and had a higher uncertainty

at the previous time step.

Ten simulations were conducted using the same parameters. The performances of the

proposed AP strategy and RR algorithm are compared in terms of position estimation

uncertainty, position estimation error, and the object coverage computed as the ratio

of the object number seen by the camera and the total number M in Tab. 5.1. The

mean values (mean) and the standard deviations (std) are listed. Using the proposed AP

strategy, a lower position estimation uncertainty with a much lower standard deviation and

a smaller position estimation error with a much lower standard deviation are achieved. The

object coverage is slightly smaller using the proposed AP strategy than that using the RR

algorithm. The reason is that by using the RR algorithm, objects 1, 3 and 4 are not

regarded as a group and attended to one by one. Therefore, object 2, which is located

further from them, is not attended to that often, which results in a higher estimation

uncertainty and a larger position estimation error.
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Fig. 5.11: Results of simulation 1. Top: predicted optimal view direction for individual object
and the actual view direction at each time step; Middle: individual uncertainty of
object position estimation at each time step; Bottom: position estimation error of
each object at each time step. The solid line with circular markers: actual robot
view direction; Dashed lines: object 1; Solid lines: object 2; Dash-dot lines: object
3; Dotted lines: object 4.

Item Position Estimation Uncertainty Position Estimation Error Coverage
mean [m2] std [m2] mean [m] std [m] mean std

AP 1.4434 0.0029 0.2814 0.0988 0.7675 0.0581
RR 1.7510 0.5004 0.7075 0.5549 0.7900 0.0219

Tab. 5.1: Comparison of the AP strategy and the RR algorithm in terms of position estimation
uncertainty, position estimation error, and visual coverage. Data are averaged over
ten simulations.

91



5 Human-Inspired Temporal Attention Control for Multi-Object Tasks

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

1 O1

x [m]

y 
[m
]

O2 moving 
direction

Robot

Fig. 5.12: Overview of simulation 2. A robot with two objects is located in this scenario.
Object 2 (O2) moves at a constant velocity.

Simulation 2: Static and Dynamic Objects

In the second simulation, the situation where static and dynamic objects exist is considered.

Possible applications are robot manipulation, multi-robot cooperation, and human-robot

interaction etc (see Fig. 5.1).

Fig. 5.12 illustrates an overview of this simulation. A robot is located at position (0, 0)m

with the initial view direction of 45◦, while two objects are located at position (2, 1)m and

(1, 1.25)m. Object 2 moves from its initial position with a constant velocity of 0.15m per

time step in x-direction and -0.15m per time step in y-direction. The simulation takes 12

time steps.

At the first steps, the two objects can be located concurrently in the FOV, if the robot

attends to one of them. Therefore, the position measurements of both objects are always

updated. The robot switches its FOA between them.

At the last three steps, the two objects can not be located concurrently in the FOV.

The object position estimation errors and velocity estimation errors are compared using

the AP strategy and the RR algorithm in Fig. 5.13. Using the AP strategy, the robot

attends towards the moving object O2, which explains the experimental result of human

overt attention in observer state in the previous section: Attention is distributed on dy-

namic objects more frequently. Using AP strategy, a better position/velocity estimation

is obtained in comparison with that using the RR algorithm, especially for the last three

steps. From five simulations, the mean values of the position estimation errors using the

AP strategy and the RR algorithm are 0.3832m and 0.8547m, respectively.

Simulation 3: an Application in a Multi-Robot System

In this simulation, a multi-robot system is investigated, which contains three pioneer mobile

robots (see Fig. 5.14 left). One of them is the observing robot, robot 0 at (0, 0) m, equipped

with the aforementioned Sony VID30 camera on a pan/tilt platform (see Fig. 5.14 top

right). Here, only the view direction change in the horizontal direction is considered. The

maximal pan-angle is approximately 55◦. The servo gain term of P-controller for pan-angle
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Fig. 5.13: Results of simulation 2. The actual robot view directions, position estimation errors,
and velocity estimation errors of object 1 and 2 using the AP strategy (row 1 to 3)
and the RR algorithm (row 4 to 6).

control is 5.

The other two robots are equipped with a colored marker each: robot 1 with a magenta

marker and robot 2 with a cyan marker. Robot 1 is moving with a linear velocity of 0.1m/s

and an angular velocity of 0.3 rad/s from its initial position (3, -1)m. Robot 2 is moving

with a linear velocity of 0.1m/s and an angular velocity of 0.5 rad/s from its initial position

(3, -1)m. Therefore, the trajectory of each robot is a circle.

To identify the markers and compute the relative position and orientation of robot 1

and 2 with respect to robot 0, the marker detection algorithm is implemented according
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robot 1
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robot 0

Fig. 5.14: Overview of simulation 3. Left: initial positions of robot 0, 1, and 2 and the
predefined trajectories of robot 1 and 2, as well as a view from the robot perspective
(top left); Top right: Sony VID30 camera with a pan/tilt platform; Bottom right:
an input image and marker detection result.
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Fig. 5.15: Results of simulation 3. Row 1 and 2: the position estimation errors of robot 1
and 2. Solid lines: vision-based object position measurements or predictions (if the
respective robot is not in the FOV); Dashed lines: position estimation errors. Row
3: the actual robot view direction at each time step. Positive pan-angle denotes
that robot 0 is attending to robot 1. Negative pan-angle denotes that robot 0 is
attending to robot 2.

to [6]. Since the radiuses of the markers are known, the 3D robot positions are computed

from the 2D marker appearances (see Fig. 5.14 bottom right). The overall frame rate is

approximately 3 fps.

Fig. 5.15 illustrates the position estimation errors of robot 1 and 2 as well as the pan-
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angles of robot 0. In general, robot 0 switches its FOA towards robot 1 and 2 repeatedly.

At time step 46, the FOA of robot 0 is on robot 2. The position estimation error of robot

1 is very large, while the covariance of the estimation is also very large, since robot 1 is at

the furthest position with respect to robot 0 at this moment. Therefore, robot 0 attends

to robot 1 at time step 47 and tries to reduce the observation uncertainty of robot 1. Since

the position estimation error of robot 1 at time step 46 is large, robot 1 is not brought

into the FOV center at time step 47, which causes a repeated view of robot 0 on robot 1

at time step 48.

5.3.5 Discussion

Robotic Implementations of Human Behavior Inspirations

In the traditional computer vision and robotics domain, the ultimate objective of this

attention planning can be regarded as simultaneous tracking of multiple objects. Tracking

of multiple objects is more regarded as a parallel process in early visual processing than

a serial process [31, 150]. However, a human-inspired computational models has yet to be

proposed.

Based on the results of the experimental investigation of human gaze behavior during

movement, human-inspired temporal attention planning is proposed here, to deal with

multiple task-relevant objects which may not be located in the FOV concurrently. The

inspirations from the previous section for robotic implementations are shown in Tab. 5.2.

In an observer state, humans’ FOA is mainly focused on task-relevant objects. There-

fore, to reduce computational cost, only the optimal view directions towards individual

task-relevant objects Ω∗
j,k+1|k are chosen as candidates for the next time step. Humans

are assumed to reduce perception uncertainty by switching their FOA frequently in the

observer state. Therefore, the main objective for an optimal view direction is to minimize

the overall position estimation uncertainty of multiple task-relevant objects. Moreover, by

modifying the stochastic information in the KF, robots, like humans, prefer to attend to

dynamic objects.

Human observer Robot observer

Repeated targeting of FOA Ωk+1|k ∈ {· · · ,Ω∗
j,k+1|k, · · · }

on task-relevant objects as view direction candidates
Frequent FOA switching Minimization of the overall perception uncertainty J1

Preference for dynamic objects Process noise Qj,k varying with object dynamic

Tab. 5.2: Inspirations from human behavior in the previous experimental investigation.

Multi-Object Tracking Using an Active Camera

In technical systems, various concepts of vision-based object tracking have been proposed

such as tracking multiple objects using passive cameras [88, 104, 136], single-object tracking

using an active camera or a multi-focal camera [35, 39, 175], and tracking multiple objects

using multiple active/passive cameras [92, 190], where no attention planning is needed.
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For tracking multiple objects using an active camera with a limited FOV, concurrent

objects or tasks are present for vision resource allocation. Dealing with this scheduling

problem, information-based multi-agent selection and reinforcement learning algorithms

are used in [168] and [176], respectively. However, dynamic environments are not consid-

ered in those two works and attention is usually distributed on the nearest object first.

Moreover, the RR algorithm, online Dynamic Vehicle Routing Problem (DVRP) with

deadlines, and greedy scheduling policies of network packet scheduling are used to plan

the camera switching in [64] [17] and [37], respectively, where multiple objects are either

equally treated or assigned to pre-defined processing deadlines.

Potential Extensions

Based on this strategy, several extensions can be made:

• Although this section is dealing with the attention strategies if the robot is a static

observer, robot motion can also be integrated. This will be explored in the next

section.

• In practice, the mechanical limitations of camera panning and tilting should also be

considered.

• Extensions considering other features such as object color or saliency can also be

explored using the same attention planning strategy, in order to combine stimulus-

driven and goal-directed attention selection mechanisms.

5.4 Towards Attention and Motion Coordination in

Multi-Robot Systems

In the preceding section, a human-inspired temporal attention planning strategy is pro-

posed to reduce the overall perception uncertainty in a multi-object system, where a robot

acts as an observer. In addition to the observer, an actor behavior is also necessary for

performing robot tasks and should be integrated. Therefore, a human-inspired extension

is made here, in which a behavior-based combination of actor and observer is applied on

robots with limited FOV.

One common scenario where multiple target objects exist is a multi-robot system (see

Fig. 5.1). From the perspective of an individual robot in those systems, both the objects to

be manipulated and the other robots are task-relevant. The possibility of utilization of the

proposed attention strategy in a multi-robot system is illustrated in the previous section.

In this section, formation problems are taken as examples to demonstrate the performance

of actor and observer coordination in multi-robot systems.

5.4.1 State of the Art

For certain tasks beyond the capability of one single robot and for an improved task perfor-

mance, more and more multi-robot systems are used [78, 144]. Multi-robot systems can be

96



5.4 Towards Attention and Motion Coordination in Multi-Robot Systems

classified into heterogeneous systems containing different types of robots with different ca-

pabilities, and homogeneous systems containing robots of the same type. The organization

and control can be centralized or distributed.

One of the tasks attracting much attention in the field of multi-robot systems is for-

mation task. A formation task can be solved in a leader-referenced, neighbor-referenced,

or unit-center referenced structure [11]. The task is to reduce the formation error to zero,

while the formation error is computed using distributed vision sensors on multiple robots

in this section.

In most vision-based multi-robot systems, the robots are equipped with on-board omni-

directional cameras, such that they can update the position information of the other robots

consistently [40, 50, 122, 141, 145, 193]. However, omni-directional cameras have the dis-

advantages of high cost, difficult calibration, as well as low resolution on the image borders,

and therefore, a small sensing range. Furthermore, for humanoid robots or other systems

where the anthropomorphismus is desired, an omni-directional camera is not appropri-

ate. Passive cameras with limited FOV have also been applied in some systems, in which

communication and data transfer among the robots are needed [63, 159, 205]. In those

systems, no active actions of vision systems are considered, such as searching, attending,

or view direction planning. Some other systems deploy global vision to acquire the po-

sition information of robots [7, 11, 24]. Furthermore, active vision agents pre-supposing

communication among robots [119] and pan-tilt-zoom cameras combined with odometry

[154] have been proposed.

To sum up, few decentralized multi-robot systems using active cameras exist without

communication in the robot team. One of the challenging problems using active cameras

is that each on-board camera cannot provide all the information of the environment all of

the time due to limited FOV, especially for multiple mobile robots.

The multi-robot system considered here is a homogeneous, distributed system, in which

each robot is equipped with an active camera with mechanical constraints such as limited

FOV and limited pan-/tilt-angles. A totally distributed formation task is to be accom-

plished without communication among robots or global sensory facilities.

5.4.2 Behavior-Based Attention and Motion Coordination

From the experimental investigation of human behavior in Section 5.2, two macroscopic

conclusions are made: 1) Due to limited FOV and multiple target objects, observing and

moving are mainly separated in the observer and the actor state; 2) Attention switching

is mainly conducted in the observer state. Moreover, it is suggested in [100] that eyes

generally guide manipulation, in which the relevant eye-movements usually precede the

respective motor acts.

Inspired by these, a behavior-based formation task is accomplished, in which the robot

performance is based on a set of predefined behaviors [11, 61]. Two major behaviors are

defined for each robot in a formation task: an observer behavior and an actor behavior,

illustrated in Fig. 5.16. In the observer behavior, attention is distributed on task-relevant

objects. Attention planning is conducted according to the proposed strategy. The operat-

ing robots search for and attend to multiple task-relevant objects, including static target

objects or the other task-related robots. The formation error is then calculated. Activi-
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    observer
                  

attention planning

               actor 

          motion planning

Fig. 5.16: Combination of two human-inspired robot behaviors observer and actor.

ties such as motion are conducted mainly in the actor behavior, aiming at reducing the

formation error to zero.

The control of the robots is distributed and independent, while the switching of be-

haviors of each robot is asynchronous. Using this behavior-based attention and motion

coordination, formation tasks can be solved in a distributed manner.

5.4.3 Simulation Results

To demonstrate the human-inspired behavior-based multi-robot attention/motion coor-

dination, two formation tasks are simulated in Player/Gazebo simulator. In the first

simulation a leader-referenced formation task is performed, while a neighbor-/unit-center

referenced formation task is conducted in the second simulation.

In each simulation, the same conditions are used as in simulation 3 of Section 5.3.4:

Robots are equipped with the active cameras Sony VID 30 and colored markers (see

Fig. 5.14). Only the view direction change in the horizontal direction is considered; the

servo gain term of P-controller for pan-angle control is set to 5. Since the control design

and the motion planning are not the focus of the simulations, a simple position-based P-

controller is used for the robot motion control. The P-term is proportional to the control

error. Image processing is at a frequency of 3Hz.

Simulation 1: a Leader-Reference Formation Task

The first simulation is an extension of simulation 3 in Section 5.3.4. Two robots are

equipped with colored markers (robot 1 with a magenta marker and robot 2 with a cyan

marker, see Fig. 5.17 left) and perform pre-defined trajectories as leaders: robot 1 moves

along a sinus-shaped trajectory from its initial position at (3.5469, -0.9401)m, while robot

2 moves along a straight line from its initial position at (3.3891, 1)m (see Fig. 5.18). The

average velocities of robots 1 and 2 in x-direction are approximately 0.23m/s. The range

of the velocity of robot 2 in the y-direction is from -0.1672m/s to 0.29995m/s. Robot

0, equipped with an active Sony camera at the initial position (0, 0)m, is a follower and

desired to form an isosceles triangle with the other two robots. The length of the side

formed by robot 0 and robot 1 should be equal to the length of the side formed by robot

0 and robot 2, while the interior angles of these two sides are equal to 65◦.

Fig. 5.18 illustrates the trajectory of robot 0 (circles on the dotted line) and the rect-

angles formed by robots 0, 1, and 2 (large triangles in solid lines) at the every third time
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Fig. 5.17: Simulation results in a leader-referenced formation task. Left: desired formation
of robot 0 with robot 1 (magenta) and robot 2 (cyan); Right: pan-angle, x- and
y-position (from top to bottom) of robot 0. Solid lines: actual value; Dashed lines:
desired value.
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Fig. 5.18: Overview of the leader-referenced formation task (until time step 35). Circles on
the dotted line: trajectory of robot 0 at each time step; Squares on the dash-dot
line: trajectory of robot 1 at each time step; Triangles on the dashed line: trajectory
of robot 2 at each time step; Large triangles in solid lines: rectangles formed by
robot 0, 1, and 2.

step. The pan-angle and x-/y-positions of robot 0 are shown in Fig. 5.17 right. The solid

lines indicate the actual positions, while the dashed lines indicate the desired positions

computed from the real positions of robots 1 and 2. Over a distance of 50m, the average

position error in the x-direction is 1.2484m and the average position error in the y-direction

is 0.6321m. The leader-referenced formation task is successfully performed by robot 0.

Simulation 2: a Neighbor-/Unit-Center Referenced Formation Task

In the second simulation, a neighbor-/unit-center referenced formation task is investigated.

Three to six mobile robots are used, which are equipped with the active Sony cameras and

colored markers (see Fig. 5.19 left and Fig. 5.20 left). The x-/y-directions of the world
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Fig. 5.19: Simulation results in a 3-robot system for a neighbor-/unit-center referenced for-
mation task. Left: initial positions of the robots (upper) and final positions of the
robots (lower); Right: pan-angle, x- and y-position (from top to bottom) of one
robot. Solid lines: actual value; Dashed lines: desired value.
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Fig. 5.20: Simulation results in a 6-robot system for a neighbor-/unit-center referenced for-
mation task. Left: initial positions of the robots (upper) and final positions of the
robots (lower); Right: pan-angle, x- and y-position (from top to bottom) of one
robot. Solid lines: actual value; Dashed lines: desired value.

frame are also illustrated. The robots should be equally distributed around the target

object, a green sphere at position (1, -1)m, at a distance of 2.5m each from their randomly

chosen initial positions.

The simulation results in a 3-robot system are illustrated in Fig. 5.19, while Fig. 5.20

shows the results in a 6-robot system. In the sub-figures from top to bottom, the pan-angle

100



5.5 Summary

and x-/y-position of one of the deployed robots are illustrated. The blue lines denote the

desired values, while the red lines denote the actual values. The robots reached the desired

positions in the end. Due to the limited FOV and the limited mechanical constraints of

pan-angles, robots have to stop to turn back to the neighbored robots in their opposite

directions, resulting in a relatively long waiting time. Since each robot only considers

the positions of the neighbored robots, the convergence velocity is independent of the

number of the robots deployed in the system theoretically. Therefore, this strategy can be

generalized.

5.4.4 Discussion

A team of mobile robots equipped with active vision systems with limited FOVs and limited

pan-angles is firstly deployed to accomplish a formation problem in a totally distributed

manner. Inspired by human behavior, a simple behavior-based solution is proposed, where

attention planning in the observer state and motion planning in the actor state are inte-

grated.

Comparison to RR Algorithm

The main advantage of the proposed algorithm compared to the RR algorithm is that a re-

planning is conducted if the vision-based position estimation is not satisfied, for instance if

the target object, which should be attended to at the current time step, is located far away

from the center of the camera FOV due to erroneous estimation of the previous time step

or self-motion. In this case, this target object will be attended to again. Applying the RR

algorithm to a mobile robot in a dynamic environment often causes divergent performance.

Comparison to Conventional Vision-Based Multi-Robot Systems

Compared to the conventional vision-based multi-robot systems containing omni-

directional cameras, global sensory units, or communication, the main challenge of de-

ploying robots with limited FOVs is the insufficient information update, which slows down

the task performance and may cause instabilities in a more complex scenario. However, the

fully decentralized, active attention planning is also desired in many systems (see Fig. 5.1),

which is a promising future research direction.

Limitations

For the formation tasks, mathematical proof of the system stability and convergence is still

lacking. Furthermore, multi-modal attention should be considered in order to overcome

the insufficient information update in dynamic environments.

5.5 Summary

In this chapter, the problem of how to plan a scan path in a sequential aspect and solve a

temporal attention shift problem, which is embodied as view direction planning in the 3D
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task space under limitation of visual FOV, is investigated . For tasks containing multiple

task-relevant objects which may not be located in the FOV concurrently, attention planning

is strictly required to ensure overall task accomplishment.

An experimental study of human subjects was conducted to examine and analyze human

eye movement and body movement while performing a coordinated formation task with

more than one task-relevant objects. The results imply that human FOA switches repeat-

edly and frequently among task-relevant objects, with a preference for dynamic objects.

Moreover, gaze behavior and body movement are also combined in a switching manner.

The contribution of the experimental study is not only limited in the application of robotic

systems, but also means a lot for human-robot cooperation, such that humans feel more

confident and natural when working together with robots.

Based on the experimental results of human behavior investigation, a spatio-temporal

attention planning for multi-object systems is proposed, resulting in a significantly reduced

overall perception uncertainty and a high similarity of temporal attention distribution

between robots and human subjects. Furthermore, the temporal aspect of a coordinated

behavior between visual attention and body motion in a multi-robot system is studied

exploratively. Contribution to the state of the art is the first-time utilization of active

vision sensors with limited FOV in a multi-robot formation task, deploying a coordination

of attention and motion planning.

This human-inspired attention planning completes the development of robot attention

control in the temporal aspect, considering evaluation of a technical system in the task

space. The results bring essential insights not only into active vision-based robot/multi-

robot system development but also into human-robot system research in the context of

efficient and human-like visual information acquisition and processing. High-level combi-

nation of attention strategies in the image space and in the task space is envisioned for

future work.
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6.1 Concluding Remarks

Nowadays, the deployment of technical systems in complex and unstructured everyday

environments has become a tendency of robotic research, in which the limited computa-

tion capacity and real-time constraints become the bottleneck of the system development.

Cognitive abilities to select essential information from a large amount of sensory data are

important and necessary for an autonomous mobile robot.

From the extensive works of human visual attention in biology, cognitive psychology,

and neuroscience, it is known that human attention is one of the most powerful cognitive

processes dealing with visual information selection. Considering the challenges arising in

the aforementioned context, it is envisioned to develop both biologically plausible and

technically applicable robot visual attention strategies and to bridge the gap between

fundamental studies and specific technical realizations.

This thesis focuses on the investigation of various aspects of robot attention con-

trol. Robot goal-directed visual attention strategies are explored from three different

perspectives: the stimulus-dependent aspect, the task-relevant spatial aspect, and the

task-relevant temporal aspect. Applications and examples are presented for demonstration

and evaluation. The main approaches along with the main results are highlighted below.

From visual data input, a large amount of information about robots’ operating envi-

ronments is obtained. Conventional robot applications have only considered extraction

of the task-relevant information, while stimulus-dependent perception has been ignored.

However, due to robot mobility and environment dynamics, task-irrelevant stimuli such

as abrupt appearing/disappearing of objects, dynamic characteristics, or appearance vari-

ation of objects, etc. can influence robot task accomplishment significantly, increasing

system uncertainty or even inhibiting robot tasks. Although they are not directly related

to robot tasks, they definitely play a key role in cognitive technical systems. Chapter 3

addresses this bottom-up perception problem during a robot performing a task by solv-

ing two main issues: the definition of task-irrelevant stimuli and the determination of a

reasonable and economical time point to attend to the task-irrelevant stimuli considering

environment dynamics. Two metrics, local surprise and global surprise, are defined in this

context. Local surprise combines static saliency and temporal novelty in the 2D image

space using an information-based approach, while global surprise emphasizes the dynamic

changing of the robots’ operating environment. A high global surprise indicates a high en-

vironment uncertainty and alerts the robot system to attend to the current local surprise

maximum, which has probably caused the uncertainty increase. Through interconnections

of local surprise and global surprise, the sensitivity of robot systems to the operating envi-

ronment is greatly improved while preserving primary robot tasks. Limitations are mainly
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located in expensive quantitative evaluations and the need for a more sophisticated means

of environment monitoring.

The major improvement provided by robot attention control is efficient task-relevant in-

formation acquisition and processing. Conventional approaches in the technical realizations

use top-down information to bias bottom-up perception in the early vision. Offline train-

ing is commonly an unavoidable process to find a best representation of the task-relevant

information using primary features in bottom-up attention selection models. Compared to

the state of the art, a more flexible and adaptive variation of top-down biased bottom-up

attention selection is presented in Chapter 4. A prediction-verification-adaptation loop is

established using a multi-focal vision sensor configuration. A prediction-correction inner

loop for estimation of the representation of top-down information in the current environ-

ment using a Kalman-filter enables a reasonable weighting of past experience and current

environment modeling and manifests itself in an improved efficiency in terms of fewer

necessary fixations for a number of target objects. Furthermore, a complementary robot

attention approach is proposed, in which an autonomous switching between top-down and

bottom-up attention mechanisms is applied for the first time in an application scenario,

in which more than one target object with totally different appearances are searched for.

The robot attention mechanism is adapted to the internal robot states including search-

ing, operating, and exploring. Efficient decision making completes the system autonomy

at task changing and robot state changing. Further improvements such as the ego-motion

compensation issue and the integration of other sensor modalities can be considered.

After Chapters 3 and 4 explore the determination of task-irrelevant stimuli and

task-relevant information from a spatial perspective, Chapter 5 addresses the temporal

aspect of robot attention control. The central problem is how robot attention should be

distributed along the time scale if more than one task-relevant object is located in the en-

vironment, especially in a multi-robot system containing both static and dynamic targets

of the same or different importance from an individual robot’s point of view. Fundamental

research in cognitive psychology and neuroscience have investigated sequential attention

planning of human subjects, but few works consider it during coordinated multi-agent

motion. The hypothesis that attention distribution differs significantly in different states

of human behavior is verified. Based on the experimental results of human behavior

investigation, a spatio-temporal attention planning for multi-object system is proposed,

resulting in a significantly reduced overall perception uncertainty and a high similarity

of temporal attention distribution between robots and human subjects. Furthermore,

inspired by the human attention behavior, the temporal aspect of a coordinated behavior

between visual attention and body motion in a multi-robot system is studied exploratively.

Contribution to the state of the art is the first-time utilization of active vision sensors

with limited FOVs in a multi-robot formation task, deploying a combination of attention

and motion.

Summarizing, the overall advantages of robot attention strategies proposed in this thesis

are qualitative improvements of sensitive awareness of environment dynamics, efficient and

flexible task-relevant information enhancement, and adaptation to changing environments

or tasks, as well as the reduced perception uncertainty and the extended FOV through
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the temporal attention planning. Application-oriented attention control considering robot

characteristics has been studied in a general and integrated manner for the first time. The

contributions advance the state of the art in robot attention development and provide

valuable insights for future research.

6.2 Outlook

Vision is one of the most powerful tools for environment perception. Along with the rapid

development of sensor technology and data transfer systems, the demand on high-speed

information processing is increasing for applications in mobile technical systems or in

dynamic environments. Biologically inspired visual attention systems have been proposed

to be one of the most efficient solutions for this challenge. Although much is known from

cognitive psychology and systemic neuroscience, visual attention is still a relatively young

research field in the robotics domain. There is still a large number of open questions and

interesting future directions remaining, some of which are suggested below.

• Multi-modal attention - The main advantage of visual attention in a technical system

is to achieve high efficiency compared to conventional goal-directed approaches. How-

ever, it does not guarantee a successful task accomplishment. Multi-modal attention

is then entered into the agenda. With an elaborated sensor fusion together with other

sensor modalities such as haptic sensor, lasers, sonars, and auditory sensors, the sys-

tem capability and the extent of functioning can be enhanced and complemented. To

date, multi-modal attention has been applied to a limited extent in humanoid robots

or human-robot interaction areas and mainly exhibits a redundant system structure

for resources allocation. Coordination and cooperation of multi-modal sensors have

not yet been considered. Interesting future directions for multi-modal attention also

exist in multi-robot systems such as development of joint attention between robots

[89].

• High-level semantic perception - Robotic applications in everyday life require a high-

level cognitive ability of technical systems. A very interesting direction is attentional

semantic perception. Scene interpretation, context recognition, and also semantic

visual SLAM among others are challenging and exciting research areas of artificial

intelligence (AI), for which visual attention can provide a highly efficient solution.

• Bi-directional improvement of fundamental studies and robotic research - From an

engineering point of view, the implications from fundamental studies cannot be easily

transferred and implemented in robotic applications. A tighter link between the two

research fields is needed. A reciprocal relationship is envisioned, from which both

bio-inspired robots and AI-inspired biology and psychology can benefit.

Research on robot visual attention will have a large impact on the development of

cognitive abilities of technical systems. This kind of biologically inspired perception system

is expected to be an inevitable component of modern robotics technology.
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A Experimental Platform: The Autonomous

City Explorer (ACE) Robot

In the project Autonomous City Explorer (ACE), an interactive robot is designed to find its

way to a given destination in unknown urban environments by interacting with pedestrians.

In a recent experiment the robot managed to successfully travel a distance of 1.5 km from

the campus of the Technische Universität München to Marienplatz, the central square of

Munich [213, 217].

In this thesis, the ACE robot was used in the diverse experiments to demonstrate

various attention strategies. The robot platform, the active vision system, and a goal-

directed attention control strategy developed and applied in the framework of the ACE

project are introduced here.

A.1 Hardware Components

In its current setup, the ACE robot comprises a differential drive mobile platform with

wheel encoders, developed by BlueBotics SA, two laser range finders for navigation and

traversability assessment, a loudspeaker, a touch-screen, an animated mouth, as well as

a sophisticated stereo vision system based on a multi-focal active camera head for image

processing (see. Fig. 1.2). The complete system measures 78 cm in length, 56 cm in width,

and 178 cm in height, including the camera head, and weighs approximately 160 kg.

The mobile platform has a maximum payload of 150 kg and is moved by two wheelchair

drive wheels (30 cm diameter) with differential drives and treads. It has two castor wheels

(12 cm diameter) at the rear and two castor wheels on springs at the front (10.5 cm diam-

eter). The maximum velocity is 1.4m/s, the maximum acceleration 1.35m/s2. It has an

autonomy of up to 10 km depending on the paving. The climbing ability of the platform

has been thoroughly tested, since this is an essential factor for outdoor navigation. The

robot is capable of climbing a slope of 6◦ and steps of 35mm. For urban environments

this means that the robot can safely navigate on sidewalks and smooth surfaces but must

avoid larger steps, such as the curbside.

The software is run on two on-board Linux PCs (one PC for navigation and interac-

tion and one for vision processing) with four 2.2GHz cores each, powered by an array

of rechargeable lithium polymer batteries that provide power for up to 8 hours. A third

PowerPC independently controls the differential wheel platform and receives asynchronous

driving commands from the navigation PC. All processes run at fixed update rates in a

pull architecture fashion, meaning data is queried from sensors and processes are refined

at fixed intervals.
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Fig. A.1: New revision of the high-performance active camera platform [97, 225]

A.2 The Active Multi-Focal Vision System

The design of the multi-focal high-performance vision system is based on the multi-focal

vision system, which has been developed for the humanoid robot LOLA [97]. It com-

prises several vision sensors with independent motion control which strongly differ in fields

of view and measurement accuracy. High-speed gaze shift capabilities provide fast situa-

tional attention changes of the individual sensors. Thereby, large and complex dynamically

changing environments are perceived flexibly and efficiently.

This multi-focal vision system generalizes the foveated vision concept by introducing

independent motion control of several vision sensors, thus adding more flexibility in sensor

resources allocation [97]. This feature is particularly beneficial in robot navigation and

scene observation, providing higher robot localization accuracy and tracking performance

than conventional systems.

The vision system consists of a wide-angle stereo camera mounted on a central pan/tilt-

platform, see Fig. A.1. As an upgrade from the previous vision system, the main camera is

now a 3-sensor, multi-baseline Bumblebee XB3 by Point Grey Research Inc., with enhanced

flexibility and accuracy because of the switchable baseline [225].

In addition, two telephoto cameras are gimbal-mounted on the central platform with

2 DoF each. Aperture angles of approximately 85◦ (wide) and 20◦ (telephoto) and focal-

lengths of 2mm and 25mm, respectively, are provided. The central platform is driven by

DC drives with harmonic drive gears, the gimbal-mounted cameras by brushless DC direct

drives providing high torques and accelerations at small dimensions and weights. Top open-

loop speeds and accelerations measured are 8,400◦/s and 100,000◦/s2. An embedded RISC

processor (MPC555, Motorola) controls the camera motions on joint levels. The position

feedback for the control loop is provided by incremental magnetical encoders (512 counts

per motor-revolution) on the dc motor side and processed in the RISC processor. For

the brushless-motor side, position is measured by light-weight and small optical absolute

encoders, which were developed specifically for this camera head. The position is encoded

in a 16-bit gray code on the encoder disc, processed directly in the respective sensor and

can be requested via I2C.
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Fig. A.2: Human prediction map model based on color and motion maps.

The system is encapsulated and accepts camera pose commands from a higher-level de-

cision and planning unit via a CAN-based interface. The system body is made of aluminum

alloy. Overall dimensions are 37× 30× 5 cm and the weight is 2.2 kg.

In the experiments described in this thesis, the wide-angle stereo camera mounted on

the pan/tilt-platform was mainly used for visual perception.

A.3 Attention Control for Human-Robot Interaction

A top-down biased bottom-up attention control has been proposed for human detection in

the framework of the ACE project.

For successful human-robot interaction, pedestrians should be detected first. Most

proposed human detection models are based on feature extraction and classification [105].

They are robust but not real-time capable, or are highly dependent on high resolution,

which is not suitable for applications in highly dynamic outdoor environments. Some

strategies based on skin color are also proposed in [174] and [191] which can work in

real-time but not robustly enough. Therefore, simple algorithms are combined to achieve

a relatively robust and real-time capable human detection approach. Considering the

common characteristics of pedestrians, for instance, the skin color and motion, a goal-

directed attention system is proposed for human detection and human tracking.

Human Detection

The attention model for human detection is illustrated in Fig. A.2. From an incoming image

sequence two consecutive images are taken into account to compute a human prediction

map, which is derived from feature maps of the skin color and motion. Feature maps are

normalized and weightedly combined into the final prediction map.
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– Color map To reduce the influence of different lighting conditions, an equalization in

the R-, G-, and B-channels of the input images is executed. To achieve the robustness,

the color feature map is the weighted sum of three color maps in different color spaces,

inspired by [174] and [191]. For each color space the corresponding grayscale result image

is given rules by which a certain pixel is either determined to be skin color (pixel set to

255, white) or not (pixel set to 0, black). Color spaces used by this model are normalized

RGB, HSV, and YCrCb.

– Motion map The input data for the motion feature map is the absolute value of the

difference between the grayscale values for each pixel in two consecutive images. The result

is one grayscale image showing intensity changes from the previous image to the current

image. To compensate for the small motion caused by shaking of the camera, which results

in little offsets l and k in the image horizontal and vertical directions between images in

the sequence, the grayscale motion image as described above is computed several times

while the two input images are shifted towards each other by one pixel in one direction at

a time. Then, an optimization problem is solved as follows:

min
k,l

N
∑

i=1

(

I1 (xi, yi)− I2 (xi − k, yi − l)
)

, (A.1)

to compute the offset k ∈ (−kmax, kmax) and l ∈ (−lmax, lmax). The total pixel number

is denoted by N , where each pixel i can be addressed by a pair (xi, yi). In order to use

this method more efficiently regarding the computational cost, N is set to a smaller value

representing several smaller areas in the image, while kmax and lmax are chosen within

reasonable limits.

Fig. A.3: Motion maps before and after the stabilization algorithm.

Human Tracking

The most bright position in the final human prediction map is the position with the highest

probability to contain a pedestrian, and, therefore, becomes the robot FOA. For multiple

positions containing the same brightness in the human prediction map, the position with

the maximum area in the 2D image is chosen. The camera platform is controlled to locate

this position into the image center, which also shows the robot current visual interest in

interacting with the selected pedestrian.
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640 x 480

426 x 320

284 x 220 250 x 220

Fig. A.4: Determination of search windows for efficient image processing. Upper images: the
search windows on the original images with current robot FOA denoted by circles;
Lower images: the search windows on the human prediction maps.

To lower the computational cost, a search window (area of interest) is constrained for

human tracking as follows. If the selected position is very close to the principle point, a

small search window is placed around the image center for the next step. In contrast, if

the search window has already been reduced and the FOA position is close to the search

window boarders, the size of the search window is enlarged. The size of the search window

varies between 250× 220 to 640× 480 pixels (see Fig. A.4). This method also facilitates

keeping the robot’s attention focused on one target/pedestrian and not to switch back and

forth between several points of interest.

Experimental Evaluation

During an 11-minute test run, pedestrians were usually located in a range up to 8 meters

away from the camera. The results in the outdoor environment were very pleasing, namely

a detection rate of 92.6%, approximately. The detection rate in indoor environments is

relatively low due to the large number of distractors with similar colors to skin color.

Since the search window for human detection varies, the computational cost for each step

also varies. Working on the hardware described previously, the maximum computation time

for one input image of 640×480 pixels is 0.7 s, while the minimum computation time using

images of 250× 200 pixels is 0.2 s. The color map computation is also implemented using

Graphics Processing Unit (GPU), which brings an additional speed-up of approximately

30%.

Fig. A.5 left illustrates the results of human detection. The images in the first row are

input images before camera motion, while the images in the second row are input images

after camera motion. The detected humans regarded as the robot FOA are indicated by

circles. The camera head attended to those humans in order to bring them into the image
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Fig. A.5: Left: attention selection before (upper) and after (lower) the camera motion con-
trol. Right: possible false positive errors on the original images (upper) and their
respective human prediction maps (lower). Circles: current robot FOA.

center. Through this behavior, ACE shows its interest in the current interaction partner.

Two possible false positive errors are shown in Fig. A.5 right. In the left column a part

of a building in the background is detected due to a similar color to skin color. In the right

column, swinging leaves are detected. To avoid those errors, the 3D positions of the image

region candidates should be constrained.

Further descriptions of hardware and software design in the other aspects such as path

planning, human-robot interaction, gesture recognition, and the diverse results of the field

experiment can be found in [213–216].
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Bottom-Up Attention

In the dynamic robot vision, high-speed early visual processing can enable high-speed

perception and recognition of sudden events, which reduces the overall latency of image

processing and ensures real-time decision making. Another practical advantage of high-

speed image processing is to reduce the influence of inter-frame motion such that the

motion blur or ego-motion can be ignored in computation. Bottom-up attention selection

is implemented on a platform of multiple Graphics Processing Units (GPUs) to significantly

accelerate the compute-intensive but highly parallelizable saliency map computation.

B.1 State-of-the-Art Implementations

Various implementations have been proposed. The details of the implementations may

differ, but most works are based on the saliency map model proposed in [84].

A real-time implementation of the saliency-based model of visual attention on a low

power, one board, highly parallel Single Instruction Multiple Data (SIMD) architecture

called Protoeye is proposed in [140]. Protoeye consists of a 2D array of mixed analog-

digital processing elements (PE). The operation of visual attention computation is opti-

mally distributed to the analog and digital parts. The analog part is used to implement the

spatial filtering-based transformations such as the conspicuity operator and the normaliza-

tion, while the digital part is used for the logical and arithmetical operations such as the

integration of conspicuity maps. The implemented attention process runs at a frequency

of 14 fps at a resolution of 64× 64 pixels.

Another real-time implementation of a selective attention model is proposed [203], in

which intensity features, edge features, red-green opponent features, and blue-yellow op-

ponent features are considered. To achieve real time ability they implement a Gaussian

pyramid with only 5 layers on an input image of 160 × 120 pixels. They use a look-up

table (LUT) to replace the Gaussian pyramid operation to save the calculation time and

also use retina-topic sampling to calculate symmetry information. For each channel, four

feature maps are computed instead of six feature maps in the saliency map model proposed

in [84]. Their model can perform within 280ms at Pentium-4 2.8GHz with 512MB RAM.

A distributed visual attention approach on a humanoid robot is proposed in [189]. In

this system five different modalities including color, intensity, edges, stereo, and motion

are used. The attention processing is distributed on a computer cluster which contains

eight PCs. Four run Windows 2000, three Windows XP and one Linux. Five of the

PCs are equipped with 2×2.2GHz Intel Xeon processors, two with 2×2.8GHz Intel Xeon

processors, and one with 2 Opteron 250 processors. All of the computers are connected to

a single switch via a Gigabit Ethernet. A frequency of 30 fps with input images of 320×240
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pixels is achieved.

A GPU-based saliency map for high-fidelity selective rendering is proposed [109]. This

implementation is also based on the saliency map model proposed in [84]. In this im-

plementation a motion map and a depth map as well as habituation are also integrated.

However, they use a Sobel filter instead of the complex Gabor-filter to produce the orien-

tation maps. No iterative normalization is computed. For an input image at a resolution

of 512× 512 pixels the saliency map generation takes about 34 ms using NVIDIA 6600GT

graphics card. No CUDA technology is used.

Another high-performance visual attention system handling invariants in the optical

array is proposed in [120]. Computation time of 21.8ms for a saliency map computation

at VGA resolution is achieved using GF 8800 GTX at precision of 32 bit using OpenGL

2.0.

The most comparable implementation to this implementation is [148] of iLab, USC,

because it also uses the same parameter values as those set in [84] [196]. For a 640× 480

color input image, running in a single-threaded on a GNU/Linux system (Fedora Core 6)

with a 2.8GHz Intel Xeon processor, the CPU time required to generate a saliency map is

51.34ms at a precision of floating-point arithmetic and 40.28ms at a precision of integer

arithmetic. Computed on a cluster of 48 CPUs a 1.5-2 times better result is achieved.

B.2 Graphics Processing Units

In the last few years, programmable GPUs have become more and more popular. GPUs

are specialized for compute-intensive, highly parallel computation. Moreover, Compute

Unified Device Architecture (CUDA), a new hardware and software architecture issued by

NVIDIA in 2007, allows the issuing and managing computations on the GPU as a data-

parallel computing device without the need for mapping them in a graphics API [2]. CUDA

software development kit includes a standard C compiler, hardware debugger tools, and

a performance profiler for simplified application development. It is the only C-language

development environment for GPUs. A wide range of applications can be accelerated by

using GPUs, such as matrix multiplication, optical flow computation, and so on. More

information can be found at www.nvidia.com.

The saliency map computation consists of compute-intensive filtering in different scales,

which is highly parallelizable. For real-time application the computation of saliency map is

implemented on GeForce 8800 (GTX) graphics cards of NVIDIA, which support the CUDA

technology. Here, GeForce 8800 cards are taken as an example. The other new products,

which are compatible with the CUDA technology, can also be used. The GeForce 8800

(GTX) consists of 16 multi-processors which consist of 8 processors each. All the processors

in the same multi-processor always execute the same instruction, but with different data.

This concept enables a highly-gradely parallel computation of a large amount of similar

data. The GeForce 8800 (GTX) has a core clock frequency of 575MHz and a 768MB

memory. The multi-GPU performance is strongly dependent on an efficient usage of the

thread-block concept and different memories.

113



B A High-Speed Multi-GPU Implementation of Bottom-Up Attention

  Thread 

     (0,0)

Block(0,0)

  Thread 

     (1,0)

  Thread 

     (0,1)

  Thread 

     (1,1)

…

…

…

  Thread 

     (0,0)

Block(1,0)

  Thread 

     (1,0)

  Thread 

     (0,1)

  Thread 

     (1,1)

…

…

…

  Thread 

     (0,0)

Block(0,1)

  Thread 

     (1,0)

  Thread 

     (0,1)

  Thread 

     (1,1)

…

…
…

…

…

… …

Grid 1

…

Grid n

kernel 1

kernel n

…

Host (CPU) Device (GPU)

Fig. B.1: The GPU thread batching model.

Thread batching

Programming with CUDA, a GPU is called compute device. It contains a large amount of

threads which can execute an instruction set on the device with different data in parallel.

A function which is compiled to those instruction sets is called kernel. In comparison

with the GPU, the main CPU is called host. The goal is to execute the data-parallel and

compute-intensive portions of applications on the GPU instead of on the CPU.

Fig. B.1 shows the thread batching model of a GPU. For each kernel function the GPU

is configured with a number of threads and blocks. The respective grid of a kernel consists

of two dimensional blocks. Each block contains up to 512 threads. The input data are

divided into the threads. All the threads in a grid execute the same kernel functions.

With the thread index threadIdx and the block index blockIdx, it is configured which data

will be processed in which thread. With this structure an easy programming and a good

scalability are realized.

Memory

The memory access is also a focus for an efficient programming on GPU. There are six

different memories in GPUs:

• Read-write per-thread registers

• Read-write per-thread local memory

• Read-write per-block shared memory

• Read-write per-grid global memory
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• Read-only per-grid constant memory

• Read-only per-grid texture memory

Above all, the shared memory and the texture memory are cached, while the read or

write access in the non-cached global memory always takes 400-600 clock cycles. Only the

texture memory and the global memory can be used for a large amount of data. Moreover,

the texture memory is optimized for 2D spatial locality and supports many operations

such as interpolation, clamping, data type conversion, etc. However, the texture memory

is read-only. The results must be saved in the global memory, which requires data copy

between memories.

B.3 Multi-GPU Implementation Details

In Fig. B.2 a data flow diagram of the GPU implementation is illustrated. After an ini-

tialization, an input image is firstly converted into 32-bit floating point such that high

accuracy and high efficiency will be achieved in the following computation phases. The

dyadic Gaussian pyramids are created in the shared memory together with the genera-

tion of the intensity maps (I-maps), the opponent red-green (RG-maps), and blue-yellow

maps (BY-maps). A Gabor-filter is used to calculate the orientation-maps (O-maps). The

Gabor-filter kernel is firstly calculated in the CPU. To save computational cost, the con-

volution of the sub-sampled images with the Gabor-filter in the space domain is displaced

by the multiplication in the frequency domain using Fast Fourier Transform (FFT). Here a

Cuda-image is constructed which contains all the images to be filtered by the transformed

Gabor-filter such that only one FFT and eight IFFT are needed for the convolution. The

images should be assembled before the transformation and disassembled after the trans-

formation in the texture memory. After that, 9 I-maps, 18 C-maps and 36 O-maps are

generated.

Furthermore, to ease the center-surround differences and the cross-scale combinations,

the available maps at different scales are rescaled into the same size. A point-to-point

subtraction followed by an iterative normalization is calculated. On the resulting feature

maps (FMs), a point-to-point addition and its following normalization are executed. One

conspicuity map (CM) in each channel is obtained. At the end, a summation of the

conspicuity maps into the saliency map is completed. A detailed description is provided

below.

Initialization

Firstly, the GPU should be initialized. For the reason that the memory allocation in GPUs

takes a very long time, the memory is firstly allocated for different images such as the input

images, the images in the dyadic Gaussian pyramids, the FMs, the CMs, and the rescaled

FMs/CMs at the same size as well as the saliency map.

Since the filter kernel will not be changed during the saliency map computation, the

Gabor-filter is calculated in the initialization phase in the CPU and then transformed into
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Fig. B.2: Data flow diagram for GPU implementation of saliency map computation

the frequency domain. The implementation of the Gabor-filter and the FFT transformation

of the Gabor-filter will be described in Section B.3 in detail.
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Data Type Conversion

Input images of 640×480 pixels and three 8-bit channels, namely red, green, and blue, are

taken as an example. The image data are copied from the CPU into the global memory

of the GPU. Since the global memory is not cached, it is essential to follow the right

access pattern to get maximum memory bandwidth. The data type must be such that

sizeof(type) is equal to 4, 8, or 16 and the variables of type type must be aligned to

sizeof(type) bytes [2]. If the alignment requirement is not fulfilled, the access to the

device memories is very costly. The image width fulfills the alignment requirement, while

the data amount of each pixel is 3 × 8 = 24 bit, which does not fulfill the alignment

requirement. Therefore, the pixel width should be extended with padding and insert an

extra 8-bit channel (see Fig. B.3).
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Fig. B.3: Image data padding

After the padding the image data type is converted from uchar4 into float4 to achieve

a high precision for the following computation. The texture memory provides an implicit

possibility to do type conversions by means of 2D-texture. Firstly, the input image is

bound with a 2D-texture. Then, the kernel function reads each pixel with the function

tex2D(·) as normalized (between 0.0 and 1.0) float4 data from the texture and saves them

into the global memory.

Dyadic Gaussian Pyramid Computation

In [196] a 6×6 separable Gaussian kernel [1 5 10 10 5 1]/32 is used for the image size reduc-

tion. A two-dimensional convolution contains 6 × 6 = 36 multiplications for each output

pixel, while a convolution with separable filters only requires 6 + 6 = 12 multiplications

for each output pixel. Therefore, the dyadic Gaussian pyramid computation is separated

into two convolutions: one convolution in the horizontal direction to reduce the horizontal

dimension, and one convolution in the vertical direction.

Since each access in the uncached global memory takes 400-600 clock cycles, it is neces-

sary to compute the convolutions in the faster texture memory or shared memory. Bound-

ing the images to a texture requires the data copy between the global memory and the

texture memory. Moreover, the data are only readable by kernels through texture fetch-

ing. It is more costly than loading the data into the shared memory and computing the

convolutions there. Therefore, the convolution is computed in the shared memory.

The convolution in the horizontal direction works, for instance, as follows:

• Specify the thread and block number for the kernel function
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• Load the data of an image row from the global memory into the shared memory

• Synchronize the threads to make sure that all the pixels are loaded in the shared

memory

• Each thread computes the convolution in the same way

• Copy the result from the shared memory into the global memory

For the convolutions in the horizontal direction, the thread and block number are so

specified that a block consists of as many threads as the number of the output image

columns and a grid has as many blocks as the number of the output image rows. For

example, for the subsampling from an input image at 640 × 480 into an output image

at 320 × 480, each block has 320 threads, while each grid has 480 blocks. Each thread

computes only one pixel in the output image.

Attention must be paid to the threads’ synchronization, because the convolution in the

thread n is dependent on the pixels loaded by thread n− 1 and n+ 1.

To deal with the convolutions on the image borders, [10 10 5 1]/26 is used on the left

border and [1 5 10 10]/26 on the right border (see Fig. B.4).

(10  10   5   1)/26 (1   5   10  10   5   1)/32 (1   5   10   10)/26{ {{

Fig. B.4: The convolution in the horizontal direction

After that, a following subsampling in the vertical direction can be similarly solved.

The input image at 640× 480 (scale σ = 0) is subsampled into 8 other scales: 320× 240

(σ = 1), 160× 120 (σ = 2), ..., 2× 1 (σ = 8).

C-maps and I-maps Computation

In the saliency map computation I- and C-maps including RG- and BY-maps are required.

According to [196], the I-maps are computed as follows:

MI(σ) =
r + g + b

3
, (B.1)

where r, g, b are the pixel values in the red, green, and blue channels of the input image.

The opponent C-maps are computed as follows:

MRG(σ) =
r − g

max(r, g, b)
, (B.2)

MBY (σ) =
b−min(r, g)

max(r, g, b)
. (B.3)

The regions in which max(r, g, b) < 0.1 are set to 0.
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To make the computation more efficient, the computation of the I-maps and the C-

maps is integrated into the Gaussian filter convolutions in the vertical direction. Thus, the

time for loading the data from the global memory can be spared, since the image data are

already in the shared memory after the convolutions.

O-maps Computation

Gabor-filter

To compute the O-maps in different scales, a Gabor-filter G truncated to 19× 19 pixels is

used [196], which is formulated as follows:

Gψ(x, y, θ) = exp

(

x′2 + γ2 y′2

2ǫ2

)

·, cos
(

2π
x′

λ
+ ψ

)

, (B.4)

with

x′ = x cos(θ) + y sin(θ), y′ = −x sin(θ) + y cos(θ), (B.5)

where (x, y) is the pixel coordinate. The parameter values of this implementation are set

according to [196], where γ stands for the aspect ratio with the value 1, while λ is the

wavelength and has the value of 7 pixels. The standard deviation ǫ is equal to 7/3 pixels,

and ψ ∈ {0, π
2
}. Here, θ stands for the orientation angles with θ ∈ {0◦, 45◦, 90◦, 135◦}.

As defined in Eq. B.4, the Gabor-filter consists of a combination of a 2D Gaussian

bell-shaped curve and a sine (ψ = π/2) and cosine function (ψ = 0). In each direction,

the image should be filtered twice and summed as follows:

Mθ(σ) = |MI(σ) ∗G0(θ)|+ |MI(σ) ∗Gπ/2(θ)|, (B.6)

with MI(σ) the I-maps at scale σ.

FFT and IFFT

Since a convolution with the 19 × 19 Gabor-filter is too costly, FFT and IFFT are used

to accelerate this process significantly. The Gabor-filter and the images to be convoluted

should be first converted into the frequency domain using FFT, and multiplied with each

other. Then, the result is converted from the frequency domain into the space domain using

IFFT. In doing this, the complexity sinks from O(n4) (2D convolution) to O(n2 log n) (2D

FFT).

As mentioned in B.3, the FFT of the Gabor-filter should be computed in the initializa-

tion, because it will never be modified in the saliency map generation. Using the CUFFT

library [1], eight FFTs with four different orientations and two different forms (sine and

cosine) are computed from the original Gabor-filter.

Due to the fact that the input image (640 × 480) and the subsampled image at scale

1 (320 × 240) are not used for the following saliency map computation, 7 × 4 × 2 = 56

convolutions for the O-maps are needed (7 scales, 4 orientations and 2 forms). The images

in 7 scales are assembled together into a Cuda-image (see Fig. B.5, left) such that just one

FFT and eight IFFTs instead of seven FFTs and 56 IFFTs are computed. For an input
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image at 640× 480, an image with 256× 256 is big enough to assemble all the images into

itself.

Using the texture a modus named “clamp-to-border” is supported, which makes the

image copy very simple. If a pixel outside the texture border is accessed, this pixel has the

same color as the border. Therefore, instead of copying the pixel from (0, 0) to (n−1, n−1),

the pixel is copied from (−9,−9) to (n+ 8, n+ 8) of an image with n× n pixels. In doing

this, the border extension for the convolutions is obtained.

Before the FFT of the Gabor-filter is computed, the Gabor-filter kernel (19×19) should

be rescaled into the same size as that of the image to be convoluted (256× 256), because

the convolution using FFT only can be applied on the input data of the same size [3].

The expansion of the Gabor-filter kernel to the image size should be executed as shown

in Fig. B.5 right: cyclically shift the original filter kernel such that the kernel center is at

(0, 0).
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Fig. B.5: The Cuda-image of 256× 256 pixels (left) and the filter kernel (right) prepared for
the FFT

Center-Surround Differences

After the steps above, 9 I-maps, 18 C-maps and 36 O-maps are generated. This is followed

by the generation of the center-surround differences and cross-scale combinations. In these

two steps, images at different scales are subtracted and combined.

In the center-surround differences, 6 feature maps in the intensity channel, 12 feature

maps in the color channel and 24 feature maps in the orientation channel are computed as

follows:

I(c, s) = |I(c)⊖ I(s)|, (B.7)

RG(c, s) = |(R(c)−G(c))⊖ (R(s)−G(s)))|, (B.8)

BY (c, s) = |(B(c)− Y (c))⊖ (Y (s)−B(s)))|, (B.9)

O(c, s, θ) = |O(c, θ)⊖O(s, θ)|, (B.10)

with c referring to the fine scale and s indicating the coarse scale: c = {2, 3, 4}; δ = {3, 4};
s = c+δ. The orientation of the Gabor-filter is denoted by θ. The subtraction between two
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images at different scales c and s is denoted by ⊖. To execute this subtraction, the images

should be enlarged or reduced into the same size and then a point-by-point subtraction is

undertaken. The images at scale 2 and 3 are rescaled into scale 4 and the images at scales

5, 6, 7, and 8 are enlarged into scale 4. At the end all the images are at scale 4 and have

40× 30 pixels.

For those enlargements and reductions the texture concept is used again. Firstly, the

images are bound to the textures. The advantage of this method is that the images

using float-coordinates can be accessed and the GPU can compute one new pixel by the

interpolation of the four pixels nearby using tex2D(·). The step size is computed by

dividing the source image size through the goal image size. For example, if an image of

20×15 pixels is rescaled into 40×30 pixels, the step sizes are 0.5 and 0.5 in the horizontal

and vertical directions. For the thread and block configuration, 40 threads per block and

7 × 30 blocks per grid are used, so that the 7 images from I-, C- and O-channels at the

same scale are rescaled concurrently, which provides a speed-up for the computation.

Since the images are rescaled into 40× 30 pixels at this step, three lists are constructed

to make the computation as parallel as possible. Fig. B.6 shows the configuration of the

lists. Each list contains 6× 7 = 42 images with different scale numbers (but in the same

size 40× 30) and channels. The threads and blocks are so parametrized that 42 blocks are

configured. Each block is responsible for one image in the list. 42 images are processed

in only one kernel function in parallel. This list-concept is also used for the iterative

normalization and the cross-scale combinations.

2-5 2-6 3-6 3-7 4-7 4-8 ... 2-5 2-6 3-6 3-7 4-7 4-8

  5   6   6   7   7   8 ...   5   6   6   7   7   8

  2   2   3   3   4   4 ...   2   2   3   3   4   4list center

list surround

list difference

I-maps O-maps

Fig. B.6: The image lists configuration

Iterative Normalization

Iterative normalization N(·) is an important component in the whole computation. It

simulates local competition between neighboring salient locations [84]. Each iteration

contains self-excitation and neighbor-induced inhibition, which can be implemented using

a difference-of-Gaussian (DoG) filter [82]:

DoG(x, y) =
c2ex

2πσ2
ex

e
−x2

+y2

2σ2
ex − c2inh

2πσ2
inh

e
−x2

+y2

2σ2
inh , (B.11)

with σex = 2% and σinh = 25% of the input image width, cex = 0.5, cinh = 1.5 and the

constant inhibitory term Cinh = 0.02. At each iteration the given image M is computed as

121



B A High-Speed Multi-GPU Implementation of Bottom-Up Attention

follows [82]:

M ← |M +M ∗DoG− Cinh|≥0. (B.12)

The inseparable DoG filter is divided into two separable convolution filters, one Gaussian

filter for excitation of 5× 5 pixels and one Gaussian filter for inhibition of 29× 29 pixels

for an input image of 40 × 30 pixels. The larger the input image is, the bigger the filter

kernels are. The kernel size is computed as follows:

size(ex|inh) = 2 · floor
(

σ(ex|inh) ·
√

−2 · ln(1/100)
)

+ 1. (B.13)

Although the shared memory size is limited, the images at 40 × 30 and the respective

filter kernels (4916 Byte) can fit into it. In doing this, a 10 times acceleration is obtained,

where the lists mentioned in B.3 are also used.

Combination into the Saliency Map

In the following across-scale combinations, no image rescaling is needed. It is only a

question of point-by-point integration of the feature maps into conspicuity maps Ī, C̄, and

Ō as follows [84]:

Ī =
4
⊕
c=2

c+4
⊕

s=c+3
N(I(c, s)), (B.14)

C̄ =
4
⊕
c=2

c+4
⊕

s=c+3
[N(RG(c, s)) +N(BY (c, s))], (B.15)

Ō =
∑

θ∈{0◦,45◦,90◦,135◦}

N(
4
⊕
c=2

c+4
⊕

s=c+3
N(O(c, s, θ))). (B.16)

The final saliency map is a linear combination of the normalized conspicuity maps.

S =
1

3
(N(Ī) +N(C̄) +N(Ō)). (B.17)

The weighting possibility of the feature maps and the conspicuity maps is also imple-

mented such that top-down visual attention selection can be easily integrated later (see

Section 4.2).

Multi-GPU Utilization

A parallel utilization of multi-GPU is one of the highlights of this implementation, through

which a significant acceleration of the saliency map computation is achieved.

One of the parallelization possibilities is the pipeline structure (see Fig. B.7). The

whole computation is divided into several parts with similar computational load. Each

GPU computes only one part of the whole computation. The first GPU reads the input

images. After the former GPU finishes its job, the data will be transfered to the next

GPU. New data is then loaded into the former GPU. The last GPU provides the final

result. The advantage of the pipeline structure is that all the partial works are executed
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in parallel, such that the frame rate can be increased. However, in this case, it is difficult

to divide the saliency map computation into exactly equal parts. Furthermore, if the GPU

number is changed, the computation must be redivided. Finally, the data copy from one

GPU into another GPU is also costly.

GPU 0 GPU nGPU 1 …

the input images the saliency maps

……

Fig. B.7: The pipeline structure

GPU 0

GPU 0GPU n

GPU 1

…

multiplexer demultiplexer

the input images the saliency maps

… …

Fig. B.8: The multiplexer and demultiplexer structure

Because of these disadvantages of the pipeline structure, a multiplexer structure is used

in this implementation. Fig. B.8 shows how a multiplexer works. The input images are

transferred by the multiplexer, also a 1-to-n switch, to different GPUs. Each GPU accom-

plishes the whole saliency map computation. A following demultiplexer, also an n-to-1

switch, decides from which GPU a saliency map should be taken. It must be pointed out

that the multiplexer and the demultiplexer can not work synchronously. Otherwise, the

GPU which just starts the computation would provide a wrong result. This multiplex-

er/demultiplexer structure provides a good scalability on multi-GPU platforms.

To avoid the intricateness of a multi-process mode, a multi-threaded mode is used

to manage the multi-GPU utilization. In a multi-threaded mode, in addition to a main

thread, several other threads are also utilized. Each thread is responsible for one GPU (see

Fig. B.9). In CUDA it is designed that each thread has its own 32-bit address, such that

most CUDA functions are encapsulated and do not influence each other. Two exceptions

are the modules and the texture references. Since texture reference is defined globally,

it is possible that all the threads access the texture reference concurrently. Here, mutual

exclusion (mutex) is used to solve this problem. The functions which use a texture reference

are blocked by a mutex. In this case there is no significant performance loss, because it

is impossible that more than one thread accesses the same texture reference concurrently

due to the processing delay.
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(GPU n)…

Fig. B.9: The petri-net structure for the multi-threaded mode

Fig. B.9 illustrates the multi-threaded mode in a petri-net. Two semaphores are used to

ensure the synchronization of the threads. Semaphore 1 sends a signal to the main thread

if one or more GPUs are idle, and is initialized with the number of the applied GPUs.

Semaphore 2 starts one of the GPU threads. It is worth mentioning that the transitions

t1,1, ..., tn,1 stand in a deliberate branch conflict, which means it is not possible to determine

which transition will be connected. It means in practice that the linux-scheduler decides

which thread will be started. It simplifies the implementation and also takes care of an

equal utilization of all the threads.

Interestingly, in the main thread, at t0,4 a thread is started, while at t0,5 a saliency

map is ready to be taken. Using this multi-threaded mode the frame rate is significantly

increased.

B.4 Results and Discussion

The multi-GPU implementation was tested using 1 to 4 NIVDIA GeForce 8800 (GTX)

graphics cards. The computers are equipped with different CPUs and 64-bit linux systems.

The computational time is the average processing time of an image over the time processing

1000 input images at a resolution of 640× 480 pixels.

Tab. B.1 shows the detailed processing time protocol. The most costly step is the

initialization, which has a computational time of 328ms. The memory allocation happens

only once and needs almost 50MB RAM. The saliency map computation takes only about

10.6 ms at a frame rate of 94.3 fps. In the GFLOPS performance estimation, only the
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4 x GPU4 x GPU4 x GPU

Fig. B.10: Four GPUs installed in a PC.

Saliency map computation Time [ms] FLOP GFLOPS

Initialization 328
Gaussian pyramid/I-, C-maps 2,10 6.482.049 3,09
FFT, convolution, IFFT 2,39 27.867.923 11,66
Image rescaling 0,89 294.000 0,33
Center-surround differences 0,16 151.200 0.95
Iterative normalization 4,74 34.876.690 7,36
Integration into saliency maps 0,33 62.390 0,19
Total 10,61 69.734.252 6,57

Tab. B.1: Computational time registration using 1 GPU.

floating-point operations are considered. The address-pointer arithmetic, the starting of

the CUDA functions, and the memory copy/accesses, which are very time-consuming and

have therefore a strong influence on the computational time, are not considered.

Fig. B.11 illustrates the computational time using 1 to 4 GPUs. Using 1 GPU, the

saliency map generation takes 10.61ms, while using 4 GPUs it takes approximately 3.3

times less than that, namely 3.196ms. This shows a very good scalability of the multi-

GPU implementation. The computation performance of GPUs is almost independent of

the CPU.

The implementation is also evaluated using a high-speed camera (Dragonfly Express of

Point Grey Research Inc., IEEE-1394b, 640× 480 pixels at 200Hz). A frame rate of 77 fps

is achieved using 1 GPU, while using 2 GPUs a frame rate of 134 fps is obtained. Only

2ms extra computational time for the saliency map generation in addition to the camera

capturing time is required.

In Tab. B.2, the performance of the iLab’s implementation and this implementation is

compared. Working on the images with the same resolution and the same precision, iLab

uses the 2.8GHz Intel Xeon processor and achieves a frequency of 19.48Hz, while using

this implementation a frequency of 313Hz is obtained. Using the multi-threaded mode,

the maximum speed of iLab’s implementation is about 37 fps, which is still about 8.5 times

slower than this implementation.
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Fig. B.11: Comparison of computation times using 1 to 4 GPUs.

iLab’s implementation This implementation

Resolution 640× 480 pixels 640× 480 pixels
Hardware 2.8 GHz Intel 4 GPUs NVIDIA

Xeon processor GeForce 8800 (GTX)
Precision floating-point floating-point
Computational time 51.34ms 3.196ms
Frequency 19.48Hz 313Hz

Tab. B.2: Comparison between iLab’s implementation [148] and this implementation.

However, the disadvantage of multi-GPU utilization on mobile robots is the power

demand. To power a single GeForce 8800 GTX card, a 450-Watt power supply is needed.

To solve this problem, ACE is equipped with eight high power Polymer Li-Ion Modules

with 51.8V and 21Ah. Thereby, the power demand is totally fulfilled. Without critical

real-time conditions, slower GPUs with lower power demand can also be used, such as

GeForce 8600 cards.
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[227] T. Xu, H. Wu, T. Zhang, K. Kühnlenz, and M. Buss. Environment adapted ac-

tive multi-focal vision system for object detection. In Proceedings of International

Conference on Robotics and Automation (ICRA), Kobe, Japan, pages 2418–2423,

2009.
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