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Abstract—Based on recent results for the vector broadcast
channel (BC), the feasibility of the quality of service (QoS)
optimization in the multiple-input multiple-output (MIMO) BC
with linear precoders and linear equalizers is investigated. Based
on the observation that only single data stream transmission must
be considered for feasibility, we find that the test for feasibility is
the comparison of the sum of the transformed rate requirements
with a bound given by the difference of the number of users and
the degrees of freedom available at the BC transmitter, as long
as the channel realization fulfills some regularity condition.

I. INTRODUCTION

The QoS optimization for the MIMO BC evolves from the

idea of satisfying the needs of the receivers with the least

effort. Usually the demand is expressed in minimum data rate

and the effort is formulated as necessary transmit power. The

resulting QoS optimization problem reads as

min Ptx s.t.: Rk ≥ ρk ∀k ∈ {1, . . . , K} (1)

where the transmit power Ptx is minimized w.r.t. the linear

precoding operation, Rk denotes the rate of user k, and

ρk > 0 is the respective rate requirement. Note that above

formulation does not include any upper bound for the transmit

power Ptx. Therefore, it is possible that the resulting transmit

power to meet the rate requirements of the K receivers is

impractically large. Additionally, (1) does not necessarily have

a solution due to the assumption of linear precoding, i.e.,

not all requirements can be met even for unbounded transmit

power.

Testing feasibility and solving (1) has been researched

extensively for the vector BC. As the rate for Gaussian

signalling is connected with the signal-to-interference-and-

noise ratio (SINR) and also with the minimum mean square

error (MMSE) by bijective mappings, (1) is rather formulated

with minimum SINR or maximum MMSE constraints. In [1],

[2], [3], [4], [5], the following alternative form for (1) was

used

min Ptx s.t.: SINRk ≥ γk ∀k ∈ {1, . . . , K} (2)

whose optimum and optimizer are the same as that of (1),

if ρk = log2(1 + γk) ∀k holds. As mentioned in [4], (2)

has a solution for any set γk > 0 ∀k, if the channel

vectors describing the propagation from the transmitter to

the receivers are linearly independent, because a zero-forcing

precoding operation is possible that decouples the SINR’s of

the different users. This result leads to the necessary condition

for the feasibility of arbitrary requirements that the number of

transmit antennas N is larger than or equal to the number

of receivers K . However, feasibility must be tested for the

case of N < K or rank-deficient channels. One possibility

is to run an algorithm that solves the QoS optimization and

to see whether it converges or not. A more preferable test

relies on the balancing optimization, where the ratios of the

actual SINR’s over the respective targets is made equal for all

receivers. Note that the balancing optimization always has a

solution. If the noise term in the SINR definition is dropped as

in [6], [7], [8], [9], [10], [11], the balancing is done for infinite

transmit power, i.e., the signal-to-interference ratios (SIR’s)

are balanced. Therefore, the test for feasibility based on the

balancing optimization is as follows. Run the SIR balancing.

In the case that the ratio of the resulting SIRs and the SINR

requirement is larger than one, (2) has a solution. Otherwise,

the SINR requirements cannot be met.

In [12], [13], it was revealed that feasibility for the QoS

requirements in the vector BC can be tested without run-

ning any algorithm. Instead, the rate requirements must be

transformed to MMSE requirements and only the sum of the

MMSE requirements has to be compared to K − rank(H)
for regular channels [see (4)], where H denotes the matrix

comprising the channel vectors. If the sum of the MMSE

requirements lies above K − rank(H), (1) is feasible and

otherwise it is not.

In this paper, we generalize the results of [12], [13] to

the MIMO BC. It is shown that still such a simple condition

suffices to test feasibility. Interestingly, we find that the number

of antennas at the receivers has no influence on feasibility.

II. SYSTEM MODEL AND ASSUMPTIONS

Relying on the rate duality of the MIMO BC and the

MIMO multiple access channel (MAC) with linear transceivers

shown in [14], we focus on the dual MIMO MAC. The dk-

dimensional data signal sk ∼ NC(0, I) of the k-th user is

linearly precoded with Tk ∈ CMk×dk and transmitted over the

k-th channel Hk ∈ CN×Mk with Hk 6= 0 ∀k. The MIMO

MAC receiver observes x ∈ CN which is the superposition of

the channel outputs and the additive noise η ∼ NC(0, I). The
received signal is passed through the equalizer Gk ∈ Cdk×N

to get the estimate ŝk ∈ C
dk for sk.

A practically important setup is when the channels are

regular, i.e., they fulfill following condition:

∀I ⊆ {1, . . . , K} : rank(HI) ≥ min(|I|, N) (3)
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where HI comprises all channels Hi with i ∈ I in a block

row, e.g., HI = [H1, H3] for I = {1, 3}. For vector channels
(Mk = 1 ∀k), above regularity condition implies that every

user subset must have a full-rank channel matrix [12], [13]:

∀I ⊆ {1, . . . , K} : rank(HI) = min(|I|, N). (4)

Consequently, the vector channels must be different. Note,

however, that (3) allows for identical channels in the MIMO

case. For example, if H1 = H2 = H3 ∈ C
N×M1 is full rank,

(3) is not violated for M1 ≥ 3.
The setup with channels that do not fulfill (3) is denoted as

singular case in the following.

III. VECTOR BROADCAST CHANNEL

In the dual vector MAC, the channels are vectors hi ∈ CN

and the precoders are scalars tk ∈ R+ ∀k.1 Additionally, the

inequality of the regularity condition (3) becomes an equality

[see (4)]. Define the mean square error (MSE) for user k as

εk = E
[

|sk − ŝk|
2
]

and the minimum MSE resulting from the MMSE optimum

equalizer as

MMSEk = min
gH

k

εk.

The optimizer gH
MMSE,k is the linear MMSE filter (e.g., [15])

gH
MMSE,k = tkhH

k

(

I +

K
∑

i=1

t2i hih
H
i

)−1

leading to

MMSEk = 1 − t2khH
k

(

I +

K
∑

i=1

t2i hih
H
i

)−1

hk (5)

=
1

1 + t2khH
k

(

I +
∑K

i=1,i6=k t2i hih
H
i

)−1

hk

.

With this result and assuming complex Gaussian signalling,

the data rate for user k can be expressed as

Rk = − log2(MMSEk). (6)

Therefore, any rate target ρk can be translated into an MMSE

target with

µk = 2−ρk . (7)

Employing these definitions, (1) translates to

min
t1,...,tK

Ptx s.t.: MMSEk ≤ µk. (8)

Clearly, (1) is feasibiliy, if and only if (8) is feasible. The

feasibility test for either (1), (2), or (8) is discussed in the

following.

1The precoders are assumed to be real, since the MMSE, the SINR, and
the rate are independent of the phase shift introduced by the precoder.

A. Previous Results on QoS Feasibility

In [16], the feasibility of (2) is discussed for a synchronous

code division multiple access (CDMA) system with MMSE

receivers. It is proven [16, Theorem 5.1] that some SINR

requirements γ1, . . . , γK are feasible, iff

K
∑

i=1

γi

1 + γi
< N. (9)

In other words, any CDMA codes of length N lead to SINR’s

fulfilling (9) and for any SINR requirements obeying (9), codes

can be constructed such that (2) has a solution. Translated

into the considered setup, it is proven that always a channel

exists for which (9) holds. This would mean that the channels

hi ∀i have to be appropriately designed to ensure feasibility.

Unfortunately, the channels are given and fixed in the BC

problem at hand.

The QoS formulation (8) was optimally solved and feasibil-

ity conditions were provided for point-to-point MIMO systems

with MMSE receivers in [17]. According to [17, Theorem 2],

(8) has a solution for point-to-point MIMO systems, iff

K
∑

i=1

µi > K − rank(H) (10)

where H = [h1, . . . , hK ] ∈ CN×K comprises the N -

dimensional channels of the K users. Due to the relation

between the maximum SINR and the minimum MSE, we have

that

γi =
1

µi
− 1 (11)

and (9) is equivalent to (10), if rank(H) = N . The point-

to-point MIMO precoder T is assumed to have no special

structure in [17].2 In contrast, the precoder of the dual MAC

has a particular structure, e.g., T = diag(t1, . . . , tK) for the

vector MAC. Therefore, the result from [17] is not applicable

to the vector MAC.

The QoS optimization (2) for the MIMO BC with fixed

receivers (not necessarily the MMSE receivers), that is finally

equivalent to a vector BC, is investigated in [4]. Besides the

reformulation of (2) as a second order cone program (SOCP),

it is proven [4, Proposition 1] that there exists a precoder in

the vector BC such that mink SINRk ≥ γ or equivalently,

SINRk ≥ γ ∀k, is fulfilled, only if

γ ≤
1

K
rank(H) − 1

.

This necessary condition shows that any precoder in the vector

BC leads to a minimum SINR fulfilling above condition.

However, no sufficient condition is provided in [4]. So, it is

unclear whether a precoder for a QoS requirement γ fulfilling

above condition exists or not, as discussed in [4].

2Except for the carrier-noncooperative scheme, where the precoder is
block-diagonal. However, this comes along with a block-diagonal equalizer.
Additionally, the corresponding channel is also block-diagonal. Thus, the
carrier-noncooperative problem falls apart into sub-problems having also no
structural constraints for the precoder and the equalizer.
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The guaranteed MSE region of an orthogonal space-time

block coded (OSTBC) BC with an average transmit power

constraint was identified in [18]. Including the receiver, afore-

mentioned system is equivalent to a single-input single-output

(SISO) BC. Although an average transmit power constraint

was included, it was possible to show in [18, Theorem 1] that

the MSE’s µ1, . . . , µK are guaranteed, iff

K
∑

k=1

E

[

1

αk

]

(1 − µk) ≤
E[Ptx]

σ2
η

(

1 −
K
∑

k=1

(1 − µk)

)

with the SISO channel coefficient αk for user k and the

common noise variance σ2
η . From this result, it was concluded

in [18, Remark 1] that some MMSE QoS requirements are not

feasible, if
K
∑

k=1

µk < K − 1.

Note that rank(H) = 1 holds, since a SISO BC was

considered in [18]. Therefore, above non-feasibility condition

is very similar to the feasibility condition in (10).

B. Regular Channels

In [12], [13], following theorem for the vector BC with

regular channels fulfilling (4) was proven.

Theorem 1: The closure of the feasible MMSE region in

the vector broadcast channel with linear transceivers and

regular channels satisfying (4) is a polytope P whose bound-

ing half-spaces are the individual box constraints 0 ≤
MMSEk ≤ 1 ∀k ∈ {1, . . . , K} and the sum MMSE constraint
∑K

k=1 MMSEk ≥ K − N . By means of a positive power

allocation with finite sum power, any point belonging to the

interior of the polytope can be achieved. For MMSEs equal

to one, no power is allocated to the respective user.

Note that this result was obtained without any assumptions

regarding the channels except that (4) must hold.

Since the MMSE requirements µk are found via (7), the

box constraints 0 < µk ≤ 1 are always fulfilled for valid rate

requirements, i.e., 0 < ρk < ∞ ∀k. Therefore, the test for

feasibility in the vector BC with regular channels is simply

[cf. (10)]
K
∑

k=1

µk > K − N.

The QoS optimization (1) for the vector BC has a solution,

if and only if above condition for the sum of the MMSE

requirements is fulfilled.

C. Singular Channels

If the channels do not fulfill (4), the closure of the feasible

MMSE region is still a polytope, but the sum MMSE bound

is slightly changed and additional bounds apply [13]. In the

following, we will give a rigorous prove for this statement.

If (4) is violated, it is possible that the composite chan-

nel H = [h1, . . . , hK ] ∈ CN×K is rank deficient, i.e.,

rank(H) < min(K, N). Let us define r = rank(H) for

notational brevity. Then, some sub-unitary basis U ∈ CN×r

for range(H) can be easily obtained, e.g., with the QR

factorization with column pivoting [19, Subsection 5.4.1].

Since the dual vector MAC is constructed such that the noise

is white, i.e., η ∼ NC(0, I), the front-end UH delivers a

sufficient statistic for s = [s1, . . . , sK ]T ∈ CK and its output

is

ξ = UHx = ΦTs + n ∈ C
r

with the equivalent channel Φ = UHH ∈ Cr×K , the noise

n ∼ NC(0, I), and T = diag(t1, . . . , tK) ∈ R
K×K comprises

the precoders of the K vector MAC transmitters. It is possible

that the columns φ1, . . . , φK ∈ Cr of the equivalent channel

Φ fulfill (4), e.g., for a two user system with colinear channels.

In this case, Theorem 1 can be applied and (1) has a solution,

iff
∑K

k=1 µk > K − r.
However, the equivalent channels might again violate (4).

Also in this case,
∑K

k=1 µk > K − r must hold. But as

we will see in the following, additional conditions for the

MMSE requirements of the user sets I ⊂ {1, . . . , K} violating
rank(HI) = min(|I|, r) [cf. (4)] arise.

With (5) and replacing H by Φ, the sum MMSE for any

power allocation t21, . . . , t
2
K in the dual MAC can be written

as

K
∑

k=1

MMSEk = K − tr
(

ΦT 2ΦH
(

I + ΦT 2ΦH
)−1
)

.

Since the identity matrix does not change the eigenbasis, we

can infer that all eigenvalues of ΦT 2ΦH(I + ΦT 2ΦH)−1 are

non-negative and smaller than one. Therefore, the supremum

of the trace is r and we have for the sum MMSE that

K
∑

k=1

MMSEk > K − r. (12)

The bound can only be reached for infinite power, e.g.,
∑K

k=1 MMSEk = K − r, when all diagonal elements of T 2

tend to infinity.

Let I ⊂ {1, . . . , K}. Additionally, the columns of Φ are

reordered with the permutation matrix ΠI ∈ {0, 1}K×K

such that it can be partitioned as ΦΠI = [ΦI , ΦĪ ], where
ΦI ∈ Cr×|I| comprises the columns of Φ with an index out

of I and the rest is collected in ΦĪ ∈ Cr×K−|I|. Similarly,

the symmetric permutation ΠT
I TΠI of the diagonal precoder

matrix T gives the upper left block TI ∈ R|I|×|I| and the

lower right block TĪ ∈ R
K−|I|×K−|I|. With the canonical

unit vector ei ∈ {0, 1}K, whose i-th element is one, applying

the matrix inversion lemma to (5), and substituting Φ for H

yields

MMSEk = 1 − eT
k TΦH

(

I + ΦT 2ΦH
)−1

ΦTek

= eT
k

(

I + TΦHΦT
)−1

ek

= eT
π(k)

(

I + [ΦITI , ΦĪTĪ ]H[ΦITI , ΦĪTĪ ]
)−1

eπ(k)

with eπ(k) = ΠT
I ek. Note that the |I| upper left diagonal

elements of the inverse in the last line are the MMSE’s of the

users with indices out of I. The |I| × |I| MMSE matrix of
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these users can be found with the matrix inversion lemma for

partitioned matrices

MI =
(

I + Υ H
I

(

I − ΥĪ

(

I + Υ H
Ī ΥĪ

)−1
Υ H
Ī

)

ΥI

)−1

where ΥI = ΦITI ∈ Cr×|I| and ΥĪ = ΦĪTĪ ∈ Cr×K−|I|.

To find the minimum MMSE’s, we have to investigate the

case, where the powers of the users go to infinity. To this end,

we introduce ν which grows with increasing power. However,

we let the powers of the users in I have a different growth

rate than the powers of the other users, i.e., TĪ is weighted

with νω/2 and TI with νωI/2, where ωI , ω > 0:

MI =
(

I + νωIΥ H
I

(

I− νωΥĪ

(

I + νωΥ H
Ī ΥĪ

)−1
Υ H
Ī

)

ΥI

)−1

.

Due to the matrix inversion lemma, we have that

I − νωΥĪ

(

I + νωΥ H
Ī ΥĪ

)−1
Υ H
Ī =

(

I + νωΥĪΥ H
Ī

)−1

leading to

MI = I − Υ H
I

(

ν−ωII + νω−ωIΥĪΥ H
Ī + ΥIΥ H

I

)−1
ΥI .

This result enables to investigate the behavior of the MMSE

matrix MI of the users in I for infinite power (ν → ∞):

ωI > ω : MI → I − PI

ωI = ω : MI → I − Υ H
I

(

ΦT 2ΦH
)−1

ΥI

ωI < ω : MI → I − PPĪ(I)

(13)

where PI denotes the projector onto the span of Υ H
I . For the

case ωI = ω, we restrict to the setup with full rank ΦT 2Φ,

i.e., rank(ΦT ) = r. For ωI < ω, we used the substitute

B = ν−ωII+νω−ωIΥĪΥ H
Ī

together with the matrix inversion

lemma to find

MI =
(

I + Υ H
I B−1ΥI

)−1
.

For infinitely large power and ωI < ω, the inverse of the

substitute becomes the weighted projector onto the nullspace

of Υ H
Ī
, i.e., B−1 → νωIP⊥

Ī
for ν → ∞. Similarly, the

MMSE matrix MI converges to the projector I − PPĪ(I),

where PPĪ(I) projects onto the span of Υ H
I P⊥

Ī
.

The result for the MMSE matrix in (13) can be generalized

as follows. Assume that there are F user groups I1, . . . , IF

with different exponents ω1 > · · · > ωF > 0 of ν which

grows with increasing transmit power. For the users with the

largest exponent ω1, i.e., the users in I1, the first line in (13)

is valid (MI1 → I−PI1 for ν → ∞) and the MMSE matrix

of the users with the smallest exponent ωF has the form of

the last line in (13), that is, MIF
→ PP

IF (IF )
for ν → ∞.

For the other user groups, users with smaller exponents can be

neglected [first line of (13)] and the users with larger exponents

lead to a projection of the channels [last line of (13)]. Thus,

MIℓ
→ I − PP

Iℓ∪···∪IF
(Iℓ) for ν → ∞ and ℓ > 1.

Note that

rank(PI) = rank(Υ H
I

(

ΦT 2ΦH
)−1

ΥI) = rank(ΦITI).

and

rank(PPĪ(I)) = rank(P⊥
Ī ΦITI) ≤ rank(ΦITI).

Therefore, the sum MMSE
∑

k∈I MMSEk = tr(MI) of the

users out of I converges to [cf. (13)]

tr(MI) →











|I| − rank(ΦITI) ωI > ω

|I| − tr
(

(

ΦT 2ΦH
)−1

ΦIT 2
IΦH

I

)

ωI = ω

|I| − rank(P⊥
Ī

ΦITI) ωI < ω

for ν → ∞ and can be bounded for any finite power:
∑

k∈I

MMSEk > |I| − rank(ΦI) (14)

since rank(ΦI) ≥ rank(ΦITI) ≥ rank(P⊥
Ī

ΦITI). Note

that (14) is trivial for rank(ΦI) = |I|, since the MMSE’s

are non-negative by definition. Additionally, (14) follows from

(12), if rank(ΦI) = r, because the MMSE of any other user

not included in I is upper bounded by one. Sorting these

redundant bounds out leads to the condition used in (4). Any

user set I ⊂ {1, . . . , K} with rank(HI) < min(|I|, N) has

a sum MMSE larger than |I| − rank(HI).
After providing the necessary conditions (12) and (14) for

the case that (4) is not fulfilled, we show that they are also

sufficient. The proof for the singular case is similar to the

proof of sufficiency for the regular case given in [13].

Assume that some power allocation τ̌1, . . . , τ̌K with τ̌i =
ť2i , ∀i, achieves some targets µ1, . . . , µK . Since the case is

trivial, where some target MMSE is one, the powers of the

respective users are set to zero and these users are dropped

in the following to simplify the derivation. Setting MMSEk =
µk < 1, using the equivalent channels φ1, . . . , φK , and with

the second line of (5), following fixed point equation can be

derived

τ̌k = fk(τ̌ ; µ) =
µ−1

k − 1

φH
k

(

I +
∑

ℓ 6=k φℓφ
H
ℓ τ̌ℓ

)−1

φk

∀k (15)

where τ̌ = [τ̌1, . . . , τ̌K ]T ∈ R
K and µ = [µ1, . . . , µK ]T ∈

RK with 0 < µ < 1 were defined for notational brevity. Note

that the inequality µ < a means that every entry of µ is

smaller than the respective entry of a and 1 denotes the all-

ones vector. Combining above functions to one vector leads to

the function f(τ ; µ) = [f1(τ ; µ), . . . , fK(τ ; µ)]T that maps

from RK to RK . Note that f(τ ; µ) is an interference function

as defined in [20]:

Positivity: f(τ ; µ) > 0 ∀τ ≥ 0

Monotonicity: f(τ ; µ) ≥ f(τ ′; µ) ∀τ ≥ τ ′ ≥ 0 (16)

Scalability: αf(τ ; µ) > f(ατ ; µ) ∀α > 1 and τ ≥ 0.

The scalability property of interference functions implies

radial quasi-concavity of g(τ ) = f(τ , µ) − τ (see [21,

Definition 2.1]), since for 0 < λ < 1,

g(τ ∗) = 0 ⇒ g(λτ ∗) = f(λτ ∗; µ) − λτ ∗

> λf(τ ∗; µ) − λτ ∗ = λg(τ ∗) = 0.
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So, the fixed point iteration (15) has at most one positive so-

lution, since g(τ ) is radially quasi-concave [21, Theorem 3.1]

or equivalently, since f(τ ; µ) is an interference function [20,

Theorem 1]. To prove the existence of a solution for the fixed

point iteration (15), f(τ ; µ) must be increasing in τ and the

following conditions must be fulfilled (e.g., [21, Theorem 3.2])

∃a > 0 : f(a; µ) > a (17)

∃b > a : f(b; µ) < b. (18)

For (17), the choice a = α1 is appropriate. To see this, drop

the sum in the inverse of (15) to find the lower bound for

0 < µ < 1

fk(τ ; µ) ≥
µ−1

k − 1

‖φk‖2
2

> 0 ∀τ > 0.

Thus, any positive α < mink∈{1,...,K}(µ
−1
k − 1)/‖φk‖

2
2 leads

to an a = α1 that fulfills (17).

If the equivalent channels φ1, . . . , φK ∈ Cr fulfill (4), the

proof for (18) in [13] is valid. So, we concentrate on the case,

where (4) is violated. Hence, r < K holds in the following.

First, we prove that a vector b > a1 exists in the limit with

f(b; µ) ≤ b, if the MMSE targets µ1, . . . , µK with µ < 1

are chosen such that some of the conditions (12) and (14)

are fulfilled with equality. In a second step, the equalities are

relaxed to inequalities which proves (18).

Assume that two user subsets I1 and I2 have MMSE targets

with [cf. (14)]

i ∈ {1, 2} :
∑

k∈Ii

µk = |Ii| − rank(ΦIi
) (19)

and that the other users {1, . . . , K} \ I1,2 are not member

of user subsets that fulfill (14) with equality. From the proof

of the necessary condition (14), we know that such a setup

can only be reached, if the exponents of ν for the users in

I1 and I2 are larger than the exponents for the other users

{1, . . . , K}\I1,2 with the union set I1,2 = I1∪I2. Therefore,

we have that [cf. first line of (13)]
∑

k∈I1,2

µk = |I1,2| − rank(ΦI1,2). (20)

In a first step, we prove that such an equality also holds for

the intersection set I3 = I1 ∩ I2 6= ∅, i.e.,
∑

k∈I3

µk = |I3| − rank(ΦI3). (21)

As this result is obvious for I3 = I1 or I3 = I2, we

concentrate on I3 6= I1 and I3 6= I2. Summing the two

equations in (19) yields
∑

k∈I1

µk +
∑

k∈I2

µk =
∑

k∈I1,2

µk +
∑

k∈I3

µk

= |I1| + |I2| − rank(ΦI1) − rank(ΦI2)

= |I1,2| + |I3| − rank(ΦI1) − rank(ΦI2).

Note that

rank(ΦI1,2) ≤ rank(ΦI1) + rank(ΦI2) − rank(ΦI3).

To understand this inequality, let Q3 be some orthogonal basis

for the range of ΦI3 . Moreover, [Q3, Q1] and [Q3, Q2] are
orthogonal bases for range(ΦI1) and range(ΦI2), respec-

tively. Accordingly, rank(ΦIj
) = rank(ΦI3) + rank(Qj) for

j ∈ {1, 2}. Clearly, [Q1, Q2, Q3] is a basis for range(ΦI1,2)
and above inequality becomes obvious. Iff [Q1, Q2] is full

rank, equality holds. Combining the two last results and (20)

leads to
∑

k∈I3

µk ≤ |I3| − rank(ΦI3).

Comparing this result to the necessary condition (14) shows

that equality must hold, i.e., (21) is valid. Additionally, we

can infer that the initial assumption (19) is only possible, if

[Q1, Q2] is full rank.
Based on the assumption (19) and the consequences (20)

and (21), we can prove the existence of a b > a that fulfills

(18). To simplify notation, the users are relabelled such that

I3 = {1, . . . , |I3|}, I1\I3 = {|I3|+1, . . . , |I1|} and I2\I3 =
{|I1| + 1, . . . , |I1| + |I2| − |I3|}. Let

b = [νω3bT
3 , νωbT

1 , νωbT
2 , νbT

4 ]T ∈ R
K (22)

with ω3 > ω > 1 and ν → ∞. The vectors b3 ∈ R|I3|, b1 ∈
R|I1\I3|, b2 ∈ R|I2\I3|, and b4 ∈ RK−|I1,2| have positive

entries. Thus, b > a holds. Due to the highest exponent of ν,
the users in I3 can be considered separately. For the following

paragraph, we set I = I3 and ΦI = ΦI3 .

Let V ∈ Cr×rank(ΦI) be an orthonormal basis for

range(ΦI) and I ⊂ {1, . . . , K}. If the equivalent channel

ΘI = V HΦI ∈ CrI×|I| is full rank, i.e., rI = |I| with

rI = rank(ΦI), any targets µk ∀k ∈ I can be achieved

by zero-forcing and power loading. So, we concentrate on

rI < |I|. The limit ν → ∞ leads to the setup of negligible

noise that is the main assumption for SIR balancing (e.g., [8])

which can be formulated as

max
r,bI

r s.t.: SIRk = rγk ∀k ∈ I (23)

with the SIR of user k (the indices of the elements of bI and

the columns of ΘI are not chosen from 1 to |I| but are taken
from I to match the user indices)

SIRk = bkθH
k





∑

ℓ 6=k:ℓ∈I

θℓθ
H
ℓ bℓ





−1

θk.

Note that (23) always has a solution (e.g., [8]) contrary to (2).

Due to (11), the constraints can be expressed in terms of the

MMSE’s:

MMSEk =
1

r(µ−1
k − 1) + 1

.

Obviously, the right-hand side is monotonically decreasing in

r for r > 0 and so is
∑

k∈I(r(µ−1
k − 1)+1)−1. Additionally,

we know from the derivation of (14) that for ν → ∞,
∑

k∈I MMSEk = |I|−rank(ΘI). Consequently, the equation
∑

k∈I(r(µ−1
k − 1) + 1)−1 = |I| − rank(ΦI) has a unique

solution r > 0. If
∑

k∈I µk = |I| − rank(ΦI) (as assumed),

we obtain r = 1.
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So, we have shown via the SIR balancing formulation (23)

that an asymptotic power allocation νω3b3 exists for any

target MMSE’s of the users in I3 fulfilling
∑

k∈I3
µk =

|I3| − rank(ΦI3). For the fixed point iteration, we conclude

that fk(b; µ) = bk for k ∈ I3.

The proof for the users in I1\I3 and I2\I3 is very similar.

We set I = I1,2 \ I3 and choose ΦI = P⊥
I3

[ΦI1 , ΦI2]. The
projection with P⊥

I3
onto the orthogonal complement of the

span of ΦI3 is necessary due to ω3 > ω [cf. third line of (13)].

Because of the conditions (20) and (21),
∑

k∈I µk = |I| −
rank(ΦI) holds for ν → ∞.3 Hence, the argumentation based

on the balancing formulation (23) also shows that asymptotic

power allocations νωb1 and νωb2 exist for any target MMSE’s

of the users in Ij fulfilling
∑

k∈Ij
µk = |Ij |− rank(Φj) with

j ∈ {1, 2}. For the fixed point iteration, we conclude that

fk(b; µ) = bk for k ∈ I1,2.

For the remaining users I1,2 = {1, . . . , K} \ I1,2, we set

I = I1,2 and ΦI = P⊥
I1,2

ΦI1,2
. For this user set, the target

MMSE’s are larger than the bound, i.e.,
∑

k∈I µk > |I| −
rank(ΦI). Due to the monotonicity of

∑

k∈I(r(µ−1
k − 1) +

1)−1 in r and the fact that
∑

k∈I MMSEk = |I| − rank(ΦI)
for ν → ∞, the optimal factor for the balancing of the

MMSE’s of the user set I1,2 is r > 1. In other words, an

asymptotic power allocation νb4 exists for which the target

MMSE’s can be over-fulfilled. Note that scaling the targets

of the user set I1,2 with 0 < β < 1 such that
∑

k∈I βµk =
|I| − rank(ΦI) would lead to r = 1. For the fixed point

iteration, this would result in fk(b; µ′) = bk for k ∈ I1,2 with

µ′
k = βµk for k ∈ I1,2 and µ′

k = µk otherwise. As fk(τ ; µ)
is strictly decreasing with µk and independent of µℓ ∀ℓ 6= k,
we get that fk(b; µ) < bk for k ∈ I1,2.

We have proven so far that the allocation b > a = α1 given

in (22) fulfills f(b; µ) ≤ b. To reach the strict inequality, we

relax the equalities (19) to inequalities by a factor δ > 1, i.e.,
µ′ = δµ, but δ must be small enough that still µ′ < 1. Due

to the monotonicity of f(τ ; µ) in µ, we get the desired result

that f(b; µ′) < b.

The presented proof for two user subsets with active bounds

for the target MMSE’s can be easily generalized to more active

bounds. The asymptotic power allocation must be constructed

similar to (22). The users contained in most intersection sets

must have the highest exponent ωmost of ν and the users that are

in no subset with active bound have the smallest exponent 1.
The other users have exponents between ωmost and 1 depending

on the number of intersection sets they are member of.

This leads to following theorem [13].

Theorem 2: The closure of the feasible MMSE region in

the vector broadcast channel with linear transceivers is a

polytope P whose bounding half-spaces are the individual

box constraints 0 ≤ MMSEk ≤ 1 ∀k ∈ {1, . . . , K}, the
sum MMSE constraint

∑K
k=1 MMSEk ≥ K − rank(H), and

3This equality is asymptotically achievable, because [Q1, Q2] is full-rank
with the orthogonal basis Qj of the span of P⊥

I3
ΦIj

, j ∈ {1, 2}. To see this,

subtract (21) from (20) and exploit the fact that rank(ΦI1,2
)−rank(ΦI3

) =

rank(P⊥

I3
[ΦI1

, ΦI2
]), since [Q1, Q2] is full-rank.

additional constraints for the sum MMSE of user subsets

whose channels are not full rank. Strictly speaking, a half-

space constraint
∑

k∈I MMSEk ≥ |I|−rank(HI) is imposed

for every subset I ⊂ {1, . . . , K} for which rank(HI) <
min(N, |I|).
Thus, the general feasibility test in the vector BC has two

parts. First, the sum of MMSE targets µ1, . . . , µK must fulfill

K
∑

k=1

µk > K − rank(H).

Second, the sum of the MMSE targets of any subset violating

(4) is bounded:
∑

k∈I

µk > |I| − rank(HI)

∀I ⊂ {1, . . . , K} : rank(HI) < min(|I|, N).

The QoS optimization (1) has a solution, if and only if above

conditions are fulfilled.

IV. MIMO BROADCAST CHANNEL

On the first sight, the MIMO BC case seems to be more

complicated than the vector BC, since the receivers in the BC

(the transmitters in the dual MIMO MAC) are equipped with

multiple antennas. Although finding the optimal solution of (1)

in fact is much more difficult in the MIMO case, the feasibility

test fortunately is as simple as for the vector channel case.

A. Feasibility of Arbitrary Requirements

When discussing feasibility, it is important to note that some

requirement of a user can be provided, if at least one data

stream can be transmitted to this user without interference.

Any additional data stream for this user brings possibly some

reduction of the used power but is not necessary for feasibility.

These observations lead to the scenario with N ≥ K . When

the transmitter in the MIMO BC (the receiver in the dual

MIMO MAC) has at least as many degrees of freedom as

there are users in the system, it is possible to allocate one

data stream per user and apply a zero-forcing equalizer in the

dual MIMO MAC to achieve an interference-free reception of

the signals from the different users. With (3) and N ≥ K , it

is possible to find beamformers tk ∀k such that

Hext = [H1t1, . . . , HKtK ] ∈ C
N×K

has a left inverse. As a consequence, the K data signals

can be separated by the zero-forcing filter (HH
extHext)

−1HH
ext.

Clearly, any requirements ρk > 0 ∀k can be fulfilled via power

allocation, i.e., the choice of ‖tk‖2
2 ∀k, if the interference is

completely suppressed.

B. Non-Zero-Forcing Configuration

When N < K , i.e., more users are active than the BC

transmitter has degrees of freedom, it is impossible to reach

arbitrary requirements, since the system is interference limited

even though the BC receivers have multiple antennas. Instead,

the result in Theorem 1 for the vector BC must be applied.
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Let’s assume that only a single data stream is allocated

per user. In this case, the rate requirements ρk > 0 ∀k can

be translated to MMSE targets µk = 2−ρk as in the vector

channel case. Due to (3), it is possible to find beamformers

tk ∀k such that the total channels

htot,k = Hktk ∀k

also fulfill (3) or equivalently (4). Based on Theorem 1,

we can infer that the MMSE targets and therefore the rate

requirements are feasible, if
∑K

k=1 µk > K − N . In other

words, the rate requirements must fulfill

K
∑

k=1

2−ρk > K − N.

This condition for the rate targets is the same as for the K
user N antenna vector BC.

To find out, whether the multiple antennas at the users

for the MIMO case can be exploited to relax this condition

or not, let’s consider following scenario. Assume that the

rate requirements ρk ∀k translate to MMSE requirements

0 < µk ≤ 1 ∀k that do not fulfill above feasibility condition,

that is,
∑K

k=1 µk = K−N−αwith α ≥ 0. Remember that this

condition resulted from the assumption of allocating a single

data stream per user. Now, a second data stream is given to

some user j. Without loss of generality, it can be assumed that

the two data streams of user j do not interfer with each other.

To understand this, construct the covariance matrix Qj =
TjT

H
j which has rank 2 according to above assumptions. Note

that the precoder Tj can be changed without changing the

covariance matrix Qj . In particular, consider the alternative

precoder T ′
j = TjWj with the unitary matrix Wj ∈ C2×2.

Clearly, Qj = T ′
jT

′H
j holds. Since the MMSE’s of the other

users are independent of Wj , this unitary degree of freedom

can be used to diagonalize the combination of the MMSE

equalizer Gj , the channel Hj , and the precoder Tj , that is,

Wj is chosen such that W
H
j GjHjTjWj is diagonal. This can

be achieved by choosing the columns of Wj to be different

eigenvectors of the non-negative definite GjHjTj belonging

to non-zero eigenvalues. Therefore,

− log2

(

µ
(1)
j

)

− log2

(

µ
(2)
j

)

= ρj

must hold to meet the rate requirement, where µ
(i)
j is the

MMSE target for the i-th data stream of user j. Alternatively,
we must have

µ
(1)
j µ

(2)
j = µj .

The two data streams of user j can be interpreted as the data

streams of two different users in a vector channel scenario.

Consequently, we conclude from Theorem 1 that

K
∑

k=1,k 6=j

µk + µ
(1)
j + µ

(2)
j > K − N + 1

must be fulfilled for feasibility. Substituting the assumption

that
∑K

k=1 µk = K − N − α leads to

µ
(1)
j + µ

(2)
j − µj > α + 1

and with µ
(1)
j µ

(2)
j = µj ,

α +
(

1 − µ
(1)
j

)(

1 − µ
(2)
j

)

< 0.

To be meaningful MMSE targets, 0 < µ
(i)
j ≤ 1 must hold.

Thus, the second term on the left-hand side of above inequality

is always non-negative. Since α ≥ 0, the inequality can never

be fulfilled. So, when the rate requirements cannot be met by

allocating a single data stream per user, the rate requirements

are also infeasible with more than one data stream per user.

In above example, we started with the assumption that the

single data stream allocation does not provide feasibility. Then,

we observed that increasing the number of data streams of

some user j to two does not lead to feasibility. This result can

easily be generalized to any stream allocation, since the data

streams of a single user k can be interpreted as the single data

streams of virtual users. As long as not more than min(Mk, N)
data streams are allocated to that user, the regularity condition

(3) is not violated. So, starting with a stream allocation, where

more than one data stream is given to some users, is in fact

the scenario considered in above example, where every virtual

user has one data stream. This leads to the conclusion that

increasing the number of data streams for some user does

not lead to feasibility, when the original stream allocation

exhibited infeasibility of the rate requirements. Only the case

with a single data stream per user must be considered for

testing feasibility.

Above results can be summarized in following theorem.

Theorem 3: The feasible rate region in the MIMO BC

with linear transceivers and channels fulfilling the regularity

condition (3) is constituted by all the rate tuples R1, . . . , RK

that are non-negative, i.e., Rk ≥ 0, and fulfill the condition
∑K

k=1 2−Rk > K − N . The whole feasible rate region can

be achieved by allocating a single data stream per user and

cannot be extended by allocating more data streams.

So, the test of feasibility for the MIMO BC is as simple as

for the vector BC. If and only if the rate targets ρk ∀k fulfill

K
∑

k=1

2−ρk > K − N

the QoS optimization (1) has a solution.

C. Singular Case

If the channels do not fulfill (3), it is impossible to construct

beamformers tk ∀k such that the total channels

htot,k = Hktk ∀k

fulfill (4). However, for the user groups I whose channels

fulfill rank(HI) ≥ min(|I|, N), beamformers exist such

that rank(Htot,I) = min(|I|, N). In contrast, for the user

groups I violating the condition in (3), the best choice

for the beamformers leads to rank(Htot,I) < min(|I|, N).
Consequently, Theorem 2 must be applied. Together with the

proof for Theorem 3 (that a single data stream allocation

suffices for feasibility), this leads to following theorem.

348
Authorized licensed use limited to: T U MUENCHEN. Downloaded on May 04,2010 at 06:05:43 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 4: The feasible rate region in the MIMO BC

with linear transceivers is constituted by all the rate tuples

R1, . . . , RK that are non-negative, i.e., Rk ≥ 0, and fulfill the

conditions
∑K

k=1 2−Rk > K − rank(H) and
∑

k∈I 2−Rk >
|I| − rank(HI) for all subsets I ⊂ {1, . . . , K} for which

rank(HI) < min(N, |I|). The whole feasible rate region can

be achieved by allocating a single data stream per user and

cannot be extended by allocating more data streams.

From above theorem, we can infer that also for singular

channels violating (3), the test is as simple as for the vector

BC. The QoS optimization (1) has a solution, if and only if

the rate requirements ρk ∀k fulfill

K
∑

k=1

2−ρk > K − rank(H)

and

K
∑

k∈I

2−ρk > K − rank(HI)

∀I ⊂ {1, . . . , K} : rank(HI) < min(|I|, N).

CONCLUSIONS

Feasibility of the QoS optimization in the vector BC was

reviewed and feasibility in the MIMO BC was discussed.

It was shown that the transmission of a single data stream

per user suffices for feasibility in the MIMO BC and that a

larger number of data streams does not improve feasibility. For

regular MIMO BC channels, the rate requirements just have

to be transformed to MMSE targets. Feasibility can then be

checked by a simple inequality for the sum of MMSE targets.
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