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Abstract

The role of mobile robots in our daily life has been increasing rapidly during the last

decades, resulting in a greater need for autonomous behavior. Similar to the human sen-

sory system, vision is one of the most important senses for mobile robotics. This thesis

gives an insight into the cognitive abilities of current mobile robots. The presented re-

search discusses the development and implementation of a cognitive architecture, formed

by perception and its complement, cognition. Algorithms for object detection and map-

ping compose the perception system, while cognition is defined by a suitable knowledge

representation and techniques for decision making.

Methods for both two- and three-dimensional object detection are introduced. A novel two-

dimensional object detection algorithm is based on a cascade of three different histograms,

namely color histograms, histograms of oriented gradients, and color co-occurrence his-

tograms. This cascade is real-time capable, robust to occlusions, and requires few training

images. Additionally, this thesis proposes an algorithm for the estimation of human body

poses. This algorithm is using three-dimensional point clouds as input and can easily be ex-

tended to detect other skeleton-based objects. Mapping is another significant task for a mo-

bile robot with cognitive abilities. Two different approaches for vision-based mapping are

presented, one based on two-dimensional images and the other based on three-dimensional

point clouds. The two-dimensional mapping algorithm extends the state-of-the-art with a

memory, allowing the robot to remember old terrain. Moreover, a sophisticated real-time

stereo reconstruction algorithm with integrated ego-motion estimation and a novel genetic

iterative closest point algorithm for sensor fusion is presented. The cognition system is

marked by semantic maps, a knowledge representation combining semantic networks and

metric maps. A sound mathematical description of semantic maps is introduced, which is

used to derive methods for adding new knowledge and for action planning. Both simula-

tions and experiments have been conducted to verify the presented cognitive architecture.

By introducing new algorithms for perception and cognition and by enhancing known

algorithms, this thesis contributes to advance the cognitive abilities in mobile robotics.
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Zusammenfassung

In den letzten Jahren haben sich mobile Roboter zu einem immer wichtiger werdenden

Bestandteil unseres täglichen Lebens entwickelt, wobei autonomes Verhalten immer mehr

in den Vordergrund rückt. Ähnlich wie beim Menschen ist das Sehen der wichtigste Sinn

eines mobilen Roboters. Diese Dissertation gibt daher einen Einblick in die kognitiven

Fähigkeiten bereits existierender Roboter und stellt neue Forschungsergebnisse in diesem

Bereich vor. Kognitive Fähigkeiten setzen sich aus der Perzeption sowie deren Gegenstück,

der Kognition zusammen. Algorithmen für das Erstellen von Karten und das Erkennen

von Objekten bilden die Perzeption, während die Kognition durch eine geeignete Wissens-

darstellung und Methoden zur Entscheidungsfindung geprägt wird.

Diese Arbeit präsentiert zwei Methoden zur Objekterkennung, die auf zwei- beziehungs-

weise dreidimensionalen Bildern basieren. Ein neuartiger Algorithmus zur Erkennung der

Körperhaltung verwendet dreidimensionale Punktwolken, während zur allgemeinen Objek-

terkennung zweidimensional Bilder verwendet werden. Der präsentierte Algorithmus ba-

siert auf einer Kaskade aus drei verschiedenen Histogrammen und verwendet sowohl farb-

als auch räumliche Informationen, ist echtzeitfähig, erkennt Objekte trotz Verdeckungen

und benötigt wenig Trainingsbilder. Für das Erstellen von Karten werden ebenfalls zwei

Algorithmen präsentiert, die analog zur Objekterkennung auf zwei- beziehungsweise dreidi-

mensionalen Darstellungen basieren. Der zweidimensionale Algorithmus verwendet einen

Speicher, um alte Bodentexturen wiederzuerkennen. Weiterhin wird ein fortschrittlicher

Stereoalgorithmus mit integrierter Schätzung der Kamerabewegung vorgestellt, sowie ei-

ne neue Methode zur Fusionierung verschiedener Sensordaten. Das vorgestellte kognitive

System basiert auf semantischen Karten, einer Kombination aus semantischen Netzwerken

und metrischen Karten. Eine mathematische Beschreibung für semantische Karten wurde

eingeführt, von der Methoden zum Hinzufügen neuen Wissens sowie zum Planen von Ak-

tionen abgeleitet wurden. Abschließend wird die vorgestellte kognitive Architektur durch

Simulationen und Experimente validiert.

Indem neue Methoden der Perzeption und Kognition entwickelt und bereits bekannte Al-

gorithmen verbessert werden, trägt diese Arbeit wesentlich zur Weiterentwicklung der ko-

gnitiven Fähigkeiten mobiler Roboter bei.
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Notations

Conventions

Scalars, Vectors, and Matrices

Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted by

bold lower case letters. The vector x is composed of elements xi. A cartesian point p is

composed of elements px, py and pz. Matrices are denoted by upper case letters in bold

type. The matrix M is composed of elements mij (i
th row, jth column).

x or X Scalar

x Vector

X Matrix

XT Transposed of X

X−1 Inverse of X

X+ Pseudoinverse of X

f(·) Scalar function

f(·) Vector function

General Symbols

ri,j Red component of a pixel (RGB color space)

gi,j Green component of a pixel (RGB color space)

bi,j Blue component of a pixel (RGB color space)

hi,j Hue component of a pixel (HSV color space)

si,j Saturation component of a pixel (HSV color space)

vi,j Value component of a pixel (HSV color space)

C Point cloud

i Index variable

N Number of points in a point cloud C

p Point of a three- or two-dimensional space

R Rotation matrix
ATB Transformation matrix

t Translation vector

Extrinsic and Intrinsic Camera Parameters

γ Field of view

Θ Pitch angle

Φ Roll angle

Ψ Yaw angle
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Notations

B Stereo basis

f Focal length

lx × ly Chipsize x− and y−direction

px × py Number of pixels in x− and y−direction

sp Position of the camera with respect to S0

Object Detection

α Weighting factor

ζ Confidence

ζMin Threshold for the confidence

θi,j Orientation at pixel i, j

ai Penalty factor for link i

BR Reference set of vectors of attributes

b Vector of attributes

bR
i Vector of reference attributes

bi Attribute

C0(i, j, d) Element of DSI

CA(i, j, d) Element of the updated DSI

CI(i, j, d) Intensity cost of element i, j, d

CG(i, j, d) Gradient cost in of element i, j, d

CMax Maximal cost

d Disparity

di,j Length of gradient at pixel i, j

e(H,Hr) Intersection error between a histogram H and a reference histogram Hr

ei Error metric for link i

f Scale factor

H Histogram

Hr Reference Histogram

h(x, y, z) Three-dimensional gaussian distribution

I Input image

IL Left input image

IR Right input image

I(i, j) Pixel of input image

Icch Input image for color co-occurrence histogram

Ich Input image for color histogram

Ihog Input image for histogram of oriented gradients

Iref, i Reference image with index i

K Kernel of a filter

mcch Error map for color co-occurrence histograms

mch Error map for color histograms

mhog Error map for histograms of oriented gradients

N ×N Filter window size
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Nc Number of points used for computation

n Point of a segment

ncch Number of colors in color co-occurrence histogram

nch Number of colors in color histogram

ndist Number of distances in color co-occurrence histogram

nhog Number of orientations in histogram of oriented gradients

nx × xy Number of subregions in x− and y−direction

pL Point of left image

pR Point of right image

pr End point of a reference link

ps End point of a detected link

ticch Threshold for color co-occurrence histograms and reference image Iref, i
tich Threshold for color histograms and reference image Iref,i
tihog Threshold for histograms of oriented gradients and reference image Iref, i
w Weighting factor

xi × yi Size of input image I

xr × yr Size of reference image Iref
xs × ys Size of subregion

Vision-Based Mapping

α Rotation of the robot

γ Field of view

σ Standard deviation

C(i, k, k, l) Cost value

C̃j Point cloud with points used for computation

d(i, j) Disparity of a pixel

d(p1,p2) Distance between the two points p1 and p2

di Distance measurement for iteration i

dx Real distance to a point x

d′x Distance in an image to a point x

d′′x Distance in a virtual image to a point x

fj(dj) Probability function for a distance measurement

Iv Individual of the genetic algorithm

i Index variable of the current position in the ring buffer

j Index variable of a pixel in an image

k Index variable of a histogram in the ring buffer

mk
j Weighting factor

Nb Size of the ring buffer

NEgo Window size

NSearch Window size

pi
j Point with index i from point cloud Cj

p̃j
i Point used for computation
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S0 Robot frame

Sc Camera frame

sMax Maximal saturation component of a pixel

sMin Minimal saturation component of a pixel

ctx Movement of the robot in x-direction

cty Movement of the robot in y-direction

tn Threshold
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VCurrent(i, j) Corner of the current image

VPrevious(i, j) Corner of the previous image

vMax Maximal value component of a pixel

vMin Minimal value component of a pixel

Semantic Mapping

αk Weighting factor

Λi(·) Update function

Λ−1
i (·) Inverse update function

σ Costs for performing an action

Φ(·) Search function

χAi

Oj
State variable of object j with respect to the attribute i

χ̂Ai

Oj
Abstract state variable for planning

ΨR(R) Get-connection function

ΩR(R) Search function

A Node of type attribute

A Set of nodes of type attribute

C Action list

C Node of type action
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d(χAk

Oi
, χAk

Oj
) Distance between two states

p(Oi,Oj) Probability of similarity

O Node of type object
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R Node of unspecified type

R Set of nodes of unspecified type
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T Node of type type
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Xi State space of node i
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1 Introduction

“
Miss Glory, robots are not people. They are mechan-

ically much better than we are, they have an amazing

ability to understand things, but they don’t have a soul.

Karel Čapek, 1921 ”

With the begin of industrialization the desire for a mechanical working man grew stronger

and stronger. After the first appearance of the term robot in Karel Čapec’s play R.U.R

(Rossum’s Universal Robots) [22] the desire was omnipresent in literature and later in

moving pictures - it reflected the zeitgeist of the society, when almost everything seemed

possible. The term robot was originally used to describe an artificial man and was later

attributed by the media to the term metal man. Their increasing presence came with an

increasing fear of their superiority. In R.U.R. robots were originally designed to perform

minor or unpleasant work, but were equipped with sophisticated mechanical and cognitive

abilities. Later they take over and eventually wipe out humankind. In the year 1950 Isaac

Asimov wrote the novel I, robot [6] and came up with his famous three laws of robotics,

stating a robot must never harm or kill a human and must obey all humans’ orders. How-

ever, recent activities in the area of military research and the advances in the development

of unmanned aerial vehicles (UAVs) [148] have shown that these laws play a subordinate

role in the real world. This raises the question, if the fear of robots is legitimate and

they will rule the world. Fortunately, this fear is unsubstantiated at their current state of

development.

Before the cognitive abilities of mobile robots can be examined further, the terms percep-

tion and cognition have to be defined. Perception means the reception and collection of

data, while cognition marks the complement to perception and is often referred to as the

process of thought in order to plan the future based on past observations and experiences.

Now, the cognitive abilities of robots can be examined further in detail. Early fictional art

focuses on what seemed to be the main challenge - the mechanical development of robots -

and neglects, how human-like cognitive abilities can be achieved. This reflects the current

state of development, where complex bipedal walkers like Honda’s ASIMO with sophis-

ticated mechanics are constructed. Compared to the cognitive skills of fictional robots,

1



1 Introduction

Fig. 1.1: Illustration of perception (Robert Fudd, 1619).

current developments are still way behind. The majority of the existing robots is placed

on production lines and is manufacturing objects. Other applications include assisting

humans in the household and performing work in hazardous or distant environments, e.g.

mine-defusing. These mobile robots require a much higher degree of autonomy and thus

more sophisticated perception and cognition systems. Despite the current achievements

in the field of perception, robots are nothing more than tools functioning in controlled

environments in a very specific manner. By integrating a vision system and actuators in

one package, Sony’s AIBO tries to fill this gap by providing simple cognitive behavior. The

robot hall of fame1 provides a comprehensive overview of both the most sophisticated and

important fictional robots and milestones in the development of real robotic platforms.

Enhancing the cognitive abilities is a major challenge on the road to full autonomy. Most

of the current cognitive architectures are inspired by the human brain as illustrated by

Robert Fudd in Figure 1.1 and consist of three major parts: perception (mundus sensi-

bilis), knowledge representation (mundus imaginabilis), and cognition (mundus intellectu-

alis). Knowledge is mostly stored in a semantic manner, meaning by using words describing

the objects and not by using an accurate model. Semantic representations allow much data

1http://www.robothalloffame.org/
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1.1 State-of-the-Art

to be stored, reflecting not only the type, position, and attributes of the object, but also its

meaning. Of all our senses, vision is the most important one when it comes to understand

the environment. Cameras provide an easy to use and cheap sensor for mobile robotics.

Consequently, the vision system of a mobile robot should be its main source for the cogni-

tive system. Other demands are also inspired by the human system and include that the

cognitive architecture should be a prospective and anticipative system, not only planning

the future and behaving accordingly [86], but also foreseeing the future in the same way

humans do [150]. Learning from experience requires some sort of self-modification [151]

and interpretation of the environment [45]. Summing up, a cognitive architecture in mobile

robotics links perception and cognition with a suitable knowledge representation and pro-

vides methods for decision making and planning. As no low level planning of movements is

performed, decision making and planning are regarded to be part of the cognition system.

When it comes to mobile robotics, perception is formed by object detection and mapping.

Using two-dimensional images is the most intuitive and easiest way to gather informa-

tion. However, by ignoring the third dimension valuable information gets lost. Gathering

three-dimensional images is inspired by the human vision system. By using two or more

synchronized cameras with different viewpoints, objects will appear at different positions

in the camera images. The different positions can be used to estimate the position of the

object in three dimensions, a process called stereo-reconstruction. Both representations

have advantages and disadvantages. Two-dimensional images are examined easily and

three-dimensional images provide more accuracy, but require more complex algorithms

and more computational power. Two-dimensional maps are easy to create and are suffi-

cient for navigation. On the contrary, complex manipulation tasks can only be planned

using a three-dimensional map. Detected objects and their attributes can be stored in a

semantic network, which is a textual representation of knowledge and which can be used

to link predefined knowledge with the objects. By connecting the semantic network with

a metric map, a comprehensive knowledge base is created, which will be referred to as se-

mantic map. In a last step, this knowledge base is used for decision making and planning.

The work presented in this thesis investigates the three main aspects of cognitive architec-

tures: object detection, mapping, and cognition. In the following section, previous research

in the field of cognitive abilities for mobile robotics are presented and the main challenges

are highlighted.

1.1 State-of-the-Art

Vision-based cognitive understanding of the environment requires sophisticated algorithms

and methods from several different research areas. On one side, an advanced perception

system is required, while the gained data has to be processed on the other side. Further-

more, the whole system has to form a suitable cognitive architecture. This section gives

an overview of modern cognitive architectures and presents some robot systems, which are

equipped with a cognitive architecture or at least with basic cognitive abilities. A detailed

discussion of the state-of-the art of both the perception modules, namely object detection

and vision-based mapping, and the cognitive processing module, the semantic mapping,

can be found in the corresponding chapters.
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Fig. 1.2: Cognitive architecture simulating a biological neuronal network.

Knowledge Representations

A robot with cognitive abilities or a cognitive architecture requires a well suited and

sophisticated knowledge representation. As wit the human memory, the information is

broken to simple key points. This reduction brings several advantages, such as memory

efficiency and possible generalization. Artificial neuronal networks [54] are inspired by the

human brain and allow both storage of knowledge and the utilization of this knowledge, e.g.

to recognize objects. They are composed of a multiplicity of simple units [9] like neurons.

Expert systems [42] have been developed to assist in medical and scientific analysis by us-

ing a set of rules or predefined data to draw logic conclusions. The programming language

Prolog was developed to allow declarative programming. Its main data structures are

called facts and rules. Other approaches try to link objects to certain attributes. Frame

structures [63] are based on frames, containing a name and several attributes. However,

there are no links between the frames. Semantic networks [49, 115, 135] are composed of

nodes, representing objects or attributes and edges, representing relations between the

nodes. Probabilistic approaches use probability functions to model occurring uncertainties.

Cognitive Architectures

During the last decades a variety of cognitive architectures has been developed. By the

distinctive paradigms they are based on, most of them can be sorted into two main

categories: Emergent Systems, which are mostly composed of artificial neuronal

networks, and Symbolic Processing Systems, sometimes also called the cognivist

approach.

Emergent systems have evolved from neuroscience and are based upon the imitation

of the structure and aspects of biological neuronal networks. Likewise the biological

archetype, a cognitive process is not separated into perception, recognition, classification,
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Fig. 1.3: Architecture of a symbolic processing system.

and action planning. As illustrated in Figure 1.2, the central processing of perception is

conducted in the sensory cortex, while the association cortex combines the information

with past experiences. Although there is currently no full understanding, the higher

planning is assumed to be conducted by the basal ganglia. After the information has

been associated with emotions in the amygdala, the actual movements are planned by

the motor cortex. An input activates certain areas of the emergent systems, leading to

a certain action. Sometimes, simulated biological architectures will lead to astonishing

behavior when a robot is subject to deal with completely new situations. On the other

hand, the system may be overstrained with relatively simple situations. Instead of using

accurate representations like geometrical shapes or color histograms, emergent systems try

to remember the resulting action of perceptions and try to guess which actions suite the

current inputs best. Hence, the system uses no visual templates, but the sensorimotor’s

integration between the perception and the action [26]. Artificial neuronal networks [54]

mark the most popular representation. However, emergent systems are not limited to

artificial neuronal networks, they are decentralized complex systems from a multiplicity

of simple units and interactions between the units. In contrast to neuronal networks,

interaction is organized and is not limited to internal components. A perception is

no longer the result of a single isolated loop and image processing systems are highly

integrated into the entire emergent system.

In contrast to emergent systems, symbolic processing systems are created in a

bottom-up manner with an explicit separation of the single steps. According to Vernon

et al. [150, 151], a cognitive process can be separated into three different levels of

abstraction: on the lowest level, visual features are abstracted by the perception system.

Several features compose a stimulus, which lead to a final action as response to the

original visual features. Figure 1.3 shows the different stages of a symbolic processing

system. In the first step, a perception system processes all objects in the robots field

of view and generates certain features, which serve as stimuli for the decision. Now, a

description of the scene can be built, which serves as a basis for decision making, where

finally actions are generated [45]. Consequently, perception and decision making can be

considered as the most important parts of a symbolic processing system. Hence, most

of the current symbolic processing systems vary in strategies for these two major parts.

Different symbolic processing systems can be distinguished by the utilization of different

probabilistic frameworks for decision making, such as Bayesian theory [34], which has won

a wide range of interest.
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Fig. 1.4: The Robot iCub [119].

Current Implementations of Cognitive Architectures

The creation of cognitive architectures has been a large branch in computer science since

the creation of the first neuronal network in the 1960’s. Since then, several different

approaches have evolved. In their current state of development, these architectures require

vast amounts of computational power and memory or are not real-time capable and thus

uneligible for the use on a mobile robot. However, the computational power of modern

computers is increasing exponentially.

Cognitive architectures have been developed as artificial intelligence (AI), i.e. to model

human behavior. In SOAR [73], solving problems is realized as a search in a problem space,

while knowledge is represented by rules or objects. Adaptive control of thought-rational

(ACT-R) [4] is composed of a set of predefined reproduction rules and a declarative

memory containing simple knowledge items. A programming language like LISP can be

used to predefine the rules. Other cognitive architectures try to model the biological

cognition system from low level perception to high level reasoning (LIDA) [35] or use

multi-agent systems like Cougaar (Cognitive Agent Architecture) [1]. Other widely known

cognitive architectures include cognitive systems for cognitive assistants (CoSy) [26],

cognitive systems that self-understand and self-extend (CogX) [111], and the cognitive

robot companion (Cogniron) [149].

Robots with Cognitive Abilities

There exists a wide variety of mobile robots with more or less cognitive abilities. Some

robot systems are equipped with a complex cognitive architecture, while others have been

designed for other purposes and are only equipped with an image processing system and

no cognitive architecture. Robots with cognitive architectures try to analyze and interpret
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their environment by performing a semantic analysis [33, 102] and interpretation [21] to

create a semantic network of the scene, containing information about all identified objects.

The mobile robot can then use this semantic network to interact with the environment.

Some approaches use vision data to recognize objects and compute their position [46] or

use extensions of the constellation object model, which is popular in computer vision.

Robots serving as a museum guide are equipped with complex cognitive architec-

tures [100, 125]. Besides robust localization and mapping, obstacle detection and ob-

ject recognition, they have to be able to interact with humans and understand certain

commands [134]. Other robots have been developed to assist humans in the house-

hold [117, 126]. As the main focus of application is the support of elderly people, a main

focus of research is robustness. Impressive results have been shown in scope of the DARPA

grand challenges in the years 2004, 2005, and 2007 [142], where autonomous cars drove

across the desert in the first years. In the last grand challenge, these cars have proven to

be able to drive within regular traffic obeying traffic rules.

Figure 1.4 shows the iCub robot [119, 132], one of the most popular examples for an emer-

gent system. Its sophisticated hardware has a physical appearance similar to a 3.5-year old

child and was designed as a humanoid platform to investigate the embodiment of cognition

and the development of cognitive abilities. The main focus of research is self-development

through learning from the environment, by interactive exploration, manipulation, imita-

tion, and gestural communication. iCub’s cognitive architecture consists of three levels:

the perceptuo-motor skills, the action selection, and the internal action simulation.

Due to their modular nature and more stringent separation of perception and cognitive

abilities and therefore better applicability, many robots have been developed based on sym-

bolic processing architectures. Nüchter et al. presented the mobile robot Kurt3D [140],

which uses a laser rangefinder to create a three-dimensional representation of the environ-

ment and a semantic processing system to analyze the scene. A semantic representation

containing spatial information of different object types is predefined. By analyzing the

geometric relations, the robot can detect floor, walls, ceiling, and other objects like doors.

A sophisticated technical approach of the symbolic processing paradigm is the explorer

system [110, 137], which was designed for spatial exploration with the long-term aim to in-

vestigate artificial cognitive systems that are able to understand the environment. Special

research interest was put in what, where, how, and why the robot can do things. There-

fore a common understanding of the space between the robot and a human interaction

partner has to be generated to achieve sufficient human-like behavior. A key issue was

the semantic modeling of space, which was conducted on different levels of abstraction.

A metric map, containing basic geometric features like lines, can be built using standard

SIFT based SLAM techniques. This map can be abstracted into the navigational map,

containing nodes and edges. Nodes represent possible positions of the robot and edges

possible paths between the positions. As indicated by the name, this map is used for

navigation. Several of these nodes can be combined to form a node of the topological map.

Such a node can represent an area like a certain room. The highest level of abstraction is

achieved by the conceptual map, linking the areas of the topological maps with each other

and further semantic information.
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1.2 Challenges

The development of robots with cognitive abilities comes with several challenges in the

fields of robotics, computer vision, and cognitive architectures. These challenges can be

related either to perception or to cognition. The main aspects targeted in this thesis are

summarized below.

As shown in the state-of-the-art, the perception system is one of the key-issues. Some

research of the most sophisticated cognitive architectures deals mainly with the cognitive

abilities and assumes a perfect perception. Other cognitive architectures, like the iCub,

are highly integrated with perception, making the exchange of modules difficult. As the

perception system is formed by two different subsystems, object detection and mapping,

different requirements arise for each subsystem. Two of the key requirements for the used

algorithms are real-time capability and robustness. Consequently, not all algorithms are

suitable for a cognitive architecture. An additional requirement for an object detection

algorithm is the capability to detect attributes of an object. To allow online learning, few

training images must be sufficient. When it comes to interaction with humans, specialized

algorithms which are able to detect human body poses are eligible. Not only the type of an

object is of great importance, but also its position. Two-dimensional maps are furthermore

required for navigation, but they are unsuitable for complex manipulation tasks, requiring

three-dimensional maps. As a laser rangefinder is unsuitable for some kinds of robots like

biped walkers, these maps have to be created using only vision. Hence, particular interest

has to be laid on the applicability of the developed algorithms.

Besides perception, cognition marks another key challenge for the development of robots

with cognitive abilities. A suitable knowledge representation is required as a base for cog-

nition. This knowledge representation should provide functions for adding new knowledge

and for linking detected objects with prior knowledge. One of the most important aspect

for the actual cognition is the integration of the different object detection and mapping

algorithms with the knowledge representation. In addition, a cognitive architecture should

be able to deal with uncertainties and provide functions for decision making based on the

achieved knowledge.

As different areas of application come with different requirements, the cognitive architec-

ture should be adaptable. This is achieved by creating a modular architecture, where

modules can be replaced by other modules and new modules can be included easily. Thus

another aspects arises, namely the thorough design of a convenient software architecture.

1.3 Main Contributions and Outline of Thesis

A mobile robot with cognitive abilities requires a sophisticated cognitive architecture with

a perception system and a cognitive processing system. Considering todays robots with

cognitive abilities, there is a lack of robots with comprehensive cognitive architectures,

which can be adapted to the programmers needs. As the cognitive system developed in

the scope of this thesis is modular, and the modules can be considered and even used

independently, it allows manifold areas of application and can be extended easily. Due to

the modularity, the cognitive system can be classified as a symbolic processing system. The
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Fig. 1.5: Illustration of a symbolic processing system, integrating semantic mapping.

perception is split into two major parts: object detection and mapping. A guide through

this thesis is given in the following section, summarizing the main contributions.

Figure 1.5 illustrates the semantic mapping system, a cognitive architecture developed

in the scope of this thesis. The main aspects of the general system architecture are the

perception system formed by the object detection and the mapping, and the cognitive

processing, formed by the semantic mapping. A user can interact with the robot directly

via the semantic mapping, or indirectly via interaction with the world.

System Architecture

Chapter 2 presents details about the software architecture and the autonomous city ex-

plorer (ACE), a mobile robot that was co-developed in the scope of this thesis and serves

as hardware platform. ACE is equipped with a camera head, two stereo cameras and two

PCs, one for navigation and interaction and one for vision processing. The proposed soft-

ware system is highly modular and is distributed between different processes and threads

on different machines. Designing clear and logical interfaces between the system, the

subsystems, the modules, and the submodules is vital for a distributed system and was

consequently of particular interest during the design process of the software architecture.

Therefore, a stringent hierarchy with different communication protocols in each layer has

been developed, allowing an almost arbitrary distribution of the subsystems on different

machines.

Perception System

Sophisticated object detection and vision-based mapping form the perception system. Both

provide methods and algorithms to process two-dimensional and three-dimensional data.

Two-dimensional images can be obtained easily from a camera, while a three-dimensional

representation has to be computed by using stereo image processing. Consequently, Chap-

ter 3 starts with the introduction of a real-time stereo algorithm, which is able to process
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images with high resolutions using Cuda, Nvidia’s stream computing architecture. The

stereo algorithm computes a three-dimensional point cloud, which can be used by a novel

algorithm for body pose estimation. These poses provide valuable and intuitive infor-

mation for interaction with human operators. Furthermore, a real-time object detection

algorithm based on two-dimensional images is proposed. This algorithm is based on a

cascade of different types of histograms and is able to detect objects robustly, even if large

parts of the objects are occluded. Compared to existing algorithms, few training images

are required to achieve good results.

Like object detection, mapping can be performed with two and three dimensions. Chap-

ter 4 focuses on methods for vision-based mapping. Robust mapping requires information

about the robots position and thus the ego-motion. As it is strongly related to stereo recon-

struction, the stereo module is extended with a fast ego-motion estimation. Detecting the

ground by image analysis is the only possibility to build a map based on two-dimensional

images. As searching for edges is only possible in some environments, a texture-based

approach is developed. The algorithm is extended with a memory to remember valid types

of the ground. For building three-dimensional maps, it is adequate to merge the different

point clouds obtained by the stereo modules based on the robots ego-motion. Therefore, a

modular approach to the median fusion algorithm is presented, allowing the use of different

stereo modules and other types of sensors. Hence, the system can easily be adapted to dif-

ferent sensors or machines. Additionally, the thesis introduces a novel algorithm to merge

the data obtained from laser rangefinders and cameras into one representation combining

the advantages of both sensors - the laser rangefinder’s accuracy and the camera’s color

information.

Cognitive Processing

As it is easy to access and integrate both perception modules, semantic mapping is a

well suited representation for a cognitive architecture. Chapter 5 introduces a novel

mathematical base for a semantic map. Such a semantic map is composed of a metric

map and a semantic network, where cells from the metric map can link to nodes of the

semantic network and vice versa. This mathematical base can be used for the decision

making process and thus to plan actions and interact with the environment. Details about

the integration of the cognitive architecture into a real-time capable system are presented

together with a simulator, which is developed to test the cognitive architecture. Both

simulations and real world experiments will be shown to validate the whole system.

This thesis presents a wide variety of aspects contributing to the development of sophis-

ticated robots with cognitive abilities. Some of the aspects improve existing algorithms,

while others mark new methods for perception and cognition. By covering and integrating

the most important facets of perception and cognition, the presented thesis serves as a

base for further research.
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A sophisticated mobile robot is essential in order to test the components of a cognitive

architecture during the implementation process and to verify the whole system afterwards.

As some of the proposed methods, like real-time stereo vision and object recognition, are

computationally expensive, modern hardware is required on the robot. Due to the strong

connection between the vision system and the navigation system and the small bandwidth

of a wireless network, vision processing needs to be performed on board the robot. Offline

computations would furthermore reduce the robots operating range and thus the auton-

omy. Equally important, the mobile robot should be capable of both indoor and outdoor

scenarios. Indoor scenarios provide a structured environment and controllable weather

and light conditions, while outdoor scenarios provide cluttered scenes with challenging

light conditions. In general, indoor scenarios are easier to handle but outdoor scenarios

provide more exciting possibilities.

The remainder of this chapter is organized as follows: It starts with an introduction to

the ACE robot and specifies its mission. Section 2.2 describes the architecture of the

presented semantic mapping system, which was implemented using ACE as demonstrator.

A detailed overview of the hardware and software architecture of ACE can be found in

Appendix A.

2.1 The Autonomous City Explorer

These requirements are fulfilled by the autonomous city explorer (ACE) [12], which was

co-developed at the Institute of Automatic Control Engineering within the scope of this

thesis. The main mission for ACE is to find its way from the institute to the Marienplatz,

a public square in the center of Munich, only by interacting with humans and without

using prior map knowledge or GPS information. To fulfill this task, the robot must be

able to perform vision guided dialogue-based navigation in an unknown urban outdoor

environment. The robot must be able to find a human and initialize the interaction. Us-

ing a speech based dialog system, the most natural way of interaction, is impossible with

the background noise at heavily frequented public places or with traffic noise. Therefore

no speech-recognition system is used and the human-robot-interaction is performed via a

touch screen and loudspeaker. To enhance the natural interaction, ACE has the ability

to speak and to recognize human body poses. Another important ability for a robot in

order to behave like a pedestrian is the robust detection of the sidewalk. ACE is not

allowed to cross junctions or to drive on streets, so crossroads have to be detected reliably.

To traverse crossroads safely, ACE tracks a person wearing a T-shirt with a chessboard

pattern.

Outdoor experiments were conducted successfully on 30th and 31st of August, 2008 [11].

Starting from the institute, ACE succeeded in reaching the Marienplatz. The whole pro-

cess took about 5 hours, while the route had a length of approximately 1.8 km, including

heavily traveled roads and crowded public places. Figure 2.1 illustrates the approximate
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Fig. 2.1: Approximate trajectory of ACE on its way to the Marienplatz with four exemplarily
stations: (a) crossing a street, (b) and (c) interaction with a pedestrians, and finally
(d) approaching the Marienplatz.

route of the ACE robot from the institute to the Marienplatz. 25 and 38 pedestrians,

respectively, interacted with ACE and gave information about the direction of the desti-

nation. The relatively large number of pedestrians and long time are caused by interested

pedestrians who initialized the interaction and interrupted ACE, just to see how the robot

would react. An example for natural human-robot-interaction is shown in Figure 2.1 (b)

and (c), where ACE is interacting with pedestrians. Figure 2.1 (d) shows ACE navigating

in a highly crowded environment.

Parts of the semantic mapping framework presented in this thesis have been developed

within the scope of the ACE project, namely parts of the system architecture, object

detection, gesture recognition, two-dimensional mapping, and semantic labeling of places.

As ACE was not allowed to cross streets autonomously, it had to stop at intersections.

Therefore the robot had to be able to recognize traffic signs and traffic lights. As mentioned

before, human body pose estimation was used to enhance the interaction. Therefore pedes-

trians were asked to point in the direction ACE had to drive. Both methods, detection of

traffic signs and human body pose estimation can be referred to as object detection. The

two-dimensional mapping system was used to recognize the sidewalk, in order to prevent

ACE from falling down the curbs. Hence, the sidewalk was detected using texture analysis

and the shape of the sidewalk was used to identify the type and thus for semantic labeling.
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2.2 Software Architecture of a Semantic Mapping System

2.2 Software Architecture of a Semantic Mapping System

The semantic mapping system has emerged from the software architecture of ACE and

makes heavy use of methods, which have originally been developed for the vision [93] and

navigation systems, like the human body pose estimation, the two-dimensional mapping

module, the laser rangefinder, and basic data structures like point clouds.
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Fig. 2.2: System architecture of a semantic mapping system. Rounded boxes indicate modules,

square boxes indicate data storage structures, solid arrows connections between the

subsystems, dashed arrows connections between the modules in one subsystem, and

dashed lines separate the different layers. The different subsystems are highlighted

in different colors. The Ego-motion Estimation, the Stereo Module, and the Object

Detection are executed on Cuda.

Figure 2.2 shows the system architecture of the semantic mapping system, which can be

separated into four different layers and four subsystems, the Robot, the Object Detection,

the Vision-Based Mapping, and the actual Semantic Mapping. Each subsystem is

composed of several modules, which can be separated further into different submodules.

The sensor data is gathered in the Sensor Layer, containing the Stereo Camera and a

Laser Rangefinder. The sensor data is pre-processed in the Perception Layer containing

a Stereo Module and a vision-based Ego-motion Estimation. Furthermore, the
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Fig. 2.3: (a) Hierarchy of the software architecture and (b) data flow with the corresponding
communication protocols.

simultaneous localization and mapping (SLAM)-modules from the navigation system

can be placed in this layer. The actual data processing is performed in the Processing

Layer containing 2D and 3D Mapping, Body Pose Estimation, Object Detection,

Semantic Processing, and Planning. To simplify the data exchange between the

modules and subsystems, the results are stored in the Storage Layer, containing the data

structures 2D Map, 3D Map, Semantic Map, and Object Database. Ego-motion

estimation, stereo module, and object detection are executed on a Cuda-board, where

ego-motion estimation and the stereo module are combined in one program. The object

detection and vision-based mapping subsystems form the perception, while the semantic

mapping subsystem marks the cognition.

Tab. 2.1: Hierarchy of the software architecture

Instances Protocol System Parent

System 1 - Program User

Subsystem n UDP / D-Bus Process System

Module n Thread safe variables Thread Subsystem

Submodule n Variables Function Module

The whole system is executed in different threads and processes. As illustrated in Figure

2.3, each subsystem is executed in at least one independent process containing only modules

of the corresponding subsystem. Each process is separated into different threads, consisting

of one or more modules. All submodules of a module have to be executed in the same

thread. The only exception is made for processes executed on Cuda, where every function

is called multiple times in parallel threads. More detailed information about Cuda and

the integration of processes executed on Cuda can be found in Appendix B. As only

read access is required, the object database can be instantiated multiple times in arbitrary
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2.2 Software Architecture of a Semantic Mapping System

threads or processes. Whenever the object database is changed, a signal has to be sent to

every thread or process and the database has to be reloaded. In addition, the processes

don’t have to be executed on the same machine. Hence, the computational power can be

adjusted to the needs of the selected modules. The communication between the modules

is accomplished with thread-safe data structures, while a communication protocol is used

for the communication between the subsystems. This protocol is either based on a UDP

connection when the processes are executed in a distributed system, or based on the D-

Bus protocol when the system is executed on one single machine. Both communication

protocols provide the same interface to the corresponding submodule, so that the protocol

can be adjusted easily. Every subsystem, module, or submodule can only communicate

with its parent or with other children of its parent of the same layer. Table 2.1 summarizes

the system hierarchy. Further details about the implementation of the software system

and the scheduling can be found in Section 5.3.2. The following sections introduce the

main subsystems and give a short introduction to the most important modules.

2.2.1 Object Detection

The object detection subsystem provides different algorithms and methods to detect, lo-

cate, and identify objects in the vicinity of the robot. Furthermore, these methods can be

extended to detect certain attributes of the identified objects, e.g. their color. A detailed

description of the object detection subsystem, modules, and the corresponding submodules

will be given in Chapter 3.

Stereo Module

The stereo module uses images obtained by the Bumblebee X3 stereo camera with a res-

olution of 640 × 480 pixels as input, where 150 disparities have to be computed. Before

the stereo image can be reconstructed, both images have to be rectified to achieve epipolar

geometry. To ensure real time-capability, the stereo module is implemented using Cuda,

resulting in a speed of 15 Hz. The result of the computation is stored as a colored three-

dimensional point cloud.

Body Pose Estimation

A point cloud obtained by the stereo module is used as input to estimate a human body

pose. In the first step, possible humans are detected by using a skin color filter, followed

by a segmentation of the point cloud based on the results of this detection. Now, a human

model with 28 degrees of freedom is fitted into the point cloud and the body pose is

estimated.

Object Detection

As this approach is based on the use of a cascade of different types of histograms, namely

color histograms, histograms of oriented gradients, and color co-occurrence histograms,

and thus both color and spatial information, it provides a fast and reliable method to

detect previously learned objects. This method requires very few training images and is
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able to deal with large occlusions. Again, it is implemented using Cuda and thus provides

a real-time capable object detection.

Object Database

As mentioned above, objects have to be learnt before the object detection cascade can be

performed. Due to the character of the histograms, very few training images are necessary

for each object. A total of 18 images from different points of view will suffice. Threshold

values for each object and each type of histogram and thus each step of the cascade are

also stored in the object database and are furthermore connected to the type of the object.

2.2.2 Vision-Based Mapping

The vision-based mapping subsystem provides methods to create both two- and three-

dimensional maps of the environment. As mapping requires knowledge about the robot’s

position, the sophisticated real-time capable stereo module is extended with a method for

ego-motion estimation. A detailed description of the vision-based mapping subsystem, its

modules, and the corresponding submodules will be given in Chapter 4.

Ego-motion Estimation

As both problems are somehow similar and strongly connected, the ego-motion estimation

is computed concurrently with the stereo image processing, having full access to the results

and temporary data. A frame rate of 10 Hz can be achieved for the combination of both

algorithms.

3D Mapping

The 3D mapping module uses a modular implementation of the median fusion algorithm

introduced by Nister et al. [2] to merge different point clouds obtained by the stereo

module. The alignment of the different point clouds is computed based on the results

of the ego-motion estimation or based on the result of the navigation’s SLAM module,

yielding an accurate, three-dimensional representation of the environment. Moreover, an

algorithm to fuse laser data with vision data is presented.

2D Mapping

The 2D mapping module utilizes a texture-based approach to analyze two-dimensional

images. Therefore the assumption that the area in front of the robot is free of obstacles,

is made and the texture in front of the robot is compared to the texture in the rest of the

image. By back-projecting the result of this comparison a metric map can be computed.

Further obstacles are detected by analyzing the result of the 3D mapping module.

3D Map

The three-dimensional map is stored as a colored three-dimensional point cloud, where

different functions can be applied on the point cloud, e.g. reduction of noise and outliers.
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2D Map

An occupancy grid is used to store the two-dimensional map. Each cell represents a part

of the ground with a certain size and is assigned with a probability. A high probability

denotes the cell is free of obstacles, whereas a low probability denotes the cell is occupied

by an obstacle.

2.2.3 Semantic Mapping

To plan actions, the robot needs to combine the results of both object detection and vision-

based mapping. The semantic processing subsystem provides methods and data structures

to store the gathered information in an adequate way and to draw logic conclusions. Con-

sequently, the semantic mapping subsystem represents the cognition part of the presented

cognitive architecture. A detailed description of the semantic mapping subsystem, its

modules, and the corresponding submodules will be given in Chapter 5.

Semantic Processing

The results of object detection and two-dimensional mapping are combined in the semantic

processing module, yielding a semantic map. Attributes of objects can be obtained by the

object detection subsystem or can be predefined by a human operator. As it controls the

other modules and subsystems, and processes the gathered data, this module is one of the

core parts of the whole semantic mapping architecture.

Semantic Map

A semantic map is composed of an occupancy grid, containing information about obstacles

and a semantic network, containing further information about the environment. Both

are connected with each other. Hence, the occupancy grid contains links to nodes of

the semantic net. These nodes represent objects and are again connected to cells of the

occupancy grid. Thus, the position of each object can be accessed from the semantic

network and the robot can obtain further information about objects in its vicinity.

Planning

Furthermore, a semantic map can be used for action and path planning. Therefore, object

states are introduced. Thus, a desired states can be specified for an object and the action

planner plans actions based on the information given in the semantic map to bring the

object into the desired state.

This chapter gave an insight of the development of a system architecture for a mobile robot.

Besides details about the hierarchy and the communication protocols, a short introduction

of the actual modules forming the perception and cognition has been given. The following

chapters give more in-depth information about these modules.
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One of the most important cognitive skills of a robot acting in close collaboration with hu-

mans is the ability to detect and recognize objects in its environment. Great progress has

been achieved in the field of object detection and object recognition during the last decades.

Beginning with simple correlation functions, current hardware provides a vast amount of

computational power, and thus allowing real-time implementations of complex algorithms.

Two major groups of algorithms have evolved. The first group uses two-dimensional im-

ages as input, while the other group analyzes a three-dimensional representation. Those

three-dimensional representations can be obtained by stereo image processing or by uti-

lizing other sensors like laser rangefinders. While OpenCV [75] provides a wide variety

of algorithms for two-dimensional image processing and SIFT [76] has evolved as a quasi-

standard for object detection, there exist many approaches for three-dimensional object

detection that are still subject to further research.

Most of the popular object detection algorithms use no color information, require many

training images, and sometimes a complex supervised training process. Consequently, the

training phase is time consuming and can hardly be automatized. On the other hand,

new technologies like stream computing increase the available computational power signif-

icantly. Hence, even more complex algorithms can be used for real-time applications. This

chapter presents different algorithms for object detection in two and three-dimensional rep-

resentations, while the algorithms using three-dimensional representations are independent

from the sensor type. As this thesis focuses on vision-based approaches, a sophisticated

real-time capable implementation of a stereo image processing system is proposed. Both

standard algorithms as well as novel algorithms are presented for the actual object detec-

tion. One of the novel algorithms is developed for the estimation of human body poses, but

can easily be extended to recognize other skeleton based objects. This algorithm is based

on the fitting of a skeleton model into a point cloud. In addition, an algorithm utilizing

a cascade of different types of histograms and thus using spatial and color information is

proposed. As they can be performed in real-time and deliver good hit-rates, the presented

algorithms advance the state-of-the-art. Consequently, a robust object detection architec-

ture is presented, which can furthermore be extended to recognize attributes like color.

Thus, the presented object detection subsystem is an ideal base for a semantic mapping

framework.

The remainder of this chapter is organized as follows: First, an overview of current object

recognition algorithms is presented, followed by details about the stereo image process-

ing algorithm. Section 3.3 presents the object recognition algorithms based on three-

dimensional representations of the environment, including the human body pose estima-

tion. Section 3.4 introduces several algorithms using two-dimensional images, starting with

widely used algorithms like SIFT, a cascade of haar-like features, and the cascade of differ-

ent types of histograms. The chapter concludes with experimental results and a discussion

in Section 3.5 and 3.6, where the advantages and results of the different algorithms are

compared.
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3.1 Overview of different Object Detection Algorithms

The research field of object detection can be separated into two main challenges: two- and

three-dimensional object detection. For vision-based three-dimensional object detection, a

three-dimensional representation of the environment has to be created. Stereo vision is the

most common approach to gain this representation. This section will give an introduction of

current work in the area of stereo image processing, three-dimensional and two-dimensional

object detection.

Stereo Image Processing

Most of the vision-based three-dimensional object detection systems require some sort of

stereo image processing or structure from motion module. The most obvious approach is

based on two images, which are obtained simultaneously by two cameras with different

points of view. A three-dimensional representation can be computed by using stereo-

triangulation. An overview of the most important algorithms can be found in [121]. The

other group of algorithms is based on consecutive images, for instance a video stream,

whereas depth information about the scene can be obtained by analyzing the camera

movement [130]. Most of the current research activities in stereo vision deals with increas-

ing the quality and is not focused on real-time capability. Klaus et al. [65] achieved the

best quality, but the computation time for one image is between 14 and 22 seconds. Some

research investigates different methods to increase the performance, e.g. with scanline op-

timization [44] or different aggregation steps [121].

The introduction of the compute unified device architecture (Cuda) by Nvidia estab-

lished a new branch in computer vision and data processing. In contrast to a conventional

CPU, stream computing allows massive parallel processing of simple functions and pro-

vides an easy to use and intuitive framework for the development of new functions. Due

to its parallel nature, stereo matching is well suited for the execution on a GPU. Wang et

al. presented a GPU implementation with a computation speed of 12 Hz [154]. However,

their algorithm only computes 15 disparities and is thus not eligible for application on a

mobile robot. Consequently, an algorithm which is able to perform stereo reconstruction

in both real-time and high quality is proposed.

Three-Dimensional Object Detection

Compared to two-dimensional images, the third dimension provides valuable additional

information. On the contrary, using three-dimensional point clouds as input for object

detection brings larger computational challenges. Hence, suitable algorithms that are real-

time capable have to be developed. Three-dimensional object detection can be separated

into two fundamental problems: modeling of the object and recognition of the objects. An

introduction into these problems can be found in [109]. Funkhouser et al. propose an algo-

rithm for retrieving similar shapes from a database containing objects [38]. CAD models

can be converted into point clouds, which are then used for matching [160]. Schnabel et

al. presented a complete framework for rapid object detection based on point clouds [123].

In this approach the point clouds are described by basic shapes acting as features, such
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as planes and cylinders. Hiroshi et al. [52] represents the object as a manifold in a low-

dimensional subspace by compressing the image set in the parametric eigenspace and tries

to identify the object based on this manifold. Schneiderman et al. [124] present a statisti-

cal method for the detection of faces and cars, based on a histogram containing subsets of

wavelet coefficients and their positions on the object.

Developed for realistic animation of the human body in Hollywood movies, the first appli-

cations for the reconstruction of human body poses have been motion capture methods.

An actor was equipped with markers, so his movements could easily be recorded. On the

other hand, markers are ineligible for outdoor scenarios. A mobile robot communicating

with pedestrians must use available sensors, such as cameras or laser rangefinders. The

field of camera-based body pose estimation can be divided into various approaches, which

are summarized below.

Some approaches use monocular vision systems [105], where an image of the body with

several landmarks serves as input, shape descriptors that are extracted from image sil-

houettes [31, 89], or probabilistic models [18]. Semi-supervised learning can be used to

increase robustness [7]. Other approaches require prior knowledge about the human move-

ments [58], which can be stored in a motion library [106]. Boulay et al. [16] maps typical

postures into two-dimensional images. Other approaches, like the one presented in this

thesis, focus on multi-view systems, such as stereo vision, which provide additional depth

information. The fitting of the model can be described as an optimization problem [3]

and can easily be combined with tracking people [66, 107]. A learning algorithm can be

used [159], where training data is recursively classified into several clusters with silhouette

and depth images. Another approach is the use of an image stream, where features can be

tracked between the images [80]. Through the two-dimensional tracking of the features,

their three-dimensional positions can be computed [94]. Bregler et al. [19] uses twists

and exponential maps to recover high degree-of-freedom articulated configurations of the

human body. Of course, the image stream can consist of monocular or stereo images.

Gavrilla et al. [41] use an image stream with multiple views to fit a human model into

the recovered scene, while others use three-dimensional voxel data created from multiple

views [118]. However, the mentioned algorithms are limited to a certain type of sensor and

can only estimate human body poses. This chapter presents an algorithm for human body

pose estimation, which is independent from the sensor type and can be extended to other

type of objects. Every object, which can be described by a skeleton, can be detected by

the algorithm.

Two-Dimensional Object Detection

Besides object detection and recognition in three dimensions, there exist several approaches

based on two-dimensional images. One of the most popular and robust algorithms is SIFT

(scale invariant feature transformation) introduced by Lowe [76]. SIFT uses local image

keypoints that can be used to describe objects. Real-time performance can be achieved

using modern hardware in combination with small datasets. Several implementations on

a GPU achieved real-time capability with larger datasets [24, 71]. A different approach

was proposed by Viola and Jones [152]. They used a cascade of very simple haar-like [75]

classifiers. An object is detected when it passes the whole cascade. If it fails one classifier
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of the cascade, the remaining classifiers will not be computed. By using simple features

and many stages, this algorithm delivers fast and reliable results. OpenCV offers an

easy to use implementation of this algorithm. Some research focuses on robust matching

algorithms [157] or face detection, which is also a part of object detection [50]. Krawiec

et al. [68] use genetic algorithms for image analysis. The work of Redfield et al. [114]

utilizes color information for object detection. With fixed illumination conditions only 16

colors are sufficient for object detection. In all those approaches no spatial information

is used, ignoring valuable information. On the other hand, some approaches use only

spatial information, e.g. by creating histograms of oriented gradients [29], or by analyzing

multiscale affine invariant image regions [163]. Chang et al. proposed color co-occurrence

histograms [8, 23] combining both color and spatial information, resulting in a classifier that

is robust to scale, illumination and occlusions. However, color co-occurrence histograms

are computationally expensive.

As they are based on a collection of relatively simple algorithms, which have to be computed

many times, many object detection algorithms are eligible for parallel computing using

stream processing. Even complex algorithms like the computation of color co-occurrence

histograms can be performed almost in real-time. Consequently, a novel implementation

using Cuda is introduced. To increase the computational speed even further, a cascade

based on three classifiers is proposed, namely color histograms, histograms of oriented

gradients and color co-occurrence histograms. By using different types of histograms,

spatial and color information of the objects can be used. Only very few reference images of

an object are required for training. Depending on the complexity of the object, not more

than 18 images from different points of view are sufficient. Consequently, online training

can be easily implemented. In order to achieve independence from changes in illumination,

the HSV (hue, saturation and value) color space is used.

3.2 Stereo Image Processing

Vision-based three-dimensional object detection requires a high-quality stereo reconstruc-

tion module. For the usage on a mobile robot, this stereo module has to be real-time

capable. By using stream computing on a GPU, both objectives can be fulfilled. This

section starts with a short introduction to stereo reconstruction and introduces methods,

which are well suited for an implementation on Cuda [153]. The major novelty of the

presented methods is the implementation on a GPU and the thorough adaption of the

parameters.

Stereo reconstruction algorithms are based on the idea that a point p of the environment

is mapped unambiguously on two different image planes. Assuming that the two points pL

and pR of the left IL and right IR input image planes are known, the position of the corre-

sponding point p can be computed. Hence, the problem of stereo reconstruction is reduced

to the search for the two corresponding points. To reduce the computational complexity,

the images are rectified in a first step, ensuring epipolar geometry. As shown in Figure

3.1, all possible reconstructed points p of the point pL and thus the corresponding image

points pR are aligned along one line. Consequently, it is adequate to search along this line

and the two-dimensional search problem can thus be reduced to an one-dimensional search
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Fig. 3.1: Geometry of a stereo system.

problem. The corresponding image points in two rectified images are denoted as IL(i, j)

for pL and IR(i+ d, j) for pR.

Hence, the main problem of stereo reconstruction can be stripped down to the so called

correspondence problem. As a simple search function is applied to every pixel of one im-

age and the function calls are independent, the correspondence problem can be parallelized

easily. Recent research has shown that the stereo correspondence problem can be divided

into four steps:

• The computation of the matching costs, where the costs of the different disparities

are computed,

• the aggregation of the costs, where the different costs are improved,

• the computation of the actual disparity, and

• the post-processing, which improves the quality of the estimated disparities.

These steps will be described in the following sections. The post-processing of the stereo

algorithm and the pre-processing of the object detection module are identical and will be

described in Section 3.3.1.

3.2.1 Computation of Matching Costs

Due to the epipolar geometry, the corresponding pixel of the pixel IL(i, j) is placed on

the horizontal line IR(i + d, j), with d ≥ 0. Hence, the stereo algorithm scans along the

corresponding horizontal line on the right image, compares the color information of the two

pixels, and computes a cost function for each pixel. The pixel with the lowest cost is then

selected and the distance d between the two pixels is selected as the resulting disparity.

The disparity is also sometimes called the inverse depth, as a small d indicates a distant

point, while a large d indicates a near point. Two algorithms for the computation of the
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cost have evolved: pixel matching or block matching. While block matching shows better

results, pixel matching is faster to execute. However, the aggregation step can compensate

the disadvantage of pixel matching while keeping its speed. Pixel matching is therefore

used for the estimation of the costs, which can be computed by using the sum of squared

differences. Two different costs are computed for each pixel: intensity costs CI(i, j, d) and

gradient costs CG(i, j, d):

CI(i, j, d) =
∑

c=R,G,B

(IL(i, j)− IR(i+ d, j))2 (3.1)

CG(i, j, d) =
∑

c=R,G,B

(
∂ILx (i, j)

∂i
− ∂IRx (i+ d, j)

∂i

)2

+

(
∂ILy (i, j)

∂i
− ∂IRy (i+ d, j)

∂i

)2

, (3.2)

while Ix and Iy denotes the gradients in x- and y-direction, respectively. The result is stored

in a three-dimensional structure, the disparity-space image (DSI) with the dimensions i,

j, and d. An element of the DSI can be computed as:

C0(i, j, d) = w · CI(i, j, d) +
1− w

2
(CG(i, j, d)), (3.3)

while w denotes the weight of the intensity with respect to the gradients. Furthermore,

outliers can be avoided by limiting each element C0(i, j, d) to a maximal value CMax.

3.2.2 Aggregation of Costs

During the computation of the costs, each element C0(i, j, d) is not influenced by its neigh-

bors. However, this would ignore valuable information. This disadvantage can be com-

pensated by modifying each element. Therefore the surrounding elements of the DSI are

examined in the aggregation of costs. There exist several different methods for the compu-

tation of the update value [121], which will be introduced blow. Some of these methods are

shown in Figure 3.2 (b)-(d), while Figure 3.2 (a) shows the corresponding ij-plane from

the DSI.

Square Window

The simplest approach is the computation of the average value over a local squared window

with a fixed size of N ×N , with N = 2m+ 1:

CA(i, j, d) =
1

N2

m∑

k=−m

m∑

l=−m

C0(i+ k, j + l, d), (3.4)

while CA(i, j, d) indicates the updated element of the DSI. By computing the average value

of each line and then computing the average of these averages, the whole computation can

be separated in a horizontal and a vertical part and the computation speed can be increased.

This reduces the complexity from O(n2) to O(2n).
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(a) (b) (c) (d)

i

j

Fig. 3.2: Comparison of the different aggregation methods: (a) the ij-plane from the DSI,
(b) the minimum filter approach, (c) the boundary guided window approach, and (d)
the adaptive weight window approach. Darker colors of the pixels indicate a higher
weight, while the red pixel indicates the current element C0(i, j, d).

Minimum Filter

Another modification is the minimum filter, which is based on the shiftable window ap-

proach presented by Gong et al. [44, 87]. Before the minimum filter can be applied, a square

window has to be computed for the whole DSI. The actual minimum filter approach moves

a support window of size NMin, with NMin ≤ NSquare, within the range i − m. . . i + m

and j − m. . . j + m, respectively. CA(i, j, d) is then replaced by the element within all

support windows, which has the lowest cost. Figure 3.2(b) shows two different support

window positions. The yellow pixel indicates the element with the lowest cost of the shown

support window, which will be used to replace the current element.

Adaptive Window

The adaptive window approach uses the minimum filter approach to estimate the window

size for a square or an adaptive weight window. Therefore a minimum filter or the squared

window approach is applied with several different window sizes yielding different possible

results. By computing the average value, the minimal or the maximal value of one of

these possible results is then selected as the final result. Despite the presented advantages,

the squared window approach or the minimum filter approach have to be applied multiple

times yielding a larger computation time. This results in the real-time incapability of the

algorithm for the used hardware architecture.

Boundary Guided Window

Another approach is the utilization of a corner detection filter to include only those pixels,

which are inside the boundary. As shown in Figure 3.2(d), this is realized by using different

weighting factors that are computed based on the position of the pixel within the boundary.

A detailed description of this computation and the different cases can be found in [87].
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Adaptive Weight Window

The adaptive weight window is a modification of the square window approach, which uses

different weights for the elements of the sum. As illustrated in Figure 3.2(d), pixels with

a small distance to the center have a stronger weight w(k, l):

w(k, l) = k · exp−(
∆ckl
γc

+
∆gkl
γp

), (3.5)

while ∆ckl denotes the distance from the pixel to center, ∆gkl the difference in the color.

γc, γg and k are weighting factors that have to be estimated heuristically.

3.2.3 Computation of the Disparity

After the costs have been computed and optimized in the aggregation step, the best dis-

parity has to be selected. The simplest and most straightforward approach is the winner

takes it all method, which selects the disparity with the lowest cost. This method is fast to

execute, but as each element is estimated independently, not robust with respect to noise

and outliers.

Scanline optimization computes a cost function for each line of the image. Hence, the

algorithms selects an id-plane in the DSI and searches for a cost optimal path through

this plane, where smoothness is considered as cost. This algorithm is slower but yields

smoother results. However, only one line is considered and fragments between different

lines can occur. Other possibilities for optimization include a median filter applied to the

result of the winner takes it all method and algorithms for the reduction of noise and out-

liers. More details about these optimization algorithms can be found in [121] and Section

3.3.1.

Areas with low texture cannot be reconstructed by the algorithm, so they have to be

identified and eliminated. Therefore a confidence measurement ζ is proposed:

ζ =

CMax − argmin
d

(CA(i, j, d))

CMax

, (3.6)

while the costs CA(i, j, d) have to be normalized. A suitable threshold ζMin has to be

selected heuristically and all pixels with a confidence below the threshold are eliminated.

The presented stereo algorithm extends the state-of-the-art with a real-time capable im-

plementation, allowing the reconstruction of images with a resolution of 640 × 480 pixels

and 150 disparities. It provides an ideal base for further three-dimensional object detection

algorithms, which will be presented in the following section.
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3.3 Three-Dimensional Object Detection

Compared to flat images, the third dimension of point clouds provides valuable additional

information, allowing easy access to spatial information. The presented algorithms are

not only limited to point clouds obtained by stereo image processing, but also to those

created by other sensors like laser rangefinders. Most three-dimensional object detection

algorithms are based on the same basic steps:

• During the pre-processing noise and outliers are reduced,

• followed by the segmentation, where the point cloud is separated into spatial ad-

jacent structures.

• Now, symbolic and numeric attributes are extracted, and

• then used for the actual classification process.

The following sections introduce these basic steps, followed by an algorithm to detect

human body poses.

3.3.1 Pre-Processing

Depending on the further processing steps, different filters are applied during the

pre-processing. Possible filters include reduction of noise and outliers, smoothing, and

interpolation of missing points. Furthermore, the number of points contained in the point

cloud can be reduced or increased. Thus, a desired resolution of a point cloud can be

adjusted. This section gives an overview of the most important filters.

Reduction of Noise and Outliers

Due to the trade-off between quality, speed, and reconstruction errors in the stereo module,

most of the point clouds are covered with noise and show outliers. Areas with low textures

or overexposed areas are difficult to match during the stereo matching and lead to inevitable

reconstruction errors. Hence, noise and outliers have to be identified and removed in the

pre-processing step. The proposed algorithm is based on a nearest neighbor search and is

relatively simple and thus fast to execute. Most of the execution time is spent searching for

the nearest neighbor. Fortunately, the nearest neighbor problem is well explored. One of

the most efficient approaches is the use of kd-trees [5], a space partitioning data structure.

Kd-trees use splitting planes parallel to the axis to separate the space into partitions,

each containing one point. Consequently, a nearest neighbor search algorithm can address

directly the space and not all the distances to all points have to be computed. As outliers

and noisy points are of similar topology, the reduction of both can be performed in one

step. Algorithm 1 shows the developed algorithm for noise reduction of a point cloud N. xi

denotes a single point and the function kd-search(xi, R) returns the number of neighboring

points within a certain search radius R. If this number is below the minimal number of

neighbors NMin, xi will be removed from the point cloud.
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Fig. 3.3: Result of the reduction algorithm with different parameters. From left to right:
decreasing search radius R, from bottom to top: increasing minimal number of
neighbors NMin.

Algorithm 3.1 Reduction of outliers and noise

1: Define search radius R and minimal number of neighbors NMin

2: Build kd-tree
3: for all Points xi of the point cloud N do
4: N = kd-search(xi, R)
5: if N < NMin then
6: Remove xi from N

7: end if
8: end for

Figure 3.3 shows the result of the reduction algorithm with different parameter settings.

Both the minimal number of neighboring points NMin and the search radius R have to be

selected carefully and are depending on the desired application, the resolution and quality

of the used stereo algorithm, and thus on the density of the input point cloud.

Smoothing and Interpolation

Compared to their horizontal and vertical resolution (640 × 480 to 1280 × 960 pixels),

most stereo algorithms provide a poor depth resolution (15 to 150 disparities). Hence,

a reconstructed point cloud seems to be vertically sliced, leading to problems with three-

dimensional object detection algorithms. In addition, the horizontal and vertical resolution

decreases with increasing distance to the camera. Furthermore, most stereo algorithms

are not able to reconstruct areas with low texture, leading to more missing points in the
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reconstructed point cloud. Scaling the size of the point cloud will lead to a different density

of points and thus to further missing points. Consequently, there is a need for an algorithm

that is able to reconstruct the missing points and normally distribute the resolution of the

point cloud.

The most obvious approach is an interpolation between existing points. The proposed

interpolation algorithm is working in close proximity to the existing points and can be

thus considered as a local algorithm. In a first step, the point cloud is quantized with the

desired resolution, so that missing points can be identified. Next, the nearest neighbors of

the missing points are computed. By weighting the neighbors with an inverse euclidean

distance, the color and exact position of the new point can be computed. If the distances

to the neighbors are too large, the point cannot be reconstructed. This novel algorithm

provides a fast method to adjust the resolution of a point cloud with a concurrent smoothing

process. Another method utilizes polygons to reconstruct point clouds, where existing

points are used to compute a triangle mesh around the object. Missing points will lead to

holes in the mesh, which have to be detected and closed.

Smoothing of a point cloud can be achieved by performing a three-dimensional discrete

convolution with an adequate kernel function K:

N
′ = N ∗K. (3.7)

Distribution functions with an integral of 1, like the gaussian filter, are well suited for

smoothing:

h(x, y, z) =
1√
2σ2π

exp−x2 + y2 + z2

2σ2
. (3.8)

The pulse response h of the filter can be stored in a three-dimensional array:
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(3.9)

Other kernel functions, like the Laplace filter, can be used to detect edges. Depending on

the further processing steps and the desired spatial attributes, it can be useful to apply a

combination of several filter operations.

3.3.2 Segmentation of Three-Dimensional Point Clouds

The three-dimensional representation of the scene acquired by the stereo vision module

contains a large colored point cloud consisting of several different objects. By using a seg-

mentation algorithm, the different objects can be separated. As this algorithm is mainly

used for human body pose estimation, objects that may be considered as humans have to

be found. A skin color detector is used to detect parts of the point cloud that may belong

to a human body. Consequently, the remaining parts of the human body have to be found.

Beginning at the detected start point, the segmentation algorithm searches for locally ad-
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(a) (b) (c)

Fig. 3.4: Example of the Segmentation Process: (a) Image with detected skin parts as start
point for the segmentation process. This image has been obtained by a stereo camera
with a high aperture and has already been rectified. (b) shows the three-dimensional
reconstruction of the scene using a stereo matching algorithm and (c) the detected
segments in the scene.

jacent structures and will create one cluster for each detected point. Needless to say that

other start points have to be selected for the detection of other objects. Edge detection

filters, saliency maps, two-dimensional attributes, or the result of an two-dimensional ob-

ject detection algorithm can be used as such start points.

Algorithm 3.2 shows the algorithm used for the segmentation. Starting with a given point

x, all neighbors N
x = xn . . .xm are examined. A neighbor xn will be included in the

cluster, if the distance d = ||x− xn||2 is smaller than a certain threshold dMax. The point

cloud N
x includes all points fulfilling this condition. N

x[i] accesses the i-th point of this

point cloud. In the next step, all neighbors of the next point in the cluster are considered.

This function is repeated, until no valid neighbors are found or all points in the cluster

have been visited. As the main goal is the detection of humans, the algorithm adds only

those points to the cluster, which are included in a cylinder describing the area that can

be reached by a human.

Figure 3.4 (c) shows the detected segments of the scene with the result of the skin color de-

tection (see Figure 3.4 (a)) as start points, while Figure 3.4 (b) shows the three-dimensional

reconstruction of the same scene. After pre-processing and segmenting the point cloud,

the actual object detection algorithm can be applied.

3.3.3 Object Detection using Local Attributes

After the point cloud has been pre-processed and segmented, each segment represents a

possible object that has to be verified and later identified. The actual object detection

process can be separated into two major steps: The extraction of the attributes and the

classification.
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Algorithm 3.2 Segmentation of three-dimensional point clouds

1: x = point, corresponding to the detected skin part
2: i = 0
3: repeat
4: Detect neighbors Nx

5: for j = 1 to number of neighbors do
6: dj = ||x− xj||
7: if di < dMax then
8: add xi to cluster
9: end if

10: end for
11: increase i
12: x = next point in cluster
13: until i < iMax

Extraction of Attributes

There exists a wide variety of different symbolic attributes, which can be distinguished

into several types: spatial, topological, and color attributes. Spatial attributes contain

the length, width, height, area, and the volume of the object, while topological attributes

contain the shape and the centers of mass and area. Color attributes contain the average

color in the red, green and blue color channel and the color distribution, which can be

estimated by using color histograms. An object can be unambiguously described by a

suitable n-dimensional vector b containing n attributes b0, . . . bn−1.

Classification

Reference objects are used to compute a set of m reference vectors BR, containing the

selection of the attributes. BR is used to estimate the type of the segment by comparison

to the object’s attribute vector b, which has to contain the same attributes. Most of these

methods are based on a distance function. For instance, an euclidean distance is computed

between the object’s vector b and each reference vector bR
i , with 0 ≤ i < m. Using the

nearest neighbor is the simplest way to select a class. However, this will always yield a

result and thus a high probability of false positives. This can be solved by assigning a

probability to each distance and by selecting the class with the highest probability only, if

this probability exceeds a certain threshold, which has to be determined heuristically.

Support vector machines (SVM) use kernel functions to transform the problem into another

space, where two different classes can be separated linearly. There exists two different

ways of classification with support vector machines: using SVMs to distinguish between a

reference class BR and one class containing all remaining classes, or to compute all possible

combination of classes and use the SVM on every pair of reference classes. The first method

requires n − 1 comparisons for n classes and the second possibility (n − 1)2 comparisons.

The second methods yields a higher accuracy. Due to the large number of comparisons,

SVMs are computationally expensive and thus impractical in handling a large number of

objects. Furthermore, the kernel function has to be selected carefully.
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3.3.4 Human Body Pose Estimation

The estimation of human body poses is a special case of three-dimensional object detection.

In contrast to existing approaches, the algorithm proposed in this section tries to fit a

human model into a point cloud instead of using features [91]. A skin color filter is used to

compute start points for the segmentation in order to find possible humans. A description

of the algorithm used to detect the skin color segments can be found in [136]. As the

skin detector may detect false positives and two or more skin parts of the same human,

the clusters are validated based on different attributes. One of the key advantages of the

algorithm is the expandability, which is achieved by the possibility to replace the model

used for fitting. Hence, any object that can be described by a skeleton with different

poses can be found and the pose can be estimated. These objects include obvious ones

like animals or tables and chairs, but also more complex ones like biped humanoid robots

or larger machines like cranes or excavators. Eventually, the pose of a manipulator with

many degrees of freedoms could be estimated. Accordingly, an eligible algorithm to find a

suitable start point has to be found. As mentioned before, a color filter may not be practical

for all models and may be replaced with a two-dimensional object detection algorithm.

Validation of the Segment

After the clusters have been created, they have to be validated. To discard invalid clusters,

the following filters are applied:

• The number of points in the segment is taken into account. If the number of points

is too small, the cluster is most likely caused by a false positive.

• If too many points have been found, the skin detector has found something else than

a human.

• The fitting of the model into the cluster is starting with the head, so only the clusters

are valid, where the detected skin part matches the head. To check this, the centroid

of the cluster is computed and compared with the start point.

• Large clusters with a low density of points are most likely false positives, so they will

be rejected.

The numbers and thresholds in these filters are depending on the model and have to be

estimated during the creation process of the model. After the application of these filters,

almost all invalid clusters will be rejected. The remaining invalid guesses will be removed

in the next step, when no valid body pose can be found. If another skeleton is used, these

filters have to be adjusted to the new model.

Human Model

Figure 3.5 (a) shows a schematic view of the human model with 15 links and 28 degrees

of freedom, respectively. Each link provides one, two, or three degrees of freedom and

is rotated around the axis of the coordinate system of the link it is connected to. Table

3.1 shows the links, the number of degrees of freedom, the hierarchical structure, and the
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Fig. 3.5: (a) Reduced human model with 15 links, the corresponding coordinate systems and
the degrees of freedom and (b) five typical body poses of the reduced human model
from different points of view.

length of the link. For example, the lower left arm (link 4) will be rotated around the

coordinate system of the upper left arm (link 2) and both the left and the right shoulder

(link 2 and 3), are rotated around the neck (link 1). As the hands and the feet are too small

to be detected robustly by the stereo matching, they have not been taken into account.

Hence, this model is reduced by 10 degrees of freedom. To increase the accuracy of the

estimated body pose, 27 typical poses are considered. As the configuration of the arms is

of particular interest for interaction, the relevant poses differ mostly in the arms. To be

able to recognize the pose from every point of view, the whole body model is rotated in

steps of 33.3◦. Figure 3.5 (b) shows some of the different poses.

To validate the human model, the link lengths and the angles between the links are consid-

ered. A minimal and a maximal value for each parameter of each link has been estimated.

As they are coupled, the left and right shoulder are treated specially. The left shoulder

has three degrees of freedom and whenever it is moved, the right shoulder is limited in its

movement and will show a similar movement. Consequently, Table 3.1 shows no degrees

of freedom for the right shoulder.

Extraction of the Body Pose

After one cluster has been computed for each human in a scene, they can be used to

extract the body poses. The algorithm will be executed once for each cluster, so the

accurate number of humans can be found. For each of the possible humans, the algorithm
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Tab. 3.1: Links of the human model

Link Name
Connected
to Link

DOF
Length
(in m)

0 Start (Head) - 0 -
1 Neck 0 0 0.25
2 Shoulder Left 1 3 0.25
3 Shoulder Right 2 0 0.25
4 Upper Arm Left 2 2 0.375
5 Lower Arm Left 4 2 0.375
6 Upper Arm Right 2 2 0.375
7 Lower Arm Right 6 2 0.375
8 Upper Back 1 3 0.5
9 Lower Back 8 3 0.5
10 Hip Left 9 3 0.25
11 Hip Right 9 0 0.25
12 Upper Leg Left 10 2 0.5
13 Lower Leg Left 12 2 0.5
14 Upper Leg Right 11 2 0.5
15 Lower Leg Right 14 2 0.5

tries to fit all 27 typical body poses and computes an error metric for each pose. The pose

with the lowest error will be selected as winner. As the algorithm should be able to deal

with all different types of colors and clothes, color provides little useful information and is

consequently not used. Both segmentation and estimation of the body pose are only based

on the position of the points. First, the actual fitting method will be described, followed

by the error metric and the validation of the estimated body poses.

Method for Fitting a Body Pose

Starting with the head, the algorithm tries to fit the attached links iteratively. The order

of the links is the same as described in Table 3.1. If a link is not part of the image or is

occluded by an object in front of it, no valid fit can be made and the link and all links

attached to it will not be included in the resulting human model. The links are fitted based

on the following method: start point of a link will be the end point of the previous link.

Based on the model, the algorithm knows, where the end of the link should be placed in

an ideal case, namely at the so-called reference point pr. In a real case, the end of the link

will be placed somewhere near this reference point. The algorithm will search the points

N
pr around the reference point pr for possible ends of the link. An end point can only

be valid, if the restrictions of the link (e.g. link length or the angles between the previous

links) are not violated. In addition, the point density of the cluster along the link is not

allowed to fall below a certain limit. After the link has been fitted, the error metric will

be updated and the next link can be computed. This will be repeated iteratively until all

links are fitted.
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Algorithm 3.3 Fitting a reference body pose

(a) Function findBestFit(pr):

1: N
p = points near(pr)

2: for i = 1 to number of points in N
p do

3: pt = N
p[i]

4: e1 = compute point density near link
5: e2 = compute link restrictions
6: et[i] = e1 + e2
7: end for
8: m = compute best et
9: return N

p[m]

(b) Main Algorithm:

1: Nr = Get Endpoints for Pose n
2: el = 0
3: for i = 1 to number of links do
4: if Ns[i− 1] != invalid then
5: pr = Ns[i− 1] + Nr[i]
6: ps = find best fit(pr)
7: if ps is valid then
8: Ns[i] = ps

9: else
10: Ns[i] = invalid
11: end if
12: ei = compute error metric(pr)
13: el = el + ei
14: end if
15: end for
16: e[n] = el+ compute error metric (Ns)

Algorithm 3.3 (a) shows a description of the used algorithm that is performed for every

pose n. The current link is denoted as i, the error metric as el, the vector containing all

error metrics as e. The reference end point for a link is denoted as pr and the real end

point as ps. The list of the reference end points for the links is denoted as Nr, the list

with real end points as Ns. Again, Nr,s[i] accesses the i-th point of the point cloud Nr or

Ns, respectively. The algorithm for the computation of the best fit of a link’s end point

can be found in Algorithm 3.3 (b). Np denotes the list of points near the reference point

pr and the resulting temporary error metrics are stored in et. Figure 3.6 illustrates the

link fitting algorithm after the left and right shoulder already have been fitted. Starting

with the upper left arm (a), the lower left arm (b), and the upper right arm (c) are fitted.

Figure 3.6 (d) shows the completely fitted body pose. In (b) the end point of the reference

link would be placed outside the segment. The algorithm tries to find possible end points,

which are placed inside the segment, and selects the one violating the least constrains.
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(a) (b) (c) (d)

Selected Link Reference Link Possible Link

Fig. 3.6: Illustration of the link fitting algorithm. The red links illustrate the reference links,
the gray ones the possible links detected by the find best fit algorithm.

Error Metric

To select one of the 27 poses that have been fitted, an error metric has to be computed for

every pose. This error metric tries to identify the best fitting pose:

e[n] = α1 · el + α2 ·
N∑

i=1

ai + α3 · (1−
Nu

Nc

) + α4 ·
N∑

i=1

si. (3.10)

The error metric for a pose n considers the following parameters, each weighted by a

parameter α:

• The number of links. For each missing link i, a penalty ai will be added. Links

that have other links attached (like the shoulder) will lead to a higher penalty than

links with no other attached links (like the lower arm). A successfully fitted link will

have the penalty ai = 0.

• The distance between the reference end points and the detected end points

of each link is also considered. High distances may lead to distorted body poses.

This error is stored in el.

• The number of points of the cluster that are not in close proximity to the

pose. When a pose does not use all points of a cluster, it is almost certain that one

or more links couldn’t be fitted correctly. The number of used points is denoted as

Nu, the number of points in a cluster as Nc.

• The density of points near a link. If the density becomes locally low, it may

be an invalid link. Every time the density near the link i falls below a threshold, a

penalty is added to si.
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3.3 Three-Dimensional Object Detection

Validation of a Body Pose

After all links have been computed for a body pose, it has to be validated to avoid invalid

configurations. Again, the lengths of the links are analyzed. Contrary to the validation

of a single link, all link lengths are analyzed simultaneously. Equation 3.11 computes the

median scaling factor s of the estimated link lengths lc compared to the reference link

lengths lr. N denotes the number of the estimated links.

s =
1

N

N∑

i=1

lci
lri

(3.11)

After the median scaling factor has been computed, it is compared to the scales of the

single links. If the difference is larger than twice the standard deviation, the difference

between the link lengths is considered as too large and the pose is invalid. Furthermore,

the rotations between the links are considered. The human body is subject to certain

restrictions regarding the movement of the links. Many configurations are impossible or

futile. To avoid these configurations, a minimal and a maximal angle are considered for

every degree of freedom. All necessary angles are computed and if one exceeds the defined

interval, the whole body pose will be considered as invalid.

Complexity Analysis

As described above, the algorithm is used on a mobile robot, so the computational con-

sumption should be as small as possible. Both the resolution of the colored point cloud

as well as the number of detected skin parts will influence the computation time and the

detection of the skin parts scales with the resolution of the input image. Kd-trees have a

complexity for the construction of O(n · log(n)) and the expected complexity for a nearest

neighbor search is O(log(n)). One kd-tree has to be computed for the whole scene and

one for each detected cluster. The strongest influence on the computation is the resolution

and therefore the number of points in a cluster. The complexity for the segmentation for

each detected skin part is O(n · ne · log(n)), as it scales linear with the number of points n

in the scene and with the expected number of neighbors ne of each point. Fitting a body

pose for a segment has also a complexity of O(n · ne · log(n)).

This section gave an insight to existing three-dimensional object detection algorithms and

introduced a novel algorithm, which is used for the estimation of human body poses, but

can easily be extended to detect other objects. Although they provide more informa-

tion, three-dimensional object detection algorithms are sometimes unpractical. Hence,

two-dimensional object detection algorithms will be presented in the next section.
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3.4 Two-Dimensional Object Detection

Compared to those using three dimensions, object detection algorithms using two dimen-

sions are more intuitive and less computationally complex and thus faster. By moving a

search window across the image the segmentation can be avoided. This section begins with

the presentation of two of the most common approaches and a cascade based on different

histograms combining both spatial and color information.

3.4.1 Conventional Algorithms

Fig. 3.7: Images of the traffic signs, which can be found at every junction in the city center

of Munich, the operational area of ACE.

The most common approaches used for object detection are scale invariant feature trans-

formation (SIFT) [76] and a cascade composed of simple haar-like features [152]. Im-

plementations of both can be accessed easily by using OpenCV, a state-of-the art open

source computer vision library. The ACE robot uses both methods to enhance its ability

to detect crossroads robustly. For the detection of crossroads, the assumption that every

crossroad is equipped with traffic signs or traffic lights can be made for the operational

area. The algorithm used for ACE searches for traffic lights and traffic signs as shown in

Figure 3.7.

SIFT searches for local features, which are invariant to scale, rotation, illumination, and

change in viewpoint. To perform object recognition, feature points of different images can

be compared. On the contrary, OpenCV uses a cascade of simple classifiers with haar-like

features. The resulting classifier consists of several stages that are applied consecutively to

an image until the candidate is rejected at some stage. Figure 3.8 shows, how such a clas-

sifier is composed. If a candidate passes all stages, the corresponding object is assumed to

be found. Small features have been chosen, so that the size can easily be changed. Hence,

an object can occur with different sizes, while all sizes will be detected. The algorithm

uses haar-like features to detect lines, corners and center-surrounded features. The results
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Step 1 Step 2 Step 3 Step n
Input Image Found Object

Object not found

Fig. 3.8: Illustration of the haar-like-cascade. Green solid lines illustrate a successfully executed
classifier, red dashed lines illustrated a failed classifier.

obtained by the first tests using SIFT were poor, only 20% of the test images could be

classified correctly. Therefore only OpenCV’s rapid object detection was used. To achieve

good results, over 10000 images have been made to train the haar-like features [75]. One

classifier has been trained for each traffic sign or traffic light. When ACE is moving, the

algorithm will search consecutively for traffic signs and lights. Every positive result will

be tracked for a number of images to be able to deal with false positives. A false positive

will most lightly appear in only one single image and not in a longer sequence. If a traffic

sign or light is found in more than one consecutive images, the algorithm assumes that it

has found a real sign.

To perceive further information, the distance to the traffic sign is measured using stereo

triangulation. By measuring the size of the sign in the two-dimensional image and the

distance of the sign, the size of the real sign can be computed. If this size is smaller or

larger than a defined size, the algorithm knows that a false positive was found. Of course,

a large margin has to be used for the defined size, as many traffic signs differ in their size.

Both methods can be used easily on other objects, assuming enough training images are

available. SIFT and OpenCV’s rapid object detection are based on gray scale images

and thus ignoring valuable information. Furthermore many training images are necessary

yielding a complicated and impractical online learning.

3.4.2 Histogram-based Object Detection Cascade

A novel object detection cascade based on three different types of histograms is proposed,

which uses spatial and color information, is capable of dealing with large occlusions, re-

quires few training images and is thus avoiding the disadvantages of other approaches.

Color histograms (CH) examine color information, histograms of oriented gradients (HOG)

spatial information, and color co-occurrence histograms (CCH) examine both. The main

design of each classifier is identical for the whole cascade and will be described below. At

first, a set of reference histograms is computed from the training data. In the next step

a search window is moved across the image and a histogram is computed for each search

window. In contrast to existing cascade architectures, the cascade will not be computed for

every search window. Another novelty of the presented approach is its parallel implementa-

tion. All histograms of one image are computed in parallel, yielding a two-dimensional set

of histograms. Each histogram of this set is intersected with each reference histogram and

a matching error is computed for each intersection, leading to a two-dimensional probabil-

ity distribution. By using a region of interest (ROI), only those regions with a small error
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Fig. 3.9: Architecture of the Object Detection Cascade.

will be processed by the next classifier of the cascade. This yields a higher performance of

the cascade. An overview of the proposed cascade is depicted in Figure 3.9.

3.4.3 Different Types of Histograms

The following section describes and compares the different histogram types.

Color Histograms

A color histogram is a representation of the color distribution of an image. As only the

color of an object and no spatial information like corners is considered, it provides one of

the most intuitive and computationally fastest methods for object detection. Figure 3.10

shows how a color histogram with 4 bins is computed for an image with 20 colors. Due to

its simplicity, object detection with color histograms suffers some disadvantages. Objects

with the same color distribution but different shapes cannot be distinguish. Furthermore,

only those objects with a colorful texture can be detected and when using the RGB color

space, color histograms are sensitive to changes in illumination. However, this can be

solved by using the HSV (Hue, Saturation and Value) color space. As they are fast to

compute and can filter most parts of the image, color histograms form the first classifier

of the cascade. To avoid large histograms, the number of colors in the color space has to

be reduced. The resulting color histogram can be written as CH(c), where c denotes the

color bin.

Histograms of Oriented Gradients

As color histograms contain no spatial information, histograms of oriented gradients are

used by the next classifier of the cascade. The basic idea of HOGs is that the shape of

the object can be described by the distribution of local gradients, even without knowledge
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Fig. 3.10: (a) Reduction of color space and (b) computation of a color histogram.
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Fig. 3.11: Computation of a histogram of oriented gradients in two steps: (a) computation of
the gradients and (b) creation of the histogram.

of their position [29]. To compute the gradient’s lengths and orientation, the image I is

convolved with a sobel filter in both x- and y- direction:

Gx =




1 0 −1

2 0 −2

1 0 −1


 ∗ I , Gy =




1 2 1

0 0 0

−1 −2 −1


 ∗ I. (3.12)

Now the orientation θi,j and length di,j of the gradient can be computed for each element

i, j:

θi,j = atan(Gy(i, j),Gx(i, j)),

di,j =
√

Gx(i, j)2 +Gy(i, j)2. (3.13)

After computing the gradients, all gradients with a length shorter than a certain threshold

are discarded. The remaining gradients are used to compute the histogram. Figure 3.11

shows the computation of a HOG with 8 orientation bins. Discarded gradients are denoted

with −1. The resulting histogram of oriented gradients can be written as HOG(θ), where θ

denotes the orientation bin. As the computational cost of the computation of the gradients

can be neglected compared to the computation of the histograms, the computational cost

of HOGs is in the same order of magnitude as CHs. They provide a robust classifier to
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detect the form of objects, but do not consider color information. Hence, they are selected

as second classifier in the presented cascade.

Color Co-occurrence Histograms

By computing the distances between pairs of colors, color co-occurrence histograms utilize

both color and spatial information. First introduced as a co-occurrence matrix by Haralick

et al. [48], a CCH is a set containing the number of pairs of two certain colors at a certain

distance in the image. A CCH can be written as CCH(c1, c2,∆x∆y), where c1 and c2
denote colors and ∆x and ∆y denote the offset between the colors in x- and y-direction.

By only considering the distance d =
√
∆x2 +∆y2, as described by Chang et al. [23],

CCHs can be made invariant to rotation in the image plane. Figure 3.12 illustrates the

computation of a CCH by showing the computation for the element at position (4, 3),

where all elements with a distance d = 2 are highlighted. Hence, the cell at (4, 39 has the

color c2 and is surrounded at a distance of 2 with one time color c1, eight times color c2
and three times color c3. Such an one-dimensional histogram must be computed for every

cell of the input image and for every desired distance. The resulting histograms are then

summed up in a last step. In order to reduce some computational costs, only integral

distances are considered.
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Fig. 3.12: Computation of a color co-occurrence histogram. The given example shows the

computation for the element at 4 : 3 and a distance of d = 2.

As the resulting histogram can be described as a three-dimensional array, the memory

consumption and the computation time for the intersection algorithm is highly depending

on the number of colors and the number of distances. More specific, the time needed to

compute a CCH is depending on the number of used distances, while the number of colors

only affects the memory consumption. Naturally, the time needed to compute a CCH is

larger than the time needed to compute a CH or HOG. On the other side, the quality of

the result is better. Details on the computation time and the results of the different types

of histograms can be found in Section 3.5.5.

Comparison of the Histogram Types

Table 3.2 compares the most important attributes of the different histogram types. The

order of the classifiers in the cascade was determined based on the complexity and am-
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Tab. 3.2: Comparison of the different histogram types.

CH HOG CCH
Feature color gradients spatial and color

Complexity low, O(n) low, O(n) high, O(n3)
Typical size 4096 360 20× 20× 25

Confidence of hit low - middle low - middle middle - high
Confidence of miss high middle high

biguity of the different histograms. As it has a high confidence of miss and consequently

is able to exclude most parts of the input image, the first classifier is a color histogram,

followed by the histogram of oriented gradients and the computationally expensive color

co-occurrence histogram. The complexity of the intersection of the different types is equal

to the complexity of the creation, however the execution time is much shorter.

3.4.4 Intersection of Histograms

Based on the intersection introduced by Swain et al. [141], the error e of histogram H

compared to the reference histogramHr can be computed as the sum of absolute differences

between the intersected histogram and the reference histogram:

e =

nb∑

i=1

|Hr(i)−min(H(i), Hr(i))|. (3.14)

nb denotes the number of color bins in a color histogram and the number of orientation

bins in a histogram of oriented gradients, respectively. The computation of the error of a

color co-occurrence histogram is more computationally expensive:

e =
nc∑

i=1

nc∑

j=1

nd∑

k=1

|Hr(ci, cj , dk)−min(H(ci, cj , dk), Hr(ci, cj, dk))|. (3.15)

nc denotes the number of color bins and nd the number of distances. Different Minkowski

distances can be used to weight larger or smaller errors. Figure 3.13 (a) shows the com-

putation of the error of two one-dimensional histograms, while Figure 3.13 (b) depicts

the resulting intersected histogram and the error, which has to be summed up in a last

step. In an ideal case, the error e = 0. Due to rotation, scale, occlusions, and changes

in illumination this ideal case will never be achieved. Hence, a suitable threshold t has

to be selected. When using a larger threshold, the algorithm will be able to deal with

larger occlusions. However, this will increase the number of false positives. Experiments

have shown that the threshold has to be estimated for every object independently. Details

about the selection of the thresholds and the correlation between capability of dealing with

occlusions and false positives can be found in Section 3.5.5.
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Fig. 3.13: (a) Intersection of histograms and (b) estimation of the error.

3.4.5 Implementation Details

The developed object detection framework can be separated into two parts:

• the initialization, where image data and parameters are transferred to the GPU

memory and the reference histograms are created out of the reference images, and

• the main loop, where a sequence of images is processed as shown in Figure 3.9.

The main loop is only executed on the GPU, where the initialization uses both GPU and

CPU. Even small functions, where no speedup could be achieved, have been implemented

on Cuda, so unnecessary memory transfers between main memory and GPU memory are

avoided.

Computation of Reference Histograms

Before the reference histograms can be computed, the images need to be pre-processed.

Every reference image of size xr × yr can be separated into a background and foreground

image. The background image is defined by the color with the RGB-value (0, 0, 0) and is

ignored during the further processing. In a first step, the remaining image is transformed

to the HSV color space. Furthermore, the orientations of the gradients as described in

Section 3.4.3 are computed for the whole image. During the last pre-processing step, the

number of colors of the input image is reduced twice, once to the number of color bins nch

for the color histograms and once to the number of colors ncch for the color co-occurrence

histograms. The number of orientations is also reduced to the number of orientation bins

nhog for the histograms of oriented gradients. This results in three images for each reference

image: Ich as input for the CH, Ihog as input for the HOG and Icch for the CCH. In the

last step, the reference histograms can be computed and stored to the GPU memory.
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Tab. 3.3: Different Block- and Thread- sizes.

Thread size Block size
CH 16× 16 nx × ny

Intersection nch × 1 nx × nx

HOG 16× 16 nx × nx

Intersection nhog × 1 nx × nx

CCH 16× 16 nx × nx

Intersection ncch × ncch nx × nx

Main Loop

Similar to the computation of the reference histograms, every image of the sequence with

a size of xi × yi needs to be pre-processed into the three input images Ich, Ihog and Icch.

Before the first classifier of the cascade can be applied, the input images are separated into

nx × ny subregions of size xs × yr:

xs = fxr, ys = fyr,

with f ≥ 1. As they have a large influence on speed and quality, the parameters nx, ny

and f have to be chosen carefully. Furthermore, the subregions have to overlap so that an

object at any position is included in at least one subregion. Therefore the overlap has to be

equal or larger than the size of a reference image. Consequently, the following constrains

have to be fulfilled:

nx ≥ xi − fxr

xr

, ny ≥
yi − fyr

yr
. (3.17)

However, a large number of subregions leads to a high computation time and a large size

of subregions to less accurate results.

After the configuration of the subregions, the first classifier can be applied to Ich. After all

histograms are computed, they can be intersected with the reference histograms, resulting

in an error map mi
ch of size nx × ny for each reference object oi. To compute the region

of interest for the next classifier, all error maps are merged into one map mch. Therefore,

the lowest error of each cell is selected:

mch(x, y) = min(m0
ch(x, y),m

1
ch(x, y) . . .m

ki
ch(x, y)), (3.18)

where (x, y) denotes the coordinates of a cell and ki the number of reference histograms

of the object oi. If the error of a cell is smaller than a threshold tch, the next classifier is

computed for this cell. Hence, the number of computed cells decreases with each classifier.

The remaining classifiers are computed in the same manner, resulting in several error

maps mi
hog and mi

cch. An object k is found in a subregion, if the error of the corresponding

cells of all error maps are below the thresholds tch, thog, and tcch, respectively.

Additionally, the specification of thread- and block- size has large influence on the

execution time. Table 3.3 shows the selected sizes, where the number of distances is
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denoted by nd. If the thread size exceeds the hardware limitation (512 or 768 threads,

depending on the used hardware), the thread size is limited to the maximal value and

a function has to be called twice or more in one thread. Of course, this yields a higher

execution time and should be avoided. As is leads to a high occupation of the GPU, a

thread size of 16× 16 was chosen for the computation of the histograms. The thread size

for the intersections are defined by the number of bins in the histograms. Future archi-

tectures with larger memories and more computational power will allow larger thread sizes.

As they are fast to execute and can be applied to a manifold of different objects, two-

dimensional object detection algorithms provide an ideal addition to those working in

three dimensions. With SIFT and a cascade of haar-like features, two well know approaches

have been presented in this section. A novel cascade using different types of histograms

has been introduced, which contributes to the state-of-the-art by being real-time capable,

requiring few training images, and being able to deal with large occlusions. A thorough

experimental investigation of the stereo processing algorithm and the two types of object

detection algorithms will be given in the next section, together with details about the

evaluated parameter settings.

3.5 Experimental Results

This section shows some experimental results from the main modules of the object detection

subsystem, starting with the stereo image processing. The remaining main modules include

the human body pose estimation and the two two-dimensional object detection algorithms.

Other three-dimensional object detection algorithms have shown no satisfying results and

have thus not been included into the subsystem.

3.5.1 Experimental Setup

The following experiments have been conducted using the vision processing PC on the

ACE robot, which was equipped with an AMD Phenom Quad-Core CPU running at

2.5 GHz, 4 GB of physical memory, and two GeForce 9800 GX2 cards and hence four

Cuda enabled devices. Unless stated otherwise, only one Cuda device has been used for

a module.

3.5.2 Stereo Image Processing

Robust three-dimensional mapping and object detection implicates certain minimal re-

quirements for the underlying stereo module regarding computational speed and quality.

A minimal resolution of 640 × 480 pixels is required and 150 disparities have to be com-

puted at a frame rate of 10 Hz. This frame rate includes the estimation of the camera’s

ego-motion, which is required for the three-dimensional mapping. Consequently, the sole

stereo algorithm has to be even faster. Four datasets with 150 images each have been used

for the experimental investigations. The quality of the algorithm was estimated using the
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Fig. 3.14: Result of the stereo processing system. The upper row shows the left image from
the stereo camera and the lower row shows the resulting disparity map. Points with
a low confidence are indicated with black color.

tsukuba stereo set and the evaluation methods provided by the middlebury stereo page1.

The main challenge during the experiments was to find suitable parameters, which achieve

the required speed at the best possible quality. Therefore the influence of the different

parameters has been investigated.

As the task requires no subpixel accuracy, the gradients can be neglected for the computa-

tion of the costs. Hence, the parameter w from Equation 3.3 can be selected to w = 1. The

influence of the maximal cost value CMax is relatively small, so it was estimated heuristi-

cally to CMax = 50. Most influence on the quality comes from the used algorithm for the

aggregation of the costs and the selected window size. In the case of the squared window

approach, a larger window size N yields better results. The boundary guided window

approach shows the same behavior. However, a N ≥ 7 yields to a dramatically increasing

computation time due to a shortage of the GPU’s registers. Registers have to be swapped

out to the slower local memory. Furthermore, the adaptive weight window approach can-

not be implemented on a GPU so far due to too large memory consumption during the

parallelized computation of the weighting factors. The minimum filter approach showed

best results for a large window size with a relatively small computational delay. Hence,

a window size of NSquare = 15 for the squared window algorithm and NMin = 5 for the

minimum filter has been chosen.

Figure 3.15 shows the correlation between the window size, the number of mismatches,

and the computation time for the squared window approach. For a real-time application,

the computation time is of of great importance. All images of all four datasets have been

computed five times and the average time for every computation was measured to estimate

1http://vision.middlebury.edu/stereo/eval/
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Fig. 3.15: Correlation between window size, mismatches (blue solid line), and computation
time (red dashed line).

Fig. 3.16: Computed body pose.

the speed. The total computation time of 60 ms is composed as follows: the computation

of the costs is performed within 6 ms, the aggregation when using the squared window

approach in 28 ms, the application of a minimum filter in 23 ms, and the winner takes

it all method for the estimation of the actual disparity in 4 ms. On the contrary, the

boundary guided window approach is computed in 50 ms to 270 ms and is consequently

unsuited for a real-time application with the present hardware. Future architectures will

have other constraints but will allow faster computations with a higher quality.

3.5.3 Human Body Pose Estimation

The estimated body pose of the image given in Figure 3.4 is shown in Figure 3.16. To show

the capability of the algorithm to compute the correct body pose in all three dimensions,

the body pose is shown from above. The results of the skin detection and segmentation

have already been shown in Figure 3.4. Figure 3.17 shows the results from five different

scenes. The first row shows the rectified images as seen from the camera and the detected

skin parts, while the next two rows show the estimated human body poses from two dif-

ferent points of view.
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Fig. 3.17: Results of the human body pose estimation.

As a stereo matching algorithm is used to create the point clouds, similar problems as in

stereo matching are encountered. The stereo matching algorithm is unable to compute a

disparity for large areas of the same texture, so only silhouettes and no filled representa-

tions can be found. Furthermore, some invalid stereo matches may lead to unpredictable

behavior. An experiment has been conducted to give a qualitative evaluation of the al-

gorithm. Users have been asked to point in a direction, and the measured angle of the

direction they are pointing to has been compared to the computed one. A measurement

was assumed to be incorrect, when the algorithm was not able to fit the arms or the error

was larger than 45◦. 150 measurements have been recorded and the algorithm was able to

estimate 80.2 % of the postures correctly, while the median error was around 6.8◦. Only

3.2 % of the false positives could not be detected. As the algorithm will leave occluded

body parts out, it is not able to compute the pointing direction when the user is pointing

away from the camera and the arm can not be seen. Almost half of the body poses, the

algorithm was not able to estimate in the experiment, can be explained by this problem.

The other invalid matches can by explained by noise in the point cloud or with other

objects that have been mixed up with body parts. The use of color may be an useful

extension to increase the robustness of the algorithm.

Time constraints are hard on a mobile robot, so the estimation of the body poses must be

completed in nearly real-time. Without optimization, the segmentation and human body

pose estimation is performed in less than 150 ms. Together with the skin color detection

and stereo matching, a frame rate of 5 fps is achieved on a standard PC. Using a dual core

processor or another skin color filter could increase the computation speed up to 10 fps.
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3.5.4 Detection of Traffic Signs using a Cascade of Haar-Like

Features

The hit rate of the cascade of haar-like features is within a range of 77 to 88% and the

number of false positives within 0 to 6%, depending on the classifier. Table 3.4 shows the

result of the used classifiers and the selected stage. For the selection of the number of

stages, a compromise had to be found. A higher number will yield to less false negatives,

but to more missed objects. Figure 3.18 shows the correlation between the number of

stages, the miss-rate and the false positives for the classifier used to detect the yield sign.

As most crossroads are equipped with more than one traffic sign and the algorithm is able

to deal with a small number of missed signs, the number of stages near the intersection of

the miss-rate and the number of false positives was selected.

Tab. 3.4: Results of the classifiers

Classifier Stage Hits
False

positives

Yield 20 78 % 0 %

Stop 20 79 % 3 %

Have Priority 20 88 % 6 %

Arrow Left 18 88 % 3 %

Arrow Right 16 84 % 0 %

One Way 15 77 % 5 %

Traffic light 20 81 % 2 %
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Fig. 3.18: Correlation between number of stages, miss-rate (blue solid line), and false positives

(red dashed line).
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Fig. 3.19: Result of the object detection cascade with the two objects face and cleaner at
different levels of occlusion. The area with the object is magnified in the top
section of each image. The reference image has a size of 48× 48.

When the robot is approaching a crossroad, the traffic signs will be seen in more than one

image. False positives will only occur in one single image, so they can be detected and

discarded by tracking the detected traffic signs. If the algorithm misses a traffic sign in one

single image, it will be able to detect the sign in the rest of the sequence. Consequently,

most of the not detected signs and false positives can be handled. Depending on the

number of stages and haar-like features, one classifier can be computed within 100-200ms.

As the process can be easily parallelized, a frame rate of 3Hz can be achieved on a dual-core

processor and 6Hz on a quad-core, respectively.

3.5.5 Object Detection using a Cascade of Histograms

The influence of different histogram sizes and search window sizes on the performance

and quality has been investigated in several experiments using a total of 500 images with

objects, 75 images without objects and 4 objects with 8 reference images each. Figure 3.19

shows a sequence, featuring several different levels of occlusion of the vacuum cleaner. The

size of an input image is xi×yi = 640×480, of a reference image xr×yr = 48×48, and the
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size of the search windows was chosen as xs × ys = 64× 64, so f = 4/3. A total of 38× 28

subregions have been computed, yielding to an overlap of 16 pixels in each direction. The

lower right image in Figure 3.19 was used as input for the following experiment.

Figure 3.20 (a) shows the error map of the intersection of the color histograms with one

(a)

(b)

(c)

nc = 32 nc = 256 nc = 1024 nc = 4096

nh = 8 nh = 32 nh = 180 nh = 360

nc = 5, nd = 5 nc = 20, nd = 5 nc = 5, nd = 25 nc = 20, nd = 25

Fig. 3.20: Result of the intersection of different histograms types with different parameters.
A darker color indicates a lower error and thus a better result: (a) Intersection
with color histograms with different numbers of colors, (b) intersection of oriented
gradients with different numbers of orientations, and (c) intersection of color co-
occurrence histogram intersection with different numbers of colors and distances.

reference histogram. Dark colors indicate a lower error. For nc = 32, the computation time

of all histograms was around 190 ms, for nc = 256 around 140 ms, for nc = 1024 around

110 ms and for nc = 4096 around 85 ms. The faster execution time for a higher number

of colors can be explained easily. As the computation of a color histogram is executed in

many parallel threads, accessing the memory is the limiting factor. With a smaller nc,

there are less registers in the GPU memory, which have to be accessed more often and the

threads are blocking themselves. Hence, a larger nc requires more registers and yields less

threads blocking other threads and thus a faster execution time. Conveniently, this goes

in hand with a better quality of the result. The computation time for an intersection is

around 3 ms with additional 0.3 ms for every reference histogram. In the first classifier

around 75% to 80% of the input image can be excluded from the further processing. The

impact of the number of orientations for the histograms of oriented gradients is shown in

Figure 3.20 (b). Again, a larger nh yields to a better quality and a faster computation

speed, this time ranging from 140 to 40 ms for a whole image. As not the whole image

is processed, an effective computation time of 10 ms including the intersection can be

achieved. The computation time for the intersection is identical to the one necessary for
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the color histograms. Again, around 75% to 80% of the remaining input image can be

excluded. As it is the most complex histogram, the time needed to compute the color

co-occurrence histograms is larger. Figure 3.20 (c) shows the quality of the results for

different numbers of colors and numbers of distances. Again, a larger number of colors

leads to a faster computation. With nc = 5 and nd = 5, a time of 3000 ms is necessary, for

nc = 20 and nd = 5 a time of 750 ms, for nc = 5 and nd = 25 a time of 2400 ms and for

nc = 20 and nd = 25 a time of 1600 ms. As an unoptimized CPU-implementation requires

a computation time of 200 seconds, a remarkable speedup was achieved. As only 5% to

10% of an image are processed in this classifier, an effective computation time of 15 ms

including the intersections can be achieved. The total computation time is around 100 ms.

By using two Cuda devices, a frame rate of 15 Hz could be achieved. Furthermore, the

texture of the scene has an influence on the speed. Images with many different colors lead

to a faster execution time compared to images with large areas of the same color. Again,

this can be explained by threads blocking the memory accesses of other threads.

Next to the speed, the quality of the results is another important attribute of an object

detection algorithm. Therefore several sequences have been used to test the algorithm,

where false positives and missed objects have been counted. Only 7 false positives and 23

missed objects have been counted in the 575 test images, yielding to a detection rate of

95%. As shown in the lower right part of Figure 3.19, the presented algorithm is able to

deal with large occlusions. The thresholds have to be tuned carefully, as high values will

yield to a large number of false positives and too small values to too many missed objects.

Figure 3.21 shows the correlation between the detected occlusions, the miss-rate and the
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Fig. 3.21: Correlation between detected occlusions, miss-rate (blue solid line), and false posi-
tives (red dashed line).

rate of false positives. The same datasets as before have been used to evaluate the miss-

rate and the number of false positives, while the occlusion was measured with synthetical

data. A suitable trade-off marks the intersection, showing that the algorithm is able to

detect objects with an occlusion of up to 40 % at a low miss-rate.
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3.6 Discussion

This chapter introduced several algorithms for robust object detection, starting with a

fast stereo algorithm running at a resolution of 640 × 480 pixels and 150 disparities with

a speed of almost 20 Hz. Although the algorithm is not able to reconstruct a full image,

it is able to eliminate bad results and the quality of the resulting disparity map is thus

adequate for further processing. Based on the stereo reconstruction, a three-dimensional

model of the environment is created, which is serving as input for several three-dimensional

object detection algorithms. The estimation of human body poses was presented as a spe-

cial case of three-dimensional object detection and is able to estimate most of the body

poses correctly. This algorithm can easily be extended to detect other types of objects.

Two state-of-the-art algorithms for two-dimensional object detection, namely SIFT and

openCV’s rapid object detection cascade, have been presented and experimentally inves-

tigated. Moreover, a cascade of different types of histograms has been introduced. This

cascade marks an object detection algorithm running at a high accuracy with a speed of

15 Hz and is capable of dealing with images with large occlusions of 40 % and furthermore

requires very few training images. Consequently, the algorithm is well suited for a mobile

robot’s cognitive architecture.

Despite the promising results, there exist some limitations to the presented algorithms. Due

to memory limitations on a GPU, the presented stereo algorithm is not able to reconstruct

stereo images with a higher resolution, omitting valuable information. The algorithm for

body pose estimation is depending on a reliable detection of the start point. Whenever

the head of a person is occluded, the body pose cannot be computed correctly. Further

skeleton based objects still have to be included. Estimating the pose of other manipulators

is a fascinating research topic. Last but not least, the cascade of different histograms is

not able to detect attributes like color at its current state of development. Future work in

the area of object detection might deal with real-time capable stereo algorithms running

at high resolutions and more complex three-dimensional object detection algorithms. A

possible implementation of the presented cascade in three dimensions would require vast

amounts of computational power, but promises excellent results.

As it is capable of detecting different types of objects, running in real-time, and allowing

online learning, the presented object detection subsystem provides an ideal base for the

presented cognitive architecture. However, a metric map is crucial for path planning and

relating the objects with further information. The following chapter presents a vision-based

mapping system.
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As robots navigating in our environment or assisting humans have to be reliable, they

must have the ability to perceive and understand their environment. This understanding

process can be separated into two major steps: object recognition and mapping. In the

first step, robots have to be able to find and identify objects in their environment. On the

contrary, knowing all objects would be useless without being able to locate them in a map.

Consequently, a mobile robot has to be equipped with a mapping system. Like object

detection, vision-based mapping can be divided into two major groups: two- and three-

dimensional mapping, with several suitable representations each. Two-dimensional maps

are typically described by an occupancy grid, while three-dimensional maps are mostly

stored as a point cloud or a polygon grid.

Most current two-dimensional mapping systems are based on a texture analysis and the

assumption that the area in front of the robot is free of obstacles. However, these algorithms

are mainly developed to detect streets and have problems when the texture is varying and

are hence unsuited for changing terrain or indoor environments. Consequently, this chapter

proposes a two-dimensional mapping algorithm, which uses a memory to remember older

textures and is thus robust to changing terrains. The detected ground is then reprojected

into a metric map, which can be used for path planning. This novel method is well suited

for both indoor and outdoor scenarios.

Two dimensions have proven to be insufficient for planning complex manipulation tasks.

Other applications for three-dimensional mapping include the reconstruction of distant

places. Hence, the ability to build accurate three-dimensional maps is essential for a

high level of cognitive understanding and thus autonomy. Recent research has revealed

different ways to create those maps, mainly differing in the type of the used sensor. Laser

rangefinders provide good quality and are easy to use. On the other hand, they provide

no color information. The most obvious way to create three-dimensional maps is inspired

by the human vision system, where the use of two eyes allows depth perception. Existing

algorithms are encapsulated systems with highly specified and interconnected submodules

like stereo reconstruction, ego-motion estimation, and the actual fusion algorithm. Hence,

a three-dimensional mapping subsystem with a novel modular design is introduced. This

subsystem utilizes the previously presented real-time stereo algorithm combined with a

sophisticated ego-motion estimation and the actual fusion algorithm. As the modules of

the system can be replaced by others with the same functionality, even laser rangefinders

can be included. Finally, the genetic ICP (iterative closest point) algorithm is presented,

a novel method to merge different types of sensors, namely laser rangefinders and a stereo

camera system. In a last step, the three-dimensional map can be used to detect obstacles

that cannot be found by the two-dimensional mapping system.

The remainder of this chapter is organized as follows: An overview of current vision-based

mapping systems is given in Section 4.1, followed by the two-dimensional mapping module

in Section 4.2. Section 4.3 presents the three-dimensional mapping module and the ego-
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motion estimation. The chapter concludes with the fusion of different sensor types in

Section 4.4, experimental results in Section 4.5, and a discussion.

4.1 Overview of current Vision-Based Mapping Systems

This section gives an overview of the state-of-the-art in current vision-based mapping

systems, starting with two-dimensional mapping, followed by the ego-motion estimation

and the three-dimensional mapping. The section concludes with the fusion of different

sensor types.

Two-Dimensional Mapping

Knowledge about the type of ground, a mobile robot is currently driving on, is mandatory

for safe operation. When examining a two-dimensional image, the areas showing the ground

have to be identified and isolated. To create an accurate map of the environment, the robot

has to know his absolute position. The most common approach to this problem is the use

of a laser rangefinder to scan the environment and to use a simultaneous localization

and mapping (SLAM) algorithm, which is well explored [32, 62, 97]. However, SLAM

algorithms require a laser rangefinder.

Most vision-based algorithms for ground detection are road following algorithms [147].

These algorithms are limited to their original purpose and are not able to resolve small

structures and thus will not work properly on a sidewalk or inside buildings. Algorithms

designed for mobile robots or wheelchairs use depth maps to detect obstacles in front of

the robot [28, 82]. Another algorithm uses an affine transformation and a border detection

filter to find the borders of the sidewalk [64]. The most promising approach to robust

classification and detection of the terrain, the robot is currently driving on, is the use

of color histograms [131, 145]. On the other hand, these algorithms cannot deal with a

changing type of ground and have therefore to be extended with memory.

Ego-Motion Estimation

Odometry offers the simplest way to estimate the movement of a robot. However, the

odometry needs to be synchronized with the camera and some robots are not equipped

with an odometry module. The use of laser rangefinders is a common approach to esti-

mate the robots position, by attempting to solve the SLAM problem. Some approaches

separate SLAM and the creation of a three-dimensional map [36, 140], others use a three-

dimensional SLAM approach and split the measured data into smaller parts of a fixed size

and use ICP based algorithms to register and align the single parts. These algorithm can

be separated in two groups: those using only laser rangefinders [59, 103] and those using

both cameras and laser rangefinders [15, 60].

Vision-based estimation of the camera’s ego-motion is a well suited alternative to classical

odometry or SLAM. An overview of the different methods for the ego-motion estimation
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can be found in [10]. First approaches used a monocular camera by estimating the op-

tical flow [77, 143]. Horn et al. [95] tried to eliminate the depth mathematically, while

Shi et al. [144] proposed an algorithm for the estimation of the image’s deformation by

using the parallax. Another class of algorithms is based on stereo vision [57], trying to

estimate the movement in cartesian coordinates [30]. These methods are closely related

to the stereo reconstruction and can consequently be computed simultaneously. Hence,

the proposed algorithm for ego-motion estimation is based on the stereo reconstruction

algorithm presented in Section 3.2.

Three-Dimensional Mapping

Building three-dimensional maps is of great interest for a wide variety of tasks, such as

autonomous systems in underwater environments [53] or in distant places like the mars

surface [129]. An augmented virtual reality is a desired tool to handle remotely controlled

systems [108]. Another important application is the reconstruction of crime scenes that

facilitates and accelerates the preservation of the setting [128]. One of the first approaches

for scene reconstruction was developed by Fua et al. [37] and combines a representation

based on particle filters with an image based optimization strategy. Every particle repre-

sents a surface element, which position and orientation is then optimized. Other modern

algorithms are based on this approach [47] and utilize other optimization methods and

strategies.

Reconstruction algorithms can be separated into two groups. One group is based on volu-

metric elements (voxels), where each depth map is transferred into the voxel-space and the

surfaces are approximated [43, 120]. Another well-known algorithm is the ICP algorithm,

which can be used to merge two overlapping point clouds [14]. The other group of object

reconstruction algorithms is based on depth maps. A depth map can be converted into a

polygon grid, whose edge-points are then used as state space of a kalman-filter [67]. Other

approaches use local correspondences between two or more depth maps [128]. One of the

most advanced methods is the median fusion algorithm developed by Nister et al. [99],

which projects depth maps into a reference perspective before applying the actual fusion

algorithm. As this method is real-time capable [85], the system presented in this chapter

is based on this approach.

A robot is equipped with a sophisticated stereo system, providing a sequence of disparity

maps, which are converted into three-dimensional colored point clouds. After applica-

tion of pre-processing steps like the reduction of noise and outliers, these point clouds

are merged into one large point cloud using the median fusion algorithm. As these point

clouds provide a large overlap. This redundancy is used to increase the quality of the

reconstruction. One of the advantages of the presented module is its modularity due to

well defined interfaces. For instance, the user can choose a stereo module with particular

quality, resolution and speed. Arbitrary pre-processing steps can be included easily and

the module is consequently not only limited to merging point clouds obtained by stereo

vision, but also other sensor types. For instance, laser-range finders could be included

easily instead of or in cooperation with a stereo module.
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Fusion of Vision and Laser Data

Before laser and vision data can be merged, the extrinsic parameters (i.e. the position and

orientation) of the laser rangefinders have to be measured. As the alignment of the laser

scanners is changed frequently, the measurement should be automated. This procedure is

called calibration. Although previous work deals mostly with the calibration of the intrinsic

parameters of a laser rangefinder [25] and the calibration between a laser rangefinder

and a camera [84, 146, 162], some examine the calibration between two or more laser

rangefinders [155]. Previous approaches are specialized for a single setup of the system and

type of laser rangefinder. A common and easy to use approach allowing the automated

calibration of all types of laser rangefinders is still subject to further research.

When it comes to registration of two or more scans, the ICP algorithm [14] is widely

spread, yielding many different types of the algorithm. The most common types are based

on quaternions [14, 56, 72] or use a singular value decomposition [156] to compute the

transformation between the point clouds. Other algorithms use standard optimization

methods [69, 88] to minimize an error function. Another approach is the use of extended

gaussian images [55, 79], an alternative representation of the shape of surfaces. An overview

of other ICP-variants, which use different methods to optimize the execution time [61, 127,

158] can be found in [116]. The main disadvantage of the ICP-algorithm is its disability

to align point clouds with different resolutions, noise, or with a small overlap. So far, no

algorithm that can register those point clouds properly and reliable has been developed.

If the measured data cannot be merged in a proper way, the usage of multiple types

of sensors is in vain. Previous work has dealt with the fusion of image data and point

clouds created with a laser rangefinder. The most common application is the creating

of an accurate textured reconstruction of indoor or outdoor scenes [78, 113, 122]. Other

applications are localization [96] and object scanning [17, 139, 161]. These algorithms

transform the point cloud measured by the laser to the cameras point of view and perform

a ray based mapping of color information. If the transformation is not correct, this will

yield displacements and distortions and the whole scan is corrupt. Although it is an obvious

and promising approach, the use of stereo image processing is not common. Possible errors

will only have local effects and the rest of the scan can be used for further processing.

4.2 Two-Dimensional Mapping

A robot driving in an outdoor or an indoor setting needs to gain knowledge about the

ground and obstacles. Vision systems are well suited to fulfill this task. This section

presents an algorithm for the detection of the ground in two-dimensional images. A met-

ric map can be built and then used to obtain more semantic information. The proposed

algorithm was used by the ACE robot to determine, if the robot is allowed to drive on

the ground in front of the robot or not. To fulfill this task, the algorithm has to be able to

distinguish between the sidewalk and the street, which are both of similar color and only

differ slightly in the texture. Hence, parameters have to be adjusted carefully and the algo-

rithm must be able to distinguish the different textures. When this task is accomplished,

further semantic information can be obtained by analyzing the resulting metric map. This
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Fig. 4.1: Architecture of the two-dimensional mapping module.

information includes the type of the ground and can be used to verify the result.

To detect the ground, an algorithm based on the one presented in [131, 145] is used. The

proposed method uses one camera and is real-time capable at high resolutions. The algo-

rithm is based on the assumption that the area in front of the robot is free, an assumption

that can be cross checked with a laser scanner. If the area is free, the texture in the area

is compared to the texture of the rest of the image. All areas in the image with a similar

texture are assumed to be part of the same type of ground, the robot is currently driving

on. To deal with different terrain types, a novel version of the algorithm is proposed. This

advanced version is extended with a memory, so that the robot remembers older textures,

which are known to be part of a valid terrain. Consequently, the history of textures is

used to detect previous valid terrains in an image. In order to increase the robustness

for sudden changes in the terrain’s texture, the oldest textures are weighted with a low

weighting factor and the new textures with a higher one.

Figure 4.1 shows the architecture of the algorithm, starting with a camera and the optional

laser scanner. Now, the reference texture is analyzed, post-processed, back-projected and

stored in a map.

4.2.1 Detection of the Ground

The analysis of the image texture is explained on the basis of a simplified version, where

the reference texture is computed for every single image and no memory is used.

Analysis of the Image Texture

The algorithm is based on the assumption that a reference area in front of the robot is free

of obstacles. This reference area is marked by the blue trapezoid in Figure 4.2 (a). Since

a laser rangefinder mounted near the ground and sweeping in a two-dimensional plane can

be found on almost every mobile robot, it can be used to validate this assumption. This

laser rangefinder is used to detect obstacles with a positive height in front of the robot,

whereas negative obstacles like holes cannot be found. The sweeping plane L of the laser

rangefinder is illustrated in Figure 4.4.

As it is robust to different light conditions, the HSV (hue, saturation and value) color space

is used for further processing. The simplified algorithm computes a two-dimensional color

histogram of the reference area, containing the saturation and the value. Color histograms
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(a) (b) (c)

Fig. 4.2: Processing steps of the ground detection algorithm with (a) a picture of the scene,
the (b) result of the comparison with the reference texture and (c) a back projection
of the scene.
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Fig. 4.3: Histogram during a texture analysis, containing saturation (s) or value (v), the thresh-
old tm and the variables sMin and sMax, and vMin and vMax.

can be used to model both the general color of the reference texture and of the current

background. Histograms offer some advantages, as they can be obtained and compared

quickly. Figure 4.3 shows a color histogram with several bins. Starting with the smallest,

each bin is analyzed. If the height of the bin is lower than a threshold tm, the bin will be

discarded and a reduced histogram is created. Hereby image noise can be reduced. For

the reduced saturation histogram, two variables sMin and sMax will be computed and vMin

and vMax for the reduced value histogram, respectively. sMin denotes the color value of the

lowest bin, sMax of the highest bin. vMin and vMax are computed in the same way. The

threshold and the resulting parameters are also shown in Figure 4.3.

Now, the saturation and value of each pixel of the whole image is compared to the computed

histogram. Again, the saturation si and the value vi of the pixel with index i is computed.

The algorithm will recognize the pixel as part of the ground, if si and vi are within a

certain range:

smin ≤ si ≤ sMax, (4.1)

vmin ≤ vi ≤ vMax. (4.2)
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As seen in Figure 4.2 (b), the algorithm is able to detect obstacles that are located in the

reference area, which was originally assumed to be free. Due to the threshold tm, small

objects laying in the reference area will not be included in the reference histogram.

Post-Processing

After the ground is detected, the resulting image can be post-processed to reduce noise and

to remove fragments. Therefore an average filter is used. Every part of the ground, the

robot is allowed driving on, must be connected to the part of the ground where the robot

is currently standing on. Consequently, the parts of the ground, which are not connected

to the reference area, are removed. A simple flood-fill algorithm that is starting at the

reference area can be applied for this computation. White spots in Figure 4.2 (b) indicate

parts of the ground, which are connected to the reference area. Red parts are not connected

and will be discarded.

4.2.2 Computation of the Reference Texture

The simplified algorithm works fine, if the texture of the ground is constant. If the texture

is changing abruptly, the algorithm will not be able to validate the area in front of the

robot. Consequently, the algorithm has to be modified to deal with different textures.

Therefore the ability to remember the texture is introduced by storing the parameters

sMin, sMax, vMin and vMax in a ring-buffer of the size Nb. i denotes the current index of

the buffer. A metric mj is computed for every pixel p with the index j of the image. pj is

compared to every histogram of the ring buffer as described in Equations 4.1 and 4.2. The

index k denotes the histogram at position k in the buffer. If both equations are fulfilled,

the weighting term mk
j will be added to mj:

mk
j =

{
Nb−(i−k)

Nb
, if k ≤ i

k−i+1
Nb

, if k > i
. (4.3)

The newest histogram will get a high weight, while the oldest histogram will get a low one.

If the sum of all weighting terms mj is higher than a certain threshold tw, the pixel will be

recognized as part of the ground. Once learned, the robot will remember a certain texture.

If a robot is not seeing the texture for a while, it will start to forget it. As the weighting

factor gets lower and lower for old textures, forgetting is a fluent process. Through the high

weighting factor of the newest texture, the algorithm is able to react to sudden changes in

the texture quickly. tw and the size of the ring buffer Nb are depending on the computation

rate, on the robot’s speed, and on the diversity of the ground’s texture. Both have to be

adjusted heuristically through experiments.

4.2.3 Back-Projection

Assuming the extrinsic camera parameters and the intrinsic camera parameters are known

and the camera image is undistorted, the computed terrain can be back-projected to com-

pute an accurate map of the environment. Figure 4.4 illustrates the camera coordinate
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Fig. 4.4: Extrinsic and intrinsic camera parameters used for the back projection: the height
h,the tilt angle α and the field of view γ.

system Sc, the reference system S0, the cameras field of view γ, and the other camera

parameters necessary for the computation. The extrinsic parameters needed for the pro-

jection are the height h and the tilt angle α, while the required intrinsic parameter are

the the focal length f , the corresponding field of view γ and the chip size l. Some of the

intrinsic parameters are related:

γ = 2arctan
l

2f
. (4.4)

To simplify the computation, the assumption that the tilt angle α is small can be made.

A virtual image point d′′ is introduced, which can be computed for every image point d′

measured by the camera. d′ can be estimated by using the camera size lx and ly, the pixel

coordinates px and py, as well as the pixel size sp:

d′′ =
d′

cos(α)
=

(psp)/l

cos(α)
. (4.5)

By using the intercept theorem, Equation 4.6 computes the real distance dy of the virtual

image point d′′y. As h >> d′′y, Equation 4.6 can be simplified:

dy =
f(d′′y + h)

d′′y
, (4.6)

dy =
fh

d′′y
=

fh cos(α)

(pysp)/ly
. (4.7)

The distance dx between the robots axis and the object point d is depending on the distance

dy:

dx = dy
sppx
lx

. (4.8)
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Fig. 4.5: Illustration of the different coordinate systems: (a) orientation of the camera coor-
dinate system Sc, the pixel p, (b) the corresponding reference coordinate system S0

as well as the object point d, and (c) the resulting grid with a cell size of 45 cm.

The correspondence between the pixel coordinates px and py, and the reconstructed object

points dx and dy is illustrated in Figure 4.5 (a) and (b). After the real position was

computed for every pixel of the detected ground, a map containing the ground can be

built. A result of the back-projection algorithm can be found in Figure 4.2 (c). By

accessing the mobile platform’s odometry or the ego-motion estimation, several maps of

consecutive images can be stored in a bigger map. To store the map in the memory, a 2.5D

map, a so-called occupancy grid is used. In order to reduce the size, the grid is composed

out of cells having a fixed size sc. Each cell has an assigned probability, stating whether the

cell is containing a valid ground or not. A free cell will have the probability 0, a blocked

cell 1. If the algorithms detects an obstacle in a cell that is assigned free, the probability

will be increased by a certain value. If a blocked cell is detected as free, the probability

will be decreased. This occupancy grid can be used for the classification of the ground.

For further, more complex processing, the obtained map could be combined with the map

obtained by the robot’s SLAM submodule or SLAM techniques could be used to enhance

the map. Figure 4.5 (c) shows the map created out of the back projection of Figure 4.5 (a).

The robot is illustrated by the green triangle, while the light blue area shows regions, which
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(a) (b)

Fig. 4.6: (a) Reconstruction of a crossroad and (b) the corresponding occupancy grid.

are invisible to the robot’s camera. White spots illustrate a probability of 0, meaning the

algorithm has found a valid ground while dark areas illustrate a probability of 1, meaning

there is no valid ground.

Classification of the Terrain

The last step is the classification of the terrain. During the experiments with the ACE

robot, this method was used to estimate whether the robot is driving on the right side of

the street or on the left side. As the robot is asking for directions, this provides useful

information for processing the input. As traffic signs are sometimes hidden for the robot,

another important application is a second possibility to detect crossings.

A correlation function is used to classify the type of the terrain. For the application

on the ACE robot, the algorithm is trained to distinguish between five types: left side,

right side, middle, crossroad or free space in front and unknown. For each of the first

four types a reference map has been created. Each reference map is composed out of 20

measured maps of the corresponding type. This typical maps have been selected manually.

In the next step, a correlation term is computed with each reference map. If the best

correlation value is higher than a heuristically selected threshold, the hypothesis for the

corresponding type is increased and the hypothesis of the remaining types are decreased.

If all values are smaller than the threshold, all hypothesis except the hypothesis unknown,

which is increased, are decreased. The hypothesis with the highest value will be returned

as detected type of sidewalk. A back projected crossroad is illustrated in Figure 4.6 (a).

ACE is standing on a sidewalk and is orientated towards the street. The corresponding

occupancy grid can be found in Figure 4.6 (b). This scene was used as one of the typical

types to learn the reference type crossroad.

This algorithm is not limited to the application on ACE, but can easily be extended to

other terrains. By learning different, more complex reference types, the algorithm could

distinguish between more complicated types of the terrain.
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A real-time capable two-dimensional mapping algorithm was proposed in this section. In

contrast to existing algorithms, it is equipped with a memory and is thus able to remember

older valid terrains. However, the algorithm is not able to detect all types of obstacles and

two-dimensional maps are insufficient for complex manipulation tasks. Consequently, a

three-dimensional mapping algorithm is presented in the following section.

4.3 Three-Dimensional Mapping

Knowing objects in the robot’s field of view is useless for complex manipulation tasks

without any knowledge of their exact positions and without knowledge about the en-

vironment’s structure. Hence, building three-dimensional maps of the environment is

a crucial component of a cognitive system. The most common approach is the use of

laser rangefinders mounted on a pan-tilt platform, providing an ideal base for a three-

dimensional SLAM algorithm. On the other hand, laser rangefinders come with some

disadvantages. For instance, they cannot be mounted easily on a biped walking robot.

Moreover, three-dimensional SLAM requires expensive hardware and extensive data pro-

cessing. On the contrary, a stereo camera system is a convenient alternative, allowing

both two-dimensional and three-dimensional mapping. This section presents a fast imple-

mentation of an ego-motion estimation algorithm, which is computing the motion directly

in the disparity maps [51]. Hence, it can use temporary results of the stereo algorithm.

Furthermore, a modular approach of the median-fusion algorithm is presented, which is

used to merge different point clouds.

4.3.1 System Architecture

Post-Processing

Triangulation

Stereo System

Camera Head

Robot Control

Robot 3D Mapping

3D ModelMedian Fusion

Pre-Processing
Ego-Motion

Estimation

Rectification

Stereo Matching

CUDA

Vision Control

Fig. 4.7: Software architecture of the scene reconstruction module with both position estima-

tion based on the robots odometry and based on the ego-motion estimation module.

Figure 4.7 shows the software architecture and the main modules and submodules required

for three-dimensional mapping, while Figure 4.8 shows the different processing steps. The
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(a) (b) (c) (d)

Fig. 4.8: Processing steps of the scene reconstruction module: (a) the stereo images, (b) the
point cloud before and after (c) the post-processing, and (d) the merged point cloud.

modules Camera Head and Robot Control transmit the orientation of the head and

the robot or to the Vision Control module, where the absolute position of the head is

computed. If no SLAM module or laser rangefinder is available, the ego-motion estimation

can be used instead. A main part is the Stereo Module, where the images arerectified

before the actual disparity map is computed in the Stereo Matching submodule. Two

different stereo matching submodules are available, the presented Cuda implementation or

an alternative implementation based on the openvis-library [104], which mainly focusses

on quality. As it provides a higher resolution, only the Bumblebee X3 camera is used for

three-dimensional mapping, while the other camera is used for two-dimensional mapping

and other tasks like human tracking. In the Triangulation submodule, this disparity

map is transformed into a point cloud. Afterwards this point cloud is then transmitted

to the Pre-Processing submodule, where noise reduction and the removal of outliers is

performed. In the next step, the actual Median Fusion algorithm is performed, followed

by a Post-Processing step. The resulting three-dimensional model is stored as a point

cloud.

The interfaces between the different modules and submodules have been designed carefully.

Besides supporting different stereo modules and cameras, the resolution of the images can

be chosen arbitrarily and the input point clouds can consist of both colored points as well

as grayscale points. They can be created by stereo triangulation based on a depth map.

By supporting drivers for laser rangefinders, the stereo module can be replaced with an

adequate laser scanner. Each point cloud provides the corresponding position and orien-

tation of the camera head.

The following sections describe the main modules and submodules, the ego-motion estima-

tion based on stereo vision and the actual median fusion algorithm. The method used for

the reduction of noise and outliers has been described in the pre-processing step in Section

3.3.1. A suitable trade-off between quality and a sufficient number of remaining points

has to be determined experimentally. Input and output of the pre-processing submodule

is a single point cloud, whereas the median fusion algorithm requires a set of point clouds

as input and delivers a single point cloud as output. New point clouds can be added

iteratively to the resulting model.
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4.3.2 Stereo Vision-Based Ego-Motion Estimation

Ego-motion estimation algorithms require temporary result of calculations, which have

already been made by the stereo module. Due to the hard time and quality constraints,

using this pre-computed data is mandatory. This data includes the result of the edge de-

tection algorithm, which is used to compute the corners of the images. As they provide

a good texture and are thus easy to track, only corners are used for the ego-motion esti-

mation. Therefore, the corners of the current and previous image are computed by using

the good features to track algorithm presented by Shi et al. [133], tracked, and then used

to compute the movement of the objects relatively to the camera. Afterwards, wrong cor-

respondences can be removed and the actual movement of the camera and thus the robot

can be estimated. The main contributions of this algorithm include the fast implementa-

tion on Cuda, the strong interconnection with the stereo algorithm, the use of temporary

results, and the removal of invalid correspondences [153]. Future hardware architectures

will provide more memory and computational power, so the parameters of the presented

algorithms have to be adjusted to utilize the full potential of the hardware.

Computation of the Corresponding Corners

The computation of the optical flow is based on the assumption that the intensity of

a pixel remains constant in two consecutive images. Like in stereo reconstruction, the

whole problem of ego-motion estimation can be stripped down to the computation of the

two corresponding corners in the current and the previous image. Again, the algorithm

can easily be parallelized. However, the search problem cannot be reduced to an one-

dimensional one. Hence, a cost function has to be computed for all possible matches by

using block matching with a window size of NSearch ×NSearch, with NSearch = 2m+ 1:

C(i, j, k, l) =
m∑

u=−m

m∑

v=−m

|VPrevious(i+ u, j + v)− VCurrent(i+ u+ k, j + v + l)|, (4.9)

while VPrevious(i, j) denotes a corner in the previous image and VCurrent(i+k, j+l) a possible

match in the current image. k and l are limited to a search window of size NEgo × NEgo,

which is determined by the robot’s speed. As small disparities will lead to a small movement

of the corner and large disparities will lead to a large movement, NEgo is depending on the

disparity of the current corner d(i, j):

NEgo = σ · d(i, j) + rconst, (4.10)

while the parameters σ and rconst have to be adjusted heuristically. The corresponding

corner VCurrent(i + ∂i, j + ∂j) can be found by minimizing the cost function with respect

to k and l:

∂i = argmin
k

(C(i, j, k, l)) , ∂j = argmin
l

(C(i, j, k, l)). (4.11)

The computation time can be reduced by only computing valid corners.
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Removal of Invalid Correspondences

Invalid correspondences can be removed by computing the median movement in a circular

area with radius rMin around each corner. If the movement of a corner in this area differs

from the median movement, the probability of an error is high and the corner is discarded.

However, a minimal number of correspondences has to remain in the window. The minimal

number of correspondences and the threshold have to be estimated heuristically.

Computation of the Camera Motion

The movement of the camera and thus the movement of the robot can be computed di-

rectly in the disparity space, without transforming the disparity into cartesian coordinates.

Therefore the previous and current pixel positions are transformed according to the robot’s

movement. This can be computed for every pair of corresponding corners and the resulting

overdetermined system of equations can be solved by using the method of least squares:




α

ctx

ctz


 = (DT ·D)−1 ·DT · p , with (4.12)
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. (4.13)

f denotes the focal length, B the stereo basis, xi and yi the position of the i-th corner

in the current image, and x̂i and ŷi the position of the i-th corner in the previous image,

respectively. The movement of the camera is denoted by the rotation α and the translations

ctx and ctz. After this computation, the movement of the camera has to be transformed

into the movement of the robot. A detailed mathematical background can be found in

Appendix C.

The presented ego-motion estimation can replace the robot’s odometry. Experimental

results have shown that the algorithm is prone to bad light conditions and fast rotations.

Hence, a further correction step is desirable.

4.3.3 Median Fusion Algorithm

Most of the noise and outliers can be identified and removed during the pre-processing.

Since this step affects only single depth maps, it is still possible to reduce the amount of

erroneous data even further, by combining measurements from several different viewpoints.
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Algorithm 4.1 Median fusion algorithm

1: Transform all depth maps fi,with i = 1 . . . n in the reference perspective Pa

2: Store nearest point in Fa(x)
3: for i = 1 to i = n - 1 do
4: S(x) = 0
5: N(x) = 0
6: for k = 1 to k = n do
7: transform fi into Pa

8: Store nearest point in O(x)
9: for all Points xa in Pa do

10: if O(xa) ≤ F (xa) then
11: S(xa) = S(xa) + 1
12: else
13: N(xa) = Min(N(xa), O(xa))
14: Transform xa into Pk

15: if xk is a regular point in Pi then
16: S(xa) = S(xa)− 1
17: end if
18: end if
19: end for
20: end for
21: for all Points xa in Pa do
22: if S(xa) < 0 then
23: Fa(xa) = N(xa)
24: end if
25: end for
26: end for

For certain types of errors occurring during the reconstruction process, in particular the

quantization error, it is impossible to reach better results relying on measurements from

merely one perspective. Next to the error correction, the minimization of redundancy

is another important task. Furthermore, errors from the ego-motion estimation can be

reduced. Generating a multitude of depth maps from nearby viewpoints typically yields

large amounts of redundant data points. While being useful when identifying reconstruc-

tion errors, they have to be removed in order to reach a memory efficient representation.

An algorithm for depth map fusion that is capable of further resolving inconsistencies as

well as reducing redundancy is the median fusion algorithm presented by Nister et al. [98].

The algorithm uses a given set of n depth maps to compute an optimized fused depth map

by using one of the input depth maps as reference viewpoint. fi denotes a depth map, Pi

the corresponding viewpoint and xi a point of the depth map and accordingly the corre-

sponding point cloud Ni. The index a indicates the reference view with the depth map fa,

the viewpoint Pa, the point cloud Na, and a point xa. Combining multiple datasets into a

single one typically results in several possible depth values for every pixel in the reference

view. Hence, an optimization criterion is introduced, which is defined in order to resolve

ambiguities. Based on two dual visibility-relations between measured points, i.e. depth
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Fig. 4.9: Illustration of the median fusion algorithm with the two error models, (a) the direct
occlusion and (b) the indirect occlusion.

values, a stability measure for the depth value is estimated for each pixel in the reference

view. A point observed in the reference view xa is assumed to be occluded if there is at

least one other point xi in another depth map of the input set that lies in shorter distance

than this point (observed from the reference viewpoint). This error is called direct oc-

clusion. On the contrary, the indirect occlusion is defined as a point xa observed in

the reference view that is violating another point’s xi free-space by occluding that point

when observed from another viewpoint.

Obviously, for low depth values occlusions occur less frequently while violations of free-

space constraints are more likely. For large depth values the opposite effect can be observed.

This leads to the definition of a stability measurement that accumulates and then subtracts

the number of occurrences of occlusions and free-space violations for each depth value un-

der investigation. Finally, since both events reveal inconsistencies between multiple depth

maps, for each pixel in the reference view that value is chosen, which yields an equilibrium

between the two visibility violations, for instance a stability of close to zero.

Figure 4.9 illustrates the two error types and the stability criterion. In Figure 4.9 (a) the

point xa is occluded by the two points xi and xi+1. A high probability that the estimated

point xa is too far away from Pa. In Figure 4.9 (b) xa occludes xi and xi+1 yielding a high

probability that xa is too close to Pa. The corresponding algorithm is shown in Algorithm

4.1 and the resulting point cloud is stored in Fa. O(x) denotes a temporary memory con-

taining results of the stability analysis and N(x) contains the depth-value, if the current

value is proven to be stable.

4.3.4 Obstacle Detection in Three-Dimensional Maps

In a last step, the three-dimensional maps can be used for obstacle detection allowing to

detect obstacles, which cannot be found by the two-dimensional mapping module. For

instance, overhanging objects like tables cover only small parts of the ground.

To perform the obstacle detection, the space is divided into several regions of a fixed size

of 20× 20× 20 cm. Figure 4.10 (b) shows a point cloud derived from a stereo image with
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(a) (b)

Fig. 4.10: Obstacle detection in 3D Maps. (a) shows the resulting occupancy grid and (b) the
scene, while detected obstacles are indicated by red boxes.

several persons standing near the robot. The point density is computed for each space re-

gion and when it exceeds a threshold, the corresponding box is assumed to be obstructed.

Otherwise it is assumed to be free of obstacles. In the last step a two-dimensional oc-

cupancy grid can be computed. Therefore the height h of the robot must be known and

the occupancy grid should have the same resolution as the space regions. Each cell of

the occupancy grid at the position (x, y) is influenced by several regions with the position

(x, y, z), where z contains all values between 0 and h: z = [0, . . . , h]. If one region is

blocked, the whole cell is assumed to be blocked and thus assigned with a probability of

1. If no region is blocked, the cell will be assigned with a probability of 0. Those regions

not in the robots field of view are assigned with a probability of −1 denoting unknown

regions. To create larger maps, several occupancy girds can be merged. Furthermore,

the resulting map can be merged with the map obtained by the two-dimensional mapping

module. Compared to most other obstacle detection algorithms, the presented algorithm

is able to detect floating objects, which are not covering the ground. Furthermore, it is

fast to execute and is independent from the used sensor.

Equally important as the two-dimensional mapping module, all necessary modules to com-

pose a three-dimensional mapping system have been presented. Those modules include

the ego-motion estimation, which is strongly connected to the stereo module, a modular

implementation of the median fusion algorithm, and an obstacle detection algorithm. The

presented methods are based on stereo vision, but the median fusion algorithm and the

obstacle detection can be also applied to other types of sensors. As laser rangefinders

provide a much higher spatial resolution, it is obvious to combine the advantages of laser

rangefinders with stereo vision.
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4.4 Mapping with Different Sensor Types

Stereo reconstruction provides color information, but come with a low spatial resolution of

only a few centimeters. On the other hand, laser rangefinders provide no color information,

but the spatial resolution is higher by one order of magnitude. Hence, a combination of

laser rangefinders and stereo images yields a colored representation with a high resolution.

Due to the different resolutions and point densities of laser rangefinders and stereo images,

the median fusion algorithm is not suited for the fusion of stereo and laser data. As both

point clouds have a large overlap, the ICP algorithm seems to be well suited. However,

it is not able to register the two point clouds, as it tends to run into local minimums.

Consequently, a novel genetic ICP algorithm is proposed, performing a genetic mutation

whenever a local minimum is detected [90].

The area seen by one laser rangefinder may be too small, so it is beneficial to use two or

more, each providing one point cloud. Besides, using two laser rangefinders will yield to a

higher accuracy. To create a single accurate point cloud, the single point clouds have to

be merged. Therefore, the exact position and orientation of each laser has to be know. As

the setup of the lasers is changed frequently, the calibration progress should be automated.

A fast, easy-to-use and reliable algorithm is proposed to perform the calibration of most

of the extrinsic parameters. The intrinsic parameters are depending on the configuration

of the range-finders and are assumed to be known. The algorithm scans an object with a

known height to calculate the following parameters:

• The absolute y and z position of the scanner.

• For one laser, the x position has to be known. The x position of the other range-

finders will be computed relatively to this position.

• The absolute yaw- (Ψ), pitch- (Θ) and roll (Φ) angles of the orientations around the

z-, x- and y-axis.

The extrinsic parameters and the coordinate systems are shown in Figure 4.11. One

coordinate system is attached to each sensor. S0 denotes the reference system, which is

attached to the robot and is located in the robot’s center of rotation. The robot rotates

around the z-axis and drives in direction of the y-axis. Figure 4.12 shows the setup of a

mobile robot R with the two laser rangefinders L1 and L2. Both scanners have a Φ of 45◦

or −45◦ with respect to the reference system. The areas A1 and A2 denote the scanning

area. When the mobile Robot is rotated around the z-axis, the whole calibration object

C can be scanned. Furthermore, the stereo camera S is depicted.

4.4.1 Requirements

Before the calibration is performed, an initial guess for Φ of each laser rangefinder should

be made. This will decrease the execution time and avoid absurd results. An accuracy of

about ±45◦ is sufficient for the initial guess. Furthermore, the x-position of the first laser

should be known. Inaccurate results may occur otherwise. The calibration object must be

scanned using all laser rangefinders, its height hO must be known, the base point of the
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Fig. 4.11: The different coordinate systems needed for calibration, S1 and S2 for the left and
and right laser rangefinder, Sc for the camera, and S0 for the reference system. The
yaw angle Ψ is rotated around the z-axis, the pitch angle Θ around the x-axis and
the roll angle Φ around the y-axis, respectively.
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C

Fig. 4.12: Setup of a calibration-scene with the camera S, the two laser rangefinders L1 and
L2, the corresponding scanning areas A1 and A2, and the calibration object C.
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Fig. 4.13: Scan of the calibration-scene.

object must lay on the floor (with z = 0), and the floor has to be flat, so that no scans

below the x/y−plane can occur. After the scan has been performed, the object should be

extracted manually from the single laser scans. Figure 4.13 shows the laser scan of the

calibration scene described above. The calibration object can be seen in the center of the

picture.

4.4.2 Calibration of the Laser Rangefinders

Algorithm 4.2 Calibration

1: for each scan do
2: while |zMin| > ǫ and ||zMax − zMin| − hO| > ǫ do
3: Calculate zMin and zMax of the scanned object
4: if zMin < 0 + ǫ then
5: increase z
6: end if
7: if zMin > 0− ǫ then
8: decrease z
9: end if
10: if (zMax − zMin) < h0 + ǫ then
11: increase Φ
12: end if
13: if (zMax − zMin) > h0 − ǫ then
14: decrease Φ
15: end if
16: end while
17: end for

After the scans have been made, the algorithm is executed in two steps. As described in

Algorithm 4.2, the z-position and Φ of the single laser rangefinders are computed iteratively

in the first step. Changing these parameters will result in a sheared representation of the
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scanned object and a wrong height. The algorithm is finished, when a minimal error ǫ

is reached. In a real environment, ǫ should be in the same order of magnitude as the

resolution of the laser rangefinders, so it is sufficient to set ǫ = 0.1 mm.

After the single laser rangefinders have been calibrated, the positions of the scanners

relative to a reference scanner are computed, using the first scanner with known x-position

as reference. The position and orientation of the other scanners will be computed relative

to the reference scanner. For the calculation of the x- and y-position, as well as Ψ and Θ,

the presented genetic ICP algorithm (see Section 4.4.3) is used. If the y-position of the

reference laser is not known, the y-axis will be placed between the laser rangefinders.

4.4.3 Registration of Vision and Laser Data

The ICP algorithm is widely spread for the registration of two point clouds. It estimates

the relative translation and rotation between two point clouds C1 and C2 and is repeated

in iterations. C1 and C2 have N1 and N2 points, respectively. It can be described in the

following way:

1. For each point p1
i in C1: allocate the closest point p2

i in C2.

2. Compute R and t to minimize the median error e(R, t):

e(R, t) =
1

N1

N1∑

i=0

||p1
i − (R · p2

i + t)||2. (4.14)

3. Transform C2 with the calculated R and t.

4. Iterate until e(R, t) converges.

Existing ICP algorithms work fine for similar point clouds with a large overlap and a good

guess of the initial transformation. In an ideal case, it converges in less than 10 iterations.

If the initial guess is not of sufficient quality, there is a risk that the algorithm converges

to a local minimum. Another problem will occur, if the overlap of the two scans is not

large enough. The algorithm has to determine, which points are included in both point

clouds and use only those overlapping points for the registration. A reduced point cloud,

containing only the overlapping points p̃x
i , i ∈ 0...Nx is denoted as C̃x.

Computation of the Transformation

The main challenge of ICP algorithms is the computation of R and t. Since it has some

advantages compared to a SVD (singular value decomposition) based algorithm in two-

and three-dimensional spaces, the presented algorithm is based on a quaternion based ICP

algorithm as described in [14] and [56]. A cross-covariance matrix is used to solve the least

square problem and compute the transformation:

argmin
R,t

=
1

Ñ1

Ñ1∑

i=0

||p̃1
i − (R · p̃2

i + t)||2. (4.15)
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Only those points are considered, where an overlap is expected. C̃1 includes Ñ1 points,

which fulfill the following relation:

0 ≤ d(p1
i ,p

2
i ) ≤

dMax − dMin

2
, with (4.16)

d(p1
i ,p

2
i ) = ||p1

i − p2
i ||2,

where dMax denotes the maximal measured distance between two points and dMin the

minimal distance, respectively.

The Genetic ICP Algorithm

As a standard ICP algorithm is not able to align vision data and laser scans properly, a

hybrid algorithm to find the global minimum of Equation 4.15 is proposed. The algorithm

consists out of two main parts, a standard ICP algorithm and a genetic algorithm. Every

time the standard ICP algorithm converges against a local minimum, the genetic algorithm

is activated to find alternative solutions. The genetic algorithm performs both random

mutations and reproduction of two individuals. Each individual is thereby described by

six parameters: x-, y- and z-position as well as Ψ, Θ and Φ. Before the genetic ICP

algorithm is executed, the point clouds are clustered. To remove small misplaced points,

which do not belong to any object, clusters having less than a minimal number of points

are discarded.

The algorithm is described in Algorithm 4.3, where i denotes the current generation and

s the size of the population. In a first step, the overlap is computed for both point clouds

and the standard ICP algorithm is applied. The genetic mutation will not be performed

every generation, but only if the distance metric di−1 converges, i.e. the difference between

di−1 and di−2 falls below a threshold. Algorithm 4.3, lines 8 to 17, describes the genetic

mutation (rand(x) returns a random integer between 1 and x, rand2(x) a floating number

between −x and x), where parameter p = 1 denotes the x-position, p = 2 the y-position,

and so on. By changing the allocation between p and a parameter, the algorithm can easily

be limited to search in an arbitrary number of dimensions. Furthermore, it is possible to

lock arbitrary parameters.

The distance metric di for the iteration i is computed after each transformation of C1. If

di is smaller than the previous best distance metric dBest, the transformation Ri and ti
will be stored and added as a new individual to the population. If the maximal number

of individuals in the population is reached, the oldest individual will be replaced. If di is

larger than dBest, the transformation Ri and ti will be discarded. To minimize the mean

square error while maximizing the number of points used for the matching, the distance

metric has to be chosen deliberately:

di = (2− (
Ñ1

N1

)2) ·


1 +


 1

Ñ1

Ñ1∑

i

d(p1
i ,p

2
i )




1

2


 , (4.18)
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Algorithm 4.3 Genetic algorithm

1: reset dBest

2: i = 0
3: while i < iMax do
4: i++
5: Compute C̃1, C̃2 and corresponding points
6: Compute Ri, ti with ICP
7: if |di−2 − di−1| < ǫ then
8: v = rand(s)
9: load individual Iv

10: w = rand(s)
11: load individual Iw
12: p = rand(6)
13: substitute parameter p of Iv with parameter p of Iw
14: p′ = rand(6)
15: f = rand2(fMax)
16: increase parameter p′ of Iv by f
17: load Ri and ti from individual Iv
18: end if
19: transform C1 with Ri and ti
20: Compute distance measurement di
21: if di < dBest then
22: save RBest and tBest

23: dBest = di
24: if s < sMax then
25: add Ri and ti as individual Ii to population
26: s++
27: else
28: remove oldest individual from population
29: add Ri and ti to population
30: end if
31: else
32: discard Ri and ti
33: end if
34: Return RBest and tBest

35: end while

while Ñ1 denotes the number of points used for matching. The relative number of points

used is denoted as Ñ1

N1
. The radicand denotes the median distance dm between all pairs

of corresponding points. Figure 4.14 shows a plot of the distance metric. The absolute

minimum is placed at Ñ1

N1
= 1 and a median distance of 0. If one of these values is

increased, the resulting distance will increase as well. Increasing both of them, will lead

to the absolute maximum of the distance metric. By changing the exponents, the weight

can be shifted between emphasizing the number of points used or the median distance.
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Fig. 4.14: Plot of the distance metric di depending on the median distance dm and the relative

number of points used Ñ1
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.

Fusion of Vision and Laser Data

After the transformation has been computed and the point cloud has been transformed,

the point clouds have to be merged. CV denotes the point cloud of the stereo vision module

and CL the point cloud obtained by the laser rangefinders. CV and CL are aligned properly.

To merge CV and CL into CM , it is adequate to search for every point pL
j in CL that point

pV
j in CV , which has the smallest distance to pL

j . The resulting point pM
j will have the

position of point pL
j and the color of point pC

j . Moreover, a standard distribution has been

selected for the probability function fj(dj), which has to be calculated and stored for each

point in CM :

fj(dj) =
1

σ
√
2π

exp

(
−1

2
(
dj
σ
)

)
, (4.19)

with the distance dj = d(pL
j ,p

V
j ) between pL

j and pV
j . σ is the standard deviation and has

to be determined experimentally depending on the quality of the vision data. The size of

CM will be equal to the size of CL. In a last step, the probability fj(dj) can be used as a

confidence metric and thus to eliminate uncertain measurements.

As using laser data allows increasing the spatial resolution of stereo vision, the fusion of

different sensors completes a sophisticated mapping system. The novel algorithm used for

the fusion is derived from a quaternion based ICP and a genetic algorithm. Whenever the

ICP algorithm runs into a local minimum, a genetic mutation is performed and the mini-

mum can be avoided. A thorough experimental investigation of the ego-motion estimation

algorithm, the two- and three-dimensional mapping, and the fusion of different sensors will

be given in the next section, together with details about the evaluated parameter settings.
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4.5 Experimental Results

This section shows some experimental results from the main modules of the vision-based

mapping subsystem, starting with the two-dimensional mapping. The modules of the

three-dimensional mapping module will be presented individually, starting with the ego-

motion estimation, followed by the fusion algorithms for different point clouds and the

sensor fusion.

4.5.1 Experimental Setup

The following experiments have been conducted using the vision processing PC on the

ACE robot, which was equipped with an AMD Phenom Quad-Core CPU running at

2.5 GHz, 4 GB of physical memory, and two GeForce 9800 GX2 cards and hence four

Cuda enabled devices. Unless stated otherwise, only one Cuda device has been used for

a module. In addition, the robot is equipped with two cameras, a bumblebee X2 with

a resolution of 640 × 480 and a field of view of 97◦, which is used for sensor fusion and

two-dimensional mapping, and a bumblebee X3 camera with a resolution of 1280 × 960

pixels at a field of view of 66◦, which was used for the three-dimensional mapping.

4.5.2 Two-Dimensional Mapping

The presented algorithm is able to detect and classify the ground. To achieve a good

compromise between false positives and misses, the threshold tm was heuristically selected

to 80. With this value, the algorithm is able to detect small obstacles on the ground. On

the other hand, if tm is too large, the algorithm won’t be able to detect a terrain with a

varying texture. The number of histograms NB was selected as 500. When driving with a

speed of 1 m
s
and a camera frame rate of 5 Hz, the robot is able to remember the texture

for 100 m. When a larger frame rate is used, it is advisable to increase NB.

Fig. 4.15: Result of the mapping algorithm over a long distance.

Figure 4.15 shows, how an occupancy grid with a size of 10 × 8 m is created in several

steps. This map was built using only the presented method for back-projection and the

robot’s odometry module. Using existing SLAM techniques enables loop-closing and will

lead to better results after long distances.
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(a) (b)

Fig. 4.16: Effect of bad light conditions: (a) the sun is shining directly in the camera and
generating blooming and (b) abrupt transition between shadow and illuminated
area.

Fig. 4.17: Computation of the optical flow.
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Some challenges arise due to sunlight for all applications in outdoor robotics. Two major

challenges are depicted in Figures 4.16 (a) and (b). The first figure shows blooming, which

occurs when the sun is shining directly into the camera. As a CCD-sensor is used, the

only way to prevent blooming is to prevent the sun from shining into the camera. Hence,

an artificial eyelid was developed, which can be lowered to cover the sun. Figure 4.16 (b)

shows the problem, which occurs at hard transitions between a shadow and an illuminated

area despite using the HSV color space. The algorithm is not able to detect the illuminated

area as part of the sidewalk.

The presented algorithm is capable of running with a speed of 15 Hz at a resolution of

640x480 pixels. Both computation of the ground and the classification are computed in this

time. Multicore processors are currently not supported, but by parallelizing the computa-

tion of the sidewalk, the back-projection, and the classification a speedup of approximately

200 % could be achieved. On the other hand, a frame rate of 5 Hz is adequate for the

robot’s speed. Hence, the remaining computational power can be used for other tasks.

4.5.3 Three-Dimensional Mapping

As three-dimensional mapping can be divided into two modules, the experimental result

will be presented separately.

Ego-Motion Estimation

Figure 4.17 shows the computed optical flow for two consecutive images. The result of

the actual ego-motion estimation is shown for four different scenes in Figure 4.18. Like

in stereo-vision, a good trade-off between speed and quality has to be found. The sizes

of the search windows NEgo and NSearch have the largest influence on speed and quality,

while the radius rmin of the evaluation area has a large influence on the quality. Both a

small and a large rmin result in many faulty matches. A value of rmin = 20 has shown

the best results. The size of the search window NEgo can be computed with a σ = 0.2

and rconst = 10. A larger σ will yield better results, but the computation time scales

exponentially. The system achieved a median error of 43 mm and 0.014 rad per step with

the selected parameters. However, Figure 4.17 shows some problems with fast rotations,

where the corresponding corners are not located inside the search window. This error

can be explained further by long shutter times, which are occurring often in an indoor

scenario and are leading to blurry images. The algorithm computes a confidence of each

measurement and discards those with a low confidence.

As the algorithm is required to be real-time capable, the computation time is of great

importance. The ego-motion of two consecutive images can be computed in 34 ms. Hence,

the stereo algorithm and the ego-motion estimation can be performed with a speed of

10 Hz.

Fusion of Depth Maps

As the robot’s odometry achieves an accuracy of 1 − 4 cm at a distance of 2 m, the dis-

placement between different point clouds is small compared to their dimensions of 5−8 m.
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Fig. 4.18: Result of the ego-motion estimation. The solid line depicts the estimated positions
and the dashed line the true position. All lengths are in m.

Fig. 4.19: Result of the pre-processing with the poposed parameter settings. The left figure
shows the original point cloud and the right figure the result.
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Fig. 4.20: Result of the median fusion algorithm and reconstruction of the camera position
and orientation. The grid has a size of 10× 10m..

As shown in Figure 4.19, around 50% of the points have been discarded in the pre-

processing step. Like most stereo algorithms, only discrete disparity values can be com-

puted, yielding a quantization error in the ground plane. As a result of the stringent

parameter setting, large parts of the point clouds are removed and only those points with

a high certainty remain. This effect is relativized by the high sampling rate. A parameter

setting with a search radius r = 20 cm and a minimal number of neighbors of Nmin = 100

has shown to deliver the best trade-off between quality and number of remaining points.

When using a camera with a lower resolution and thus a lower density of points, the min-

imal number of points has to be decreased. The time needed for the noise and outlier

reduction is around 50 ms for a point cloud with full resolution and 1.2 million points.

Figure 4.20 shows every fifth camera position and orientation of the reconstructed trajec-

tory in a 10×10m grid. Furthermore, it shows the resulting point cloud, while Figure 4.21

shows a part of the reconstructed scene compared to the ground truth as measured by a

laser rangefinder. The resulting point cloud is not only accurate and mostly free of outliers,

but also free of redundant points, yielding a lower memory consumption (up to factor 13)

compared to the original point clouds. In its current state of development, the algorithm

is not able to deal with moving objects leading to multiple fragments in the reconstructed

scene. This effect can be seen in Figure 4.20 behind the pool table, where a person was

walking alongside with the robot and can be seen multiple times in the reconstructed scene.

Besides achieving sufficient quality, the algorithm is supposed to be real-time capable in a
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Fig. 4.21: Comparison between reconstruction from image data and ground truth obtained by
a laser rangefinder (red areas).

long term vision. Hence, the computation speed can not be neglected. The time t needed

for fusing two or more point cloud scales linearly with the number n of point clouds and can

be estimated with t = n× 45 ms. As it can be easily parallelized with the pre-processing,

even higher computation speeds can be achieved by using two or more cores. These ex-

periments have shown that the pre-processing and the median fusion algorithm is not the

limiting factor for scene reconstruction in real-time. As most of the computational power

is consumed by the stereo module, selecting a fast stereo algorithm is crucial for real-time

capability of the presented module.

4.5.4 Sensor Fusion

The execution time for the genetic ICP algorithm is depending on the size of the point

clouds. For a size of nL = nC = 1000 about 3000 generations are computed per second.

Figures 4.22 (a) and 4.22 (b) show the scan of the left and the right laser rangefinder. The

differences in the field of view of the two scanners can clearly be seen. The colored point

cloud obtained from the vision data is shown in Figure 4.22 (c). Compared to the one

obtained by laser scanners, the vision data is far less accurate, noisier, but covers a larger

area of the environment. The spatial resolution is in the order of magnitude of 10 cm,

compared to 0.1 cm for the laser rangefinders. The resulting merged point cloud can be

seen in Figure 4.23 (b), while figure 4.23 (a) shows the certainty of the corresponding

points. Green areas denote a high probability for a correct computation of a point, red

areas denote a low probability.

Figure 4.24 (a) shows the median error compared to different sizes of the population. The

maximal number of generations was set to 10000 generations in the first experiment and

to 50000 generations in the second experiment. This experiment was conducted for two

different datasets. To compute the median error, the genetic ICP algorithm was executed

20 times for each dataset, each size of population, and each maximal number of genera-
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(a) (b)

(c)

Fig. 4.22: Input for the fusion algorithm: laser scans of the (a) left and (b) right laser and (c)
a point cloud obtained by the stereo module.

(a) (b)

Fig. 4.23: Result of the genetic ICP algorithm: (a) probability of the match and the (b) colored
point cloud.
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Fig. 4.24: Correlation between the size of the population and (a) the median error metric and
(b) the generation of best individual.

tions. The generation that produced the best result is depicted in Figure 4.24 (a), again

with different sizes of the population and for a maximal number of generations of 10000

and 50000, respectively. The median error was computed using Equation 4.18. As stated

in Figure 4.24, a large number of individuals leads to a large number of generations nec-

essary to achieve good results and a too small number of individuals leads to a relatively

high medium error. When the number of generations was limited to 50000, the medium

error was almost constant and the main differences have occurred in the number of gen-

erations needed to compute the best result. Consequently, the experiments have shown

that the optimal number of individuals in the population is between 50 and 200. During

the experiments with this population size, the best result was found in the first 20000 to

25000 generations, so the maximal number of generations should be set to this order of

magnitude.

4.6 Discussion

This chapter presented algorithms for two-dimensional and three-dimensional mapping.

Two-dimensional maps are required for path planning and are acquired by a texture-based

approach. In contrast to existing algorithms, a memory is introduced, allowing the robot

to learn those parts of the ground, where it is allowed to drive. However, this algorithm is

not able to detect the ground robustly, when there are many obstacles ahead, the texture

of the obstacles is identical to the ground, or the obstacles have an overhang.

Consequently, a modular system for accurate three-dimensional reconstruction of natural

indoor and outdoor environments was presented. The system combines several modules,

namely different stereo modules, pre- and post-processing modules, and the actual median

fusion algorithm. Due to the modularity and well defined interfaces, each module can be

exchanged by another module with similar functionality, a novelty compared to the state-

of-the-art. For instance, a laser rangefinder could be used instead of the stereo module.

Specifically, the pre-processing module including noise and outlier reduction and the me-

dian fusion algorithm have been presented in detail. The limiting bottleneck is the stereo
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module, as stereo algorithms with a high resolution require vast amounts of computational

power. By using a novel Cuda implementation, which combines the stereo algorithm with

the ego-motion estimation, an adequate speed could be achieved. Novel confidence metrics

have been introduced for both algorithms, eliminating invalid computations. On the other

hand, the resolution is limited, so that future research might deal with algorithms running

at higher resolutions. The ego-motion module was included to support or to replace the

robot’s odometry. This module presented good results, although some fast rotations can-

not be recognized due to blurry images at high shutter times. In addition, a genetic ICP

algorithm was presented, which is capable of aligning a colored point cloud obtained from

a stereo vision module with a point cloud obtained from laser rangefinders. Before the

genetic ICP algorithm can be computed, the laser rangefinders have to be calibrated to

ensure a proper alignment of the point cloud. Furthermore, the current three-dimensional

model is stored as a colored point cloud, which is an accurate, but very memory consum-

ing representation. This problem can be solved by using more sophisticated methods to

save the point clouds, like a textured polygon. Algorithms to convert a point cloud into

a polygon grid have to be developed. Another interesting research topic is the detection

and identification of moving objects.

Together with the object detection subsystem, the methods and algorithms presented in

this chapter provide an ideal base for the semantic mapping system and thus a cognitive

architecture. A suitable knowledge representation, which is capable of decision making is

presented in the following chapter.
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Robust object recognition and accurate three-dimensional mapping is useless without a

convenient representation. Semantic networks provide an intuitive and easily accessible

base to state information about objects and the attributes of the objects. Additionally, the

position of the object has to be accessible from the semantic network and information about

the objects have to be accessible from the metric map. So far, there exists no representation

combining the advantages of semantic networks and metric maps. Although some different

cognitive architectures have emerged during the last years, neither a standard architecture

nor a standard representation has been established. A popular representation, which is

trying to enhance metric maps, is the labeling of places. However, objects are not included

in this representation. Moreover, a sound mathematic representation is essential for task

planning.

A combination between semantic networks and metric maps is a well suited knowledge

representation for a cognitive architecture. This leads to the introduction of so-called

semantic maps providing both metric maps and semantic information, and thus combining

the advantages of both representations. Compared to the state-of-the-art, the proposed

semantic mapping system requires only one representation for task and path planning. Due

to its modularity, it can work with arbitrary algorithms for mapping and object detection.

In addition, a novel mathematic representation based on set theory is introduced, providing

a state space for the objects. These states are used to derive methods and algorithms for

the integration of new knowledge and for action planning. Simulations and experiments are

used to validate the algorithms for the creation of semantic maps and for task planning. As

the provided methods for perception and cognition and thus the corresponding processing

steps are separated, semantic maps can be classified as a symbolic processing system.

This chapter starts with an introduction to semantic networks, followed by an overview

of recent research advances in semantic representations. Next, Section 5.2 introduces the

concept of semantic maps by presenting a sound mathematical representation. Specifically,

detailed information about the implementation and integration of the object detection and

mapping subsystems described in Chapter 3 and 4 will be given in Section 5.3, followed by

simulation and experimental results. The chapter concludes with experimental results and

a discussion, where the advantages and results of the different algorithms will be compared.

5.1 Introduction to Semantic Networks

A semantic network is a directed or undirected graph consisting of nodes and edges and is

a well suited tool for knowledge representation. In particular, a node represents a concept

and an edge represents relations between the concepts. A concept can be a concrete

object, an attribute or an abstract type of an object. Typical relations are is of type or

has attribute. Semantic networks have been introduced as a translation language between

early computers and humans in 1956 by Richens [115] and Simmons et al. [135] in the

1960s, respectively. Nowadays, semantic networks are used for artificial intelligence, in
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Fig. 5.1: Example for a semantic network of type existential graph. The network is describing
a typical lab-scene with a pool table and a laboratory bench standing in front of a
red sofa.

robotics, and in image processing systems for the interpretation of scenes and recognition

and classification of places. As they have the ability to relate objects with a semantic

scheme that provides further information, they are well suited for applications that rely

on recognition and interpretation of natural scenes. The amount of program code can be

reduced significantly by using semantic networks, as individual cases do not have to be

handled separately.

5.1.1 Basic Types of Semantic Networks

All existing different types of semantic networks are based on a network consisting of nodes

and edges. The types differ in type and number of different concepts, relations and in the

formal definition. Static networks are created by a supervisor, while dynamic networks

have the ability to grow and re-arrange and thus to learn.

Static Semantic Networks

Definitional networks are mainly based on the use of the relation is of type, but also less

frequently on is kind of and is part of. Definitional networks use the relation is of type to

be separated in different hierarchies.

Assertional Networks are mainly used for logical deduction. They can be separated into

different subtypes with different quantifiers, e.g. existential graphs introduce a negation.

Their edges represent the concrete relation between two nodes, e.g. a camera is following

an object. Edges can be supplemented with arguments, e.g. the speed of the following

movement. As they only provide real objects, they have a limited expressivity. By replacing

90



5.1 Introduction to Semantic Networks

the relations with implications, other probabilistic networks like bayesian networks can be

treated as special cases of assertional networks. Figure 5.1 shows an example of a static

semantic network describing a typical lab scene.

Dynamic Semantic Networks

Executable networks have the ability to change the underlaying network either by exchang-

ing and parsing messages, by executing procedures, or by separating and re-arranging

graphs. Learning networks are able to learn new information. The simplest way is to

transform the information into a semantic network and include it into the network. This

can be enhanced by adapting weighting factors. The most complex way of learning is the

re-arrangement of the whole semantic network, where fundamental changes in the structure

of the network have to be made.

Hybrid Networks

A combination of features from the networks mentioned above is called a hybrid network. A

hybrid network can exist of two or more separated networks working in close collaboration

or can be a combination of two or more types into a single network.

5.1.2 Overview of current Semantic Knowledge Representations

In order to understand its environment, a robot needs a cognitive architecture. An overview

of those cognitive systems can be found in [151]. Semantic representations provide an ideal

knowledge base for these cognitive systems. In recent research, semantic information is used

for task planning [39], where the robot uses predefined semantic information and is not able

to learn [40]. Other approaches use a petri net to model and plan the tasks [27] or to model

places by using objects [112]. Some algorithms are dealing with robot exploration based on

semantic information of places. Stachniss et al. proposed algorithms for indoor robotics,

which can distinguish between corridors and rooms [138], while other approaches [70]

use topological knowledge about its environment for exploration. Nüchter et al. [101]

introduced the robot Kurt3D [140], which is capable of building three-dimensional semantic

maps. Rusu et al. [117] present a system that labels objects with semantic information in

a kitchen.

Meger et al. [83] present a so-called semantic robot, which is able to drive through its

environment, perform robust object detection, and label interesting places. Another system

proposed by Mozos et al. [81] introduces a representation of knowledge based on different

levels of abstraction, starting with a metric map up to a conceptual map. An overview of

hybrid maps containing a metric map and the position of objects, can be found in [20]. As

proposed by Galindo et al. [39, 40], a semantic network can be used for task planning and

labeling of the map can be used for path planning.
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5.2 Semantic Maps Approach

A semantic map is composed of an occupancy grid and a semantic network. The cells of

the grid represent a metric map of the environment. Therefore, a probability is assigned

to each cell. A high probability denotes that the cell is occupied and a low probability

that the cell is free of obstacles. A novelty of the semantic maps approach are the links

between cells of the occupancy grid and objects of the semantic network. As objects can

be different types and can have a manifold of different attributes, this network is composed

of nodes of the following four basic types:

• object-nodes, describing the objects itself,

• type-nodes, describing abstract types of objects,

• attribute-nodes, describing attributes of the objects or types, and

• action-nodes, specifying actions and relations between types of objects.

The following section introduces the novel mathematical description of a semantic map.

5.2.1 Mathematical Representation of Semantic Maps using Set

Theory

A semantic network is an undirected graph and it can be described using set theory,

providing a sound mathematical base. Therefore, the set R is defined, containing all

nodes of the semantic network, while the subset O contains all nodes of type object, A

of type attribute, T of type type and C of type action:

R = O ∪A ∪ T ∪ C. (5.1)

Every node Ri can be identified with a unique id i and it must be included in exactly one

subset. Hence, the intersections of the subsets are empty:

O ∩A = ∅, O ∩ T = ∅, O ∩ C = ∅,
A ∩ T = ∅, A ∩ C = ∅ T ∩ C = ∅. (5.2)

dim(S) denotes the number of nodes in the set S. Connections are written as a pair

of nodes. For example, a connection between the two nodes Ri and Rj is denoted as

(Ri,Rj). However, not all types of nodes can be connected with each other. For the

sake of clarity, different connection types are defined, depending on the types of the two

nodes. Actions can be only defined, so they affect type-nodes and must not be connected to

object-nodes directly. Table 5.1 shows the valid connections and introduces the connection

types between the nodes.

The function Ω(Ri) searches through all connection pairs and returns a set S containing

all nodes connected to Ri. In order to obtain the nodes of a certain type connected to
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Tab. 5.1: Valid connections between nodes

Node Object Attribute Type Action
Object - has attribute is of type -

Attribute has attribute - has attribute affects
Type is of type has attribute - has action
Action - affects has action -

a node, the function ΩA(Ri) can be used. It returns a set containing all nodes that are

connected to Ri and are contained in the set A:

ΩA(Ri) = Ω(Ri) ∩A. (5.3)

The function Ω is also defined for a subset S containing nodes as input:

ΩA(S) = ΩA(S1) ∪ ΩA(S2) ... ∪ ΩA(Sn),

with S = {S1,S2, ...Sn} . (5.4)

As both objects-node and type-nodes can have attributes, an object has two types of

attributes, direct ones and inherited ones. Hence, the get-connection function ΨA(Oi)

returns all nodes contained in the set A, which are connected to the node directly or

inherited via a type-node. Ψ is not only defined for object-nodes, but also for the cases

defined in Equation 5.5a to 5.5p:

ΨO(Oi) = ∅ (5.5a)

ΨA(Oi) = ΩA(Oi) ∪ ΩA(ΩT (Oi)) (5.5b)

ΨT (Oi) = ΩT (Oi) (5.5c)

ΨC(Oi) = ΩC(ΩT (Oi)) (5.5d)

ΨO(Ai) = ΩO(Ai) ∪ ΩO(ΩT (Ai)) (5.5e)

ΨA(Ai) = ∅ (5.5f)

ΨT (Ai) = ΩT (Ai) (5.5g)

ΨC(Ai) = ΩC(Ai) (5.5h)

ΨO(Ti) = ΩO(Ti) (5.5i)

ΨA(Ti) = ΩA(Ti) (5.5j)

ΨT (Ti) = ∅ (5.5k)

ΨC(Ti) = ΩC(Ti) (5.5l)

ΨO(Ci) = ΩO(ΩT (Ci)) (5.5m)

ΨA(Ci) = ΩA(Ci) (5.5n)

ΨT (Ci) = ΩT (Ci) (5.5o)

ΨC(Ci) = ∅. (5.5p)
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When Ψ is computed for a non-defined case, it will return an empty set. An example of a

simple semantic network composed of two object nodes of different type, some attributes,

and an action is defined as follows:

O = {O1,O2} , T = {T3, T4} ,
A = {A5,A6,A7} , C = {C8} ,

R = {O1,O2, T3, T4,A5,A6,A7, C8} , (5.6)

with the corresponding connections:

(O1, T3), (O1,A7), (O2, T4), (T3,A5), (T4,A5),

(T4,A6), (T3, C8), (T4, C8), (C8,A5). (5.7)

Figure 5.2 illustrates the semantic network and its subsets. The action C8 affects the

O1

O2

T3

T4

A5

A6

A7

C8

A

T

C

O

Fig. 5.2: Illustration of a semantic network and its subsets. The connections as described in
Equation 5.8 are highlighted.

attribute A5 of both objects. The results of the get-connection function for the example

given in Equation 5.6 can be stated as follows:

ΨA(O1) = {A5,A7} ,
ΨC(O2) = {C8} . (5.8)

As defined in Equation 5.5b, ΨA(O1) returns both the directly connected attribute A7

and the attribute A5, which was inherited via the type-node T3. Figure 5.2 highlights the

corresponding connections.

5.2.2 Introducing States for Objects

To plan meaningful actions, states for the objects are introduced. Every attribute con-

nected to an object, either directly or via a type-node, represents one variable of the

object’s state. Therefore χAi

Oj
denotes the state variable of the object-node Oj with respect

to the attribute-node Ai. Hence, the number of attribute-nodes connected (again directly
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or indirectly) to an object represents the number of dimensions of its state. A state variable

can be both discrete or continuous. Its type (e.g. its unit) must be defined unambiguously

within the corresponding attribute-node. The state space Xj of a node Oj is defined as:

Xj =
[
χ
Aq

Oj
, χAr

Oj
, . . . χAs

Oj

]T
, with ΨA(Oj) = {Aq,Ar, . . .As} , (5.9)

These states can be used for the computation of the similarity of two objects (see Section

5.2.3). The states of the two objects from the given example can be written as:

X1 =
[
χA5

O1
, χA7

O1

]T
, X2 =

[
χA5

O2
, χA6

O2

]T
. (5.10)

The attribute-node A5 is connected to both objects and hence occurs in both states.

Needless to say, χA5

O1
and χA5

O2
are independent and not affecting each other. As action-

nodes can only be connected to type-nodes and the effect of an action to a state variable has

to be specified, abstract state variables χAi

Tj
are introduced. Unlike a normal state variable,

they are not connected to an object-node but to a type-node. Consequently, object-nodes

have state variables while type-nodes have abstract state variables. An action affects the

states of the object-nodes, it is connected to via a type-node. Furthermore, the action has

to be connected directly with the corresponding attribute-node. This yields in a set of

abstract state variables that serve as input for the action. When performing the action,

these abstract state variables are updated. χ̂Ai

Tj
denotes an abstract state variable after it

has been updated. Therefore, each action Ci provides a function Λi, which updates the

abstract state variables:

Λi

(
χAa

Tm
, . . . χAb

Tm
, . . . χAc

Tn
, . . . χAd

Tn

)
=
(
χ̂Aa

Tm
, . . . χ̂Ab

Tm
, . . . χ̂Ac

Tn
, . . . χ̂Ad

Tn

)
, (5.11)

with

{Tm, . . . Tn} ∈ ΨT (Ci),
{Aa, . . .Ad} ∈ ΨA(Ci),
{Aa, . . .Ab} ∈ ΨA(Tm),

{Ac, . . .Ad} ∈ ΨA(Tn).

Hence, an action can modify the abstract states of several arbitrary types-nodes and not

all state variables of one type-node. The function Λ8 for the action C8 as defined in the

previous example in Equations 5.6 and 5.7 can be written as:

Λ8

(
χA5

T3
, χA5

T4

)
=
(
χ̂A5

T3
, χ̂A5

T4

)
. (5.12)

As the action-node C8 is only connected to the attribute-node A5 and it is connected to

two type-nodes, it only affects one state variable of the type-nodes it is connected to.
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5.2.3 Similarity Probability of Objects

When the robot is moving in its environment, the SLAM algorithm will most likely generate

errors, e.g. when performing a relaxation step. This results in the possible detection of the

same object at different positions. Moving objects lead to the same effect. Consequently,

a method to compute the probability of the similarity of two objects is introduced. In a

first step, a similarity measurement s(Oi,Oj) between the two object nodes Oi and Oj

with the corresponding states Xi = [χAa

Oi
, . . . χAb

Oi
]T and Xj = [χAc

Oj
, . . . χAd

Oj
]T is computed.

This computation is only valid, when the two nodes are of the same type:

s(Oi,Oj) =

{
d0 + d1, if ΨT (Oi) = ΨT (Oj)

0, if ΨT (Oi) 6= ΨT (Oj)
. (5.13)

In detail, s(Oi,Oj) contains a normalized squared euclidean distance d0 and a distance

function d1, which is used to estimate the similarity between the attributes of the objects.

The euclidean distance function considers only those objects, with a distance of less than

dMax:

d0 =

{
1

d 2

Max

d(Oi,Oj)
2, if d(Oi,Oj)

2 < d 2
Max

1, otherwise
. (5.14)

To compute the similarity between the attributes of the objects, a distance function be-

tween two attributes of the same type is computed and weighted for each attribute of the

state:

d1 =
k=n∑

k=1

αk d(χ
Ak

Oi
, χAk

Oj
), (5.15)

with n = max(dim(Xi), dim(Xj)). The weighting factor αk has to be evaluated thoroughly

for each state variable with respect to the importance of the attribute, so that more

important attributes are assigned with a larger αk. Furthermore, the weighting factors

have to be normalized:
k=n∑

k=1

αk = 1. (5.16)

The distance function d(χAk

Oi
, χAk

Oj
) has to be normalized and can only be computed, if

both state variables χAk

Oi
and χAk

Oj
are existing. If one of them is not existing the distance

function will return d(χAk

Oi
, χAk

Oj
) = 1. Additionally, the distance function has to be defined

independently for each type of attribute so that the result of the function varies between

0 for a large similarity and 1 for a large divergence. In most of the cases, the attribute can

be described as a scalar and the distance function can be estimated by normalizing both

states and computing an euclidean distance. On the contrary, there are some exceptions

where a more complex computation is required, for example if an attribute describes color

information:

d(χAk

Oi
, χAk

Oj
) = (

1

3
((ri − rj)

2 + (gi − gj)
2 + (bi − bj)

2))
1

2 , (5.17)
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where r denotes the red color channel of the attribute, g the green channel and b the blue

channel. All color channels have to be normalized. If the attribute is of type boolean, the

distance function can be computed as:

d(χAk

Oi
, χAk

Oj
) =

{
0, if χAk

Oi
= χAk

Oj

1, otherwise
. (5.18)

After all distance functions have been computed, the similarity estimation has to be con-

verted into a probability:

p(Oi,Oj) = 1− 1

2
s(Oi,Oj), (5.19)

where a large p(Oi,Oj) indicates a high probability of similarity.

5.2.4 Action Planning using Object States

At first a reduced abstract type state Yj is introduced, containing only those states of the

type Tj, which are of interest for the user:

Yj =
[
χAr

Tj
, . . . χAs

Tj

]T
. (5.20)

Yj must contain at least one element. A set containing arbitrary reduced abstract states is

called Y. Now, the inverse action function Λ−1
i can be used to search for suitable actions.

Λ−1
i uses the desired state variables χ̂

Aj

Oi
as input and delivers those states χAn

Om
, which are

required to perform the action. Additionally, Λ−1
i returns an estimation of the necessary

costs σ of the corresponding action:

Λ−1
i

(
χ̂Aa

Tm
, . . . χ̂Ab

Tm
, . . . χ̂Ac

Tn
, . . . χ̂Ad

Tn

)
=
(
σ, χAa

Tm
, . . . χAb

Tm
, . . . χAc

Tn
, . . . χAd

Tn

)
. (5.21)

If a certain state cannot be achieved, Λ−1
i returns a cost of σ = −1. Therefore the search

function Φ is introduced, which uses the inverse action function to find the best suited

action. Input of the function is a set of desired state variables and output is the estimated

cost to perform the action, as well as a set C, containing the found actions:

Φ(χ̂An

Oi
, . . . χ̂Am

Oj
) = (σ, COm

i , . . . COn

j ), (5.22)

while COm

i denotes that action Ci is performed with object Om. Actions affecting two

or more objects Om and On are denoted as COm,n

i . Algorithm 5.1 describes the search

function. Internally, Φ uses Λ−1
i to find all possible actions that lead to the desired state.

As Λ−1
i returns a set of abstract states, a suitable object-node has to be found. Therefore

Φ computes the action-cost for all object-nodes of the corresponding type. The driving

costs towards the object are also taken into account. If an action requires a certain state

value and no object in this state was found, Φ calls itself recursively to compute the actions

required to achieve the states returned by the function Λ−1
i . Φ will select the object and

action with the lowest total costs. Finally the lowest instance of Φ will return a list of

actions and corresponding object-nodes. A cost of σ = −1 will be returned, if no action
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Algorithm 5.1 Recursive search-function Φ(Ŷ ) = (σ,C)

1: C = ∅, σ = 0
2: for all χ̂An

Oi
∈ Ŷ do

3: if χ̂An

Oi
6= χAn

Oi
then

4: for all Λ−1
l with Cl ∈ ΨC(Oi) do

5: Cl = ∅
6: Compute Λ−1

l

(
χ̂An

ΨT (Oi)

)
= (σl, Y )

7: if σl 6= −1 then
8: for all χ̂Am

Tj
∈ Y do

9: for all Ol ∈ ΨO(Tj) do
10: Cu = ∅, σu = 0
11: Compute Φ(χ̂Am

Ol
) = (σt,Ct)

12: if σt 6= −1 then
13: Compute driving cost σd to object Ol

14: σu = σd + σt

15: Cu = Ct

16: end if
17: Store σu and Cu into memory
18: end for
19: Select Cu with best σu

20: σl = σl + σu

21: Cl = Cu ∩Cl

22: end for
23: Store σl and Cl into memory
24: end if
25: end for
26: Select Cl with best σl

27: if σl = −1 then
28: return (−1, ∅)
29: end if
30: Compute driving cost σd to object Oi

31: σ = σ + σd + σl

32: C = Cl ∩C
33: end if
34: end for
35: return (σ,C)

can be found, and σ = 0, if all objects are already in the desired states.

To illustrate the search-function, the example defined in Equation 5.6 and 5.7 is extended

with the action C9, which has the following connections: (T4, C9) and (C9,A5). C9 has the

following action function:

Λ9

(
χA5

T4

)
=
(
χ̂A5

T4

)
. (5.23)
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Fig. 5.3: Illustration of objects, actions and the corresponding state changes in an action-
centered view.
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Fig. 5.4: Illustration of action planning in three steps (from left to right) in an action-centered
view. Black lines denote possible actions.

Let O1 and O2 have the following initial states:

X1 =
[
χA5

O1
, χA7

O1

]T
= [0, 0]T , X2 =

[
χA5

O2
, χA6

O2

]T
= [0, 0]T . (5.24)

The action functions have the following numerical values:

Λ8

(
χA5

T3
, χA5

T4

)
= Λ8(0, 1) =

(
χ̂A5

T3
, χ̂A5

T4

)
= (1, 2),

Λ9

(
χA5

T4

)
= Λ9(0) =

(
χ̂A5

T4

)
= 1. (5.25)

Figure 5.3 shows the actions of the example and the corresponding state changes in an

action-centered view. The desired object state for O1 is:

X̂1 =
[
χ̂A5

O1
, χ̂A7

O1

]T
= [1, 0]T . (5.26)

The result of the action planning is shown in Figure 5.4. In the first step, the function

Φ′(χ̂A5

O1
= 1, χ̂A7

O1
= 0) is executed. This function finds Λ8 as solution, with an input of

χA5

T3
= 0 and χA5

T4
= 1. In detail, the two objects O1 and O2 are selected to perform the

action. However, the second requirement is not fulfilled, so another instance will be called:

Φ′′(χ̂A5

O2
= 1). This instance will return the action C9 executed on object O2. Now, both

requirements are fulfilled and Φ′ will now return CO1,2

8 . Consequently, the following actions

have to be performed: (CO2

9 , CO1,2

8 ).
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A sound and powerful mathematical description of semantic maps was introduced in this

section. This description serves as a base for further algorithms, like the computation of

a similarity probability of two objects or the action planning using the newly introduced

object states. In contrast to existing algorithms, only one representation is sufficient for

both action planning and path planning. Equally important, the knowledge representation

has to be integrated with the presented perception system. The next section describes, how

the two systems can be integrated and provides further details about the implementation.

5.3 Implementation

A framework containing a simulator, the semantic processing, and different robot clients

has been implemented to verify and test the algorithms. The semantic processing serves as

an interface combining two- and three-dimensional mapping with object detection. Both

semantic processing and the simulator act as a server. To ensure connectivity, the simu-

lator and the semantic processing have the same interface. Communication between the

server and the client is either using the UDP network protocol when server and robot are

distributed, or the D-Bus protocol when server and client are running on the same machine.

Server

Client

Semantic Robot

RobotEnvironment

Semantic Robot

User

sRobot GUI sRobot GUI

Simulated Robot

User

Semantic

Processing

Perception

Environment

Semantic

Processing

Perception

Simulator

Client

(a) (b)

Fig. 5.5: Architecture of (a) the simulator and the semantic processing in (b) a real world

environment.

Figure 5.5 shows the difference between the simulated and the real environment. The

semantic robot client can either be attached to a real or to a simulated robot, both having

the same interface. Both servers, the simulator and the semantic processing, are equipped

with an optional GUI providing information about the current processing steps. Another

GUI is provided for the semantic robot, offering different views of the semantic map,

methods to modify the underlying semantic network, and functions to control the robot

and initiate actions.
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Fig. 5.6: Architecture of the semantic mapping system. Solid lines indicate conventional inter-
thread communication while dashed lines indicate communication via D-Bus or a
network protocol like UDP. The object database can be opened in several instances.

5.3.1 Simulator

Robots are simulated in a two-dimensional environment with different types of objects.

Arbitrary attributes can be assigned to each object. Each robot is simulated as a non-

holonomic system and the client can control the driving- and rotational speed. Further-

more, the server transmits range data of a simulated laser rangefinder to each connected

client. If in the client’s field of view, the position of objects and their attributes are also

transmitted. Clients can perform simple actions on objects, which change attributes or the

place of the objects. The simulated environment consists of a bitmap representing the map

and a xml-file, where information about the initial position of the clients, as well as the

position, type, and attributes of the objects and possible actions are defined. Not only the

movement of the robot and the environment is simulated, but also the perception system

of the robot. Consequently, the simulator provides an ideal base for testing the semantic

mapping subsystem.

5.3.2 Integration of Semantic Maps with Mapping and Object

Detection

Figure 5.6 shows the architecture of a complete semantic mapping system, including a two

and a three-dimensional mapping system and an object detection system. As the three

systems run independently and with different rates, they are separated in a total of four

different processes: two-dimensional mapping, three-dimensional mapping for the detec-

tion of obstacles, object detection, and semantic processing. The semantic processing runs

with the highest priority, followed by the two-dimensional mapping. The three-dimensional

mapping and object detection process have the same, and lowest, priority. Furthermore,

the semantic processing serves as a clock-generator, controlling the timing of the other pro-
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Fig. 5.7: Finite State Machine of a semantic robot with the states ’idle’, ’drive’, ’action’,
’planning’, and ’execute’.

cesses. It can start or stop the other processes, manage and distribute the data acquired

from the robot, and process the resulting data received from the processes. To ensure the

encapsulation, each process is running in its own exclusive memory space. Hence, memory

conflicts can be avoided and unexpected behavior of one process will not affect the other

ones. The communication between the processes is realized with the D-Bus protocol and

shared memory blocks.

The three-dimensional object detection module returns the type of the detected object

and its position in three dimensions, which can easily be included into the semantic map.

However, the two-dimensional object detection will return the type of the object and its

position and dimensions in the input image. Consequently, the position has to be trans-

formed into the robot system, before it can be included into the semantic map. Using

stereo triangulation is the most eligible method. To compute the disparity that is needed

for stereo triangulation, the position of the object needs to be known in both images of

the stereo image pair. On the other hand, a complete disparity map is already being com-

puted in the three-dimensional mapping module. To avoid unnecessary computations, this

disparity map can be used: the object detection process sends the position and dimensions

of the objects to the three-dimensional mapping process, which then computes the median

disparity in the region of the image, where the object was found. This median disparity is

then used to compute the position of the object. For the insertion of the object into the

semantic map, the z-coordinate of the objects position can be neglected.

5.3.3 Semantic Robot Client

A robot client needs functions to connect to a server, send driving commands, and

to receive and interpret the data sent by the server. By using the simulated laser

data, the robot can easily build a two-dimensional map. Furthermore it is able to

understand the maps created from the two and three-dimensional mapping modules. The

so called semantic robot is composed out of these basic components and is providing an
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implementation of a semantic map as described in Section 5.2. For this purpose, the robot

processes the object data received from the server and creates new nodes and links in the

semantic network, when a new object was found or updates the network, when attributes

of an object have changed. Predefined information can be used by loading a semantic

network, which is containing different types of objects, possible attributes, and actions.

This predefined semantic network will then be updated with the new information received

by the server.

Figure 5.7 shows the finite state machine of the semantic robot client. Received informa-

tion like range data or information about new objects is processed in all states. In order

to assign a new action, the desired state of an object can be given to the robot. Now

the finite state machine will switch to the state planning, which computes the search

function Φ. After planning a suitable list of actions, it will start to execute the plan.

During execution, the robot will switch between the states action and drive until the

object is in the desired state. The execution time and thus the driving time is used to

estimate the costs σ for the search function.

Besides the mathematical background, details about the implementation of a semantic

mapping system have been given in this section. The implementation framework includes

a simulator, which is used to verify the cognition system. Additionally, a semantic robot

has been presented, which uses semantic mapping and can either be used with a simulator

or a real robot. In the next section, the complete semantic mapping system will by verified

by using simulations and real world experiments.

5.4 Simulation Results

The simulator was used to test and verify the presented semantic mapping architecture.

Several objects have been placed in the simulated environment, amongst others a cup and

two objects of type bottle. The cup had the attribute level with the value empty, and the

bottles the attributes level and closed with the corresponding values full and true for one

bottle and false for the other one, respectively.

After driving and exploring the scenario, the robot had built the semantic map as shown

in Figure 5.8. Furthermore, the actions open and fill have been defined in a predefined

semantic network. The depicted semantic map shows not only the objects and their at-

tributes, but also their positions. Every object has a link to its corresponding cell in the

metric map and the cells have links to the nodes of the network vice versa. Figure 5.9

shows the state changes of the defined actions.

To test the planning algorithm, the robot was assigned with the task to find a cup with the

state level:full. Therefore, the robot had two possibilities to perform the action fill. One

was to use the bottle with state open:true and the other one was to open the other bottle by

performing action open before performing action fill. Depending on the initial positions of

the robot and the objects, the semantic robot chose the alternative with the lowest overall

cost. When the distance between the robot and the bottle with state closed:true is smaller

than the other distance, so that the driving costs to the more distant bottle are larger than

the costs for the action open, the robot will the select the nearer bottle.
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Fig. 5.10: Integration of mapping with object detection and two type of objects, humans and
a vacuum cleaner. (a) shows an image scene taken at the start point, while (b)
shows the metric map with the positions of the objects. The dashed line illustrates
the path of the robot. (c) shows the corresponding semantic network.

Like the previous experiments, the following investigations have been conducted using

the vision processing PC on the ACE robot, which was equipped with an AMD Phenom

Quad-Core CPU running at 2.5 GHz, 4 GB of physical memory, and two GeForce 9800

GX2 cards and hence four Cuda enabled devices. Unless stated otherwise, only one

Cuda device has been used for a module.

The camera was not aligned with the robots heading. In specific, it was rotated around

the robots z-axis with an angle of 45◦, thus covering a more interesting field of view. A

bumblebee X3 camera with a field of view of 66◦ was used for this experiment. All three

modules were executed on one PC, while one Cuda device was used for stereo processing

and two of the other devices for object detection. Although three-dimensional mapping

was only used for obstacle detection, the result three-dimensional map was stored for

further use. The two-dimensional mapping was performed with a frame rate of 5 Hz, the

three-dimensional mapping with 2 Hz, and the object detection with 7 Hz. A block size

of 30 cm was used for the occupancy grid of the metric map. To enhance accuracy, the

robot’s odometry module was used to plot the position.
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The object database contained two objects, a hoover and the upper part of a human body.

Figure 5.10 (a) shows a part of the scene. The blue and red rectangle indicate the result

of the object detection algorithm that was able to detect the vacuum cleaner and one

of the humans. The two object-type nodes, human and hoover, the attribute-type nodes

color and power, and the action-type node power switch have been added manually before

the experiment was started. Figure 5.10 (b) shows the map-centered view of the semantic

map generated on a short trip of ACE and Figure 5.10 (c) shows the object-centered

view of the same semantic map. Three aspects of the system have been tested in the

experiment: the two-dimensional mapping, the object detection, and the integration of

the detected objects into the semantic map. In particular, the similarity condition of the

semantic map could be investigated. Due to the camera distortion and uncertainties in the

transformation of the objects position from image to robot coordinates, duplicate objects

can occur easily. On the other hand, the scene contains two different humans and the

system should be able to distinguish between them. In its current state of development,

the two-dimensional object detection algorithm is not able to detect attributes of the

objects. Consequently, the attribute color of the two objects of type human had to be

entered manually, to be able to test the similarity probability. Furthermore, the threshold

probability of similarity and the maximal distance have to be adjusted carefully. Summing

up, the presented robot is able to distinguish between different objects, when they have

different attributes.

Another experiment is presented in Figure 5.11. The experimental setup contained three

chairs with the same attribute but with a large distance between them. Again, the

attributes have been edited manually. As the distance between the objects was larger

than dMax = 2 m, the algorithm was able to distinguish between them. As shown in the

third image of Figure 5.11 (a), two chairs with a small distance could not be distinguished

and were hence detected as one object, namely Object 3.

5.6 Discussion

This chapter introduced a novel mathematical framework used to derive algorithms, which

can be used to create a map of the environment containing semantic information. This

so called semantic map consists of a metric map containing the necessary information for

navigation and a semantic network, containing information about objects and their at-

tributes. Algorithms for the computation of the similarity probability of two objects have

been presented. Both the metric map and the semantic network are linked with each other.

Through the introduction of state spaces for objects, actions can be planned and objects

can be manipulated. Consequently, the system is capable of planning actions that change

the state and thus attributes of objects. In addition, the state spaces can be used to com-

pute a similarity probability of two objects, so the semantic mapping system is capable of

dealing with uncertain measurements. Another main difference between the state-of-the-

art and the semantic mapping system is that only one representation is sufficient to model

the environment and thus for path and action planning.
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Fig. 5.11: Another example for the integration of mapping with object detection with multiple
objects of one type, a chair. (a) shows an image scene taken at the start point,
while (b) shows the metric map with the positions of the objects. The dashed line
illustrates the path of the robot. (c) shows the corresponding semantic network.

An implementation of a semantic map was presented, containing a simulator, which was

used to test the functionality of the presented algorithms. Furthermore, the implementa-

tion contains a complete framework for semantic mapping, composed out of a two- and

three-dimensional mapping module, an object detection module, a semantic processing

system controlling the input module, and a semantic robot containing the actual imple-

mentation of the semantic map. Due to standardized interfaces, the semantic processing

system can be replaced by the simulator and each of the modules can be exchanged by a

compatible one. New modules can be included without fundamental changes of the archi-

tecture.

Both simulation and experimental validations have been conducted to verify the function-

ality. The presented system was able to build an accurate semantic map containing useful

information and the system was able to plan and perform complex actions in the simula-

tion. The proposed methods can be used to increase the cognitive understanding of mobile

robots working in close collaboration with humans. However, the current object detection

algorithm is limited in the detection of the object’s attributes. Consequently, the action

planning could not be verified in a real case experiment. The robust detection of attributes

and the experimental validation are subject to future research directions. Another aspect

in future works is the introduction of a new kind of actions capable of identifying the type
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of an object. Furthermore, the semantic mapping system is only capable of adding new

nodes to the semantic network and of modifying existing connections. Methods to remove

nodes of disappeared objects are also subject to future research.

As they are combining vision-based mapping and object detection with a sound knowledge

representation and decision making system, semantic maps mark a sophisticated cognitive

architecture.
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6.1 Concluding Remarks

This thesis led through the development of a robot with powerful cognitive abilities, which

are formed by a perception and a cognition part. Sophisticated cognitive abilities require a

suitable knowledge representation and powerful algorithms for object detection, mapping,

and decision making. The main approaches of this thesis are summarized below, together

with the most important results.

ACE, a sophisticated mobile robot has been co-developed in the scope of this thesis and

was used as hardware platform during the implementation process and for the experimental

validation. The robot is equipped with a camera head, two stereo cameras with different

resolution and different field of view, a touchscreen and loudspeakers for interaction, and

two PCs for computation. A modular software architecture was designed, so that almost

all modules of the perception and cognition system can be used isolated or can be replaced

by another module with similar functionality. Therefore, a stringent hierarchy for the

processes and unambiguous communication protocols have been developed. Consequently,

the whole system can either be executed on one machine or can be distributed between

several PCs. To guarantee the real-time capability of the system, a scheduler controlling

the submodules and modules has been implemented in the semantic processing module.

As both perception parts utilize two- and three-dimensional input data, three-dimensional

input data has to be generated. Moreover, robust object detection and mapping require

input data in real-time and at a high resolution. Additionally, the ego-motion of the robot

has to be known for mapping. Consequently, a sophisticated stereo and ego-motion esti-

mation algorithm was developed using a novel implementation on Cuda, Nvidia’s stream

computing hardware. As stereo reconstruction and ego-motion estimation are computed

simultaneously, this algorithm is able of performing the reconstruction of disparity images

at a resolution of 640×480 with 150 disparities together with the ego-motion estimation at

a frame rate of 10 Hz. Although it is not able to compute a full disparity map, it exceeds

most existing algorithms regarding speed and number of computed disparities.

The stereo algorithm computes a colored point cloud, which is then used by one of the

presented object detection algorithms, namely the novel human body-pose estimation, pro-

viding valuable information for interaction. The algorithm tries to fit a human model into

the segmented point cloud, starting with the head. It can be extended to detect other

skeleton based types of objects. As the fitting process starts with the head, the whole al-

gorithm is constrained by the algorithm used to detect the start point. In addition to the

three-dimensional algorithm, an algorithm using two-dimensional images was introduced.

Like the stereo algorithm, it is implemented on Cuda, to ensure its real-time capability. A

novel cascade of three types of histograms, namely color histograms, histograms of oriented

gradients, and color co-occurrence histograms is used. A search window is moved over the

whole image in every step of the cascade and a histogram is computed for every search

window and then intersected with the reference histograms. Through careful selection of
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the thresholds, the algorithm is able to deal with large occlusions. Another improvement

compared to the state-of-the-art is the low number of necessary training images, allowing

the algorithm to be used for online learning. The computation time for a whole cascade

ranges between 40 ms and 140 ms per image, depending on the number of objects in an

image. Hence, the algorithm is real-time capable. However, the unpredictability of the

computational time may lead to problems with the scheduler.

Of equal importance are the two vision-based mapping systems. The two-dimensional sys-

tem is based on a texture-based approach, where the texture of the image is compared

to a reference texture of the ground. By introducing a texture memory containing valid

matches, the algorithm is able to adopt to a changing ground and to recognize previously

learned grounds. A metric map of the environment is created by using a back-projection

algorithm. Although this algorithm runs with a frame rate of 15 Hz, it is not able to

detect all obstacles. Sometimes there is an overhang or obstacles are of the same color as

the ground. This leads to the requirement for a three-dimensional mapping system. The

median fusion algorithm was implemented in a novel modular manner, so that each module

can be replaced by another module of similar functionality. Even laser rangefinders can

be used instead of the stereo camera or the robot’s odometry instead of the ego-motion

estimation, respectively. A genetic ICP algorithm was introduced, which is able to fuse

a point cloud obtained by a laser rangefinder with a point cloud obtained by the stereo

system. Consequently, the advantages of both can be utilized and a colored point cloud

with a high quality can be generated. The resulting three-dimensional representation of

the environment requires large amounts of memory, but can be used to detect obstacles or

to plan complex actions for the manipulation of the environment.

Object detection and mapping have to be combined to a sound knowledge representation

and a decision making system has to be available to form cognitive abilities. Therefore,

semantic maps have been introduced, combining a metric map with a semantic network.

Cells of the map can link to nodes of the network and vice versa. A sound mathematical

background has been developed, revealing several classes of nodes: objects, types, at-

tributes, and actions. By introducing a novel state space for every object, which is formed

by the type of the object and its attributes, actions can be planned to manipulate the

object. As the action planning is executed recursively, some dependencies in object states

can be resolved. However, sudden changes of the object’s state may lead to unpredictable

behavior of the current implementation. The semantic processing module includes several

submodules, which have been developed to construct and to utilize the semantic map. A

path planner, a scheduler to ensure real-time capability, and a GUI to process user inputs

and to display the current state of the system have been included. A simulator emulating

a robot and the environment was used during the implementation process to verify the

cognitive architecture and to test the decision making and action planning modules. Ad-

ditional experiments have been performed to test the applicability. Parts of the perception

process, the human body pose estimation, the two-dimensional mapping, and the obstacle

detection in three dimensions have already been tested in an extensive outdoor experiment,

when the ACE robot found its way to the Marienplatz, a central square in Munich.
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By developing new algorithms and enhancing known ones, the research presented in this

thesis contributes to advance the state-of-the-art in the development of cognitive architec-

tures. Due to the modular design of the semantic mapping system, new algorithms can be

included easily. Consequently, semantic mapping is a sustainable architecture for future

research. Experiments have proven the functionality of semantic mapping, showing that

the methods and results presented in this thesis serve as a stepping stone on the way to

more cognitive and social robots.

6.2 Suggestions for Future Work

Constantly increasing computational power allows more complex software architectures,

more sophisticated perception algorithms, and the arbitrary storage of large amounts of

data. New sensors allow even more accurate representations of the environment using the

full computational capacity. Due to its modularity and well defined interface, the presented

architecture is an ideal base for future developments in the research field of cognitive abil-

ities for mobile robots.

A sophisticated perception system is inevitable. Several aspects of the presented object

detection research can be enhanced. As mentioned before, the body pose estimation algo-

rithm can be used to detect other objects. Furthermore, the developed object detection

cascade can be extended to detect certain attributes of objects, like the objects color.

Therefore the color histogram step needs to be replaced with a more complex algorithm.

With a large increase of available computational power, color co-occurrence histograms

can even be extended to use three-dimensional images as input. Vision-based mapping is

the other important part of perception. On the other hand, the quality of the resulting

map is limited by the quality of the ego-motion estimation. Therefore, algorithms capable

of dealing with difficult light conditions have to be developed. Colored three-dimensional

point clouds as representation of the map provide valuable information - but require large

amounts of memory. Hence, future research might deal with memory efficient represen-

tation based on a textured polygon grid and object models. Reliable algorithms for the

computation of this grid have to be developed. Another interesting area of research is the

combination of object detection and the computation of the grid.

As it is a relatively new research area in the field of mobile robotics, cognition holds the

most interesting challenges. In a first step, the presented architecture can be enhanced

with the mentioned suggestions, where the detection of attributes has the highest poten-

tial. Other research may deal with complex action and path planning algorithms using

all three spatial dimensions. The increasing computational power allows the integration of

more complex biologically inspired methods, like large-scale neuronal networks.

Modeling human-like behavior is a major challenge for future research and will increase the

fascination for robotics. In a long term vision the cognitive abilities of robots will reach a

point, where robots can interact naturally and have an amazing ability to understand the

environment. However, they still won’t possess a soul.
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A System Overview of ACE

This chapter gives a short introduction to the software and hardware architecture of the

ACE (autonomous city explorer) robot. Detailed information about the robots mission can

be found in [12], while [74] and [92] provide information about the navigational subsystem

and the vision system, respectively. The interaction system is introduced in [13].

A.1 Hardware

Figure A.1 shows the ACE robot and its main components. The robot is based on a differ-

ential wheel platform developed by BlueBotics SA1. An encapsulated PowerPC performs

the low level control of the platform, providing basic navigational features and is connected

to a laser rangefinder for navigation and obstacle avoidance. ACE has a length of 78 cm,

a width of 56 cm, a height of 178 cm and a wight of approximately 160 kg. Its maximal

speed is 1.4m
s
and the maximal acceleration is 1.35m

s2
.

Two linux PCs are located in the main chassis, one for navigation and interaction and

the other PC for vision processing. This PC is equipped with two Nvidia Cuda capable

graphic cards, allowing massive parallel computing. The PCs are powered by eight lithium

polymer batteries with a capacity of 1000 Wh each, thus achieving a total operation time of

over six hours. Furthermore, the robot is equipped with a second, tilted laser rangefinder

for traversability assessment. A loud speaker and a touch screen are used for the interac-

tion with pedestrians. Another touchscreen and a keyboard for maintenance are mounted

on the back of the robot and are hidden by a panel.

The right part of figure A.1 shows the sophisticated camera head with its two stereo cam-

eras. A Bumblebee X2 camera by Point Grey Research Inc.2 with a focal length of 2 mm

and a field of view of 97◦, which is mounted in a fixed pose, is used for the detection of the

sidewalks and for human body pose estimation. Another Bumblebee X3 camera with a

focal length of 3.8 mm and thus a small field of view of 66◦ is mounted on a pan/tilt plat-

form and is used for human tracking and object detection. During interaction, this camera

is orientated towards the human to enhance the acceptance. Both cameras are equipped

with a servo driven artificial eyelid, which was developed to fulfill two tasks: improve in-

teraction by blinking at the human and preventing the sun from shining directly into the

camera, to avoid undesirable effects like blooming. The camera head can be accessed via

a CAN and a USB interface.

A.2 Software Architecture

As seen in figure A.2, the software architecture of ACE can be separated into four main

modules: navigation, interaction, vision, and core. The core modules provides basic func-

1http://www.bluebotics.com
2http://www.ptgrey.com
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tionality like a communication protocol or fundamental data structures. The navigation

module uses one of the laser rangefinders for traversability assessment, while the other one

is used for simultaneous mapping and localization (SLAM). This yields a two-dimensional

map, which can be used for navigation. Different navigational behaviors are available.

Possible commands are drive to x y or rotate by p and drive straight ahead for x m.

The vision module controls the camera head and processes the data recorded by the cam-

eras. It possesses different states. When the tracking mode is active, the vision module

accesses the driving commands of the navigation module directly. Other modes include

the detection of human body poses and a search mode that sends triggers, when an inter-

section or other important objects are detected. Both the navigation and vision module

are controlled by the interaction module, which controls the speaker and the touchscreen

and uses input from the user, the navigation and the vision module to select the robots

navigational behavior and compute position commands.

Some of the methods presented in this thesis have been used for the ACE-project, namely

the stereo module, the human body pose estimation, the two-dimensional mapping and

the two-dimensional object detection in the intersection detection module.
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B Introduction to CUDA

While conventional CPUs are able to compute many different operations on different types

of data and provide up to four arithmetic logic units (ALUs), the main task of graphics

cards is to perform graphics rendering based on polygons. As each polygon can be com-

puted separately, graphics cards provide many ALUs and are only able to compute few

different operations on few types of data. However, simple operations are computed in

a vast amount of parallel threads. By providing easy access to parallel computing, the

introduction of Cuda established a whole new branch in general-purpose computing on

graphics processing units (GPGPU). Writing programs for Cuda is quite different from

classical programming. Thus, an overview of the architecture of Cuda and the developed

programs is provided in this chapter.

B.1 Overview of CUDA

Cuda comes with an API based on the language C and provides a complete framework

for the development. Cuda programs can be separated into two parts, the main loop is

executed on the CPU, also called host, while the actual threads are executed on the GPU,

also called device. As a thread is a relatively simple function, more complex algorithms

have to be split into several execution steps. Up to 512 threads compose a block, while

a grid holds an arbitrary number of blocks. When starting a thread, the size of the grid

and the number of threads in each block have to be defined. All threads contained in one

block will be executed in parallel, while the different blocks can also be computed consecu-

tively. The Cuda API provides built in variables to get the current position of the thread

in the block and in the grid, so that the thread knows the memory it is supposed to process.

Tab. B.1: Comparison of the different memory types

Type Size Latency Device Access Host Access

Register < 1 KB (per Thread) 1 cycle read & write -

Local ∼ 64 KB (per Thread) ∼ 500 cycles read & write -

Shared 16 KB (per Block) 1 cycle read & write -

Constant 64 KB Cached read write

Texture > 256 MB Cached read read & write

Global > 256 MB ∼ 500 cycles read & write read & write

Different memory types for different purposes are provided, ranging from small and fast to

large and slow memories. Table B.1 shows and compares these different types. Registers

provide the fastest type of memory. However, only a very small number is available per

thread. If a thread requires more memory, the slow local memory has to be used. Registers
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Fig. B.1: Architecture of the CUDA interface. Dashed lines indicate a communication protocol
based on UDP or D-Bus.

and local memory can only be accesses by a single thread, while global memory can be

accesses by all threads and functions executed on the host. Hence, global memory is an

ideal base for the transfer of data. Shared memory can be used for the communication

between the threads in one block. However, simultaneous writing is not allowed, leading

to threads blocking other threads and thus a longer execution time. Constant and texture

memory provide a large amount of memory that is cached, and thus fast to access.

B.2 Integration of a CUDA Application

All programs using the Cuda technology have to be built with Nvidia’s toolchain, com-

plicating the integration into another framework. Therefore, all modules using Cuda have

been split into two parts: an interface and an own process. While the interface conducts

the communication with the other modules in a subsystem, the process conducts the ac-

tual computation and communicates via a UDP network connection or D-Bus with the

interface, depending on whether the process is run on the same system or is distributed.

Figure B.1 shows the architecture of the interface and the Cuda process, which can be

separated into further submodules. The adaptor communicates with the interface, while

the wrapper pre-processes the the data for the device. The main thread controls the actual

threads and distributes the data to the memory.
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C Computation of the Camera Motion

The motion of the camera can be computed directly by examining the disparity without

transforming the disparity into cartesian coordinates [30]:

(
w

1

)
≃ Γ ·

(
cm

1

)
, (C.1)

with

w =




x

y

δ


 =




px · (u0 − i)

py · (v0 − j)

d · px


 , m =




cX

cY

cZ


 , Γ =




f 0 0 0

0 f 0 0

0 0 0 fB

0 0 1 0


 . (C.2)

px and py denote the pixel size, while u0 and v0 denote the center of the camera, B the

stereo basis, and f the focal length. The ego-motion of the camera in disparity space can

be described as: (
ŵ

1

)
= Γ ·T · Γ−1 ·

(
w

1

)
, (C.3)

with the transformation matrix T , which contains the rotation and translation of the

robot. w contains the pixel and disparity data of the previous image, while ŵ contains

the disparity data of the current image. The computation can be simplified by using the

small-angle approximation:

T =




cos(α) 0 sin(α) ctx
0 1 0 0

− sin(α) 0 cos(α) ctz
0 0 0 1


 =




1 0 α ctx
0 1 0 0

−α 0 1 ctz
0 0 0 1


 , (C.4)

while α denotes the rotation around the camera’s y axis and ctx and ctz the translation

of the camera. Equation C.3 can be solved by assuming the transformation error e to be

e = 0:

−(x+
f 2

x̂
)α +

δ

B c
tz −

fδ

Bx̂ c
tx = f(

x

x̂
− 1), (C.5a)

−αx− δ

B c
tz = f(

x

x̂
− 1), (C.5b)

−αx− δ

B c
tz = f(

x

x̂
− 1). (C.5c)

119



C Computation of the Camera Motion

By using the matrix vector notation, the movement for all n corners can be described as:



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, (C.6)

D ·




α

ctx

ctz


 = p. (C.7)

Now, Equation C.7 can be solved by using the method of least squares:




α

ctx

ctz


 = (DT ·D)−1 ·DT · p. (C.8)

As this computes the movements of the objects relative to the camera, the signs of α,

ctx, and ctz have to be changed. Furthermore, the movement of the camera cm has to be

transformed into the movement of the robot rm:

rm =r Tc ·c m, (C.9)

while rTc denotes the position and orientation of the camera relative to the robot.
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[22] K. Čapek. R.U.R. (Rossum’s Universal Robots). Penguin Classics, 2004.

[23] P. Chang and J. Krumm. Object recognition with color cooccurrence histogram. In

Proceedings of the Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), 1999.

[24] A. Chariot and R. Keriven. Gpu-boosted online image matching. In Proceedings of

the International Conference on Pattern Recognition (ICPR), pages 1–4, 2008.

[25] Y.D. Chen, J. Ni, and S.M. Wu. Dynamic calibration and compensation of a 3d

laser radar scanning system. In IEEE International Conference on Robotics and

Automation (ICRA), pages 652–658, 1993.

[26] H.I. Christensen, A. Sloman, G-J. Kruijff, and J. Wyatt. Cognitive Systems: Final

Report of the CoSy Project. Springer Verlag, 2009.

124



Bibliography

[27] H. Costelha and R. Lima. Modelling, analysis and execution of robotic tasks using

petri nets. In International Conference on Intelligent Robots and Systems (IROS),

pages 1187–1190, 2007.

[28] J. Coughlan and H. Shen. Terrain analysis for blind wheelchair users: Computer

vision algorithms for finding curbs and other negative obstacles. In Proceedings

of the Conference & Workshop on Assistive Technologies for People with Vision &

Hearing Impairments, 2007.

[29] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

Proceedings of the Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), pages 886–893, 2005.

[30] D. Demirdjian and T. Darrell. Motion estimation from disparity images. In Proceed-

ings of the International Conference on Computer Vision, pages 213–218, 2001.

[31] A. Elgammal, A. Elgammal, and Chan-Su Lee. Inferring 3d body pose from sil-

houettes using activity manifold learning. In Proceedings of the Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), pages 681–688,

2004.

[32] C. Estrada, J. Neira, and J.D. Tardos. Hierarchical slam: Real-time accurate

mapping of large environments. IEEE Transactions on Robotics and Automation,

21(4):588–596, 2005.

[33] E. B. Fernandez and X. Yuan. Semantic analysis patterns. In International Con-

ference on Conceptual Modeling / the Entity Relationship Approach, pages 183–195,

2000.
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[101] A. Nüchter and J. Hertzberg. Towards semantic maps for mobile robots. Robotics

and Autonomous Systems, 56(11):915–926, 2008.
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[110] A. Pronobis, P. Jensfelt, K. Sjöö, H. Zender, G. Kruijff, O. Mozos, and W. Burgard.

Semantic modelling of space. In Cognitive Systems: Final Report of the CoSy Project.

Springer Verlag, 2009.

[111] A. Pronobis, O. Martinez Mozos, B. Caputo, and P. Jensfelt. Multi-modal semantic

place classification. The International Journal of Robotics Research (IJRR), 29(2-

3):298–320, 2010.

[112] A. Ranganathan and F. Dellaert. Semantic modeling of places using objects. In

Proceedings of the International Conference on Robotics: Science and Systems Con-

ference, 2007.

[113] C. Rasmussen. Combining laser range, color, and texture cues for autonomous road

following, 2002.

[114] Signe Redfield, Michael Nechyba, John G. Harris, and Antonio A. Arroyo. Efficient

object recognition using color, 2001.

[115] R. H. Richens. Preprogramming for mechanical translation. Mechanical Translation,

3(1), 1956. Discontinued Journal.

[116] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the icp algorithm. In Pro-

ceedings of the Third International Conference on 3D Digital Imaging and Modeling,

pages 145–152, 2001.

[117] R. Rusu, Z. Marton, N. Blodow, M. Dolha, and M. Beetz. Towards 3d point cloud

based object maps for household environments. Robotics and Autonomous Systems

Journal (Special Issue on Semantic Knowledge), 56(11):927–941, 2008.

131



Bibliography

[118] Y. Sagawa, M. Shimosaka, T. Mori, and T. Sato. Fast online human pose estimation

via 3d voxel data. In International Conference on Intelligent Robots and Systems

(IROS), pages 1034–1040, 2007.

[119] G. Sandini, G. Metta, D. Vernon, P. Dario, R. Pfeifer, C. von Hofsten, L. Fadiga,

K. Dautenhahn, C. Nehaniv, J. Santos-Victor, J. Grey, A. Billard, A. Ijspeert, F. Bec-

chi, and D. Caldwell. Robotic open-architecture technology for cognition, understand-

ing and behaviours (ROBOT-CUB). IST Project Funded under European Commis-

sion 6th FWP (Sixth Framework Programme) IST-2002-2.3.2.4 Cognitive systems

Project Reference: 004370, 2009.

[120] T. Sato, M. Kanbara, N. Yokoya, and H. Takemura. Dense 3-d reconstruction of

an outdoor scene by hundreds-baseline stereo using a hand-held video camera. In

International Journal of Computer Vision, pages 119–129, 2002.

[121] D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and evaluation of dense two-

frame stereo correspondence algorithms. In International Journal of Computer Vi-

sion, 2001.

[122] T. Schenk and B. Csatho. Fusing imagery and 3d point clouds for reconstructing

visible surfaces of urban scenes. IEEE GRSS/ISPRS Joint Workshop on Remote

Sensing and Data Fusion over Urban Areas, 2007.

[123] R. Schnabel, R. Wessel, R. Wahl, and R. Klein. Shape recognition in 3d point-clouds.

In The 16-th International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision, 2008.

[124] H. Schneiderman. A Statistical Approach to 3D Object Detection Applied to Faces

and Cars. PhD thesis, 2000.

[125] R. Schraft, B. Graf, A. Traub, and D. John. A mobile robot platform for assistance

and entertainment. In Industrial Robot Journal, 2001.

[126] F. Schubert, T. Spexard, M Hanheide, and S. Wachsmuth. Active vision-based local-

ization for robots in a home-tour scenario. In International Conference on Computer

Vision Systems (ICVS), 2007.

[127] C. Schutz, T. Jost, and H. Hugli. Multi-feature matching algorithm for free-form 3d

surface registration. In Proceedings of the 14th International Conference on Pattern

Recognition, page 982, 1998.

[128] S. Se and P. Jasiobedzki. Stereo-vision based 3d modeling and localization for un-

manned vehicles. In Special Issue on Field Robotics and Intelligent Systems, pages

47–58, 2008.

[129] S. Se, H. Ng, P. Jasiobedzki, and T. Moyung. Vision based modeling and localization

for planetary exploration rovers. In 55th International Astronautical Congress 2004,

2004.

132



Bibliography

[130] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison

and evaluation of multi-view stereo reconstruction algorithms. In Proceedings of the

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

pages 519–528, 2006.

[131] J. S. Seng and T. J. Norrie. Sidewalk following using color histograms. Journal of

Computing Sciences in College, 23(6):172–180, 2008.

[132] M. Shanahan. A cognitive architecture that combines internal simulation with a

global workspace. Consciousness and Cognition, 15:433–449, 2006.

[133] J. Shi and C. Tomasi. Good features to track. In Proceedings of the Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR), pages 593–600,

1994.

[134] M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita. Interactive humanoid robots for

a science museum. In Proceedings of the 1st ACM SIGCHISIGART conference on

Human-robot interaction., 2006.

[135] R. F. Simmons. Semantic networks: their computation and use for understanding

english sentences. Computer Models of Thought and Language, 1973.

[136] S.K. Singh, D.S. Chauhan, M. Vatsa, and R. Singh. A robust skin color based face

detection algorithm. In Tamkang Journal of Science and Engineering, pages 227–234,

2003.
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