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Abstract

The role of mobile robots in our daily life has been increasing rapidly during the last
decades, resulting in a greater need for autonomous behavior. Similar to the human sen-
sory system, vision is one of the most important senses for mobile robotics. This thesis
gives an insight into the cognitive abilities of current mobile robots. The presented re-
search discusses the development and implementation of a cognitive architecture, formed
by perception and its complement, cognition. Algorithms for object detection and map-
ping compose the perception system, while cognition is defined by a suitable knowledge
representation and techniques for decision making.

Methods for both two- and three-dimensional object detection are introduced. A novel two-
dimensional object detection algorithm is based on a cascade of three different histograms,
namely color histograms, histograms of oriented gradients, and color co-occurrence his-
tograms. This cascade is real-time capable, robust to occlusions, and requires few training
images. Additionally, this thesis proposes an algorithm for the estimation of human body
poses. This algorithm is using three-dimensional point clouds as input and can easily be ex-
tended to detect other skeleton-based objects. Mapping is another significant task for a mo-
bile robot with cognitive abilities. Two different approaches for vision-based mapping are
presented, one based on two-dimensional images and the other based on three-dimensional
point clouds. The two-dimensional mapping algorithm extends the state-of-the-art with a
memory, allowing the robot to remember old terrain. Moreover, a sophisticated real-time
stereo reconstruction algorithm with integrated ego-motion estimation and a novel genetic
iterative closest point algorithm for sensor fusion is presented. The cognition system is
marked by semantic maps, a knowledge representation combining semantic networks and
metric maps. A sound mathematical description of semantic maps is introduced, which is
used to derive methods for adding new knowledge and for action planning. Both simula-
tions and experiments have been conducted to verify the presented cognitive architecture.
By introducing new algorithms for perception and cognition and by enhancing known
algorithms, this thesis contributes to advance the cognitive abilities in mobile robotics.



Zusammenfassung

In den letzten Jahren haben sich mobile Roboter zu einem immer wichtiger werdenden
Bestandteil unseres téglichen Lebens entwickelt, wobei autonomes Verhalten immer mehr
in den Vordergrund riickt. Ahnlich wie beim Menschen ist das Sehen der wichtigste Sinn
eines mobilen Roboters. Diese Dissertation gibt daher einen Einblick in die kognitiven
Fahigkeiten bereits existierender Roboter und stellt neue Forschungsergebnisse in diesem
Bereich vor. Kognitive Fahigkeiten setzen sich aus der Perzeption sowie deren Gegenstiick,
der Kognition zusammen. Algorithmen fiir das Erstellen von Karten und das Erkennen
von Objekten bilden die Perzeption, wihrend die Kognition durch eine geeignete Wissens-
darstellung und Methoden zur Entscheidungsfindung geprégt wird.

Diese Arbeit prasentiert zwei Methoden zur Objekterkennung, die auf zwei- beziehungs-
weise dreidimensionalen Bildern basieren. Ein neuartiger Algorithmus zur Erkennung der
Korperhaltung verwendet dreidimensionale Punktwolken, wihrend zur allgemeinen Objek-
terkennung zweidimensional Bilder verwendet werden. Der préasentierte Algorithmus ba-
siert auf einer Kaskade aus drei verschiedenen Histogrammen und verwendet sowohl farb-
als auch rdumliche Informationen, ist echtzeitfihig, erkennt Objekte trotz Verdeckungen
und benotigt wenig Trainingsbilder. Fiir das Erstellen von Karten werden ebenfalls zwei
Algorithmen présentiert, die analog zur Objekterkennung auf zwei- beziehungsweise dreidi-
mensionalen Darstellungen basieren. Der zweidimensionale Algorithmus verwendet einen
Speicher, um alte Bodentexturen wiederzuerkennen. Weiterhin wird ein fortschrittlicher
Stereoalgorithmus mit integrierter Schétzung der Kamerabewegung vorgestellt, sowie ei-
ne neue Methode zur Fusionierung verschiedener Sensordaten. Das vorgestellte kognitive
System basiert auf semantischen Karten, einer Kombination aus semantischen Netzwerken
und metrischen Karten. Eine mathematische Beschreibung fiir semantische Karten wurde
eingefiihrt, von der Methoden zum Hinzufiigen neuen Wissens sowie zum Planen von Ak-
tionen abgeleitet wurden. Abschlieflend wird die vorgestellte kognitive Architektur durch
Simulationen und Experimente validiert.

Indem neue Methoden der Perzeption und Kognition entwickelt und bereits bekannte Al-
gorithmen verbessert werden, trégt diese Arbeit wesentlich zur Weiterentwicklung der ko-
gnitiven Fiahigkeiten mobiler Roboter bei.
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Abbreviations
ACE Autonomous city explorer
CAD Computer-aided design
CCD Charge-coupled device
CCH Color co-occurrence histogram
CH Color histogram
Cubpa Compute unified device architecture
CPU Central processing unit
DSI Disparity-space image
DOF Degree of freedom
FPS Frames per second
FSM Finite state machine
GPU Graphics processing unit
GUI Graphical User Interface
HOG Histogram of oriented gradients
HSV Hue, saturation and value color space
ICP Iterative closest point algorithm
LRF Laser rangefinder
RGB Red, green and blue color space
ROI Region of interest
RT Real-time
SIFT Scale invariant feature transformation
SLAM Simultaneous localization and mapping
SVD Singular value decomposition
SVM Support vector machines
UDP User datagram protocol
USB Universal serial bus
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Notations

Conventions

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted by
bold lower case letters. The vector x is composed of elements x;. A cartesian point p is
composed of elements p,, p, and p.. Matrices are denoted by upper case letters in bold

type. The matrix M is composed of elements m;; (i row, j™ column).

zorX Scalar

X Vector

X Matrix

XT Transposed of X
X1 Inverse of X

Xt Pseudoinverse of X
) Scalar function

f(-) Vector function

General Symbols

Tij Red component of a pixel (RGB color space)
Gi.; Green component of a pixel (RGB color space)
bi; Blue component of a pixel (RGB color space)
hi Hue component of a pixel (HSV color space)
Sij Saturation component of a pixel (HSV color space)
V; Value component of a pixel (HSV color space)
C Point cloud

1 Index variable

N Number of points in a point cloud C

o) Point of a three- or two-dimensional space

R Rotation matrix

AT g Transformation matrix

t Translation vector

Extrinsic and Intrinsic Camera Parameters

0l Field of view
S} Pitch angle
P Roll angle

v Yaw angle

xii
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ly x 1
Pz X Py

Sp

Stereo basis

Focal length

Chipsize x— and y—direction

Number of pixels in x— and y—direction
Position of the camera with respect to .Sy

Object Detection

CO(iajad)
OA<i7j7 d)
Ci(i,7,d)
CG<i7j7 d)
CMax

Weighting factor

Confidence

Threshold for the confidence

Orientation at pixel i, j

Penalty factor for link

Reference set of vectors of attributes

Vector of attributes

Vector of reference attributes

Attribute

Element of DSI

Element of the updated DSI

Intensity cost of element 1, j, d

Gradient cost in of element 4, j, d

Maximal cost

Disparity

Length of gradient at pixel ¢, j

Intersection error between a histogram H and a reference histogram H,
Error metric for link ¢

Scale factor

Histogram

Reference Histogram

Three-dimensional gaussian distribution
Input image

Left input image

Right input image

Pixel of input image

Input image for color co-occurrence histogram
Input image for color histogram

Input image for histogram of oriented gradients
Reference image with index ¢

Kernel of a filter

Error map for color co-occurrence histograms
Error map for color histograms

Error map for histograms of oriented gradients
Filter window size
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tﬁog

w
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Number of points used for computation

Point of a segment

Number of colors in color co-occurrence histogram

Number of colors in color histogram
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Number of subregions in x— and y—direction

Point of left image

Point of right image
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Vision-Based Mapping

NSearch
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Pi

Xiv

Rotation of the robot

Field of view

Standard deviation
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Index variable of a pixel in an image
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Weighting factor
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Window size

Window size
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Point used for computation
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Robot frame

Camera frame

Maximal saturation component of a pixel
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Threshold

Threshold
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‘ ‘ Miss Glory, robots are not people. They are mechan-
ically much better than we are, they have an amazing
ability to understand things, but they don’t have a soul. ’ ’

Karel Capek, 1921

1 Introduction

With the begin of industrialization the desire for a mechanical working man grew stronger
and stronger. After the first appearance of the term robot in Karel Capec’s play R.U.R
(Rossum’s Universal Robots) [22] the desire was omnipresent in literature and later in
moving pictures - it reflected the zeitgeist of the society, when almost everything seemed
possible. The term robot was originally used to describe an artificial man and was later
attributed by the media to the term metal man. Their increasing presence came with an
increasing fear of their superiority. In R.U.R. robots were originally designed to perform
minor or unpleasant work, but were equipped with sophisticated mechanical and cognitive
abilities. Later they take over and eventually wipe out humankind. In the year 1950 Isaac
Asimov wrote the novel I, robot [6] and came up with his famous three laws of robotics,
stating a robot must never harm or kill a human and must obey all humans’ orders. How-
ever, recent activities in the area of military research and the advances in the development
of unmanned aerial vehicles (UAVs) [148] have shown that these laws play a subordinate
role in the real world. This raises the question, if the fear of robots is legitimate and
they will rule the world. Fortunately, this fear is unsubstantiated at their current state of
development.

Before the cognitive abilities of mobile robots can be examined further, the terms percep-
tion and cognition have to be defined. Perception means the reception and collection of
data, while cognition marks the complement to perception and is often referred to as the
process of thought in order to plan the future based on past observations and experiences.
Now, the cognitive abilities of robots can be examined further in detail. Early fictional art
focuses on what seemed to be the main challenge - the mechanical development of robots -
and neglects, how human-like cognitive abilities can be achieved. This reflects the current
state of development, where complex bipedal walkers like Honda’s ASIMO with sophis-
ticated mechanics are constructed. Compared to the cognitive skills of fictional robots,
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Fig. 1.1: lllustration of perception (Robert Fudd, 1619).

current developments are still way behind. The majority of the existing robots is placed
on production lines and is manufacturing objects. Other applications include assisting
humans in the household and performing work in hazardous or distant environments, e.g.
mine-defusing. These mobile robots require a much higher degree of autonomy and thus
more sophisticated perception and cognition systems. Despite the current achievements
in the field of perception, robots are nothing more than tools functioning in controlled
environments in a very specific manner. By integrating a vision system and actuators in
one package, Sony’s AIBO tries to fill this gap by providing simple cognitive behavior. The
robot hall of fame' provides a comprehensive overview of both the most sophisticated and
important fictional robots and milestones in the development of real robotic platforms.

Enhancing the cognitive abilities is a major challenge on the road to full autonomy. Most
of the current cognitive architectures are inspired by the human brain as illustrated by
Robert Fudd in Figure 1.1 and consist of three major parts: perception (mundus sensi-
bilis), knowledge representation (mundus imaginabilis), and cognition (mundus intellectu-
alis). Knowledge is mostly stored in a semantic manner, meaning by using words describing
the objects and not by using an accurate model. Semantic representations allow much data

"http://www.robothalloffame.org/



1.1 State-of-the-Art

to be stored, reflecting not only the type, position, and attributes of the object, but also its
meaning. Of all our senses, vision is the most important one when it comes to understand
the environment. Cameras provide an easy to use and cheap sensor for mobile robotics.
Consequently, the vision system of a mobile robot should be its main source for the cogni-
tive system. Other demands are also inspired by the human system and include that the
cognitive architecture should be a prospective and anticipative system, not only planning
the future and behaving accordingly [86], but also foreseeing the future in the same way
humans do [150]. Learning from experience requires some sort of self-modification [151]
and interpretation of the environment [45]. Summing up, a cognitive architecture in mobile
robotics links perception and cognition with a suitable knowledge representation and pro-
vides methods for decision making and planning. As no low level planning of movements is
performed, decision making and planning are regarded to be part of the cognition system.
When it comes to mobile robotics, perception is formed by object detection and mapping.
Using two-dimensional images is the most intuitive and easiest way to gather informa-
tion. However, by ignoring the third dimension valuable information gets lost. Gathering
three-dimensional images is inspired by the human vision system. By using two or more
synchronized cameras with different viewpoints, objects will appear at different positions
in the camera images. The different positions can be used to estimate the position of the
object in three dimensions, a process called stereo-reconstruction. Both representations
have advantages and disadvantages. Two-dimensional images are examined easily and
three-dimensional images provide more accuracy, but require more complex algorithms
and more computational power. Two-dimensional maps are easy to create and are suffi-
cient for navigation. On the contrary, complex manipulation tasks can only be planned
using a three-dimensional map. Detected objects and their attributes can be stored in a
semantic network, which is a textual representation of knowledge and which can be used
to link predefined knowledge with the objects. By connecting the semantic network with
a metric map, a comprehensive knowledge base is created, which will be referred to as se-
mantic map. In a last step, this knowledge base is used for decision making and planning.
The work presented in this thesis investigates the three main aspects of cognitive architec-
tures: object detection, mapping, and cognition. In the following section, previous research
in the field of cognitive abilities for mobile robotics are presented and the main challenges
are highlighted.

1.1 State-of-the-Art

Vision-based cognitive understanding of the environment requires sophisticated algorithms
and methods from several different research areas. On one side, an advanced perception
system is required, while the gained data has to be processed on the other side. Further-
more, the whole system has to form a suitable cognitive architecture. This section gives
an overview of modern cognitive architectures and presents some robot systems, which are
equipped with a cognitive architecture or at least with basic cognitive abilities. A detailed
discussion of the state-of-the art of both the perception modules, namely object detection
and vision-based mapping, and the cognitive processing module, the semantic mapping,
can be found in the corresponding chapters.
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Fig. 1.2: Cognitive architecture simulating a biological neuronal network.

Knowledge Representations

A robot with cognitive abilities or a cognitive architecture requires a well suited and
sophisticated knowledge representation. As wit the human memory, the information is
broken to simple key points. This reduction brings several advantages, such as memory
efficiency and possible generalization. Artificial neuronal networks [54] are inspired by the
human brain and allow both storage of knowledge and the utilization of this knowledge, e.g.
to recognize objects. They are composed of a multiplicity of simple units [9] like neurons.
Expert systems [42] have been developed to assist in medical and scientific analysis by us-
ing a set of rules or predefined data to draw logic conclusions. The programming language
ProLOG was developed to allow declarative programming. Its main data structures are
called facts and rules. Other approaches try to link objects to certain attributes. Frame
structures [63] are based on frames, containing a name and several attributes. However,
there are no links between the frames. Semantic networks [49, 115, 135] are composed of
nodes, representing objects or attributes and edges, representing relations between the
nodes. Probabilistic approaches use probability functions to model occurring uncertainties.

Cognitive Architectures

During the last decades a variety of cognitive architectures has been developed. By the
distinctive paradigms they are based on, most of them can be sorted into two main
categories: Emergent Systems, which are mostly composed of artificial neuronal
networks, and Symbolic Processing Systems, sometimes also called the cognivist
approach.

Emergent systems have evolved from neuroscience and are based upon the imitation
of the structure and aspects of biological neuronal networks. Likewise the biological
archetype, a cognitive process is not separated into perception, recognition, classification,
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Fig. 1.3: Architecture of a symbolic processing system.

and action planning. As illustrated in Figure 1.2, the central processing of perception is
conducted in the sensory cortex, while the association cortex combines the information
with past experiences. Although there is currently no full understanding, the higher
planning is assumed to be conducted by the basal ganglia. After the information has
been associated with emotions in the amygdala, the actual movements are planned by
the motor cortex. An input activates certain areas of the emergent systems, leading to
a certain action. Sometimes, simulated biological architectures will lead to astonishing
behavior when a robot is subject to deal with completely new situations. On the other
hand, the system may be overstrained with relatively simple situations. Instead of using
accurate representations like geometrical shapes or color histograms, emergent systems try
to remember the resulting action of perceptions and try to guess which actions suite the
current inputs best. Hence, the system uses no visual templates, but the sensorimotor’s
integration between the perception and the action [26]. Artificial neuronal networks [54]
mark the most popular representation. However, emergent systems are not limited to
artificial neuronal networks, they are decentralized complex systems from a multiplicity
of simple units and interactions between the units. In contrast to neuronal networks,
interaction is organized and is not limited to internal components. A perception is
no longer the result of a single isolated loop and image processing systems are highly
integrated into the entire emergent system.

In contrast to emergent systems, symbolic processing systems are created in a
bottom-up manner with an explicit separation of the single steps. According to Vernon
et al. [150, 151], a cognitive process can be separated into three different levels of
abstraction: on the lowest level, visual features are abstracted by the perception system.
Several features compose a stimulus, which lead to a final action as response to the
original visual features. Figure 1.3 shows the different stages of a symbolic processing
system. In the first step, a perception system processes all objects in the robots field
of view and generates certain features, which serve as stimuli for the decision. Now, a
description of the scene can be built, which serves as a basis for decision making, where
finally actions are generated [45]. Consequently, perception and decision making can be
considered as the most important parts of a symbolic processing system. Hence, most
of the current symbolic processing systems vary in strategies for these two major parts.
Different symbolic processing systems can be distinguished by the utilization of different
probabilistic frameworks for decision making, such as Bayesian theory [34], which has won
a wide range of interest.
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Fig. 1.4: The Robot iCub [119].

Current Implementations of Cognitive Architectures

The creation of cognitive architectures has been a large branch in computer science since
the creation of the first neuronal network in the 1960’s. Since then, several different
approaches have evolved. In their current state of development, these architectures require
vast amounts of computational power and memory or are not real-time capable and thus
uneligible for the use on a mobile robot. However, the computational power of modern
computers is increasing exponentially.

Cognitive architectures have been developed as artificial intelligence (AI), i.e. to model
human behavior. In SOAR [73], solving problems is realized as a search in a problem space,
while knowledge is represented by rules or objects. Adaptive control of thought-rational
(ACT-R) [4] is composed of a set of predefined reproduction rules and a declarative
memory containing simple knowledge items. A programming language like LISP can be
used to predefine the rules. Other cognitive architectures try to model the biological
cognition system from low level perception to high level reasoning (LIDA) [35] or use
multi-agent systems like Cougaar (Cognitive Agent Architecture) [1]. Other widely known
cognitive architectures include cognitive systems for cognitive assistants (CoSy) [26],
cognitive systems that self-understand and self-extend (CogX) [111], and the cognitive
robot companion (Cogniron) [149].

Robots with Cognitive Abilities

There exists a wide variety of mobile robots with more or less cognitive abilities. Some
robot systems are equipped with a complex cognitive architecture, while others have been
designed for other purposes and are only equipped with an image processing system and
no cognitive architecture. Robots with cognitive architectures try to analyze and interpret



1.1 State-of-the-Art

their environment by performing a semantic analysis [33, 102] and interpretation [21] to
create a semantic network of the scene, containing information about all identified objects.
The mobile robot can then use this semantic network to interact with the environment.
Some approaches use vision data to recognize objects and compute their position [46] or
use extensions of the constellation object model, which is popular in computer vision.
Robots serving as a museum guide are equipped with complex cognitive architec-
tures [100, 125]. Besides robust localization and mapping, obstacle detection and ob-
ject recognition, they have to be able to interact with humans and understand certain
commands [134]. Other robots have been developed to assist humans in the house-
hold [117, 126]. As the main focus of application is the support of elderly people, a main
focus of research is robustness. Impressive results have been shown in scope of the DARPA
grand challenges in the years 2004, 2005, and 2007 [142], where autonomous cars drove
across the desert in the first years. In the last grand challenge, these cars have proven to
be able to drive within regular traffic obeying traffic rules.

Figure 1.4 shows the iCub robot [119, 132], one of the most popular examples for an emer-
gent system. Its sophisticated hardware has a physical appearance similar to a 3.5-year old
child and was designed as a humanoid platform to investigate the embodiment of cognition
and the development of cognitive abilities. The main focus of research is self-development
through learning from the environment, by interactive exploration, manipulation, imita-
tion, and gestural communication. iCub’s cognitive architecture consists of three levels:
the perceptuo-motor skills, the action selection, and the internal action simulation.

Due to their modular nature and more stringent separation of perception and cognitive
abilities and therefore better applicability, many robots have been developed based on sym-
bolic processing architectures. Niichter et al. presented the mobile robot Kurt3D [140],
which uses a laser rangefinder to create a three-dimensional representation of the environ-
ment and a semantic processing system to analyze the scene. A semantic representation
containing spatial information of different object types is predefined. By analyzing the
geometric relations, the robot can detect floor, walls, ceiling, and other objects like doors.
A sophisticated technical approach of the symbolic processing paradigm is the explorer
system [110, 137], which was designed for spatial exploration with the long-term aim to in-
vestigate artificial cognitive systems that are able to understand the environment. Special
research interest was put in what, where, how, and why the robot can do things. There-
fore a common understanding of the space between the robot and a human interaction
partner has to be generated to achieve sufficient human-like behavior. A key issue was
the semantic modeling of space, which was conducted on different levels of abstraction.
A metric map, containing basic geometric features like lines, can be built using standard
SIFT based SLAM techniques. This map can be abstracted into the navigational map,
containing nodes and edges. Nodes represent possible positions of the robot and edges
possible paths between the positions. As indicated by the name, this map is used for
navigation. Several of these nodes can be combined to form a node of the topological map.
Such a node can represent an area like a certain room. The highest level of abstraction is
achieved by the conceptual map, linking the areas of the topological maps with each other
and further semantic information.
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1.2 Challenges

The development of robots with cognitive abilities comes with several challenges in the
fields of robotics, computer vision, and cognitive architectures. These challenges can be
related either to perception or to cognition. The main aspects targeted in this thesis are
summarized below.

As shown in the state-of-the-art, the perception system is one of the key-issues. Some
research of the most sophisticated cognitive architectures deals mainly with the cognitive
abilities and assumes a perfect perception. Other cognitive architectures, like the iCub,
are highly integrated with perception, making the exchange of modules difficult. As the
perception system is formed by two different subsystems, object detection and mapping,
different requirements arise for each subsystem. Two of the key requirements for the used
algorithms are real-time capability and robustness. Consequently, not all algorithms are
suitable for a cognitive architecture. An additional requirement for an object detection
algorithm is the capability to detect attributes of an object. To allow online learning, few
training images must be sufficient. When it comes to interaction with humans, specialized
algorithms which are able to detect human body poses are eligible. Not only the type of an
object is of great importance, but also its position. Two-dimensional maps are furthermore
required for navigation, but they are unsuitable for complex manipulation tasks, requiring
three-dimensional maps. As a laser rangefinder is unsuitable for some kinds of robots like
biped walkers, these maps have to be created using only vision. Hence, particular interest
has to be laid on the applicability of the developed algorithms.

Besides perception, cognition marks another key challenge for the development of robots
with cognitive abilities. A suitable knowledge representation is required as a base for cog-
nition. This knowledge representation should provide functions for adding new knowledge
and for linking detected objects with prior knowledge. One of the most important aspect
for the actual cognition is the integration of the different object detection and mapping
algorithms with the knowledge representation. In addition, a cognitive architecture should
be able to deal with uncertainties and provide functions for decision making based on the
achieved knowledge.

As different areas of application come with different requirements, the cognitive architec-
ture should be adaptable. This is achieved by creating a modular architecture, where
modules can be replaced by other modules and new modules can be included easily. Thus
another aspects arises, namely the thorough design of a convenient software architecture.

1.3 Main Contributions and Outline of Thesis

A mobile robot with cognitive abilities requires a sophisticated cognitive architecture with
a perception system and a cognitive processing system. Considering todays robots with
cognitive abilities, there is a lack of robots with comprehensive cognitive architectures,
which can be adapted to the programmers needs. As the cognitive system developed in
the scope of this thesis is modular, and the modules can be considered and even used
independently, it allows manifold areas of application and can be extended easily. Due to
the modularity, the cognitive system can be classified as a symbolic processing system. The
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Fig. 1.5: lllustration of a symbolic processing system, integrating semantic mapping.

perception is split into two major parts: object detection and mapping. A guide through
this thesis is given in the following section, summarizing the main contributions.

Figure 1.5 illustrates the semantic mapping system, a cognitive architecture developed
in the scope of this thesis. The main aspects of the general system architecture are the
perception system formed by the object detection and the mapping, and the cognitive
processing, formed by the semantic mapping. A user can interact with the robot directly
via the semantic mapping, or indirectly via interaction with the world.

System Architecture

Chapter 2 presents details about the software architecture and the autonomous city ex-
plorer (ACE), a mobile robot that was co-developed in the scope of this thesis and serves
as hardware platform. ACE is equipped with a camera head, two stereo cameras and two
PCs, one for navigation and interaction and one for vision processing. The proposed soft-
ware system is highly modular and is distributed between different processes and threads
on different machines. Designing clear and logical interfaces between the system, the
subsystems, the modules, and the submodules is vital for a distributed system and was
consequently of particular interest during the design process of the software architecture.
Therefore, a stringent hierarchy with different communication protocols in each layer has
been developed, allowing an almost arbitrary distribution of the subsystems on different
machines.

Perception System

Sophisticated object detection and vision-based mapping form the perception system. Both
provide methods and algorithms to process two-dimensional and three-dimensional data.
Two-dimensional images can be obtained easily from a camera, while a three-dimensional
representation has to be computed by using stereo image processing. Consequently, Chap-
ter 3 starts with the introduction of a real-time stereo algorithm, which is able to process
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images with high resolutions using CUDA, NVIDIA’s stream computing architecture. The
stereo algorithm computes a three-dimensional point cloud, which can be used by a novel
algorithm for body pose estimation. These poses provide valuable and intuitive infor-
mation for interaction with human operators. Furthermore, a real-time object detection
algorithm based on two-dimensional images is proposed. This algorithm is based on a
cascade of different types of histograms and is able to detect objects robustly, even if large
parts of the objects are occluded. Compared to existing algorithms, few training images
are required to achieve good results.

Like object detection, mapping can be performed with two and three dimensions. Chap-
ter 4 focuses on methods for vision-based mapping. Robust mapping requires information
about the robots position and thus the ego-motion. As it is strongly related to stereo recon-
struction, the stereo module is extended with a fast ego-motion estimation. Detecting the
ground by image analysis is the only possibility to build a map based on two-dimensional
images. As searching for edges is only possible in some environments, a texture-based
approach is developed. The algorithm is extended with a memory to remember valid types
of the ground. For building three-dimensional maps, it is adequate to merge the different
point clouds obtained by the stereo modules based on the robots ego-motion. Therefore, a
modular approach to the median fusion algorithm is presented, allowing the use of different
stereo modules and other types of sensors. Hence, the system can easily be adapted to dif-
ferent sensors or machines. Additionally, the thesis introduces a novel algorithm to merge
the data obtained from laser rangefinders and cameras into one representation combining
the advantages of both sensors - the laser rangefinder’s accuracy and the camera’s color
information.

Cognitive Processing

As it is easy to access and integrate both perception modules, semantic mapping is a
well suited representation for a cognitive architecture. Chapter 5 introduces a novel
mathematical base for a semantic map. Such a semantic map is composed of a metric
map and a semantic network, where cells from the metric map can link to nodes of the
semantic network and vice versa. This mathematical base can be used for the decision
making process and thus to plan actions and interact with the environment. Details about
the integration of the cognitive architecture into a real-time capable system are presented
together with a simulator, which is developed to test the cognitive architecture. Both
simulations and real world experiments will be shown to validate the whole system.

This thesis presents a wide variety of aspects contributing to the development of sophis-
ticated robots with cognitive abilities. Some of the aspects improve existing algorithms,
while others mark new methods for perception and cognition. By covering and integrating
the most important facets of perception and cognition, the presented thesis serves as a
base for further research.
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A sophisticated mobile robot is essential in order to test the components of a cognitive
architecture during the implementation process and to verify the whole system afterwards.
As some of the proposed methods, like real-time stereo vision and object recognition, are
computationally expensive, modern hardware is required on the robot. Due to the strong
connection between the vision system and the navigation system and the small bandwidth
of a wireless network, vision processing needs to be performed on board the robot. Offline
computations would furthermore reduce the robots operating range and thus the auton-
omy. Equally important, the mobile robot should be capable of both indoor and outdoor
scenarios. Indoor scenarios provide a structured environment and controllable weather
and light conditions, while outdoor scenarios provide cluttered scenes with challenging
light conditions. In general, indoor scenarios are easier to handle but outdoor scenarios
provide more exciting possibilities.

The remainder of this chapter is organized as follows: It starts with an introduction to
the ACE robot and specifies its mission. Section 2.2 describes the architecture of the
presented semantic mapping system, which was implemented using ACE as demonstrator.
A detailed overview of the hardware and software architecture of ACE can be found in

Appendix A.

2.1 The Autonomous City Explorer

These requirements are fulfilled by the autonomous city explorer (ACE) [12], which was
co-developed at the Institute of Automatic Control Engineering within the scope of this
thesis. The main mission for ACE is to find its way from the institute to the Marienplatz,
a public square in the center of Munich, only by interacting with humans and without
using prior map knowledge or GPS information. To fulfill this task, the robot must be
able to perform vision guided dialogue-based navigation in an unknown urban outdoor
environment. The robot must be able to find a human and initialize the interaction. Us-
ing a speech based dialog system, the most natural way of interaction, is impossible with
the background noise at heavily frequented public places or with traffic noise. Therefore
no speech-recognition system is used and the human-robot-interaction is performed via a
touch screen and loudspeaker. To enhance the natural interaction, ACE has the ability
to speak and to recognize human body poses. Another important ability for a robot in
order to behave like a pedestrian is the robust detection of the sidewalk. ACE is not
allowed to cross junctions or to drive on streets, so crossroads have to be detected reliably.
To traverse crossroads safely, ACE tracks a person wearing a T-shirt with a chessboard
pattern.

Outdoor experiments were conducted successfully on 30th and 31st of August, 2008 [11].
Starting from the institute, ACE succeeded in reaching the Marienplatz. The whole pro-
cess took about 5 hours, while the route had a length of approximately 1.8 km, including
heavily traveled roads and crowded public places. Figure 2.1 illustrates the approximate

11
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g

Fig. 2.1: Approximate trajectory of ACE on its way to the Marienplatz with four exemplarily
stations: (a) crossing a street, (b) and (c) interaction with a pedestrians, and finally
(d) approaching the Marienplatz.

route of the ACE robot from the institute to the Marienplatz. 25 and 38 pedestrians,
respectively, interacted with ACE and gave information about the direction of the desti-
nation. The relatively large number of pedestrians and long time are caused by interested
pedestrians who initialized the interaction and interrupted ACE, just to see how the robot
would react. An example for natural human-robot-interaction is shown in Figure 2.1 (b)
and (c), where ACE is interacting with pedestrians. Figure 2.1 (d) shows ACE navigating
in a highly crowded environment.

Parts of the semantic mapping framework presented in this thesis have been developed
within the scope of the ACE project, namely parts of the system architecture, object
detection, gesture recognition, two-dimensional mapping, and semantic labeling of places.
As ACE was not allowed to cross streets autonomously, it had to stop at intersections.
Therefore the robot had to be able to recognize traffic signs and traffic lights. As mentioned
before, human body pose estimation was used to enhance the interaction. Therefore pedes-
trians were asked to point in the direction ACE had to drive. Both methods, detection of
traffic signs and human body pose estimation can be referred to as object detection. The
two-dimensional mapping system was used to recognize the sidewalk, in order to prevent
ACE from falling down the curbs. Hence, the sidewalk was detected using texture analysis
and the shape of the sidewalk was used to identify the type and thus for semantic labeling.

12



2.2 Software Architecture of a Semantic Mapping System

2.2 Software Architecture of a Semantic Mapping System

The semantic mapping system has emerged from the software architecture of ACE and
makes heavy use of methods, which have originally been developed for the vision [93] and
navigation systems, like the human body pose estimation, the two-dimensional mapping
module, the laser rangefinder, and basic data structures like point clouds.
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Fig. 2.2: System architecture of a semantic mapping system. Rounded boxes indicate modules,
square boxes indicate data storage structures, solid arrows connections between the
subsystems, dashed arrows connections between the modules in one subsystem, and
dashed lines separate the different layers. The different subsystems are highlighted
in different colors. The Ego-motion Estimation, the Stereo Module, and the Object
Detection are executed on Cuda.

Figure 2.2 shows the system architecture of the semantic mapping system, which can be
separated into four different layers and four subsystems, the Robot, the Object Detection,
the Vision-Based Mapping, and the actual Semantic Mapping. Each subsystem is
composed of several modules, which can be separated further into different submodules.
The sensor data is gathered in the Sensor Layer, containing the Stereo Camera and a
Laser Rangefinder. The sensor data is pre-processed in the Perception Layer containing
a Stereo Module and a vision-based Ego-motion Estimation. Furthermore, the
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Fig. 2.3: (a) Hierarchy of the software architecture and (b) data flow with the corresponding
communication protocols.

simultaneous localization and mapping (SLAM)-modules from the navigation system
can be placed in this layer. The actual data processing is performed in the Processing
Layer containing 2D and 3D Mapping, Body Pose Estimation, Object Detection,
Semantic Processing, and Planning. To simplify the data exchange between the
modules and subsystems, the results are stored in the Storage Layer, containing the data
structures 2D Map, 3D Map, Semantic Map, and Object Database. Ego-motion
estimation, stereo module, and object detection are executed on a CUDA-board, where
ego-motion estimation and the stereo module are combined in one program. The object
detection and vision-based mapping subsystems form the perception, while the semantic
mapping subsystem marks the cognition.

Tab. 2.1: Hierarchy of the software architecture

Instances Protocol System Parent
System 1 - Program User
Subsystem n UDP / D-Bus Process System
Module n Thread safe variables Thread Subsystem
Submodule n Variables Function Module

The whole system is executed in different threads and processes. As illustrated in Figure
2.3, each subsystem is executed in at least one independent process containing only modules
of the corresponding subsystem. Each process is separated into different threads, consisting
of one or more modules. All submodules of a module have to be executed in the same
thread. The only exception is made for processes executed on CUDA, where every function
is called multiple times in parallel threads. More detailed information about CuDA and
the integration of processes executed on CUDA can be found in Appendix B. As only
read access is required, the object database can be instantiated multiple times in arbitrary
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threads or processes. Whenever the object database is changed, a signal has to be sent to
every thread or process and the database has to be reloaded. In addition, the processes
don’t have to be executed on the same machine. Hence, the computational power can be
adjusted to the needs of the selected modules. The communication between the modules
is accomplished with thread-safe data structures, while a communication protocol is used
for the communication between the subsystems. This protocol is either based on a UDP
connection when the processes are executed in a distributed system, or based on the D-
Bus protocol when the system is executed on one single machine. Both communication
protocols provide the same interface to the corresponding submodule, so that the protocol
can be adjusted easily. Every subsystem, module, or submodule can only communicate
with its parent or with other children of its parent of the same layer. Table 2.1 summarizes
the system hierarchy. Further details about the implementation of the software system
and the scheduling can be found in Section 5.3.2. The following sections introduce the
main subsystems and give a short introduction to the most important modules.

2.2.1 Object Detection

The object detection subsystem provides different algorithms and methods to detect, lo-
cate, and identify objects in the vicinity of the robot. Furthermore, these methods can be
extended to detect certain attributes of the identified objects, e.g. their color. A detailed
description of the object detection subsystem, modules, and the corresponding submodules
will be given in Chapter 3.

Stereo Module

The stereo module uses images obtained by the Bumblebee X3 stereo camera with a res-
olution of 640 x 480 pixels as input, where 150 disparities have to be computed. Before
the stereo image can be reconstructed, both images have to be rectified to achieve epipolar
geometry. To ensure real time-capability, the stereo module is implemented using CUDA,
resulting in a speed of 15 Hz. The result of the computation is stored as a colored three-
dimensional point cloud.

Body Pose Estimation

A point cloud obtained by the stereo module is used as input to estimate a human body
pose. In the first step, possible humans are detected by using a skin color filter, followed
by a segmentation of the point cloud based on the results of this detection. Now, a human
model with 28 degrees of freedom is fitted into the point cloud and the body pose is
estimated.

Object Detection

As this approach is based on the use of a cascade of different types of histograms, namely
color histograms, histograms of oriented gradients, and color co-occurrence histograms,
and thus both color and spatial information, it provides a fast and reliable method to
detect previously learned objects. This method requires very few training images and is
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able to deal with large occlusions. Again, it is implemented using CUDA and thus provides
a real-time capable object detection.

Object Database

As mentioned above, objects have to be learnt before the object detection cascade can be
performed. Due to the character of the histograms, very few training images are necessary
for each object. A total of 18 images from different points of view will suffice. Threshold
values for each object and each type of histogram and thus each step of the cascade are
also stored in the object database and are furthermore connected to the type of the object.

2.2.2 Vision-Based Mapping

The vision-based mapping subsystem provides methods to create both two- and three-
dimensional maps of the environment. As mapping requires knowledge about the robot’s
position, the sophisticated real-time capable stereo module is extended with a method for
ego-motion estimation. A detailed description of the vision-based mapping subsystem, its
modules, and the corresponding submodules will be given in Chapter 4.

Ego-motion Estimation

As both problems are somehow similar and strongly connected, the ego-motion estimation
is computed concurrently with the stereo image processing, having full access to the results
and temporary data. A frame rate of 10 Hz can be achieved for the combination of both
algorithms.

3D Mapping

The 3D mapping module uses a modular implementation of the median fusion algorithm
introduced by Nister et al. [2] to merge different point clouds obtained by the stereo
module. The alignment of the different point clouds is computed based on the results
of the ego-motion estimation or based on the result of the navigation’s SLAM module,
yielding an accurate, three-dimensional representation of the environment. Moreover, an
algorithm to fuse laser data with vision data is presented.

2D Mapping

The 2D mapping module utilizes a texture-based approach to analyze two-dimensional
images. Therefore the assumption that the area in front of the robot is free of obstacles,
is made and the texture in front of the robot is compared to the texture in the rest of the
image. By back-projecting the result of this comparison a metric map can be computed.
Further obstacles are detected by analyzing the result of the 3D mapping module.

3D Map

The three-dimensional map is stored as a colored three-dimensional point cloud, where
different functions can be applied on the point cloud, e.g. reduction of noise and outliers.
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2D Map

An occupancy grid is used to store the two-dimensional map. Each cell represents a part
of the ground with a certain size and is assigned with a probability. A high probability
denotes the cell is free of obstacles, whereas a low probability denotes the cell is occupied
by an obstacle.

2.2.3 Semantic Mapping

To plan actions, the robot needs to combine the results of both object detection and vision-
based mapping. The semantic processing subsystem provides methods and data structures
to store the gathered information in an adequate way and to draw logic conclusions. Con-
sequently, the semantic mapping subsystem represents the cognition part of the presented
cognitive architecture. A detailed description of the semantic mapping subsystem, its
modules, and the corresponding submodules will be given in Chapter 5.

Semantic Processing

The results of object detection and two-dimensional mapping are combined in the semantic
processing module, yielding a semantic map. Attributes of objects can be obtained by the
object detection subsystem or can be predefined by a human operator. As it controls the
other modules and subsystems, and processes the gathered data, this module is one of the
core parts of the whole semantic mapping architecture.

Semantic Map

A semantic map is composed of an occupancy grid, containing information about obstacles
and a semantic network, containing further information about the environment. Both
are connected with each other. Hence, the occupancy grid contains links to nodes of
the semantic net. These nodes represent objects and are again connected to cells of the
occupancy grid. Thus, the position of each object can be accessed from the semantic
network and the robot can obtain further information about objects in its vicinity.

Planning

Furthermore, a semantic map can be used for action and path planning. Therefore, object
states are introduced. Thus, a desired states can be specified for an object and the action
planner plans actions based on the information given in the semantic map to bring the
object into the desired state.

This chapter gave an insight of the development of a system architecture for a mobile robot.
Besides details about the hierarchy and the communication protocols, a short introduction
of the actual modules forming the perception and cognition has been given. The following
chapters give more in-depth information about these modules.
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3 Object Detection

One of the most important cognitive skills of a robot acting in close collaboration with hu-
mans is the ability to detect and recognize objects in its environment. Great progress has
been achieved in the field of object detection and object recognition during the last decades.
Beginning with simple correlation functions, current hardware provides a vast amount of
computational power, and thus allowing real-time implementations of complex algorithms.
Two major groups of algorithms have evolved. The first group uses two-dimensional im-
ages as input, while the other group analyzes a three-dimensional representation. Those
three-dimensional representations can be obtained by stereo image processing or by uti-
lizing other sensors like laser rangefinders. While OPENCV [75] provides a wide variety
of algorithms for two-dimensional image processing and SIF'T [76] has evolved as a quasi-
standard for object detection, there exist many approaches for three-dimensional object
detection that are still subject to further research.

Most of the popular object detection algorithms use no color information, require many
training images, and sometimes a complex supervised training process. Consequently, the
training phase is time consuming and can hardly be automatized. On the other hand,
new technologies like stream computing increase the available computational power signif-
icantly. Hence, even more complex algorithms can be used for real-time applications. This
chapter presents different algorithms for object detection in two and three-dimensional rep-
resentations, while the algorithms using three-dimensional representations are independent
from the sensor type. As this thesis focuses on vision-based approaches, a sophisticated
real-time capable implementation of a stereo image processing system is proposed. Both
standard algorithms as well as novel algorithms are presented for the actual object detec-
tion. One of the novel algorithms is developed for the estimation of human body poses, but
can easily be extended to recognize other skeleton based objects. This algorithm is based
on the fitting of a skeleton model into a point cloud. In addition, an algorithm utilizing
a cascade of different types of histograms and thus using spatial and color information is
proposed. As they can be performed in real-time and deliver good hit-rates, the presented
algorithms advance the state-of-the-art. Consequently, a robust object detection architec-
ture is presented, which can furthermore be extended to recognize attributes like color.
Thus, the presented object detection subsystem is an ideal base for a semantic mapping
framework.

The remainder of this chapter is organized as follows: First, an overview of current object
recognition algorithms is presented, followed by details about the stereo image process-
ing algorithm. Section 3.3 presents the object recognition algorithms based on three-
dimensional representations of the environment, including the human body pose estima-
tion. Section 3.4 introduces several algorithms using two-dimensional images, starting with
widely used algorithms like SIF'T, a cascade of haar-like features, and the cascade of differ-
ent types of histograms. The chapter concludes with experimental results and a discussion
in Section 3.5 and 3.6, where the advantages and results of the different algorithms are
compared.
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3.1 Overview of different Object Detection Algorithms

The research field of object detection can be separated into two main challenges: two- and
three-dimensional object detection. For vision-based three-dimensional object detection, a
three-dimensional representation of the environment has to be created. Stereo vision is the
most common approach to gain this representation. This section will give an introduction of
current work in the area of stereo image processing, three-dimensional and two-dimensional
object detection.

Stereo Image Processing

Most of the vision-based three-dimensional object detection systems require some sort of
stereo image processing or structure from motion module. The most obvious approach is
based on two images, which are obtained simultaneously by two cameras with different
points of view. A three-dimensional representation can be computed by using stereo-
triangulation. An overview of the most important algorithms can be found in [121]. The
other group of algorithms is based on consecutive images, for instance a video stream,
whereas depth information about the scene can be obtained by analyzing the camera
movement [130]. Most of the current research activities in stereo vision deals with increas-
ing the quality and is not focused on real-time capability. Klaus et al. [65] achieved the
best quality, but the computation time for one image is between 14 and 22 seconds. Some
research investigates different methods to increase the performance, e.g. with scanline op-
timization [44] or different aggregation steps [121].

The introduction of the compute unified device architecture (CUDA) by NVIDIA estab-
lished a new branch in computer vision and data processing. In contrast to a conventional
CPU, stream computing allows massive parallel processing of simple functions and pro-
vides an easy to use and intuitive framework for the development of new functions. Due
to its parallel nature, stereo matching is well suited for the execution on a GPU. Wang et
al. presented a GPU implementation with a computation speed of 12 Hz [154]. However,
their algorithm only computes 15 disparities and is thus not eligible for application on a
mobile robot. Consequently, an algorithm which is able to perform stereo reconstruction
in both real-time and high quality is proposed.

Three-Dimensional Object Detection

Compared to two-dimensional images, the third dimension provides valuable additional
information. On the contrary, using three-dimensional point clouds as input for object
detection brings larger computational challenges. Hence, suitable algorithms that are real-
time capable have to be developed. Three-dimensional object detection can be separated
into two fundamental problems: modeling of the object and recognition of the objects. An
introduction into these problems can be found in [109]. Funkhouser et al. propose an algo-
rithm for retrieving similar shapes from a database containing objects [38]. CAD models
can be converted into point clouds, which are then used for matching [160]. Schnabel et
al. presented a complete framework for rapid object detection based on point clouds [123].
In this approach the point clouds are described by basic shapes acting as features, such
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as planes and cylinders. Hiroshi et al. [52] represents the object as a manifold in a low-
dimensional subspace by compressing the image set in the parametric eigenspace and tries
to identify the object based on this manifold. Schneiderman et al. [124] present a statisti-
cal method for the detection of faces and cars, based on a histogram containing subsets of
wavelet coefficients and their positions on the object.

Developed for realistic animation of the human body in Hollywood movies, the first appli-
cations for the reconstruction of human body poses have been motion capture methods.
An actor was equipped with markers, so his movements could easily be recorded. On the
other hand, markers are ineligible for outdoor scenarios. A mobile robot communicating
with pedestrians must use available sensors, such as cameras or laser rangefinders. The
field of camera-based body pose estimation can be divided into various approaches, which
are summarized below.

Some approaches use monocular vision systems [105], where an image of the body with
several landmarks serves as input, shape descriptors that are extracted from image sil-
houettes [31, 89|, or probabilistic models [18]. Semi-supervised learning can be used to
increase robustness [7]. Other approaches require prior knowledge about the human move-
ments [58], which can be stored in a motion library [106]. Boulay et al. [16] maps typical
postures into two-dimensional images. Other approaches, like the one presented in this
thesis, focus on multi-view systems, such as stereo vision, which provide additional depth
information. The fitting of the model can be described as an optimization problem [3]
and can easily be combined with tracking people [66, 107]. A learning algorithm can be
used [159], where training data is recursively classified into several clusters with silhouette
and depth images. Another approach is the use of an image stream, where features can be
tracked between the images [80]. Through the two-dimensional tracking of the features,
their three-dimensional positions can be computed [94]. Bregler et al. [19] uses twists
and exponential maps to recover high degree-of-freedom articulated configurations of the
human body. Of course, the image stream can consist of monocular or stereo images.
Gavrilla et al. [41] use an image stream with multiple views to fit a human model into
the recovered scene, while others use three-dimensional voxel data created from multiple
views [118]. However, the mentioned algorithms are limited to a certain type of sensor and
can only estimate human body poses. This chapter presents an algorithm for human body
pose estimation, which is independent from the sensor type and can be extended to other
type of objects. Every object, which can be described by a skeleton, can be detected by
the algorithm.

Two-Dimensional Object Detection

Besides object detection and recognition in three dimensions, there exist several approaches
based on two-dimensional images. One of the most popular and robust algorithms is SIF'T
(scale invariant feature transformation) introduced by Lowe [76]. SIFT uses local image
keypoints that can be used to describe objects. Real-time performance can be achieved
using modern hardware in combination with small datasets. Several implementations on
a GPU achieved real-time capability with larger datasets [24, 71]. A different approach
was proposed by Viola and Jones [152]. They used a cascade of very simple haar-like [75]
classifiers. An object is detected when it passes the whole cascade. If it fails one classifier
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of the cascade, the remaining classifiers will not be computed. By using simple features
and many stages, this algorithm delivers fast and reliable results. OPENCV offers an
easy to use implementation of this algorithm. Some research focuses on robust matching
algorithms [157] or face detection, which is also a part of object detection [50]. Krawiec
et al. [68] use genetic algorithms for image analysis. The work of Redfield et al. [114]
utilizes color information for object detection. With fixed illumination conditions only 16
colors are sufficient for object detection. In all those approaches no spatial information
is used, ignoring valuable information. On the other hand, some approaches use only
spatial information, e.g. by creating histograms of oriented gradients [29], or by analyzing
multiscale affine invariant image regions [163]. Chang et al. proposed color co-occurrence
histograms [8, 23] combining both color and spatial information, resulting in a classifier that
is robust to scale, illumination and occlusions. However, color co-occurrence histograms
are computationally expensive.

As they are based on a collection of relatively simple algorithms, which have to be computed
many times, many object detection algorithms are eligible for parallel computing using
stream processing. Even complex algorithms like the computation of color co-occurrence
histograms can be performed almost in real-time. Consequently, a novel implementation
using CUDA is introduced. To increase the computational speed even further, a cascade
based on three classifiers is proposed, namely color histograms, histograms of oriented
gradients and color co-occurrence histograms. By using different types of histograms,
spatial and color information of the objects can be used. Only very few reference images of
an object are required for training. Depending on the complexity of the object, not more
than 18 images from different points of view are sufficient. Consequently, online training
can be easily implemented. In order to achieve independence from changes in illumination,
the HSV (hue, saturation and value) color space is used.

3.2 Stereo Image Processing

Vision-based three-dimensional object detection requires a high-quality stereo reconstruc-
tion module. For the usage on a mobile robot, this stereo module has to be real-time
capable. By using stream computing on a GPU, both objectives can be fulfilled. This
section starts with a short introduction to stereo reconstruction and introduces methods,
which are well suited for an implementation on CUDA [153]. The major novelty of the
presented methods is the implementation on a GPU and the thorough adaption of the
parameters.

Stereo reconstruction algorithms are based on the idea that a point p of the environment
is mapped unambiguously on two different image planes. Assuming that the two points py,
and pg of the left I* and right I# input image planes are known, the position of the corre-
sponding point p can be computed. Hence, the problem of stereo reconstruction is reduced
to the search for the two corresponding points. To reduce the computational complexity,
the images are rectified in a first step, ensuring epipolar geometry. As shown in Figure
3.1, all possible reconstructed points p of the point p;, and thus the corresponding image
points pr are aligned along one line. Consequently, it is adequate to search along this line
and the two-dimensional search problem can thus be reduced to an one-dimensional search
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Fig. 3.1: Geometry of a stereo system.

problem. The corresponding image points in two rectified images are denoted as I*(, )

for pr, and I(i + d, j) for pg.

Hence, the main problem of stereo reconstruction can be stripped down to the so called
correspondence problem. As a simple search function is applied to every pixel of one im-
age and the function calls are independent, the correspondence problem can be parallelized

easily. Recent research has shown that the stereo correspondence problem can be divided

into four steps:
e The computation of the matching costs, where the costs of the different disparities

are computed,

e the aggregation of the costs, where the different costs are improved,

e the computation of the actual disparity, and

e the post-processing, which improves the quality of the estimated disparities.

These steps will be described in the following sections. The post-processing of the stereo
algorithm and the pre-processing of the object detection module are identical and will be

described in Section 3.3.1.

3.2.1 Computation of Matching Costs

Due to the epipolar geometry, the corresponding pixel of the pixel IX(i,5) is placed on
the horizontal line (i 4 d, j), with d > 0. Hence, the stereo algorithm scans along the
corresponding horizontal line on the right image, compares the color information of the two
pixels, and computes a cost function for each pixel. The pixel with the lowest cost is then
selected and the distance d between the two pixels is selected as the resulting disparity.
The disparity is also sometimes called the inverse depth, as a small d indicates a distant
point, while a large d indicates a near point. Two algorithms for the computation of the
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cost have evolved: pixel matching or block matching. While block matching shows better
results, pixel matching is faster to execute. However, the aggregation step can compensate
the disadvantage of pixel matching while keeping its speed. Pixel matching is therefore
used for the estimation of the costs, which can be computed by using the sum of squared
differences. Two different costs are computed for each pixel: intensity costs Cr(i, j,d) and
gradient costs Cq (1, j, d):

Cy(i,,d) = > (I*,5) = I"(i+d, j))’ (3.1)
c=R,G,B
2
o OIL(i,5)  OIR(i+d,j)\* (0IL(i,j) OIF(i+d,j)
CG(Zaj>d>_c:;}B( i - i ) + i - i ) (32)

while I, and I,, denotes the gradients in z- and y-direction, respectively. The result is stored
in a three-dimensional structure, the disparity-space image (DSI) with the dimensions i,
j, and d. An element of the DSI can be computed as:

00(27j7d> :wOI(Z7J7d)+1_Tw(OG<Z7]7d))7 (33)

while w denotes the weight of the intensity with respect to the gradients. Furthermore,
outliers can be avoided by limiting each element Cy(i, 7, d) to a maximal value Cypay.

3.2.2 Aggregation of Costs

During the computation of the costs, each element Cy(4, j, d) is not influenced by its neigh-
bors. However, this would ignore valuable information. This disadvantage can be com-
pensated by modifying each element. Therefore the surrounding elements of the DSI are
examined in the aggregation of costs. There exist several different methods for the compu-
tation of the update value [121], which will be introduced blow. Some of these methods are
shown in Figure 3.2 (b)-(d), while Figure 3.2 (a) shows the corresponding ij-plane from
the DSI.

Square Window

The simplest approach is the computation of the average value over a local squared window
with a fixed size of N x N, with N =2m + 1:

1 m m

k=—ml=—m

while C4(4, j, d) indicates the updated element of the DSI. By computing the average value
of each line and then computing the average of these averages, the whole computation can
be separated in a horizontal and a vertical part and the computation speed can be increased.
This reduces the complexity from O(n?) to O(2n).
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Fig. 3.2: Comparison of the different aggregation methods: (a) the ij-plane from the DSI,
(b) the minimum filter approach, (c) the boundary guided window approach, and (d)
the adaptive weight window approach. Darker colors of the pixels indicate a higher
weight, while the red pixel indicates the current element Cy(3, j, d).

Minimum Filter

Another modification is the minimum filter, which is based on the shiftable window ap-
proach presented by Gong et al. [44, 87]. Before the minimum filter can be applied, a square
window has to be computed for the whole DSI. The actual minimum filter approach moves
a support window of size Nyin, With Nyin < Nsquare, Within the range ¢ — m...7 +m
and j —m...j + m, respectively. C4(i,7,d) is then replaced by the element within all
support windows, which has the lowest cost. Figure 3.2(b) shows two different support
window positions. The yellow pixel indicates the element with the lowest cost of the shown
support window, which will be used to replace the current element.

Adaptive Window

The adaptive window approach uses the minimum filter approach to estimate the window
size for a square or an adaptive weight window. Therefore a minimum filter or the squared
window approach is applied with several different window sizes yielding different possible
results. By computing the average value, the minimal or the maximal value of one of
these possible results is then selected as the final result. Despite the presented advantages,
the squared window approach or the minimum filter approach have to be applied multiple
times yielding a larger computation time. This results in the real-time incapability of the
algorithm for the used hardware architecture.

Boundary Guided Window

Another approach is the utilization of a corner detection filter to include only those pixels,
which are inside the boundary. As shown in Figure 3.2(d), this is realized by using different
weighting factors that are computed based on the position of the pixel within the boundary.
A detailed description of this computation and the different cases can be found in [87].
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Adaptive Weight Window

The adaptive weight window is a modification of the square window approach, which uses
different weights for the elements of the sum. As illustrated in Figure 3.2(d), pixels with
a small distance to the center have a stronger weight w(k,):

Acyy X Ag
Ve Vp

w(k,l) =k -exp—( ) (3.5)

while Acy; denotes the distance from the pixel to center, Agy the difference in the color.
Ye, Vg and k are weighting factors that have to be estimated heuristically.

3.2.3 Computation of the Disparity

After the costs have been computed and optimized in the aggregation step, the best dis-
parity has to be selected. The simplest and most straightforward approach is the winner
takes it all method, which selects the disparity with the lowest cost. This method is fast to
execute, but as each element is estimated independently, not robust with respect to noise
and outliers.

Scanline optimization computes a cost function for each line of the image. Hence, the
algorithms selects an id-plane in the DSI and searches for a cost optimal path through
this plane, where smoothness is considered as cost. This algorithm is slower but yields
smoother results. However, only one line is considered and fragments between different
lines can occur. Other possibilities for optimization include a median filter applied to the
result of the winner takes it all method and algorithms for the reduction of noise and out-
liers. More details about these optimization algorithms can be found in [121] and Section
3.3.1.

Areas with low texture cannot be reconstructed by the algorithm, so they have to be
identified and eliminated. Therefore a confidence measurement ( is proposed:

C’Max - argmin<cA (l7 ja d))

(= éM , (3.6)

while the costs C4(i,j,d) have to be normalized. A suitable threshold (i, has to be
selected heuristically and all pixels with a confidence below the threshold are eliminated.

The presented stereo algorithm extends the state-of-the-art with a real-time capable im-
plementation, allowing the reconstruction of images with a resolution of 640 x 480 pixels
and 150 disparities. It provides an ideal base for further three-dimensional object detection
algorithms, which will be presented in the following section.
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3.3 Three-Dimensional Object Detection

Compared to flat images, the third dimension of point clouds provides valuable additional
information, allowing easy access to spatial information. The presented algorithms are
not only limited to point clouds obtained by stereo image processing, but also to those
created by other sensors like laser rangefinders. Most three-dimensional object detection
algorithms are based on the same basic steps:

e During the pre-processing noise and outliers are reduced,

e followed by the segmentation, where the point cloud is separated into spatial ad-
jacent structures.

e Now, symbolic and numeric attributes are extracted, and
e then used for the actual classification process.

The following sections introduce these basic steps, followed by an algorithm to detect
human body poses.

3.3.1 Pre-Processing

Depending on the further processing steps, different filters are applied during the
pre-processing. Possible filters include reduction of noise and outliers, smoothing, and
interpolation of missing points. Furthermore, the number of points contained in the point
cloud can be reduced or increased. Thus, a desired resolution of a point cloud can be
adjusted. This section gives an overview of the most important filters.

Reduction of Noise and Qutliers

Due to the trade-off between quality, speed, and reconstruction errors in the stereo module,
most of the point clouds are covered with noise and show outliers. Areas with low textures
or overexposed areas are difficult to match during the stereo matching and lead to inevitable
reconstruction errors. Hence, noise and outliers have to be identified and removed in the
pre-processing step. The proposed algorithm is based on a nearest neighbor search and is
relatively simple and thus fast to execute. Most of the execution time is spent searching for
the nearest neighbor. Fortunately, the nearest neighbor problem is well explored. One of
the most efficient approaches is the use of kd-trees [5], a space partitioning data structure.
Kd-trees use splitting planes parallel to the axis to separate the space into partitions,
each containing one point. Consequently, a nearest neighbor search algorithm can address
directly the space and not all the distances to all points have to be computed. As outliers
and noisy points are of similar topology, the reduction of both can be performed in one
step. Algorithm 1 shows the developed algorithm for noise reduction of a point cloud N. x;
denotes a single point and the function kd-search(x;, R) returns the number of neighboring
points within a certain search radius R. If this number is below the minimal number of
neighbors Ny, x; will be removed from the point cloud.
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Fig. 3.3: Result of the reduction algorithm with different parameters. From left to right:
decreasing search radius R, from bottom to top: increasing minimal number of
neighbors Npuin.

Algorithm 3.1 Reduction of outliers and noise
: Define search radius R and minimal number of neighbors Ny,
: Build kd-tree
: for all Points x; of the point cloud N do

N = kd-search(x;, R)

if N < Ny, then

Remove x; from N

end if

end for

PN Wy

Figure 3.3 shows the result of the reduction algorithm with different parameter settings.
Both the minimal number of neighboring points Ny, and the search radius R have to be
selected carefully and are depending on the desired application, the resolution and quality
of the used stereo algorithm, and thus on the density of the input point cloud.

Smoothing and Interpolation

Compared to their horizontal and vertical resolution (640 x 480 to 1280 x 960 pixels),
most stereo algorithms provide a poor depth resolution (15 to 150 disparities). Hence,
a reconstructed point cloud seems to be vertically sliced, leading to problems with three-
dimensional object detection algorithms. In addition, the horizontal and vertical resolution
decreases with increasing distance to the camera. Furthermore, most stereo algorithms
are not able to reconstruct areas with low texture, leading to more missing points in the

28



3.3 Three-Dimensional Object Detection

reconstructed point cloud. Scaling the size of the point cloud will lead to a different density
of points and thus to further missing points. Consequently, there is a need for an algorithm
that is able to reconstruct the missing points and normally distribute the resolution of the
point cloud.

The most obvious approach is an interpolation between existing points. The proposed
interpolation algorithm is working in close proximity to the existing points and can be
thus considered as a local algorithm. In a first step, the point cloud is quantized with the
desired resolution, so that missing points can be identified. Next, the nearest neighbors of
the missing points are computed. By weighting the neighbors with an inverse euclidean
distance, the color and exact position of the new point can be computed. If the distances
to the neighbors are too large, the point cannot be reconstructed. This novel algorithm
provides a fast method to adjust the resolution of a point cloud with a concurrent smoothing
process. Another method utilizes polygons to reconstruct point clouds, where existing
points are used to compute a triangle mesh around the object. Missing points will lead to
holes in the mesh, which have to be detected and closed.

Smoothing of a point cloud can be achieved by performing a three-dimensional discrete
convolution with an adequate kernel function K:

N =NxK. (3.7)
Distribution functions with an integral of 1, like the gaussian filter, are well suited for
smoothing:
1 2 +yP+ 20
h(ﬂf, Y, Z) = \/m exp —T (38)
The pulse response h of the filter can be stored in a three-dimensional array:
1 1 1 1
o 7 %% o
K(z,y,1)= 20 10 40 JK(2,y,2)= 20 40 40 ,K(z,y,3)= 20 20 40
0 L+ 0 1l 3 1 0 L 0
40 40 40 40 40
(3.9)

Other kernel functions, like the Laplace filter, can be used to detect edges. Depending on
the further processing steps and the desired spatial attributes, it can be useful to apply a
combination of several filter operations.

3.3.2 Segmentation of Three-Dimensional Point Clouds

The three-dimensional representation of the scene acquired by the stereo vision module
contains a large colored point cloud consisting of several different objects. By using a seg-
mentation algorithm, the different objects can be separated. As this algorithm is mainly
used for human body pose estimation, objects that may be considered as humans have to
be found. A skin color detector is used to detect parts of the point cloud that may belong
to a human body. Consequently, the remaining parts of the human body have to be found.
Beginning at the detected start point, the segmentation algorithm searches for locally ad-
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(a)

Fig. 3.4: Example of the Segmentation Process: (a) Image with detected skin parts as start
point for the segmentation process. This image has been obtained by a stereo camera
with a high aperture and has already been rectified. (b) shows the three-dimensional
reconstruction of the scene using a stereo matching algorithm and (c) the detected
segments in the scene.

jacent structures and will create one cluster for each detected point. Needless to say that
other start points have to be selected for the detection of other objects. Edge detection
filters, saliency maps, two-dimensional attributes, or the result of an two-dimensional ob-
ject detection algorithm can be used as such start points.

Algorithm 3.2 shows the algorithm used for the segmentation. Starting with a given point
x, all neighbors N* = x,,...x,, are examined. A neighbor x, will be included in the
cluster, if the distance d = ||x — x,,||? is smaller than a certain threshold dyp.,. The point
cloud N* includes all points fulfilling this condition. N*[i] accesses the i-th point of this
point cloud. In the next step, all neighbors of the next point in the cluster are considered.
This function is repeated, until no valid neighbors are found or all points in the cluster
have been visited. As the main goal is the detection of humans, the algorithm adds only
those points to the cluster, which are included in a cylinder describing the area that can
be reached by a human.

Figure 3.4 (c) shows the detected segments of the scene with the result of the skin color de-
tection (see Figure 3.4 (a)) as start points, while Figure 3.4 (b) shows the three-dimensional
reconstruction of the same scene. After pre-processing and segmenting the point cloud,
the actual object detection algorithm can be applied.

3.3.3 Object Detection using Local Attributes

After the point cloud has been pre-processed and segmented, each segment represents a
possible object that has to be verified and later identified. The actual object detection
process can be separated into two major steps: The extraction of the attributes and the
classification.
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Algorithm 3.2 Segmentation of three-dimensional point clouds

1: x = point, corresponding to the detected skin part
2:1=0

3: repeat

4:  Detect neighbors N*

5. for j = 1 to number of neighbors do
6 dy=lx—x|

7 if d; < dyax then

8: add x; to cluster

9: end if
10: end for
11:  increase ¢
12:  x = next point in cluster
13: until 7 < iyfax

Extraction of Attributes

There exists a wide variety of different symbolic attributes, which can be distinguished
into several types: spatial, topological, and color attributes. Spatial attributes contain
the length, width, height, area, and the volume of the object, while topological attributes
contain the shape and the centers of mass and area. Color attributes contain the average
color in the red, green and blue color channel and the color distribution, which can be
estimated by using color histograms. An object can be unambiguously described by a
suitable n-dimensional vector b containing n attributes bg, ... b,_1.

Classification

Reference objects are used to compute a set of m reference vectors B, containing the
selection of the attributes. B¥ is used to estimate the type of the segment by comparison
to the object’s attribute vector b, which has to contain the same attributes. Most of these
methods are based on a distance function. For instance, an euclidean distance is computed
between the object’s vector b and each reference vector b, with 0 < i < m. Using the
nearest neighbor is the simplest way to select a class. However, this will always yield a
result and thus a high probability of false positives. This can be solved by assigning a
probability to each distance and by selecting the class with the highest probability only, if
this probability exceeds a certain threshold, which has to be determined heuristically.
Support vector machines (SVM) use kernel functions to transform the problem into another
space, where two different classes can be separated linearly. There exists two different
ways of classification with support vector machines: using SVMs to distinguish between a
reference class B and one class containing all remaining classes, or to compute all possible
combination of classes and use the SVM on every pair of reference classes. The first method
requires n — 1 comparisons for n classes and the second possibility (n — 1)? comparisons.
The second methods yields a higher accuracy. Due to the large number of comparisons,
SVMs are computationally expensive and thus impractical in handling a large number of
objects. Furthermore, the kernel function has to be selected carefully.
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3.3.4 Human Body Pose Estimation

The estimation of human body poses is a special case of three-dimensional object detection.
In contrast to existing approaches, the algorithm proposed in this section tries to fit a
human model into a point cloud instead of using features [91]. A skin color filter is used to
compute start points for the segmentation in order to find possible humans. A description
of the algorithm used to detect the skin color segments can be found in [136]. As the
skin detector may detect false positives and two or more skin parts of the same human,
the clusters are validated based on different attributes. One of the key advantages of the
algorithm is the expandability, which is achieved by the possibility to replace the model
used for fitting. Hence, any object that can be described by a skeleton with different
poses can be found and the pose can be estimated. These objects include obvious ones
like animals or tables and chairs, but also more complex ones like biped humanoid robots
or larger machines like cranes or excavators. Eventually, the pose of a manipulator with
many degrees of freedoms could be estimated. Accordingly, an eligible algorithm to find a
suitable start point has to be found. As mentioned before, a color filter may not be practical
for all models and may be replaced with a two-dimensional object detection algorithm.

Validation of the Segment

After the clusters have been created, they have to be validated. To discard invalid clusters,
the following filters are applied:

e The number of points in the segment is taken into account. If the number of points
is too small, the cluster is most likely caused by a false positive.

e [f too many points have been found, the skin detector has found something else than
a human.

e The fitting of the model into the cluster is starting with the head, so only the clusters
are valid, where the detected skin part matches the head. To check this, the centroid
of the cluster is computed and compared with the start point.

e Large clusters with a low density of points are most likely false positives, so they will
be rejected.

The numbers and thresholds in these filters are depending on the model and have to be
estimated during the creation process of the model. After the application of these filters,
almost all invalid clusters will be rejected. The remaining invalid guesses will be removed
in the next step, when no valid body pose can be found. If another skeleton is used, these
filters have to be adjusted to the new model.

Human Model

Figure 3.5 (a) shows a schematic view of the human model with 15 links and 28 degrees
of freedom, respectively. Each link provides one, two, or three degrees of freedom and
is rotated around the axis of the coordinate system of the link it is connected to. Table
3.1 shows the links, the number of degrees of freedom, the hierarchical structure, and the
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Fig. 3.5: (a) Reduced human model with 15 links, the corresponding coordinate systems and
the degrees of freedom and (b) five typical body poses of the reduced human model
from different points of view.

length of the link. For example, the lower left arm (link 4) will be rotated around the
coordinate system of the upper left arm (link 2) and both the left and the right shoulder
(link 2 and 3), are rotated around the neck (link 1). As the hands and the feet are too small
to be detected robustly by the stereo matching, they have not been taken into account.
Hence, this model is reduced by 10 degrees of freedom. To increase the accuracy of the
estimated body pose, 27 typical poses are considered. As the configuration of the arms is
of particular interest for interaction, the relevant poses differ mostly in the arms. To be
able to recognize the pose from every point of view, the whole body model is rotated in
steps of 33.3°. Figure 3.5 (b) shows some of the different poses.

To validate the human model, the link lengths and the angles between the links are consid-
ered. A minimal and a maximal value for each parameter of each link has been estimated.
As they are coupled, the left and right shoulder are treated specially. The left shoulder
has three degrees of freedom and whenever it is moved, the right shoulder is limited in its
movement and will show a similar movement. Consequently, Table 3.1 shows no degrees
of freedom for the right shoulder.

Extraction of the Body Pose

After one cluster has been computed for each human in a scene, they can be used to
extract the body poses. The algorithm will be executed once for each cluster, so the
accurate number of humans can be found. For each of the possible humans, the algorithm
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Tab. 3.1: Links of the human model

. Connected Length
Link Name to Link | POF | (i gm )
0 Start (Head) - 0 -
1 Neck 0 0 0.25
2 Shoulder Left 1 3 0.25
3 Shoulder Right 2 0 0.25
4 Upper Arm Left 2 2 0.375
5 Lower Arm Left 4 2 0.375
6 Upper Arm Right 2 2 0.375
7 Lower Arm Right 6 2 0.375
8 Upper Back 1 3 0.5
9 Lower Back 8 3 0.5
10 Hip Left 9 3 0.25
11 Hip Right 9 0 0.25
12 Upper Leg Left 10 2 0.5
13 Lower Leg Left 12 2 0.5
14 Upper Leg Right 11 2 0.5
15 Lower Leg Right 14 2 0.5

tries to fit all 27 typical body poses and computes an error metric for each pose. The pose
with the lowest error will be selected as winner. As the algorithm should be able to deal
with all different types of colors and clothes, color provides little useful information and is
consequently not used. Both segmentation and estimation of the body pose are only based
on the position of the points. First, the actual fitting method will be described, followed
by the error metric and the validation of the estimated body poses.

Method for Fitting a Body Pose

Starting with the head, the algorithm tries to fit the attached links iteratively. The order
of the links is the same as described in Table 3.1. If a link is not part of the image or is
occluded by an object in front of it, no valid fit can be made and the link and all links
attached to it will not be included in the resulting human model. The links are fitted based
on the following method: start point of a link will be the end point of the previous link.
Based on the model, the algorithm knows, where the end of the link should be placed in
an ideal case, namely at the so-called reference point p,. In a real case, the end of the link
will be placed somewhere near this reference point. The algorithm will search the points
NP~ around the reference point p, for possible ends of the link. An end point can only
be valid, if the restrictions of the link (e.g. link length or the angles between the previous
links) are not violated. In addition, the point density of the cluster along the link is not
allowed to fall below a certain limit. After the link has been fitted, the error metric will
be updated and the next link can be computed. This will be repeated iteratively until all
links are fitted.
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Algorithm 3.3 Fitting a reference body pose

(a) Function findBestFit(p,):

1: N? = points near(p,)

2: for ¢ = 1 to number of points in NP do
3 pr = NP[]]

4:  e; = compute point density near link
5: ey = compute link restrictions
6

7

8

9

€; [l] =e; + ey
: end for
: m = compute best e,
. return NP[m]

(b) Main Algorithm:
1: N, = Get Endpoints for Pose n
2: ¢,=0
3: for i = 1 to number of links do

4:  if Ng[i — 1] = invalid then
5: pr = Ng[i — 1] + N, [7]

6: ps = find best fit(p,)

7 if p; is valid then

8: N,[i] = ps

9: else

10: N;[i] = invalid

11: end if

12: e; = compute error metric(p,)
13: e =e + e

14:  end if

15: end for

16: e[n] = e;+ compute error metric (Nj)

Algorithm 3.3 (a) shows a description of the used algorithm that is performed for every
pose n. The current link is denoted as 7, the error metric as ¢;, the vector containing all
error metrics as e. The reference end point for a link is denoted as p, and the real end
point as ps. The list of the reference end points for the links is denoted as N,, the list
with real end points as N;. Again, N, [i] accesses the i-th point of the point cloud N, or
Ny, respectively. The algorithm for the computation of the best fit of a link’s end point
can be found in Algorithm 3.3 (b). N,, denotes the list of points near the reference point
p- and the resulting temporary error metrics are stored in e;. Figure 3.6 illustrates the
link fitting algorithm after the left and right shoulder already have been fitted. Starting
with the upper left arm (a), the lower left arm (b), and the upper right arm (c) are fitted.
Figure 3.6 (d) shows the completely fitted body pose. In (b) the end point of the reference
link would be placed outside the segment. The algorithm tries to find possible end points,
which are placed inside the segment, and selects the one violating the least constrains.
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(a)
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Fig. 3.6: lllustration of the link fitting algorithm. The red links illustrate the reference links,

the gray ones the possible links detected by the find best fit algorithm.

Error Metric

To select one of the 27 poses that have been fitted, an error metric has to be computed for
every pose. This error metric tries to identify the best fitting pose:

N N
Ny,
eln] =ar-e+az- ) ai+a3-(1—ﬁ)+a4-§ 5. (3.10)
¢ i=1

i=1

The error metric for a pose n considers the following parameters, each weighted by a

parameter a:
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The number of links. For each missing link i, a penalty a; will be added. Links
that have other links attached (like the shoulder) will lead to a higher penalty than
links with no other attached links (like the lower arm). A successfully fitted link will
have the penalty a; = 0.

The distance between the reference end points and the detected end points
of each link is also considered. High distances may lead to distorted body poses.
This error is stored in e;.

The number of points of the cluster that are not in close proximity to the
pose. When a pose does not use all points of a cluster, it is almost certain that one
or more links couldn’t be fitted correctly. The number of used points is denoted as
N,, the number of points in a cluster as N.,.

The density of points near a link. If the density becomes locally low, it may
be an invalid link. Every time the density near the link ¢ falls below a threshold, a
penalty is added to s;.



3.3 Three-Dimensional Object Detection

Validation of a Body Pose

After all links have been computed for a body pose, it has to be validated to avoid invalid
configurations. Again, the lengths of the links are analyzed. Contrary to the validation
of a single link, all link lengths are analyzed simultaneously. Equation 3.11 computes the
median scaling factor s of the estimated link lengths [° compared to the reference link
lengths {". N denotes the number of the estimated links.

1 N
S:NZI

After the median scaling factor has been computed, it is compared to the scales of the
single links. If the difference is larger than twice the standard deviation, the difference
between the link lengths is considered as too large and the pose is invalid. Furthermore,
the rotations between the links are considered. The human body is subject to certain

15
I

<=

(3.11)

=3

restrictions regarding the movement of the links. Many configurations are impossible or
futile. To avoid these configurations, a minimal and a maximal angle are considered for
every degree of freedom. All necessary angles are computed and if one exceeds the defined
interval, the whole body pose will be considered as invalid.

Complexity Analysis

As described above, the algorithm is used on a mobile robot, so the computational con-
sumption should be as small as possible. Both the resolution of the colored point cloud
as well as the number of detected skin parts will influence the computation time and the
detection of the skin parts scales with the resolution of the input image. Kd-trees have a
complexity for the construction of O(n -log(n)) and the expected complexity for a nearest
neighbor search is O(log(n)). One kd-tree has to be computed for the whole scene and
one for each detected cluster. The strongest influence on the computation is the resolution
and therefore the number of points in a cluster. The complexity for the segmentation for
each detected skin part is O(n - n. -log(n)), as it scales linear with the number of points n
in the scene and with the expected number of neighbors n. of each point. Fitting a body
pose for a segment has also a complexity of O(n - n. - log(n)).

This section gave an insight to existing three-dimensional object detection algorithms and
introduced a novel algorithm, which is used for the estimation of human body poses, but
can easily be extended to detect other objects. Although they provide more informa-
tion, three-dimensional object detection algorithms are sometimes unpractical. Hence,
two-dimensional object detection algorithms will be presented in the next section.
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3.4 Two-Dimensional Object Detection

Compared to those using three dimensions, object detection algorithms using two dimen-
sions are more intuitive and less computationally complex and thus faster. By moving a
search window across the image the segmentation can be avoided. This section begins with
the presentation of two of the most common approaches and a cascade based on different
histograms combining both spatial and color information.

A
®

3.4.1 Conventional Algorithms

Einbahnstrafle

Fig. 3.7: Images of the traffic signs, which can be found at every junction in the city center
of Munich, the operational area of ACE.

The most common approaches used for object detection are scale invariant feature trans-
formation (SIFT) [76] and a cascade composed of simple haar-like features [152]. Im-
plementations of both can be accessed easily by using OPENCYV, a state-of-the art open
source computer vision library. The ACE robot uses both methods to enhance its ability
to detect crossroads robustly. For the detection of crossroads, the assumption that every
crossroad is equipped with traffic signs or traffic lights can be made for the operational
area. The algorithm used for ACE searches for traffic lights and traffic signs as shown in
Figure 3.7.

SIF'T searches for local features, which are invariant to scale, rotation, illumination, and
change in viewpoint. To perform object recognition, feature points of different images can
be compared. On the contrary, OPENCYV uses a cascade of simple classifiers with haar-like
features. The resulting classifier consists of several stages that are applied consecutively to
an image until the candidate is rejected at some stage. Figure 3.8 shows, how such a clas-
sifier is composed. If a candidate passes all stages, the corresponding object is assumed to
be found. Small features have been chosen, so that the size can easily be changed. Hence,
an object can occur with different sizes, while all sizes will be detected. The algorithm
uses haar-like features to detect lines, corners and center-surrounded features. The results
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Input Image Found Object

U W W W >

Object not found

Fig. 3.8: lllustration of the haar-like-cascade. Green solid lines illustrate a successfully executed
classifier, red dashed lines illustrated a failed classifier.

obtained by the first tests using SIFT were poor, only 20% of the test images could be
classified correctly. Therefore only OPENCV’s rapid object detection was used. To achieve
good results, over 10000 images have been made to train the haar-like features [75]. One
classifier has been trained for each traffic sign or traffic light. When ACE is moving, the
algorithm will search consecutively for traffic signs and lights. Every positive result will
be tracked for a number of images to be able to deal with false positives. A false positive
will most lightly appear in only one single image and not in a longer sequence. If a traffic
sign or light is found in more than one consecutive images, the algorithm assumes that it
has found a real sign.

To perceive further information, the distance to the traffic sign is measured using stereo
triangulation. By measuring the size of the sign in the two-dimensional image and the
distance of the sign, the size of the real sign can be computed. If this size is smaller or
larger than a defined size, the algorithm knows that a false positive was found. Of course,
a large margin has to be used for the defined size, as many traffic signs differ in their size.
Both methods can be used easily on other objects, assuming enough training images are
available. SIFT and OPENCV’s rapid object detection are based on gray scale images
and thus ignoring valuable information. Furthermore many training images are necessary
yielding a complicated and impractical online learning.

3.4.2 Histogram-based Object Detection Cascade

A novel object detection cascade based on three different types of histograms is proposed,
which uses spatial and color information, is capable of dealing with large occlusions, re-
quires few training images and is thus avoiding the disadvantages of other approaches.
Color histograms (CH) examine color information, histograms of oriented gradients (HOG)
spatial information, and color co-occurrence histograms (CCH) examine both. The main
design of each classifier is identical for the whole cascade and will be described below. At
first, a set of reference histograms is computed from the training data. In the next step
a search window is moved across the image and a histogram is computed for each search
window. In contrast to existing cascade architectures, the cascade will not be computed for
every search window. Another novelty of the presented approach is its parallel implementa-
tion. All histograms of one image are computed in parallel, yielding a two-dimensional set
of histograms. Each histogram of this set is intersected with each reference histogram and
a matching error is computed for each intersection, leading to a two-dimensional probabil-
ity distribution. By using a region of interest (ROI), only those regions with a small error
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Fig. 3.9: Architecture of the Object Detection Cascade.

will be processed by the next classifier of the cascade. This yields a higher performance of
the cascade. An overview of the proposed cascade is depicted in Figure 3.9.

3.4.3 Different Types of Histograms

The following section describes and compares the different histogram types.

Color Histograms

A color histogram is a representation of the color distribution of an image. As only the
color of an object and no spatial information like corners is considered, it provides one of
the most intuitive and computationally fastest methods for object detection. Figure 3.10
shows how a color histogram with 4 bins is computed for an image with 20 colors. Due to
its simplicity, object detection with color histograms suffers some disadvantages. Objects
with the same color distribution but different shapes cannot be distinguish. Furthermore,
only those objects with a colorful texture can be detected and when using the RGB color
space, color histograms are sensitive to changes in illumination. However, this can be
solved by using the HSV (Hue, Saturation and Value) color space. As they are fast to
compute and can filter most parts of the image, color histograms form the first classifier
of the cascade. To avoid large histograms, the number of colors in the color space has to
be reduced. The resulting color histogram can be written as CH(c), where ¢ denotes the
color bin.

Histograms of Oriented Gradients

As color histograms contain no spatial information, histograms of oriented gradients are
used by the next classifier of the cascade. The basic idea of HOGs is that the shape of
the object can be described by the distribution of local gradients, even without knowledge
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(a) (b)

Fig. 3.10: (a) Reduction of color space and (b) computation of a color histogram.
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Fig. 3.11: Computation of a histogram of oriented gradients in two steps: (a) computation of
the gradients and (b) creation of the histogram.

of their position [29]. To compute the gradient’s lengths and orientation, the image I is
convolved with a sobel filter in both x- and y- direction:

10 -1 1 2 1
G,= |20 —2|*I, G,=| 0 0 0 |=xL (3.12)
10 -1 —1 -2 —1

Now the orientation 6, ; and length d; ; of the gradient can be computed for each element
1,7:

0, = atan(Gy (i, j), G.(7, 7)),

di; = \/Gx(i,j)z + Gy(i,5)* (3.13)

After computing the gradients, all gradients with a length shorter than a certain threshold
are discarded. The remaining gradients are used to compute the histogram. Figure 3.11
shows the computation of a HOG with 8 orientation bins. Discarded gradients are denoted
with —1. The resulting histogram of oriented gradients can be written as HOG(f), where
denotes the orientation bin. As the computational cost of the computation of the gradients
can be neglected compared to the computation of the histograms, the computational cost
of HOGs is in the same order of magnitude as CHs. They provide a robust classifier to
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detect the form of objects, but do not consider color information. Hence, they are selected
as second classifier in the presented cascade.

Color Co-occurrence Histograms

By computing the distances between pairs of colors, color co-occurrence histograms utilize
both color and spatial information. First introduced as a co-occurrence matrix by Haralick
et al. [48], a CCH is a set containing the number of pairs of two certain colors at a certain
distance in the image. A CCH can be written as CCH(cy, co, AzAy), where ¢; and ¢y
denote colors and Ax and Ay denote the offset between the colors in x- and y-direction.
By only considering the distance d = /Axz? + Ay?, as described by Chang et al. [23],
CCHs can be made invariant to rotation in the image plane. Figure 3.12 illustrates the
computation of a CCH by showing the computation for the element at position (4,3),
where all elements with a distance d = 2 are highlighted. Hence, the cell at (4,39 has the
color ¢ and is surrounded at a distance of 2 with one time color ¢y, eight times color ¢y
and three times color c3. Such an one-dimensional histogram must be computed for every
cell of the input image and for every desired distance. The resulting histograms are then
summed up in a last step. In order to reduce some computational costs, only integral
distances are considered.
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Fig. 3.12: Computation of a color co-occurrence histogram. The given example shows the
computation for the element at 4 : 3 and a distance of d = 2.

As the resulting histogram can be described as a three-dimensional array, the memory
consumption and the computation time for the intersection algorithm is highly depending
on the number of colors and the number of distances. More specific, the time needed to
compute a CCH is depending on the number of used distances, while the number of colors
only affects the memory consumption. Naturally, the time needed to compute a CCH is
larger than the time needed to compute a CH or HOG. On the other side, the quality of
the result is better. Details on the computation time and the results of the different types
of histograms can be found in Section 3.5.5.

Comparison of the Histogram Types

Table 3.2 compares the most important attributes of the different histogram types. The
order of the classifiers in the cascade was determined based on the complexity and am-
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Tab. 3.2: Comparison of the different histogram types.

CH HOG CCH
Feature color gradients spatial and color
Complexity low, O(n) low, O(n) high, O(n?)
Typical size 4096 360 20 x 20 x 25
Confidence of hit low - middle | low - middle middle - high
Confidence of miss high middle high

biguity of the different histograms. As it has a high confidence of miss and consequently
is able to exclude most parts of the input image, the first classifier is a color histogram,
followed by the histogram of oriented gradients and the computationally expensive color
co-occurrence histogram. The complexity of the intersection of the different types is equal
to the complexity of the creation, however the execution time is much shorter.

3.4.4 Intersection of Histograms

Based on the intersection introduced by Swain et al. [141], the error e of histogram H
compared to the reference histogram H, can be computed as the sum of absolute differences
between the intersected histogram and the reference histogram:

np

e =Y |H,(i) — min(H (i), H,(i))|. (3.14)
i=1

np denotes the number of color bins in a color histogram and the number of orientation

bins in a histogram of oriented gradients, respectively. The computation of the error of a
color co-occurrence histogram is more computationally expensive:

Ne MNe N4

e= ZZ Z |H.,(¢ci, ¢j, di) — min(H (¢;, ¢, di), Hy(c;, ¢4, di))|-

i=1 j=1 k=1

(3.15)

n. denotes the number of color bins and n,; the number of distances. Different Minkowski
distances can be used to weight larger or smaller errors. Figure 3.13 (a) shows the com-
putation of the error of two one-dimensional histograms, while Figure 3.13 (b) depicts
the resulting intersected histogram and the error, which has to be summed up in a last
step. In an ideal case, the error e = 0. Due to rotation, scale, occlusions, and changes
in illumination this ideal case will never be achieved. Hence, a suitable threshold ¢ has
to be selected. When using a larger threshold, the algorithm will be able to deal with
larger occlusions. However, this will increase the number of false positives. Experiments
have shown that the threshold has to be estimated for every object independently. Details
about the selection of the thresholds and the correlation between capability of dealing with
occlusions and false positives can be found in Section 3.5.5.
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Fig. 3.13: (a) Intersection of histograms and (b) estimation of the error.

3.4.5 Implementation Details

The developed object detection framework can be separated into two parts:

e the initialization, where image data and parameters are transferred to the GPU
memory and the reference histograms are created out of the reference images, and

e the main loop, where a sequence of images is processed as shown in Figure 3.9.

The main loop is only executed on the GPU, where the initialization uses both GPU and
CPU. Even small functions, where no speedup could be achieved, have been implemented
on CUDA, so unnecessary memory transfers between main memory and GPU memory are
avoided.

Computation of Reference Histograms

Before the reference histograms can be computed, the images need to be pre-processed.
Every reference image of size x, X y, can be separated into a background and foreground
image. The background image is defined by the color with the RGB-value (0,0,0) and is
ignored during the further processing. In a first step, the remaining image is transformed
to the HSV color space. Furthermore, the orientations of the gradients as described in
Section 3.4.3 are computed for the whole image. During the last pre-processing step, the
number of colors of the input image is reduced twice, once to the number of color bins n,
for the color histograms and once to the number of colors n.y, for the color co-occurrence
histograms. The number of orientations is also reduced to the number of orientation bins
Nhog for the histograms of oriented gradients. This results in three images for each reference
image: Iq as input for the CH, I,z as input for the HOG and I.q, for the CCH. In the
last step, the reference histograms can be computed and stored to the GPU memory.
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Tab. 3.3: Different Block- and Thread- sizes.

Thread size Block size
CH 16 x 16 Ny X Ty
Intersection Nep X 1 Ng X Ny
HOG 16 x 16 Ny X Ny
Intersection Nhog X 1 Ng X Ny
CCH 16 x 16 Ny X Ny
Intersection Nech X Mech Ny X Ny

Main Loop

Similar to the computation of the reference histograms, every image of the sequence with
a size of x; X y; needs to be pre-processed into the three input images Ich, Ihog and Ieeh.
Before the first classifier of the cascade can be applied, the input images are separated into
ng X n, subregions of size x; X y,:

xs:fxra ys:fyra

with f > 1. As they have a large influence on speed and quality, the parameters n,, n,
and f have to be chosen carefully. Furthermore, the subregions have to overlap so that an
object at any position is included in at least one subregion. Therefore the overlap has to be

equal or larger than the size of a reference image. Consequently, the following constrains
have to be fulfilled:

Ty Yr
However, a large number of subregions leads to a high computation time and a large size
of subregions to less accurate results.
After the configuration of the subregions, the first classifier can be applied to I4,. After all
histograms are computed, they can be intersected with the reference histograms, resulting
in an error map mf, of size n, x n, for each reference object 0;. To compute the region
of interest for the next classifier, all error maps are merged into one map mg,. Therefore,
the lowest error of each cell is selected:

(3.17)

mch(xa y) = min(mgh(xa y)a m(lzh(x> y) s mlcf}ll(xa y))a (318)

where (z,y) denotes the coordinates of a cell and k; the number of reference histograms
of the object o;. If the error of a cell is smaller than a threshold t,, the next classifier is
computed for this cell. Hence, the number of computed cells decreases with each classifier.
The remaining classifiers are computed in the same manner, resulting in several error
maps mj,,, and m/,. An object k is found in a subregion, if the error of the corresponding
cells of all error maps are below the thresholds Zcp, thog, and tcqn, respectively.

Additionally, the specification of thread- and block- size has large influence on the

execution time. Table 3.3 shows the selected sizes, where the number of distances is
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denoted by ng. If the thread size exceeds the hardware limitation (512 or 768 threads,
depending on the used hardware), the thread size is limited to the maximal value and
a function has to be called twice or more in one thread. Of course, this yields a higher
execution time and should be avoided. As is leads to a high occupation of the GPU, a
thread size of 16 x 16 was chosen for the computation of the histograms. The thread size
for the intersections are defined by the number of bins in the histograms. Future archi-
tectures with larger memories and more computational power will allow larger thread sizes.

As they are fast to execute and can be applied to a manifold of different objects, two-
dimensional object detection algorithms provide an ideal addition to those working in
three dimensions. With SIFT and a cascade of haar-like features, two well know approaches
have been presented in this section. A novel cascade using different types of histograms
has been introduced, which contributes to the state-of-the-art by being real-time capable,
requiring few training images, and being able to deal with large occlusions. A thorough
experimental investigation of the stereo processing algorithm and the two types of object
detection algorithms will be given in the next section, together with details about the
evaluated parameter settings.

3.5 Experimental Results

This section shows some experimental results from the main modules of the object detection
subsystem, starting with the stereo image processing. The remaining main modules include
the human body pose estimation and the two two-dimensional object detection algorithms.
Other three-dimensional object detection algorithms have shown no satisfying results and
have thus not been included into the subsystem.

3.5.1 Experimental Setup

The following experiments have been conducted using the vision processing PC on the
ACE robot, which was equipped with an AMD Phenom Quad-Core CPU running at
2.5 GHz, 4 GB of physical memory, and two GEFORCE 9800 GX2 cards and hence four
CuDA enabled devices. Unless stated otherwise, only one CUDA device has been used for
a module.

3.5.2 Stereo Image Processing

Robust three-dimensional mapping and object detection implicates certain minimal re-
quirements for the underlying stereo module regarding computational speed and quality.
A minimal resolution of 640 x 480 pixels is required and 150 disparities have to be com-
puted at a frame rate of 10 Hz. This frame rate includes the estimation of the camera’s
ego-motion, which is required for the three-dimensional mapping. Consequently, the sole
stereo algorithm has to be even faster. Four datasets with 150 images each have been used
for the experimental investigations. The quality of the algorithm was estimated using the
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Fig. 3.14: Result of the stereo processing system. The upper row shows the left image from
the stereo camera and the lower row shows the resulting disparity map. Points with
a low confidence are indicated with black color.

tsukuba stereo set and the evaluation methods provided by the middlebury stereo page!.
The main challenge during the experiments was to find suitable parameters, which achieve
the required speed at the best possible quality. Therefore the influence of the different
parameters has been investigated.

As the task requires no subpixel accuracy, the gradients can be neglected for the computa-
tion of the costs. Hence, the parameter w from Equation 3.3 can be selected to w = 1. The
influence of the maximal cost value Cy.y is relatively small, so it was estimated heuristi-
cally to Cyax = 50. Most influence on the quality comes from the used algorithm for the
aggregation of the costs and the selected window size. In the case of the squared window
approach, a larger window size N yields better results. The boundary guided window
approach shows the same behavior. However, a N > 7 yields to a dramatically increasing
computation time due to a shortage of the GPU’s registers. Registers have to be swapped
out to the slower local memory. Furthermore, the adaptive weight window approach can-
not be implemented on a GPU so far due to too large memory consumption during the
parallelized computation of the weighting factors. The minimum filter approach showed
best results for a large window size with a relatively small computational delay. Hence,
a window size of Ngquare = 15 for the squared window algorithm and Nyp, = 5 for the
minimum filter has been chosen.

Figure 3.15 shows the correlation between the window size, the number of mismatches,
and the computation time for the squared window approach. For a real-time application,
the computation time is of of great importance. All images of all four datasets have been
computed five times and the average time for every computation was measured to estimate

http://vision.middlebury.edu/stereo/eval/
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Fig. 3.15: Correlation between window size, mismatches (blue solid line), and computation
time (red dashed line).

Fig. 3.16: Computed body pose.

the speed. The total computation time of 60 ms is composed as follows: the computation
of the costs is performed within 6 ms, the aggregation when using the squared window
approach in 28 ms, the application of a minimum filter in 23 ms, and the winner takes
it all method for the estimation of the actual disparity in 4 ms. On the contrary, the
boundary guided window approach is computed in 50 ms to 270 ms and is consequently
unsuited for a real-time application with the present hardware. Future architectures will
have other constraints but will allow faster computations with a higher quality.

3.5.3 Human Body Pose Estimation

The estimated body pose of the image given in Figure 3.4 is shown in Figure 3.16. To show
the capability of the algorithm to compute the correct body pose in all three dimensions,
the body pose is shown from above. The results of the skin detection and segmentation
have already been shown in Figure 3.4. Figure 3.17 shows the results from five different
scenes. The first row shows the rectified images as seen from the camera and the detected
skin parts, while the next two rows show the estimated human body poses from two dif-
ferent points of view.
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Fig. 3.17: Results of the human body pose estimation.

As a stereo matching algorithm is used to create the point clouds, similar problems as in
stereo matching are encountered. The stereo matching algorithm is unable to compute a
disparity for large areas of the same texture, so only silhouettes and no filled representa-
tions can be found. Furthermore, some invalid stereo matches may lead to unpredictable
behavior. An experiment has been conducted to give a qualitative evaluation of the al-
gorithm. Users have been asked to point in a direction, and the measured angle of the
direction they are pointing to has been compared to the computed one. A measurement
was assumed to be incorrect, when the algorithm was not able to fit the arms or the error
was larger than 45°. 150 measurements have been recorded and the algorithm was able to
estimate 80.2 % of the postures correctly, while the median error was around 6.8°. Only
3.2 % of the false positives could not be detected. As the algorithm will leave occluded
body parts out, it is not able to compute the pointing direction when the user is pointing
away from the camera and the arm can not be seen. Almost half of the body poses, the
algorithm was not able to estimate in the experiment, can be explained by this problem.
The other invalid matches can by explained by noise in the point cloud or with other
objects that have been mixed up with body parts. The use of color may be an useful
extension to increase the robustness of the algorithm.

Time constraints are hard on a mobile robot, so the estimation of the body poses must be
completed in nearly real-time. Without optimization, the segmentation and human body
pose estimation is performed in less than 150 ms. Together with the skin color detection
and stereo matching, a frame rate of 5 fps is achieved on a standard PC. Using a dual core
processor or another skin color filter could increase the computation speed up to 10 fps.

49



3 Object Detection

3.5.4 Detection of Traffic Signs using a Cascade of Haar-Like
Features

The hit rate of the cascade of haar-like features is within a range of 77 to 88% and the
number of false positives within 0 to 6%, depending on the classifier. Table 3.4 shows the
result of the used classifiers and the selected stage. For the selection of the number of
stages, a compromise had to be found. A higher number will yield to less false negatives,
but to more missed objects. Figure 3.18 shows the correlation between the number of
stages, the miss-rate and the false positives for the classifier used to detect the yield sign.
As most crossroads are equipped with more than one traffic sign and the algorithm is able
to deal with a small number of missed signs, the number of stages near the intersection of
the miss-rate and the number of false positives was selected.

Tab. 3.4: Results of the classifiers

1
Classifier Stage Hits Fz.l §e
positives
Yield 20 78 % 0 %
Stop 20 79 % 3 %
Have Priority 20 88 % 6 %
Arrow Left 18 88 % 3 %
Arrow Right 16 84 % 0 %
One Way 15 77 % 5%
Traffic light 20 81 % 2%
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Fig. 3.18: Correlation between number of stages, miss-rate (blue solid line), and false positives
(red dashed line).
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Fig. 3.19: Result of the object detection cascade with the two objects face and cleaner at
different levels of occlusion. The area with the object is magnified in the top
section of each image. The reference image has a size of 48 x 48.

When the robot is approaching a crossroad, the traffic signs will be seen in more than one
image. False positives will only occur in one single image, so they can be detected and
discarded by tracking the detected traffic signs. If the algorithm misses a traffic sign in one
single image, it will be able to detect the sign in the rest of the sequence. Consequently,
most of the not detected signs and false positives can be handled. Depending on the
number of stages and haar-like features, one classifier can be computed within 100-200ms.
As the process can be easily parallelized, a frame rate of 3Hz can be achieved on a dual-core
processor and 6Hz on a quad-core, respectively.

3.5.5 Object Detection using a Cascade of Histograms

The influence of different histogram sizes and search window sizes on the performance
and quality has been investigated in several experiments using a total of 500 images with
objects, 75 images without objects and 4 objects with 8 reference images each. Figure 3.19
shows a sequence, featuring several different levels of occlusion of the vacuum cleaner. The
size of an input image is z; X y; = 640 x 480, of a reference image x,. X y,, = 48 x 48, and the
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size of the search windows was chosen as x5 X ys = 64 x 64, so f = 4/3. A total of 38 x 28
subregions have been computed, yielding to an overlap of 16 pixels in each direction. The
lower right image in Figure 3.19 was used as input for the following experiment.

Figure 3.20 (a) shows the error map of the intersection of the color histograms with one

ne = 20,nq ne =5,nqg = 25

Fig. 3.20: Result of the intersection of different histograms types with different parameters.
A darker color indicates a lower error and thus a better result: (a) Intersection
with color histograms with different numbers of colors, (b) intersection of oriented
gradients with different numbers of orientations, and (c) intersection of color co-
occurrence histogram intersection with different numbers of colors and distances.

reference histogram. Dark colors indicate a lower error. For n. = 32, the computation time
of all histograms was around 190 ms, for n., = 256 around 140 ms, for n, = 1024 around
110 ms and for n, = 4096 around 85 ms. The faster execution time for a higher number
of colors can be explained easily. As the computation of a color histogram is executed in
many parallel threads, accessing the memory is the limiting factor. With a smaller n,
there are less registers in the GPU memory, which have to be accessed more often and the
threads are blocking themselves. Hence, a larger n. requires more registers and yields less
threads blocking other threads and thus a faster execution time. Conveniently, this goes
in hand with a better quality of the result. The computation time for an intersection is
around 3 ms with additional 0.3 ms for every reference histogram. In the first classifier
around 75% to 80% of the input image can be excluded from the further processing. The
impact of the number of orientations for the histograms of oriented gradients is shown in
Figure 3.20 (b). Again, a larger n, yields to a better quality and a faster computation
speed, this time ranging from 140 to 40 ms for a whole image. As not the whole image
is processed, an effective computation time of 10 ms including the intersection can be
achieved. The computation time for the intersection is identical to the one necessary for
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the color histograms. Again, around 75% to 80% of the remaining input image can be
excluded. As it is the most complex histogram, the time needed to compute the color
co-occurrence histograms is larger. Figure 3.20 (¢) shows the quality of the results for
different numbers of colors and numbers of distances. Again, a larger number of colors
leads to a faster computation. With n, = 5 and ny = 5, a time of 3000 ms is necessary, for
n. = 20 and ng = 5 a time of 750 ms, for n. = 5 and ngy = 25 a time of 2400 ms and for
n. = 20 and ng = 25 a time of 1600 ms. As an unoptimized CPU-implementation requires
a computation time of 200 seconds, a remarkable speedup was achieved. As only 5% to
10% of an image are processed in this classifier, an effective computation time of 15 ms
including the intersections can be achieved. The total computation time is around 100 ms.
By using two CUDA devices, a frame rate of 15 Hz could be achieved. Furthermore, the
texture of the scene has an influence on the speed. Images with many different colors lead
to a faster execution time compared to images with large areas of the same color. Again,
this can be explained by threads blocking the memory accesses of other threads.

Next to the speed, the quality of the results is another important attribute of an object
detection algorithm. Therefore several sequences have been used to test the algorithm,
where false positives and missed objects have been counted. Only 7 false positives and 23
missed objects have been counted in the 575 test images, yielding to a detection rate of
95%. As shown in the lower right part of Figure 3.19, the presented algorithm is able to
deal with large occlusions. The thresholds have to be tuned carefully, as high values will
yield to a large number of false positives and too small values to too many missed objects.
Figure 3.21 shows the correlation between the detected occlusions, the miss-rate and the

70 T
——— Miss-Rate

60 T — — False Positives

Miss-Rate / False Positives [%)]

Detected Occlusion [%)

Fig. 3.21: Correlation between detected occlusions, miss-rate (blue solid line), and false posi-
tives (red dashed line).

rate of false positives. The same datasets as before have been used to evaluate the miss-
rate and the number of false positives, while the occlusion was measured with synthetical
data. A suitable trade-off marks the intersection, showing that the algorithm is able to
detect objects with an occlusion of up to 40 % at a low miss-rate.
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3.6 Discussion

This chapter introduced several algorithms for robust object detection, starting with a
fast stereo algorithm running at a resolution of 640 x 480 pixels and 150 disparities with
a speed of almost 20 Hz. Although the algorithm is not able to reconstruct a full image,
it is able to eliminate bad results and the quality of the resulting disparity map is thus
adequate for further processing. Based on the stereo reconstruction, a three-dimensional
model of the environment is created, which is serving as input for several three-dimensional
object detection algorithms. The estimation of human body poses was presented as a spe-
cial case of three-dimensional object detection and is able to estimate most of the body
poses correctly. This algorithm can easily be extended to detect other types of objects.
Two state-of-the-art algorithms for two-dimensional object detection, namely SIFT and
OPENCV’s rapid object detection cascade, have been presented and experimentally inves-
tigated. Moreover, a cascade of different types of histograms has been introduced. This
cascade marks an object detection algorithm running at a high accuracy with a speed of
15 Hz and is capable of dealing with images with large occlusions of 40 % and furthermore
requires very few training images. Consequently, the algorithm is well suited for a mobile
robot’s cognitive architecture.

Despite the promising results, there exist some limitations to the presented algorithms. Due
to memory limitations on a GPU, the presented stereo algorithm is not able to reconstruct
stereo images with a higher resolution, omitting valuable information. The algorithm for
body pose estimation is depending on a reliable detection of the start point. Whenever
the head of a person is occluded, the body pose cannot be computed correctly. Further
skeleton based objects still have to be included. Estimating the pose of other manipulators
is a fascinating research topic. Last but not least, the cascade of different histograms is
not able to detect attributes like color at its current state of development. Future work in
the area of object detection might deal with real-time capable stereo algorithms running
at high resolutions and more complex three-dimensional object detection algorithms. A
possible implementation of the presented cascade in three dimensions would require vast
amounts of computational power, but promises excellent results.

As it is capable of detecting different types of objects, running in real-time, and allowing
online learning, the presented object detection subsystem provides an ideal base for the
presented cognitive architecture. However, a metric map is crucial for path planning and
relating the objects with further information. The following chapter presents a vision-based
mapping system.
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As robots navigating in our environment or assisting humans have to be reliable, they
must have the ability to perceive and understand their environment. This understanding
process can be separated into two major steps: object recognition and mapping. In the
first step, robots have to be able to find and identify objects in their environment. On the
contrary, knowing all objects would be useless without being able to locate them in a map.
Consequently, a mobile robot has to be equipped with a mapping system. Like object
detection, vision-based mapping can be divided into two major groups: two- and three-
dimensional mapping, with several suitable representations each. Two-dimensional maps
are typically described by an occupancy grid, while three-dimensional maps are mostly
stored as a point cloud or a polygon grid.

Most current two-dimensional mapping systems are based on a texture analysis and the
assumption that the area in front of the robot is free of obstacles. However, these algorithms
are mainly developed to detect streets and have problems when the texture is varying and
are hence unsuited for changing terrain or indoor environments. Consequently, this chapter
proposes a two-dimensional mapping algorithm, which uses a memory to remember older
textures and is thus robust to changing terrains. The detected ground is then reprojected
into a metric map, which can be used for path planning. This novel method is well suited
for both indoor and outdoor scenarios.

Two dimensions have proven to be insufficient for planning complex manipulation tasks.
Other applications for three-dimensional mapping include the reconstruction of distant
places. Hence, the ability to build accurate three-dimensional maps is essential for a
high level of cognitive understanding and thus autonomy. Recent research has revealed
different ways to create those maps, mainly differing in the type of the used sensor. Laser
rangefinders provide good quality and are easy to use. On the other hand, they provide
no color information. The most obvious way to create three-dimensional maps is inspired
by the human vision system, where the use of two eyes allows depth perception. Existing
algorithms are encapsulated systems with highly specified and interconnected submodules
like stereo reconstruction, ego-motion estimation, and the actual fusion algorithm. Hence,
a three-dimensional mapping subsystem with a novel modular design is introduced. This
subsystem utilizes the previously presented real-time stereo algorithm combined with a
sophisticated ego-motion estimation and the actual fusion algorithm. As the modules of
the system can be replaced by others with the same functionality, even laser rangefinders
can be included. Finally, the genetic ICP (iterative closest point) algorithm is presented,
a novel method to merge different types of sensors, namely laser rangefinders and a stereo
camera system. In a last step, the three-dimensional map can be used to detect obstacles
that cannot be found by the two-dimensional mapping system.

The remainder of this chapter is organized as follows: An overview of current vision-based
mapping systems is given in Section 4.1, followed by the two-dimensional mapping module
in Section 4.2. Section 4.3 presents the three-dimensional mapping module and the ego-
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motion estimation. The chapter concludes with the fusion of different sensor types in
Section 4.4, experimental results in Section 4.5, and a discussion.

4.1 Overview of current Vision-Based Mapping Systems

This section gives an overview of the state-of-the-art in current vision-based mapping
systems, starting with two-dimensional mapping, followed by the ego-motion estimation
and the three-dimensional mapping. The section concludes with the fusion of different
sensor types.

Two-Dimensional Mapping

Knowledge about the type of ground, a mobile robot is currently driving on, is mandatory
for safe operation. When examining a two-dimensional image, the areas showing the ground
have to be identified and isolated. To create an accurate map of the environment, the robot
has to know his absolute position. The most common approach to this problem is the use
of a laser rangefinder to scan the environment and to use a simultaneous localization
and mapping (SLAM) algorithm, which is well explored [32, 62, 97]. However, SLAM
algorithms require a laser rangefinder.

Most vision-based algorithms for ground detection are road following algorithms [147].
These algorithms are limited to their original purpose and are not able to resolve small
structures and thus will not work properly on a sidewalk or inside buildings. Algorithms
designed for mobile robots or wheelchairs use depth maps to detect obstacles in front of
the robot [28, 82]. Another algorithm uses an affine transformation and a border detection
filter to find the borders of the sidewalk [64]. The most promising approach to robust
classification and detection of the terrain, the robot is currently driving on, is the use
of color histograms [131, 145]. On the other hand, these algorithms cannot deal with a
changing type of ground and have therefore to be extended with memory.

Ego-Motion Estimation

Odometry offers the simplest way to estimate the movement of a robot. However, the
odometry needs to be synchronized with the camera and some robots are not equipped
with an odometry module. The use of laser rangefinders is a common approach to esti-
mate the robots position, by attempting to solve the SLAM problem. Some approaches
separate SLAM and the creation of a three-dimensional map [36, 140], others use a three-
dimensional SLAM approach and split the measured data into smaller parts of a fixed size
and use ICP based algorithms to register and align the single parts. These algorithm can
be separated in two groups: those using only laser rangefinders [59, 103] and those using
both cameras and laser rangefinders [15, 60].

Vision-based estimation of the camera’s ego-motion is a well suited alternative to classical
odometry or SLAM. An overview of the different methods for the ego-motion estimation

o6



4.1 Overview of current Vision-Based Mapping Systems

can be found in [10]. First approaches used a monocular camera by estimating the op-
tical flow [77, 143]. Horn et al. [95] tried to eliminate the depth mathematically, while
Shi et al. [144] proposed an algorithm for the estimation of the image’s deformation by
using the parallax. Another class of algorithms is based on stereo vision [57], trying to
estimate the movement in cartesian coordinates [30]. These methods are closely related
to the stereo reconstruction and can consequently be computed simultaneously. Hence,
the proposed algorithm for ego-motion estimation is based on the stereo reconstruction
algorithm presented in Section 3.2.

Three-Dimensional Mapping

Building three-dimensional maps is of great interest for a wide variety of tasks, such as
autonomous systems in underwater environments [53] or in distant places like the mars
surface [129]. An augmented virtual reality is a desired tool to handle remotely controlled
systems [108]. Another important application is the reconstruction of crime scenes that
facilitates and accelerates the preservation of the setting [128]. One of the first approaches
for scene reconstruction was developed by Fua et al. [37] and combines a representation
based on particle filters with an image based optimization strategy. Every particle repre-
sents a surface element, which position and orientation is then optimized. Other modern
algorithms are based on this approach [47] and utilize other optimization methods and
strategies.

Reconstruction algorithms can be separated into two groups. One group is based on volu-
metric elements (voxels), where each depth map is transferred into the voxel-space and the
surfaces are approximated [43, 120]. Another well-known algorithm is the ICP algorithm,
which can be used to merge two overlapping point clouds [14]. The other group of object
reconstruction algorithms is based on depth maps. A depth map can be converted into a
polygon grid, whose edge-points are then used as state space of a kalman-filter [67]. Other
approaches use local correspondences between two or more depth maps [128]. One of the
most advanced methods is the median fusion algorithm developed by Nister et al. [99],
which projects depth maps into a reference perspective before applying the actual fusion
algorithm. As this method is real-time capable [85], the system presented in this chapter
is based on this approach.

A robot is equipped with a sophisticated stereo system, providing a sequence of disparity
maps, which are converted into three-dimensional colored point clouds. After applica-
tion of pre-processing steps like the reduction of noise and outliers, these point clouds
are merged into one large point cloud using the median fusion algorithm. As these point
clouds provide a large overlap. This redundancy is used to increase the quality of the
reconstruction. One of the advantages of the presented module is its modularity due to
well defined interfaces. For instance, the user can choose a stereo module with particular
quality, resolution and speed. Arbitrary pre-processing steps can be included easily and
the module is consequently not only limited to merging point clouds obtained by stereo
vision, but also other sensor types. For instance, laser-range finders could be included
easily instead of or in cooperation with a stereo module.
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Fusion of Vision and Laser Data

Before laser and vision data can be merged, the extrinsic parameters (i.e. the position and
orientation) of the laser rangefinders have to be measured. As the alignment of the laser
scanners is changed frequently, the measurement should be automated. This procedure is
called calibration. Although previous work deals mostly with the calibration of the intrinsic
parameters of a laser rangefinder [25] and the calibration between a laser rangefinder
and a camera [84, 146, 162], some examine the calibration between two or more laser
rangefinders [155]. Previous approaches are specialized for a single setup of the system and
type of laser rangefinder. A common and easy to use approach allowing the automated
calibration of all types of laser rangefinders is still subject to further research.

When it comes to registration of two or more scans, the ICP algorithm [14] is widely
spread, yielding many different types of the algorithm. The most common types are based
on quaternions [14, 56, 72| or use a singular value decomposition [156] to compute the
transformation between the point clouds. Other algorithms use standard optimization
methods [69, 88] to minimize an error function. Another approach is the use of extended
gaussian images [55, 79], an alternative representation of the shape of surfaces. An overview
of other ICP-variants, which use different methods to optimize the execution time [61, 127,
158] can be found in [116]. The main disadvantage of the ICP-algorithm is its disability
to align point clouds with different resolutions, noise, or with a small overlap. So far, no
algorithm that can register those point clouds properly and reliable has been developed.
If the measured data cannot be merged in a proper way, the usage of multiple types
of sensors is in vain. Previous work has dealt with the fusion of image data and point
clouds created with a laser rangefinder. The most common application is the creating
of an accurate textured reconstruction of indoor or outdoor scenes [78, 113, 122]. Other
applications are localization [96] and object scanning [17, 139, 161]. These algorithms
transform the point cloud measured by the laser to the cameras point of view and perform
a ray based mapping of color information. If the transformation is not correct, this will
yield displacements and distortions and the whole scan is corrupt. Although it is an obvious
and promising approach, the use of stereo image processing is not common. Possible errors
will only have local effects and the rest of the scan can be used for further processing.

4.2 Two-Dimensional Mapping

A robot driving in an outdoor or an indoor setting needs to gain knowledge about the
ground and obstacles. Vision systems are well suited to fulfill this task. This section
presents an algorithm for the detection of the ground in two-dimensional images. A met-
ric map can be built and then used to obtain more semantic information. The proposed
algorithm was used by the ACE robot to determine, if the robot is allowed to drive on
the ground in front of the robot or not. To fulfill this task, the algorithm has to be able to
distinguish between the sidewalk and the street, which are both of similar color and only
differ slightly in the texture. Hence, parameters have to be adjusted carefully and the algo-
rithm must be able to distinguish the different textures. When this task is accomplished,
further semantic information can be obtained by analyzing the resulting metric map. This
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Fig. 4.1: Architecture of the two-dimensional mapping module.
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information includes the type of the ground and can be used to verify the result.

To detect the ground, an algorithm based on the one presented in [131, 145] is used. The
proposed method uses one camera and is real-time capable at high resolutions. The algo-
rithm is based on the assumption that the area in front of the robot is free, an assumption
that can be cross checked with a laser scanner. If the area is free, the texture in the area
is compared to the texture of the rest of the image. All areas in the image with a similar
texture are assumed to be part of the same type of ground, the robot is currently driving
on. To deal with different terrain types, a novel version of the algorithm is proposed. This
advanced version is extended with a memory, so that the robot remembers older textures,
which are known to be part of a valid terrain. Consequently, the history of textures is
used to detect previous valid terrains in an image. In order to increase the robustness
for sudden changes in the terrain’s texture, the oldest textures are weighted with a low
weighting factor and the new textures with a higher one.

Figure 4.1 shows the architecture of the algorithm, starting with a camera and the optional
laser scanner. Now, the reference texture is analyzed, post-processed, back-projected and
stored in a map.

4.2.1 Detection of the Ground

The analysis of the image texture is explained on the basis of a simplified version, where
the reference texture is computed for every single image and no memory is used.

Analysis of the Image Texture

The algorithm is based on the assumption that a reference area in front of the robot is free
of obstacles. This reference area is marked by the blue trapezoid in Figure 4.2 (a). Since
a laser rangefinder mounted near the ground and sweeping in a two-dimensional plane can
be found on almost every mobile robot, it can be used to validate this assumption. This
laser rangefinder is used to detect obstacles with a positive height in front of the robot,
whereas negative obstacles like holes cannot be found. The sweeping plane L of the laser
rangefinder is illustrated in Figure 4.4.

As it is robust to different light conditions, the HSV (hue, saturation and value) color space
is used for further processing. The simplified algorithm computes a two-dimensional color
histogram of the reference area, containing the saturation and the value. Color histograms
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Fig. 4.2: Processing steps of the ground detection algorithm with (a) a picture of the scene,
the (b) result of the comparison with the reference texture and (c) a back projection
of the scene.
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Fig. 4.3: Histogram during a texture analysis, containing saturation (s) or value (v), the thresh-
old ¢,, and the variables sy, and Spax, and Upmin and Vpax.

can be used to model both the general color of the reference texture and of the current
background. Histograms offer some advantages, as they can be obtained and compared
quickly. Figure 4.3 shows a color histogram with several bins. Starting with the smallest,
each bin is analyzed. If the height of the bin is lower than a threshold t,,, the bin will be
discarded and a reduced histogram is created. Hereby image noise can be reduced. For
the reduced saturation histogram, two variables sy, and sy will be computed and vy,
and vy.x for the reduced value histogram, respectively. sy, denotes the color value of the
lowest bin, Syax of the highest bin. vy, and vy, are computed in the same way. The
threshold and the resulting parameters are also shown in Figure 4.3.
Now, the saturation and value of each pixel of the whole image is compared to the computed
histogram. Again, the saturation s; and the value v; of the pixel with index 7 is computed.
The algorithm will recognize the pixel as part of the ground, if s; and v; are within a
certain range:

Smin < Si < SMax, (4.1)

Umin S (% S UMax- (42)
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As seen in Figure 4.2 (b), the algorithm is able to detect obstacles that are located in the
reference area, which was originally assumed to be free. Due to the threshold ¢,,, small
objects laying in the reference area will not be included in the reference histogram.

Post-Processing

After the ground is detected, the resulting image can be post-processed to reduce noise and
to remove fragments. Therefore an average filter is used. Every part of the ground, the
robot is allowed driving on, must be connected to the part of the ground where the robot
is currently standing on. Consequently, the parts of the ground, which are not connected
to the reference area, are removed. A simple flood-fill algorithm that is starting at the
reference area can be applied for this computation. White spots in Figure 4.2 (b) indicate
parts of the ground, which are connected to the reference area. Red parts are not connected
and will be discarded.

4.2.2 Computation of the Reference Texture

The simplified algorithm works fine, if the textur