
A MULTI-AGENT FRAMEWORK
FOR A HYBRID DIALOG MANAGEMENT SYSTEM

Stefan Schwärzler, Joachim Schenk, Günther Ruske and Frank Wallhoff

Institute for Human-Machine Communication
Technische Universität München, Germany

{sts,joa,rus,waf}@mmk.ei.tum.de

ABSTRACT

The importance of dialog management systems has increased
in recent years. Dialog systems are created for domain spe-
cific applications, so that a high demand for a flexible dialog
system framework arises. There are two basic approaches
for dialog management systems: a rule-based approach and a
statistic approach. In this paper, we combine both methods
and form a hybrid dialog management system in a scalable
agent based framework. For deciding of the next dialog step,
two independent systems are used: the Java Rule Engine
(JESS) as expert system for rule-based solutions, and the
Partially Observable Markov Decision Process (POMDP) as
model-based solution for more complex dialog sequences. Us-
ing a speech recognizer and text-to-speech systems, the hu-
man can be guided through a dialog with approximately ten
steps.

Index Terms— dialog management, hybrid framework

1. INTRODUCTION

For a spoken dialog system, one can distinguish between six
task areas. Depending on the system, these areas are more or
less developed, and often their transitions are fluent [1]. The
speech recognizer recognizes spoken phonemes and returns a
sequence of words according to a lexicon. The sentence anal-
ysis (parsing) assigns a meaning to this sequence and exports
the ordered, relevant information in any system language [2].
The dialog management determines the dialog strategy and
thus, how the system responds to the user’s input. During the
communication with external sources, the information is writ-
ten to or read from databases. The generation of responses is
virtually the opposite of the sentence analysis and translates
words from the system language into a sequence of words that
the user understands. An audio output, e. g. realized by a
text-to-speech system, converts this sequence of words via a
speech synthesis. All components are depicted in Fig. 1.

To ensure flexibility, it is important to define an accurate
interface between the components. Besides the input/output
modules, which e. g. embed programs [3, 4], the flexibility in
the dialog management is also of importance. In general, we
distinguish between two different approaches: rule-based and
model-based systems. In addition to the rules, facts are de-
fined in rule-based systems [5]. These systems are especially
suitable for simple dialog structures and rapid prototyping
of a dialog management system. Trindikit [6] is a toolkit,
which includes information states and update rules. In addi-
tion, the dialog transitions can be defined and tested. It is

Fig. 1. Components of a speech dialog system.

based on the open agent architecture standard [7], but has
limitations; there is no directory facilitator and all agents
have to run on the same machine.

Furthermore, depending on the user scenario, a di-
alog management system performs better, with a rule-
based expert system or a model-based statistical approach.
Model-based approaches use information from the semantic
parser [2], the dialog history, and from a domain-specific
dialog corpus. In [8] a mathematical model to describe dialog
strategies, the Partially Observable Markov Decision Process
(POMDP), is detailed.

This paper presents an agent-based system architecture,
whose agents communicate with external programs via both
a server and an interface, which is able to change the dialog
strategy in a rule- or model-based manner during its runtime.
The rule-based method, which is implemented with JESS [5],
and the POMDP-model [8] can be processed in this frame-
work.

The rest of this paper is organized as follows: After this
introduction, which presented agent based frameworks in the
dialog management domain, in the next section, the required
I/O agents are listed, and the dialog management methods
are described with specific examples. A descriptive appli-
cation system architecture describing the modules is listed in
Sec. 3. After the implementation of the architecture, the trea-
tise closes in Sec. 4 with a summary and additional modalities
to be added in future work.

2. AGENT BASED FRAMEWORK

Programs, which are capable of a certain autonomous behav-
ior, are known as agents [9]. Their behavior is such that for
every possible consequence of perception they maximize their

958978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

own success. Their activities are based on the perceptions and
the existing knowledge. In our case, the perceptions are the
semantic slots from the speech recognizer, which are inter-
preted as described in [2]. According to [10], agents have the
following relevant characteristics:

autonomous to certain extend, agents may keep their own
control over their own action, their thread, and their
decision-making.

proactive agents not only react to events, they can even
take a targeted initiative, if it is appropriate.

social agents communicate with each other; they can share
their tasks and results.

With the Java Agent Development Framework (JADE) (see
[10]), we use a toolkit that supports peer-to-peer applica-
tions. Besides the graphical user interface, JADE provides
further debug tools, e. g. Sniffer (see Fig. 2), Introspec-

tion Agent (see Fig. 3) and is based on the Open Agent

Architecture [7].

Fig. 2. The JADE Sniffer is a graphical tool to analyze the
agent communications.

Fig. 3. The JADE Introspection agent shows the agent sta-
tus and the queue of messages of the agents.

2.1. Expert Systems and Rule-Based Agents

In [5] a toolkit is used, which is based on a forward-chaining
algorithm and includes a knowledge-based system whose rules

are optimized using the RETE algorithm [11]. The required
facts come from the semantic decoding [2] of a speech recog-
nizer integrated into an input agent. Based on these facts, the
system can draw a conclusion based on rules after a triggering
event.

Algorithm 1 JESS [5] rules for air travelling information
system.

1: (defrule path-finder
2: (path ?X ?Y)
3: (path ?Y ?Z)
4: ⇒ (assert path ?X ?Z))
5: (defrule global rules
6: (available-ticket-to ?X
7: (?A ← (ordered-ticket-to ?X)
8: ⇒ (printout t “Searching of a flight to”)
9: (assert (given ?X))

10: (retract ?A)
11: (printout t Booking of a flight to ?X
12: (defrule global rules2
13: (not available-ticket-to ?X)
14: (?A ← (ordered-ticket-to ?X)
15: ⇒ (printout t “Searching of a flight to”)
16: (assert (given ?X))
17: (retract ?A)
18: (printout t “Searching flight to” ?X “is not available!”)

In Alg. 1, a flight route from X to Y is calculated re-
cursively (pathfinder). Then, a flight route to X is searched
for, and if possible, it is reserved. This example of book-
ing a flight contains rule-based processes and is particularly
suitable for expert systems (with database connection) and
rule-based agents.

2.2. Model-Based Agents

In [8], a model-based approach to dialog management is de-
scribed. The POMDP is a Markov Decision Process (MDP),
which will be extended in such a way that the states are not
observable. This is done in a similar way as for the Hidden
Markov Model (HMM), where the states of the Markov chain
are hidden and an observation is linked to the states with cer-
tain probabilities. In contrast to the MDP, the POMDP does
not know the current state with certainty. Hence, for each
state its probability is inferred based on the current obser-
vation. In contrast to the HMM, these are Markov decision-
making processes, where actions can be executed and change
their environment accordingly. The problem of a dialog man-
agement system means that the system itself can perform
certain actions, usually asking questions or producing results.
POMDPs are suitable to model this behavior. The POMDP
consists of a set of States S, a set of observations O, and a set
of actions A (see graphical model in Fig. 4). During a training
phase, these parameters are estimated and form a transition
matrix T = P (s′|am, s), which gives the probability of the
current state s′ subject to the condition of the previous state
s and the executed action am. During the training phase,
one determines the reward as a function of the state s and
the executed actions am in a reward matrix. The observation
matrix Z = P (o′|s′, am) reflects the observation conditioned
on the current state and the previous action. From all three
matrices generated during the training phase, T,R,Z, a pol-

959

icy is created. Later during operation, a suitable vector b can
be constructed from it. In addition to the policy, a geometric
discount factor λ is considered, which enhances the weight
of the rewards that are closer to future times. This factor
is important in agent-based systems, as a possible change of
topic and corrections could lead to infinitely long dialogs. For
initialization an additional belief state b0 is defined.

Fig. 4. Using POMDP [8] model for the management of
dialog strategies.

As shown in Fig. 4, during the operation phase the ap-
propriate action am is chosen according to the current state
belief bt, and the state will be changed to the next state s′.
There, an observation of semantic slots o takes place, and the
belief state bt is updated following Eq. 1, and where k is a
normalization factor.

b′(s′) = k P (o′|s′, am)
∑

s∈S

P (s′|am, s) b(s). (1)

Model-based agents are particularly suitable for more
complex dialog structures with a corresponding large train-
ing set from which the parameters of the model are estimated.
In this paper, we focus on the use of the POMDP model in
the dialog framework. The necessary training of this model
is described in [12].

2.3. Input/Output Agents

Input/output agents are used to communicate with external
programs. A speech recognizer [3] or a TTS system [4] can be
connected to the agent community via a Transmission Control
Protocol (TCP). The speech recognizer and speech-synthesis
generator provide the verbal communication with the user for
the whole agent system. The grammars for the correspond-
ing semantic decoding is adapted by other agents and sent
to the speech recognizer. In addition, other modalities e. g.
hand gestures recognition, head movements (shaking or nod-
ding) can be incorporated into the agent framework via the
input and output devices. Similarly, the external Matlab

scripts [13] are embedded in this agent class.

3. SYSTEM ARCHITECTURE

The system is designed such that many components can be
reused. In the generic agent, all general agent tasks are
realized, such as initialization and registration with the agent
community. Therefore, all agents have to register their ser-
vices in the yellow pages (see Fig. 5). Furthermore, for ini-
tialization, the JESS module loads knowledge bases, rules,
and facts. The JESS rule engine can communicate via the

JESS agent with the agent community. A subclass of the
generic agent is the server agent, where the TCP socket
connection is built. More specific socket classes are the TTS
server agent and the speech recognizer server agent. The
TTS (MARY, see [4]) connects via the TTS client to the
TTS server agent. Therefore, speech processor methods are
implemented in the TTS server agent, e. g. speaking text,
input types, output types, and audio types. In the same way,
the actions (which are received from the speech recognizer
client) are implemented in the speech recognizer server
agent, e. g. create an action in the agent community, add a
grammar file, or remove a grammar file from the speech rec-
ognizer (VOCON [3]). The recognizer server is receiving the
semantic slots with confidences from the speech module. The
model-based POMDP agent receives the semantic slots and
proposes actions to the TTS agent. The agent includes the
external Matlab based POMDP module.

Fig. 5. Using JADE Framework [10] for a hybrid dialog
management architecture.

3.1. Communication and Interaction of the Agents

The UML sequence diagram in Fig. 6 shows the principle in-
teraction at the beginning of the agent based framework. At
first, all agents have to register their services on the yellow
page of the JADE framework. The yellow page acts as an
information broker and knows, which agents are available or
occupied. Then, the JESS agent initializes the JESS rule-
based system with a set of rules and facts, which are load-
ing from a file. After receiving semantic slots [2], the agent
speech is looking for a service in the yellow page. Both rea-
soning agents (JESS and POMDP) offers their services to
the agent speech and receive the semantic information from
the speech agent. If the JESS agent cannot infer a query
(see Fig. 6), the TTS agent is waiting for the POMDP rea-
soning. This module infers a query for the next dialog step.
Otherwise, the user has to repeat the question.

960

Fig. 6. UML Sequence diagram of the agent-based framework.

3.2. Hybrid Reasoning

JESS is embedded in the JADE framework and implemented
in Java. The POMDP is realized as an external Matlab

script in the POMDP toolbox [13]. Both dialog management
agents (POMDP and JESS) are able to reasoning from the
semantic slots, which are received from the recognizer agents.
If there is a rule for reasoning, then the JESS agent outper-
forms the POMDP agent. Otherwise, the system receives a
confidence value from the POMDP agent. It is then neces-
sary to repeat the question in the air travelling information
system task.

4. CONCLUSION AND OUTLOOK

The current research report describes a hybrid dialog man-
agement system for flexible applications, like e. g. in informa-
tion systems (air travelling) or in cognitive technical systems.
Besides the flexible and scalable system architecture, several
input/output modules for a spoken dialog system have been
integrated. In future work, we will integrate more modali-
ties like hand gestures, head shaking or nodding, and visual
feedbacks in our system. The ATIS database [14] has been
used for the training of the model-based POMDP agent. In
order to evaluate the facilities and possible drawbacks of this
framework, a use case with a flight-booking scenario was in-
troduced. The system successfully terminates within approx-
imately ten dialog steps.

5. ACKNOWLEDGMENTS

This work has been funded within the Excellence Cluster
CoTeSys by the German Research Foundation (DFG).

6. REFERENCES

[1] M. F. McTear, Spoken Dialogue Technology, Springer,
London, 2004.

[2] S. Schwärzler, J. Geiger, J. Schenk, M. Al-Hames,
B. Hörnler, G. Ruske, and G Rigoll, “Combining Statis-
tical And Syntactical Systems For Spoken Language Un-
derstanding With Graphical Models,” in Proc. of the 9th

International Speech Communication Association (Inter-
speech 2008), 09 2008, pp. 1590–1593.

[3] N. N., “Software development kit version 2.0 developers
guide,” Tech. Rep., ScanSoft Inc., 2004.

[4] N.N., International Journal of Speech Technology, vol. 6,
chapter The German Text-to-Speech Synthesis System
MARY: A Tool for Research, Development and Teach-
ing, pp. 1381–2416, Springer Netherlands, Amsterdam,
Netherlands, 2003.

[5] E. Friedman-Hill, Jess in Action Java Rule-based Sys-
tems, 2003, ISBN: 1930110898.

[6] S. Larsson, A. Bernman, J. Hallenborg, and D. Hjelm,
“Trindikit manual,” 2004.

[7] A. Cheyer and D. Martin, “The Open Agent Architec-
ture,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 4, no. 1, pp. 143–148, March 2001, OAA.

[8] S. Young, “Using POMDPs for dialog management,” in
IEEE/ACL Workshop, Palm Beach, Aruba, 2006.

[9] S. Russel and P. Novig, Artificial Intelligence, Prentice
Hall, New Jersey, 2003.

[10] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa,
“JADE a white paper,” In search of innovation, vol.
3, no. 3, September 2003.

[11] C. Forgy, “Rete: A Fast Algorithm for the Many Pat-
tern/Many Object Pattern Match Problem,” in Artificial
Intelligence, 1982, vol. 19, pp. 17–37.

[12] L. P.Kaelbling, M. L. Littman, and A. R. Cassandra,
“Planning and acting in partially observable stochastic
domains,” in Artificial Intelligence, 1998, vol. 101, pp.
99–134.

[13] T. Taha, “POMDP Toolbox v0.1,” Tech. Rep., Clemson
University, Clemson, USA, 2007.

[14] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington,
“The ATIS Spoken Language Systems Pilot Corpus,”
Website, 1990, Available online at http://acl.ldc.
upenn.edu/H/H90/H90-1021.pdf; visited on March 31th
2009.

961

