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Abstract

In this work we use a previously published ap-
proach for script line identification of handwritten
whiteboard notes in order to perform skew correction
and size normalization of the script trajectory. Arbi-
trary assignments of sample points to certain script
lines are hypothesized and described in a trellis. The
normalization is performed by equalizing the script
lines and warping the script trajectory accordingly.

In an experimental section we show that the novel
normalization achieves a relative improvement of r =
1.6 % in character level accuracy and r = 1.4% in
word level accuracy compared to a system using stan-
dard normalization.
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1. Introduction

In recent years, many publications have addressed
the problem of on-line handwriting recognition [9; 14].
While high recognition rates are reported for isolated
word recognition systems [7], performance consider-
ably drops when it comes to unconstrained handwrit-
ten sentence recognition. The lack of previous word
segmentation introduces new variability. An even
more demanding task is the recognition of handwrit-
ten whiteboard notes as introduced in [12]. The con-
ditions described in [12] make on-line handwritten
whiteboard note recognition difficult.

An important step in any handwriting recognition
system is the normalization of the script trajectory.
Thereby, writer dependent aspects such as the slant,
the skew and the varying sizes in the script are nor-
malized to meet well defined values [9; 12]. A key
issue for normalization is the identification of certain
script lines (see e.g. [1; 9]) in a line of text as shown
in Fig. 1. The top line, the corpus line, the base line,
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Figure 1. Script lines as e.g. defined in [1; 9]. Script
sample taken from IAM-onDB [11].

and the bottom line are (ideally) defined by the top of
tall letters (such as “H” and “t”), the top of lower case
letters (such as “0” and “w”), the base line points, and
the bottom of characters such as “y” and “f” respec-
tively [1]. However, in order to decide if, and in case
it does, on which script line a sample point lies, the
position and characteristics of each script line must
be known. In other words, to find the exact charac-
teristics of the script lines, it must be known which
sample points belong to each line [8].

Different approaches for identifying the script lines
in a handwritten line of text, aimed at solving the
above paradox, have been published. Base lines and
corpus lines are described by linear regression lines
approximating local minima and local maxima of the
trajectory, respectively in e.g. [4]. In [2; 3] the script
lines are found by analyzing the profile of the y-
projection of the handwritten script. In contrast, all
four script lines are approximated as parameterized
curves of a second order polynomial in [1; 9]. Thereby,
the parameters of the curves are found by fitting a
geometrical model to the trajectory by applying the
Expectation-Maximization (EM) algorithm [1; 5].

While these approaches seem to work fine for nor-
mal handwriting, enhanced algorithms are needed for
the variations observed in the script lines of handwrit-
ten whiteboard notes. To cope with these variations,
in [12], a line of text is heuristically segmented into
sub parts and the script lines are separately identified
in each of the sub parts.
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In our previous work [8] we presented a novel
method for script line identification. For that pur-
pose sample points which are potential candidates for
defining on of the four script lines as depicted in Fig. 1
are found. A trellis is built holding all script line asso-
ciation hypotheses of these points. The path through
that trellis leading to least costs is found by applying
the Viterbi algorithm and gives the best sample point
script line-assignments. Then the script line associa-
tion is further refined iteratively. Thereby, the result-
ing script lines may have any characteristics. The
sample point script line-assignments are further used
to augment a standard feature vector.

In this paper we use the script line-assignment
found by the algorithms presented in [8] for skew cor-
rection and script size normalization by “equalizing”
the script lines. The script lines are forced to run both
horizontally and straight. The handwritten script is
morphed accordingly.

The remaining paper has the following structure:
a brief overview on our baseline system, as well as a
short description of the standard preprocessing and
the feature extraction used in this paper is given in
the next section. In Sec. 3 the novel normalization
procedure is described by reviewing the script line
identification as introduced in [8] and explaining how
the sample point script line-assignment can be used
for “equalizing” the script trajectory. The influence
of the novel normalization on the word level accuracy
is examined in an experimental section (Sec. 4). Con-
clusions and an outlook are given in Sec. 5.

2. System Overview

In this section we present the preprocessing and
normalization used in our baseline system. Then the
state-of-the-art features which are extracted from the
preprocessed data are briefly summarized. Finally
the recognition system based on continuous Hidden
Markov Models (HMMs) is roughly described.

2.1. Preprocessing

The z- and y-coordinates as well as the “pressure”
p of the handwritten, heuristically line-segmented
whiteboard notes are recorded using the EBEAM-
System as explained in [12]. Afterwards, resampling
of the data in order to achieve space equidistant
sampling is performed. Then the skew and slant of
the script trajectory are corrected using a histogram-
based approach as explained in [10] and the corpus
and the base lines are estimated similar to [2]. Fi-
nally all text lines are normalized to meet a distance
of “one” between the corpus and the base line. While
this is the only preprocessing for the baseline system,

the preprocessed data, especially the extracted base
line and corpus line, serve as initialization for the
novel normalization approach as presented in Sec. 3.2.

2.2. Feature Extraction

After preprocessing and normalization 24 state-of-
the-art on-line and off-line features [9; 12] are ex-
tracted as explained below.

The extracted on-line features are: the pen’s “pres-
sure”, indicating whether or not the pen touches
the whiteboard surface; a velocity equivalent, which
is computed before resampling is later interpo-
lated according to the resampling factors; the -
and y-coordinate after resampling, whereby the y-
coordinate is smoothed by the moving average; the
“writing direction”, i.e. the angle a of the strokes,
coded as sina and cosa and the “curvature”, i.e.
the difference of consecutive angles Aa = ap — a1,
coded as sin Aa and cos Aa.

On-line features which describe the relation be-
tween the sample point s; to its neighbors ([9; 12])
are (slightly altered if needed): a logarithmic transfor-
mation of the “vicinity aspect” v, sign(v) -log(1+ |v|);
the “vicinity slope”, i.e. the angle ¢ between the line
[s¢_r,8¢], whereby 7 < t denotes the 7*" sample point
before s;, and the bottom line, coded as sin¢ and
cos p; as well as the “vicinity curliness”, the length
of the trajectory normalized by max(|Az|; |Ay|). Fi-
nally the average square distance to each point in the
trajectory and the line [s;_,,s;] is given.

The off-line features are: a 3 x 3 “context map” to
incorporate a 30x 30 partition of the currently written
letter’s image, the “ascenders”, and “descenders” (i. e.
the number of pixels above respectively beneath the
current sample point). Further details on the features
used can be found e. g. in [16].

2.3. Recognition System

After feature extraction, the handwritten data is
recognized by using continuous Hidden Markov Mod-
els (HMMs, [15]): each symbol (in this paper: char-
acters) is modeled by one HMM. For comparability,
the HMM topology is adopted from [12], using only
32 Gaussian mixtures for approximating the output
probabilities. Training of the HMMs is performed by
the EM algorithm [5]. Using the Viterbi algorithm
the handwritten data are recognized and segmented.

3. Novel Normalization

In this section we describe our novel normalization
approach for on-line handwritten whiteboard note
recognition. First the script lines are identified by
a trellis-based Viterbi search and iteratively refined



as explained in [8]. Then the script lines are equal-
ized to run straight and horizontally. By morphing
the script trajectory accordingly, the script is both,
skew and size normalized. In this paragraph, it is as-
sumed that the handwritten data is preprocessed by
the basic steps as explained in Sec. 2.1

3.1. Script Line Identification

As explained in the introduction, the four script
lines are defined by certain sample points. However,
it is not always clear which sample point lies on a spe-
cific script line making the sample point script line-
assignment unknown. If the association between sam-
ple points and script lines is known, the characteris-
tics of the script lines can be derived. This is the basic
principle underlying the approach presented in [8]: de-
riving the script line characteristics by identifying the
sample points lying on the specific line. Thereby, cer-
tain sample points become supporting points of the
script lines. However, each of the N sample points
s(t) contained in the line of text S = {s1,...,s7}
may be assigned either to any of the N} script lines
or to no line, leading to Nios = (N + 1)T different
mappings. One of these mappings contains the “cor-
rect” sample point line-assignment. If 7'~ 100 (this
assumption is valid for the database used for experi-
ments in Sec. 4) is assumed, Ny ~ 7.9-10%9 different
mappings have to be investigated.

In [8] the number of different mappings is lowered
by reducing the number of potential sample points
lying on a script line. In particular spatial extreme
points Sext(n), 1 < n < Next, with Ney the actual
number of script line defining extreme points, are
used for script line definition. After reducing the num-
ber of sample points various extreme points script line-
assignments are hypothesized. The most likely assign-
ment hypothesis is found by the Viterbi-Algorithm.
For further insights, explicit formulation, and refine-
ment of the script line identification see [8]. As a re-
sult each script line [ is described by the consecutive
extreme points sext(n) € L, where

Sext(N) € Ly if Sext(n) is assigned to line [ (1)

3.2. Script Line Equalization

After assigning all extreme points to the script
lines according to Eq. 1, by properly applying the
methods as described [8], the script line can be equal-
ized, i.e. the supporting points Sexi(n) € L; of each
script line are shifted in order to lie on a horizontal
line and meet the same y-position for all text lines.
The target heights r;, 1 < I < Nj of the script line
lis set tor = (2,1,0,—1)T. By warping each sam-
ple point s(t) = (x(t),y(t))T of the script trajectory,

which is limited by the script lines according to the
shifts of the supporting points, the script trajectory
is normalized both in skew and in size.

To perform the mentioned warping the script lines
are interpolated between the supporting points. In
our paper this is done by a linear interpolation

y(n+1) —y(n)
zi(n+1) —x;(n)

~(@(t) — @(n)),
(2)

where 7); is the linear interpolated y-position of script
line I at the z-position z(t); z;(n), z;(n+1) and y;(n),
y1(n+1) denote the z- and y-position of the support-
ing points Sext (1), Sext (R+1) € L; lying closest to s(t).
The warped y-position §(t) of each sample point s(t)
of the script trajectory S is given by

Ji (2 (1) = G, (2 (1))

7’12 — ’I’ll

~(2(t) = o, (2(2)),

3)
where Iy and ls (I; < l3) are the two script lines in
between which s(t) lies. To cope with horizontal dis-
tortions due to the vertical warping,

g<t) =1, +

T . ~
_ 1 Z le(x(t)) - yz1($(t))’ (4)

Ti2 —Tn
is derived and horizontal scaling is performed by

() =s-ax(t), 1<t<T. (5)
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Figure 2. Script trajectory after standard normalization
(upper part) and after applying the novel preprocessing
(lower part). Script sample taken from IAM-onDB [11].

The result of this warping procedure is shown in
the lower part of Fig. 2. After normalization of the
script trajectories according to Egs. 5 and 3 features
are extracted as explained in Sec. 2.2.

4. Experimental Results

The experiments presented in this section are con-
ducted on a database containing handwritten heuris-
tically line-segmented whiteboard notes (IAM-OnDB,
see [11]). To provide comparability of our results
the settings of the writer-independent TAM-onDB-t1
benchmark, consisting of 56 different characters and



a 11 k dictionary and provides writer-disjunct sets for
training, validation, and test are used.

The first system, our baseline system, uses the pre-
processing as explained in Sec. 2.1. The system’s pa-
rameters are trained on the JAM-onDB-t1’s training
set until no further improvement evaluated on the
combination of both validation sets can be observed.
In this stage we achieved a character level accuracy
on the validation set of r = 61.2% and A, = 62.6%
word level accuracy on the test set of the IAM-onDB-
t1 benchmark (see Tab. 1). Then a second system
using the preprocessing of the baseline system as ini-
tialization for the enhanced normalization (see Sec. 3)
is evaluated resulting in a character level accuracy of
(new = 62.2% (validation set) — a relative improve-
ment of r = 1.6%, and a word level accuracy of
Apew = 63.1% (test set) which is relative improve-
ment of r = 1.4% on the word level. These results
are also shown in Tab. 1.

Table 1. Character and word accuracy of three systems
(baseline, novel approach, and continuous system [13]).

Ay: Apew: novel 13

baseline  normalization (13]

char. ACC 61.2% 62.2% —
word ACC 62.6 % 63.5 % 65.2%

However both our systems are outperformed when
compared to a recently published continuous sys-
tem [13] which uses slightly different features and
more Gaussians for the continuous HMM based recog-
nition. Some reasons for this drop can be found in [8].

5. Conclusions and Outlook

In this paper we used a recently published method
for script line identification (see [8]) for skew correc-
tion and script size normalizing for on-line recognition
of handwritten whiteboard notes. Therein the script
lines of the script trajectory are found via the Viterbi
algorithm. Then the script trajectory is normalized
by shifting and scaling its sample points in order to
meet horizontally running script lines at well defined
y-positions. Our experiments show, that a baseline
system using standard preprocessing could be outper-
formed by r = 1.6 % relative in character level accu-
racy and r = 1.4% relative in word level accuracy.
However both the baseline and the proposed system
were outperformed by a recently published system us-
ing a different topology.

In future work, different metrics (such as the as-
cending slope rather than the absolute y-position of
the script lines) will be investigated. We also plan
to construct a baseline system with hand annotated

script line associations for certain sample points. Ad-
ditionally the overall training process of the Gaus-
sians will be optimized according to [6].
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