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Prüfer der Dissertation:

1. Univ.-Prof. Dr. M. Bichler
2. Univ.-Prof. M. Beetz, Ph.D.

Die Dissertation wurde am 10.12.2008 bei der Technischen Universität
München eingereicht und durch die Fakultät für Informatik am 19.05.2009
angenommen.





Orach Boris Grigorjevich





Abstract

In a combinatorial auction (CA) several heterogenous items are traded simulta-
neously, they can be distributed between several winners, and the bidders can
submit indivisible all-or-nothing “bundle” bids on groups of items. The idea of
using CAs for capturing economies of scale and scope and thus achieving better
economic results on complex markets was first suggested in 1982 in the context
of allocating airport slots. For several years the concept was not considered
practical because of its combinatorial complexity, but it was eventually picked
up by the US Federal Communication Commission (FCC) as a promising tool
for conducting spectrum auctions, where bidders have strong preferences to
win licenses for geographically adjacent regions. However, it took the FCC
over 15 years of research and testing until the first combinatorial spectrum
auction was conducted in 2008.

In the meantime, combinatorial auctions were discovered by frontier profes-
sionals in industrial purchasing. There are a couple of published cases which
demonstrate the high potential of this new technology for procurement applica-
tions, among them two finalists and one winner of the prestigious practitioner
INFORMS Edelman Award in the past six years.

However, there are no standard solutions with adequate support for combina-
torial auctions available to date. Only the recent advances in computer science
and the optimization theory made their application possible, and they still re-
quire significant research and engineering work. In particular, there is little
understanding regarding the applicability of various existing CA formats, and
regarding their robustness in cases where bidders do not follow theoretically
optimal strategies.

In this context, our goal was to suggest a practical and robust combinatorial
auction format which delivers good results for various types of bidder valua-
tions and strategies. Such a design shall be based on a thorough analysis and
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comparison of existing mechanisms. In particular, it was not clear whether
CAs based on linear or non-linear prices present the preferable approach.

We have chosen computational experiments to be our main research tool. The
game-theoretical approach, which has been used extensively to model single-
item auctions, has only limited applicability in the context of combinatorial
auctions due to their high strategic complexity. Furthermore, there are strong
indications that the bidders fail to act rationally in their exponential strate-
gic space. Experimental economics, which is another proven approach to the
studying of market mechanisms, has delivered only very limited results to date,
due to the high complexity and cost of laboratory experiments with CAs.

Computational experiments allowed us to systematically test and compare
many combinatorial auction designs under different valuations and different
bidder behavioral models. We could also measure their sensitivity with respect
to different parameters. To achieve reliable results, our experiments are based
on a broad range of economically motivated value models and bidding agents
with different behavior, based both on theoretical assumptions and on our
observations in the laboratory. Overall, this thesis summarizes the results of
over 50’000 auctions.

The main contribution of this work is the ALPS linear-price-based iterative
combinatorial auction (ICA) format. It demonstrates high allocative efficiency
of over 98% in our experiments, as well as very good robustness in cases when
the bidders do not follow the theoretically optimal strategy. It has several
practice-oriented features which further improve its performance. The dynamic
minimum increment can halve the auction duration without sacrificing the
efficiency. The surplus eligibility rule can mitigate the negative effect of activity
rules in the auction. While our results achieve high efficiency values on average,
we have identified and described cases where linear price CAs are not efficient.
There are a few remedies, such as the proxy phase in the Clock-Proxy auction
or after-market negotiation on unsold items.

During development of the new CA design, we run a thorough comparison
of existing formats along various criteria. In particular, this work is the first
detailed benchmark of two big ICA families: linear-price and non-linear price
designs.

An important result of our work is the MarketDesigner platform for com-
binatorial auctions, which was a significant investment, and is a joint effort
together with several colleagues and many students. It is currently being used
for laboratory experiments and pilot projects with industry partners.
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Zusammenfassung

In einer kombinatorischen Auktion werden mehrere heterogene Güter gleich-
zeitig versteigert; es sind mehrere Gewinner möglich; und die Bieter können
untrennbare alles-oder-nichts Bündelgebote auf Gruppen von Gütern abgeben.
Auf komplexen Märkten können solche Auktionen Verbund- und Skalen-
effekte adressieren und dadurch bessere ökonomische Ergebnisse erzielen. Das
Konzept wurde zum ersten Mal im Jahr 1982 im Zusammenhang mit der
Terminalzeitplanung auf Flughäfen vorgeschlagen. Nachdem die kombina-
torischen Auktionen zuerst wegen ihrer exponentiellen Komplexität als im-
praktikabel galten, wurden sie von der US Federal Communication Commis-
sion (FCC) zum Versteigern von Frequenzlizenzen vorgeschlagen, wo die Bie-
ter starke Präferenzen für benachbarte Regionen haben. Es hat aber über 15
Jahren gedauert, bis das FCC die erste kombinatorische Frequenzauktion im
Jahr 2008 durchgeführt hat.

Inzwischen wurden die kombinatorischen Auktionen vom Industrieeinkauf ent-
deckt. Das große Potenzial der neuen Technologie im Einkauf wurde durch
einige Publikationen bewiesen, unter denen befinden sich zwei Finalisten und
ein Gewinner des angesehenen INFOMRS Edelman Award in den letzten sechs
Jahren.

Dennoch gibt es keine standardmäßigen Lösungen für kombinatorische Auktio-
nen. Lediglich die jüngsten Entwicklungen der Informatik und Optimierungs-
theorie haben ihre praktischen Anwendungen ermöglicht, und sie erfordern im-
mer noch wesentliche Forschungs- und Entwicklungsarbeit. Insbesondere gibt
es wenig Wissen sowohl bezüglich der Anwendbarkeit von verschiedenen kombi-
natorischen Auktionsformaten, als auch bezüglich deren Robustheit gegenüber
suboptimaler Bietstrategien.

In diesem Zusammenhang, das Ziel dieser Arbeit war, ein praktisches und
robustes kombinatorisches Auktionsformat vorzuschlagen, das für verschiedene
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Wertigkeiten und Bietstrategien gute Ergebnisse zeigt. Der Vorschlag soll auf
gründlicher Analyse und Vergleich von bekannten Auktionsformaten basieren.
Speziell, es war nicht klar ob kombinatorische Auktionen mit linearen oder
nichtlinearen Preisen vorzuziehen sind.

Zum Hauptwerkzeug unserer Forschung haben wir Simulationen gewählt. Die
Spieltheorie, die zur Analyse von üblichen Auktionen oft benutzt wird, ist we-
gen der hohen Komplexität von Spielerstrategien in kombinatorischen Auktio-
nen nur begrenzt anwendbar. Außerdem gibt es Anzeichen dafür, dass die Bie-
ter sich in solch komplexen Strategieräumen nicht rationell verhalten. Die an-
dere bekannte Forschungsmethode - die experimentelle konomie hat bis heute
auf dem Gebiet, wegen hoher Komplexität und Kosten von Experimenten mit
kombinatorischen Auktionen, nur sehr begrenzte Ergebnisse hervorgebracht.

Mittels Simulationen konnten wir viele kombinatorische Auktionsformate unter
verschiedenen Wertigkeits- und Bieterverhaltensmodellen systematisch testen
und vergleichen. Ebenfalls konnten wir ihre Sensitivität bezüglich unter-
schiedlicher Parameter messen. Um verlässliche Ergebnisse zu bekommen,
verwenden unsere Simulationen viele unterschiedliche Wertigkeitsmodelle mit
ökonomischem Hintergrund und verschiedene Bieteragenten, die beides auf
theoretischen Annahmen und auf Beobachtungen im Labor basieren. Insge-
samt haben wir in Rahmen dieser Arbeit über 50’000 Auktionen analysiert.

Der Hauptbeitrag dieser Arbeit ist ALPS: ein iteratives, linear-Preis basiertes
kombinatorisches Auktionsformat. Es zeigt in unseren Simulationen eine hohe
allokative Effizienz von über 98auch eine gute Robustheit gegenüber subopti-
maler Bieterstrategien. ALPS hat auch einige praxisorientierte Eigenschaften.
Das dynamische Preisinkrement (dynamic minimum increment) kann die Auk-
tionslänge halbieren, ohne dass die allokative Effizienz fällt. Die surplus eli-
gibility Regel kann die negative Wirkung von Aktivitätsregeln in der Auk-
tion reduzieren. Obwohl ALPS im Durchschnitt eine sehr hohe allokative
Effizienz zeigt, haben wir Fälle ermittelt und beschrieben, bei denen kom-
binatorische Auktionen mit linearen Preisen mangelnde Ergebnisse haben. Es
existieren verschiedene Verbesserungsmöglichkeiten, zum Beispiel eine zweite
Proxy-Phase, oder eine Nachverhandlung mit unverkauften Gütern.

Während der Entwicklung von ALPS haben wir einen gründlichen Vergleich
von bekannten kombinatorischen Auktionsformaten bezüglich unterschiedlich-
ster Kriterien gemacht. Insbesondere, diese Arbeit ist der erste Vergleichstest
von zwei großen Auktionsfamilien mit linearen und nichtlinearen Preisen.

Ein wichtiges aber auch aufwändiges Ergebnis dieser Arbeit ist die Market-
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Designer Plattform zur Durchführung von kombinatorischen Auktionen. Sie
entstand in Zusammenarbeit mit einigen Kollegen und vielen Studierenden,
und wird auch weiter in Laborexperimenten und Pilotprojekten mit Indus-
triepartnern verwendet.
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Chapter 1

Introduction

Are you sitting comfortably?
Then I’ll begin.

Julia Lang 1921- : Listen with
Mother (BBC radio programme

for children, 1950-82)

Society increasingly depends on redistribution of values of all kind. A couple
of hundred years ago it was normal to buy food, clothes and some basic uten-
sils. Today our “shopping list” includes airline tickets, books, cars, phone bills,
insurances, various services, etc. and it will probably grow even longer in the
future. A similar development is typical for companies. They tend to concen-
trate on their core business, while outsourcing almost everything else. People,
companies, and whole nations need to exchange results of their activities for
other goods and services which they cannot produce efficiently themselves –
they need mechanisms for setting up trades.

The very first barter trades were conducted around 10’000 years ago, presenting
the first attempt to find a solution for the problem of redistributing values in
the society. A drastic improvement was made in China around 3’500 years ago
with the introduction of money. Since the invention of the wheel, this was the
most influential innovation in world history.

The next logical question was how to set the correct price for the subject of
trade, which would satisfy all parties. Roughly a thousand years later, 500 BC
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CHAPTER 1. INTRODUCTION

that is, a simple and elegant model was found which is used until today:
auctions.

Auctions can determine the price of a trade dynamically, depending on the
offer and demand volumes. Ideally, an equilibrium outcome is reached, where
neither party wants to change the result in any legitimate way, by changing
the price or allocation of the goods. The price-finding properties of auctions
are well known and have been successfully used in many situations:

• To sell perishable goods within volatile markets, where fast and efficient
trade is important. Well-known examples include Japanese fish markets
and flower auctions in the Netherlands.

• To sell scarce or exceptional goods like arts, rare wine, etc. It is especially
difficult to set an optimal fixed price for such goods.

• To sell goods with unknown and unpredictable value. For example the ac-
tual value of a mining license depends on the amount of minerals located
in the area, which can be only very approximately predicted beforehand.

• To handle markets with high competition, where demand is significantly
higher then supply.

Practical application of an auction mechanism for conducting a trade requires
certain additional effort from both auctioneer and bidders, compared to simply
setting a fixed price. Therefore, the auctions are usually used only if the
potential improvement in the economical results of the trade is higher than the
incurred additional costs. This effect is studied in Transaction Cost Economics
(Williamson, 1998). For example, it makes little sense to auction sugar in a
supermarket, since the potential savings are minimal and there is usually no
competition. However it does make sense to auction off sugar delivery contracts
for a big confectioner company, since the potential savings are significant and
the market is competitive (Hohner et al., 2003).

Whenever auction mechanisms are not applicable, alternative possibilities to
organize a market are possible. Fixed price is normally used in situations with
low competition. Lottery is a good solution in cases where equal opportunity
must be preserved, which is sometimes the case in assignment of values in the
public sector.

Modern IT systems have significantly reduced the effort of setting up an auc-
tion. Auctioning off a 3-year-old personal computer was a significant effort

2



ten years ago and was hardly feasible. Today it takes 15 minutes to put it on
eBay. Even though the monetary value of a 3-year-old computer is much lower
today than it was ten years ago, more people will auction it off nowadays.

IT growth not only supported the spread of the traditional auctions, but also
assisted in the development of new auction formats for complex markets, which
are the subject of this thesis. In many practical cases the market does not in-
clude just a single good, but rather several dependent, similar or completely
different items. Possible extensions of the plain single-item auction are illus-
trated in Figure 1.1. In a combinatorial auction (CA), which is the subject of
this thesis, several heterogenous goods are sold simultaneously. In a multi-
unit auction many homogenous goods are traded, and the total quantity
can be split between several winners. Goods in a multi-attribute auction
have multiple attributes, as opposed to a single price attribute. Bidders are
requested to specify values for each attribute, which can include product pro-
perties as well as conditions of the transaction.

Multiple attributes (A=a1,a2,a3)
Multi-attribute Auctions

Multiple items 
and attributes 

Multiple attributes 
and units

Multiple items (A,B,C)
C bi i l A i

Multiple units (A,A,A)
Multi-unit Auctions

Combinatorial Auctions

Figure 1.1: Multidimensional Auctions (Bichler et al., 2002)

Combinatorial auctions are used for handling complex markets with several
heterogenous items, when bidders value groups of items differently from the
sum of corresponding individual item valuations:

• Valuations can be superadditive, when a group of items is valued
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higher than the sum of the individual item valuations. Imagine that
cinema tickets are sold in an auction. If you go to the cinema with a
good friend, you will pay 8 AC for each single ticket, but will probably
agree to pay more then 16 AC if you can get two adjacent seats.

• Valuations can be subadditive, when a constellation of items is valued
lower than the sum of separate item valuations. Think about purchasing
a TV-set on an auction, where several devices are sold simultaneously.
For example, you agree to pay 1500 AC for a Sony and 1600 AC for a
Panasonic. However you will probably agree to pay only significantly
less then 3100 AC (= 1500 AC + 1600 AC) for both of them together, since
you need only one new TV-set.

The microeconomic theory uses terms complements and substitutes to re-
fer to items with superadditive and subadditive valuations correspondingly.
Both types of valuations can be mixed in the same market. In some situations
these dependencies are extreme, for example if you purchase tickets for con-
necting flights. In other cases the dependencies are weaker, for example when
caused by shipping costs.

MUC CDGMUC CDGMUC CDG
A 7 00 E 9 00A 7:00 E 9:00A 7:00 E 9:00
B 7 20 F 9 20B 7:20 F 9:20B 7:20 F 9:20
C 7 40 G 9 40C 7:40 G 9:407 00 9 00 f 20T €C 7:40 G 9:407:00 – 9:00 for 20T €7:00 – 9:00, for 20T €
D 8 00 H 10 00

,
D 8:00 H 10:00D 8:00 H 10:00

Figure 1.2: Example of a Combinatorial Market

Figure 1.2 illustrates a scenario where application of a combinatorial auction
can be advantageous. Imagine you represent an airline, and you want to service
a flight from Munich (MUC) to Paris (CDG). You need time slots at both
airport terminals. In this simplified version each airport has only one terminal,
and it sells time slots of 20 minutes, which are necessary for takeoff and landing
of the plane. These time slots are sold on an auction as items A . . . H. The
flight takes two hours. From your analysts you know, that optimal arrival time
for your passengers is 9:00. Therefore, you would agree to pay 20T AC for items
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A and E together. Alternatively, you would agree to pay 18T AC for B and
F together. You might also agree to pay 15T AC for A and F together since
your plane will have to stay additional 20 minutes in the air, and you arrive
later. Note that A alone, like also any other single item alone, is not worth you
anything. The same is true for pairs like A and C (both in the same airport)
and B and E (the plane won’t make it that fast).

Setting fixed prices in such situation is a very difficult task. The demand has
significant intraday fluctuations, since most airlines prefer to have slots early
in the morning and in the evening, to serve the lucrative business customers.
During the day the demand can significantly drop. Similarly there are strong
seasonal fluctuations. The valuations can also vary significantly across airlines.
Therefore using an auction in this case can help to find better prices, and
increase revenues. However traditional auctions will be problematic for the
bidder in this case.

The example illustrates the fundamental exposure problem of the bidder in
such markets. If the slots are sold individually in consecutive English auctions,
you will have a problem bidding for example for the slot A. Without knowing
the final prices of slots E and F, you will have to speculate with your highest
bid on A. If other two slots become too expensive at the end, you will incur
losses even if A alone was relatively cheap.

The US Federal Communication Commission (FCC) faced a similar problem
while auctioning off spectrum licenses to telecom providers. Bidders in such
auctions have strong preferences to win licenses for adjacent areas. The FCC
has been using the Simultaneous Multiround Auction (SMR), which is
basically comprised of simultaneous English auctions on each good (Milgrom,
2000). However, the SMR auction does not solve the problem completely. In
our example, if the prices for A and E are 8T AC each, you are not sure whether
to bid or not. You might get A, but the price for E will rise above 12T AC, and
you will make losses. After years of research and considerations, in 2008 the
FCC started using combinatorial auctions to address this issue.

Combinatorial auction are designed to solve the exposure problem. Their
principal idea is to allow for bundle bids, which connect an indivisible subset
of goods and a price. In the above example, a combinatorial auction would
allow the bidder to submit a bundle bid for A and E together for 20T AC,
ensuring that he will either receive both items for at most 20T AC, or nothing.
The exposure problem, which is an issue in every market with superadditive
valuations, is therefore solved.
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When bidders have subadditive valuations, they face the overflow prob-
lem: they are interested in several different items, but does not want to get
all of them at the end. In the last example, you might submit bundle bids
({A,E}, 20T AC) and ({B,F}, 18T AC), but that should not mean that you are
ready to purchase all four items for 38T AC. Combinatorial auctions can ad-
dress the overflow problem too, however selection of a proper bidding language
is essential in this case (see Section 2.3.1).

1.1 Literature Overview

Even though auctions have been in practical use for centuries, the academic
community addressed this topic only recently. Interestingly enough, already
the first investigation on auctions (Vickrey, 1961) together with later work of
the author earned the 1996 Nobel Prize in Economics1 “for fundamental contri-
butions to the economic theory of incentives under asymmetric information”.
William Vickrey introduced the concept of independent private valuations,
which is used for majority of the work on combinatorial auctions today, and
presented several special cases of the Revenue Equivalence Theorem (Theo-
rem 1), which has an important place in the modern auction theory. His re-
sults were extended by Clarke (1971) and Groves (1973). They constructed the
unique Vickrey-Clarke-Groves (VCG) auction, which remains a reference point
for many modern auction designs for the reasons described in Section 2.3.4.

Several important contributions to game-theoretical aspects of the auction the-
ory deal with different classes of bidder valuations. Wilson (1969) introduced
and analyzed the model of common valuations, where goods have the same,
but unknown value for every bidder. Milgrom and Weber (1982) extended his
results by introducing and analyzing the affiliated valuation model, which
represents a general case, with private valuations and common valuations being
its two extreme instances.

Another Nobel Prize in Economics for an auction-related research went in 2007
to Roger Myerson2 “for having laid the foundations of mechanism design the-
ory”. While the previous works concentrated on equilibrium analysis and com-
parison of existing auction formats, Roger Myerson started development of the
theory, which can characterize equilibrium outcomes of all auction mechanisms

1together with James A. Mirriees.
2together with Leonid Hurwicz and Eric Maski.
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in a general case, and to design auctions with certain desired properties, for
example revenue- or efficiency-maximizing mechanisms. His results are based
on the assumption of risk-neutral bidders with independent and identically
distributed valuations.

Myerson (1979) formulates the revelation principle. It states that for any
auction mechanism, there is an equivalent direct revelation mechanism, in
which the bidders simultaneously and truthfully report their private valuations,
and then the allocation and payments are determined by the auctioneer based
on this information. The expected payoffs for each bidder and the auctioneer
are equal for both auction formats.

(Myerson, 1981) formulates and proves another principal contribution:

Theorem 1 (Revenue Equivalence Theorem).
In every auction mechanism, where the highest bidder wins and bidders with
zero bids have zero payments, the auctioneer’s expected revenue depends only
on bidder’s valuations and not on the payment function.

Consequently, it is sufficient to study only those mechanisms which provide
incentives for truthful bidding (incentive compatible, see Definition 4) and are
risk-free (individually rational, see Definition 3), and, without loss of general-
ity, transfer the obtained results to other auction designs. Nevertheless, the
required assumptions are tough and the obtained results must be interpreted
with caution, more on this in Section 2.2.

The first remarkable publication on combinatorial auctions is the Rassenti
et al. (1982), suggesting a sealed-bid combinatorial auction for the allocation
of airport takeoff and landing slots, similar to our example in Figure 1.2. Ad-
ditionally to economists, who study auctions as efficient market mechanisms,
this idea soon attracted researchers from other fields:

• Bundle bidding adds combinatorial complexity and brings in topics from
the optimization theory.

• Expressiveness of bidder languages and algorithmic aspects have at-
tracted the attention of computer scientists.

Combinatorial auctions face several computationally hard problems. The Com-
binatorial Allocation Problem (CAP) can be interpreted as a weighted set
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packing problem (SPP) (Lehmann et al., 2006), which is NP-hard. Calculation
of ask prices in some auction formats utilizes complex algorithms, too. Good
overview of the problem is presented in de Vries and Vohra (2003) and Sand-
holm (2006). Jones and Koehler (2005) suggested an approximating heuristic
for the CAP. Interesting insights into the CAP structure and alternative possi-
bilities of conducting an ICA can be found in Adomavicius and Gupta (2005).

Several researchers considered simplified mechanisms (?), which put re-
strictions on the set of acceptable bids and thus reduce complexity of the
allocation problem. Polynomial-time algorithms for restricted cases of CAP
have been suggested in Rothkopf et al. (1998), Carlsson and Andersson (2004)
and Goeree and Holt (2008). Distributing the computational load from the
auctioneer to all auction participants was addressed by Kelly and Steinberg
(2000) and Fan et al. (2003).

The interest in iterative designs for combinatorial auctions (ICA) started grow-
ing after two pioneering contributions. Milgrom and Weber (1982) showed for
single item auctions that iterative auctions perform better then sealed-bid
mechanisms in scenarios with affiliated valuations. Cramton (1998) presented
other practical arguments related to multi-unit and combinatorial auctions,
advocating the use of “ascending” auctions. Another virtue of iterative com-
binatorial auctions is that bidders are not required to reveal their true prefer-
ences on all possible bundles in one shot, as it is assumed in the VCG design
(Ausubel and Milgrom, 2006b). Further arguments for iterative formats, both
theoretical and practical, are given in Porter et al. (2003). A comprehensive
and up-to-date survey of iterative combinatorial auctions is given in Parkes
(2006).

Bidders in an auction communicate their preferences to the auctioneer using a
bidding language (Nisan, 2006). This is a central component for every combi-
natorial auction design, since the auctioneer can reliably find a good allocation
only having sufficient and precise information about valuations of all bidders.
On the other side, bidders must analyze and express exponentially big space
of possible bundles, which is often infeasible (?). We will continue discussion
on bidding languages in Section 2.3.1, where we also review other relevant
publications.

A promising possibility to help the bidders with orientation in the exponen-
tially big space of possible bids in a CA is to provide them with adequate
support tools. Hoffman et al. (2005) describe a domain-specific bidder aid tool
for FCC spectrum auctions, which helps bidders locate optimal bids after they
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configure it by expressing their preferences. Such configuration options can
include logical relationships between items, and spectrum-specific preferences,
for example those related to minimum population coverage, bandwidth, and
budget. Adomavicius and Gupta (2005) suggest to provide bidders not only
with ask prices in each round, but with precise information about how much
they have to bid to become a winner in the next round, and how high they
have to bid to have any chance to be a winner at all. Sandholm and Boutilier
(2006) argue that the auctioneer can do better than requesting bids on all
possible bundles, and incrementally and proactively ask bidders only for the
relevant information, until an optimal allocation is found.

A seminal contribution to the field of combinatorial auctions was made by
Bikhchandani and Ostroy (2002). They connected the optimization theory-
based interpretation of the combinatorial auctions to the game-theoretical as-
pects of equilibrium and optimal strategies by applying the duality concept
of the linear optimization theory. Their results answer an important for the
ICA design question of sufficient price format, differentiating between linear
(or item) prices, non-linear prices, and personalized (or discriminatory) prices
(see also Section 2.4.2). de Vries et al. (2007) demonstrate in detail how this
theory can be applied to auction design. A whole family of non-linear price
auction designs emerged based on the results of Bikhchandani and Ostroy:
Ausubel and Milgrom (2002); de Vries et al. (2007); Mishra and Parkes (2004,
2007); Parkes and Ungar (2000); ?.

Although exact linear prices exist only for very restricted types of valuations
(Kelso and Crawford, 1982), they have many positive properties. Such prices
are easy to understand for bidders in comparison to the non-linear ask prices,
where the number of prices to communicate in each round is exponential in
the number of items. Linear prices give good guidance to the bid formation for
new entrants and for losing bidders, who can use them to compute the price of
any bundle even if no bids were submitted for it so far. This motivated several
ICA designs with approximated linear prices: Bichler et al. (2009); Day (2004);
Kwasnica et al. (2005); Kwon et al. (2005); Porter et al. (2003); Wurman
and Wellman (2000). Finally, some approaches suggest ICAs without price
information, but provide bidders with other feedback: Hohner et al. (2003);
Kelly and Steinberg (2000).

Combinatorial auctions, and especially iterative combinatorial auctions, offer
the mechanism designer a much wider design space, compared to single-item
auctions, simultaneously increasing the strategy space of bidders. Various ask
price calculation schemes, bidder decision support tools, activity and bid incre-
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ment rules make it extremely complicated to admit much theoretical analysis at
a greater level of detail (Rothkopf, 2007a). Furthermore, experimental stud-
ies demonstrate that bidders do not follow the often assumed best-response
bidding strategy. According to a study of CAs in transportation by Plummer
(2003), out of the 644 carriers, only about 30 percent submitted bundle bids
at all. This group of carriers submitted between two and seven lane combi-
nations and the vast majority of the bundles were small, containing between
two and four lanes. Apart from the novelty of CAs and the complexity of
knowing their valuations over all possible bundles, the bidders face the bundle
selection problem from an exponential number of possible bundles. Even in
simple scenarios and with adequate supporting tools, the bidders fail to follow
the theoretically optimal best-response strategy (?). This “trembling hand”
phenomena was first described and studied by Selten (1975).

Therefore, experimental studies are important to understand performance of
combinatorial auctions in real-life settings, when bidders either cannot follow
the optimal strategy for computational or cognitive reasons, or deliberately
behave differently. For the same reasons of extensive design space, laboratory
experiments with combinatorial auctions are difficult to design correctly, they
are costly, and are therefore restricted to a few treatment variables. As of
today, only a handful of reports on laboratory experiments with combinato-
rial auctions exist, each of them addressing a very focused question: Banks
et al. (2003); Chen and Takeuchi (2009); Kazumori (2005); Kwasnica et al.
(2005); Porter et al. (2003); ?. Computational experiments, where the role of
bidders is taken by software agents, allow to conduct more auctions and to
address more questions. However, they require significant investment into the
software. Aside from our work and related publications (Bichler et al., 2009;
Schneider et al., 2010; Shabalin et al., 2007, 2006), we are aware only about
the contribution by An et al. (2005), which uses computational experiments to
study impact of bidding strategies on revenue distribution in a combinatorial
auction.

Finally we want to direct readers’ attentions towards the excellent book Cram-
ton et al. (2006), which summarizes all key aspects of the current state in the
combinatorial auction research and practice.
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1.2 Applications in Industrial Procurement

Field applications of combinatorial auctions deserve a separate attention, as
practice in this case preceded theory. Advances in the computer science and
the optimization theory made their growing acceptance in the last ten years
possible. However, there are no standard solutions with adequate support
for combinatorial auctions on the market of e-sourcing tools until now. All
known applications of combinatorial auctions required significant research and
engineering work. We believe that this situation will change, and combina-
torial auctions, together with other optimization-based tools, will become a
widespread and important e-sourcing instrument. This development is envi-
sioned by major analytical companies, too (AberdeenGroup, 2007; Gartner,
2008).

The high potential and growing importance of new optimization-based tech-
nologies in procurement is best proven by the fact, that auction-related projects
were twice finalists and once won the prestigious INFORMS Edelman Award,
which rewards outstanding practical applications of management science and
operations research:

• Hohner et al. (2003) described an application of new auction formats at
Mars, Inc. supported by the IBM Research. Their new sourcing solution
enabled buyers to incorporate iterative auction mechanisms into strategic
sourcing negotiations. The results were not only 6% savings compared
to traditional auctions, but also improvement of critical relationships
between Mars, Inc. and its suppliers, who highlighted the benefits of
time, efficiency, transparency, and fairness in using the new sourcing
tools.

• Metty et al. (2005) won the 2005 Edelman Award with a project, which
Motorola, Inc. launched to rebuild its sourcing process. The new ap-
proach was based on modern optimization tools and combined innova-
tive bidding, online negotiations and scenario-based optimization analy-
sis. The sourcing professionals use the new functionality to identify the
optimal award strategy under different scenarios while considering con-
straints such as parts qualification status, supplier count and capacity.
The captured savings comprise 4-7% in sourcing spend, in addition to
significant reduction of process cost and complexity.

• Procter & Gamble rebuilt its procurement organization using “expres-
sive competition” (Sandholm and Begg, 2006), which allows suppliers to
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make electronic offers expressing rich forms of capabilities and efficien-
cies. At the same time, the buyer can formulate constraints and prefer-
ences regarding the outcome of the sourcing event. Optimization-based
tools are then used to find the optimal allocation, resulting in 14.3% in
recommended savings for Procter & Gamble. The authors also report
improved relationships with suppliers, because expressive competition
generates a win-win between them and the buyer.

Constant public interest is generated by the US Federal Communications Com-
mission (FCC) projects on combinatorial spectrum auctions (Banks et al.,
2003; FCC, 2002). Further list of CA applications includes trading of truck-
load transportation (Caplice, 2006; Plummer, 2003), bus routes (Cantillon and
Pesendorfer, 2006), milk for school meals (Epstein et al., 2002).

1.3 Research Objectives

A few known practical applications of combinatorial auctions provide an em-
piric evidence that this mechanism has a significant economical potential. How-
ever its applications are still far from being mainstream, primarily because
every practical scenario requires careful analysis and significant implementa-
tion effort.

The mission of this work is to create a good3 combinatorial auction format,
which will work well for a wide range of bidder valuation types and bidding
strategies. This task is solved by iteratively benchmarking different auction
designs, and then formulating and testing new auction rules, which shall imp-
rove the auction outcome. We introduce the notion of robustness of an auction
format with respect to suboptimal bidding strategies, and compare various de-
signs based on this property.

The ALPS ICA format is the result of this work. In our experiments, it
has high indices in performance and robustness. Ultimately, we expect to
see the evolution of standard software components and standard designs for
combinatorial auctions that work well in a wide variety of bidder valuations
and bidding strategies.

Because of a high number and broad variety of combinatorial market param-
eters, it is not likely that a single CA design will dominate in future. Various

3The comparison criteria are defined in the following chapter.
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auction formats have different properties, like for example non-linear price auc-
tions and pseudo-dual auctions (Section 2.4.3) . Therefore, another important
goal of this work was to compare known combinatorial auction formats and
describe their applicability for specific combinatorial markets.

An important side result of this work is the creation of the MarketDesigner
platform, an extendable environment for conducting computational and la-
boratory experiments with combinatorial auctions. The project itself is not
completed with this thesis. We use the MarketDesigner platform to conduct
laboratory experiments and to run pilot projects with industry partners. We
have established contacts and are working on cooperations with leading re-
searches in this field. Research of new combinatorial auction rules and designs
will continue.

1.4 Research Approach

To analyze and compare different combinatorial auction designs we use com-
putational experiments. We have created several models which define bidders’
valuations based on economically motivated scenarios. Furthermore, different
bidding agents, implemented in software, define behavior of auction partici-
pants under various assumptions, ranging from idealistic bidders with unlimi-
ted computational power to simplest agent who does not use bundle bids at
all. Different auction designs and parameters are tested using combinations of
these models.

Considering the research field of traditional single-item auctions, there are
primarily two approaches.

• Game-theoretical analysis has been extensively used to study all known
single-item auctions, both sealed and iterative.

• Experimental economics is used to detect and study phenomena which
are difficult to formalize.

Experimental results show that the usual assumptions of the game theory
are often not met. In particular, the assumption of independent private va-
luations seems to present a problem even in laboratory settings where it is
explicitly given in bidders’ valuations. Apparently human agents fail to act
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as straightforward revenue maximizers; their behavior is influenced by many
other cognitive and psychological factors (Rothkopf, 2007a).

Game-theoretical analysis of combinatorial auctions is even harder because
their design space is substantially broader than that of the single-item auctions
Wurman et al. (2001). Equilibrium analysis has been performed for persona-
lized non-linear price combinatorial auctions under strong assumptions on bid-
ders’ behavior (Parkes, 2006). However our results indicate that performance
of non-linear price auctions can significantly degrade when these assumptions
are not met (Section 6.5). For iterative CAs with linear prices, which have
high practical potential (Ausubel et al., 2006; Bichler et al., 2009; Dunford
et al., 2007), such analysis is still an open question. Furthermore, the space of
bidding strategies in combinatorial auctions can be very large (Anandalingam
et al., 2005; Sureka and Wurman, 2005), which requires additional assumptions
on the bidders’ behavior, including assessment of their cognitive abilities.

Therefore, “those who will accept no analysis other than a game theoretical one
are often left with no realistic answer” (Rothkopf, 2007a) – game-theoretical
analysis alone cannot provide reliable results for the field of combinatorial
auctions.

Laboratory experiments are another important instrument in the research of
combinatorial auctions, especially in the view of the difficulties of the game-
theoretical approach. However, because of their high complexity and cost,
their results are very limited.

In our work we use computational experiments as the primary research tool.
It allows us to test various auctions under different settings, with different
valuation models and different bidder behavior models, and thus to explore
potential auction designs and analyze the virtues of various design options.
Not only are we able to compare auction formats and settings, but we also can
measure the sensitivity of different auction designs with respect to various pa-
rameters. An important precondition was the creation of the MarketDesigner
software platform for the computational experiments, which was a significant
investment.

To obtain reliable results, we base our computational experiments on a broad
range of valuations and bidding strategies. The valuations are built using diffe-
rent economically motivated scenarios, including those from the Combinatorial
Auction Test Suite (CATS) (Leyton-Brown et al., 2000). The implemented
bidding strategies range from theoretically optimal best-response bidders with
unlimited computational capacity to simplest agents with linear complexity.
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Several strategies are based on our empirical observations of bidders’ behavior
in laboratory experiments with combinatorial auctions (Scheffel et al., 2009;
?).

Partial results of this work have been published or submitted for publication.
In particular, Bichler et al. (2009) will appear in the INFORMS Information
System Research (ISR) journal; Schneider et al. (2010) is submitted to another
renowned operational research journal.

This thesis has the following structure:

• Chapter 2 introduces the relevant theoretical concepts.

• Chapter 3 gives an overview of the combinatorial auction formats, which
are addressed in our research.

• Chapter 4 describes the new ALPS/ALPSm auction format, which was
created based on our experiments.

• In Chapter 5 we give a detailed description of our experimental frame-
work.

• Chapter 6 presents the results of the computational experiments. For
each set of settings, we describe the research question and setup, demon-
strate and then discuss the obtained results.

• Chapter 7 concludes by summarizing the results of our research and
giving an outlook on the future work.
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Chapter 2

Theoretical Background

These students are so stupid. . . I
am explaining it for the third time
and already start understanding it
myself, and they still don’t get it.

Unknown

Auctions have been used to conduct trades for centuries, and have long proven
their virtue. Their theoretical understanding however only goes back 50 years.
The relevant academic fields include the game theory with its applied branch,
the auction theory, and the decision theory. Combinatorial auctions have ad-
ditionally attracted the attention of researchers in the fields of optimization
theory, information systems, and computer science.

In this chapter we review the theoretical background necessary for the further
presentation of our work. We will first discuss several key points about auctions
in general, and then concentrate on combinatorial auctions. The order of
presentation is incremental, which in some cases results in interleaving and
mixing of topics from different research fields. To keep the presentation concise
we will skip proofs, but provide literature references where ever necessary.

2.1 Why Auctions?

The purpose of an auction, and of any trade in general, is redistribution of
goods within some closed system of agents. Depending on their nature, three
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auction types are possible, as shown in Figure 2.1. Here S indicates sellers,
B indicates buyers, and arrows show the direction of good transfer during the
trade. In a forward or sell auction several bidders-buyers compete for the
good(s) sold by a single auctioneer-seller. In a reverse or buy auction several
bidders-sellers compete for the right to sell their good(s) to a single auctioneer-
buyer. The latter case is frequently named procurement auction after its
common application case in industrial procurement, where several potential
suppliers compete for a contract.

From the theoretical perspective, forward and reverse auctions are very similar,
and we will consider only forward auctions for the rest of this thesis, with an
exception of Section 2.6, where we review the few essential differences.

S

B1

B3

B2

(a) Forward (Sell) Auction

B

S1

S3

S2

(b) Reverse (Buy) Auction

S1
B1

B3

B2

S2

(c) Double Auction

Figure 2.1: Classification of Auctions

The double auction, which is presented in Figure 2.1(c), is a generalization of
both previous scenarios, where competition was present only on one side of the
market. In the case of a double auction, there are multiple sellers and multiple
buyers, and participants on both sides race for a deal. Furthermore, a single
party can participate on both sides of the trade at the same time, being seller
and buyer simultaneously under different conditions, or for different goods. For
these reasons, the auctioneer in double auctions is usually a third person and
cannot be associated with one of the participants, like the seller in a forward
auction. Double auctions are widely used, for example, by stock markets and
other exchanges. They have further important distinctions which make their
mechanics significantly different from the first two auction types. For the rest
of this work, we leave double auctions out of the attention.

At this point we introduce several definitions. Even though the definitions
in this section are valid for any kind of trade, we will use auction-related
terminology and call trade participants auctioneer and bidders rather than
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using generic seller and buyers. This shall help the reader to make a smoother
transition to the next sections, which concentrate on auctions.

As mentioned in Chapter 1, combinatorial auctions deal with several heteroge-
nous items. Let K, |K| = m denote the item set. Symbols k ∈ K and l ∈ K
denote a specific item. We call any item subset S ⊆ K or T ⊆ K a bundle,
or a package, which can also be empty. The symbol I, |I| = n denotes the
set of bidders with individual bidders denoted as i ∈ I or j ∈ I.

The motivation for the bidder i to compete in the market for the bundle S
is his valuation vi(S). Intuitively, the valuation vi(S) defines how much the
bidder i can earn if he gets the bundle S. Consequently, this is the highest
price which the bidder is willing to pay for the bundle. We assume that each
bidder has some valuation for every possible bundle, whereby some valuations
can be zero. The set of valuations for all bundles Vi = {vi(S)} ∀ S ⊆ K is the
value model of the bidder i.

The allocation X is a tuple (S1, . . . , Sn), which describes how the goods are
distributed between bidders after the trade. The allocation is feasible if it sat-
isfies all restrictions set by the auctioneer. In particular, the allocated bundles
must be non-intersecting (possibly empty): ∀ i, j : Si ∩ Sj = ∅. Some items
can remain unallocated: ∪i∈ISi ⊆ K. The auctioneer can potentially define
other restrictions on feasible allocations, like minimum number of winners,
maximum number of items per winning bidder, etc. (Section 2.3.3).

The set of all feasible allocations is denoted by X . When we talk about ite-
rative auctions, we distinguish between a provisional allocation at some
intermediate point during the auction and the final allocation at the end of
the auction.

The term price can have several meanings in the context of auctions. When-
ever ambiguities are possible, we will explicitly state the price type as one of
the following:

• The bid price pbid,i(S) is the price suggested by the bidder i for the
bundle S at some point of time in the auction.

• The pay price ppay,i(S) is the price paid by a winning bidder i for the
purchased bundle S at the end of the auction. Depending on the auction
format, the pay price can be lower than the corresponding bid price, but
never higher: ppay,i(S) ≤ pbid,i(S). Unless explicitly stated otherwise,
we assume pay-as-bid auctions with ppay,i(S) = pbid,i(S) for winning
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bidders and ppay,i(∅) = 0 for losing bidders. In such cases we sometimes
write just “price” to refer to both pay price and bid price.

• The ask price pask,i(S) predefines, depending on the auction format,
the lowest limit or the precise value for new bid prices.

2.1.1 Efficiency and Revenue Distribution in a Trade

Before we take a close look at the reasons that make auctions attractive as a
market clearing mechanism, let us define what is a good trade and how we can
measure quality of the trade outcome. Intuitively, a better trade brings more
revenue to its participants. Let us calculate what trade participants gain from
the trade.

The bidder revenue (also bidder payoff or bidder utility) πi(S,Ppay) is
the financial result of a bidder i who receives a bundle S. It is the difference
between his valuation for the bundle and the price he pays for it:

πi(S,Ppay) = vi(S)− ppay,i(S)

Note that the revenue of a bidder who does not win anything is zero.

The auctioneer revenue (also auctioneer payoff or auctioneer utility)
Π(X,Ppay) is the sum of all pay prices:

Π(X,Ppay) =
∑
i∈I

ppay,i(Si)

Now we can calculate the total revenue of all agents in the auction with a final
allocation X and final pay prices Ppay:

Π(X,Ppay) + πall(X,Ppay) =

=
∑
i∈I

ppay,i(Si) +
∑
i∈I

(vi(Si)− ppay,i(Si)) =
∑
i∈I

vi(Si) (2.1)

This formula implies certain assumptions, for example that the situation of the
bidder who does not win anything does not change (vi(∅) = 0) and that the
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auctioneer’s own valuation for the goods is zero. We will review and discuss
these and other assumptions on value models in Section 2.2.2.

We make two important observations from (2.1):

• The total revenue after the trade does not depend on the prices which
winners pay for their goods. It depends only on the final allocation.

• There is a tradeoff between the auctioneer revenue and the revenue of all
bidders.

Because of this tradeoff, there cannot be a general definition of a “good” trade
outcome. There is a political question of what outcome is most desirable in a
particular case. A private auctioneer will probably want to increase his own
revenue, whereas a government organization might want a fair distribution
of the profit between the auctioneer and the bidders to preserve the healthy
market in a longer-term perspective.

We will adopt the approach which is often found in literature, which states that
a better trade has higher total revenue, calculated over all trade participants
according to (2.1). Since there is a limited number of possible allocations in
every trade, there is also the upper limit on the total revenue achieved in the
auction. An allocation X∗, which corresponds to the maximum possible total
revenue, is called an efficient allocation. Note that an efficient allocation is
not necessarily unique.

Figure 2.2: Efficiency and Revenue Distribution in a Trade

An important measurement for the trade outcome describes what part of this
potential maximum revenue is in fact achieved, and how this revenue is dis-
tributed between auctioneer and bidders, as illustrated in Figure 2.2.
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The whole pie corresponds to the maximum possible revenue. It is divided
into three parts. The Loss is inevitably gone because the auction failed to find
an efficient allocation. The rest is split between the auctioneer and bidders.

We use the term allocative efficiency (or simply efficiency) to refer to
the ratio of the overall revenue in the achieved allocation X to the maximum
possible overall revenue of an efficient allocation X∗:

E(X) :=
Π(X,Ppay) + πall(X,Ppay)

Π(X∗,Ppay) + πall(X∗,Ppay)
∈ [0, 1]

We can transform E(X) into a form free of the pay prices Ppay:

E(X) :=

∑
S⊆K

∑
i∈I

xi(S)vi(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)
∈ [0, 1] (2.2)

We define the auctioneer utility share or auctioneer revenue share
as the part of the maximum possible overall revenue which stays with the
auctioneer:

R(X) := Π(X,Ppay)

Π(X∗,Ppay)+πall(X∗,Ppay)
=

=

∑
S⊆K

∑
i∈I

xi(S)ppay,i(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)
∈ [0, E(X)] ⊆ [0, 1]

and, similarly, the bidder utility share or bidder revenue share as the
part obtained by all bidders:

U(X) := πall(X,Ppay)

Π(X∗,Ppay)+πall(X∗,Ppay)
=

= E(X)−R(X) ∈ [0, E(X)] ⊆ [0, 1]
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Note that we need full information about bidders’ valuations to calculate effi-
ciency and revenue distribution. This is possible in the laboratory, but rarely
in the field, where real valuations are seldom revealed by bidders, and often
are not even precisely defined.

Revenue distribution between auctioneer and bidders is an important charac-
teristic of an auction design. Auctioneer revenue and bidder revenue depend
both on the final allocation X and on the pay prices Ppay. As already men-
tioned, there is a tradeoff: Increasing bidder revenue will decrease auctioneer
revenue to the same amount, provided the allocation does not change.

Often the selection of the auction mechanism is the prerogative of the auctio-
neer, who might prefer to choose revenue-maximizing mechanisms. However
such a decision will raise the issue of strategic bidding. If bidders know that
the selected auction design favors the auctioneer in revenue distribution, they
will have incentives to shade their bids (report bid prices below their ac-
tual valuations). The auction efficiency will consequently suffer since the final
allocation will be selected based on false preferences. Setting prices, which
motivate bidders to truthful reporting of their valuations, is a key problem in
the auction theory, and we will discuss it in detail in Section 2.4.1.

2.1.2 The First Example

We use the example in Figure 2.3 to illustrate several important auction pro-
perties before diving into the theory. In this scenario, a single seller offers a
single good $ to three potential buyers A, B and C. Each buyer has an inter-
nal valuation for the good, which in our case is 50 AC, 70 AC and 100 AC for the
bidders A, B and C respectively.

Consider two cases presented in Figure 2.3 which describe possible trade out-
comes. In Case 1, bidder C purchases the good for the price of 30 AC, and the
overall revenue is 100 AC. In Case 2, bidder B gets the good for 30 AC, and
the overall revenue is 70 AC. Now consider what happens if the price changes
from 30 AC to 40 AC. Note that the overall revenue does not change if the price
changes.

In this straightforward example it is easy to find an efficient allocation — we
have to select the bidder with the highest valuation. This simple approach
would work in most practical cases too, and even in the case of combinatorial
auctions - if the valuations of the bidders were publicly known. The problem
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C 1Case 1:Case 1:
S 30 €S: 30 €S: 30 €
A: 0 €A: 0 €
B 0 €B: 0 €B: 0 €

$ C 100 30 70 €$ 50€ C: 100‐30 = 70 €$ = 50€ C:  100 30 =  70 €$   50€
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

A 100 €A 100 €A 100 €
Effi i 100%Efficiency: 100%Efficiency: 100%

$ 70€Case 2: $ = 70€Case 2: Case 2:$ = 70€Case 2: Case 2:$
$ for 30€

Case 2:
$ for 30€ S 30 €Seller (S)
$ o 30€ S: 30 €Seller (S) B

S: 30 €Seller (S) B( ) B A: 0 €A: 0 €
B: 70 30 = 40 €Case 1: B: 70‐30 = 40 €Case 1: B:    70 30    40 €Case 1:
C 0 €

$$ for 30€ C: 0 €
$ = 100€$ for 30€ C:   0 €

C $ = 100€$
C $   100€ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐C ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

70 €70 €
Efficiency: 70%Efficiency: 70%Efficiency: 70%

Figure 2.3: Example of a Trade

is that the bidders are usually reluctant to reveal their valuations. If asked to
report them, they can try to speculate and understate their true valuations if
they know that their statement is somehow connected with the price they will
have to pay.

Having bidders reporting their valuations truthfully is essential. Without it,
a trade will always be a lottery to some extent, and its efficiency cannot be
guaranteed. This is where auctions come to play. Consequently, a successful
auction design satisfies two properties:

• It motivates the bidders to tell the truth about their valuations.

• It achieves an efficient outcome with respect to the reported valuations.

These objectives are usually achieved by finding a suitable price which satisfy
all parties in the auction, even when the trade is completed and the results are
published. Consider again our example in Figure 2.3.

• If the price is too low, for example 30 AC, several bidders would want to
have the good. Consequently, those bidders who do not receive the good
after the trade will not be happy with the outcome.
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• If the price is too high, for example 120 AC, none of the bidders will be
interested in purchasing the good. This is an unsatisfactory outcome for
the auctioneer.

• When the price lies between 70 AC and 100 AC, only bidder C is willing
to pay for the good. Therefore this is the optimal range for the price.
However only when the price is equal to (50 + ε) AC for some very small
ε will bidder C be really satisfied with the deal. If the price is higher, he
will be motivated to shade his valuation.

Following these considerations, the auction shall terminate with the price of
(50 + ε) AC if bidders communicate information about their valuations truth-
fully. Simultaneously, this property is also the motivation for the bidders to
bid truthfully. The popular English auction, where bidders cry out new in-
creasing prices, belongs to this class, as it will terminate as soon as the bidder
C bids (50 + ε) AC.

The Vickrey auction (Vickrey, 1961) - also called a second-price sealed-
bid auction - has the same property. The sealed-bid property means that
each bidder submits his bids (or a single bid in the single-item case) only
once without knowing what other participants are bidding. The highest bid
wins, but the pay price of the winning bid is equal to the second-highest bid,
which reflects the second-price property. The following considerations are
important:

• Pay price for the winning bidder is not affected by the bidder himself.
In particular, he has no incentives to understate his valuation.

• There is no incentive to bid more than your own valuation, as such
behavior is connected with a risk of paying more than this valuation and
thus incurring losses. If a bidder overstates his valuation and then luckily
wins with a positive revenue, bidding exactly his valuation would always
result in the same outcome, but without risking potential losses.

From these considerations it follows1 that the Vickrey mechanism has the
desired properties. It achieves an outcome where neither bidder wants to
change his bid after the auction, if he has reported his preferences truthfully. At
the same time, this property motivates the bidders to bid their true valuations,

1For formal proof consult Vickrey (1961) or Ausubel and Milgrom (2006b).
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independently of what other participants are doing. The bidder in this case
is said to have a dominant strategy , which will be covered in more detail in
Section 2.2.2.

The traditional English auction achieves the same result. The bidder will
continue to improve his bid either until he wins in the auction when the last
competitor stops bidding, or until someone else submits a bid which is higher
than his valuation. It is said to be strategically equivalent to the Vickrey
auction.

There exists a series of other single-item auction formats:

• Dutch auction. In a Dutch auction the auctioneer begins with a high
ask price which is lowered until some participant “raises hand” and ac-
cepts it. That participant pays the last announced price. Note that the
bidder who has the highest valuation has an incentive to speculate and
to raise his hand not precisely at his valuation, but lower. How much
lower is a difficult question. It depends on valuations of other bidders,
which must be estimated. Strategically, the Dutch auction is equal to the
first-price sealed-bid auction. This auction format is convenient when it
is important to auction goods quickly, since a sale never requires more
than one bid. The Dutch auction is named after its best known example,
the Dutch flower auctions.

• Chinese auction. This is an interesting mechanism where every bidder
pays his bid to the auctioneer (an all-pay auction), and the winner is
selected randomly with probability proportional to one’s bid. Chinese
auctions are used to model political elections or patent races, in which
the chance of winning is seen in proportion to the amount spent.

• Japanese auction. This format is similar and strategically equivalent
to the English auction. The auctioneer regularly raises the current price.
Participants must signal at every price level their willingness to stay in
the auction and pay the current price. The auction terminates when only
one bidder indicates his willingness to stay in. This auction format is
also known as the button auction – every player holds the button as
long as he agrees to pay the current price, the auction terminates when
all bidders but one release the button.
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2.2 Some Game Theory

Now we make an excursus into relevant aspects of game theory, which studies
behavior of selfish agents, or players in a game. A game is defined as a
process where two or more players interact following certain rules which restrict
a set of possible actions, or strategies, for every player. A game has a set
of possible outcomes which depend on strategies which bidders choose to
pursue. Each outcome has a certain payoff for each player, which is defined
by his utility function, and which selfish players try to maximize.

An auction is a game in this respect, and the game theory has been an impor-
tant tool for modeling and understanding auctions, both traditional single-item
and combinatorial. The notion of the game outcome corresponds in this case
to the final revenue distribution in the auction and is characterized by the
payoff vector (Π, π) = (Π, π1, . . . πn), which includes in this case the payoff
of the auctioneer and each bidder.

In Section 2.1.1 we assumed that the bidder’s payoff is equal to the differ-
ence between the bidder’s valuation and the price he pays for the bundle:
πi(S,Ppay) := vi(S) − ppay,i(S), and we will discuss this assumption in more
detail in Section 2.3. However we do not need this assumption for the game-
theoretical concepts, which are the subject of this section.

Within the game theory, it is often assumed that each player knows all other
participants, strategies which they can choose, and their payoffs. Whenever
these assumptions are not met, we have a Bayesian game, where the infor-
mation about characteristics of other players is incomplete.

Several related theories are helpful in the auction research, too.

• The general equilibrium theory studies games with a large number
of players. In particular, it is used in microeconomics theory to model
markets, trades, consumption and production.

• The decision theory deals with one person games, or games of a sin-
gle player against nature. It focuses on a player’s preferences and the
formation of his beliefs and decisions, especially in scenarios with risky
or uncertain alternatives.

• The mechanism design theory complements the game theory by ex-
ploring how different rules influence the game outcome. Ultimately its
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mission is to design such rules that the players have incentives to guide
the game to the desired outcome.

Below we introduce important concepts from this family of theories.

2.2.1 Game Types

A game can be cooperative (also coalitional), or non-cooperative. In a
cooperative game players can form coalitions CI , I ( I by closing binding
contracts with each other. The grand coalition CI is the coalition containing
all players in the game. Usually communication between players is allowed in
cooperative games, but not in noncooperative ones.

A closely related concept is the transferable utility , which can be assumed
in a cooperative game. The utility is transferable if one player can transfer
part of his utility to another player without loss. In such cases payoffs are
calculated not for individual players but for whole coalitions. This is known
as the coalitional value function:

Definition 1. The coalitional value function w(CI) is defined as the max-
imum overall revenue that can be generated by the bidders contained in the
coalition:

w(CI) := max
X=(S1,...,Sn)∈X

∑
i∈I

vi(Si)

for any coalition CI of players. In an auction, every meaningful coalition will
include the auctioneer, since no game is possible without his participation.
The coalitional value function of the grand coalition corresponds to efficient
allocations in the auction.

Both cooperative and non-cooperative games can be used to model auctions.
If certain properties hold for the cooperative case, the auction design is better,
since the desired result will be achieved even if the bidders communicate and
try to engage in agreements (coalitions).

An important concept in this respect is the core.

Definition 2. The set of core payoffs is defined as

Core (I, w) =

{
(Π, π) : Π +

∑
i∈I

πi = w(CI) and ∀ I ⊂ I : w(CI) ≤ Π +
∑
i∈I

πi

}
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In a cooperative game, the core of the game is a set of payoff vectors which are
efficient in the grand coalition and no coalition can earn more by separating
from the grand coalition. For a payoff vector (Π, π) which is not in the core, a
coalition CI , I ( I exists, with a coalitional value w(CI) which is strictly higher
than the total payoff (Π, π). The coalition CI has an incentive to break from
the game and redistribute w(CI) between them, which makes each member
strictly better off. The outcome, characterized by the non-core payoff vector
(Π, π), is said to be blocked by the coalition CI .

For an auction, core outcomes are essential to ensure that neither coalition of
bidders wants to separate and review results of the auction together with the
auctioneer after the results are announced. As shown below in Section 2.3.4,
other important auction properties require core outcomes too.

A game can be simultaneous (also direct mechanism), or sequential
(also dynamic). In a simultaneous game each player makes his decisions
unaware of the actions of the other players. In a sequential game, players
have some knowledge about earlier actions of other players, and can adjust
their moves according to this information. Sealed-bids auctions correspond
to simultaneous games, and iterative auctions – where bidders receive some
information between their bids – correspond to sequential games.

2.2.2 Game Outcomes

A central task of game theory is to characterize possible outcomes of the game,
assuming that each bidder behaves rationally – tries to maximize his own
payoff.

In the terminology of the game theory, the desirable efficient outcome of an
auction is Pareto efficient, or Pareto optimal. An outcome is Pareto
efficient if there is no other outcome that makes every player at least as well
off and at least one player strictly better off. In other words, a Pareto optimal
outcome cannot be improved without hurting at least one player.

An interaction of all rational players in the game results in an equilibrium
outcome. A successful auction design shall terminate in an equilibrium which
has two properties:

• It shall be Pareto optimal; that is, correspond to an efficient allocation.
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• It shall be stable, which means that the bidders who deviate from their
equilibrium strategies have strictly worse payoffs, and bidders who do not
change their strategies have no better strategy in the new circumstance.

Nash equilibrium is a set of strategies where no player can do better by
unilaterally changing his strategy. Nash equilibrium strategies are a natural
assumption for selfish bidders in an auction, which makes this concept highly
relevant for the auction theory. Since the Nash equilibrium focuses on an
individual’s preferences given that the others stay the same, there can be Nash
equilibria which become unstable if bidders are able to form coalitions. There
can be several Nash equilibria in a game.

A stronger concept is the dominant strategy , which is the best possible
strategy for a player regardless of what other players are doing. Auctions with
dominant strategies are attractive since they make it unnecessary for bidders
to guess or otherwise learn actions of other bidders – they are called strategy-
proof .

Cooperate Defect
Cooperate 3, 3 0, 5

Defect 5, 0 1, 1

Figure 2.4: Payoff Matrix of the Prisoner’s Dilemma Game

Several important properties of the equilibria concept are illustrated by the
famous prisoner’s dilemma, presented in Figure 2.4 in the canonical form.
Each player has a possibility either to Cooperate or Defect ; numbers in the
table give payoffs of each player for each of the four possible outcomes. We
can observe that:

• Each bidder has a dominant strategy of Defecting independently of what
the other party is doing.

• As always in cases where each player has a dominant strategy, the corre-
sponding dominant strategy equilibrium coincides with the single Nash
equilibria.

• The dominant strategy equilibrium (Defect, Defect) is not Pareto opti-
mal, since the (Cooperate, Cooperate) outcome is better for each player.
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• Consequently, Nash equilibrium is not necessarily a core outcome.

An ex post equilibrium of a Bayesian game is a profile of strategies which
are optimal for each bidder given any types of other bidders. Intuitively that
means that the bidder will not want to change his behavior after the game
finishes and he is told about the strategies of other bidders. The ex post
equilibrium is stronger than the Nash equilibrium of a Bayesian game, but
weaker than the dominant-strategies equilibrium.

For market-like games with prices, a Walrasian equilibrium defines a vector
(X,P), where P is a price vector for each good and X is a feasible allocation
which satisfies each bidder given prices P . That means that none of the bid-
ders would want to change the allocation if the prices remain fixed to P . Every
Walrasian equilibrium has the core property, but not vice versa. However, un-
der some assumptions, as the number of market participants grows to infinity,
the core expands and tends to a set of Walrasian equilibria, a result known as
the Edgeworth conjecture.

An important question is whether the game rules stimulate participants to
participate and to tell the truth about their profiles, or rather to withdraw
from the game or try to get a better payoff by playing strategically and
reporting incorrect or incomplete information.

Definition 3. A game is individually rational if players expect to gain
higher utility from participating in the game than from avoiding it.

Definition 4. A game is incentive compatible if a player is better off when
he truthfully reveals any private information the mechanism asks for.

There are different degrees of incentive compatibility. In a strategy-proof
game, truth-telling is a dominant strategy. A weaker case is when truth-telling
is a Bayes-Nash equilibrium: It is best for each participant to tell the truth,
provided that others are also doing so. However, simultaneous games are ex
post incentive compatible if and only if they are dominant-strategies incentive
compatible.

Two theorems reveal important relations between the above concepts.

Theorem 2 (First Fundamental Theorem of Welfare Economics).
Every Walrasian equilibrium is Pareto efficient.
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The theorem is subject to strong assumptions that players are rational, mar-
kets are complete, there are no externalities and information is perfect. Such
assumptions are obviously unrealistic. The reasonable interpretation of the
theorem, which is important for the auction design, is that an efficient mar-
ket (price-based game) is possible, and the source of inefficiencies is not the
distributed nature of the market, but rather something else.

Theorem 3 (Second Fundamental Theorem of Welfare Economics).
Every efficient allocation can be supported by some set of prices.

We define supporting prices formally in Section 2.4.1. For now, we give the
theorem the following interpretation, related to the auction design: It is pos-
sible to construct a price-based efficient auction. However, the assumptions of
the Second Theorem are even stronger than those of the First Theorem. The
actors’ preferences must be convex, which corresponds to the goods are substi-
tutes condition in the terminology of combinatorial auctions (Definition 12).
The questions which remain open at this point are what is the sufficient price
format for an efficient combinatorial auction, and how can such prices be cal-
culated. The answers are presented in Section 2.4.2.

The game theory is elegant and concise. However, its practical applicability
for auctions is often criticized (Rothkopf, 2007a), and laboratory experiments
indicate that it fails to model auctions precisely enough. Its strong assumptions
are probably the reason:

• Payoffs of bidders are known and fixed.

• Risk neutrality, meaning that the expected payoff is treated in the same
way as the actual payoff.

• All players behave rationally. They understand and seek to maximize
their own payoffs and do not care about other bidders’ payoffs. They are
flawless in calculating actions which increase their payoffs.

• The rules of the game are common knowledge. Each player knows all
rules, understands them, knows all other players and their possible strate-
gies.

These assumptions are obviously too strong, especially for the modeling of
combinatorial auctions. Truly private independent valuations, which are im-
plied by these assumptions, are extremely rare. Exponential size of bidders’
valuations and exponentially large strategy space mean that the assumption
of rational behavior is too optimistic.
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2.3 Combinatorial Auctions

From this point on, we concentrate on combinatorial auctions (CA) –
auctions which have the following distinguishing features:

• Several heterogenous items are traded simultaneously.

• The auction can have several winners, whereby each item is assigned to
one winner at most.

• Bidders can submit bids for indivisible bundles – the bundle bids.

Bidders in the auction are usually modeled as selfish agents, who have fixed
valuations vi(S) for every possible bundle S ⊆ K and try to maximize their
payoffs πi(S,Ppay). The following presentation is based on a number of assump-
tions which define the behavior of bidders in an auction. These assumptions
are typical for the auction literature (Parkes, 2006), albeit not free of critique
(Rothkopf, 2007a):

• Independent private valuations, meaning that Vi does not depend
on valuations of other bidders in any way. Furthermore, the valuations
cannot change during the auction, as the bidders learn more about va-
luations of other bidders.

• Free disposal, meaning that every bidder can dispose of any item at
no cost: vi(S) ≤ vi(T ) ∀ S ⊂ T .

• Consequently, vi(S) ≥ 0 ∀ S and the assumption of normalization
vi(∅) = 0 holds.

• Quasi-linear bidder utilities with πi(S,Ppay) := vi(S) − ppay,i(S)
and πi(∅,Ppay) := 0. This implies that the bidders have no budget
constraints.

• The auctioneer has no own value for the items; his utility is the sum of
all pay prices.
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2.3.1 Bidding Languages

To find an efficient allocation, the auctioneer needs sufficient information about
bidder’s value models. The bidding language of an auction is a formally
defined communication protocol which bidders use to represent and transmit
their preferences concerning traded goods to the auctioneer. The process of
collecting this information itself is called preference elicitation.

Being trivial in the case of single-item auctions, the preference elicitation
quickly becomes problematic in the context of combinatorial auctions, since
bidders need to calculate, formulate, and transfer to the auctioneer informa-
tion on exponentially many 2|K| − 1 bundles. A suitable bidding language is
important in this respect; its selection is driven by the following criteria:

• The bidding language shall be expressive. It shall allow the bidder to
represent his valuations precisely and completely, for every possible value
model.

• It shall be simple and intuitive for bidders. As with most language design
tasks, there is a tradeoff between simplicity and expressiveness.

• The bidding language shall be suitable for formal processing by the auc-
tioneer. An algorithm must exist for selecting a revenue-optimizing sub-
set of bids from the complete set of bids submitted by all bidders in the
auction.

Early work on combinatorial auctions paid little attention to the issue of bid-
ding languages. The common approach was to allow the bidder to submit a
set of plain bids, which combine a bundle of items and a bid price:

Definition 5. An atomic bid bi(S) = (S, pbid,i(S)) is a tuple consisting of a
bundle S and a bid price pbid,i(S) submitted by the bidder i. A set of atomic
bids is overlapping if at least one item is included in more than one bid.

Further rules define which combinations of atomic bids can win simultaneously,
in case the bidder submits several atomic bids. The two following interpreta-
tions are the most common:

• The additive-OR (OR) bidding language allows the bidder to win any
non-overlapping combination of his atomic bids.
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• The exclusive-OR (XOR) bidding language implies that the bidder
can win at most one of his atomic bids.

Historically, most existing CA designs use either OR or XOR bidding lan-
guages, and some auction formats can use both. These bidding languages are
universal, and can be used in any application domain. For these reasons we
concentrate in our work only on the auctions which use one of these two bid-
ding languages. Since we do not consider more complex bidding languages in
the following presentation – except for the rest of this chapter – we will often
use the term bid instead of atomic bid.

The OR bidding language is less expressive than the XOR bidding language. A
value model {({A},10 AC), ({B}, 10 AC), ({A,B}, 15 AC)} can be described using
the XOR bidding language with three atomic bids which directly correspond
to the valuations. The OR bidding language, however, is insufficient in this
case. If the same three atomic bids are submitted, the auction engine will
always prefer two single-item atomic bids ({A},10 AC) and ({B}, 10 AC) to the
bundle atomic bid ({A,B}, 15 AC). The bidder will have to pay 20 AC for both
items and consequently lose 5 AC.

Intuitively, the OR bidding language is insufficient whenever a bidder has sub-
additive valuations or budget constraints. The XOR bidding language, on the
other hand, is fully expressive, meaning that it can be used to express every
possible value model. Its negative side is that if a bidder has only additive
or weakly complementary valuations, and is interested in an arbitrary subset
of items in any combination, he will have to submit exponentially many XOR
bids in situations where just a few OR bids would suffice.

Several researchers suggest more sophisticated bidding languages for combina-
torial auctions. The proposed improvements target primarily two objectives:

• Improved usability of the bidding language, which allows the bidders to
represent their value models in a more laconic form compared to the
XOR bidding language. The bidder must communicate an exponential
amount of information to fully describe his valuations in the worst case
(Nisan, 2006). However it is often possible, especially in domain-specific
applications, to use the knowledge which the auctioneer and the bidders
share about the value model structure and achieve much more compact
representation.
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• Mitigating the complexity of searching for a revenue-maximizing alloca-
tion, which is generally NP-hard. This fact presents a practical problem
for combinatorial auctions, since the problem can become infeasible al-
ready for a moderate number of items and bidders. However, if the bid-
ders are restricted in their bids to a certain set of bundles, it is possible
to develop algorithms which find a revenue-maximizing allocation in a
polynomial time (Carlsson and Andersson, 2004; Goeree and Holt, 2008;
Rothkopf et al., 1998). It is important to note that the NP-completeness
is not a problem of the XOR bidding language by itself, and any com-
binatorial auction with a fully expressive bidding language will face the
same issue.

One approach to the construction of a more versatile bidding language is to
allow for more complex logical operations on individual atomic bids. Sandholm
(2002) suggests two-level nesting formats: OR-of-XOR and XOR-of-OR, which
shall provide more compact bid-terms and simplify the translation of bidder
preferences into bids. Obviously both bidding languages are fully expressive,
since they present a generalization of the XOR language. Nisan and Ronen
(2001) introduces the OR* bidding language, an OR language with dummy
items added to bids, which must be exclusive. If, as in the above example, a
bidder has sub-additive valuation for the bundle {A,B} and can use the OR*
bidding language, he submits bids ({A,X}, 10 AC), ({B,X}, 10 AC), ({A,B},
15 AC) where X is a dummy item, which eliminates the described problem.
The OR* bidding language is both fully expressive and compact. Nisan (2006)
provides an extensive analysis and comparison of these three, and other similar
constructs. Boutilier and Hoos (2001) suggest the LGB language, which allows
the use of the combinatorial k − of operator applied to a set of atomic bids.

All bidding languages listed above have a straightforward LP formulation (see
Section 2.3.2 below) for the cost of giving the bidder only very basic possibil-
ities for expressing his bids. Several other approaches suggest more compact
and expressive bidding languages which require, however, non-trivial LP for-
mulations for the problem of calculating a revenue-maximizing allocation. On
the other hand, the compactness can be an effective approach to reducing com-
putational times caused by the exponential growth of possible combinations.
One example of such a “complex-bid” language is the Matrix Bidding Lan-
guage (MBL). It was introduced by ? with the intention of compacting the
bid expressions. The authors showed that the MBL is equally expressive, and
in some cases even more compact, than the LGB language.
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Another approach described by Cavallo et al. (2005) generalizes the idea of
two-level nested logical connectives. In contrast to the OR-of-XOR bidding
language, there are no more limitations on the number of nested levels. The
structure of a bid in this language can be viewed as a tree where internal nodes
describe the relationship between lower-level nodes and individual items are
represented by the leaves. The proposed Tree-Based Bidding Language
(TBBL) features several novel options. One of the most interesting of them
is the ability to handle ask-items and bid-items in a single bid. Expression of
preferences for both buying and selling goods complies with the requirements
for double-sided auctions and with an even broader vision of combinatorial
exchanges (Parkes et al., 2005). TBBL also uses an interesting method for
the expression of monetary valuations. The bid as a whole and also every
node in the tree can have its own “added value”. A multi-unit extension for
the TBBL language was suggested and implemented within the scope of the
MarketDesigner project (Alexeev, 2008).

2.3.2 Combinatorial Allocation Problem (CAP)

An efficient allocation (see Section 2.1.1 for the formal definition) in a combina-
torial auction can be found by solving the Combinatorial Allocation Prob-
lem (CAP), also called the Winner Determination Problem (WDP):

max
X=(S1,...,Sn)∈X

∑
i∈I

vi(Si) (CAP) (2.3)

Under assumptions introduced in the previous section, the CAP (2.3) can be
represented in the form of an integer linear program (ILP) (2.4). It uses binary
decision variables {xi(S)}, xi(S) ∈ {0; 1} where xi(S) = 1 means that the
bidder i gets exactly the bundle S. The objective function maximizes the sum
of valuations of the winning bundles, and thus maximizes the overall revenue.
The first set of constraints guarantees that at most one bundle can be allocated
to each bidder, as required by the fully expressive XOR bidding language.
Without these constraints, the auctioneer allows for OR bids. Note that each
bidder can be assigned either OR or XOR bidding language independently of
other bidders. The second set of constraints ensures that each item is sold at
most once.
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max
∑
S⊆K

∑
i∈I

xi(S)vi(S) (CAP-I) (2.4)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀ i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀ k ∈ K

xi(S) ∈ {0; 1} ∀ i ∈ I, S ⊆ K

The CAP-I (2.4) is NP-hard if bidders submit a number of bundle bids that is
less than some polynomial function of the number of items m. When bids are
submitted on all bundles, which is rarely realistic, and certain other restrictions
are met, Rothkopf et al. (1998) provide a polynomial algorithm for solving the
CAP-I.

Another less obvious complication is that the CAP-I (2.4) requires valuations
of every bidder and for every bundle, if we use it to find an efficient allocation
directly. However, the bidders do not necessarily communicate their valuations
in submitted bids truthfully and completely. To emphasize this fact, in the
case when the allocation is calculated using bids rather than valuations, we
call it a revenue-maximizing rather than efficient allocation.

2.3.3 Allocation Rules

The LP-based interpretation of the combinatorial auction allows the addition of
arbitrary allocation rules to the market. Simply by adding new constraints
to the CAP-I (2.4), the auctioneer can specify, for example, that there must
be no more than 10 and no less than 3 winners; that a certain bidder i shall
not receive more than 10% of the overall market volume; that items k and l
shall be won by different bidders, etc.

Another attractive feature is that the cost of each allocation rule applied by
the auctioneer can be explicitly quantified. After calculating the revenue-
maximizing allocation with and without the rule, the difference in the objective
function value gives the cost of enforcing the allocation rule in the auction. The
auctioneer can then decide whether he is willing to pay the additional cost and
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insist on the constraint – the process is called scenario navigation in the
literature (Boutilier et al., 2004). In such cases the negotiation process cannot
be called “an auction” any more since the market rules are not a priori fixed
and can be changed by the auctioneer dynamically. Bidders might want to
adopt their strategies accordingly.

Another interesting possibility is to use bidder-side allocation constraints, thus
creating a more expressive bidding language. For example, bidders could de-
fine conditional dependencies between their bids, conditional discount offers,
capacity or budget constraints, etc.

Allocation rules add complexity to the optimization problems solved by the
auctioneer and affect the running time correspondingly (Kalagnanam et al.,
2001). Especially dynamic manipulation of the rules in the process of the auc-
tion can require adequate algorithms with appropriate hardware and software
support.

Another issue is that allocation rules, especially when they are changed dur-
ing the auction, can significantly reduce the quality of the feedback which ask
prices provide for the bidders (Klimova, 2008). How price calculation algo-
rithms must be modified, or which additional information must be communi-
cated to bidders to better reflect the market situation in cases where allocation
rules are used, is still an open question in auction research.

The MarketDesigner framework provides the auctioneer with a broad set of al-
location rules (Klimova, 2008) and with tools for scenario navigation (Neykov,
2007).

Now, as we understand the task which combinatorial auctions are designed for
better, we can start looking at possible solutions.

2.3.4 Vickrey-Clarke-Groves (VCG) Auction

The single-item Vickrey auction described in Section 2.1 has an important
property: Truthful bidding is a dominant strategy which leads the auction to
an efficient outcome. From the game-theoretical point of view this is the best
possible mechanism, if auction efficiency is our desired property.

The Vickrey auction was generalized by Clarke (1971) and Groves (1973) to
a generic competitive process, which includes the concept of a combinatorial
auction as a special case. The Vickrey-Clark-Groves (VCG, or generali-
zed Vickrey) auction has the same wonderful properties: Truthful bidding is

39



CHAPTER 2. THEORETICAL BACKGROUND

a dominant strategy which guides the auction to an efficient allocation. This
is achieved by refunding bidders the increase in the overall revenue caused by
their bids. In other words, each bidder pays the social opportunity cost of
winnings, rather than the full bid price of the submitted bid.

In a VCG auction, the bidders report their valuations vi(S) on all bundles
S ⊆ K to the auctioneer, who determines a revenue-maximizing allocation
by solving the CAP-I (2.4). Winners pay their bid prices reduced by VCG
discounts, which are calculated as w(CI)− w(CI\i):

ppay,i(S) = pbid,i(S)−
(
w(CI)− w(CI\i)

)
(2.5)

Unfortunately, the theoretically beautiful VCG design has several drawbacks,
which make its practical application problematic (Ausubel and Milgrom,
2006b; Rothkopf, 2007b). As of today, there are no documented cases of
application of the VCG auction in the field. At the same time the first-price
sealed-bid combinatorial auction, where winning bidders pay exactly what they
bid, was used as a model for some auctions in practice (Elmaghraby and Ke-
skinocak, 2002), even though its strategic complexity for bidders is high.

The following Example 1 illustrates some problems of the VCG auction2.

Example 1. Problems of the VCG CA format.

In a market with two goods A and B the bidder b1 wants to have both goods
for at most 2, and both bidders b2 and b3 are interested in any single item, and
are ready to pay for it at most 2.

Valuations A B AB
Bidder b1 0 0 2
Bidder b2 2∗ 2 2
Bidder b3 2 2∗ 2

An efficient outcome, marked in the table with asterisks, is to sell the good A to
the bidder b2 and the good B to the bidder b3. Both bidders receive discounts on
their bid price, which are equal to the difference between the efficient allocation
value, which is four in our case, and an efficient allocation value, calculated
without the bidder, which is 2. Therefore each bidder has to pay (2−(4−2)) = 0
and receives his good for free. The auction revenue is 0.

2Taken from Ausubel and Milgrom (2006b)
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The potential revenue deficiency is the biggest issue with the VCG auction
format. As it is the auctioneer who usually decides on the selected market for-
mat, there are few arguments to defend an auction which, even with sufficient
competition, can result in low or zero revenue. Note that even if the auctioneer
were to abstain from the idea of conducting a combinatorial auction at all and
sell both goods as a bundle in an English auction, he would probably receive
a revenue of 2.

There are further problems with the VCG format:

• Closely related to the above low revenue issue is the monotonicity prob-
lem. Removing the bidder b3 from the auction in the above example
will increase the auctioneer’s revenue from 0 to 2. Similarly, adding new
bidders to an auction might reduce revenue, which is counterintuitive.

• The VCG auction is vulnerable to collusion even by losing bidders.
Imagine that bidders b2 and b3 are ready to pay not 2 but only 0.5 for
a single license. The allocation accordingly changes in favor of the first
bidders. Now if bidders b2 and b3 both bid 2 instead of 0.5, they receive
items for nothing. An associated problem is shill bidding , where losing
bidders might try to use additional false bidding identities to improve
their position in the auction.

• The auctioneer must solve an additional reduced CAP for each bidder
to calculate his discount. This makes the VCG auction significantly
more computationally complex than for example the first-price sealed
bid auction.

• Each bidder must report his complete value model by submitting 2|K|−1
bids. This task quickly becomes overwhelming for bidders, and also
results in large input sizes for the CAP. In practice bidders will be likely
to skip their low-valued bundles and implicitly report zero valuation on
them. As the auctioneer revenue in the VCG auction depends not only
on winning bids, but also on the losing bids, this can be a problem and
further reduce the auctioneer’s revenue.

• There are certain problems of privacy and trust with the VCG auctions.
Often bidders are reluctant to reveal their true valuations to the auc-
tioneer since they are afraid that they will be pressed to pay more than
they should. The auctioneer must be trusted to calculate prices fairly,
or a trusted third party is required. Fairly speaking, this particular issue
can be handled using modern cryptographic protocols (Brandt, 2003).
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Even though the above problems have been preventing the practical use of
the VCG auction, it remains an important theoretical construct. It is used
as a reference point for numerous auction formats, and helps to explain many
theoretical issues regarding combinatorial auctions.

All the VCG problems discussed above can be roughly grouped into two classes:

• The VCG outcome is not necessarily in the core. In Example 1, the
coalition of the seller and the bidder b1 blocks the efficient allocation.

• Each bidder must submit bids for every bundle in one shot. This re-
quirement can quickly become overwhelming since the amount of possi-
ble bundles is exponential in the number of items. Therefore the bidders
might decide to bid only on bundles which have high valuations and skip
low-valued bundles, implicitly bidding zero on them. Even though this
problem is relevant for every sealed-bid auction, it is especially urgent
for the VCG auction, since its results depend not only on the winning
bids, but on the “best” losing bids too.

2.4 Iterative Combinatorial Auctions (ICAs)

A common approach to addressing many problems of the VCG format and
other sealed-bid CA designs is the iterative combinatorial auction (ICA).
A typical iterative auction uses a tâtonnement mechanism (Figure 2.5), which
repeatedly collects bids from bidders, analyzes them, and communicates back
a set of ask prices and (optionally) further information about the auction
status. Such information can include the provisional allocation, the list of bids
submitted by other bidders, the number of active bidders and/or bids, etc.

The process of gradually increasing prices until the demand equals supply
(tâtonnement), when designed properly, results in a Walrasian equilibrium,
which is Pereto optimal and therefore efficient. Simultaneously, the result is a
core outcome. Certainly both efficiency and core properties hold only with re-
spect to the reported preferences. Proper ask price calculation, which roughly
means calculating minimum prices, can provide strong incentives for bidders
to bid truthfully. However, the dominant truth revealing is not possible, since
it would require VCG prices. This is an important dilemma in the CA design,
which is addressed in more detail below in Section 2.4.2.1.
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Figure 2.5: Flowchart of an Iterative Combinatorial Auction

Prices and other feedback in an ICA can help bidders to find the most attrac-
tive goods and bundles without evaluating and submitting bids for all possible
valuations. This is important both because there are exponentially many bund-
les, and because bidders might be reluctant to lay all valuations open. The
problem of eliciting and submitting the bids “has emerged as perhaps the key
bottleneck in the real-world application of combinatorial auctions. Advanced
clearing algorithms are worthless if one cannot simplify the bidding problem
facing bidders” (Parkes, 2006). The problem is known as the Preference
Elicitation Problem (PEP). ICAs are to date the most promising way of
addressing the PEP.

Although there is no formal proof, there is strong evidence that iterative auc-
tions perform better than sealed-bid designs when the assumption of private
valuations, which is in fact very strong for practical applications, is not met (El-
maghraby and Keskinocak, 2002; Milgrom and Weber, 1982). “Experience in
both the field and laboratory suggest that in complex economic environments
iterative auctions, which enhance the ability of the participant to detect keen
competition and learn when and how high to bid, produce better results than
sealed bid auctions” (Porter et al., 2003).

An iterative CA is usually conducted in rounds. Bidders receive new informa-
tion about the auction state (prices, etc) only at the beginning of the round,
and this state remains unchanged during the whole round. New provisional
allocation and ask prices are calculated between rounds. All bids within the
same round normally conform to the same requirements (ask prices, activity
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rules, etc.). Although some designs clear rounds after each bid (Adomavicius
and Gupta, 2005), usual practice is to have rounds of a certain duration. This
is done mainly for the following reasons. More arguments can be found in
(Cramton, 1998).

• Rounds allow the construction of effective and concise activity rules,
which require bidders to remain competitive in each consecutive round.
This prevents “sniper” behavior when bidders just monitor the auction
until it nearly finishes and submit their bids at the very end. If used
by many bidders, this can prevent correct demand elicitation and render
the auction to a lottery. This will be looked at in Section 4.1.3.

• Calculating new ask prices after each new bid can cause significant fluc-
tuations. Accumulated over some period of time and from many bidders,
new bids will lead to more balanced prices and better reflect the market
situation.

• Clearing a round often requires significant computational effort to deter-
mine the new provisional allocation and ask prices. Doing it after each
bid can present a technical problem and negatively impact responsiveness
of the auction.

Bidders usually report their demand precisely at the ask prices; in some settings
jump bids with bid prices strictly above ask prices are allowed. Such mech-
anisms actually deviate from the tâtonnement concept, but allow the auction
to progress faster. However in such auctions bidders can attempt signaling,
directed at staking out the bundles they are interested in, for example by us-
ing high jumps or encoding areas they are interested in in the price (Cramton
et al., 2006). Information hiding (e.g. bid price rounding, setting fixed bid
steps) can be used to limit the possibilities of signaling between bidders.

2.4.1 Equilibrium Prices in ICA

The key challenge in the iterative combinatorial auction design is the calcu-
lation of prices, which will guide the auction towards an efficient equilibrium
outcome and provide high incentives for truthful reporting. In contrast to
single-item auctions, pricing is not trivial when combinatorial bids are allowed.
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A usual assumption is that bidders, if they do not know when the auction
will terminate, will try to maximize their potential payoff in every round given
current ask prices. This strategy is called best-response bidding (also
myopic bidding). In every round the bidder bids on his demand set :

Definition 6. Demand set includes all bundles that maximize the bidder’s
utility at the given prices:

Di(Ppay) :=

{
S ⊆ K : πi(S,Ppay) ≥ max

T⊆K
πi(T,Ppay) and πi(S,Ppay) ≥ 0

}
In many pay-as-bid auctions, prices rise until an equilibrium outcome is reached
where neither bidder wants to change the allocation by submitting any further
bids and consequently increasing prices. At this point the auction will end.
The competitive equilibrium (CE) condition formalizes this concept:

Definition 7. Prices Ppay and allocation X∗ = (S∗1 , . . . , S
∗
n) are in competitive

equilibrium if:

πi(S
∗
i ,Ppay) = max

S⊆K
[πi(S,Ppay), 0] ∀ i ∈ I

Π(X∗,Ppay) = max
X∈X

Π(X,Ppay)

The allocation X∗ is said to be supported by prices Ppay in competitive
equilibrium.

Intuitively these two conditions mean that all participants are satisfied with
the outcome:

• The first condition states that each bidder obtains the bundle which
maximizes his payoff with respect to his exposed preferences. In the event
that the bidder could have more revenue from winning another bundle,
he would submit a corresponding bid and the auction would continue.
Note that bundles S∗i can also be empty. All losing bids will be below
equilibrium prices, or the bidders will want to change the allocation:
xi(S) = 0⇔ pask,i(S) > pbid,i(S).

• The second condition states that the selected allocation X∗ maximizes
the auctioneer’s revenue given the submitted bids. Pay prices of all win-
ning bids will be equal to the equilibrium prices: xi(S) = 1⇔ pask,i(S) =
pbid,i(S).

45



CHAPTER 2. THEORETICAL BACKGROUND

2.4.1.1 Minimum Competitive Equilibrium Prices

Let us come back to the example in Figure 2.3. Every price between 70 AC and
100 AC inclusive, together with allocating the item $ to the bidder C, is a CE
outcome. However, the bidder C will have incentive to speculate and shade his
true valuation if the final price is above (70 + ε) AC for any significant ε > 0.

Therefore, to support truthful bidding, the auction design shall minimize CE
prices:

Definition 8 (Minimal CE Prices). Minimal CE prices Ppay minimize
the auctioneer revenue Π(X∗,Ppay) on an efficient allocation X∗ across all
CE prices.

An important question is whether an auction with minimal CE outcome pro-
vides bidders with enough incentives for truthful bidding. A simple answer
is that this is not the case, since the CE outcome is in the core, and any in-
centive compatible mechanism must result in the VCG outcome, which is not
necessarily in the core.

A more elaborate answer requires the definition of cases when minimum CE
outcome is in the core, and analysis of equilibrium strategies in an auction
which results in a minimal CE outcome. We provide these details in Sec-
tion 2.4.2.1.

2.4.1.2 Price Formats in Iterative Combinatorial Auctions

Before concentrating on the problem of calculating CE prices, we review pos-
sible price formats in combinatorial auctions. Different pricing schemes have
been discussed in the literature, including linear, non-linear, and non-linear
personalized prices (Xia et al., 2004).

Definition 9. A set of ask prices {pask,i(S)} is called linear (additive) if
∀ i, S : pask,i(S) =

∑
k∈S pask,i(k)

Definition 10. A set of ask prices {pask,i(S)} is called anonymous if
∀ i, j, S : pask,i(S) = pask,j(S)

In other words, the prices are linear if the price of a bundle is always equal to
the sum of the prices of its items, and the prices are anonymous if the price of
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the bundle is the same for every bidder. Non-linear ask prices are also called
bundle ask prices. Non-anonymous ask prices are also called discrimina-
tory or personalized ask prices. By combining these two characteristics four
settings for ask prices can be built:

• a set of linear anonymous prices Pask = {pask(k)} ∀ k ∈ K

• a set of linear personalized prices Pask = {pask,i(k)} ∀ i ∈ I, k ∈ K

• a set of non-linear anonymous prices Pask = {pask(S)} ∀ S ⊆ K

• a set of non-linear personalized prices Pask = {pask,i(S)} ∀ i ∈ I, S ⊆ K

Linear personalized prices have hardly been considered in the context of com-
binatorial auctions, except for a special case of the ALPS auction format (Sec-
tion 4.2.4). All three other price formats have been extensively discussed in
literature.

2.4.1.3 Existence of Competitive Equilibrium Prices

Compared to single-item auctions, calculating CE prices in a combinatorial
auction is not a trivial task. To start with, a simple Example 2 demonstrates
that it is not always possible to find linear prices in a CA.

Example 2. Linear CE prices do not always exist.

There are 3 bidders and 3 items, bids are given by the following table.

Bids A B C AB BC AC ABC
Bidder 1 60 50 50 200* 100 110 250
Bidder 2 50 60 50 110 200 100 255
Bidder 3 50 50 75* 100 125 200 250

The revenue-maximizing allocation, marked in the table with asterisks, is
x1(AB) = 1, x3(C) = 1 with the total revenue of 275. To support this al-
location, the prices must be equal to the winning bids and be above every losing
bid. If we take as an example two losing bids, which are marked in the table,
we obtain the following conditions:

pask(A) + pask(B) = 200
pask(C) = 75
pask(A) + pask(B) + 2pask(C) = 350

pask(A) + pask(C) > 200
pask(B) + pask(C) > 200
pask(A) + pask(B) + 2pask(C) > 400

which is a contradiction. Consequently, no linear CE prices exist in this case.
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Obviously the important question is what conditions must hold for linear CE
prices to exist in a combinatorial auction. We introduce two definitions before
clearing this question.

Definition 11. Bidder’s i valuations Vi satisfy unit-demand property when
vi(S) = maxj∈S {vi,j} for all S, where vi,j is the value for item j in isolation.
Intuitively this means that the bidder i generally demands only a single item.

Definition 12. Valuations Vi satisfy the goods are substitutes (GAS)
(also substitutes or gross substitutes) property if for all linear price sets
Ppay, P ′pay such that P ′pay ≥ Ppay (component-wise), and all S ∈ Di(Ppay)
there exists T ∈ Di(P ′pay) such that {k ∈ S : ppay,i(k) = p′pay,i(k)}.

The goods are substitutes requirement on bidders’ valuations is a strong re-
striction. It implies that a bidder will continue to demand items that do not
change in price as the price on other items increases. In particular, it precludes
any complementary values in the bidder’s valuations.

Gul and Stacchetti (2000) address the question of different price formats in
detail, and demonstrate that the GAS condition is sufficient for the existence
of linear CE prices. This condition is also almost necessary for the existence
of linear CE prices. Said precisely, the valuations which satisfy the goods are
substitutes condition is the largest set containing unit-demand valuations for
which the existence of linear CE prices can be established.

We have demonstrated that linear CE prices do not always exist. The same
problem persists when we try to build anonymous CE prices. Example 3
illustrates that they do not always exist in the general case.

Example 3. Anonymous CE prices do not always exist.

There are 2 bidders and 2 items, bids are given by the following table (bids
belonging to the revenue-maximizing allocation are marked with an asterisk):

Bids A B AB
Bidder 1 0 0 3*
Bidder 2 2 2 2

The revenue-maximizing allocation is x1(AB) = 1 with the total revenue of 3.
To support this allocation, anonymous prices pask(A) and pask(B) both have
to be larger than the corresponding bid prices of the second bidder, which is
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2. This implies that the auctioneer can get the total revenue of at least 4 by
selling the items separately, which is larger than the total revenue of the current
revenue-maximizing allocation. Consequently, no anonymous CE prices exist
in this case.

There are substantially fewer results in the literature on conditions for the
existence of anonymous CE prices. Again we need some definitions first.

Definition 13. Bidder’s i valuations Vi satisfy supermodular preferences
property when for all S, T ⊆ K,

vi(S) + vi(T ) ≤ vi(S ∪ T ) + vi(S ∩ T )

The supermodularity condition coincides with the increasing returns property
(Gul and Stacchetti, 1999):

Definition 14. Bidder’s i valuations Vi satisfy increasing returns property
when for all S ⊂ T ⊆ K and all k ∈ K,

vi(T )− vi(T \ {k}) ≥ vi(S)− vi(S \ {k})

Definition 15. Bidder’s i valuations Vi are single-minded if he values only
one particular bundle S. Correspondingly,

vi(T ) = 0, ∀ T ( S

vi(T ) = vi(S), ∀ T ⊇ S

Definition 16. Bidder’s i valuations Vi are safe if each pair of bundles with
positive value shares at least one item:

(vi(S) > 0, vi(T ) > 0)⇒ (S ∩ T 6= �) ∀ S, T ⊆ K
or, equivalently :

(vi(S) > 0, S ∩ T = �)⇒ (vi(T ) = 0) ∀ S, T ⊆ K
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Parkes (2001) demonstrates that either supermodular preferences, single-
minded bidders, or safe valuations are sufficient for the existence of anony-
mous (non-linear) CE prices. Obviously each of these conditions is a strong
restriction on the bidder valuations. The question of the minimum require-
ment on the bidders’ valuations which is necessary for existence of anonymous
CE prices is still open.

We have demonstrated that neither linear nor anonymous pricing models are
sufficient for constructing CE prices in a combinatorial auction. An intuitive –
but still to be proven – assumption is that personalized non-linear prices shall
be the sufficient construct. Another important question is how to calculate
such prices – both CE and minimum CE, since we need the latter to conduct
iterative combinatorial auctions where bidders have a motivation for truthful
bidding. The next section answers these questions.

2.4.2 Bridging Game Theory and Optimization Theory

A single publication by Bikhchandani and Ostroy (2002) sheds light on many
questions in the CA theory. The authors reveal parallels between iterative
combinatorial auctions and the duality concept from the linear optimization
theory. This helps to define a sufficient price format for CE prices in a combi-
natorial auction. Furthermore, the authors provide a basis for algorithms for
calculating minimal CE prices and for building iterative CAs which converge
to minimum CE prices under reasonable assumptions on bidders’ behavior.
We explain the main ideas of this work here.

As we know from Section 2.3.2, a combinatorial auction can be interpreted
as an integer linear program (ILP). Variables of the dual formulation of a
linear program (LP) can be used to measure cost of restrictions in the original
LP. The idea of using dual variables for prices in a CA was first suggested
by Rassenti et al. (1982). Since the second set of constraints in the CAP-I
(Section 2.3.2) corresponds to the set of items in the auction, the dual variables
can be interpreted as item prices.

However, the CAP-I is an ILP, and additional integrality constraints on its
variables cause the duality gap, meaning that the optimal solutions of primal
and dual problems do not necessarily match. Consequently, the linear prices
are imprecise (Example 2).

Bikhchandani and Ostroy (2002) suggest an alternative formulation for the
CAP, the CAP-III (2.6). The additional variables δX indicate “weight” of
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every allocation X ∈ X in the resulted allocation. Dual variables are shown
in parentheses.

max
∑
i∈I

∑
S⊆K

vi(S)xi(S) (CAP-III) (2.6)

s.t.

xi(S) =
∑

X:Xi=S

δX ∀ i ∈ I, S ⊆ K (pi(S))∑
S⊆K

xi(S) = 1 ∀ i ∈ I (πi)∑
X∈X

δX = 1 (πs)

0 ≤ xi(S) ∀ i ∈ I, S ⊆ K
0 ≤ δX ∀ X ∈ X

The first constraint states that the weight of bidder i getting the bundle S is
equal to the sum of weights over all allocations where bidder i gets the bundle
S. The second constraint ensures that each agent receives at most one bundle.
The third constraint ensures that the total weight of all selected allocations
equals one. The last two constraints ensure that no allocation has negative
weight, or assigns a bundle to a bidder with a negative weight.

Bikhchandani and Ostroy (2002) prove that the optimal solution of CAP-III
is always integral and describes every feasible solution of the auction, even if
the integrality constraints are omitted. Therefore, the duality concept can be
applied without restrictions in this case.

Dual variables πi can be interpreted as the bidder’s i revenue. Dual variables
pi(S), which correspond to the constraints xi(S) =

∑
X:Xi=S

δX , represent
personalized, non-linear prices of a bidder i for the bundle S. The variable πs

is the seller revenue. The dual problem has the following form:
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min
∑
i∈I

πi + πs (CAP-III-dual) (2.7)

s.t.

πi + pi(S) ≥ vi(S) ∀ i ∈ I, S ⊆ K (xi(S))

πs −
∑
i∈I

pi(Si) ≥ 0 ∀ X = (S1, . . . , Sn) ∈ X (δX)

πi, π
s, pi(S) ∈ R ∀ i ∈ I, S ⊆ K

The following theorem concludes:

Theorem 4 (Bikhchandani and Ostroy (2002)). For an efficient allocation X∗

there always exist personalized non-linear competitive equilibrium prices Ppay.
This is not always true for linear or anonymous prices.

Another important observation by Bikhchandani and Ostroy (2002) is the pa-
rallel between the LP duality theorem (see Section 2.4.4) for the CAP-III and
the concept of Competitive Equilibrium. They note that the satisfaction of
the complementary slackness condition at the CAP-III optimum solution cor-
responds to the definition of the CE prices (Definition 7).

xi(S) [πi − [vi(S)− pi(S)]] = 0 ∀ i ∈ I, S ⊆ K
δX [πs −

∑
i∈I

pi(Si)] = 0 ∀ X = (S1, . . . , Sn) ∈ X

The primal and dual solutions are optimal if and only if these conditions hold:

• xi(S) = 1, the bidder i receives the bundle S, and πi = vi(S)− pi(S).

• δX = 1, and the auctioneer maximizes his revenue and πs =
∑
pi(Si).

The second important theorem summarizes these observations and gives a
guideline for building efficient iterative CAs.

Theorem 5 (Bikhchandani and Ostroy (2002)). An allocation X∗ is supported
in CE by some set of prices Ppay if and only if X∗ is an efficient allocation.
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Therefore, to conduct an ICA, we select sufficiently low start prices and grad-
ually increase them until there are no new bids. Provided the price format is
sufficiently expressive, which means using non-linear personalized prices, such
auction will converge to minimal CE prices and an efficient allocation. There
are several auction designs which are based on these considerations; we discuss
these in Section 2.4.4 and Section 3.3.

The results of Bikhchandani and Ostroy (2002) are fundamental, but it is still
important to understand their limitations:

• Solving the CAP-III directly is impractical, since it adds exponentially
many new variables and constraints to the original CAP-I formulation.

• Although personalized non-linear prices are universal and always exist,
they have their drawbacks. These are discussed in Section 2.4.3.

• Auction mechanisms built on this theory assume best-response bidding,
which is necessary for the auction to terminate at the minimal CE prices.
This assumption is subject to two critique points:

– Auction outcome with minimum CE prices loses the dominant strat-
egy property of the VCG auction. The best-response bidding strat-
egy leads in this case to an ex post Nash equilibrium only when
valuations have the BSM property (Definition 18).

– In combinatorial auctions, bidders face very complex problems of
interpreting prices, selecting bundles, and determining bid prices.
Even when the bidder sincerely tries to follow the best-response
strategy, he might make mistakes and deviate from it.

It is very difficult to approach cognitive abilities of bidders and their risk
profiles analytically. However it is possible to address the question of strategic
complexity of auctions with minimum CE outcomes, and try to decide what
is “better” for a CA design – achieving VCG or minimum CE prices. Again,
Bikhchandani and Ostroy (2002) give an interesting insight into this dilemma.
It states that there is an equivalence between the core of a coalitional game and
the set of CE prices. All core outcomes can be priced, and all CE outcomes
are in the core.

Theorem 6 (Bikhchandani and Ostroy (2002)). (Π, π) ∈ Core (I, w) if and
only if corresponding personalized non-linear CE prices exist.
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This result is particularly important, since many problems of the VCG auction
stem from the fact that its outcome is not always in the core (Section 2.3.4).

So which goal is preferable for an ICA design? One with a VCG outcome and
dominant strategies, or one with a minimum CE outcome given presumably
strong, but not dominant best-response strategies? The next section analyzes
this dilemma in detail.

2.4.2.1 Strategy-Proof or Core?

A strategy-proof auction format is an ultimate goal for any market designer.
This property promises that the bidders will report their valuations truly,
which is in turn indispensable for finding an efficient allocation. If bidders
speculate, the auction will always remain a lottery to some extent. As we
know from Section 2.3.4, only auctions with VCG outcomes guarantee this
property.

Unfortunately, auctions with VCG outcomes suffer from several serious prob-
lems. They are consequences to the fact that the VCG outcome is not nec-
essarily a core outcome, meaning that bidders might want to build coalitions,
participate in the auction under several different identities simultaneously, or
engage in shill bidding.

Auction designs which result in minimal CE prices are an interesting alterna-
tive to the VCG auction. They always terminate with core results. The price
to pay for this is the loss of incentive compatibility. However, the intuitively
strong arguments for best-response strategies are preserved. The best-response
bidding is also an ex post Nash equilibrium when valuations have the BSM
property (Definition 18).

A bidder’s payment in the VCG mechanism is always less than or equal to his
payment at any CE price. If VCG payments are not supported in any price
equilibrium, coalition building can bring advantages for bidders, and truthful
bidding is correspondingly not the dominant strategy any more.

An interesting question is when minimal CE prices coincide with VCG prices.
Bikhchandani and Ostroy (2002) show that the bidders are substitutes (BAS)
condition is necessary and sufficient to support VCG payments in competitive
equilibrium.
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Definition 17. The bidders are substitutes condition (BAS) is satisfied
if ∀I ⊆ I and ∀ i ∈ I:

w(CI)− w(CI\I) ≥
∑
i∈I

[
w(CI)− w(CI\i)

]
Intuitively, the BAS condition requires that the marginal contribution of every
set of bidders I ⊆ I exceeds the sum of the marginal contributions of the
individual bidders i ∈ I.

However, even though the BAS condition is sufficient for the VCG outcomes
to be in the core, it still does not guarantee that the best-response bidding
in ascending price auctions will lead to the same outcome. Therefore, the
dominant strategy property is still not given. Example 4 demonstrates such a
scenario.

Example 4. BAS is not sufficient for an ascending auction to terminate with
VCG prices (Ausubel and Milgrom, 2006a).

There are four goods and five bidders in the auction. The following table gives
bidder’s valuations. All valuations which are not explicitly listed in the table
are zero.

Valuations AB CD BD AC
Bidder 1 10*
Bidder 2 20
Bidder 3 25*
Bidder 4 10
Bidder 5 10

The efficient allocation, marked in the table with asterisks, is x1(CD) =
1, x3(AB) = 1. Vickrey payoff vector (20, 10, 0, 5, 0, 0) corresponds to Bid-
der 3 paying 20 for his goods and Bidder 1 receiving his goods for 0. However,
in an ascending auction the Bidder 1 is likely to pay a positive price for his
bundle {C,D}.

Ausubel and Milgrom (2006a) show that a stronger bidder submodularity con-
dition (BSM) is required for iterative auctions with ascending prices3 to ter-
minate with VCG payments.

3Not for any iterative auction with ascending prices. The auction must still be properly
constructed.
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Definition 18. The bidder submodularity condition (BSM) is satisfied
if ∀I ⊆ I ′ ⊆ I and ∀i ∈ I:

w(CI∪i)− w(CI) ≥ w(CI′∪i)− w(CI′)

With respect to bidding strategies, the above statement means that the BSM
condition is required for minimum CE prices to support VCG payments in a
(properly constructed) ascending ICA, and only in this case straightforward
bidding is a dominant strategy (de Vries et al., 2007). The BSM condition is
quite strong and is often not given in realistic value models (Section 6.3 and
Parkes (2001)).

de Vries et al. (2007) demonstrate an interesting connection between the exis-
tence of some (maybe non-linear and personalized) price equilibrium that sup-
ports the VCG outcome and the existence of a linear price equilibrium. The
GAS condition (Definition 12) is sufficient and almost necessary for the BSM
condition to hold. Precisely, if at least one bidder does not satisfy the GAS
condition, then it is possible to construct GAS-compatible valuations for other
bidders such that the overall valuation profile does not satisfy the BSM pro-
perty.

���������������������������

�������������������������������

��������������������������

��������������������������

������������������������������������������

�������������������������������

1
2

3
4

Figure 2.6: Classification of Valuations

We illustrate the relations between GAS (Definition 12), BAS (Definition 17),
BSM (Definition 18) conditions and different auction outcomes in Figures 2.6
and 2.7.
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Figure 2.7: Classification of Auction Outcomes

Figure 2.6 shows how different conditions are related. The weakest property
BAS is required for VCG outcome to be in the core, and consequently to
be supported by some set of equilibrium prices. Note that the illustration
is not made up to scale, and the whole area (2) occupies probably only a
fraction of the universe (1) of all possible valuations, since the BAS property is
rarely satisfied in practice (Section 6.3). A stronger BSM property is required
for an auction with ascending (personalized, non-linear) prices to terminate
with a VCG outcome. The even stronger GAS condition guarantees that an
equilibrium outcome (not necessarily minimum-CE or VCG) is supported by a
set of linear prices. It does not however guarantee that a particular linear-price
auction design will find this equilibrium.

Figure 2.7 shows possible auction outcomes (in this case for an ascending auc-
tion with non-linear personalized prices) for valuations which satisfy different
conditions. The three diagrams, left to right, correspond to areas (1), (2), and
(3) in Figure 2.6. In the most general case (1), when the BAS property is not
given, VCG outcomes are outside of the core. To illustrate that VCG prices
represent a lower bound for minimum CE prices, both corresponding areas
touch, but do not intersect. When the BAS property alone is given (2), the
VCG outcomes are always in the core. However, the minimum CE outcomes
which are found by ascending auctions with non-linear personalized prices, do
not always correspond to the VCG outcomes. Finally, when the BSM condi-
tion is satisfied (3), the set of minimum CE outcomes shrinks and becomes
equal to the set of VCG outcomes.
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2.4.2.2 Iterative CAs with VCG Outcomes

Several suggestions for price-based ICA designs exist, which terminate with
VCG prices for general (non-BSM) valuations, given best-response bidding
(Mishra and Parkes, 2007; Parkes, 2006). These auctions are not precisely
“ascending” since they calculate the pay prices using special algorithms, and
they are not necessarily equal to the corresponding bid prices of the winning
bidders.

Mishra and Parkes (2004) study the question of the price format which is
necessary to calculate the VCG payments in an auction with arbitrary (non-
BSM) valuations. They introduce the concept of universal competitive
equilibrium (UCE) prices.

Definition 19 (Parkes (2006)). Prices P are Universal Competitive Equilib-
rium (UCE) prices if:

1. Prices P are CE prices.

2. For every bidder i, the prices P−i = (p1, . . . , pi−1, pi+1, . . . , pn) are CE
prices for CAP (I\i), meaning they support some efficient allocation in
CAP (I\i).

Intuitively, UCE prices P support some efficient allocation for the restricted
CAP without bidder i with prices P−i, for every bidder i removed in turn.
Thus, UCE prices are CE prices in the main economy and in every marginal
economy – an economy where one bidder is excluded. Note that UCE prices
do not require that the same allocation is supported in every marginal economy.
The prices must support some efficient allocation in each marginal economy.

UCE prices always exist, for example pi = vi, for all bidders i, are UCE prices.

An important feature of the UCE prices is that they provide sufficient infor-
mation to calculate the VCG outcome of the auction:

Theorem 7 (Parkes (2006)). Given a UCE with prices PUCE and efficient
allocation X∗ = (S∗1 , . . . , S

∗
n), the VCG payment for bidder i is computed as:

pV CG,i = pUCE,i(S
∗
i )− [Π∗I(pUCE)− Π∗I\i(pUCE)]

where Π∗I(p) = maxX∈X (pi(S
∗
i )) for bidders I ⊆ I
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In the special case when the UCE prices are equal to valuations, this calcula-
tion is equivalent to the standard definition of VCG payments (2.5). In general,
UCE prices are greater than the minimal CE prices because they must con-
sider competition in the marginal economies in addition to the main economy.
Minimal CE prices are universal if and only if the BAS condition holds.

Parkes (2006) demonstrates important parallels between price formats, prob-
lem of bidders’ preference elicitation, and auction outcomes. In particular, the
following two statements hold:

• A combinatorial auction achieves an efficient allocation if and only if the
auction also finds a set of CE prices and the allocation is supported in
the price equilibrium.

• A combinatorial auction realizes the VCG outcome if and only if the
auction also finds a set of UCE prices and the allocation is supported in
the price equilibrium of the main economy.

From the equivalence between the efficient outcome and the problem of dis-
covering CE prices follows an uneasy fact that the worst-case informational
complexity of any efficient CA, iterative or otherwise, is exponential in the
number of items (Segal, 2006). Iterative CAs are designed to have better elic-
itation complexity in typical scenarios, while sealed-bid auctions must suffer
the worst case every time.

2.4.3 Linear or Non-Linear Ask Prices?

At this point we know that only non-linear personalized prices are sufficient
to support an efficient allocation in the general case. Does it mean that the
non-linear and personalized prices are the superior format in every case? In
particular, we want to compare two big families of non-linear price auctions
and linear-price auctions.

Comparing personalized and anonymous prices is not so complicated. Per-
sonalized prices can require more computational resources to compute, store
and communicate. However, this increase is linear in the number of bidders,
at least for the known auction formats which support both personalized and
anonymous prices. An important drawback of personalized prices is that they
might be seen as unfair by bidders, since different bidders might need to bid
different amounts for the same goods.
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Note that personalized prices are required only if XOR bid language is used
in the combinatorial auction. For the OR bid language, anonymous prices are
always sufficient since it does not matter who wins the corresponding goods
(see Section 2.3.1 for a discussion on bidding languages). We believe that
in the cases where personalized prices are really necessary, it is possible to
explain to the bidders the issues connected with this price format and prevent
misinterpretations.

A more difficult task is to compare linear and non-linear price formats.

Non-linear price formats are clearly superior due to the fact that non-linear
(personalized) CE prices always exist. Therefore, only approximated linear
prices can be used in the general case. Most existing ICA designs with non-
linear prices have a solid game-theoretical background, and provably lead to
an efficient outcome when bidders follow the best-response bidding strategy.

The serious disadvantage of non-linear prices is their communication and cog-
nitive complexity. The exponential number of prices quickly becomes infeasible
to understand and analyze. It is particularly difficult to find new attractive
bundles during the auction. Automated bidder support tools can help ad-
dressing this problem, but to provide effective help they must be tailored to
the specific domain. This does not correspond to our aim of designing a uni-
versally applicable combinatorial auction design.

Linear CE prices do not exist in the general case. Consequently, approximation
methods are usually used which aim to reflect the competition on the market in
each auction round. In compensation to their imprecise character, linear price
formats can offer interesting advantages. Most importantly, there are only as
many prices in each round as there are items in the auction. Consequently,
there are the following important advantages:

• Linear prices are easy to communicate, store and understand. Simplicity
of the feedback given to bidders is very important in many practical
application domains.

• Linear prices provide intuitive market overview.

• Linear prices can significantly help bidders to analyze the competition
on the market and find new bundles during the auction. This can be the
decisive factor in achieving high efficiency of the outcome (Kwon et al.,
2005).
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At the first glance, the existence of non-linear prices seem to be an important
and decisive argument. However, prices in an iterative combinatorial auction
always have only an indicative nature. Even the precisely determined perso-
nalized non-linear prices fully describe the market for the bidder i only under
the ceteris paribus assumption, when there are no bids from other bidders in
the same round. A single new bid can completely change the allocation, and
previously losing bids may become winning bids. Therefore, even in the case
of non-linear personalized prices, bidding according to the current price does
not guarantee the bidder that he will be a provisional winner in the following
round, let alone the complete auction.

Nice theoretical properties of non-linear price ICAs are based on strong as-
sumptions on bidders’ behavior. It includes assumptions on bidders’ cognitive
abilities, that they can understand and analyze the whole exponentially large
set of prices in each round. Previous to our work, there were no results which
describe what happens to such ICAs when these assumptions are not met.

Problems with linear prices due to their approximated nature can occur in two
scenarios:

1. The calculated bundle price is too low. The bidder who submits a bid
according to the price does not win it provisionally in the next round.

2. The calculated bundle price is too high. A bidder cannot submit a bid
because the ask price is above his valuation, even though the valuation
would allow him to win the bundle.

The first problem can be confusing for a bidder, but is not dramatic since
the bidder usually does not know whether there were any bids by other bid-
ders submitted in the same round. Consequently, this problem can delay the
auction, but does not necessarily impact the efficiency of the outcome.

The second issue is more serious since it can result in degraded efficiency of the
auction. ICAs with linear prices are usually designed to reduce possibilities of
this phenomena (Section 2.4.5). Of course how imprecise the linear prices are,
and to what extent this error can affect the auction outcome, is an important
question. It is however very difficult to address analytically because of high
algorithmic complexity and the large design space of the ICAs with linear
prices. We analyze this question using computational experiments (Chapter 6).
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2.4.4 ICAs with Non-Linear Ask Prices

Since a combinatorial auction can be seen as a procedure of solving the CAP
ILP, it is appealing to apply advanced linear optimization algorithms to the
auction scenario. We review below two such methods which are used by ICAs
in our computational experiments. Both methods use the duality concept of
the linear optimization theory. From the results of Section 2.4.2 it follows that
such auctions require personalized non-linear prices.

To every LP we can construct a corresponding dual LP:

(primal)

max
∑
i

cixi

s.t. ∑
i

ajixi ≤ bj ∀ j

xi ≥ 0 ∀ i

⇔

(dual)

min
∑
j

bjyj

s.t. ∑
j

ajiyj ≥ ci ∀ i

yj ≥ 0 ∀ j

In the case of combinatorial auctions, the corresponding interpretation for
CAP-III and CAP-III-dual is given by (2.6) and (2.7) in Section 2.4.2. From
the strong duality theorem (equality of the objective function values for both
LP and dual LP in the optimum) follows:

Theorem 8 (The Complementary Slackness Condition).
Suppose x̄ = {xi} and ȳ = {yj} are feasible solutions to a primal and the
corresponding dual LPs respectively. Then x̄ and ȳ are optimal if and only if
the following two conditions are satisfied:

∀ j

(∑
i

ajixi − bj

)
yj = 0

∀ i

(∑
j

ajiyj − ci

)
xi = 0
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Furthermore, we review the subgradient algorithm and the primal dual al-
gorithm as they have been used to motivate and construct several auction
formats, described in detail in Section 3.3. Both algorithms use the above
complementary slackness condition to check optimality of the current solu-
tion, but use different approaches to iteratively improve the feasible solution
in the direction of the optimum.

2.4.4.1 Subgradient Algorithm

The subgradient algorithm solves a restricted linear program by relaxing its
constraints and transforming the problem into an unrestricted linear program
using Lagrange multipliers. The linear program

Z = max
n∑
i=1

cixi

s.t.
n∑
i=1

ajixi = bj ∀ j ∈ {1, ...,m}

xi ≥ 0 ∀ i ∈ {1, ..., n}

is relaxed by pulling first m′ ≤ m constraints into the objective function with
Lagrange multipliers Θj:

Z(Θ) = max
n∑
i=1

cixi +
m′∑
j=1

Θj(bj −
n∑
i=1

ajixi)

s.t.
n∑
i=1

ajixi = bj ∀ j ∈ {m′ + 1, ...,m}

xi ≥ 0 ∀ i ∈ {1, ..., n}

By duality theorem, Z = minΘ≥0Z(Θ). The optimization problem is therefore
reduced to finding Θ∗ ∈ arg minΘ≥0Z(Θ). This is done iteratively:
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Θt+1 = Θt + ∆t(Ax
t − bj) ∀ j

where ∆t is a positive step size and xt is an intermediate solution at the
iteration t. If

∑
i ajix

t
i > bj and the constraint j is violated, then Θt+1

j > Θt
j,

increasing the penalty for the violated constraint. If
∑

i ajix
t
i < bj, then Θt

j is
decreased in the next iteration.

In the context of combinatorial auctions, the subgradient algorithm is imple-
mented by the iBundle ICA format (de Vries et al., 2003; Parkes, 1999).

For constant step sizes, the subgradient algorithm converges within some dis-
tance of the optimal solution. Parkes (1999) calculates the corresponding range
for the iBundle auction. In our computational experiments, the parameters
of value models and the minimum increment are selected to ensure precise
convergence.

Since Lagrange multipliers Θi are not monotonous, prices in the auction in-
terpretation are not necessarily increasing and additional care must be taken
to ensure a strictly ascending auction, as for example in the iBundle format.
Because of the approximation-based approach and ability to correct errors of
the subgradient algorithm, we can expect that ICAs which are based on it
will be more robust to suboptimal bidding. In particular, the efficiency of the
outcome will not deteriorate if the bidders report only part of the demand set
in each round. Our results support this conjecture (Section 6.5).

2.4.4.2 Primal Dual Algorithm

The primal dual algorithm uses the complementary slackness conditions
both to check the solution for optimality and to adjust the current solution.
Before applying it, we will convert the primal LP into the equation-based form:

(primal)

max
∑
i

cixi

s.t. ∑
i

ajixi = bj ∀ j

xi ≥ 0 ∀ i

⇔

(dual)

min
∑
j

bjyj

s.t. ∑
j

ajiyj ≥ ci ∀ i
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in this form, the complementary slackness conditions, which must be satisfied
in the optimum, are reduced to:

∀ i

(∑
j

ajiyj − ci

)
xi = 0 (2.8)

The algorithm first chooses a feasible dual solution. In the auction interpre-
tation, we can usually start with the solution where all prices are zero. Let
I = {i :

∑
j ajiyj > ci}. From (2.8) follows that we need to check whether the

primal LP has a feasible solution with xi = 0 ∀ i /∈ I. We do it by solving the
restricted primal LP:

(restricted primal)

max −
∑
j

zj

s.t. ∑
i

ajixi + zj = bj ∀ j

xi ≥ 0 ∀ i
zj ≥ 0 ∀ j
xi = 0 ∀ i ∈ I

The restricted-primal LP is always feasible since b̄ > 0, for example x̄ = 0 and
z̄ = b̄. The current solution x̄ and ȳ is optimal if the solution of the restricted
primal LP is zero. If not, the restricted dual LP is formed:

(restricted dual)

min
∑
j

bjλj

s.t. ∑
j

ajiλj ≥ 0 ∀ i /∈ I

λj ≥ −1 ∀ j
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If λ̄ is a feasible solution (not necessarily optimal) for the restricted dual
LP, which has a negative objective function value, then ∀ ∆ > 0 ⇒∑

j bj(yj + ∆λj) ≤
∑

j bjyj will improve (reduce) the objective function of
the dual problem. To ensure that the dual LP remains feasible, we require∑

j aji(yj + ∆λj) ≥ ci ∀ i. Every iteration of the primal dual algorithm applies
the maximally possible adjustment that yields a feasible dual, until optimality:

• Choose a feasible dual solution and do until optimality:

– Build the restricted-primal problem and check optimality.

– If not optimal, build the restricted-dual LP and adjust the dual
solution as described above.

de Vries et al. (2007) use the primal dual algorithm to construct the dVSV
ICA format. Authors claim that an auction which is based on the primal
dual algorithm can converge faster than a format based on the subgradient
algorithm. The price for this possibility is the reduced robustness, since the
algorithm requires that the complete demand set is reported by every bidder
in each round (Section 6.5).

2.4.5 ICAs with Linear Ask Prices

Although linear prices supporting the revenue-maximizing allocation are only
possible in very restricted cases (Section 2.4.1.3), their virtues (Section 2.4.3)
have motivated several auction designs which perform surprisingly well in the
laboratory. Even the US Federal Communications Commission (FCC) has
been examining their use for spectrum auctions, and finally used a linear-price
auction in the field (FCC, 2002; Goeree and Holt, 2008). We review in this
work two approaches to calculating linear prices: Pseudo-dual prices and
per-item tâtonnement.

The first approach uses the duality theory applied directly to the linear rela-
xation of the CAP-I (2.4):
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min
∑
i

p(i) +
∑
k

p(k) (CAP-DLP)

s.t.

p(i) +
∑
k∈S

p(k) ≥ vi(S) ∀ i ∈ I, S ⊆ K

p(i), p(k) ≥ 0 ∀ i ∈ I, k ∈ K

The values of the dual variables p(k) quantify the monetary cost of not awar-
ding the item to whom it has been provisionally assigned. Integrality con-
straints on the variables of the primal CAP-I mean that the linear prices are
imprecise. Different approaches have been suggested to minimize the nega-
tive effect of these distortions on the auction outcome (Bichler et al., 2009;
Kwasnica et al., 2005; Kwon et al., 2005; Rassenti et al., 1982).

If we omit the constraints which are responsible for the XOR bidding language,
the pseudo-dual prices can be calculated using the following scheme:

min
pk,δl
{max{δl},max{pk}} (2.9)

s.t.∑
k∈Sl

pk + δl ≥ b(Sl) ∀ b(Sl) ∈ L∑
k∈Sw

pk = b(Sw) ∀ b(Sw) ∈ W

pk ≥ 0

δl ≥ 0 ∀ b(Sl) ∈ L

where L and W represent sets of provisionally losing and winning bids corre-
spondingly. This price calculation scheme reflects requirements on supporting
prices formulated for the equilibrium condition with minimal CE prices (Defi-
nition 8). The first set of constraints states that all losing bids must be below
new prices; the second set of constraints sets all winning bids to be equal to
the new prices. Since linear prices do not necessarily exist, variables δl are
introduced to ensure that a feasible solution is always found.
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Note that the objective function is not specified precisely. This is where diffe-
rent linear price formats vary (Chapter 3). Generally we try to minimize the
prices to approximate the minimal CE prices, and simultaneously reduce the
deviations δl. Additional requirements are possible, for example reduction of
price non-monotonicity between rounds.

Another approach to using linear prices in an ICA is the per-item tâtonnement
used by the Combinatorial Clock (CC) auction format (Section 3.2).

2.5 More Performance Measurements

Besides the allocative efficiency and revenue distribution which were intro-
duced in Section 2.1.1, we use several other measurements to compare diffe-
rent auction designs. The same values are also used to quantify robustness
of auction formats against different factors. In this section we formalize these
measurements.

2.5.1 Speed of Convergence

All other things being equal, short auctions are preferable to long ones. We
quantify an auction’s convergence speed in rounds. This approach is prefer-
able to calculating elapsed time, which will be highly dependent on the bidder’s
computational capacity and communication speed. Furthermore, our imple-
mentation is not optimized for performance and the LP solving library, which
we use, was selected for its free availability and not for performance.

The duration of an iterative auction is influenced mainly by the following
factors:

• Minimum increment, which defines how fast the ask prices are advancing.

• Strength of the activity rules.

• Distance between the ask prices at the beginning of the auction, as set
by the auctioneer, and the valuations of the bidders, which roughly cor-
respond to the ask prices at auction end.
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The minimum increment, when set too high by the auctioneer, will force bid-
ders to increase bid prices in large steps and can result in decreased auction
efficiency. Therefore, auctioneers face a trade-off between an appropriately
high minimum increment to achieve a reasonable progress of the auction, and
an appropriately low minimum increment to not negatively impact the effi-
ciency of the auction. An interesting possibility to address this dilemma is
to use dynamic minimum increment, which starts high and decreases as the
competition level in the auction goes down. We suggest and implement such
rule within the ALPS auction format (Chapter 4).

Similarly, there is a tradeoff in the selection of appropriate activity rules.
Tough activity rules will enforce aggressive bidding and thus decrease auc-
tion duration. However, they might at the same time prevent bidders from
submitting potentially winning bids and thus negatively impacting the auc-
tion efficiency.

2.5.2 Price Monotonicity

Linear prices in iterative combinatorial auctions are not necessarily
monotonous. As an auction progresses and ask prices rise, bidders might shift
their initial preferences to other items, which in turn causes demand reduction
on some items. Falling ask prices are necessary to reflect this phenomena,
and to achieve an efficient outcome (Section 6.2). Strongly fluctuating prices,
however, can stimulate strategic behavior when bidders withhold their bids in
the hope that prices will fall. Furthermore, they can be confusing for bidders.

We introduce the price monotonicity measurement as a discrete function
m(T ) : N → R+

0 which correlates the sum of all positive differences and the
sum of all negative differences:

m =

∑T
t=1

∑
k∈K∆et,k∑T

t=1

∑
k∈K∆pt,k

Figure 2.8 illustrates the calculation. The positive price deltas ∆pt,k and the
negative price deltas ∆et,k for each item k are summed up over all rounds.
The degree of an auction’s price monotonicity is measured as a relation of the
sum of error deltas to the sum of positive deltas. This calculation yields a
monotonicity measure in the interval m ∈ [0, 1]. A monotonicity error of 0
corresponds to a fully monotonic function, whereas a value of 1 indicates the
maximum possible monotonicity error.
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Figure 2.8: Calculation of Price Monotonicity for a Single Item

2.5.3 Robustness

There are many reasons why the bidders in an ICA might fail to follow the
best-response bidding strategy:

• To follow the best-response strategy, a bidder needs to determine his
demand set from an exponential number of possible bundles given current
ask prices. This might be impossible due to cognitive restrictions, but
there may also be strategic reasons, since the best-response bidding is
not a dominant strategy.

• The assumption of independent private values is rarely held in practice,
and bidders tend to review their valuations through the bidding process.

• Bidders can use jump bidding, which is not possible under the assump-
tion of best-response bidding. Jump bidding can easily be eliminated by
corresponding activity rules, which however would also result in increased
auction duration. Therefore many designs allow for jump bidding, and
many bidders use it. Isaac et al. (2007) describe jump bidding as taking
place in a large proportion of FCC spectrum auctions (up to 44% of the
bids with a 5% bid increment) as well as in the 3G spectrum auctions in
the U.K.
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An important quality of an auction design in this respect is to deliver effi-
cient results not only with ideal best-response bidders, but also when bidders
deviate from the theoretically optimal behavior, and across of different types
of bidder’s valuation. Therefore we introduce a notion of robustness, which
is a qualitative attribute describing the stability of an auction format under
not ideal conditions. In this work we test robustness of several auction for-
mats by running computational experiments with various suboptimal bidding
strategies.

2.6 Reverse Combinatorial Auctions

In a reverse combinatorial auction there is a single buyer (auctioneer)
and a set of sellers (bidders) who compete for the right to sell goods to the
auctioneer. This scenario is omnipresent in industrial procurement. The re-
verse CA mirrors the forward auction and is very similar to it mathematically:
The auctioneer always selects the cheapest combination of bids, and the prices
are reducing from round to round. However, there are several important dif-
ferences, which are the topic of this section.

First of all, the CAP-I (2.4) needs some modifications:

max
∑
S⊆K

∑
i∈I

−xi(S)vi(S) ≡

≡ min
∑
S⊆K

∑
i∈I

xi(S)vi(S) (CAP-I-REV ) (2.10)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀ i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≥ 1 ∀ k ∈ K

xi(S) ∈ {0; 1} ∀ i ∈ I, S ⊆ K

The objective function minimizes the auctioneer’s payment. The second set of
constraints is modified and requires that each item is purchased at least once.

An important issue in reverse combinatorial auctions is setting the start price.
Setting all start prices in forward auctions to 0 guarantees that the initial
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allocation is feasible and the allocation which corresponds to the minimum
CE prices is still reachable using ascending prices. To follow the analogy, start
prices must be set to ∞ in reverse auctions, which is not practicable. Instead,
a high enough start price must be chosen, which is not always easy without
knowing bidders’ valuations.

Another problem is connected with the second set of constraints in (2.10).
Since each item must be purchased at least once, it can easily happen that a
feasible allocation cannot be found. To solve this problem in MarketDesigner,
we add artificial “auctioneer’s” OR-bids to the CAP-I-REV, with bid prices at
which the auctioneer can produce the items himself, or buy them on the free
market. This guarantees that a feasible allocation always exists.

The last problem which we discuss here is the calculation of the allocative
efficiency. The formula (2.2) cannot be applied directly:

• If all goods are allocated, the formula gives results in the interval [1,∞).
The value 1 corresponds to an efficient allocation. If an allocation in-
cludes sub-optimal bids, the numerator increases, and the whole value
increases correspondingly.

• If not all goods are allocated, the numerator decreases, and the whole
value decreases correspondingly. The result can be below 1.

There are two negative factors – sub-optimal bids and non-allocated goods –
which drag the measured value in opposite directions. Therefore, the obtained
value cannot characterize the auction outcome.

To measure efficiency of a reverse CA we use a modified formulation:

E(X) :=

∑
S⊆K

∑
i∈I

xi(S)vi(S) +
∑
S⊆K

∑
a∈A

xa(S)va(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)
∈ [1,∞)

where A is the set of items which was allocated to the auctioneer, xa(S) are
the corresponding allocation variables and va(S) are the auctioneer’s own va-
luations for these items. The obtained value lies in the diapason from 1 to
∞, with 1 corresponding to an efficient allocation. Note that the efficiency
depends on the valuations va(S) which can be arbitrary selected by the auc-
tioneer. This issue must be addressed correctly when different auctions are
compared.
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Chapter 3

ICA Designs

Variety’s the very spice of life.

William Cowper, 1785

This chapter describes combinatorial auction formats, which were implemented
in the MarketDesigner platform and tested in computational experiments dur-
ing our research. We start with a brief comparative overview and provide
detailed information on every auction later on.

Table 3.1 lists all CAs implemented in the MarketDesigner platform, together
with their most important characteristics. They form the following six groups:

1. Both sealed-bid designs, the VCG auction (Section 2.3.4) and the first-
price sealed bid auction, give bidders only one chance to submit their
bids. This does not imply tough time restrictions on submitting bids,
but rather means that bidders must place all bids without receiving any
intermediate information about the competition level and about the sta-
tus of already submitted bids. As previously discussed (Section 2.4), this
can become a prohibitively complex task for bidders in a combinatorial
auction with a moderate number of goods already. Compared to the
first-price auction, where winning bidders pay exactly the bid price, in a
VCG auction bidders are charged only the opportunity cost of winning
the corresponding bids. This makes truthful bidding the dominant strat-
egy of the VCG auction, a unique property which distinguishes it from
all other designs, even though it holds only under strong assumptions.
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Design Price Bidding Price Update Valuations Outcome
structure language Method

Sealed 1st price — XOR — general —
VCG — XOR — general VCG

RAD linear OR pseudo-dual general —

CC linear OR, XOR tâtonnement general —

iBundle(2)
anonymous

XOR greedy
general —

non-linear supermodular min CE

iBundle(3)
personalized

XOR greedy
general min CE

non-linear BSM VCG

dVSV
personalized

XOR
undersupplied general min CE

non-linear set of bidders BSM VCG

CreditDebit pers. non-lin. XOR undersupp. set general VCG

ALPS linear OR, XOR pseudo-dual general —
ALPSm linear OR, XOR pseudo-dual general —

Table 3.1: Auction Formats, Implemented in MarketDesigner Framework

2. The RAD auction format is a historically first solid concept of an ite-
rative CA based on linear pseudo-dual prices. Designed with practical
applicability in mind, it addresses several issues – like activity rules and
auction duration – which are sometimes neglected in the theory, but are
very important for the field applications. Since our ALPS auction format
(Chapter 4) is based on this design, we review the RAD ICA format in
greater detail later in this chapter.

3. The Combinatorial Clock (CC) auction format, another concept which
uses linear prices, attracts by its simplicity. Unlike the complex price
calculation algorithm of the RAD design, it uses a very straightforward
and intuitive price update mechanism (tâtonnement). This is an impor-
tant virtue of the CC auction design, since bidders usually have more
confidence in a transparent and intuitive mechanism.

4. Iterative ascending CAs with non-linear prices are presented in our work
by three different formats: Two versions of the iBundle auction – with
anonymous and with personalized prices – and dVSV auction. An impor-
tant property of iBundle(3) and dVSV formats, which use personalized
prices, is that they guarantee, under the best-response assumption on
bidders behavior, certain efficiency of the auction outcome. There are
no comparable results for any of the CAs with linear prices yet.
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5. The CreditDebit auction design uses a sophisticated multi-trajectory
price update rule and achieves the VCG outcome for all types of valua-
tions. Consequently, this is not a pay-as-bid auction. One of our tasks
was to test how this complex design behaves when the assumptions on
rational bidder behavior are violated.

6. An important result of this work is the ALPS/ALPSm ICA design, which
therefore deserves a separate chapter, Chapter 4. It has its roots in the
RAD design, but introduces a number of significant changes to the price
calculation algorithm, activity and termination rules.

In the rest of this chapter we provide detailed descriptions of all listed in Ta-
ble 3.1 ICA formats, with two exceptions. The sealed-bid VCG auction design,
which occupies an important place in the theory of combinatorial auctions, was
already described in Section 2.3.4. The whole next chapter, Chapter 4, is ded-
icated to the ALPS auction format.

We provide literature references to the documents which were used as the basis
for the software implementation of these auction formats in the MarketDesigner
framework. As the literature was ambiguous or incomplete in several cases,
we describe in detail the relevant implementation aspects as necessary.

3.1 Resource Allocation Design (RAD)

The Resource Allocation Design (RAD) ICA format proposed by Kwas-
nica et al. (2005) is attractive because of its straightforward and clear bidding
rules. It conceals most of the combinatorial complexity from the bidder and
will be easy to participate in for any bidder who is familiar with usual single-
item English auctions. Parts of the RAD mechanism have been considered for
practical application by the USA Federal Communication Community (FCC)
for conducting wireless spectrum auctions (FCC, 2002).

3.1.1 Price Calculation and Bidding Rules

RAD uses pseudo-dual anonymous linear ask prices (Section 2.4.5) to give
feedback to the bidders during the auction. The price calculation algorithm
attempts to find such linear ask prices pt+1

ask (k) ∀ k ∈ K for the round t + 1,
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which would support the provisional allocation calculated after the round t
and therefore reflect the current competition in the market. RAD ask prices
are calculated based on the bids {bt(S) = (S, ptbid(S))} from round t by solving
the following LP (3.1) after the corresponding CAP-I (2.4) was solved and all
round t bids Bt = {bt(S)} were separated in two subsets of winning W t and
losing Lt bids:

min
pt+1
ask (k),Z,δ(Sl)

Z (3.1)

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + δ(Sl) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt

δ(Sl) ≥ 0 ∀ bt(Sl) ∈ Lt

δ(Sl) ≤ Z ∀ bt(Sl) ∈ Lt

pt+1
ask (k) ≥ 0 ∀ k ∈ K

The first constraint ensures that, for each winning bid, the sum of new item
ask prices within the corresponding bundle is equal to the winning bid price.
However there is still flexibility in setting individual item prices. The second
constraint enforces all losing bids to be below prices, whereby the variables
δ(Sl) represent adjustments which are necessary to find a feasible solution.
The objective function tries to reduce distortions by minimizing the highest
adjustment δ(Sl).

After the LP (3.1) is solved, distortion variables δ(Sl) for some losing bids b̂

will be at their minimum. Let’s denote the set of these bids as L̂t. However, it
is still possible that distortion variables for other bids b /∈ L̂t are not at their
minimum yet. Therefore, the LP (3.1) is solved not directly, but iteratively.
The following algorithm is used by the RAD design to calculate the new ask
prices pt+1

ask (k) which minimize every distortion variable δ(Sl) (Kwasnica et al.,
2005):

1. Initialize L̂t = ∅.

2. Solve the LP (3.2) and determine the new value for Z.

3. Replace all variables δ(Sl) which are equal to Z with their numerical

values ˆδ(Sl). Move the corresponding bids from Lt to L̂t.
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4. Terminate if there are no free variables δ(Sl) left. Last values of variables
pt+1
ask (k) represent the new linear ask prices.

5. Repeat from step 2.

min
pt+1
ask (k),Z,δ(Sl)

Z (3.2)

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + ˆδ(Sl) = ptbid(Sl) ∀ bt(Sl) ∈ L̂t∑

k∈Sl

pt+1
ask (k) + δ(Sl) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≥ 0 ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≤ Z ∀ bt(Sl) ∈ Lt \ L̂t

pt+1
ask (k) ≥ 0 ∀ k ∈ K

The resulting ask prices pt+1
ask (k) are the primary guideline for the bidders, as

they formulate their bids in the round t+1. In the new round, bids on arbitrary
bundles can be submitted. The bid price must be at least as high as the sum
of current ask prices for the items which comprise the bundle, plus a fixed
minimum increment which is added to every item contained in the bundle.

Provisionally winning bids from the round t are automatically resubmitted to
the round t+ 1; all losing bids are removed from the auction.

The original RAD design uses the OR bidding language. However, in our com-
putational experiments we mostly used RAD with the XOR bidding language
to achieve better comparability with other designs, which primarily use the
XOR bidding language. Furthermore, with sub-additive valuations, the OR
bidding language presents the bidder with the overflow problem, which makes
the bidding strategy more complex and dependent on the risk profile of the
bidder. Behavior of human bidders will heavily depend on the scenario in this
case, and is therefore difficult to generalize and implement in software.

Note that the individual ask prices are not necessarily monotonous during
the auction. The value of the CAP-I objective function is non-decreasing
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between rounds because all provisionally winning bids are always retained in
the auction. Consequently, the sum of all prices cannot decrease since it is
exactly equal to the value of the CAP-I objective function. But individual item
prices can still fall, which can be necessary to better reflect the competition
in the market. However, such price fluctuations can irritate the bidder, and
it is desirable to find a suitable compromise, of which several approaches have
been discussed in the literature (Dunford et al., 2007; Shabalin et al., 2007).
We will review possible solutions in Section 4.2.

3.1.2 Activity Rule

An important issue for any iterative auction is the bidder activity. An attrac-
tive strategy for most bidders is to wait for other participants to uncover the
competition on the market, and then enter the bidding only when the auction
nears its completion. Such behavior, when adopted by majority of the bidders
in the auction, can delay the auction significantly, or result in arbitrary allo-
cations when some bidders do not enter bidding at all or do not submit bids
on all bundles of interest.

To prevent bidders from inactivity, the RAD design enforces the eligibility
rule as an activity driver. A bidder’s i eligibility eti indicates the number
of distinct items the bidder is allowed to bid on in the round t. In the first
round, each bidder obtains maximum eligibility e1

i = |K|, which is equal to
the number of items in the auction. The eligibility eti for the round t > 1 is
determined by the number of distinct items the bidder was bidding on in the
previous round t− 1:

eti =
∑
k∈K

∏
bj∈Bt−1

xj(k), t > 1

For example, if a bidder submitted a single valid bid on the bundle {A, B, C}
in the round t, he could try the following options in the round t+ 1:

{A, B}, {A, C}, {B, C}, {A} - ok.
{E, F, G} - ok.
{A, B}, {C, D} - not allowed, four distinguished items.

Note that the eligibility is non-increasing in any two consecutive rounds. It
forces the bidders to be proactive right from the first round, because once
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eligibility is lost, it can never be recovered. Following this rule, the bidders
will gradually reduce their participation in the auction, and finally stop bidding
only when the ask prices rise above their valuations.

3.1.3 Termination Rule

The termination rule of the RAD auction format is based on the eligibility
concept. RAD distinguishes between bound eligibility ebti and unbound
eligibility euti, with ebti+euti = eti. The bound eligibility of a bidder is defined
as the number of distinct items contained in the bidder’s current winning bids.
This eligibility is bound because winning bids are automatically resubmitted
and will inevitably count for eligibility in the following round again. The
remaining eligibility of the bidder is unbound. RAD defines its termination
rule as follows:

stop at the end of round t if
∑
i∈I

eti ≤ |K|

This termination condition requires that the total eligibility, summed up over
all bidders, is less or equal to the number of items in the auction. If this
happens, all bidders will have only bound eligibility and no chance to change
their provisionally winning items; that is, no bidder will be allowed to bid on
items other than those which he is currently winning.

This definition works fine for single-item bidding, but does not guarantee termi-
nation in the case of bundle bidding. The prices can start to oscillate, and some
bidders can retain unbound eligibility indefinitely long, preventing the auction
from terminating (see Example 7). As a trivial solution to this problem, RAD
proposes an additional stopping condition. The auction is terminated as soon
as an equal allocation occurs in two subsequent auction rounds.

Results of our study indicate that the RAD format has some design problems.
The most serious issue is its premature terminations and, consequently, ineffi-
ciencies. Furthermore, RAD prices are not always optimal. We illustrate these
problems using examples and propose solutions in Chapter 4 as we describe
ALPS, our improved ICA design.
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3.2 Combinatorial Clock (CC)

Another ICA with anonymous linear ask prices is the Combinatorial Clock
(CC) auction proposed by Porter et al. (2003). Among all CA designs dis-
cussed in this work, only the CC format supports multi-unit auctions, where
several identical instances of each item are traded simultaneously and bid-
ders can bid on partial quantities (see also the classification in Figure 1.1).
Similarly to the RAD design, it has simple and straightforward bidding rules.
But unlike RAD, which conceals behind simple linear prices a complicated
pseudo-dual calculation mechanism, pricing rules in the CC design are very
straightforward.

The CC auction starts with sufficiently low linear ask prices; zero is always
suitable. Each bidder expresses desired bundles, including item quantities for
each item, at the current ask prices. Jump bidding is generally not allowed;
bidders can bid only at the current ask prices. After each round the prices for
those items for which demand exceeds supply “tick” upwards by a fixed price
increment, as schematically illustrated in Figure 3.1. After that the auction
moves to the next round. Note that it is not necessary to solve the CAP at
this point.

Another approach: Combinatorial Clock (CC) auction
(Porter, Rassenti, Roopnarine, Smith)

> Practical implementation of the fictitious “Walrasian auctioneer”
Auctioneer announces a price vector– Auctioneer announces a price vector

– Bidders respond by reporting quantity vectors
– Price is adjusted according to excess demand
– Process is repeated until the market clears

A    B   C    D

Bid 1
Bid 2

A    B   C    D

Iterative Combinatorial Auctions, SWQM May 2007 12

Figure 3.1: Price “Tick” in the Combinatorial Clock Auction

In the CC auction, all bids remain active throughout the auction. The bids
which correspond to the current ask prices are called standing bids, which
include all bids from the current round t and those standing bids from the
previous round t−1, for which the ask price did not change. In other words, a
bid remains standing for the next round if there is no (more) competition on
any of its items. A bidder is standing if he has at least one standing bid.
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Porter et al. (2003) suggest for the CC design an activity rule which requires
demand to be monotonous in quantity. As prices rise, quantities specified
by bidders in their bids cannot increase. A more flexible activity rule allows
bidders to shift quantities between items and requires monotonicity only in
the aggregate quantity across all items (Ausubel et al., 2006).

The termination rule in the CC auction is tricky. In the simplest case, when in
some round t the demand exactly equals supply, the auction terminates and the
goods are allocated corresponding to the last round bids. If demand does not
exceed supply, but is not exactly equal to supply for some goods, the CAP-
I (2.4) is solved considering all bids submitted during the auction runtime.
However, the resulting allocation cannot be declared as final in some cases.
It is possible that some standing bidders are not included in it, which will
be perceived by them as unfair. Furthermore, these bidders could potentially
submit even higher bids, and thus increase the revenue.

Therefore, in the event that the CAP-I solution does not include some of
the standing bidders, the auction continues. In this case, the ask prices are
increased on those items which correspond to the non-standing winning bids.

Neither Porter et al. (2003) nor Ausubel et al. (2006) answer the question
of the appropriate bidding language for the CC auction design. Porter et al.
(2003) briefly mention that multiple bids of the same bidder can win simulta-
neously, whereas (Ausubel et al., 2006) does not discuss the bidding language
question explicitly but, in our understanding, expects XOR bidding. In fact,
the CC auction is capable of handling both OR and XOR bidding languages,
even in the multi-unit case. However, the overall demand calculation has to
be fine-tuned. With OR bidding, demands produced by different bids on the
same item by the bidder have to be aggregated, as long as they do not exceed
the total supply on that item. In contrast, in the XOR case only the maximum
demand per bidder for every item has to be considered.

3.3 Non-Linear Price ICAs

Non-existence of precise linear prices (Section 2.4.1.3), and therefore the ap-
proximated nature of prices in all auctions discussed above, makes their theo-
retical analysis prohibitively complicated. Our experiments show that in some
cases efficiency of linear-price auctions can be low even with theoretically op-
timal best-response bidding (Section 6.6), which is a serious drawback.
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Bikhchandani and Ostroy (2002) created a basis for designing ICAs which can
guarantee a certain efficiency level of the outcome. de Vries et al. (2007) show
for the dVSV design that if all valuations and prices are kept integral, and
a minimum increment of 1 is used in the auction format, the auction always
terminates with an efficient solution, given best-response bidding. A whole
family of similar ICAs is based on the strengthened CAP version – CAP-
III (2.6). For complexity reasons, they do not try to solve it directly, but
rather mimic the advanced LP solving algorithms (Section 2.4.4) in their price
update rule. The initial dual feasible solution is gradually improved, until
the complementary slackness condition is satisfied and optimality is therefore
reached (de Vries et al., 2007).

This mathematically elegant approach is based on a strong assumption that
all bidders follow the best-response strategy and always bid their demand set
(Definition 6). There is a controversy regarding this assumption, which is
necessary for achieving an efficient auction outcome. It is questionable at least
for two reasons:

• To start bidding in the auction, a bidder must know his most valuable
bundle and the second most valuable bundle. As the auction progresses,
the bidder must linearly arrange all bundles according to their valua-
tions. It is not clear whether bidders have sufficient computational and
cognitive abilities to do that. An error in calculating valuations, made
at the beginning of the auction, cannot be corrected during later rounds.

• The best-response is not a dominant strategy in this auction format.
Even though the motivation to follow the best-response strategy seems
to be high, bidders might try to bid strategically, especially if they have
strong signals regarding valuations of other bidders.

Parkes and Ungar (2000) suggest that the best-response bidding can be en-
forced by keeping all losing bids in the auction and increasing their bid price au-
tomatically as the ask prices increase. Similarly, Ausubel and Milgrom (2006a)
emphasize automated proxy agents, which receive valuations (bids) only once
before the first round, and then participate in the auction on behalf of the
bidder, adhering to the best-response strategy.

Both solutions essentially lead to a sealed-bid format, which means the bidders
cannot really use prices to find new attractive bids, and are not allowed to make
errors in their valuations through the whole auction.
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All non-linear price ICAs use the XOR bidding language because of its full
expressiveness.

The different non-linear price formats which are reviewed below distinguish
primarily in the rule of selecting bundles and bidders whose prices are increased
in each auction round.

3.3.1 iBundle and Ascending Proxy Auction

iBundle and Ascending Proxy Auction are essentially the same me-
chanism, described by Parkes (2001) and Ausubel and Milgrom (2006a) re-
spectively. Given best-response assumption on bidders, they terminate with
minimal CE prices and an allocation that is within 3 min{|K|, |I|}∆ from an
efficient solution, where ∆ is the minimum increment (Parkes, 2001). Addi-
tionally, when the BSM condition is satisfied, the final bidder payments are
equal to the VCG prices. By keeping valuations integral and setting ∆ = 1, we
can guarantee that an efficient allocation is always found precisely (de Vries
et al., 2007).

The iBundle auction design is actually a framework, incorporating several
non-linear price designs with slightly different options. All of them calculate
a provisional revenue maximizing allocation at the end of every round and
increase the prices based on the bids of unhappy (non-winning) bidders.
Three iBundle modifications differ in the price format:

• iBundle(3) maintains personalized non-linear prices throughout the
auction. In every round the prices for every unhappy bidder are in-
creased for every bundle on which he has submitted a bid.

• iBundle(2) uses only one set of (anonymous) non-linear prices during
the auction. Prices are increased for each bundle an unhappy agent bid
for, based on the best unsuccessful bid. The theoretical results regarding
auction efficiency do not hold for this version of the iBundle ICA format
since the anonymous ask prices are not fully expressive.

• iBundle(d) starts with anonymous non-linear ask prices for every bid-
der. In each round and for every bidder it is checked whether his newly
submitted bids are safe, meaning that their bundles are mutually dis-
jointed. Bidders with unsafe bids are switched to personalized prices
from this point on and until the end of the auction.
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In each round every bidder is provided with his ask prices and information
about the bid he is currently winning, if any.

The anonymous version iBundle(2) works along the following steps:

• ask prices := 0

• termination := false

• while ¬ termination

– every bidder places his revenue maximizing bids

– if (no new bids)

∗ termination := true

– calculate the current revenue maximizing allocation

– if (every bidder receives a bundle)

∗ termination := true

– for all bids of unhappy bidders

∗ new ask price:= bid price of highest losing bid + ∆

The version with personalized prices, iBundle(3), differs from the anonymous
version, iBundle(2), only by the price update rule. The price update for every
bidder considers only bids of the bidder himself: In every round the persona-
lized ask price for every unhappy bidder is raised by ∆ for every bundle he
bids for.

The free disposal condition must be enforced during every price update:

pask(S) ≥ pask(T ) ∀ S ⊇ T

Winning bids are automatically resubmitted, and corresponding prices are
not increased. When ask prices reach bidder’s valuations, he signals it by
submitting, together with his last bids, the empty bid – a bid on the empty
bundle with a zero bid price. From this point, the bidder always wins at least
his empty bid, and his prices are not increased any more. Therefore, the bidder
can resubmit all his bids over and over again, retaining possibility of winning
one of them in the event that a suitable allocation is found. From the best-
response bidding assumption and the iBundle price update rule follows that
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every bidder must continue to demand each bundle he ever bid for the rest of
the auction.

The iBundle auction design does not explicitly require resubmitting of losing
bids, or enforce any other activity rules. However, its theoretical efficiency
properties require such behavior which follows from the best-response assump-
tion. Certainly an important question is what happens to the auction result
when bidders do not follow this strategy. We address this question in our
computational experiments (Section 6.5).

The iBundle design (except for iBundle(2)) does not allow for jump bids, and
the bid price must be exactly equal to the ask price. A special option of last-
and-final bids allows bidders to submit bids below the ask price ptask(S), but
above the previous ask price pt−1

ask (S) for the bundle. The bidder is not allowed
to submit any further bids on this bundle afterwards.

The auction terminates after calculating the provisional allocation in the round
t if every bidder receives a bundle in it. The losing bidders in this case receive
their empty bids for the zero price. Since in the iBundle auction the price is
raised only for the losing bidders, an alternative termination rule is to close
the auction when the same bids are submitted in two consecutive rounds.

3.3.2 dVSV Auction

The same as iBundle(3), the dVSV ICA design by de Vries et al. (2007) uses
personalized non-linear prices. The price update mechanism however is sub-
stantially different. It is based on the concept of minimally undersupplied
bidders:

Definition 20 (Minimally undersupplied set of bidders). A set of bidders is
minimally undersupplied if:

• In no efficient allocation all bidders receive a bundle of their demand set
given the current prices.

• Removing one of the bidders forfeits this property.

Like other non-linear price auctions, the dVSV design assumes best-response
bidding. Additionally, dVSV requires bidders to have integer valuations on
every bundle, uses only integer prices and a fixed price increment of 1. In each
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round, the bidders receive new ask prices but no provisional allocation. Jump
bids are not allowed. The price update rule closely resembles the primal dual
algorithm (Section 2.4.4.2), and always guarantees an efficient outcome – of
course under the assumption of best-response bidding. Since valuations are
integral and prices are always increased on all bundles of a bidder, the demand
set of every bidder weakly increases from round to round. The same as with
the iBundle design, a bidder in a dVSV auction uses empty bids to signal
that he reached his valuations and will not increase the bid prices any more.
The auction terminates when each bidder wins a bid (possibly his empty bid),
and, consequently, there are no minimally undersupplied sets of bidders. The
dVSV design does not explicitly require computing of a provisional allocation
in every round, although our implementation does calculates it in order to find
a minimally undersupplied set of bidders.

The dVSV auction executes the following algorithm:

• ask prices := 0

• termination := false

• while ¬ termination

– every agent places his revenue maximizing bids

– if (no minimally undersupplied bidder sets)

∗ termination := true

– for all bidders in an arbitrary min. undersupplied set

∗ for all bundles the bidder bids on

· ask price ++

To find a minimally undersupplied set of bidders is not a trivial task, and the
authors (de Vries et al., 2007) do not suggest an algorithm to do it. We suggest
our own algorithm. First we make the following observations:

• The simplest possibility to find a minimally undersupplied set of bidders
is to find a single bidder who does not win any bids in any efficient
allocation.
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• In case this trivial case is not applicable and the minimally undersup-
plied set of bidders shall contain more than one bidder, their bids must
compete in pairs, so that removing one bidder “frees” a bundle for at
least one other bidder.

In our implementation, we search for a minimally undersupplied set of bid-
ders by looking at bidders who submit competitive bids but do not win in a
revenue-maximizing allocation, which simultaneously maximizes the number
of winners:

• determine an efficient allocation X∗ that maximizes the

number of winning bidders

• for all bidders i not receiving a bundle in X∗

– put i in the new set of candidates C

– while not all bidders in C are flagged as considered

∗ take a bidder j from C that is not flagged and flag

him as considered

∗ for all losing bids l of j

· determine the set of winning bids W that

overlap with l

· if the sum of the prices over W is less or

equal to the price of l, find a bidder who

submitted one of the bids in W and is not in

C, and add him to C

– if |C| ≥ 1, return C

If a set C with |C| ≥ 1 is found, it is minimally undersupplied by construction.

3.3.3 CreditDebit Auction

As already mentioned in Section 2.4.2.1, it is impossible to construct an ascend-
ing combinatorial auction with VCG outcomes for general valuations. Some
newer approaches, such as the one by Mishra and Parkes (2004), overcome this
limitation by relaxing the definition of ascending price auctions: The pay price
for a winning bid is not necessarily equal to the bid price, but can be below it.
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The CreditDebit format is an extension to the dVSV auction. It achieves
the VCG outcome for general bidder valuations. The idea behind this design
is to find a set of minimal UCE prices (Section 2.4.2.2) which can be used
to calculate the VCG result. Another similar auction design called iBundle
Extend and Adjust (iBEA) was suggested by Parkes and Ungar (2002).
Best-response bidding is always an ex post Nash equilibrium in such auctions.

In addition to ask prices, the CreditDebit auction maintains a set of discounts
which adjust the final payments towards VCG prices. These discounts are
initialized with zero at the beginning of the auction, and incremented in every
round for every bidder i by the difference between the revenue change in the
main economy, which includes all bidders, and the marginal economy excluding
the bidder i, since the final prices must be CE prices not only for the main
economy, but also for all marginal economies.

Because of the complex algorithms used for calculating prices and payments,
the CreditDebit auction is presumably even more sensitive to deviations from
best-response bidding. This is one of the hypotheses which we verify in our
computational experiments (Section 6.5). To mitigate this issue, authors sug-
gest an incremental proxy design, which enforces the best-response bidding by
controlling that the demand set of every bidder weakly increases after each
round (Parkes and Ungar, 2000). However, this practically equates the design
to a sealed bid auction and prohibits the central virtual of an iterative design
– the incremental preference elicitation.

3.4 Hybrid Designs

Up to this point we have been talking about two big classes of iterative com-
binatorial auctions:

• ICAs with non-linear ask prices, which have nice theoretical property
of delivering efficient results, but put strong assumptions on bidders’
behavior. In particular, the bidders must be able to grasp and analyze
exponentially many ask prices.

• ICAs with linear ask prices, which provide bidders with a better overview
of the current market situation. However, the approximative nature of
such linear ask prices practically prevents theoretical analysis of such
mechanisms, and the auction result can potentially be very far from an
efficient outcome (Section 6.6).
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The idea of combining virtues of both ask price formats in one design seem
obvious. There are several approaches which try do it, primarily through
enhancing precise non-linear price auctions with better elicitation support,
based on linear ask prices.

Kwon et al. (2005) suggest extending the iBundle auction with RAD-like
pseudo-dual prices to enable “endogenous bidding”, when bidders can more
easily find new attractive bundles during the auction. The authors show that
added support for linear prices produces allocations with efficiency at least as
high as when bidding is restricted to a fixed set of packages determined before
the start of the auction.

The Clock-Proxy Auction (Ausubel et al., 2006) was proposed in the con-
text of the FCC spectrum auction design. It extends the Combinatorial Clock
auction (Section 3.2) by a last-and-final ascending proxy auction round (Sec-
tion 3.3.1).

The approach combines the simple and transparent preference elicitation me-
chanism of the CC auction with the efficiency of the ascending proxy auction.
Linear ask prices are used during the first clock phase. When the clock phase
finishes, all winning bids are automatically transferred to the proxy round.
Additionally, the bidders have ability to feed the proxy with more bids, de-
pending on their previous activity in the clock phase and auction activity rules.
These bids must be higher than the final prices of the clock phase. After that,
the proxy stage is executed, and its winners are declared to be the winners in
the auction.

We do not address the Clock-Proxy auction format in our computational ex-
periments since its two-stage design makes bidding strategies in such auctions
complicated and difficult to model in software. Furthermore, the performance
of the Clock-Proxy auction will depend to a large extent on the activity rules,
limiting additional bids which bidders can submit in the proxy phase. These
activity rules must be adopted to the selected scenario; it is difficult to formu-
late them universally.

However, our comparison of linear price auction formats can be used to propose
a different first phase in such hybrid auctions. The first phase with linear prices
can be easily replaced with a RAD or ALPS phase.
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Chapter 4

The ALPS ICA Design

Each problem that I solved
became a rule, which served
afterwards to solve other
problems.

Rene Descartes

The ALPS (Approximated Linear PriceS) ICA format is a result of an exten-
sive engineering work. We have repeatedly analyzed drawbacks of existing CA
formats, designed improved rules to address these problems, and benchmarked
different solutions under various setups in computational experiments.

Several key decisions shaped the ALPS design:

• The primary design goal is the high allocative efficiency of the auction
outcome.

• The auction shall provide bidders with linear ask prices for the reasons
discussed in Section 2.4.3. Furthermore, the pseudo-dual “RAD-like”
prices are preferable to the tâtonnement “CC-like” prices, since they can
better reflect the competition dynamics on the market and are easier to
follow for the bidder.

• The design shall be strategy-proof. In particular, the ask prices shall be
minimized, which reduces incentives for bid shadowing by bidders.
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• Appropriate activity rules shall ensure competitive bidding right from
the beginning of the auction. The bidders shall not be able to engage in
“sniper” behavior of waiting until other bidders reveal their preferences
and submitting bids only at the last stages of the auction.

• The auction shall be robust and perform well for various bidding strate-
gies and valuations, especially when the bidders deviate from the best-
response bidding.

• The design shall be practical. In particular, the number of auction rounds
shall not be too high.

Of all the auction designs, described in Chapter 3, the RAD format was selected
as the basis, since its pseudo-dual linear price format seemed to be the most
suitable for our goal. The RAD auction also suggests transparent and effective
activity rules.

4.1 Problems of Existing Designs

In a set of computational experiments we identified cases where the auction
process and the results were not optimal. These cases were analyzed to identify
and generalize the causes of the negative performance. This section describes
these problems, illustrating them with examples as necessary.

4.1.1 Suboptimal Prices

We have identified several problems with ask prices, calculated by the linear-
price auction formats RAD and CC.

• The linear ask prices, as calculated by the RAD auction format, can in
some cases be unnecessarily high (Example 5) or distorted (Example 6),
and cause misinterpretation of the true picture of the competition on the
market.

• During computational experiments we found that the CC ICA design
usually terminates with higher final prices than other auction formats
(Section 6.3.3). Human bidders who are aware of this phenomena are
likely to bid strategically and to shade their bids.
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• The RAD ask prices can have strong oscillations (Example 7), which can
be confusing for bidders, and potentially cause strategic behavior when
bidders withhold their bids in anticipation that prices might fall.

To understand problems of the RAD ask prices, let us look again at its price
calculation mechanism (3.2). Note that the solution to the LP (3.1) is not
necessarily unique, and there can be indefinitely many price sets, each formally
satisfying the requirements on the pseudo-dual linear ask prices. However they
do not provide the same feedback quality for the bidders. Specifics of the LP
solvers, which are usually used to calculate the pseudo-dual linear ask prices,
can cause suboptimal price sets to be selected. The following two examples
illustrate the problem.

Example 5. Unnecessarily high prices in the RAD auction.

Consider an auction with three items A, B and C. In an intermediate round t
there are four active bids, all submitted by different bidders:

Bids A B C AB AC BC ABC
Bidder 1 55∗

Bidder 2 55∗

Bidder 3 40
Bidder 4 40

Let us determine the ask prices for the round t + 1 using the RAD price cal-
culation scheme (3.2). The provisionally winning allocation is marked in the
table by stars, L = ∅. After removing redundant inequalities the linear program
(3.2) takes the following form:

min
p(B),Y

Y

s.t.
p(A) = 55
p(C) = 55

55 ≤ Y
0 ≤ p(B) ≤ Y

There are inifinitely many solutions to this LP with Y ∗ = 55 and p∗(B) ∈
[0, 55]. A simplex-based LP solver will deliver a solution in one of the convex
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polyhedron corners, which will be either {p∗(B) = 55, Y ∗ = 55} or {p∗(B) =
0, Y ∗ = 55}. In the first case the RAD will fix all prices to 55, which would
distort the bidder’s understanding of the current demand for the item B.

To balance the prices, RAD design proposes maximizing the minimal price.
However, if the solver finds the second solution {p∗(B) = 0, Y ∗ = 55} in our
example, the algorithm will fix p̂(A) = 55 and p̂(C) = 55, and then yield
p∗(B) =∞ in the next iteration of the algorithm (3.2).

Another important issue is the ask price balancing method. As Example 6
illustrates, RAD prices can distort the true picture of competition on the
market.

Example 6. Unbalanced prices in the RAD auction.

Consider an auction with three items A, B, C and two currently active bids
b1(ABC) = 160, b2(A) = 70:

Bids A B C AB AC BC ABC
Bidder 1 160∗

Bidder 2 70

The provisional winner is Bidder 1 and, again, L̂ = ∅. The linear program
(3.2) takes the following form:

min
p(A),p(B),p(C),Y

Y

s.t.
p(A) + P (B) + P (C) = 160

p(A) ≥ 70
0 ≤ p(A), p(B), P (C) ≤ Y

A simplex-based solver will normally yield one of the following two “corner”
solutions: {p∗(A) = 70, p∗(B) = 20, p∗(C) = 70, Y ∗ = 70} or {p∗(A) =
70, p∗(B) = 70, p∗(C) = 20, Y ∗ = 70}. In both cases the RAD price calcu-
lating algorithm (3.2) will stop.

Note that from the market point of view there is no reason for the item prices
p∗(B) and p∗(C) to be different. The desired outcome would be p∗(B) =
p∗(C) = 45; item prices for p∗(B) and p∗(C) shall be balanced.
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4.1.2 Premature Termination of RAD Auctions

The termination rule plays a central role to an auction. The RAD design
specifies two stopping rules (Section 3.1.3):

1. The eligibility-based rule stops the auction if every bidder has no un-
bound eligibility left. As illustrated by Example 7 below, this is not
always sufficient to ensure auction termination.

2. The RAD auction is stopped if an identical provisional allocation is ob-
tained in two consecutive rounds. As the same Example 7 shows, this
rule can terminate the auction prematurely and consequently cause an
inefficient allocation.

Example 7. Premature termination of a RAD auction.

Consider an auction with three items A, B and C, minimum increment of 2,
and two bidders, whose valuations are given in the table:

Valuations A B C AB AC BC ABC
Bidder 1 10∗ 35
Bidder 2 32 32∗

The efficient outcome (marked with asterisks) would be to sell A to Bidder 1
and {B,C} to Bidder 2. Assume that the two following bids are active at some
intermediate round t− 1 during the auction:

Bids A B C AB AC BC ABC
Bidder 1 30.5∗

Bidder 2 23

The revenue-maximizing provisional allocation is marked with asterisks. The
resulting ask prices ptask(k) are:

Prices A B C
11.5 11.5 7.5
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Bidder 2 does not win in the provisional allocation. Since the ask prices are
still below his valuations, he decides to submit another bid. He chooses between
pbid,2({A,B}) = (11.5 + 11.5 + 2 + 2) = 27 and pbid,2({B,C}) = (11.5 + 7.5 +
2 + 2) = 23. Since he has equal valuations for both bundles, {B,C} is selected.
The bids of the new round t are:

Bids A B C AB AC BC ABC
Bidder 1 30.5∗

Bidder 2 23

The auction has two consecutive rounds t− 1 and t with the same provisional
allocation. Consequently, the auction will terminate and assign all three items
to Bidder 1. Obviously, this is not an efficient outcome. For Bidder 2, the auc-
tion termination comes unexpectedly, since he has been actively participating
in bidding and was still ready to submit higher bids.

Our computational experiments indicate that this situation is by far not ex-
ceptional. The poor performance of the RAD auction design (Section 6.3.1) is
caused, in the first place, by premature termination of the auctions when some
bidders were still ready to submit bids.

A näıve approach of removing the second termination rule, which is based on
two consecutive equal allocations, solves the premature termination issue, but
brings another problem. New ask prices in round t+ 1 would be:

Prices A B C
7.5 11.5 11.5

Obviously, the auction will oscillate from this point on, and will never termi-
nate.

The termination rule of the RAD auction format must be modified to prevent
premature terminations, but still to avoid oscillations and to ensure constant
progress of the auction.
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4.1.3 Activity Rules

An indispensable requirement for successful preference elicitation in an itera-
tive auction is active participation of all bidders. Only the ask prices, which are
calculated based on revealed valuations of all bidders, provide a true picture
of the market competition.

However, active participation of all bidders in the auction is not given per se.
On the contrary, bidders generally prefer to engage in sniping behavior and
submit their bids only towards the end of the auction. Roth and Ockenfels
(2002) show that sniping is a rational, gain-maximizing behavior, which is
supported by evidence from many eBay auctions. Bidding in the last moments
of the auction makes sense for at least two reasons:

• It avoids rising of the ask prices during the auction, when several bidders
compete for provisional winning status.

• There is a good chance that the current provisional bidder will fail to
outbid the sniping bid, even though his valuation could still allow it.

However there are objections to sniping, both from auctioneers and from non-
sniping bidders:

• From the auctioneer’s perspective, sniping reduces competition and leads
to a lower final price, since some bidders may miss the opportunity to
submit their bids at the end of the auction.

• Other bidders note that it is unfair to place bids where other bidders
have no chance to analyze them and react.

• The auction can be significantly delayed if most bidders engage in sni-
ping.

There are several known approaches to addressing this problem.

• A well-known solution, used by many single-item auction formats, is to
automatically extend the auction after each placed bid. This approach
is unpractical for combinatorial auctions. There are exponentially many
bundles, and extending the auction after each possible bid can render it
unbearably long.
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• Another possibility is to terminate the auction randomly if there were no
new bids within a certain period (or number of rounds). For example,
the auction can terminate at any moment when 2 minutes after the last
bid have passed, and the probability of auction termination is constantly
increasing with time. This solution does not completely eliminate the
incentive to use sniping bids, and can also lead to “random” allocations,
where bidders did not submit some of the bids they intended to.

Note that neither of these solutions remove the incentive for sniping completely,
since it can still be an advantage for bidders to wait “as long as possible” with
their bids.

Most iterative combinatorial auctions use discrete rounds rather than contin-
uous time. This allows the formulation of activity rules which can practically
eliminate possibilities for sniping bidding. Introduced in the early FCC wire-
less spectrum auctions (Milgrom, 2000), such activity rules have since become
standard for several combinatorial auction designs.

In many auction designs, including RAD, CC and ALPS, activity rule is given
in the form of an eligibility rule (Section 3.1.2). The effect of the rule is
intuitively clear. A bidder who bids on too few distinct items can never bid on a
bigger bundle again. Thus, the bidders are effectively forced to bid aggressively
right from the start of the auction.

However, this rule can be too restrictive and cause efficiency loss in some cases.
In auctioning of transportation routes, for example, rising prices might force
bidders to bid for a detour of the originally demanded shortest path. Since
each section of a route is represented as an item in a transportation auction,
bidding on a detour is equivalent to increasing the number of distinct items in
the bidders’ bids, which is impossible under the described eligibility rules.

Consequently, in this work we wanted to find a solution which allows a bidder
to increase his eligibility, while at the same time retaining its role as an activity
driver in the auction.

4.2 New Auction Rules Under Evaluation

After we have identified several problems of the RAD design, we suggest mo-
difications which can address these issues and improve the auction results in
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other aspects. Most of these improvements are generic and can be applied
universally to other ICA designs as well.

We implement in the MarketDesigner and test the following improvements:

• Properly minimizing and balancing ask prices, to avoid situations illus-
trated by Example 5 and Example 6.

• Reducing auction duration through dynamically increasing the minimum
increment in situations where the competition is high enough.

• Using last-and-final bids (similar to iBundle, Section 3.3.1) to compen-
sate for cases where the minimum increment is too high.

• Testing other possibilities for calculating the minimum increment.

• Improving the eligibility rule to prevent efficiency losses.

• Changing bid activity rules to accumulate more information about valu-
ations and find a more efficient allocation.

• Improving price monotonicity in order to prevent confusion and strategic
behavior of bidders.

• Changing termination rules to prevent problems of premature termina-
tion and oscillations (Example 7).

4.2.1 Balancing Ask Prices

The price calculation algorithm of the RAD design (3.2) pursues the following
properties:

• New ask prices in the round t+1 shall support the provisional allocation
from the previous round t; that is, all winning bids shall be equal to the
new ask prices and all losing bids shall be below new ask prices. If such
prices do not exist, they should be approximated as closely as possible.

• Among all price sets which satisfy the first requirement, the algorithm
shall find the minimal prices in order to motivate straightforward bid-
ding.
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We add another requirement:

• The ask prices shall be balanced across items to better reflect the com-
petition and be perceived as fair. Additionally, balanced ask prices will
better mitigate the threshold problem. The threshold problem describes
the situation where several small bidders try to outbid one bid on a big
bundle, and need appropriate pricing information to support and coor-
dinate their actions.

The RAD pricing algorithm (3.2) is therefore extended with additional steps
which are necessary to further minimize and balance the newly calculated
ask prices. Let us recall that for every losing bid bt(Sl) from the provisional
allocation in round t we introduce a distortion variable δ(Sl), which measures
the deviation of the round t + 1 ask price from the bid price bt(Sl). Ideally,

these distortions shall be minimal. Let L̂t be the set of losing bids, for which
the corresponding distortion variables cannot be further minimized. Here is
the modified version of the price calculation algorithm, as used by the ALPS
ICA design:

1. Initialize L̂t = ∅.

2. Minimize the maximum of all distortion variables δ(Sl) by solving the
LP (4.1) (same as LP (3.2) in the RAD price calculation algorithm) and
determine the new value for Z.

min
pt+1
ask (k),Z,δ(Sl)

Z (4.1)

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + ˆδ(Sl) = ptbid(Sl) ∀ bt(Sl) ∈ L̂t∑

k∈Sl

pt+1
ask (k) + δ(Sl) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≥ 0 ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≤ Z ∀ bt(Sl) ∈ Lt \ L̂t

pt+1
ask (k) ≥ 0 ∀ k ∈ K
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3. Let Z∗, {δ∗(Sl)},P∗ = {pt+1
ask (k)} be the solution to LP (4.1) and let

L∗ := {bt(Sl) : δ∗i (S) = Z∗} be a set of all deviation variables which
are equal to the new high bound. If Z∗ = 0, we are done. Otherwise
the RAD pricing algorithm would fix all distortion variables in L∗ to Z∗

and repeat step 2. However, as Example 5 demonstrates, there might
still be room for improvement for some δ(Sl). First of all, it is possible
that some distortion variables are fully independent of other variables,
and can take any value in the interval [0, Z∗]. To minimize those, we
restrict all distortion variables by Z∗ and minimize their sum by solving
the LP (4.2):

min
pt+1
ask (k),δ(Sl)

∑
bi(S)∈L∗

δi(S) (4.2)

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + ˆδ(Sl) = ptbid(Sl) ∀ bt(Sl) ∈ L̂t∑

k∈Sl

pt+1
ask (k) + δ(Sl) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≥ 0 ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≤ Z∗ ∀ bt(Sl) ∈ Lt \ L̂t

pt+1
ask (k) ≥ 0 ∀ k ∈ K

If at least one of the distortion variables in L∗ can be improved, this will
be done by LP (4.2). We solve LP (4.2) iteratively as long as at least one
distortion variable is improved, removing already minimized variables
from L∗. After that we set L̂t := L̂ ∪ L∗, fix all corresponding non-
improvable distortion variables to their new numerical values (∀ bi(S) ∈
L∗ set ˆδi(S) := δ∗i (S)), and continue with LP (4.1).

4. At this point the set of all bids with positive distortion variables L̂ is
identified and fixed to corresponding numerical values. However, the
prices themselves are still not necessarily unique and can be unbalanced,
as in Example 6. To balance the prices, we use similar process to LP (4.1)
and LP (4.2). Let K̂ be the set of all items whose prices cannot be further
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lowered. Initially let K̂ = ∅. First we minimize the maximum of all prices
by solving the LP (4.3).

min
pt+1
ask (k),Y

Y (4.3)

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + ˆδ(Sl) = ptbid(Sl) ∀ bt(Sl) ∈ L̂t∑

k∈Sl

pt+1
ask (k) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt \ L̂t

pask(k) = ˆpask(k) ∀ k ∈ K̂
pask(k) ≥ 0 ∀ k ∈ K \ K̂
pask(k) ≤ Y ∀ k ∈ K \ K̂

5. Let Y ∗,P∗ask be the solution of LP (4.3) and let K∗ := {k : p∗ask(k) = Y ∗}.
If K∗ contains more than one element, some of these prices may still be
lowered or balanced. Therefore we next try to minimize the sum of all
prices for items in K∗ by solving the LP (4.4).

min
pt+1
ask (k)

∑
k∈K∗

pask(k) (4.4)

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + ˆδ(Sl) = ptbid(Sl) ∀ bt(Sl) ∈ L̂t∑

k∈Sl

pt+1
ask (k) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt \ L̂t

pask(k) = ˆpask(k) ∀ k ∈ K̂
pask(k) ≥ 0 ∀ k ∈ K \ K̂
pask(k) ≤ Y ∀ k ∈ K \ K̂
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6. If at least one of the prices in K∗ can be lowered, this will be done by
LP (4.4). We solve LP (4.4) iteratively as long as at least one price is
lowered, removing already minimized prices from K∗. After that we set
K̂ := K̂ ∪K∗, fix all corresponding prices to their new numerical values
(∀ k ∈ K∗ set ˆpask(k) := p∗ask(k)), and continue with LP (4.3) unless
K = K̂.

This version of the price calculation algorithm prevents the problems described
by Example 5 and Example 6 from happening.

4.2.2 Dynamic Minimum Increment

The size of the minimum bid price increment in an auction presents a tradeoff
between efficiency and reduced auction duration. Bigger price increments en-
sure quicker auction progress and termination. At the same time it can cause
a decline of the auction efficiency, since bidders are more likely to get into a
situation where the high minimum increment prevents them from submitting
bids which could otherwise be a part of an efficient allocation.

A dynamic bid increment is a way of reducing the number of auction
rounds without sacrificing too much on efficiency (Bapna et al., 2003, 2002;
Hoffman et al., 2006). The specific of a combinatorial auction is that, at the
same moment in time, the competition can have different levels on different
items in the auction. Therefore, in our implementation, we calculate the mini-
mum increment for each item and in each round separately, depending on the
competition rather than using fixed minimum increments through the auction
and for all items. Higher minimum increments while competition is high can
advance the auction faster, while lower increments when only a few bidders are
left shall guarantee fine price granularity. Consequently, this rule shall reduce
auction duration without sacrificing the efficiency. Figure 4.1 illustrates the
model for dynamic price increment calculation, which we adopted after several
design iterations.

Compared to a single minimum increment value in the RAD auction format,
the auctioneer must define several parameters in this case. Before the auc-
tion starts, the auctioneer sets an interval [∆min,∆max] for the minimum bid
increment. The parameter c defines the form of the non-linear part of the
minimum increment function, and allows the use of smaller increment steps as
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Figure 4.1: Dynamic Minimum Increment

competition is decreasing. Finally, the parameter x ∈ [0, 1] defines the minimal
competition level at which the ∆max value is reached.

The current minimum increment ∆t
k for the item k in the round t is determined

in each round based on the total number of bidders n and nt−1
k , the number of

bidders who bid on the item k in the previous round t− 1, using the following
formula.

∆t
k = min

(
∆max,∆min + (∆max −∆min) ∗

(
nt−1
k

x ∗ n

)c)
Since the minimum increment ∆t

k is calculated for each item k individually, the
bidders receive a vector of current minimum increment values in each round,
instead of using the same value for all rounds and all items. This does not
necessarily complicate bidder’s decisions. Since the minimum increment is
added to every item in a bundle when calculating a new bid price, the current
increment values can be automatically added to current item ask prices by the
auction software, so that no additional complexity arises.

4.2.3 Bundle Minimum Increment

We test another approach to calculating the minimum increment in the auc-
tion. We apply the minimum increment to the bundle as a whole, and not to
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every item in the bundle, as defined by the RAD design. Suppose the minimum
increment value is set to 5 and a bidder is interested in the bundle {A,B,C}.
Under the RAD rules, the bidder would be requested to bid 15 above ask
price, 5 for each item in the bundle. Using the bundle minimum incre-
ment rule, a single increment of 5 is applied to the whole bundle. Intuitively,
this approach will favor bidders who bid for big bundles.

4.2.4 Old Bids Active

Generally speaking, having a higher number of bids available for the CAP
implies better information about bidders’ valuations, and consequently helps
to find a more efficient allocation. Therefore we test in our computational
experiments an intuitive idea of holding all ever submitted bids active through
the auction – the old bids active rule. As a straightforward optimization,
we keep active only the highest bid for each bidder and bundle.

The fact that a bidder bids on a bundle provides evidence that he is interested
in the respective item combination at the given bid price. This interest shall
a priori not decline over time. When ask prices are not monotonous, other
bundles might become more valuable as the auction progresses. However, this
shall not invalidate previously submitted bids, unless price fluctuations are
strong. In case the rule is still seen as too restrictive by bidders, it is possible
to make non-winning bids revocable explicitly.

Besides the expected positive effect on allocation efficiency, the rule also comes
with a possible drawback. Keeping all bids active increases the size of the CAP.
Hence, once the rule is active, the size of feasible auction scenarios, that is the
manageable number of items and bidders, can get reduced.

The old bids active rule is used in connection with the outbid old bids rule to
ensure termination of an ALPSm auction. (Section 4.2.9). In this case, the
bidders have personalized non-linear prices for the bundles they already bid
for, additionally to the pseudo-dual linear prices.

4.2.5 Last-and-Final Bids

This improvement is inspired by the iBundle auction format outlined in Parkes
(2001). It shall reduce efficiency losses in situations where price increment steps
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are too high for some bidders. Bidders are allowed to bid below the required
“ask price plus increment” amount if the following conditions are met:

• The new bid price is between the current ask price for the bundle (without
the minimum increment) and the minimum bid price for the bundle (ask
price plus minimum increment).

• The bid is explicitly marked as last-and-final. For each bundle S and
bidder i, only one last-and-final bid is allowed. No further bids, either
normal or last-and-final, are accepted from bidder i for the bundle S.

A higher minimum increment reduces the auction duration, but is more likely
to result in efficiency losses due to high price granularity. Last-and-final bids
can help to find a better compromise since bidders are allowed to bid between
increment steps. Therefore this rule can potentially yield a faster auction
progress without sacrificing the efficiency. A further advantage of this rule is
the perceived fairness on the bidder side, as they always have a possibility to
bid up to their valuation.

4.2.6 Forced Price Monotonicity

Linear ask prices in the ALPS auction are not always monotonic. This can
be confusing for bidders, and even stimulate strategic behavior, when bidders
delay their bids in a hope that prices can fall.

We test a simple way to ensure that prices do not fall throughout the auction.
For each item, we compare newly calculated prices in round t with previous
t− 1 round price. If the new price is lower, it is set to the level of round t− 1.

4.2.7 Smoothed Anchoring

The pseudo-dual ask prices, calculated according to (2.9), are not necessarily
unique, and give the auction designer a lot of flexibility. One of the possibilities
is to derive prices which are as monotonic as possible from round to round. The
technique of smoothed anchoring , reviewed by the FCC (Dunford et al.,
2007), takes this approach by applying exponential smoothing to calculation
of the pseudo-dual prices.
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In addition to the RAD pricing algorithm, the smoothed anchoring method
minimizes the sum of squared deviations of the pseudo-dual prices between
rounds, under the condition that the minimized sum of distortion variables
remains constant at Ω∗ =

∑
bt(Sl)∈Lt δ(Sl). This is accomplished by solving the

following quadratic program.

min
∑
k∈K

(
pt+1
ask (k)− ℘t(k)

)2

s.t. ∑
k∈Sw

pt+1
ask (k) = ptbid(Sw) ∀ bt(Sw) ∈ W t

∑
k∈Sl

pt+1
ask (k) + ˆδ(Sl) = ptbid(Sl) ∀ bt(Sl) ∈ L̂t∑

k∈Sl

pt+1
ask (k) + δ(Sl) ≥ ptbid(Sl) ∀ bt(Sl) ∈ Lt \ L̂t∑
bt(Sl)∈Lt

δ(Sl) = Ω∗

δ(Sl) ≥ 0 ∀ bt(Sl) ∈ Lt \ L̂t

δ(Sl) ≤ Z ∀ bt(Sl) ∈ Lt \ L̂t

pt+1
ask (k) ≥ 0 ∀ k ∈ K

The value ℘t(k) is called smoothed price for item k in round t and is derived
using the formula of exponential smoothing:

℘t+1(k) = α · pt+1(k) + (1− α) · ℘t(k)

The smoothing factor α ∈ [0, 1] determines how strong the impact of previous
round prices is on ℘t+1(k). In the optimization of the above quadratic program,
the values ℘t(k) are known and are treated as constants.

Similar to the ALPS price calculation, smoothed anchoring takes the mini-
mized sum of distortion variables as the starting point. With reference to our
modified price calculation algorithm described in Section 4.2.1, smoothed an-
choring begins right after step 3, when all distortion variables are minimized
and fixed to δ̂b. Prices, however, are still not unique. Our approach continues
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by balancing both distortion variables (4.2) and prices (4.4), which shall also
have a smoothing effect on prices. Smoothed anchoring, however, attempts to
reduce the fluctuations by selecting those pseudo-dual prices that are as close
as possible to the previous round’s prices.

We did not include the smoothed anchoring approach in our analysis. Labora-
tory experiments with human bidders are necessary to measure the real effect
of price monotonicity on the auction outcome. Furthermore, our modified
pricing algorithm already delivers balanced prices, and the smoothed anchor-
ing is likely to bring only a marginal improvement. Finally, we could not
implement the smoothed anchoring algorithm, which requires optimization of
a quadratic function, in the MarketDesigner framework, which supported only
linear optimization.

4.2.8 Relaxed Eligibility

The RAD eligibility rule, which is an important and effective tool for assuring
quick auction progress, can in certain cases cause problems. Especially when
items in the auction significantly vary in price, and a group of items can play
a replacement role for another item, bidders may want to replace a bid on
a single expensive item with a bundle bid for a set of cheaper items. This
is typically the case in transportation, when bidders give up bidding on the
shortest route and start bidding on longer, but cheaper detours. The RAD
eligibility rule will prohibit this. This issue is not only a potential source for
allocative inefficiency, but can also be perceived as highly unfair and restrictive
by the bidders.

We introduce a notion of surplus eligibility et+,i, which allows the bidder
i to extend his round t eligibility eti and still stimulates competitive bidding.
To retain the original purpose of enforcing activity in the auction, the size of
the surplus eligibility is directly bound to the bidder’s market activity in the
auction so far. The surplus eligibility et+,i for each bidder is calculated by the
auction in each round and is communicated to the bidders along with prices
and provisional allocation. In round t a bidder is allowed to bid at maximum
on as many distinct items as he bid on in the last round t − 1, plus surplus
eligibility:

eti = et+,i +
∑
k∈K

∏
bj∈Bt−1

xj(k) (4.5)
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To determine the value et+,i we need to find a fair measure for a bidder’s
market activity. An important concern is to prohibit bidders from artificially
simulating activity by submitting a lot of deliberately losing bids. We introduce
the notion of bid volume of bidder i in round t.

rbvti =
∑
k∈K

maxbidpriceti(k) (Round Bid Volume)

tbvi =
T∑
t=1

rbvti (Total Bid Volume)

The function maxbidpriceti(k) determines the maximum bid price for the single
item k based on the bidder’s i bids in round t. For each bid bti(S), the price for
all k ∈ S is determined by splitting the bundle bid price to individual items
proportionally to item ask prices. For each item, the maximum over all bids
value is taken. In other words, maxbidpriceti(k) figures out how much item k
is maximally worth to the bidder i in round t. Example 8 illustrates it:

Example 8. Calculating maxbidpriceti(k).

Consider an auction with three items A, B and C and linear prices in round t
respectively 10, 10, and 20. If bidder i submits a bid on the bundle {A,B,C}
for 50, the bid price is split proportionally to ask prices, resulting in values
12.5, 12.5, and 25 for A, B and C respectively. Let his second (and last) bid
in the round t be 30 on the bundle {B,C}, which splits proportionally to ask
prices as 10 for B and 20 for C. In this case, we obtain:

maxbidpriceti(A) = 12.5

maxbidpriceti(B) = max(10, 12.5) = 12.5

maxbidpriceti(C) = max(20, 25) = 25

The total bid volume tbvi equals to the sum of round bid volume rbvti
over all auction rounds and items, and represents the overall bid volume that
bidder i generated in the auction so far. All bidders are ranked by their tbvi
in ascending order. The rank for bidder i, denoted by ri ∈ [1, |I|], is the
index of the position in the ordered sequence of this bidder’s tbvi. The surplus
eligibility is then calculated as:
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et+,i = round

(
ri
|I|
· e+,max

)
The value ri/|I| is scaled in (0, 1] and serves as an indicator for market activity
of the bidder i. e+,max is the maximal surplus eligibility defined by the auctio-
neer. The fact that a bidder’s activity is accumulated throughout the auction
sets incentives for bidders to bid actively right from the start. Moreover, the
ranking concept based on the tbvi also ensures that all bidders are stimulated
to bid better than others.

4.2.9 Termination Rule

We have previously illustrated problems with the RAD termination rule
(Example 7). Now we suggest a two-step solution which overcomes the de-
scribed problems.

1. We denounce the termination rule, which stops the auction after two
equal allocations. To prevent premature terminations, where the auc-
tions stops unexpectedly for some bidders who still could submit com-
petitive bids, the auction terminates only if there are no new bids from
any bidder in one round (inactivity-based termination).

2. Without further modifications to the termination rule, it would be pos-
sible that the auction starts oscillating (see Example 7) and never ter-
minates. There are several possibilities to ensure auction progress. We
test two versions:

• The minimum increment is increased on each equal allocation and
set back to its initial value as soon as the allocation changes. We
call this rule increase minimum increment.

• Bidders are forced to outbid their previous bids on the same bundle,
hence yielding monotonically increasing bundle bid prices for each
single bidder. We call this rule outbid old bids.

If the losing bidder’s valuation is high enough, each rule alone will even-
tually cause the allocation to change. Otherwise, the losing bidder will
eventually stop bidding and the auction will end.
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4.3 Putting ALPS Together

A central result of our work is the ALPS (Approximated Linear PriceS) auction
design. We test in computational experiments all the improvements described
in Section 4.2, and select the set of rules which bring the best results. The
detailed test results are given in Section 6.2.

The ALPS auction design is based on pseudo-dual prices as with RAD, but
contains the following modifications:

Improved prices: ALPS uses the improved pricing algorithm (Sec-
tion 4.2.1), which achieves lower and better balanced prices compared to the
original RAD algorithm. We found this to have a modest, but positive, impact
on efficiency.

Termination rule: The termination rule has been adapted, since it is a
potential cause of inefficiency in RAD. An auction terminates if there are no
new bids submitted in the last round (the inactivity-based termination). To
ensure auction progress and prevent oscillations, the ALPS design increases
the minimum increment if the provisional allocation does not change in two
consecutive rounds. After a new allocation is found, the minimum increment
is reset to its initial value.

Surplus eligibility: Many auction scenarios suffer from the problem that
the RAD eligibility rule does not allow for an increase in the number of distinct
items a bidder is bidding on. In particular, in the transportation scenario
it can become beneficial to bid on a longer detour during the course of an
auction, when the direct connection becomes too expensive. We modify the
RAD eligibility rule and allow active bidders to increase the number of items
to bid on using surplus eligibility (Section 4.2.8).

We also formulate the ALPSm design (modified ALPS) with the following
additional rules:

Old bids active: Provisional and final allocations are calculated based on
all ever submitted in the auction bids. Losing bids are not removed from the
auction after each round.
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Termination rule: Every bidder has to outbid his old bids from previ-
ous rounds on the same bundle. The minimum increment remains constant
throughout the auction, even if the allocation does not change in two consec-
utive rounds.

Our experiments showed that the ALPSm auction design has a better effi-
ciency compared to the ALPS format, but increases the size of the CAP LP.
Consequently, for large scenarios ALPS can be the tool of choice.

Two further modifications have a positive effect on the auction outcome, and
can be used by both ALPS and ALPSm:

Dynamic minimum increment: Helps to reduce auction duration without
sacrificing the efficiency. See Section 4.2.2 for implementation details and
Section 6.2 for experiment results.

Last-and-Final bids: Allows the use of a bigger minimum increment and
thus accelerates the auction without having a negative impact on the efficiency.
This increases perceived fairness. See Section 4.2.5 for implementation details
and Section 6.2 for experiment results.

ALPS and ALPSm auction formats can handle both OR and XOR bidding
languages. Furthermore, we allow each bidder in the auction to use either OR
or XOR bidding language independently of other bidders.

When the XOR bidding language is selected, the price calculation algorithm
is modified and the losing bids of a corresponding winning bidder are not
included in the price calculation algorithm. Since a XOR-bidder can only
win one bundle at the most, his losing bids might keep prices of other items
unnecessarily high, which conflicts with the goal of minimizing the ask prices.

The ALPS/ALPSm auction format has proven to be a successful design, which
performs well under various conditions both in computational experiments and
in the laboratory (Section 6.3; Scheffel et al. (2009); ?). It also appeared to be
robust against suboptimal and strategic bidding (Section 6.5).
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Chapter 5

Experimental Framework

All life is an experiment. The
more experiments you make the
better.

Ralph Waldo Emerson

This chapter describes the framework for the computational experiments con-
ducted in the course of our work. The framework is an integral part of the
MarketDesigner platform which is being used for both computational and la-
boratory experiments. We describe below the functionality of the system; the
implementation details can be found in (Laqua, 2006).

The framework for computational experiments consists of three main compo-
nents (Figure 5.1).

• A value model defines valuations of every bidder in the auction for every
possible bundle. It is independent of the selected auction format.

• A bidding agent implements a bidding strategy adhering to the value
model which is assigned to him and to the restrictions of the selected
auction design.

• An auction processor implements the auction logic, enforces auction pro-
tocol rules, and calculates allocations and ask prices.
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CHAPTER 5. EXPERIMENTAL FRAMEWORK

Figure 5.1: Architecture Overview of the Experimental Framework

At the same time, these software components play the role of different treat-
ment variables in the computational experiments. Different types of value
models, bidding agents (that is, strategies) and auction processors can be com-
bined, which allows performing sensitivity analysis by running a set of com-
putational experiments while changing only one component and preserving all
other parameters. To compare the results, we use the following performance
measures (Section 2.1.1 and Section 2.5):

• allocative efficiency;

• revenue distribution;

• price monotonicity;

• speed of convergence measured by number of auction rounds.

5.1 Value Models

The type of bidder valuations is an important treatment variable for the analy-
sis of different auction formats. Performance of an auction format can depend
significantly on properties of the valuations, particularly on the bidder sub-
modularity (BSM) condition (Section 2.4.2.1) which often does not hold in
practice.

Practical applications of combinatorial auctions are still very rare, and real-
world CA data sets are hardly available. However, using realistic value models
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5.1. VALUE MODELS

is important for achieving reliable comparison results. To ensure that our ana-
lysis gives reliable and upright results, a variety of value models with different
structure and background is implemented in our framework:

• We have adopted the Combinatorial Auctions Test Suite (CATS) value
models that have been widely used for the evaluation of winner deter-
mination algorithms (Leyton-Brown et al., 2000). They use econom-
ically motivated scenarios, and thus generate realistic data sets. For
example, a transportation network, real estate lots, or an airport slot
occupancy timetable provide the underlying rationale. Since the CATS
library was designed originally for testing winner determination algo-
rithms only, it was impossible to use it for testing of complete iterative
combinatorial auctions directly. We have updated the implementation
to generate complete valuations rather than set of bids, which put addi-
tional requirements on the consistency, since not every consistent set of
bids represents a valid and consistent value model. Additionally, we allow
for the full parametrization of value models using XML files, unlike the
original CATS implementation, where many parameters are hard-coded
in the source code.

• We have implemented the Pairwise Synergy value model described by An
et al. (2005). It allows the free definition of the number of items in the
auction and the complementarity degree between them, which makes this
model perfectly suitable for sensitivity tests on various parameters. Fur-
thermore, this value model allows subadditive valuations to be described,
where the value of a bundle is lower than the sum of the individual item
values comprising it.

• We have created a Tabular value model where the valuations can be
manually defined for any combination of bundles. This value model
proved to be helpful for testing small scenarios while identifying problems
and describing various phenomena of different ICA designs.

All value models are constructed to meet the usual free disposal assumption
(Section 2.3):

vi(S) ≤ vi(T ) ∀ S ⊂ T

meaning that bidders can discard any item free of charge.
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5.1.1 Transportation

The Transportation value model uses the Paths in Space scenario from the
Combinatorial Auction Test Suite (CATS) by Leyton-Brown et al. (2000). It
is modeled by a nearly planar transportation graph in Cartesian coordinates,
where each bidder is interested in securing a connection between two ran-
domly selected vertices (cities). The items which are traded in the auction are
the edges (routes) of the graph. The real-world examples which map to this
scenario include truck routes, natural gas pipeline networks, communication
network bandwidth allocation, and the rights to use railway tracks.

Figure 5.2: Transportation Value Model with 25 Items (Edges)

The bidder’s valuation for a path is defined by the Euclidean distance between
his two nodes multiplied by a utility factor, which is a random number drawn
from the same normal distribution for every bidder. Consequently, only a
limited number of bundles which represent paths between both selected cities
are valuable for the bidder. Flexibility of the bidders can be controlled by
changing the utility factor.

The relevant parameters for the Transportation value model are:

• The number of items (edges in the graph) m.
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• The graph density ρ, which defines an average number of edges per city
and is used to calculate the number of vertices as (m ∗ 2)/ρ.

• The average utility factor u.

• The standard deviation σ of the random distribution, which describes
the utility factor.

The items in the Transportation value model have the highest complemen-
tarity. The bidders are interested only in a set of items which represents a
complete path connecting two selected cities. Any subset of such a path has
zero valuation. Any extra item added to an already complete path does not
increase the value of the bundle in any way.

5.1.2 Airports

The Airports value model is an implementation of the Matching scenario
from CATS. It models the four busiest USA airports, for which the Federal
Aviation Administration in fact auctions off takeoff and landing rights: La
Guardia International, Ronald Reagan Washington National, John F. Kennedy
International, and O’Hare International (Grether et al., 1989). For simplicity,
each airport has the same predefined number of takeoff and landing time slots,
and there is only one slot for each point in time available per airport.

Each airport is randomly assigned its utility value. Every bidder is interested
in obtaining a pair of slots in two randomly selected airports. The maximum
possible valuation for acquiring such a pair is defined as the sum of both
individual airport utilities. This maximum is reached only when the landing
time matches a certain value randomly selected for every bidder, and the flight
time is at its possible minimum given the distance between the airports. The
valuation is reduced if the landing time deviates from the ideal value, or if
the time difference between takeoff and landing slots is longer than necessary.
Similarly to the Transportation value model, the Airports value model has
the strongest complementarities between items. Specific to it, every bidder is
interested in a pair of items only.

The relevant parameters for the Airports value model are:

• The number of items m. Since every airport has the same number of
time slots, it must be divisible by four.
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Reagan

Kennedy

O’Hare

LaGuardia

Figure 5.3: Airports Value Model: Four Largest USA Airports

• Minimum and maximum airport utilities MinU and MaxU . The utility
values for the individual airports AU1 to AU4 which are the same for
every bidder are drawn from a uniform random distribution between
MinU and MaxU .

• The per-bidder utility deviation UDi defines the maximum possible devi-
ation from the common utility value, obtained as the sum of both takeoff
and landing airport utilities AUt + AUl. The exact maximum valuation
for every bidder is drawn randomly from the uniform distribution over
the interval [(AUt + AUl)− UDi, (AUt + AUl) + UDi].

• The maximum flight length L defines the range between the two most
distant airports, Reagan and O’Hare, in flight hours.

• The early takeoff deviation ETD and the late takeoff deviation LTD
define maximum allowed differences to the optimal takeoff time, in hours.

• The late landing deviation LLD defines the maximum possible landing
delay compared to the optimal landing time, in hours. Early landing is
not allowed. In the event that the plane departs earlier, it must wait in
the air, and then an appropriate penalty on the valuation is calculated.
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• The delay coefficient DC defines the penalty size for the case when the
plane stays in the air longer than necessary.

• The late coefficient LC defines the penalty in the case of late landing.

5.1.3 Real Estate

The Real Estate value model is based on the Proximity in Space model from
CATS. Items sold in the auction are the real estate lots k, which have valua-
tions vk drawn from the same normal distribution for each bidder. The bidders
in such markets prefer to secure several adjacent pieces of real estate. Further
real-life examples which can be described by this value model include auction-
ing of various area-bound licenses, like spectrum licenses in FCC auctions, or
mining rights, where it is much cheaper for an oil company to drill in adjacent
areas than in areas that are far from each other.

0 1 2

3 4 5

6 7 8

Figure 5.4: Real Estate Value Model with 9 Items

Complementarity in such markets arises from adjacency in the two-dimensional
space. We model the valuations by placing all items in a grid graph, where the
vertices can have horizontal, vertical and diagonal neighbors. The adjacency
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relationships ell′ ∈ {0, 1} between items l and l′ are represented by edges which
are randomly generated, whereby we take care that the diagonal edges do not
intersect. An example graph with nine pieces of land property is shown in
Figure 5.4. The dashed lines represent the adjacency relationships between
lots, and the solid lines show possible property boundaries which would be
represented by this graph. Note that exactly one vertex falls inside each piece
of land property, and each two lots which are connected by a graph edge share
a border.

The edge weights wll′ ∈ [0, 1] are generated randomly for every bidder, and
they are used to determine bundle valuations of adjacent pieces of land:

v(S) =

1 +
∑

ell′ :l,l
′∈S

wll′

∑
k∈S

vk

Even though the bidders generally prefer to acquire as much real estate as
possible, only adjacent lots have complementarity and increase the value of a
bundle to be more than just a sum of the separate lot values.

The relevant parameters for the Real Estate value model are:

• Two parameters SideX and SideY define sizes for both sides of the land
area, in lots.

• Two parameters epHV and epD define probability of the existence of
a horizontal/vertical and a diagonal neighborhood relationship between
individual lots correspondingly.

• The neighborhood relations between lots are not necessarily relevant for
each individual bidder. Therefore, the per-bidder parameter epi defines
the probability that the edge from the “common” neighborhood graph
is taken over to the individual graph of the bidder i. As a result, some
neighborhood edges can be deleted from the individual graph of the bid-
der.

• Per-bidder parameters lotPriceMeani and lotPriceDeviationi define the
normal distribution for drawing of lot valuations vk for every bidder.

• Per-bidder parameters weightMeani and weightDeviationi define the
normal distribution for drawing of edge weights wll′ in the neighborhood
graph of every bidder individually. These weights define the degree of
complementarity between connected lots.
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5.1.4 Pairwise Synergy

The Pairwise Synergy value model is an implementation of the valuation
calculation method described in An et al. (2005). This value model is useful
for sensitivity analysis and comparison, since it describes a homogenous sce-
nario where each combination of items is meaningful for every bidder, and the
complementarity level among items is similar and easily configurable.

This value model can also describe subadditive valuations, where the value of
a bundle is less than the sum of valuations for individual items comprising the
bundle. It is also possible to define a mixed scenario, where some bundles have
superadditive valuations and other bundles subadditive valuations.

The Pairwise Synergy value model has the following parameters:

• The number of items m.

• Two parameters per bidder, minItemV aluei and maxItemV aluei, de-
fine the uniform distribution for sampling valuations of individual items
vk for all k ∈ K and for every bidder i ∈ I.

• Two parameters per bidder, maxSynergyi and minSynergyi, define the
uniform distribution for generating a symmetric matrix of pairwise syner-
gies between items {synik,l : k, l ∈ K, synik,l = synil,k, syn

i
k,k = 0}, for

every bidder i ∈ I.

The valuation of a bundle S is calculated as:

v(S) =

|S|∑
k=1

vk +
1

|S| − 1

|S|∑
k=1

|S|∑
l=k+1

synk,l(vk + vl)

The synergy value of 0 corresponds to completely independent items, and the
synergy value of 1 means that the bundle valuation is twice as high as the sum
of the individual item valuations.

5.2 Bidding Agents

A bidding agent implements a bidding strategy adhering to the given value
model and to the restrictions of the specific auction design. Usually bidding
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agents in auctions are considered to be selfish, that is pursuing maximization
of their own profit and neglecting all other factors. There are also many other
usual assumptions of different strength (Section 2.2.2 and Section 2.3) which
shape the theoretical understanding of auction mechanisms.

Under these assumptions and for auctions with VCG outcomes there exist a
dominant strategy of truthful reporting. However, there is a substantial evi-
dence that the assumptions are too strong, and that the bidders do not follow
this strategy in practice. We discussed possible reasons for it in Section 2.4.2.

Therefore we conduct our computational experiments not only with idealized
best-response bidders, but also with bidders who deviate from the theoretically
optimal strategy to a different degree. We hereby achieve the following:

• Measuring auction results with theoretically optimal best-response bid-
ders delivers upper bounds on the efficiency of the given ICA format.

• By using bidders who deviate from the best-response behavior, we can
study the robustness of ICA formats against suboptimal bidder strate-
gies.

• We can also group different types of bidders in the same auction, and
study how different strategies perform relative to each other by compar-
ing their revenue.

We implement several suboptimal bidding agents based on empirical observa-
tions of human bidders, which we made during laboratory experiments with
combinatorial auctions (Scheffel et al., 2009; ?). In these auctions, bidders
were likely to bid on high-profit bundles, but did not follow the best-response
strategy even in simple settings with adequate bidder support tools. In a non-
linear price auction, the demand set of every active bidder constantly grows
larger during the auction, but the amount of submitted bids did not increase
from round to round for human bidders in this case.

5.2.1 BestResponse Bidders

The BestResponse bidder follows the best-response bidding strategy which
is often assumed in game-theoretical analysis (Section 2.4.1). This bidder bids
on all bundles that maximize his surplus, if he would win any of them at
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current prices, and only for these bundles (that is, his demand set Di(Ppay))
(Definition 6).

Intuitively, the best-response strategy seems to be the obvious choice in case of
an iterative auction. All non-linear price auction formats which guarantee an
efficient auction outcome (Section 3.3) assume the best-response behavior of all
bidders. Proxy agents which are suggested for many non-linear price auctions
implement exactly the same strategy. However, the best-response bidding is
not a dominant strategy in non-linear price auctions if BSM property is not
given (Definition 18). For the linear-price auctions, there are no theoretical
results regarding efficiency of different strategies at all. The bidder’s choice is
further complicated by the fact that he cannot determine whether the BSM
property is given or not by looking at his own valuations alone. Furthermore,
determining the demand set requires from the bidder advanced computational
skills, which is the second and even more important critique point on the
best-response assumption.

5.2.2 Powerset Bidders

The Powerset bidder evaluates all possible bundles in each round, sorts them
by falling revenue given the current ask prices, and submits best x bids, where
x is one of the bidder’s strategy parameters. In contrast to the BestResponse
bidder, the Powerset bidder can select not only the bundle(s) from his demand
set and providing the maximum profit, but also less profitable bundles. Such
behavior can be enforced by activity rules, when bidders have to submit more
bids additionally to their demand set to preserve eligibility. Risk aversion can
also explain overbidding: The bidders can submit suboptimal bids when they
want to be sure to win at least something.

5.2.3 Random Bidders

The Random bidder is close to the Powerset bidder, and technically shares
the same software implementation. This bidder evaluates all possible bundles
in each round, sorts them by falling revenue given the current ask prices, and
then submits x bids, randomly chosen out of the best y bids.

This behavior models real-world bidders with limited computational resources,
who can generally find good bundles given current ask prices, but make minor
errors in their calculations.
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5.2.4 Preselect Bidders

If the bidders are restricted in time during the auction, they might select
their most valuable bundles a priori, and stick to this selection throughout the
auction. This might be a viable strategy in auctions with a large number of
items. The Preselect bidder selects his l most valuable bundles before the
auction. During the auction, the bidder follows the best-response strategy but
bids only on the preselected bundles.

5.2.5 Level Bidders

The Level bidder models a speculative strategy that tries to exploit the ter-
mination rule of non-linear price auctions. These auctions terminate as soon
as the new provisional allocation includes bids from every participating bid-
der. This termination rule can motivate bidders to submit more than just
the demand set in the first round in the hope that some suitable allocation is
found early and the auction terminates before the prices rise. The strategy is
likely to be successful if adopted by many bidders in the auction and if the
competition is not very high.

To model the Level bidder, we modify the original BestResponse bidder by
lowering valuations of his best l bundles and setting all of them equal to the
valuation of the lth best bundle. Further on in the auction, the Level bidder
follows the best-response strategy adhering to the modified valuations.

5.2.6 BestChain Bidders

The BestChain bidder is similar to the INT bidder in An et al. (2005). It
implements a polynomial-time algorithm which builds “chains” of items by
starting from a single item and then iteratively selecting the most valuable
extension to already-existing bundle:

for each k ∈ K
1) Create a single-item bundle Bk = {k}
2) Define α = argmaxl∈K\Bk

AU(Bk ∪ {l})
3) if AU(Bk ∪ {α}) > AU(Bk)

then Bk = Bk ∪ {α}, goto 2)
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Starting from each individual item k ∈ K, the algorithm finds the next item
l which provides a maximum increase in average per-item utility (AU) of the
bundle given current prices. If the new average utility exceeds the previous
value, the new item is added to the bundle and the process is continued until
the average utility cannot be increased further. The algorithm generates at
least m bids in O(m3) time.

The algorithm shall mimic behavior of a human bidder in homogenous value
models where each combination of items is potentially interesting, like Pairwise
Synergy and Real Estate. In value models with extreme complementarities,
like Airports and Transportation, this bidding model is useless, since subsets of
the valuable bundles have zero valuation. The bidder also requires item prices
to construct chains, and cannot successfully participate in auctions where only
non-linear prices are given.

5.2.7 Näıve Bidders

The Näıve bidder is an extreme case of a bidder who is completely ignorant
of the bundle bidding. A Näıve bidder submits in each round singleton bids
only for those items that would provide positive utility given current linear
ask prices. In contrast to all other bidder types which can use any bidding
language the Näıve bidder must use the OR bidding language to be able to
win more than one item at all.

Since the optimal performance of non-linear price auctions requires best-
response bidding, several authors demonstrated how the auction design can
assist bidders in following it, or even enforce it. Ausubel and Milgrom (2006a)
suggest using proxy agents which receive valuations once before the auction
and participate in the auction adhering to the best-response strategy. Mishra
and Parkes (2004) describe how the auctioneer can detect that bidders deviate
from the best-response strategy, and even enforce it by automatically increa-
sing bid prices on already submitted bids until the bidder signals that the ask
prices have exceeded his valuations by submitting his empty bid.

Unfortunately, such tools effectively force the bidders to build a full picture of
their valuations already before the auction, thus eliminating most virtues of an
iterative mechanism. The bidders cannot use the ask prices during the auction
to better understand competition on the market and to find new interesting
bundles.
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Furthermore, in some cases non-best-response bidding cannot be detected,
and consequently prevented, by the auctioneer at all. The Level and Preselect
bidders in our setup are the strategies which look as perfectly legitimate best-
response bidding to the auctioneer.

5.2.8 Further Strategy Parameters

The strategy of a bidding agent in our computational experiments is further
defined by a set of parameters which are universally applicable to all bidder
types.

• The parameter forgetBidProbability defines the probability that a bidder
“forgets” to submit a bid which was already prepared for submitting by
following one of the strategies described above.

• The parameter maxBundleSize limits the maximum bundle size for every
bid of a bidder. This parameter is important for value models where big-
ger bundles always have higher valuations. In case the bundle size is not
limited, the biggest bundle is always the most valuable, and the combi-
natorial auction degenerates into a single-item auction for the complete
bundle containing all items in the auction.

• The parameter jumpBidIncrement allows the definition of bidders who
bid aggressively above current ask prices, but still always within their
valuations.
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Chapter 6

Results of Computational
Experiments

Facts are the air of scientists.
Without them you can never fly.

Linus Pauling

This chapter describes and interprets the results of our computational experi-
ments. In Section 6.1 we provide details on the experiment setup. The results
themselves are grouped according to the following topics, each occupying its
own section:

• Section 6.2 measures effects of the new improved auction rules which
are suggested in Section 4.2. First each rule is evaluated separately,
and then the subset of the most successful rules which comprises the
ALPS/ALPSm auction design is tested again.

• Sections 6.3 and 6.4 analyze and compare performance and robustness
of various linear-price auction designs and measure the effect of using
different bidding strategies in the auction.

• Section 6.5 concentrates on robustness of non-linear price auctions in var-
ious settings, especially when the bidders do not follow the theoretically
optimal best-response strategy. The results are benchmarked against
linear-price ALPSm and CC designs.
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CHAPTER 6. RESULTS OF COMPUTATIONAL EXPERIMENTS

• Section 6.6 illustrates simple examples and analyzes the cases when
linear-price ICAs have low performance.

6.1 Settings

Most computational experiments in this work share the same set of settings
for value models, bidding agents and auction formats.

The value model parameters for all auctions were selected to yield approxi-
mately the same total revenue of 200 in order to achieve better comparability
of the measurements. Unless otherwise specified, we use value models with
parameters given in Table 6.1. For a detailed description of individual param-
eters, consult Section 5.1.

Table 6.2 lists all instances of bidding agents. For a detailed description of
their strategies consult Section 5.2.

Table 6.3 lists all auction settings. Unless specified otherwise, the minimum
increment was set to 1 in all cases.

The following four sections, which describe the results of the computational
experiments, are structured in the same format. First we present the research
question which we target in the section. Then we describe the setup of the
relevant experiments. The obtained results are presented in the form of tables
and charts. Finally, the results are discussed and conclusions are made. To
prevent overloading of the text with illustrations, additional charts were moved
to the Appendix.

6.2 Improving the RAD Design

The ALPS/ALPSm auction design (Chapter 4) has the RAD format in its
roots, but implements a set of improvements which address the RAD prob-
lems (Section 4.1) and further improve the auction results. During analysis
of existing ICA designs we have formulated a list of new rules, which is given
in Section 4.2. The objective of the computational experiments, described in
this section, is to study the impact of these new and improved rules on the
auction outcome and to formulate the optimal set of rules which have the
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CHAPTER 6. RESULTS OF COMPUTATIONAL EXPERIMENTS

Name Basis Parameters and Description

BestResponse BestResponse Pure best-response bidder.
Powerset10 Powerset Powerset bidder with number of bids per

round x = 10.
3of10 Random Submits random 3 bids from best 10 bids

in each round.
5of20 Random Submits random 5 bids from best 20 bids

in each round.
Preselect20 Preselect Chooses 20 most valued bundles before the

auction, and bids only on them using the
best-response strategy.

Level10 Level Before the auction, lowers the valuation of
the best 10 bundles to the level of the 10th
best. Follows the best-response strategy af-
terwards.

Forgetful BestResponse A BestResponse bidder who has a 10%
chance of forgetting to submit each bid.

BestChain BestChain Standard BestChain bidder.
Näıve Näıve Standard Näıve bidder.

Table 6.2: Bidding Agent Settings

largest positive impact on the auction outcome. This set of rules became the
ALPS/ALPSm auction design.

We run experiments using five value models: Airports, Pairwise Synergy High,
Pairwise Synergy Low, Transportation Large, and Transportation Small. The
RAD+ auction format, which is the RAD auction with the new pricing algo-
rithm and the new termination rule (Sections 4.2.1 and 4.2.9) is used as the
basis for all comparisons. The original RAD format was unsuitable, since its
performance was low due to premature terminations (Section 6.3.1). We ac-
tivate each new rule individually and compare the auction performance with
the RAD+ basis. For each setting, 70 auctions with Powerset10 bidders were
instantiated. The Powerset10 bidders were selected because they have higher
efficiency for the linear-price auctions with eligibility rules (Section 6.3.1). Fi-
nally, we select the set of rules which has the best effect on the auction outcome,
declare them as the ALPS/ALPSm design, and repeat the experiments for this
new format. Table 6.4 summarizes all experiment results for this section.
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6.2. IMPROVING THE RAD DESIGN

Name Description

Sealed VCG auction (Section 2.3.4).
RAD RAD auction (Section 3.1).
RADne RAD auction with disabled eligibility rule.
RAD+ RAD auction with ALPS price calculation and termi-

nation rules.
CC Combinatorial Clock auction (Section 3.2).
CCne Combinatorial Clock auction with disabled eligibility

rule.
iBundle(2), iba iBundle auction (Section 3.3.1) with anonymous prices.
iBundle(3), ibp iBundle auction (Section 3.3.1) with personalized

prices.
dVSV dVSV auction (Section 3.3.2).
CreditDebit CreditDebit auction (Section 3.3.3).
ALPS ALPS auction (Section 4.3).
ALPSne ALPS auction with disabled eligibility rule.
ALPSm modified ALPS auction (Section 4.3).
ALPMSmne modified ALPS auction with disabled eligibility rule.

Table 6.3: Auction Format Settings

6.2.1 Old Bids Active

The old bids active rule (Section 4.2.4) is clearly the most effective way to in-
crease the auction efficiency out of all improvements which we have tested. We
obtain roughly 99% allocative efficiency for each of the five selected value mod-
els. We explain this increase in efficiency by higher number of bids available for
the winner determination in the late rounds. Another positive impact of this
rule is the improved price monotonicity, since more losing bids are available
for the ask price balancing.

There is also a small but significant reduction of the bidder’s revenue share.
The final prices are too high compared to the minimum CE prices. Being aware
of this auction property, the real bidders can choose to speculate and never
bid up to their valuations, which can negatively affect the auction’s efficiency.
This phenomena however strongly depends on the risk profile of the bidders
and cannot be measured using our software bidding agents.
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hhhhhhhhhhhICA Design

Value Model
Airports

PairSyn
high

PairSyn low
Transp.
large

Transp.
small

Efficiency 95.19% 96.56% 96.67% 94.61% 93.79%
Rev. Auctioneer 80.44% 81.02% 79.41% 61.04% 58.48%

RAD+ Rev. Bidders 14.75% 15.54% 17.26% 33.57% 35.30%
Rounds 58.49 50.07 51.96 31.39 41.19
Monoton. Error 0.82 0.36 0.38 0.76 0.70
Efficiency 98.83% 98.61% 99.30% 98.77% 98.92%

Old Rev. Auctioneer 89.32% 86.66% 87.45% 67.52% 67.66%
Bids Rev. Bidders 9.51% 11.95% 11.85% 31.25% 31.26%

Active Rounds 55.10 50.84 54.03 28.06 41.41
Monoton. Error 0.76 0.12 0.11 0.72 0.69
Efficiency 95.19% 96.17% 96.03% 94.02% 94.00%

Last Rev. Auctioneer 79.57% 79.99% 78.98% 60.54% 58.95%
and Rev. Bidders 15.62% 16.18% 17.05% 33.48% 35.05%
Final Rounds 54.90 48.53 50.64 30.60 40.21

Monoton. Error 0.78 0.33 0.31 0.75 0.69
Efficiency 94.60% 95.44% 96.67% 95.02% 92.76%

Dynamic Rev. Auctioneer 79.06% 81.56% 81.99% 62.48% 57.95%
Minimum Rev. Bidders 15.55% 13.38% 14.68% 32.54% 34.81%
Increment Rounds 46.69 17.70 16.10 17.57 24.54

Monoton. Error 0.84 0.39 0.36 0.66 0.67
Efficiency 94.45% 97.17% 97.53% 92.34% 91.53%

Bundle Rev. Auctioneer 79.55% 78.52% 80.14% 60.07% 59.90%
Minimum Rev. Bidders 14.90% 18.65% 17.39% 32.26% 31.64%
Increment Rounds 67.46 45.73 38.13 40.30 42.47

Monoton. Error 0.69 0.40 0.36 0.69 0.63
Efficiency 93.40% 95.66% 96.20% 93.11% 91.05%

Forced Rev. Auctioneer 77.55% 79.82% 78.99% 60.54% 58.59%
Price Rev. Bidders 15.85% 15.84% 17.21% 32.57% 32.46%

Monotonicity Rounds 56.09 45.74 49.23 29.06 39.24
Monoton. Error 0 0 0 0 0
Efficiency 95.23% 96.13% 97.23% 96.10% 95.37%

Surplus Rev. Auctioneer 81.39% 82.53% 82.24% 63.36% 63.09%
Eligibility Rev. Bidders 13.84% 13.59% 14.99% 32.74% 32.29%

Rounds 58.41 49.24 52.13 29.81 38.30
Monoton. Error 0.83 0.35 0.34 0.77 0.71
Efficiency 96.63% 97.00% 97.21% 97.14% 95.60%

None Rev. Auctioneer 82.73% 83.91% 82.26% 65.99% 63.10%
Eligibility Rev. Bidders 13.89% 13.09% 14.95% 31.15% 32.50%

Rounds 58.86 49.36 51.47 29.64 37.77
Monoton. Error 0.82 0.31 0.35 0.78 0.70
Efficiency 95.35% 95.91% 97.45% 97.34% 95.43%

ALPS Rev. Auctioneer 82.53% 85.83% 84.76% 69.23% 63.83%
(no Old Rev. Bidders 12.82% 10.08% 12.69% 28.11% 31.61%

Bids Active) Rounds 42.76 14.39 15.10 18.01 23.69
Monoton. Error 0.82 0.32 0.32 0.71 0.68
Efficiency 99.73% 99.81% 99.64% 99.26% 99.97%

ALPSm Rev. Auctioneer 92.77% 90.45% 90.96% 73.39% 75.01%
(with Old Rev. Bidders 6.97% 9.35% 8.68% 25.89% 24.96%

Bids Active) Rounds 38.80 12.84 14.74 15.86 28.91
Monoton. Error 0.70 0.07 0.08 0.62 0.63

Table 6.4: Performance of the New Auction Rules. Bold Text Indicates Significant
Difference (Paired T-Test) Compared to RAD+

6.2.2 Last-and-Final Bids

This rule (Section 4.2.5) has only a negligible effect on most auction parame-
ters. It can still be used to raise the perception of fairness which the bidders
have towards the auction mechanism. On the other hand, it is questionable
whether the rule is not too complex for the bidders to understand and use.
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6.2.3 Dynamic Minimum Increment

The dynamic minimum increment (Section 4.2.2) is a very good instrument
for reducing the auction duration. It is obvious that the increased minimum
increment, other things being equal, will reduce the auction efficiency. Our
question is whether the auction duration can be reduced using the dynamic
minimum increment without significantly sacrificing the efficiency.

In Figure 6.1, we plot the allocative efficiency against the number of auction
rounds for 40 samples of the Pairwise Synergy High value model, which com-
pare RAD+ with a static increment of 5 and RAD+ with a dynamic minimum
increment with minimal increment ∆min = 1, maximal increment ∆max = 40,
curvature c = 2 and minimal competition level for ∆max, x = 1 (all bidders).
Table 6.5 shows the mean efficiency values and the number of rounds over all
40 auctions. Note that Table 6.4 presents the results for another set of samples,
in particular that the static minimum increment used there is 1.
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Figure 6.1: Effect of the Dynamic Minimum Increment

The experiment demonstrates that the number of auction rounds decreases
considerably when we use the dynamic increment without the allocative effi-
ciency being reduced. Similar results were obtained for the other value models.
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Efficiency Number of Rounds
Static Minimum Increment 94.21% 39.7

Dynamic Minimum Increment 95.44% 17.7

Table 6.5: RAD+ with Static vs. Dynamic Minimum Increment

We can state that the dynamic minimum increment with properly selected pa-
rameters (which are not always trivial) can be an attractive option in practical
applications.

6.2.4 Bundle Minimum Increment

The bundle minimum increment (Section 4.2.3) does not bring any improve-
ments to the auction outcome. Our measurements do not show any trend
across all value models in any parameter. Furthermore, the Bundle Minimum
Increment rule has some undesired side effects.

0 95

1

1,05

Efficiency against Rounds (Pairwise Synergy High)

0,8

0,85

0,9

0,95

0 10 20 30 40 50 60 70 80 90

Ef
fic

ie
nc

y

Rounds

RAD+

RAD+ (Bundle Minimum Increment)

Figure 6.2: Effect of the Bundle Minimum Increment

We have monitored a significantly higher deviation between the samples for all
measurements for RAD+ with the bundle minimum increment compared to
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the original RAD+ or ALPS auction formats. Figure 6.2 plots the efficiency
against the auction duration for 30 auctions using the Pairwise Synergy High
model for RAD+ and RAD+ with the bundle minimum increment. The num-
ber of rounds for RAD+ with the bundle minimum increment rule is dispersed
between 30 and 82, whereby RAD+ stays in the range of 36 to 58 for the same
set of samples. Also the auction efficiency is more scattered for RAD+ with
the bundle minimum increment rule.

6.2.5 Forced Price Monotonicity

This rule (Section 4.2.6) makes prices fully monotonic. Another positive effect
of the rule is a slight reduction of auction duration. However, the auction
efficiency is reduced, in some cases significantly (Figure 6.3). This happens
primarily because the ask prices changed by this rule do not provide a quality
feedback for the bidders any more.
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Figure 6.3: Effect of the Forced Price Monotonicity
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6.2.6 Surplus Eligibility

The surplus eligibility rule (Section 4.2.8) relaxes limitations on the amount of
different items the bidder can bid on, and consequently improves the efficiency.
We have also included the no-eligibility option in our experiments, which allows
for bids on any number of items independently of the bid history. This rule is
not practical since the real bidders will misuse it and will not bid actively from
the first auction rounds. Our software bidders however do bid competitively
during the whole auction. The no-eligibility option gives the upper bound to
the efficiency gain due to a relaxed eligibility rule.

We test the surplus eligibility rule with a maximum surplus eligibility e+,max =
5. The results show an increased efficiency, significant in some cases. The
largest share of the gained efficiency goes to the auctioneer; the bidders’ reve-
nue is even decreased in some cases. However, there is still a potential upwards
for the surplus-eligibility rule, or some other replacement for the activity rule,
of up to roughly 1%, to reach the no-eligibility level.

6.2.7 Combining New Auction Rules

The ALPSm auction format comprises the optimal set of rules which has the
largest positive effect on the auction outcome. The following rules are included:

• The new price calculation algorithm avoids several pitfalls of the RAD
price calculation by deriving lower and better balanced prices.

• The new termination rule stops the auction only when there are no new
bids submitted within one round. This prevents premature terminations
of the auction.

• The old bids active rule significantly boosts the auction efficiency. The
bidders always have to outbid their own old bids on the same bundle
which guarantees the auction progress and termination.

• The last-and-final bids rule has only a minor positive effect on the effi-
ciency, but can increase bidders’ fairness perception towards the auction.

• The dynamic minimum increment drastically reduces the number of auc-
tion rounds without sacrificing the efficiency.
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• The surplus eligibility increases the auction efficiency.

The forced price monotonicity and the bundle minimum increment rules were
discarded due to their negative impact on the auction efficiency.

The old bids active rule increases the size of the CAP problem which must be
solved by the auction engine. This can be a serious practical issue, since the
problem is NP-hard. Therefore, we suggest a second set of rules, where we omit
the old bids active rule. We call this second setup the ALPS format. To ensure
the auction progress and termination in this case, we increase the minimum
increment in case the allocation does not change for two consecutive rounds.
This forces the losing bidders to submit higher bids. After the allocation
changes, the original minimum increment value is restored.

Already the ALPS format improves the auction results along many parameters
significantly. The ALPSm setup performs even better and reaches 99% effi-
ciency on average, over all value models. The auctioneer profits significantly
from this efficiency increase; the bidders profit less. Both settings achieve a
significant reduction of the auction duration and a better price monotonicity.

6.3 Comparing Linear-Price ICAs

In this section, we compare three linear-price auction designs: the Combina-
torial Clock (CC) (Section 3.2), the Resource Allocation Design (RAD) (Sec-
tion 3.1), and the Approximate Linear PriceS (ALPS/ALPSm) (Section 4.3).
We also include in the comparison the RADne design, which is the RAD auc-
tion with disabled activity rules, in order to isolate the possible negative effect
of activity rules on the allocative efficiency.

First we compare these linear-price ICA designs in idealized conditions and
locate the performance problems that can be attributed to the auction rules
and not to the bidding strategies. Therefore, we use only the theoretically
optimal BestResponse bidder and another agent with high rationality, the
Powerset10 bidder. In the linear-price auctions with eligibility-based activity
rules, like those used by ALPS, RAD and CC, the bidders often cannot use the
best-response strategy, because they must maintain their eligibility. Therefore,
the bidders are likely to bid more than just the demand set in the first rounds,
as the Powerset10 agents do.
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hhhhhhhhhhhValue Model

ICA Format
ALPS ALPSm CC RAD RADne VCG

Real Estate 3x3 Efficiency in % 96.5 98.81 97.13 69.9 71.21 100
16 auctions BAS Rev. Auctioneer in % 67.75 82.5 86.56 10.11 10.37 84.2

Rev. Bidders in % 28.75 16.31 10.57 59.79 60.84 15.8
Rounds 532.98 760.83 400 46.95 47.15 1

Real Estate 4x4 Efficiency in % 96.84 99.82 96.24 76.13 76.09 100
1 auction BAS Rev. Auctioneer in % 75.51 90.72 90.56 9.16 9.75 90.3

Rev. Bidders in % 21.34 9.1 5.69 66.97 66.34 9.7
Rounds 440.73 641.7 247.7 28.95 30.65 1

Pairwise Synergy Low Efficiency in % 94.82 99.73 98.56 69.98 69.17 100
20 auctions BAS Rev. Auctioneer in % 72.41 87.53 88.29 8.84 8.63 87.08

Rev. Bidders in % 22.42 12.19 10.27 61.14 60.54 12.92
Rounds 369.3 816 412.82 44.42 44.4 1

Pairwise Synergy High Efficiency in % 92.8 99.64 99.87 72.66 71.99 100
15 auctions BAS Rev. Auctioneer in % 76.28 87.97 89.18 9.82 9.6 87.5

Rev. Bidders in % 16.52 11.68 10.69 62.84 62.4 12.5
Rounds 354.65 656.38 338.48 41.8 41.67 1

Airports Efficiency in % 97.27 99.81 97.95 90.09 90.56 100
0 auctions BAS Rev. Auctioneer in % 52.01 53.81 67.9 28.26 30.45 42.33

Rev. Bidders in % 45.26 46.01 30.04 61.83 60.11 57.67
Rounds 671.55 186.47 93.47 23.3 27.5 1

Transportation Large Efficiency in % 93.97 99.52 96.78 82.48 83.73 100
0 auctions BAS Rev. Auctioneer in % 62.33 76.61 80.92 38.97 34.9 64.21

Rev. Bidders in % 31.65 22.91 15.86 43.5 48.83 35.79
Rounds 193.4 161.8 180.05 31.38 28.3 1

Transportation Small Efficiency in % 98.26 99.78 97.73 82.98 81.31 100
0 auctions BAS Rev. Auctioneer in % 54.79 59.54 65 21.96 17.93 48.32

Rev. Bidders in % 43.48 40.23 32.74 61.02 63.38 51.68
Rounds 409.32 327 314.62 66.17 51.1 1

Table 6.6: Revenue Distribution in Linear-Price ICAs with BestResponse Bidders

To avoid inefficiencies due to high bid increments, we set the increment to 0.1
for all auctions described in this section. Therefore, the average number of
auction rounds is high in general. A minimum bid increment of 1 reduces the
number of auction rounds by a factor of 10.

For the seven selected value models we create 40 auction instances with diffe-
rent valuations, and run them in all five auction formats, preserving the bid-
der valuations. Table 6.6 presents the average values of allocative efficiency,
auctioneer’s and bidders’ revenue, and number of auction rounds, for every
combination of settings, using BestResponse bidders. Table 6.7 contains the
same information for Powerset10 bidders. The left-hand column indicates the
value model and the number of auctions where the valuations fulfill the BAS
property. As can be seen, in most cases BAS was not fulfilled. The results
have the same pattern over all auction formats and value models within each
of the two selected bidding strategies, but significantly differ between the bid-
ding strategies. Powerset10 bidders bid more than just their demand sets,
thus supplying the auctioneer with more information about their valuations
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hhhhhhhhhhhValue Model

ICA Format
ALPS ALPSm CC RAD RADne VCG

Real Estate 3x3 Efficiency in % 98.63 99.92 97.38 83.28 95.83 100
16 auctions BAS Rev. Auctioneer in % 78.83 85.97 94.87 9.24 72.99 84.2

Rev. Bidders in % 19.8 13.95 2.51 74.04 22.84 15.8
Rounds 313.55 292.18 272.55 30.75 178.43 1

Real Estate 4x4 Efficiency in % 98.52 99.78 97.94 78.16 95.96 100
1 auction BAS Rev. Auctioneer in % 87.07 92.52 95.98 10.86 77.4 90.3

Rev. Bidders in % 11.45 7.26 1.97 67.3 18.56 9.7
Rounds 219.75 181.8 184.05 26.15 120.85 1

Pairwise Synergy Low Efficiency in % 98.7 99.9 99.02 83.57 94.99 100
20 auctions BAS Rev. Auctioneer in % 80.67 89.66 96.98 20.27 39.78 87.08

Rev. Bidders in % 18.03 10.24 2.04 63.3 55.21 12.92
Rounds 346.52 354.93 352.3 68.58 127.2 1

Pairwise Synergy High Efficiency in % 99.15 99.86 99.25 85.29 94.58 100
15 auctions BAS Rev. Auctioneer in % 84.76 89.71 97.25 28.12 50.14 87.5

Rev. Bidders in % 14.39 10.15 2.01 57.17 44.44 12.5
Rounds 309.45 319.9 326.02 87.8 150.5 1

Airports Efficiency in % 98.18 98.16 96.98 91.12 97 100
0 auctions BAS Rev. Auctioneer in % 56.34 60.25 90.66 35.89 55.63 42.33

Rev. Bidders in % 41.85 37.92 6.31 55.23 41.37 57.67
Rounds 129.68 58.23 73.17 20.7 33.85 1

Transportation Large Efficiency in % 95.93 99.48 98.29 83.54 89.39 100
0 auctions BAS Rev. Auctioneer in % 67.07 78.42 90.14 41.14 57.27 64.21

Rev. Bidders in % 28.86 21.06 8.15 42.4 32.13 35.79
Rounds 87.1 85.65 139.47 25.82 23.9 1

Transportation Small Efficiency in % 97.98 99.56 96.8 80.49 86.82 100
0 auctions BAS Rev. Auctioneer in % 57.74 63.01 83.74 20.92 34.78 48.32

Rev. Bidders in % 40.24 36.56 13.06 59.56 52.05 51.68
Rounds 167.7 188.4 257.57 52.08 36.98 1

Table 6.7: Revenue Distribution in Linear-Price ICAs with Powerset10 Bidders

and generating more competition on the market.

6.3.1 Efficiency

Overall, the efficiency in all value models using BestResponse bidders is very
high and has the same pattern. The efficiency of auctions with Powerset10
bidders is even higher. Especially the RAD/RADne auction performs better
with Powerset10 bidders. As can be seen from the increased number of auction
rounds in this case, Powerset10 bidders reduce the chance of a premature
auction termination, which is often a problem with the RAD design.

The ALPSm design has the highest average efficiency due to the old bids ac-
tive rule. In the Pairwise Synergy High value model, there is no significant
difference between the efficiency values of CC and ALPSm formats (t-test,
p-value=0.79). With BestResponse bidders, the RAD design suffers from pre-
mature terminations. Also, omitting the eligibility rule (RADne) does not
bring a significant improvement. With BestResponse bidders, the CC auction
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(a) Real Estate 3x3 (b) Real Estate 4x4

Figure 6.4: Allocative Efficiency with BestResponse Bidders
in Real Estate Value Models

(a) Transportation Small (b) Transportation Large

Figure 6.5: Allocative Efficiency with BestResponse Bidders
in Transportation Value Models
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(a) Airports (b) Pairwise Synergy High

Figure 6.6: Allocative Efficiency with BestResponse Bidders
in Pairwise Synergy and Airports Value Models

has a better efficiency than ALPS in all but two value models (Real Estate 4x4,
Transportation Small). With Powerset10 bidders, they have similar efficiency.

Figures 6.4 to 6.6 show selected box plots for the efficiency of auctions with
BestResponse bidders. We found a similar pattern for experiments with Pow-
erset10 bidders (see Figure 6.7).

In a separate setup we analyze how the auction efficiency changes with in-
creasing levels of synergy between items. We use the Pairwise Synergy value
model with synergy levels increasing from 0 to 3 in 0.1 steps. The results are
presented in Figure 6.8. Interestingly, the auction efficiency remains high for
ALPS/ALPSm and CC auctions even in the case of high synergy values. Note
that with a synergy value of 2.5 a bundle of items already has 3.5 times the
value of the sum of its individual items.

6.3.2 Auction Duration

In auctions with BestResponse bidders, ALPSm has the highest number of
auction rounds, except for Airports and Transportation value models. RAD
often terminates prematurely, leading to a lower average number of auction
rounds, but at the cost of much lower efficiency.
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(a) Real Estate 4x4 (b) Transportation Small

Figure 6.7: Allocative Efficiency with Powerset10 Bidders
in Real Estate and Transportation Value Models

Figure 6.8: Dependency of the Allocative Efficiency from the Complementarity
Level

Powerset10 bidders reduce the number of rounds significantly, except for the
RAD auction, where the number of rounds even increases in some cases. This
happens because Powerset10 bidders can somewhat mitigate premature termi-
nations of RAD auctions. ALPSm has the highest reduction of rounds with
Powerset10 bidders due to the old bids active rule, which helps to accumulate
the information about bidders’ valuations more quickly.
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(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 6.9: Average Number of Auction Rounds with BestResponse Bidders

6.3.3 Revenue Distribution

Our computational experiments indicate significant differences in revenue dis-
tribution between different auction designs. Again, we found similar patterns
across different value models (Figure 6.10). An important observation is that
the CC design has the highest average auctioneer revenue, followed by ALPSm.
The dashed line in Figure 6.10 shows the average revenue distribution in the
VCG auction. The level of VCG prices can serve as an indicator for competi-
tion in the auction, which was generally high.

The bidders get less revenue in auctions with Powerset10 strategies than with
BestResponse strategies. The strongest decline happens in CC auctions, fol-
lowed by ALPS and ALPSm, which demonstrate only a moderate decrease of
the bidders’ revenue.

We run also experiments with little competition (for example, the Pairwise
Synergy Low model with only 3 bidders), and found the final ALPS ask prices
to be higher than the VCG prices, compared to auction instances with higher
competition (Real Estate 3x3 with 5 or 7 bidders).
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(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 6.10: Revenue Distribution with BestResponse Bidders
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(a) Real Estate 4x4 (b) Transportation 25 Edges

Figure 6.11: Price Monotonicity in Linear-Price ICAs

6.3.4 Price Monotonicity

Figure 6.11 provides a box plot for price monotonicity values (Section 2.5.2) of
ALPS, ALPSm, RAD, and RADne in the Real Estate 3x3 and the Transporta-
tion Small value models with BestResponse bidders. Lower price monotonicity
in ALPS auctions can be attributed to the fact that they take more rounds
than RAD and do not terminate prematurely.

6.4 Bidding Strategies in Linear-Price ICAs

In this section we analyze the impact of different bidding strategies on linear-
price ICAs. As discussed in Section 2.4.2, the assumptions behind BestRe-
sponse or Powerset10 bidders are not always applicable. Due to the 2|K| − 1
packages a bidder must decide on, it can be impractical for bidders to con-
sider or even simply know valuations for the full range of packages that he can
bid for. Therefore, the real-world bidders can use different types of bundling
strategies. In order to achieve reliable and more general results, our analysis is
based on a broad range of agents implementing various strategies, and different
value models.

We use the ALPS auction format since it has very good allocative efficiency,
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and at the same time distributes the revenue between the auctioneer and the
bidders fairer than the ALPSm format. We focus on bundle selection and
assume that bidders bid the minimum price only, neglecting jump bids or sim-
ilar phenomena. For each setting we create 40 auction instances with different
random seeds.

All bidders use the fully expressive XOR bidding language with the notable
exception of the Näıve bidder, who uses the OR language while bidding only
on individual items. We analyze auctions with Real Estate 3x3 and Pairwise
Synergy High value models, where a Näıve bidder can participate, but do not
consider Airports and Transportation value models for this reason.

6.4.1 Auctions with Uniform Bidding Strategies

First we consider auctions where all bidders follow the same bidding strategy.
Table 6.8 shows average values over 40 auctions for each setting and measure-
ment.

hhhhhhhhhhhhhhSetup

Bidder Type

Näıve BestChain Powerset10 3of10 5of20 BestResponse

Real Estate 3x3 Efficiency in % 54.84 96.31 98.63 96.95 95.95 96.18
Rev. Auctioneer in % 47.97 74.12 78.83 78.72 81 67.8
Rev. Bidders in % 6.86 22.19 19.8 18.22 14.96 28.38
Rounds 198.95 471 364.5 403.25 369.95 532.98

Real Estate 4x4 Efficiency in % 52.86 97.96 98.19 96.56 96.73 96.68
Rev. Auctioneer in % 48.43 84.61 86.65 85.03 87.29 75.56
Rev. Bidders in % 4.43 13.35 11.54 11.53 9.44 21.13
Rounds 108.55 230.43 247.5 367.23 289.7 671.95

Pairwise Efficiency in % 77.21 96.25 98.09 96.99 97.7 95.64
Synergy Low Rev. Auctioneer in % 66.63 75.68 81.83 81.56 85.3 74.07

Rev. Bidders in % 10.59 20.57 16.25 15.43 12.4 21.57
Rounds 259.65 461.2 369.88 395.45 382.88 541.77

Pairwise Efficiency in % 36.53 96.61 98.61 96.55 97.98 93.6
Synergy High Rev. Auctioneer in % 31.53 78.62 83.25 82.19 85.91 76.47

Rev. Bidders in % 5 17.99 15.36 14.36 12.06 17.14
Rounds 116.35 380.32 335.8 351 342.05 466.18

Table 6.8: Uniform Bidding Strategies in ALPS ICA

The Näıve bidder only bids up to his item valuations and ignores synergetic
valuations, which leads to the lowest efficiency, auctioneer and bidder reve-
nue scores. The Powerset10 bidder comes out best in terms of efficiency and
auctioneer revenue.

BestChain and Random (3of10, 5of20) bidders also achieve high levels of effi-
ciency, since they are able to find fairly good bundles. Efficiency of auctions
with these bidders is comparable; for example there is no significant difference
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(a) Real Estate 4x4, ALPSm (b) Real Estate 4x4, CC Auction

Figure 6.12: Revenue Distribution for Uniform Bidding Strategies

between BestChain and Random 3of10 bidder in Real Estate 3x3 value model
(t-test, p-value of 0.65).

From the bidder perspective, best-response bidding is the optimal strategy,
which ensures that he gets only the most profitable bundles. The auctions
with BestResponse bidders have, compared to all other auctions, significantly
lower auctioneer revenue, except with Näıve bidders. We find the same pattern
in ALPSm and CC auctions, and in all value models. Figure 6.12 illustrates
the revenue distributions for Real Estate 4x4 value model in ALPSm and CC
auctions.

The auctioneer revenue share in CC auctions is significantly higher than the
VCG level (dashed line), which can motivate bidders to shade their bids in
the real-life applications. ALPS auction distributes the revenue between the
auctioneer and the bidders fairly.

6.4.2 Auctions with Different Bidding Strategies

Now we look at auctions where bidders with different strategies participate
simultaneously. Every auction contains nine (for Real Estate 4x4 value model)
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or four (for all other value models) “base” bidders, and a last bidder with a
different bundle selection strategy. For this last bidder, the average revenue
over 40 ALPS auctions is calculated. For BestResponse base bidder, the results
are shown in Table 6.9.

hhhhhhhhhhhhhhhhSetup

Last Bidder Type

BestResponse Powerset10 3of10 5of20 BestChain Näıve

Real Estate 3x3 Efficiency in % 96.18 96.65 96.33 96.52 96.26 94.96
Rev. Auctioneer in % 67.88 70.99 71.67 67.82 69.41 61.87

4 BestResponse Rev. Bidders in % 28.30 25.67 24.66 28.7 26.84 33.09
plus one bidder Rev. Last Bidder in % 3.785 4.844 4.708 6.041 5.392 0.5227

Real Estate 4x4 Efficiency in % 96.24 97.13 96.58 96.29 96.95 96.08
Rev. Auctioneer in % 74.39 75.77 74.54 76.38 75.41 71.83

9 BestResponse Rev. Bidders in % 21.85 21.36 22.05 19.91 21.54 24.25
plus one bidder Rev. Last Bidder in % 1.314 2.558 2.562 2.187 2.269 0.2110

Pairwise Efficiency in % 95.35 97.78 96.98 97.09 96.96 92.86
Synergy Low Rev. Auctioneer in % 71.87 73.91 76.81 73.83 73.94 69.35

4 BestResponse Rev. Bidders in % 23.48 23.87 20.17 23.26 23.02 23.51
plus one bidder Rev. Last Bidder in % 4.826 7.928 5.679 6.908 5.487 1.533

Pairwise Efficiency in % 92.04 94.17 92.9 93.88 93.98 86.37
Synergy High Rev. Auctioneer in % 73.33 76.37 77.15 76.24 74.74 65.05

4 BestResponse Rev. Bidders in % 18.71 17.8 15.75 17.64 19.24 21.32
plus one bidder Rev. Last Bidder in % 3.191 5.076 4.569 5.577 5.487 0

Table 6.9: Sensitivity with BestResponse Base Bidders

Overall, the efficiency does not suffer significantly, since the majority of Be-
stResponse bidders can keep it high. The Näıve bidding strategy came out
worst. Interestingly, either the Powerset10, BestChain or Random strategies
always perform better than the BestResponse strategy. A possible reason for
this is the eligibility rules, which might prevent a BestResponse bidder from
submitting optimal bundles at the end of the auction.

hhhhhhhhhhhhhhhhSetup

Last Bidder Type

BestResponse Powerset10 3of10 5of20 BestChain Näıve

Real Estate 3x3 Efficiency in % 98.13 98.9 98.34 98.2 98.08 96.05
Rev. Auctioneer in % 79.34 79.67 79.87 80.14 79.67 66.76

4 Powerset10 Rev. Bidders in % 18.79 19.23 18.47 18.06 18.41 29.29
plus one bidder Rev. Last Bidder in % 1.522 3.237 3.263 2.809 2.341 0.05379

Real Estate 4x4 Efficiency in % 98.68 98.83 98.53 98.4 98.6 97.4
Rev. Auctioneer in % 85.67 86.88 86.57 86.53 86.76 85

9 Powerset10 Rev. Bidders in % 13.01 11.95 11.95 11.88 11.83 12.40
plus one bidder Rev. Last Bidder in % 0.4362 0.8017 0.6333 1.009 1.123 0.002506

Pairwise Efficiency in % 98.42 99.6 98.3 98.84 99.25 96.33
Synergy Low Rev. Auctioneer in % 80.57 83.78 83.85 84.06 84.62 78.41

4 Powerset10 Rev. Bidders in % 17.84 15.81 14.45 14.79 14.63 17.92
plus one bidder Rev. Last Bidder in % 2.502 4.171 4.104 3.899 3.883 0.2604

Pairwise Efficiency in % 98.17 99.06 98.55 99.01 98.36 95.88
Synergy High Rev. Auctioneer in % 82.2 86.41 86.25 86.47 85.56 74.6

4 Powerset10 Rev. Bidders in % 15.97 12.65 12.29 12.54 12.80 21.27
plus one bidder Rev. Last Bidder in % 1.949 3.336 2.876 3.106 2.757 0

Table 6.10: Sensitivity with Powerset10 Base Bidders
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The same type of sensitivity analysis was repeated with respect to Powerset10
bidders. Table 6.10 summarizes the results. We can see that the results are
similar to the setup where BestResponse bidders are taken for the basis. Again,
it is advantageous for a bidder to use a non-best-response bundling strategy.

Finally we consider the setup where a single bundle bidder competes with nine
(or respectively four) Näıve bidders. The results are shown in Table 6.11.
The efficiency of these auctions decreases significantly compared to previous
setups. This happens because the single bundle bidder can in most cases win
his preferred bundle, independently of valuations of other Näıve bidders.

hhhhhhhhhhhhhhhhSetup

Last Bidder Type

BestResponse Powerset10 3of10 5of20 BestChain Näıve

Real Estate 3x3 Efficiency in % 69.96 69.95 69.78 69.46 69.18 54.84
Rev. Auctioneer in % 48.19 48.68 48.68 48.89 48.48 47.97

4 Näıve Rev. Bidders in % 21.77 21.27 21.1 20.57 20.71 6.863
plus one bidder Rev. Last Bidder in % 17.12 16.92 16.81 16.18 16.26 1.199

Real Estate 4x4 Efficiency in % 62.07 61.99 61.76 61.74 61.66 52.86
Rev. Auctioneer in % 48.6 48.72 48.93 48.85 48.87 48.43

9 Näıve Rev. Bidders in % 13.47 13.27 12.83 12.89 12.78 4.431
plus one bidder Rev. Last Bidder in % 9.939 9.809 9.471 9.452 9.295 0.4877

Pairwise Efficiency in % 85.13 85.1 85.08 85.08 84.66 77.15
Synergy Low Rev. Auctioneer in % 67.63 68.34 68.46 68.46 68.28 67.62

4 Näıve Rev. Bidders in % 17.5 16.76 16.61 16.62 16.38 9.535
plus one bidder Rev. Last Bidder in % 10.96 10.55 10.57 10.61 9.984 1.827

Pairwise Efficiency in % 61.96 61.97 61.97 61.87 60.5 36.50
Synergy High Rev. Auctioneer in % 31.76 32.32 32.28 32.4 32.32 32.01

4 Näıve Rev. Bidders in % 30.19 29.66 29.69 29.47 28.18 4.49
plus one bidder Rev. Last Bidder in % 27.01 26.72 26.74 26.59 25.37 0.8595

Table 6.11: Sensitivity with Näıve Base Bidders

The BestResponse bidder receives higher revenue share than other bundle bid-
ders on the background of Näıve bidders. This can be attributed to the fact
that bidding more than just the demand set, like Powerset10, BestChain and
Random bidders do, does not guarantee the winning of the most profitable
bundle, and also can drive up prices higher than necessary.

In summary, from the perspective of a bidder who is interested in maximizing
his own revenue, it is favorable to use bundle bidding. If all other bidders in
the auction use the BestResponse or Powerset strategies, the bidder is better
off using Powerset strategy. In contrast, if all other bidders bid näıvely, Be-
stResponse strategy is slightly better than the Powerset strategy. Overall, the
more bidders that use bundle bids, the better it is for the auctioneer.

An interesting result is that the auctions with Powerset10 bidders have the
highest efficiency, while the best-response strategy is optimal from the bidder
perspective. This happens because BestResponse bidders, unlike Powerset10
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bidders, always receive bundles with the highest valuations. At the same time,
Powerset10 bidders are less likely to be limited by eligibility rules, which results
in better efficiency.

6.5 Non-Linear Price ICAs

In this section we concentrate on ICAs with non-linear prices: iBundle(2),
iBundle(3), dVSV, and CreditDebit. Their remarkable property is that they,
with the exception of the iBundle(2) format, can guarantee a certain level
of allocative efficiency, under assumption of best-response bidding. We test
the robustness of these mechanisms when this assumption is not given, and
benchmark them against two ICAs with linear prices, ALPSm and CC.

Unless explicitly stated otherwise, each auction setup was repeated 50 times
with different random seeds for value models and, where appropriate, bidding
agents.

de Vries et al. (2007) show that if all valuations and prices are kept integral,
and a minimum increment of 1 is used in the dVSV auction format, the demand
set of every bidder weakly increases after a price adjustment. This also holds
for iBundle(3), since it also increases the prices by a fixed increment for a set
of bidders, for the bundles which correspond to the last round bids. Together
with the termination rule based on complementary slackness, this guarantees
that these auctions always terminate with a precisely efficient solution, given
best-response bidding. To ensure comparability between auction formats, we
use a fixed minimum increment of 1 and integer valuations for all auction
formats.

6.5.1 Auctions with Uniform Bidding Strategies

First we assume that all bidders in the auction use the same strategy and
analyze the auction results for different value models and bidding strategies.
In particular, we want to investigate how the different non-linear price auctions
behave when the bidders deviate from the best-response strategy.

The average performance metrics are summarized in Table 6.12 for Real Estate
3x3, in Table 6.13 for Pairwise Synergy High, and in Table 6.14 for Trans-
portation Small value models. The values for efficiency, auctioneer and bidder
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revenue are given in percent. The Appendix A provides an intuitive graphical
representation of the results.

hhhhhhhhhhhBidding Agent

ICA Format
CreditDebit dVSV iBundle(3) iBundle(2) ALPSm Clock VCG

BestResponse Efficiency 100.00 100.00 100.00 99.90 98.64 95.16 100.00
Rev. Auctioneer 83.45 84.57 84.61 83.88 84.09 87.05 83.17
Rev. Bidders 16.55 15.43 15.39 16.01 14.55 8.10 16.83
Rounds 139.96 137.90 151.28 149.26 72.56 28.76 1.00

Forgetful Efficiency 99.92 99.78 100.00 99.92 98.64 96.35
Rev. Auctioneer 81.73 85.28 84.73 83.88 84.11 88.02
Rev. Bidders 18.19 14.51 15.27 16.03 14.54 8.30
Rounds 550.54 545.30 329.68 237.20 72.26 29.52

Level10 Efficiency 90.00 90.05 89.71 90.12 91.12 86.67
Rev. Auctioneer 72.10 72.29 72.34 71.55 72.25 76.46
Rev. Bidders 18.12 17.97 17.58 18.72 19.01 10.30
Rounds 82.38 82.00 133.22 130.96 128.88 26.06

Powerset10 Efficiency 90.50 89.67 98.48 99.20 99.57 97.27
Rev. Auctioneer 23.10 71.53 82.93 82.14 87.65 94.09
Rev. Bidders 67.33 18.22 15.55 17.02 11.91 3.20
Rounds 1525.44 1519.58 979.18 283.46 24.94 25.30

Preselect20 Efficiency 98.24 98.24 98.24 97.56 91.51 92.07
Rev. Auctioneer 76.26 79.55 79.27 78.69 76.35 84.65
Rev. Bidders 21.94 18.64 18.92 18.79 15.07 7.39
Rounds 147.18 141.32 146.34 145.62 61.76 28.32

5of20 Efficiency 76.09 73.68 98.94 97.51 99.29 98.18
Rev. Auctioneer 22.11 52.16 82.03 83.55 87.88 94.19
Rev. Bidders 54.07 21.56 16.88 14.02 11.40 4.00
Rounds 3183.12 3058.88 1860.88 524.04 27.44 25.60

Table 6.12: Robustness in Real Estate 3x3 Value Model

Interestingly, we found a similar pattern in the results for all value models.
We repeated the same tests with Pairwise Synergy Low and Pairwise Synergy
Zero value models, where the synergy level was lower and in some cases neg-
ative (subadditive valuations), and with Real Estate 4x4 value model. These
modifications led to similar results.

Only the Transportation value model was different with respect to its better
robustness against Preselect20 bidding. The main reason is the low number of
bundles with significant competition, which is due to the underlying topology
of transportation networks and the fact that only a few bundles are of interest
to every bidder. For the same reason, Level10 bidders could successfully collude
and significantly increase their payoff.

Below we describe the main findings for every type of the bidding strategy, for
the case when all bidders in the auction follow it.
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hhhhhhhhhhhBidding Agent

ICA Format
CreditDebit dVSV iBundle(3) iBundle(2) ALPSm Clock VCG

BestResponse Efficiency 100.00 100.00 100.00 100.00 99.65 99.53 100.00
Rev. Auctioneer 89.63 90.53 90.46 90.47 89.81 92.83 89.60
Rev. Bidders 10.37 9.47 9.54 9.53 9.85 6.69 10.40
Rounds 204.44 202.96 154.96 154.82 68.70 31.68 1.00

Forgetful Efficiency 99.81 99.65 100.00 99.99 99.65 99.56
Rev. Auctioneer 88.31 91.04 90.41 90.54 89.92 92.97
Rev. Bidders 11.50 8.63 9.59 9.45 9.73 6.58
Rounds 715.40 712.26 333.48 243.32 68.60 31.86

Level10 Efficiency 98.40 98.41 98.48 98.47 97.21 94.46
Rev. Auctioneer 88.38 88.78 88.82 88.80 88.08 86.90
Rev. Bidders 10.03 9.64 9.67 9.68 9.14 7.59
Rounds 150.16 149.44 150.28 150.10 117.74 33.66

Powerset10 Efficiency 96.01 95.91 99.16 99.55 99.75 99.51
Rev. Auctioneer 35.82 87.06 89.01 89.98 92.28 98.19
Rev. Bidders 60.18 8.85 10.15 9.57 7.47 1.31
Rounds 1353.50 1352.36 650.24 192.60 29.34 31.24

Preselect20 Efficiency 85.80 85.80 85.80 85.80 82.75 85.21
Rev. Auctioneer 79.47 79.91 79.97 79.98 77.07 82.30
Rev. Bidders 6.35 5.90 5.84 5.84 5.70 2.91
Rounds 230.90 230.06 138.54 138.46 48.14 30.56

5of20 Efficiency 85.33 85.40 98.70 98.15 99.40 99.35
Rev. Auctioneer 25.97 60.64 88.86 88.85 92.87 97.92
Rev. Bidders 59.37 24.78 9.84 9.30 6.53 1.41
Rounds 2551.94 2544.98 1261.50 338.50 31.86 31.34

Table 6.13: Robustness in Pairwise Synergy High Value Model

6.5.1.1 BestResponse Bidder

Theory states that iBundle(3) and dVSV auctions always terminate with core
results, given best-response bidding strategies. However, the BSM condition
needs to be satisfied so that they also achieve VCG prices. Otherwise the final
payments might be higher than the VCG prices. The CreditDebit auction
calculates VCG discounts throughout the auction and is able to achieve VCG
payments for general valuations and best-response bidding.

Our computational experiments with BestResponse bidders yield outcomes in
line with the theory. All non-linear price auctions are efficient. iBundle(3) and
dVSV achieve VCG outcomes only when the BAS condition is satisfied. When
BAS is not satisfied, iBundle(3) and dVSV formats result in higher prices.
In Transportation Small value model we observe cases where the prices are
up to 250% higher than in the VCG auction (see Appendix A, Figure A.10),
whereas in the Real Estate 3x3 and Pairwise Synergy High value models, the
price increase is low (see Appendix A, Figures A.4 and A.7).

The CreditDebit auction always results in VCG prices, as the theory predicts.
Clearly, this comes at a cost of eliciting all losing valuations throughout the
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hhhhhhhhhhhBidding Agent

ICA Format
CreditDebit dVSV iBundleP iBundleA ALPSm Clock VCG (tr)

BestResponse Efficiency 100.00 100.00 100.00 99.99 99.55 99.48 100.00
Rev. Auctioneer 56.13 66.93 65.43 65.36 65.92 77.10 55.49
Rev. Bidders 43.87 33.07 34.57 34.63 33.60 22.41 44.51
Rounds 216.78 205.18 78.66 78.02 32.24 29.64 1.00

Forgetful Efficiency 99.47 99.60 99.93 99.97 99.55 99.58
Rev. Auctioneer 51.38 67.88 65.55 65.81 65.92 77.10
Rev. Bidders 48.10 31.76 34.35 34.15 33.60 22.48
Rounds 434.96 414.70 124.84 106.90 32.24 29.74

Level10 Efficiency 84.95 85.06 83.64 84.01 83.96 84.56
Rev. Auctioneer 23.13 26.56 26.36 26.30 27.65 37.05
Rev. Bidders 61.92 58.46 57.31 57.70 56.19 47.36
Rounds 60.56 56.06 40.14 39.38 19.62 14.02

Powerset10 Efficiency 91.33 91.73 97.28 97.26 99.78 97.39
Rev. Auctioneer 2.47 56.09 58.94 59.95 72.56 88.60
Rev. Bidders 88.80 35.52 38.19 37.20 27.18 8.82
Rounds 312.56 311.36 154.06 93.36 19.80 25.00

Preselect20 Efficiency 99.80 99.80 99.80 99.80 99.52 99.24
Rev. Auctioneer 55.40 66.51 65.24 65.24 66.44 76.77
Rev. Bidders 44.39 33.28 34.56 34.56 33.06 22.50
Rounds 217.24 205.62 78.64 78.12 32.56 29.88

5of20 Efficiency 84.14 84.50 96.24 96.10 99.75 97.73
Rev. Auctioneer 6.06 54.98 59.04 59.59 73.82 88.35
Rev. Bidders 78.26 29.75 37.10 36.43 25.90 9.33
Rounds 789.24 788.24 268.62 158.12 21.20 25.08

Table 6.14: Robustness in Transportation Small Value Vodel

auction, and consequently 2-3 times more auction rounds than linear price
auctions (see Section 6.5.3). iBundle(2) does not result in an efficient outcome
for some instances, but these occasions are rare and the loss of efficiency is
generally very low.

In the linear-price auctions (ALPSm and CC) the BestResponse bidder is less
efficient than in the non-linear price auctions. Still, their efficiency is 95.16%
and 98.64% on average for the Real Estate 3x3 value model, and even more
than 99% for the Pairwise Synergy High and the Transportation Small value
models. It is important to note that with the BestResponse bidder, we have
cases with ALPSm and CC auctions where efficiency is as low as 70% in the
Real Estate 3x3 value model (Section 6.6). If bidders follow the best-response
strategy in ALPS and the CC auction, it can happen that they do not reveal
certain valuations that would otherwise be part of the efficient solution (Bichler
et al., 2009). In the presence of activity rules, the bidders are forced to bid on
more than just their demand set. This has a positive effect on the robustness
of the ALPSm format, as we will see when we discuss Powerset10 bidders.
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6.5.1.2 Forgetful Bidder

Non-linear price auctions are fairly robust against Forgetful bidders, and the
efficiency losses are low. Only the number of auction rounds increases signif-
icantly across all value models. For example, the CreditDebit auction takes
on average 139.96 auction rounds in the Real Estate 3x3 value model with
BestResponse bidders and 550.54 rounds with Forgetful bidders. Interest-
ingly, the linear price auctions are hardly impacted at all compared to the
best-response bidding strategy. The average number of auction rounds also
remains almost the same.

6.5.1.3 Level10 Bidder

The Level10 bidder is collusive and intends to exploit the termination rule
of non-linear price auctions. As expected, such bidding generally leads to an
efficiency loss. In the Real Estate 3x3 value model, efficiency drops to around
90% in all auction formats and the auctioneer revenue is also significantly lower
(t-test, α = 0.05). In the Transportation Small value model, this strategy is
very successful for bidders. Here, the Level10 bidder achieves a significantly
higher revenue than a BestResponse bidder, albeit at the expense of efficiency,
which drops to around 84% on average. For the Transportation Small value
model, the competition is focused on a small number of items or legs in the
transportation network and it is more likely that a valid allocation is found
earlier when all bidders follow the Level10 bidding strategy.

In the CreditDebit auction, the high bidders’ revenue can be explained by the
fact that discounts are overestimated due to the bid shading in the Level10
strategy. In all auction formats, however, there are also instances in which
the auctioneer gains more and the bidders gain less compared to the best-
response bidding strategy. So, this strategy works only in an expected sense if
all bidders adhere to it. It does not represent a stable equilibrium.

6.5.1.4 Powerset10 Bidder

This agent submits bids on ten bundles with the highest payoff in each round.
For iBundle(2), iBundle(3), dVSV, and CreditDebit auctions, this strategy
leads to a significant decrease in efficiency compared to the best-response strat-
egy (t-test, α = 0.05). For iBundle auctions the efficiency loss is lower than
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for dVSV and CreditDebit auctions. Both these formats are based on price
calculation using a minimally undersupplied set, which appeared to be less
robust against non-best-response bidding.

In contrast, the efficiency and auctioneer revenue share of ALPS auctions is
equal or higher compared to the best-response strategy in all value models.
The number of rounds is significantly reduced at the same time. The CC
auction performs well in homogenous markets, modeled by Real Estate 3x3
and Pairwise Synergy High value models. Typically, these linear-price auctions
are used with strong activity rules to encourage the revelation of many bundle
preferences already in the early rounds of an auction, which might lead to a
similar strategy with bidders in the field.

6.5.1.5 Preselect20 Bidder

The Preselect20 bidder also follows the best-response strategy, but only on
the set of the 20 bundles with highest valuations. As a consequence, the
auction cannot find efficient outcomes in instances where the omitted bundles
are included in the efficient solution. In the Transportation Small value model
this strategy has little effect on efficiency compared to best-response bidding,
since there is only a small number of interesting bundles for every bidder
in this case. In other value models we can see a significant decrease in all
measurements.

6.5.1.6 5of20 Bidder

This Random agent bids on 5 of his 20 best bundles, modeling a bidder with
bounded rationality. This leads to significant efficiency losses in all non-linear
price auctions (see Figure A.6). We observe the highest efficiency loss for dVSV
and CreditDebit auctions. The reason for the low revenue of CreditDebit
auction is again that discounts are miscalculated if not all bundle bids are
available at the end. In addition, the more complex price update rule is less
robust against non-best-response bidding.

6.5.2 Auctions with Different Bidding Strategies

We conducted another set of auctions using Real Estate 3x3 and Transporta-
tion Small value models to measure the effect of one single bidder deviating
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from the best-response strategy while the rest adhere to it. For each setting,
we ran 50 auctions using iBundle(3), iBundle(2) and ALPSm formats.

The results follow the same pattern over all three ICA formats and both value
models. The allocative efficiency is not impacted, except that just a single
Level10 bidder reduces the efficiency significantly. The Level10 bidder also
suffers highest loss of 46% of his revenue, followed by the Preselect20 bidder,
who has only a minor revenue loss of less than 5%. This indicates that the
equilibrium which brings significant increase in revenue to Level bidders when
all bidders follow this strategy is not stable. All other bidder types do not
change the auction outcome significantly.

The results are visualized in Figure A.13 and Figure A.14 in Appendix A.

6.5.3 Auction Duration

CC auction has the lowest number of rounds in all treatments. Since
iBundle(3), dVSV, and CreditDebit mechanisms elicit all losing valuations
throughout the auction, the number of auction rounds can become very high
for them. On average, non-linear price auctions take three times as many
rounds as linear-price based auctions. In contrast to the theory, which expects
a lower number of auction rounds in dVSV compared to iBundle(3), we observe
an even higher number of auction rounds in dVSV. This happens because the
minimally undersupplied set is not unique and in our simulations we use the
smallest possible minimally undersupplied, which results in small price steps.
For the same reason, non-best-response strategies cause the highest increase in
rounds for dVSV and CreditDebit auctions, compared to other formats. The
speed of convergence of these two formats can be improved by increasing prices
on several disjunct minimally undersupplied sets in every round.

6.5.4 Impact of Competition Level

Auctions are expected to yield more auctioneer revenue if there is more com-
petition. Table 6.15 presents results of different auction formats using Real
Estate 3x3 value model and a varying number of bidders. Each number rep-
resents an average of 10 auctions with the same setting and different random
seeds for the value model.
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Figure 6.13: Average Number of Auction Rounds

hhhhhhhhhhhBidding Agent

ICA Format
iBundle(2) iBundle(3) dVSV CreditDebit Clock ALPS m VCG (tr)

4 bidders Efficiency in % 99.74 100.00 100.00 100.00 96.69 95.88 100.00
BAS fulfilled Rev. Auctioneer 78.49 80.34 80.34 79.96 84.17 73.82 79.96
100 % Rev. Bidders 21.25 19.66 19.66 20.04 12.52 22.06 20.04

Rounds 195.84 201.46 83.40 83.40 35.66 103.06 1.00

5 bidders Efficiency in % 99.94 100.00 100.00 100.00 96.52 95.06 100.00
BAS fulfilled Rev. Auctioneer 84.48 84.94 84.94 83.16 88.09 77.27 83.16
90 % Rev. Bidders 15.46 15.06 15.06 16.84 8.43 17.79 16.84

Rounds 148.96 150.10 143.72 146.28 31.14 68.92 1.00

6 bidders Efficiency in % 99.91 100.00 100.00 100.00 94.74 97.06 100.00
BAS fulfilled Rev. Auctioneer 87.00 87.20 87.39 85.42 88.04 82.44 85.42
50 % Rev. Bidders 12.91 12.80 12.61 14.58 6.69 14.62 14.58

Rounds 132.58 133.42 207.10 209.62 30.68 61.86 1.00

7 bidders Efficiency in % 99.89 100.00 100.00 100.00 94.35 96.98 100.00
BAS fulfilled Rev. Auctioneer 88.29 88.61 88.79 86.38 87.94 84.45 86.38
40 % Rev. Bidders 11.59 11.39 11.21 13.62 6.41 12.54 13.62

Rounds 122.06 122.82 271.46 274.54 29.92 52.58 1.00

Table 6.15: Impact of Competition Level on Different ICAs

We observe the expected behavior in non-linear price auctions and in ALPSm
design. The average revenue share in CC auctions decreases from 5 to 7 bid-
ders. Linear price-based auctions and the iBundle design show a lower number
of rounds with an increasing number of bidders. In contrast, the dVSV and
CreditDebit auctions show a massive increase of rounds. This is explained by a
different price update mechanism. The iBundle design, which increases prices
for all unhappy bidders, generally increases more prices when the competition
is higher. The dVSV and CreditDebit auctions, which increase prices for a
minimally undersupplied set of bidders, can find a smaller minimally under-
supplied set (typically with only one bidder) when the competition increases,
and therefore increase prices for fewer bundles in each round.
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6.5.5 Impact of BAS

We have discussed that if the BSM property is satisfied, non-linear price auc-
tions lead to Vickrey prices (Section 2.4.2.1). Due to computational reasons,
we have restricted ourselves to analyzing the somewhat weaker BAS condition
only.

hhhhhhhhhhhhRevenue
ICA Format

iBundle(2) iBundle(3) dVSV CreditDebit Clock ALPSm

Min in % of VCG 98.86 100.00 100.00 100.00 102.40 86.68
Mean in % of VCG 99.87 100.00 100.00 100.00 107.51 97.25
Max in % of VCG 101.72 100.00 100.00 100.00 120.81 116.51

Table 6.16: Revenue in Real Estate Value Model with BAS Fulfilled

hhhhhhhhhhhhRevenue
ICA Format

iBundle(2) iBundle(3) dVSV CreditDebit Clock ALPSm

Min in % of VCG 96.55 100.52 100.52 100.00 95.71 84.56
Mean in % of VCG 102.48 103.31 103.30 100.00 111.39 98.61
Max in % of VCG 112.34 111.69 111.69 100.00 127.99 119.25

Table 6.17: Revenue in Real Estate Value Model with BAS Not Fulfilled

Figure 6.14: Impact of BAS on Revenue in Real Estate Value Model

We created a setup based on the Real Estate 3x3 value model, where the
BAS condition was fulfilled in approximately half of the randomly generated
instances, with all agents following the best-response strategy. The results are
summarized in Tables 6.16 and 6.17, as well as in Figures 6.14. and 6.15.
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Figure 6.15: Impact of BAS on Revenue in Transportation Value Model

As expected, prices and consequently auctioneer revenue in non-linear price
auctions is higher than the VCG outcome for samples without BAS property.
For ALPSm auctions, there is no significant difference.

6.6 Inefficiences in Linear-Price ICAs

While the efficiency of linear-price ICAs in our experiments was generally
high, it is important to understand those cases where the final allocation is
not optimal. We have analyzed all instances of auctions in Real Estate and
Pairwise Synergy value models where efficiency was particularly low (90% and
below). We have focused on ALPSm and CC designs with disabled eligibility
rules to isolate the negative impact of linear prices from inefficiencies due to
activity rules. Here, only BestResponse bidders were used.

In all situations with an efficiency of less than 90% the auctioneer does not
sell all items, as compared to an efficient allocation. These situations happen
rarely in Real Estate value models, and even less so in Pairwise Synergy value
models, as can be seen in Figures 6.4 and 6.6. Whenever all items are sold, the
allocative efficiency is always higher than 98%. Two small examples in Tables
6.18 and 6.19 illustrate structural characteristics of valuations which can lead
to inefficiencies in ICAs with linear prices and best-response bidding.

The example in Table 6.18 illustrates a scenario with three items A, B, C
and four bidders. The efficient allocation is marked with asterisks. In this
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Valuations A B C AB AC BC ABC
Bidder1 9*
Bidder2 2*
Bidder3 10
Bidder4 10

Table 6.18: Example of Inefficiencies in ALPSm

example, the ALPSm design selects the bid of bidder 4 on bundle {B,C} and
leaves the item A unsold. The distinguishing property of these valuations is
the set of mutually exclusive bundle valuations {A,B} and {B,C}, none of
which belongs to the efficient allocation. During the auction bidders 3 and
4 drive up the prices, which blocks other bidders from submitting their true
valuations. Interestingly, the auction outcome in this case is sensitive to start
prices. The ALPSm outcome was efficient for item start prices of 1.3 and 1.9,
but was not efficient for all other values from 0 to 2.0 in 0.1 steps and 0.1
minimum bid increments. CC design was always efficient in this example.

Valuations A B C AB AC BC ABC
Bidder1 20* 60
Bidder2 61*
Bidder3 50 50

Table 6.19: Example of Inefficiencies in CC

The second example in Table 6.19 illustrates a set of valuations where CC
design leads to an inefficient allocation. It allocates the item A to bidder 2,
while both items B and C remain unsold. Note that the high valuation of
bidder 1 on the bundle {A,B,C} dominates the bundle {B,C}. At the time
when bidder 2 overbids him, the prices are already too high on all items,
which prevents bidder 1 from submitting bids on the bundle {B,C}. Again,
all bidders follow the best-response strategy in this case. ALPSm design always
terminates with the efficient allocation in this example.

One possibility to mitigate the remaining inefficiencies in ALPS and CC designs
is to ask bidders to submit single-item bids before the auction. However, this
still does not guarantee 100% efficiency, since there might be no demand for
some of the individual items. A better solution would be to auction off the
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goods that have been unsold in an after-market, which can be added to the
auction transparently for the bidders.

Another alternative is the addition of a second phase with an Ascending Proxy
Auction, as suggested in the Clock-Proxy auction (Ausubel et al., 2006), with
suitable eligibility rules. Without eligibility rules, if the bidders can submit
any additional bids to the final prices of the first stage, the auction can be
always efficient with truthful bidders. However, both the eligibility rules are
necessary to encourage active participation during the first linear-price auction
phase. The impact of different eligibility rules on the allocative efficiency in a
two-stage auction, and optimal bidding strategies in these auction designs, is
still an open question in the auction theory.
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Chapter 7

Conclusions and Future Work

The science of today is the
technology of tomorrow.

Edward Teller

The main contribution of this thesis is the new ALPS iterative combinatorial
auction (ICA) format, designed for practical applicability and robustness. It
was created based on thorough analysis and comparison of existing CA designs,
iteratively formulating and testing new auction rules which shall improve the
auction outcome. In particular, this work is the first detailed benchmark of two
big ICA families: linear-price and non-linear price designs. In our experiments,
the ALPS format demonstrates high indices in performance and robustness.
Ultimately, we expect to see an evolution of standard software components and
standard designs for combinatorial auctions that work well in a wide variety
of bidder valuations and bidding strategies.

The idea of using combinatorial auctions (CAs) for capturing economies of
scale and scope and thus achieving better economical results in complex mar-
kets was first suggested by Rassenti et al. (1982) for allocating airport slots.
Much publicity and academic attention have been attracted by the US Federal
Communication Commission (FCC) spectrum multi-lot auctions (Goeree and
Holt, 2008). Recently, several cases have demonstrated the applicability of
combinatorial auctions in industrial procurement (Hohner et al., 2003; Metty
et al., 2005; Sandholm and Begg, 2006). However, each of these cases required
significant research and engineering work, and combinatorial auctions are still
far from being a mainstream tool.
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We have chosen computational experiments to be the main research tool in
our work. The game-theoretical approach, which has been used extensively to
model single-item auctions, has only limited applicability in the context of com-
binatorial auctions due to their high strategic complexity. Furthermore, there
are strong indications that the bidders fail to act rationally in their exponential
strategic space. Experimental economics, which is another proven approach
to the studying of market mechanisms, has delivered only very limited results
to date, due to the high complexity and cost of laboratory experiments with
combinatorial auctions.

Computational experiments allowed us to systematically test and compare
many combinatorial auction designs under different valuations and different
bidder behavioral models. We could also measure their sensitivity with respect
to different parameters. To achieve reliable results, our experiments are based
on a broad range of economically motivated value models and bidding agents
with different behavior, based both on theoretical assumptions and on our
observations in the laboratory. Overall, this thesis summarizes outcomes of
over 50’000 auctions. An important result of our work is the MarketDesigner
platform for combinatorial auctions, which was a significant investment, and
is a joint effort together with several colleagues and many students.

We decided to use for our design an iterative mechanism which can mitigate the
exponential complexity of bidders’ decisions using prices and other feedback.
Furthermore, there is evidence that iterative formats perform better in markets
with affiliated valuations (Milgrom and Weber, 1982; Porter et al., 2003).

An important decision was the selection of the price format for the new ICA.
Non-linear personalized price format is required in the general case to cal-
culate minimum competitive equilibrium prices, which are optimal from the
game-theoretical perspective. Furthermore, only non-linear price auctions can
guarantee – based on strong assumptions on bidders – a certain level of auction
efficiency. However, using non-linear prices means supplying every bidder with
exponentially many prices, which significantly complicates his decisions.

We have selected pseudo-dual linear prices for several reasons. There are only
as many prices as there are items in the auction, which makes them easy
to understand and use for bidders. Especially important is that the bidders
can easily find new profitable bundles during the auction. The approximated
nature of linear prices appeared not to be a big problem in the end, since even
the non-linear prices are precise only under the ceteris paribus condition, when
no other bidders are active in the auction.
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Furthermore, our experiments demonstrate that linear-price ICAs have several
advantages over non-linear price formats. They usually require only a fraction
of rounds to terminate, compared to the non-linear price designs. Linear-price
auctions are much more robust with respect to suboptimal bidding behavior.
Several authors suggested proxy agents to mitigate this problem of non-linear
price auctions which, however, effectively turns them into sealed-bid auctions,
thus eliminating most advantages of an iterative design.

ALPS uses pseudo-dual rather than tâtonnement, like in Combinatorial Clock,
linear prices. Our experiments indicate that pseudo-dual prices result in fairer
revenue distribution, and consequently will provide better incentives for truth-
ful bidding.

The ALPS ICA format has a high allocative efficiency of over 98% on average
in every value model, provided that bidders reveal enough information about
their valuations. It demonstrates highest robustness with respect to the bundle
selection strategy compared to all other ICA formats in our benchmark. It has
several practice-oriented features which further improve its performance. The
dynamic minimum increment can halve the auction duration without sacrific-
ing the efficiency. The surplus eligibility rule can mitigate the negative effect
of activity rules in the auction.

While the ALPS format achieves high efficiency values on average, we have
identified and described cases where linear price CAs are not efficient. There
are a few remedies, such as the proxy phase in the Clock-Proxy auction or
after-market negotiation on unsold items.

7.1 Future Work

The project itself is not completed with this thesis. We have been using the
MarketDesigner platform to conduct laboratory experiments and to run pilot
projects with industry partners. We have established contacts and are work-
ing on cooperations with leading researchers in this field. Research into new
combinatorial auction rules and designs will continue.

From our robustness analysis we can see that the most critical point for the
performance of a combinatorial auction is the ability of bidders to grasp the
market situation and to find the most profitable bundles. Therefore, an im-
portant research direction is to improve support for bidders in combinatorial
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auctions. This includes the development of new bidding languages, which help
bidders to express their valuations more easily.

Using the MarketDesigner software, we are currently planning and conducting
laboratory experiments with students in order to study how the auction size
affects the ability of bidders to make correct decisions. Based on empirical
observations in the laboratory, we plan also to implement new software bidding
agents and use them in further computational experiments.

Allocation rules which are often required in procurement auctions present an-
other important research direction. An open question is how they impact
iterative auctions, and how the prices and other feedback must be adopted in
their presence.
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Appendix A

Additional Charts on
Robustness Analysis

This Appendix contains additional charts illustrating robustness of various
ICA formats against strategic and suboptimal bidding. Figures A.1 to A.3
summarize the results on allocative efficiency and revenue distribution in a
concise way. The black bars describe the auctioneer’s revenue, the grey bars
the bidders’ revenue, and the white bars the lost efficiency. Based on three
selected value models, we plotted six diagrams for six different auction formats.
Each diagram describes the results for BestResponse bidders (BR), Forgetful
bidders (FB), Powerset10 bidders (PS10), Random 5of20 bidders (5SUB20),
and Preselect20 bidders (PRE20). A more detailed view in form of scatter
plots can be found in Figures A.4 to A.12.

Figures A.13 and A.14 visualize the revenue distribution in auctions where
one single bidder deviates from the best-response strategy, while all other
bidders adhere to it. Here, the light grey bars correspond to the revenue of
the single bidder who changes his strategy, and the dark grey bars to the
cumulative revenue of all other bidders, who follow the best-response strategy
in all auctions.
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Figure A.1: Revenue Distribution in Real Estate Value Model

Figure A.2: Revenue Distribution in Pairwise Synergy Value Model
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Figure A.3: Revenue Distribution in Transportation Value Models

(a) BestResponse (b) Forgetful

Figure A.4: BestResponse and Forgetful Bidders in Real Estate VM
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(a) Level10 (b) Powerset10

Figure A.5: Level10 and Powerset10 Bidders in Real Estate VM

(a) Preselect20 (b) Random 5of20

Figure A.6: Preselect20 and 5of20 Bidders in Real Estate VM
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(a) BestResponse (b) Forgetful

Figure A.7: BestResponse and Forgetful Bidders in Pairwise Synergy VM

(a) Level10 (b) Powerset10

Figure A.8: Level10 and Powerset10 Bidders in Pairwise Synergy VM
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(a) Preselect20 (b) Random 5of20

Figure A.9: Preselect20 and 5of20 Bidders in Pairwise Synergy VM

(a) BestResponse (b) Forgetful

Figure A.10: BestResponse and Forgetful Bidders in Transportation VM
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(a) Level10 (b) Powerset10

Figure A.11: Level10 and Powerset10 Bidders in Transportation VM

(a) Preselect20 (b) Random 5of20

Figure A.12: Preselect20 and 5of20 Bidders in Transportation VM
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Figure A.13: Sensitivity to Bidding Strategies with BestResponse Base Bidders in
Real Estate 3x3 Value Model

Figure A.14: Sensitivity to Bidding Strategies with BestResponse Base Bidders in
Transportation Small Value Model
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List of Symbols

K - set of items

k ∈ K, also l ∈ K - item

m - number of items

S ⊆ K, also T ⊆ K - subset of items (bundle, package)

I - set of bidders

i ∈ I, also j ∈ I - bidder

I ⊆ I - subset of bidders

n - number of bidders

t - round number

Bt = {bti(S)} - set of bids active after the round t

bti(S) = {S, ptbid,i(S)} ∈ Bt - bid of the bidder i for the bundle S active after
the round t

ptbid,i(S) ∈ Bt - bid price of the bid bti(S)

P task = {ptask,i(S)} or {ptask(S)} or {ptask(k)} - set of ask prices valid during
the round t

ptask,i(S) - personalized bundle ask price for the bidder i and bundle S valid
during the round t
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ptask(S) - anonymous bundle ask price for the bundle S valid during the round t

ptask(k) - anonymous linear ask price for the item k valid during the round t

∆t - price increment valid during the round t or used for the price update from
the round t to the round t+ 1

vi(S) - private valuation of the bidder i for the bundle S

Ppay = {ppay,i(S)} - set of pay prices

ppay,i(S) - pay price for the bidder i and bundle S

πi(S,Ppay) - utility of the bidder i for the bundle S at the pay prices Ppay

X = {X} - set of all possible allocations

X = (S1, . . . , Sn) = {xi(S)} - allocation where bidder i gets bundle Si

Si ⊆ K - bundle allocated to the bidder i

xi(S) ∈ {0; 1} - binary variable which determines, whether the bidder i be-
comes allocated exactly the bundle S

πi(X,Ppay) - utility of the bidder i for the allocation X at the pay prices Ppay

πall(X,Ppay) - total bidder utility for the allocation X at the pay prices Ppay

Π(X,Ppay) - auctioneer revenue for the allocation X at the pay prices Ppay

X∗ = (S∗1 , . . . , S
∗
n) = {x∗i (S)} - efficient allocation

X t - provisional allocation calculated on the basis of the bids active in the
round t

W t - set of provisionally winning bids in the allocation X t

Lt - set of provisionally losing bids in the allocation X t

E(X) ∈ [0, 1] - allocative efficiency of the allocation X

R(X) ∈ [0, E(X)] - auctioneer utility share in the allocation X

U(X) ∈ [0, E(X)] - total bidder utility share in the allocation X

CI - coalition consisting of the bidders I ⊆ I and the auctioneer
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w(CI) - coalitional value function on the coalition CI

(Π, π) - payoff vector

Core (I, w) - set of core payoffs

δi(S) - linear price compatibility distortion of the bid bi(S)

Di(Ppay) - demand set of the bidder i at the prices Ppay

eti - eligibility of bidder i in round t

ebti - bound eligibility of bidder i in round t

euti - unbound eligibility of bidder i in round t

et+,i - surplus eligibility of bidder i in round t

rbvti - round bid volume of bidder i in round t

tbvi - total bid volume of bidder i
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List of Abbreviations

ALPS Approximate Linear PriceS

AUSM Adaptive User Selection Mechanism

BAS Bidders Are Substitutes condition

BSM Bidder Submodularity condition

CAP Combinatorial Allocation Problem

CA Combinatorial Auction

CATS Combinatorial Auction Test Suite

CC Combinatorial Clock auction

CE Competitive Equilibrium

FCC Federal Communication Commission

GAS Goods Are Substitutes condition

IBIS Chair of Internet-based Information Systems at the Technische Univer-
sität München (Munich, Germany)

ICA Iterative Combinatorial Auction

ILP Integer Linear Program

IS Information Systems
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ISR Information System Research Journal

LP Linear Program

MBL Matrix Bidding Language

NP Non/deterministic Polynomial time

OR additive-OR (bidding language)

PAUSE Progressive Adaptive User Selection Environment

PEP Preference Elicitation Problem

RAD Resource Allocation Design

SMR Simultaneous Multi-Round Design

TBBL Tree-Based Bidding Language

TUM Technische Universiät München

VCG Vickrey-Clarke Groves mechanism

UCE Universal Competitive Equilibrium

VM Value Model

WDP Winner Determination Problem

XOR exclusive-OR (bidding language)
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