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Vollständiger Abdruck der von der Fakultät für Physik der Technischen Universität
München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. F. Simmel
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. . . es sind uns Dinge als außer uns befindliche
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A journey of a thousand miles must begin
with a single step.

Lao Tzu

1. Introduction

This chapter introduces the fundamentals of sensory information processing, focusing on
the processing of sound signals as the auditory system is one of the most widespread of
the various sensory systems. The prominent role of the auditory system can be explained
by the specific properties of sound perception, namely, hearing is omnidirectional and its
processing is very fast. In comparison to light, sound waves have a much longer wavelength
so they are not blocked by small objects. We can, for instance, hear something behind a
tree but we cannot see it. Amongst other advantages audition therefore offers the possibility
to react to approaching dangers that are not yet visible. To exploit the latter advantage,
it is essential that an animal can localize a sound source, otherwise the prey could try to
escape in the direction of the predator. To determine the direction of a sound stimulus,
several steps are necessary in the animals studied in this thesis.

First, an object evokes an auditory stimulus. Section 1.1 describes how such a stimulus
propagates through the surrounding medium and is amplified before arriving at the
detectors of the animal.

Second, the arriving sound waves excite the tympani, a pair of thin membranes that
are part of the mechanical auditory system. The anatomy of the auditory system is highly
variable. The primary focus of this work is on internally coupled ears (ICE) in which one
membrane can influence vibration of the other through internal cavities; see Sec. 1.2.

Third, tympanic vibrations are processed neuronally. The fundamental element of
neuronal computation is the neuronal net, consisting of neurons as building blocks and
the variable connections between them, called synapses. Section 1.3 reviews the general
function and mathematical modeling of neurons and synapses.

Fourth, as result of neuronal computation, sensory stimuli give rise to neuronal rep-
resentations of the stimuli, i.e., neuronal maps; see Sec. 1.4. Each neuron of the map
represents a specific property, e.g., the stimulus at a specific point in space. Neighboring
neurons respond to similar sensory inputs. Neuronal maps reconstruct the stimulus as well
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1. Introduction

as possible, i.e., optimally within the limits of processing. The precise calibration of the
synapses required for stimulus reconstruction results from an experience-based learning
process that takes into account inputs from all available sensory systems.

1.1 Sound stimuli

Sound waves are oscillations of pressure that are transmitted through the air. A sound
stimulus is created when a movement compresses the surrounding air and creates traveling
sound waves that arrive at the tympani of an animal. Depending on the spatial relationship
between the two tympani and the sound source, the arriving sound waves differ in phase and
amplitude between the tympani. These differences are denoted as interaural time differences
(ITDs) and interaural amplitude differences (IADs). A sound wave from a source at one
side of the head, for instance, arrives at the facing, i.e., ipsilateral tympanum earlier and
with higher amplitude than at the averted, i.e., contralateral tympanum. A sound wave
from a source in front of the head, in contrast, arrives at both ears simultaneously and with
the same amplitude. These two examples demonstrate that ITDs and IADs can encode
the direction of a sound source. An evaluation of ITDs and IADs as performed by the
auditory system and the consequent neuronal circuits could therefore decode the sound
source direction.

intensity, the inhibitory ear sits in a ‘sound shadow’ on the far side of
the head, so the resulting inhibition is small. If the sound source moves
closer to the inhibitory ear, the neural firing rates decline because of
greater inhibition, resulting in a rate code for sound source position.
This ILD sensitivity arises in the lateral superior olive (LSO) in
mammals and in IE neurons in the avian nucleus of the lateral
lemniscus10. However, the head provides a significant sound shadow
only if it is large compared to the wavelength of the sound, so ILD cues
are most effective at relatively high frequencies; neurons tuned to high
frequencies are overrepresented in the ILD-sensitive nuclei.
In contrast, most neurons that are sensitive to ITDs are excited by

input from both ears (‘EE neurons’; see Fig. 2a). The strength of the
excitation depends on the exact relative timing of the inputs. These
neurons, found in the mammalian medial superior olive (MSO) or the
avian nucleus laminaris, were classically thought to be organized in a
‘delay line and coincidence detector’ arrangement, known as the
‘Jeffress model’11 (see below). Themodel posits that individual neurons
fire in response to precisely synchronized excitation from both ears,
and systematically varied axonal conduction delays along the length of
the nucleus serve to offset ITDs, so that each neuron is ‘tuned’ to a best
ITD value that cancels the signal delays from the left and right ear
(Fig. 3a,b). The Jeffress model has been particularly influential, partly
because initial experimental evidence from birds provided strong
support for the existence of such a delay line arrangement12,13, but
also because many researchers find the manner in which this simple
scheme turns systematic variations in ITD into a topographic map of
sound source location very elegant and appealing. However, although it
is widely thought that the Jeffress model is a good description of the
avian ITD processing pathway, its relevance to the mammalian system
has increasingly been questioned.
For starters, anatomical evidence for systematic delay lines in

mammals is not definitive14,15. Of course, the internal delays would

not necessarily have to be set up through axonal conduction delay lines,
and one alternative hypothesis is that the delays might actually be of
cochlear origin16. Hearing begins when the cochlea mechanically filters
incoming sounds to separate out various frequency components. The
mechanical filters that transduce sound into neural signals cannot
respond infinitely fast, and they are said to be subject to small ‘group
delays’. The group delays for low sound frequencies are somewhat larger
than those for higher frequencies. Thus, if a signal from a higher-
frequency neuron in the left ear arrives at an EE neuron at exactly the
same time as a low frequency input from the right ear, then this would
indicate that the sound came from the right, so that the extra time
taken by the sound traveling to the farther (left) ear was offset by the
larger group delay in the right cochlea.
However, the implementation of delay lines (axonal or cochlear)

does not change the fundamental nature of Jeffress’s delay-line-and-
coincidence-detector model. A more crucial question is how neurons
achieve coincidence detection at the phenomenally fine temporal
resolution that is required to account for behaviorally measured ITD
detection thresholds. Both birds andmammals can detect ITDs as small
as a few microseconds. MSO and nucleus laminaris neurons have
similar anatomical and biophysical specializations, such as stereotypical
bipolar dendrites, with inputs from each ear segregated onto each set of
dendrites, allowing nonlinear integration between the inputs from left
and right ears17. These neurons have a high density of low voltage–
activated potassium channels, which speed up their synaptic dynamics,
yielding excitatory postsynaptic potentials that are typically around 400
ms wide at half amplitude18,19.
Coincidence detectors seem to work by ‘cross-correlating’ sinusoidal

synaptic conductances, which mirror the stimulus waveform, as seen
through the ‘narrow-band filters’ that provide the input to the MSO.
MSO neurons receive band-pass-filtered input that is relayed from the
cochlea through the cochlear nuclei. The band-pass filtering makes
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Figure 1.1: Evolution of vertebrate ears. During the transition from water to land, tympanic
middle ears capable of receiving airborne sound evolved separately among the ancestors of
modern frogs, turtles, lizards, birds, crocodilians, and mammals. Diagrams at the top show
cross-sections through different heads of these animals (middle ears - gray fill). Of interest
are the auditory systems with internally coupled ears (ICE) as found in anura (frogs and
toads), squamata (lizards and snakes), and aves (birds), where the tympani are coupled
through differently shaped internal cavities; cf. as well Fig. 4.1. Mammals, in contrast, have
independent ears, i.e., the tympani cannot influence each other. Figure due to Schnupp
and Carr [193].
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1. Introduction

Figure 1.2: Internally coupled ears in lizards. Left: A light source on the other side of the
head illuminates the tympanic membrane from the back. Right: Intersection through a
lizard’s head. Large Eustachian tubes (ET) and the pharynx (P) connect the middle ear
cavities (MEC) and the tympanic eardrums (TM) and allow the vibration of one tympanum
to influence the vibration of the tympanum at the other side. Photographs due to Jakob
Christensen-Dalsgaard and Catherine Carr.

1.2 Mechanical processing of sound stimuli

1.2.1 Evolution of different auditory systems

To detect incoming sound waves, ancestors of modern frogs, turtles, lizards, birds, crocodil-
ians, and mammals developed tympani, i.e., thin membranes that transmit sound from the
air to the ossicles inside the middle ear; cf. Fig. 1.1. Cross-sections of heads of different
animals with tympanic hearing show two fundamentally different constructions. Mammals
possess tympani that are spatially separated and therefore acoustically independent of each
other. In contrast, reptilia such as lizards, turtles, crocodiles, and birds have internally
coupled ears (ICE) (for details, e.g., reviews [19, 24, 193]) in which tympanic membranes
are connected through large Eustachian tubes as illustrated by Figs. 1.2 and 1.3. The
evolutionary appearance of independent and internally coupled ears (Fig. 1.1) suggests
that the latter are probably early tympanic ears. If this is indeed the case, the mammalian
independent ears must be derived from internally coupled ears. This is reasonable since the
enlarging mammalian brain could have grown into the internal cavities and disconnected
the tympani (Manley, personal communication).

1.2.2 Internally coupled ears

Tympanic membranes of ICE are acoustically coupled in the sense that a signal arriving
at one of the tympanic membranes can propagate through the internally interconnected
cavities and influence the vibration of the other tympanic membrane. In this way, ICE
translate incoming sound waves with specific ITDs and IADs into amplified vibrations of
the two tympanic membranes. In turn, the tympanic vibrations differ through internal
time differences (iTDs) and internal amplitude differences (iADs), being the result of both
the external signal and the internal coupling. Interestingly, the internal coupling of the
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1. Introduction

Figure 1.3: Schematic cross-section through a lizard’s head to illustrate the mechanical
processing of auditory stimuli through internally coupled ears. Arriving sound waves excite
the tympanic membranes (TM) as well as the air within the middle ear cavities (MEC),
the Eustachian tubes (ET), and the pharynx (P). The resulting vibration of the tympanum
evokes a movement of the attached middle ear, called columella (C). The lever construction
transmits the vibration of the tympani to the oval window (OW), the membrane at the
entrance of the fluid-filled cochlea. Through the vibration of the OW, the fluid in the
cochlea is excited and gives rise to a local, frequency-dependent activation of the embedded
basilar membrane and the underlying auditory nerve fibers. The round window (RW) is
a membrane at the end of the cochlea that is needed to compensate the pressure within
the fluid. Altogether, translation of tympanic vibrations into neuronal responses is similar
for animals with internally coupled and independent ears despite several modifications; cf.
Chap. 3. Figure taken from [27].

tympanic membranes enhances iTDs in comparison to incoming ITDs by up to a factor of
three [17]. In addition, internally coupled ears produce large iADs even for small interaural
distances [27, 28]. Chap. 2 and [221] present a general model of internally coupled ears,
the ICE model, that describes vibrations of the tympani and the realistic mouth cavity
dependent on the characteristics of incoming sound stimuli. Once a sound wave has excited
the tympanic membranes, the translation into neuronal responses is similar to mechanical
sound processing as found in mammals. Tympanic vibrations are transmitted by the
columella (the middle ear bone that is attached to the tympanum) to the oval window, a
membrane at the entrance of the cochlea; see Fig. 1.3. Vibration of the oval window then
results in vibration of the fluid within the cochlea and of the embedded basilar membrane.
Due to its systematically varying stiffness, every part of the basilar membrane reacts only
to a specific frequency. Auditory nerve fibers enervated by the movement of a restricted
region of the basilar membrane therefore respond to a small range of frequencies and in
this manner, the basilar membrane decomposes sound frequencies.
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1. Introduction

1.3 Neuronal processing of sound stimuli

As soon as sound waves are processed mechanically through the tympani and basilar
membranes, processing continues on a neuronal level. The following section reviews
important concepts of neuronal computation. For a detailed introduction to computational
neuroscience see, e.g., Koch [125] or Izhikevich [97].

1.3.1 Building blocks of neuronal computation

In 1906, the Spanish anatomist Santiago Ramon y Cajal (1852-1934) received the Nobel
Prize in Medicine “in recognition of his work on the structure of the nervous system”. His

Figure 1.4: Two of Ramon y Cajal’s extraordinary drawings [236]. Left: Drawing of a section
through the optic tectum of a sparrow showing individual neurons. Right: A pyramidal cell
from the motor cortex extended by visualization of the three stages of neuronal information
processing: collection of inputs through dendrites (light blue), processing of signals through
the soma (blue), and transmission of output signals through the axon (green).

work consisted of a systematic analysis of the neural tissue. Based on his revolutionary
observations (cf. Fig. 1.4), Cajal showed that the nervous system consists of individual
cellular elements [237]. The existence of these small structural and functional units had
already been suggested in 1891 by Waldeyer-Hartz [220] who denoted them as neurons.
Thanks to Cajal, scientists accepted that the neuronal tissue was not continuous but
constructed from discrete elements that receive, process, and transmit signals. Accordingly,
a neuron consists of three parts: dendrites to collect inputs from other neurons, the soma
to process inputs, and the axon to transmit output signals to other neurons; cf. Fig. 1.4,
right.

5



1. Introduction

Figure 1.5: Emergence of the ion-specific Nernst potential at the example of K+ ions.
a) Following the concentration gradient, K+ ions diffuse into the extra-cellular domain.
b) Since K+ ions are electrically charged, the change in their concentrations from the
intra-cellular to extra-cellular domain creates an electric potential leading to an increasing
force in the opposite direction. c) The potential in which electric and diffusive forces are
balanced is the ion-specific Nernst potential denoted as EK for K+ ions. Figure due to
Izhikevich [97, p. 27].

Starting with Cajal’s individual neurons, researchers have steadily extended our knowl-
edge of neuronal properties and function. Today, we know that the neuronal cell membrane
is essential for processing neuronal, i.e., electric signals. The membrane separates ion
solutions in the intra- and extra-cellular spaces. These solutions contain different concen-
trations of sodium (Na+), potassium (K+), chloride (Cl-), and calcium (Ca2+). K+ ions
dominate the intra-cellular solution and Na+ ions the extra-cellular solution. Since the
ions usually cannot pass through the membrane but instead assemble at its surface, the
membrane acts as a capacitor with capacitance Cm. An electric potential appears across
the membrane, called membrane potential V (t). The ions can only cross the membrane
through membrane-embedded ion-selective channels. Ion currents through these channels
are determined by the membrane potential and the gradient of the ion concentrations
between the intra- and extra-cellular spaces. As a consequence, ions move along an ion-
specific reversal potential, the Nernst potential; see Fig. 1.5 for details. In the resting state,
primarily K+ channels are open so that the resting membrane potential is dominated by
the reversal potential of K+ ions Vr ≈ −75 mV. The passive current through permanently
open channels is called leak current.

In contrast, electric signals, called action potentials or spikes, are generated by voltage-
gated Na+ and K+ channels that open and close actively with a characteristic timing.
Through a rapid influx of Na+ ions, the membrane voltage is able to increase up to 30 mV
for about a millisecond. Then a delayed outflow of K+ ions leads to a repolarization of the
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1. Introduction

Figure 1.6: Temporal development of an action potential (spike). The plot shows the
membrane potential V (t) (top) in response to an applied current (bottom). Without
external input, the neuron remains in its equilibrium state where the membrane potential
corresponds to the resting potential Vr = −70 mV. Na+ and active K+ channels are closed.
The Na+ and K+ reversal potentials of ENa = 50 mV and EK = −90 mV are depicted.
For a weak input current the membrane potential only slightly depolarizes and returns to its
resting potential. In contrast, as soon as external input increases the membrane potential
above a certain threshold, Na+ channels open. A large number of Na+ ions streams into
the cell and depolarizes the membrane potential. As a consequence, the membrane potential
quickly increases up to around 30 mV, an action potential is generated. At the same time
more and more active K+ channels open so that the influx of K+ ions starts to decrease
the membrane potential toward the reversal potential EK . The membrane potential is
therefore first repolarized, then even hyperpolarized, i.e., decreased below the membrane
potential. During the phase of hyperpolarization another action potential can be generated
but more excitatory current is needed in comparison to the resting state. This period is
therefore denoted as relative refractory period. The period during the action potential
where no spike generation is possible is called absolute refractory period. Figure modified
from [97, p. 40].
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1. Introduction

Figure 1.7: Synapses connect pre- and post-synaptic neurons and allow action potentials
from the pre-synaptic neuron to influence the membrane potential of the post-synaptic
neuron with a synapse-specific efficiency.

membrane potential. After a refractory period, the membrane potential reaches its original
resting potential and the next action potential can be generated; for details see Fig. 1.6.

In the next step, an action potential generated in one specific neuron is transmitted to
the connected neurons. Since neurons are individual cells, specialized structures, called
synapses from Greek “syn-” together and “haptein” to clasp, are needed to pass information
from a pre-synaptic to a post-synaptic cell; cf. Fig. 1.7. The majority of the synapses are
chemical synapses that function through a release of neurotransmitter from the pre-synaptic
cell into the synaptic cleft, a 20 nm thin gap between pre- and post-synaptic cell. These
neurotransmitters can then diffuse through the cleft and reach neurotransmitter receptors
of the post-synaptic cell. Each synapse is characterized by the synaptic strength, i.e., the
efficiency of transmission of a pre-synaptic stimulus to the post-synaptic cell. Depending
on their effect on the membrane potential, i.e., depolarizing (exciting) or hyperpolarizing
(deactivating) a cell, synapses are called excitatory or inhibitory. Synaptic strengths
indicate the degree to which neurons are connected.

To quantitatively describe neuronal behavior in response to incoming (synaptic) currents,
neurons are described with mathematical models. These models are always compromises
between detailed and generalized description. To gain intuitive understanding of neuronal
behavior, the model used should include all processes needed to explain the observed effect
and should leave out all others. The Hodgkin and Huxley model [89] is an example of a
detailed neuron model that includes the dynamic behavior of voltage-depended Na+ and
K+ channels. This model, however, is characterized by a large number of variables that are
not able to be fully determined experimentally. Further simplification of the neuron model
so that it only reproduces basic phenomenological and electric properties of a neuron is
therefore reasonable. As a consequence, mathematically tractable neuron models such as
the leaky integrate-and-fire and the Poisson model have been developed.

8



1. Introduction

Figure 1.8: Equivalent circuit for a leaky integrate-and-fire neuron. Behavior of the neuron
is described by the membrane potential V (t), that is, the potential between intra- and
extra-cellular space. The membrane of a neuron can be characterized as capacitor with
leak, i.e., a capacitor Cm in parallel with a resistance Rm and the resting potential Vr.
The membrane potential is modified by the current Iinj(t), i.e., synaptic currents or ions
injected artificially through electrodes.

1.3.2 Leaky integrate-and-fire neuron

The leaky integrate-and-fire neuron model reduces the neuron to a point neuron whose
behavior is described by the membrane potential V (t). In response to incoming currents,
the membrane potential varies until it reaches a certain threshold V above which an
action potential (spike) is generated, and the membrane potential is reset to the resting
potential. Since the model focuses on the subthreshold membrane properties, it excludes
the mechanisms responsible for generating the action potentials itself, i.e., the voltage-
dependent sodium and potassium channels; for details see review [16]. The spike event is
therefore only registered as a formal, discrete event when the membrane potential reaches
its firing threshold. The exact form of the spike does not enter the model.

Subthreshold membrane properties have long been recognized. In 1907, Lapicque
remarked that the membrane of a neuron can be characterized as capacitor with leak,
i.e., a capacitor Cm in parallel with a resistance Rm; see [135] for Lapicque’s original and
[13, 14] for the translated and commented manuscript. Besides the Ohmic current over
the membrane [Vr − V (t)]/Rm, the membrane potential can be modified by externally
injected currents Iinj(t), i.e., currents injected through synapses or intra-cellular electrodes.
Kirchhoff’s nodal rule for the equivalent circuit of a leaky integrate-and-fire neuron (cf.
Fig. 1.8) requires that all currents flowing into a node are equal to the currents flowing out
of the node. Application of the law yields the differential equation

CmV̇ (t) = [Vr − V (t)] /Rm + Iinj(t) . (1.1)

9
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For a time-dependent input current Iinj the corresponding membrane potential is given by

V (t) = Vr + exp
(
− t− t0
CmRm

)[
1
Cm

∫ t

t0

ds exp
(
s− t0
CmRm

)
Iinj(s)

]
(1.2)

which assumes that the neuron has fired and the membrane potential was reset to its
resting potential Vr at time t0. To prove that the above V (t) fulfills Eq. (1.1), the initial
condition for t = t0 is first verified as V (t0) = Vr. Second, the time derivative of V (t) can
be calculated as

V̇ (t) = − 1
CmRm

exp
(
− t− t0
CmRm

)[
1
Cm

∫ t

t0

ds exp
(
s− t0
CmRm

)
Iinj(s)

]
+ exp

(
− t− t0
CmRm

)[
1
Cm

exp
(
t− t0
CmRm

)
Iinj(t)

]
= − 1

CmRm
[V (t)− Vr] +

1
Cm

Iinj(t) . (1.3)

Multiplied with Cm, the resulting equation corresponds exactly to the differential equa-
tion (1.1). To illustrate Eq. (1.2), in the case of a constant current, the solution reduces
to

V (t) = Vr +RmIinj

[
1− exp

(
− t− t0
CmRm

)]
. (1.4)

With time, the membrane potential approaches Vr +RmIinj as the expression within the
round brackets tends to 1. If this value lies below the threshold V , the neuron does
not spike at all, otherwise it spikes regularly with a constant interspike interval T given
by the equation V (t = T ) = V . Taken together, the above calculations illustrate that
a description of neuronal behavior through leaky integrate-and-fire neurons is possible
but lengthy. For calculations including a large number of neurons in particular, it is
advantageous to represent firing of each neuron stochastically.

1.3.3 Poisson neuron

The Poisson neuron reduces the firing of a neuron to a stochastic process, in other words,
to an inhomogeneous Poisson process with a time-dependent rate function ν(t) (for a
homogeneous Poisson process, this rate function is constant over time). An inhomogeneous
Poisson process fulfills three aspects:

• disjoint intervals are independent,

• the probability of getting a single event at time t in an interval [t, t+ ∆t) is given by
ν(t)∆t,

• the probability pmult of getting multiple events follows o(∆t), that is,

pmult/∆t→ 0 for ∆t→ 0 . (1.5)
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For details of Poisson processes and Poisson neurons see [110] and Appendix B of [216].
The advantage of Poisson neurons lies in a compact mathematical description allowing
exact solutions. For example, the probability that a neuron fires k times in an interval
[t0, t) can be calculated explicitly. To this end, the interval is split up into N disjoint
intervals of length ∆t = (t− t0)/N . First, the probability p0 that a neuron remains silent
over the entire interval [t0, t) is calculated as

p0 =
N−1∏
l=0

[1− ν(tl)∆t] (1.6)

where tl denotes t0 + l∆t. Terms of higher order in ∆t are neglected. To transform this
probability into a more convenient form application of the equality x = exp [ln(x)] leads to

p0 = exp

{
N−1∑
l=0

ln [1− ν(tl)∆t]

}
. (1.7)

For x small the logarithm ln(1+x) =
∞∑
n=1

(−1)n+1xn/n can be approximated as ln(1+x) ≈ x.

For a sufficiently small ∆t, this approximation applies so that the probability p0 transforms
to

p0 ≈ exp

[
−
N−1∑
l=0

ν(tl)∆t

]
≈ exp

− t∫
t0

dt′ ν(t′)

 . (1.8)

The probability p0 of a neuron remaining silent consequently decreases exponentially
with increasing length of the considered interval and increasing firing rate. Based on this
probability p0, the probability of getting k spikes in the interval [t0; t) is now calculated.
For one specific realization of k spikes in N intervals, the times t∗l , l ∈ N, 0 ≤ l < k
denote the k chosen succeeding spike intervals t∗l < t∗l+1; cf. Fig 1.9. The probability p∗k of
this specific realization can be calculated as the product of the probabilities of spikes in
intervals t∗l and the non-firing probability in the interspike intervals

p∗k =
k−1∏
l=0

[ν(t∗l )∆t]︸ ︷︷ ︸
firing probability at t∗l

·

exp

− t∗0∫
t0

dt′ ν(t′)

 k−2∏
l=0

exp

−
t∗l+1∫

t∗l +∆t

dt′ ν(t′)

 exp

− t∫
t∗k−1+∆t

dt′ ν(t′)


︸ ︷︷ ︸

non-firing probability in interspike intervals according to Eq. (1.8)

;

(1.9)

see Fig. 1.9 for an illustration. As ∆t→ 0 the above equation simplifies to

p∗k =
k−1∏
l=0

[ν(t∗l )∆t] exp

− t∫
t0

dt′ ν(t′)

 . (1.10)
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Figure 1.9: Distribution of k = 3 spikes in the interval [t0; t). The interval is split up into N
disjoint intervals of length ∆t = (t− t0)/N . The plot shows a specific realization of k = 3
spikes in the chronologically ordered intervals {t∗0, t∗1, t∗2}.

The equation gives the probability of getting k spikes at the specific chronologically ordered
spike times t∗0 < t∗1 < ... < t∗k−1. Since spikes are indistinguishable another arrangement,
i.e., permutation, of the spike times corresponds to the same event with identical probability.

In a next step, the k spike times are randomly chosen from the N possible intervals.
For reasons of mathematical convenience a random arrangement of spike times is allowed
that is accounted for by devision through all additional permutations k! of the same k
spikes. Altogether the general probability for k spikes in N intervals corresponds to

pk = exp

− t∫
t0

dt′ ν(t′)


︸ ︷︷ ︸

non-firing probability

·

1
k!

[
N−1∑
n1=0

ν(tn1)∆t

]


N−1∑
n2 = 0
n2 6= n1

ν(tn2)∆t

 . . .


N−1∑
nk = 0

nk 6= n1, . . . nk−1

ν(tnk
)∆t


︸ ︷︷ ︸

firing probabilities of k spikes in different unordered intervals

.

(1.11)

Again as ∆t→ 0, the probability (1.11) can be written

pk = exp

− t∫
t0

dt′ ν(t′)

 1
k!

 t∫
t0

dt′ ν(t′)

k . (1.12)

Hence, fundamental stochastic properties yield a compact description of the firing probabil-
ity to get k spikes within a given interval. Similar calculations involving Poisson neurons
can lead to an intuitive understanding of complicated neuronal processes. This is essential
since neurons are parts of larger arrays of neurons, e.g., of neuronal maps.

12



1. Introduction

1.4 Neuronal representation of sound stimuli

1.4.1 Neuronal maps

To represent sensory stimuli within the brain, neurons do not function autonomously
but are often grouped in well-ordered arrays called neuronal maps [124, 217]. The idea
that a map-like architecture underlies certain aspects of sensory processing was suggested
in 1879 by Helmholtz [86] who remarked “Dass durch das Entlangführen des tastenden
Fingers an den Objecten die Reihenfolge kennen gelernt wird, in der sich ihre Eindrücke
darbieten, dass diese Reihenfolge sich als unabhängig davon erweist, ob man mit diesem
oder jenem Finger tastet, dass sie ferner nicht eine einläufig bestimmte Reihe ist, deren
Elementen man immer wieder vor- oder rückwärts in derselben Ordnung durchlaufen
muss, um von einem zum anderen zu kommen, also keine linienförmige Reihe, sondern
ein flächenhaftes Nebeneinander.” That is, Helmholtz already recognized a topographic
neuronal representation of a two-dimensional surface. A neuronal map is constructed
from an array of neurons in which neighboring neurons respond to similar sensory stimuli
[23, 43, 91, 114, 116, 119, 151, 202, 207]. In the auditory system, maps represent frequency,
interaural time difference, interaural amplitude difference, and even amplitude modulation
[62, 147, 167, 172, 194, 209].

Within given limitations, e.g., noise and number of available neurons, neuronal maps
reconstruct a sensory stimulus as precisely as possible, i.e., optimally ; see Chap. 5 for a
general mathematical framework to calculate optimal connectivity. The neurophysiological
conditions for such a precise topographic arrangement are an ordered arrangement of the
connecting axons and a fine-tuned synaptic pattern. Accordingly, map calibration consists
of two steps, a pre-wiring through growing axons and a fine-tuning through activity-based
learning of the synapses.

1.4.2 Pre-wiring a map

For the pre-wiring of maps, molecular gradients and axon-axon interaction play a key
role [140, 213]. When the brain develops, axons grow and connect various parts of the
brain. Concentration gradients of specific molecules such as ephrins act as guidance cues
in attracting or repelling axons. When the molecules and their receptors are distributed
gradually along an array of neurons, growing axons arrange along the axis of the array
and so form a coarse pre-wiring of a map.

In addition, growing axons tend to fill up available space smoothly because they are
competing for one or more limiting molecules in the target. As a consequence, axons that
grow from a topographically arranged structure, e.g., the retina or the cochlea interact
with each other. The axons therefore maintain their structural arrangement and project it
to the target area.
Throughout this thesis, the mechanisms of molecular gradients and axon-axon interaction
are referred to implicitly as necessary tools for achieving a pre-wiring of the sensory maps.
Beyond this, the work concentrates on the second stage of map formation, that is, on the
fine-tuning of maps through activity-based learning.
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Figure 1.10: Left: A neuron receives input from N neurons. The input spike trains Sin
i

with 1 ≤ i ≤ N are transmitted through synapses with synaptic strength Ji to the soma.
In reaction to the combined inputs, the neuron produces an output spike train Sout. Right:
The incoming and outgoing spikes modify the efficiency of a synapse by values win and wout.
According to the timing between incoming spike ti and outgoing spike T j , the learning
window W (s) with s = ti − T j additionally increases or decreases the synaptic strength.
A synapse that transmits an input spike slightly before an output spike is likely to be
important for the generation of the output spike and is enhanced. The opposite is the case
for a synapse that transmits an input spike slightly after an output spike. Experimentally,
this learning window has been measured in various forms, e.g., in rat hippocampus [240].

1.4.3 Fine-tuning a map

The precise behavior of a neuronal map is determined by a fine-tuned connectivity, i.e.,
synaptic, pattern. An adult human brain contains from 1014 to 5 · 1014 synapses. Each
synapse has a specific strength that can be modified due to the firing activity of the neuron.
The resulting amount of information is gigantic and cannot be encoded genetically but
has to be learned during the development of an animal or human. As a consequence,
fine-tuning of a map is based on experience, i.e., learning, that modifies the synaptic
pattern of a map. The Canadian psychologist Donald Olding Hebb (1904 - 1985) was the
first to understand how the activity of neurons contributes to the learning process. In his
book “The organization of behavior” [79] Hebb wrote:

• “When one cell repeatedly assists in firing another, the axon of the first cell develops
synaptic knobs (or enlarges them if they already exist) in contact with the soma of the
second cell.” (p. 63)
• “The general idea is an old one, that any two cells or systems of cells that are repeatedly

active at the same time will tend to become ’associated’, so that activity in one facilitates
activity in the other.” (p. 70)

Depending on the synchrony between firing of pre- and post-synaptic neurons, a synapse
can undergo long-term potentiation (LTP), a long-lasting enhancement of the synapse, or
the opposite, that is, long-term depression (LTD). Mathematically, both processes can
be described in terms of spike-timing-dependent plasticity (STDP) [6, 7, 36, 66, 109, 149,
199, 216, 240]. Figure 1.10 illustrates the underlying mechanism. Here a neuron receives
inputs, i.e., spike trains Sini from N input neurons via synapses with strengths Ji where
i ∈ N, 1 ≤ i ≤ N . Modification of synaptic strengths in response to activity of the input
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neurons is threefold. First, each incoming spike at time ti changes the corresponding
synapse by an amount win. Second, each output spike at time T i changes all synapses by
the amount wout. Third, the precise timing between input and output spike changes the
corresponding synapse via the learning window W (s = ti−T i); see Fig. 1.10, right, middle
row. For the last mechanism, synaptic strengths increase if a pre-synaptic firing precedes a
spike, and decrease otherwise. Assuming the learning process to be much slower than the
neuronal dynamics, synaptic changes can be described by the differential equations

d

dt
Ji(t) = winνini (t) + woutνout(t) +

∫ ∞
−∞

ds W (s)Ci(s, t) (1.13)

with νini = < Sini > and νout = < Sout > the mean firing rates of input neurons and neuron
considered, and

Ci(s, t) = < Sini (t+ s)Sout(t) > (1.14)

the correlation term between the i-th input spike train at time t+ s and the output spike
train at time t. Here < f(t) > denotes the ensemble average of an arbitrary function f(t)
and f(t) := T−1

∫ t+T
t dt′ f(t′) its time average in an interval T .

For the purpose of fine-tuning, STDP is applied to the synaptic pattern of a map that
gets additional input from an already calibrated teacher map. The ensuing supervised
learning can successfully explain map formation [52, 56]. In the first stage of brain
development, however, all available maps show a bad resolution [223, 225]. One map
nevertheless has to function as the teacher map to calibrate the other sensory maps. Given
that the multimodal map as combination of all unimodal information from the available
sensory systems is the most reliable and precise map, Chap. 6 suggests map formation
based on the intrinsic multimodal teacher. As a consequence, map formation corresponds
to a mutual improvement within all sensory maps.
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Hear the other side. (Audi partem alteram.)

Saint Augustine (354 - 430 AD)

2. Modeling Internally Coupled Ears:
The ICE model

Lizards, frogs, alligators, and many birds possess a specialized hearing mechanism: inter-
nally coupled ears (ICE) where the tympanic membranes connect through a large mouth
cavity so that the vibrations of the tympanic membranes influence each other. This coupling
enhances the phase differences and creates amplitude differences in the tympanic membrane
vibrations. Both cues show strong directionality. This chapter presents a general model
of internally coupled ears, the ICE model, that consists of two parts. On the one hand,
a three-dimensional model of internally coupled ears with a simplified cylindrical mouth
cavity allows for calculation of a complete vibration profile of the membranes. On the other
hand, numerical simulations of the eigenfunctions in exemplary, realistically reconstructed
mouth cavities further estimate the effects of the complex geometry. The model with
the cylindrical mouth cavity additionally provides the opportunity to incorporate the
effect of the asymmetrically attached extracolumella of the middle ear, which leads to
the activation of higher membrane vibration modes. Incorporating this effect, the ICE
model can explain measurements taken from the tympanic membrane of a living lizard,
for example, data demonstrating an asymmetrical spatial pattern of membrane vibration.
As the analytical calculations show, the internally coupled ears increase the directional
response, appearing in large directional internal amplitude differences (iADs) and in large
internal time differences (iTDs).

2.1 Introduction

In contrast to mammals, where the tympanic membranes are independent of each other,
lizards possess internally coupled ears where the tympanic membranes connect through large
Eustachian tubes, as illustrated by Fig. 2.1. Thus, a signal arriving at one of the tympanic
membranes can propagate through the internally interconnected cavities and influence

17



2. Modeling Internally Coupled Ears: The ICE model

the vibration of the other. Consequently, one tympanic membrane shows a directional
response to incoming sound signals, a so-called pressure-gradient receiver characteristic
as first described by Autrum [4] and later by Michelsen [150] for locusts. Similar internal
coupling is present in many biological systems such as frogs [e.g., [29, 49, 103]], birds [e.g.,
[88] quails and [33] barn owls below 3 kHz], and lizards [in particular, [27, 28]]. Reviews
by Carr et al. [19, 20] cover the evolutionary aspects of this coupling.

Figure 2.1: Left: Picture of a Tokay gecko’s head (snout to the left). A light source on the
other side of the head illuminates the tympanic membrane from the back. The cartilaginous
element attached to the membrane is part of the middle ear, called extracolumella. Right:
Cast imprint of the mouth cavity of a gecko. Upper jaw of the lizard with the mouth
pointing to the top of the picture. The figures illustrate the coupling of the tympanic
membranes through large internal cavities giving rise to internally coupled ears (ICE).
Photographs courtesy of Jakob Christensen-Dalsgaard.

For ICE, phases and amplitudes of the tympanic membrane vibrations vary with the
direction of the sound source, and they do so in a rather pronounced way. For animals
of small head size amplitude differences between tympanic vibrations exclusively arise
from ICE. This is because the small head results in negligible sound diffraction effects
such that signals from the same sound source arrive at the two ears at slightly different
times but with similar intensities. In contrast to systems having independent ears, the
coupling of the tympanic membranes creates directional cues through the amplitudes of
the tympanic membrane vibrations. ICE therefore translate the exterior phase shifted
signals into tympanic membrane vibrations that vary both phase and amplitude with
the direction of the sound source. As suggested by Jørgensen [103], a possible neuronal
subtraction of the logarithmic vibration amplitudes from the two tympanic membranes,
the internal amplitude difference (iAD), could further sharpen directionality.

Below is a three-dimensional model with a cylindrical mouth cavity and adjoined
membranes, developed to elucidate the principal mechanism of internally coupled ears.
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Figure 2.2: Construction and functioning of the middle ear as reproduced from Manley [143].
Left: Schematic view of the tympanic membrane with the following middle ear. The carti-
laginous element between A and C is attached to the tympanum and called extracolumella.
The columella then directly connects via its footplate B to the oval window and transmits
vibrations of the tympanic membrane to the cochlea. Top left: Photograph of the tympanic
membrane with the attached extracolumella due to Jakob Christensen-Dalsgaard. Right
top: For frequencies below 4− 5 kHz [143] the extracolumella between A and C is stiff and
can only hatch around the point C. Thus, the displacement of the extracolumella and the
attached tympanic membrane is linear in radial direction of the circular tympanum. The
ICE model incorporates this restriction as additional boundary condition for the membrane
displacement over the line of the extracolumella attachment; cf. Fig. 2.5. The footplate B
reproduces the movement of the tip of the extracolumella A in an amplified manner. Right
bottom: For frequencies above 4−5 kHz (not considered in the following) the extracolumella
starts to bend and a flection occurs at the point C∗ in the columella-extracolumella link.
The footplate B is no longer activated by the movement of the tip of the extracolumella A.
As a consequence, the appearance of flection limits the hearing range of the animal.

This first part of the ICE model is mathematically tractable and contains the most
important aspect of ICE, viz., the coupling of the membranes through the internal mouth
cavity. The vibrations of the membranes are calculated as a function of the force difference
between the external pressure from the sound source and the pressure from the moving
air in the internal mouth cavity. In the cavity itself, a wave equation with temporally
varying boundary conditions at the eardrums describes the air movement. Consequently,
the analytically soluble ICE model is the most fundamental, physically correct model for
the three-dimensional structure of ICE. Furthermore, one can adapt this general model to
any specific animal, in this case the lizard, and incorporate additional features.

One notable specification in the ICE model for lizards is the middle ear. Lizards have
only one middle ear bone, the columella, that contacts the eardrum via a cartilaginous
element, the extracolumella. As a consequence, the tympanic membrane cannot vibrate
freely but is loaded by the accessory structure of the middle ear; see Fig. 2.2. The
extracolumella moves as a completely stiff bar. Flection can only occur in the columella-
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extracolumella attachment from frequencies above approximately 4− 5 kHz [143] and is
not considered in the following. The stiffness of the extracolumella forces the membrane
into a linear displacement over the line of the attachment. The solution therefore becomes
a linear combination of eigenmodes for the free, unloaded membrane. As a consequence,
higher modes emerge in addition to the fundamental mode. These modes cause a complex,
asymmetric spatio-temporal pattern over the membrane as measured by Manley [144].
Given that the extracolumella is attached to the eardrum, the ICE model represents the
vibration of the membrane, either to the right or to the left, as a linear combination of the
external pressure excitation of the two tympanic membranes. The coefficients are, in this
case, functions reflecting the internal response of the system to ipsilateral and contralateral
local stimulation. For Hemidactylus frenatus and Tokay gecko amplitudes of the membrane
vibrations, iADs, and iTDs are calculated and compared to experimental data.

A consistent, realistic evaluation of ICE further requires consideration of sound trans-
mission variation due to the mouth cavity shape. The ICE model therefore further contains
a numerical eigenfrequency analysis of the realistic mouth cavities. Three-dimensional
scans of a cast imprint from the mouth cavity of Hemidactylus frenatus and a set of scans
from slices through the head of Tokay gecko (cf. Fig. 2.1, right) allow a reconstruction of
exemplary realistic mouth cavities. Numerical simulation programs can load the resulting
meshes and calculate the eigenfunctions and the corresponding eigenfrequencies.

In previous work, lizard ear models consisted of a three impedance electrical circuit [27,
28], based on Fletcher [50, p. 164]. In the impedance model, abstract impedances detached
from the geometric properties of the system represent both the tympanic membranes and
the mouth cavity. Though electrical circuit models can explain the general pattern and
magnitude of directionality, they can be seen as a truly crude approximation to the real
acoustics of the ear, for example, by treating the cavity volume as a single impedance.
Neglecting interesting phenomena, such electrical circuit models reduce a complicated
system to a model with a small number of lumped parameters. For example, the attached
extracolumella of the middle ear only influences the value of the membrane impedance; an
average value for the whole membrane replaces the two-dimensional vibration profile of
the membrane; the complex form of the mouth cavity is represented by its volume.

In contrast, the ICE model, as it contains a geometric representation of internally
coupled ears, offers the possibility of analyzing the membrane vibration in spatial detail.
This is crucial, for example, to understanding the effect of the attached extracolumella of
the middle ear on membrane vibration; cf. the results below. In addition, the influence
of the realistic mouth cavity can be estimated by calculating its lowest eigenfrequency.
Furthermore, an “acoustical” model based on electrical circuits is valid only when the
dimensions of the circuit elements are small as compared to the wavelength [159]. Given
such a restricted point of view, a more general model will represent a broader range of
systems far better and will also apply to larger animals having ICE.
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Figure 2.3: Geometric representation of internally coupled ears as used for the first part of
the ICE model. The internal cavity is represented by a cylinder using parameters (x, r, φ)
with length L and radius a so that 0 ≤ x ≤ L and 0 ≤ r ≤ a. Where β is estimated from
anatomical data the circle segment −β ≤ φ ≤ β represents the contact surface between the
membrane and the extracolumella. Arrows mark the orientations of the coordinate systems
for the displacements u0 and uL of the moving membranes and for the velocity vx of the
moving air in the mouth cavity.

2.2 Derivation of the ICE model with cylindrical mouth cav-
ity

The equations derived in the following section describe the steady state solution for the
tympanic membranes’ vibrations, neglecting onset phenomena. The derivation step-by-step
considers the different elements participating in the process. The cylindrical ICE model
consists of elementary acoustic elements: membranes and an air filled tube as described in
acoustic textbooks, such as Rschevkin [187, p. 107], Temkin [211, p. 247], and Fletcher [50,
p. 73]. All used functions and parameters of the model are collected in Table 2.1.

As shown in Fig. 2.3, the model’s geometry consists of a cylinder representing a
simplified mouth cavity, using cylindrical coordinates (x, r, φ) as the parameters. The
length of the cylinder is denoted by L and its radius by a. The two circular surfaces at
x = 0 and x = L represent the tympanic membranes. The segment −β ≤ φ ≤ β of the
membrane models the extracolumella as a contact surface between the membrane and the
attached extracolumella.

In the first step of sound processing, the external sound pressure excites the tympanic
membranes. Consequently, the following Sec. 2.2.1 gives a formulation for the sound
pressure arriving at the tympanic membranes from a given sound source. After arrival,
the sound processing consists of two steps, viz., outside activation of the membranes and
excitation of the air in the internal mouth cavity. Section 2.2.2 describes the fluctuating
air in the internal cavity using a wave equation.
While equations describing a loaded force-driven membrane are presented in Sec. 2.2.3 here
the derived equations account for a general force-driven membrane without specifying the
eigenmodes. The latter are then calculated in a second step, though notably, the attached
extracolumella requires additional modifications via boundary conditions.
Finally, Sec. 2.2.3 shows that adaptation of the boundary conditions leads to coupling of the
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Table 2.1: Functions and parameters used in the ICE model with cylindrical mouth cavity.

θ Horizontal angle of the source with respect to the head midline
ω Angular excitation frequency of the incoming sound wave

pex(θ, ω; t) Incoming sound wave
|pex| Amplitude of the incoming sound wave

Ψ(r, φ; t) Driving force of the membrane

u(r, φ; t) Displacement function over the membrane, subscripts denote
the ipsilateral (x = 0) and contralateral (x = L) membrane

cM Propagation velocity on the membrane
fmn(φ, r) General eigenmode of the membrane displacement
Jm(kmnr) Bessel function of degree m with zero n
−β ≤ φ ≤ β Contact surface between tympanic membrane and extracolumella
gl(φ, r) Eigenmode of the loaded membrane displacement

χ[(Cmn)(m,n)] Integrated quadratic error between a linear displacement
and the function

∑
(m,n)Cmnfmn(r, β)

(r, φ, x) Cylinder coordinates
p(x, r, φ; t) Pressure function in the mouth cavity
vx(x, r, φ; t) Velocity function in the mouth cavity

k Wave number k = ω/c with the sound velocity c = 343 m/s

Gipsi(r, φ) Ipsilateral filter
Gcontra(r, φ) Contralateral filter

two domains. Taken together, the membrane vibration results from a linear combination
of the external sound inputs with an ipsi- and a contralateral filter, defined as the response
of an eardrum to contralateral and ipsilateral local stimulation (so only one sound input).

2.2.1 External sound input

Let pex be a harmonic external pressure wave with angular frequency ω and amplitude
|pex|. The source is located at a horizontal angle θ measured from the central axis of the
head. For small head size the sound signals arriving at the two tympani only differ in
phase due to varying arrival times kL/2 [sin(θ) + θ] with wave number k = ω/c and c as
sound velocity in air; see Fletcher [50, p. 154] for details. Assuming a flat head form, the
effect of sound traveling around the head vanishes and the phase difference for a lizard
reduces to kL sin(θ); cf. Fig. 2.4. Christensen-Dalsgaard [27, 28] experimentally verified
that differences in amplitude and phase due to diffraction around the head and body of
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Figure 2.4: Illustration of interaural time difference (ITD) as it arises from a sound source at
angle θ with interaural distance between the tympani L and velocity of sound c. Depending
on the angle of the sound source θ the distance between sound source and contralateral
ear is longer than the distance between sound source and ipsilateral ear. The sound signal
therefore reaches the contralateral ear later than the ipsilateral ear. The difference between
the arrival times at the tympani is denoted by ITD = L/c sin(θ).

the lizard are negligible for the frequencies used here. The pressure functions at the two
tympanic membranes (x = 0 and x = L) are therefore given by

pex0(θ, ω; t) = |pex| eikL sin(θ)/2eiωt ,

pexL(θ, ω; t) = |pex| e−ikL sin(θ)/2eiωt
(2.1)

where the subscripts denote the corresponding membrane.

2.2.2 Internal cavity

The next section specifies the equations that describe the moving air in the internal cavity.
Common acoustic models (cf. acoustic textbooks, such as Rschevkin [187, p. 107] and
Temkin [211, p. 247]) assume that the air is moving due to pressure p(x, r, φ; t) described
by the wave equation in cylindrical coordinates (cf. Fig. 2.3),

1
c2

∂2p(x, r, φ; t)
∂t2

=
1
r

∂

∂r

(
r
∂p(x, r, φ; t)

∂r

)
+

1
r2

∂2p(x, r, φ; t)
∂φ2

+
∂2p(x, r, φ; t)

∂x2
(2.2)

with the sound velocity c as the propagation velocity. The above equation implies that
there is no sound input through the mouth. That is, the mouth is closed, which is typical
for a waiting animal. Adaptation of the boundary conditions (below) further incorporates
the vibration of the two tympanic membranes.
To solve Eq. (2.2), a separation ansatz

p(x, r, φ; t) = f(x)g(r)h(φ)eiωt (2.3)
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leads to

k2f(x)g(r)h(φ) + f(x)h(φ)
[
∂2g(r)
∂r2

+
1
r

∂g(r)
∂r

]
+f(x)g(r)

1
r2

∂2h(φ)
∂φ2

+ g(r)h(φ)
∂2f(x)
∂x2

= 0
(2.4)

with k := ω/c. Separating the parameters yields the set of equations

d2f(x)
dx2

+ k2
xf(x) = 0 (2.5)

d2h(φ)
dφ2

+ q2h(φ) = 0 (2.6)

∂2g(r)
∂r2

+
1
r

∂g(r)
∂r

+

(k2 − k2
x︸ ︷︷ ︸

=:k2
qs

)− q2

r2

 g(r) = 0 (2.7)

with separation constants q and kx. The last equation is known as Bessel’s differential
equation [35, p. 313] that defines the Bessel functions Jq(kqsr) of the first kind, of order q,
and with some constant kqs. The solutions are then given by

f(x) = e±ikxx , h(φ) = e±iqφ , and g(r) = Jq(kqsr) . (2.8)

In other words, the pressure p is given by a linear combination of waves propagating along
the x-axis with wave number kx = ω/c multiplied by functions of r and φ. Furthermore,
the linear conservation of impulse for small displacements

−∇p = ρ
∂v
∂t

(2.9)

allows for the direct calculation of the particle velocity in the x direction,

vx(x, r, φ; t) =
∞∑
q=0

∞∑
s=0

[
− kx
ρω

(
A+
qse

iqφ +A−qse
−iqφ

)
eikxx

+
kx
ρω

(
B+
qse

iqφ +B−qse
−iqφ

)
e−ikxx

]
Jq(kqsr)eiωt . (2.10)

The coefficients kqs, A+
qs, A

−
qs, B

+
qs, and B−qs must be adjusted in such a way that the

vibration profiles of the internal air and the two membranes at x = 0 and x = L are equal.

As the mouth cavity is a closed volume, there is no mass transport. The velocity is
consequently purely oscillatory and mathematically possible additive constants [cf. Eq. (2.9)]
are set to zero. The coupling of the internal cavity with the membranes necessitates an
analysis of the vibrating membranes before adjusting the coefficients.

24



2. Modeling Internally Coupled Ears: The ICE model

2.2.3 Vibration of the membrane

The aim of the following analysis is, given an external sound pressure pex, to find functions
u0(r, φ; t) and uL(r, φ; t) for the displacement of the two tympanic membranes. The
temporal derivatives u̇0/L(r, φ; t) then yield the vibration velocity; cf. Fig. 2.3. The driving
force Ψ(r, φ; t) is the difference between the external pressure and the force exerted by
the fluctuating air in the internal cavity. The membranes are further loaded by the
extracolumella, which is an additional condition in calculating the membranes’ vibrational
eigenmodes. As discussed previously, the derivation first concentrates on the force-driven
membrane before calculation of the eigenmodes in a second step.

Force-driven membrane Let u(r, φ; t) be the displacement of one of the membranes
in x-direction. For an applied force Ψ(r, φ; t) the function u(r, φ; t) has to fulfill the
two-dimensional damped wave equation in polar coordinates [50, p. 78],

− ∂2u(r, φ; t)
∂t2

− 2α
∂u(r, φ; t)

∂t
+ c2

M

[
∂2u(r, φ; t)

∂r2

+
1
r

∂u(r, φ; t)
∂r

+
1
r2

∂2u(r, φ; t)
∂φ2

]
=

1
ρmd

Ψ(r, φ; t) (2.11)

with α being the damping coefficient of the membrane, cM the wave propagation velocity
on the membrane, ρm the membrane density, and d its thickness.

Here the membrane is fixed at the boundary r = a, which means u(a, φ; t) = 0. The
first step to solve (2.11) is the calculation of the homogeneous solution (that is, Ψ = 0).
Again a separation ansatz leads to equations of the form (2.6) and (2.7) so that the solution
calculates as

u(r, φ; t) =
∞∑
m=0

∞∑
n=1

fmn(r, φ)eiωmnt (2.12)

with ωmn = kmncM the resonance frequency of the eigenmodes

fmn(r, φ) =
(
M+
mne

imφ +M−mne
−imφ

)
Jm(kmnr) , m, n ∈ N , (2.13)

where Jm denotes a Bessel function of order m and kmn guarantees that Jm(kmna) = 0 is the
n-th zero of Jm. In addition, the boundary conditions later determine the parameters M+

mn

and M−mn. The eigenmodes fmn(r, φ) are orthogonal when integrated over the membranes,∫
S
fmn(r, φ)fij(r, φ)dS = δmiδnj (2.14)

with
∫
S dS being the integral over the surface of the membrane.

The next step consists of the calculation of the inhomogeneous solution to Eq. (2.11).
In general, the force acting on the membranes consists of two parts. On one hand there
is the (with respect to φ and r) constant external pressure force pex from the acoustic
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excitement, and on the other hand the force from the oscillatory air in the internal cavity
that depends on angular and radial coordinates φ and r. Whereas the external pressure is
given by Eq. (2.1), the internal force results from the vibration velocity vx(r, φ; t) shown in
Eq. (2.10). But first, the boundary conditions help to simplify the following calculations.
In general, the boundary conditions require that the velocities in the cylinder and of the
vibrating membrane at x = 0 and x = L are equal [211, p. 131], that is, the air in the
cavity directly at the membrane moves with the same velocity as the membrane itself

u̇0(r, φ; t) = −vx(0, r, φ; t) ,
u̇L(r, φ; t) = vx(L, r, φ; t) .

(2.15)

The minus sign in the upper equation ensures that the directions defined for the displacement
functions of the membranes u0 and uL are in line with the coordinate system of the cylinder;
cf. Fig. 2.3. The functions u̇0/L and vx are linear combinations of orthogonal functions
from the same set. Furthermore, only the external force from the sound source can activate
movements of the internal cavity. From Eq. (2.15), the pressure function p in the internal
cavity can only contain the vibration modes determined by the membranes. Thus, the
pressure p has to be a linear combination of the modes of the membranes leading to

p(x, r, φ; t) =
∑
mn

(
Amne

ikxx +Bmne
−ikxx

)
fmn(r, φ)eiωt (2.16)

where the fmn are the eigenmodes of the membranes as defined in Eq. (2.13) and ω is the
angular frequency of the external sound source. The above function still satisfies Eq. (2.2).
The applied force is then given by

Ψ(r, φ; t) =
{
pex0 − p(0, r, φ; t) for x = 0 ,
pexL − p(L, r, φ; t) for x = L .

(2.17)

This force can be inserted into Eq. (2.11) leading for x = 0 to

−∂
2u(r, φ; t)
∂t2

− 2α
∂u(r, φ; t)

∂t
+ c2

M

[
∂2u(r, φ; t)

∂r2
+

1
r

∂u(r, φ; t)
∂r

+
1
r2

∂2u(r, φ; t)
∂φ2

]
=

1
ρmd

[
pex0 −

∑
mn

(Amn +Bmn) fmn(r, φ)eiωt
]
.

(2.18)

For a solution of the form

u0(r, φ; t) =
∞∑
mn

Cmnfmn(r, φ)eiωt (2.19)

with coefficients Cmn to determine, Eq. (2.18) then transforms to

∞∑
mn

Cmn

[
ω2 − 2iαω − c2

M

(
k2
mn −

m2

r2
+
m2

r2

)]
fmn(r, φ)eiωt

=
1
ρmd

[
pex0 −

∑
mn

(Amn +Bmn) fmn(r, φ)eiωt
]
.

(2.20)
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Multiplying the equation by fmn and integrating over the surface yields the solution

u0(r, φ; t) =
1
iω

∑
mn

Ω−1
mn

[
−pex0

∫
S
fmn(φ, r)dS + (Amn +Bmn)

]
fmn(φ, r)eiωt

(2.21)

with the definition
Ω−1
mn :=

1
ρmd

iω

(ω2
mn − ω2) + 2iωα

(2.22)

where ωmn = cMkmn. An analogue derivation for x = L leads to the solution

uL(r, φ; t) =
1
iω

∑
mn

Ω−1
mn

[
−pexL

∫
S
fmn(φ, r)dS +

(
Amne

ikxL +Bmne
−ikxL

)]
fmn(φ, r)eiωt .

(2.23)

In the next section the boundary conditions determine the remaining coefficients Amn
and Bmn.

Adapting the velocity to the boundary conditions According to (2.15), the bound-
ary conditions require that the velocities in the cylinder and of the vibrating membrane at
x = 0 and x = L be equal. Equation (2.15) with (2.21) or (2.23) on the left side and (2.9)
and (2.16) on the right side leads for orthogonal functions fmn and x = 0 to

− pex0

∫
S
fmn(φ, r)dS +Amn +Bmn =

Ωmn

ρc
(Amn −Bmn) (2.24)

with kx = ω/c and for the other side, x = L, to

− pexL

∫
S
fmn(φ, r)dS +Amne

ikxL +Bmne
−ikxL = −Ωmn

ρc

(
Amne

ikxL −Bmne−ikxL
)
.

(2.25)

The two equations allow for a calculation of the coefficients Amn and Bmn and a consequent
representation of the solutions in the form

u̇0(r, φ; t) = Gipsi(r, φ) pex0 +Gcontra(r, φ) pexL ,

u̇L(r, φ; t) = Gipsi(r, φ) pexL +Gcontra(r, φ) pex0 , (2.26)

with the ipsilateral filter

Gipsi(r, φ) = (2.27)

−
∑
mn

∫
S
fmn(φ, r) dS

{
−ρci cot(kxL) + Ωmn

[Ωmn − ρci cot(kxL)]2 + ρ2c2 sin−2(kxL)

}
fmn(φ, r)

and the contralateral filter

Gcontra(r, φ) = (2.28)∑
mn

∫
S
fmn(φ, r) dS

{
−ρci[sin(kxL)]−1

[Ωmn − ρci cot(kxL)]2 + ρ2c2 sin−2(kxL)

}
fmn(φ, r) .
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Loaded membrane In a final step, the model has to account for the fact that the
tympanic membranes cannot vibrate freely but are loaded by the extracolumella; cf. Fig. 2.2.
The model assumes the additional load to be attached to a segment of the circle SC where
−β ≤ φ ≤ β; cf. Fig. 2.3. That is, the eigenmodes have to fulfill the homogeneous part
of Eq. (2.11) with additional boundary conditions for φ = −β and φ = β. The form
of the eigenmodes fmn therefore remains as defined in (2.13) but is using the reduced
membrane area S \ SC . As the attached load is rigid in the φ-direction, the velocity and
the displacement at a certain radius are the same for φ = β and φ = −β simplifying the
eigenmodes in (2.13) to

fmn(r, φ) → Cmn cos(mφ)Jm(kmnr) , (2.29)

with m,n ∈ N and some coefficients Cmn. The choice of possible excitable Bessel functions
reduces because the extracolumella, the cartilaginous element of the middle ear attached
to the membrane, is stiff in the r direction; cf. Fig. 2.2, top right. This means that the
displacement amplitude for φ = ±β has to be linear with respect to r leading to∑

m,n

Cmn cos(mβ)Jm(kmnr) =
a− r
a

. (2.30)

That is, the solution for the loaded membrane becomes a linear combination of eigenmodes
of the unloaded membrane. Figure 2.5 illustrates how a sum of eigenmodes of the unloaded
membrane can ensure a linear displacement of the membrane over the line of attachment
with the extracolumella. At this step in the derivation, normalization limits the maximal
amplitude (at r = 0) of the linear displacement to 1. However, the applied external force
determines the maximal amplitude further below.
To solve an equation like (2.30) for a coefficient Cij , usually one multiplies the equation by
the function fij and integrates over the membrane. The coefficients could be calculated
easily given the fmn are orthogonal; cf. Eq. (2.14). Unfortunately, the given relation
(2.30) is true only for the angles φ = ±β, which means that the functions fmn are already
evaluated at this angle and integration over the surface S is impossible. As a consequence,
the coefficients Cmn should minimize the error function

χ[(Cmn)(m,n)] :=
∫ r

0

(∑
m,n

Cmn cos(±mβ)Jm(kmnr)−
a− r
a

)2

dr (2.31)

that measures the degree of similarity between the constructed test function and the linear
function. Minimizing the error with respect to the coefficients Cmn leads to ∂χ/∂Cij = 0,
where (i, j) is one specific pair from the possible combinations (m,n). Interchanging the
order of derivation and integration, the minimization condition leads to the linear system
of equations ∑

m,n

Cmn cos(mβ) cos(iβ)
∫ r

0
Jm(kmnr)Ji(kijr)dr

=
1
a

cos(iβ)
∫ r

0
Ji(kijr) (a− r) dr

(2.32)

28



2. Modeling Internally Coupled Ears: The ICE model

Figure 2.5: Displacement of a loaded membrane (bottom) as linear combination of eigen-
modes of the unloaded membrane (top); cf. Eq. (2.33). The figure illustrates composition of
the eigenmode g0 from Table 2.2. The omitted segment (blue curves) represents the contact
surface between membrane and extracolumella; cf. circle segment −β ≤ φ ≤ β in Fig. 2.3.
An unloaded free membrane usually shows a symmetrical displacement corresponding to
the fundamental mode (top left). The displacement of the fundamental mode is nonlinear
in the radial direction. Below 4− 5 kHz the attached stiff extracolumella of the middle ear,
however, forces the membrane into a linear displacement over the line of the attachment;
cf. Fig. 2.2, top right. The model incorporates this restriction as additional boundary
condition at the line of the attachment. As a consequence, the solution for the loaded
membrane becomes a linear combination of eigenmodes for the free, unloaded membrane.
Since higher modes do not have to be symmetrical (see, e.g., top right eigenmode) the
membrane displacement can show a complex, asymmetric spatio-temporal pattern despite
the linear displacement over the line of attachment with the extracolumella.
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for all (i, j) that occur in Eq. (2.29). This system is infinite, as is the number of eigenmodes,
requiring restriction to a certain number of functions that suffice to approximate linear
displacement. The limited set of eigenmodes that are taken into account is denoted by Z.

As an example, the calculations below use the set Z = {(m,n) | 0 ≤ m ≤ 5 and 0 ≤
n ≤ 5} of selected eigenfunctions. Higher modes result in a strongly fluctuating surface
that has not been observed in experiments so far.

Table 2.2: The loaded membrane: two possible eigenmodes g0 and g1 of the loaded membrane
with their relative error χ when combining three eigenmodes of the free membrane to fulfill
the condition of the attached extracolumella with an error χ ≤ 0.05%. The three functions
could be chosen out of a pool of 25 eigenmodes given by the set Z. The functions are
orthogonalized by a Gram-Schmidt method. The eigenmode g0 and its components are
visualized in Fig. 2.5.

n gn χ [%]

0 425.6 J0(k01r)− 51.3 J0(k02r) 0.0008
−183.7 cos(φ) J1(k11r)

1 6.8 J0(k01r) + 369.4 J0(k02r) 0.0275
−160.0 cos(φ) J1(k11r) + 768.3 cos(2φ) J2(k21r)

Furthermore, only a certain number of eigenfunctions from this set Z are necessary
to build a linear function with minimal error. Likely the combination of two or three
eigenfunctions is sufficient, thus in a first step different numbers of combined functions fmn
with (m,n) ∈ Z are tested. The results show that three eigenmodes from the possible set
Z already generate a linear profile with an error below 0.05%. The following calculations
therefore center around combinations of three eigenmodes with indices Zl with l ∈ N from
the above set Z. Solving the resulting linear equation system (2.32) for the coefficients
Cmn gives the eigenmodes

gl(r, φ) = al
∑

(m,n)∈Zl

Cmn cos(mφ)Jm(kmnr) (2.33)

with a scaling factor al. All chosen eigenmodes gl must yield an error χ below 0.05%.
Each of these functions is a combination of three Bessel functions. Two eigenmodes gl can
contain the same function fmn (only a complete agreement of all three modes is excluded).
Thus the new eigenmodes gl are not necessarily orthogonal. Only subsequent application of
an appropriate method such as Gram-Schmidt (described in textbooks, such as Cohen [32,
p. 82] or Reed and Simon [179, p. 46]) leads to orthogonal eigenmodes. Taken together,
this method produces a set of orthogonal eigenmodes that fulfill the membrane equation

30



2. Modeling Internally Coupled Ears: The ICE model

and the additional boundary conditions induced by the attached extracolumella.
For the above set Z, Table 2.2 shows the two possible orthogonal eigenmodes gl for a
loaded membrane and the relative error χ ≤ 0.05%. The eigenmode g0 and its components
are visualized in Fig. 2.5. In general, the eigenmodes correspond to the fundamental
eigenmode f01 with modifications from the additional higher modes f02, f11, and f21.
The resonance frequencies of the eigenmodes gl as needed for Eq. (2.21) are given by the
resonance frequencies of the contributing modes fmn depending on their excited fractions
in the linear combination.

2.3 Numerical simulation of the eigenfunctions
of realistic mouth cavities

As the complex shape of a realistic mouth cavity prevents an analytical description, the
ICE model contains a numerical eigenfrequency analysis to estimate the eigenfrequencies of
the internal volume. The eigenfrequency analysis is now performed in two steps. The first
consists of the construction of simple geometries and the calculation of their eigenfrequencies
with the simulation program COMSOL (see http://www.femlab.de/). In doing so, the
influence of a narrowing or widening of a geometry can be estimated; see Fig. 2.13 for
results.

Figure 2.6: Hemidactylus frenatus (top row) and Tokay gecko (bottom row) and casts
of their mouth cavities produced by Jakob Christensen-Dalsgaard. As indicated on the
right-hand side, the interaural distance is 10 mm for Hemidactylus frenatus and 22 mm for
Tokay gecko. In addition to different interaural distances the cavities vary in shape and
volume so that they cover a large range of possible realistic mouth cavities.

In a second step, the eigenfrequencies of realistic mouth cavities for Hemidactylus
frenatus and Tokay gecko (cf. Fig. 2.6) are calculated numerically. With different interaural
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distances of 10 mm for Hemidactylus frenatus and 22 mm for Tokay gecko the analysis of
the two lizards covers a large range of possible realistic mouth cavities. The prerequisite for
a numerical eigenfrequency analysis is a closed three-dimensional mesh of the corresponding
geometry. For Hemidactylus frenatus three-dimensional scans [154] of a cast imprint of the
mouth cavity allow for a reconstruction of the realistic mouth cavity. Figure 2.7 illustrates
the three major steps to construct the spatial mesh from the scanned cast of the mouth
cavity. The first one (left) is alignment of the independently scanned profiles from the
different sides of the geometry. In a second step (middle), the aligned profiles are combined
in a closed geometry that permits, in a third and final step (right), the creation of a
three-dimensional mesh of the mouth cavity interior.

Figure 2.7: Construction of a three-dimensional mesh from the scanned cast of the mouth
cavity of Hemidactylus frenatus. Left: Alignment of the scanned profiles of the geometry
from different sides. Middle: Construction of a closed geometry. Right: Construction of
the three dimensional mesh. For the editing of the mesh the programs ICEM CFD and
BLENDER were used. In a next step, the three-dimensional mesh of the realistic mouth
cavity can be imported into the numerical simulation program COMSOL for eigenfrequency
analysis; cf. Fig. 2.14.

For Tokay gecko, spatial reconstructions of the mouth cavity have been received from
Catherine Carr and Bruce Young. Figure 2.8 (left) shows the original received geometry
as automatically reconstructed from a set of scanned slices of the lizard’s head. The mesh,
however, contains holes and disconnected or undefined elements which prevents a direct
import into numerical simulation programs. In several post-processing steps the geometry
therefore has to be closed, simplified and smoothened (Fig. 2.8, middle) to finally generate
a closed three-dimensional mesh of the geometry (Fig. 2.8, right).

For the editing of both meshes the programs TGRID and ICEM CFD from ANSYS
(see http://www.ansys.com/products/) and BLENDER (see http://www.blender.org/)
were used. For both Hemidactylus frenatus and Tokay gecko, the closed meshes of the
mouth cavities allow for an eigenfrequency analysis in the numerical simulation program
COMSOL. Incorporation of the tympani to set up a complete numerical ICE model could
be realized in a next future step. Numerical calculations of the eigenfrequencies for the
isolated mouth cavities, however, allow for an analysis of the mouth cavity’s effect on the
behavior of the whole system of internally coupled ears.
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Figure 2.8: Construction of a realistic mouth cavity of Tokay gecko. Left: Original mesh as
automatically generated from scanned slices of the mouth cavity received from Catherine
Carr and Bruce Young. Since the mesh at this stage contains holes and disconnected or
undefined elements several post-processing steps are necessary. Middle: Closed geometry
of the realistic mouth cavity as obtained from the original geometry using wrapping and
smoothing algorithms from TGRID and BLENDER. Right: The obtained closed mesh of
the realistic mouth cavity can be imported into the numerical simulation program COMSOL
for an eigenfrequency analysis; cf. Fig. 2.19.

2.4 Evaluation and results

Rating the significance of the ICE model necessitates a comparison of its predictions
with measurements. To this end, the ICE model is evaluated using parameters from
Hemidactylus frenatus (gekkonid) [28] as summarized in Table 2.3. All calculated results
use the ICE model with a cylindrical mouth cavity.

The evaluation of the model for Hemidactylus frenatus proceeds in several steps.
First, laser doppler vibrometry measurements of eardrum vibrations [28] are compared
with the calculated data based on the ICE model. The analysis covers the vibration
amplitude of the membrane, the gain of the interaural transmission pathway, the internal
amplitude differences (iAD), and the internal time differences (iTD). In a second step,
the eigenfunctions are numerically calculated for simple artificial geometries and for the
realistic mouth cavity of Hemidactylus frenatus. Furthermore, the influence of the lowest
eigenfrequency on iTDs and iADs is estimated.

To illustrate that the ICE model is a universal model for describing internally coupled
ears and not only a specialized model for Hemidactylus frenatus the essential calculations
described above are performed as well for Tokay gecko; cf. Sec. 2.4.3. Whereas Hemidactylus
frenatus with an interaural distance of 10 mm is a rather small lizard, Tokay gecko is the
second largest Gecko species. An additional confirmation of the ICE model for Tokay gecko
therefore underlines that the ICE model can describe internally coupled ears for animals
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Table 2.3: Geometry parameters for Hemidactylus frenatus (gekkonid), obtained from
Christensen-Dalsgaard [28].

L = 10 mm Length of the cylinder (interaural distance)
a = 1.2 mm Radius of the tympanic membrane

α = 1000 Hz/(2 · 1.2) Damping coefficient of the membrane
ρm = 3.2 mg/mm3 Density of the membrane

d = 10 µm Thickness of the membrane
c = 343 m/s Velocity of sound

with largely varying interaural distance and mouth cavities.
The aim of the third step is to prove that the higher modes included in the cylindrical

ICE model are responsible for the complex pattern of the vibration amplitude over the
membrane as measured by Manley [144] for Tokay gecko. Therefore, calculation of a
membrane profile of the vibration amplitude using the corresponding parameter set 2.4
allows for a comparison with the experimental data [144].

2.4.1 Directionality of the membrane vibration pattern

By means of the ICE model with a cylindrical mouth cavity, it is possible to estimate the
dependence of the membrane vibration amplitude upon the specific frequency and direction
of a sound source. To this end, it is necessary to evaluate the vibration amplitudes at a
specified point on the membrane, which is usually the tip of the extracolumella. In the ICE
model (cf. Fig. 2.3), the specific point is at the middle of the circular membrane, where
r = 0.

The left side of Fig. 2.9 shows the logarithmic vibration amplitudes, dependent on the
sound source direction and frequency as given by the ICE model for Hemidactylus frenatus.
Therefore, one can directly compare the calculated (Fig. 2.9, left) and experimental
(Fig. 2.9, right) data. The experimental data [28] consist of measured eardrum vibrations
at the tip of the extracolumella of Hemidactylus frenatus using laser vibrometry. The
plot shows vibration amplitude as a function of frequency (y-axis) and direction (x-axis).
For every measured frequency, the mean square error between measured and calculated
data averaged over the tested angular directions quantifies the goodness of the fit. The
resulting deviation as illustrated in Fig. 2.10 lies around 1.3 dB re 1 mm/(s Pa). However,
for frequencies above 5 kHz the error function systematically increases. In this frequency
region, the experimental data show a systematic decline within the directional response
pattern. In comparison, the calculated data predict a much stronger response. A possible
explanation for this overestimation could be the occurrence of a limiting process at this
frequency, such as bending of the extracolumella (cf. Fig. 2.2, right bottom) or an effect
of the eigenfrequencies at the realistic mouth cavity of Hemidactylus frenatus. The ICE
model does not consider a bending of the extracolumella, the inclusion of the latter could
therefore be a future test application for the model. Numerical calculations below further
detail the eigenfrequencies of the realistic mouth cavity.
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Figure 2.9: Calculated (left) and experimental (right) amplitude of tympanic vibration for
Hemidactylus frenatus (gekkonid) in dB re 1mm/(s Pa), i.e., the vibration amplitude with
regard to a reference vibration velocity of 1 mm/s at 1 Pa. The amplitudes depend on
the sound source direction (x-axis with directions varying from −180◦ to 180◦; negative
directions are contralateral, 0 is frontal, and positive directions are ipsilateral) and frequency
(y-axis). The calculated results are based on the ICE model with a cylindrical mouth cavity.
Measured eardrum vibration amplitudes for Hemidactylus frenatus are from Christensen-
Dalsgaard [28]. The vibration amplitude pattern as calculated by the ICE model nicely
reproduces experimental data. The model, however, overestimates the vibration amplitudes
above 6 kHz and underestimates the response of the system for low frequencies. A
quantitative comparison is presented in Fig. 2.10.

In general, for both experimental and model data, at frequencies below 1 kHz the
eardrum shows an identical vibration amplitude for all angles θ. Localization of a sound
source based on the vibration amplitude is therefore not possible for these frequencies. In
contrast, above 1 kHz the amplitude varies with angle θ. Consequently, for these frequencies
the location of the sound source could be extracted from the amplitude variations. It is
remarkable that, because of the special construction of ICE, these directional hints are
already present at the level of the tympanic membranes.

Next, one can analyze the advantages of the transmission through the internal cavity
in more detail by evaluating the transmission gain. Transmission gain is defined as the
response ratio of eardrum vibration with contralateral and ipsilateral local stimulation
(only one sound input). For local stimulation, one of the inputs is zero. Figure 2.11 shows
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Figure 2.10: Mean square error between measured and calculated amplitudes of tympanic
vibrations for Hemidactylus frenatus averaged over the tested angular directions for every
measured frequency. The error is around 1.3 dB re 1 mm/(s Pa); only for frequencies above
5 kHz the error function systematically increases indicating a possible attenuation of the
biological data through lower eigenfrequencies of the realistic mouth cavity in comparison
to the used cylindrical mouth cavity.

the calculated data as light lines and the experimental results as black lines. The complex
gain function consists of two parts, amplitude (Fig. 2.11, left) and phase (Fig. 2.11, right).
Notably, experimental data from Christensen-Dalsgaard [28] present eardrum vibrations of
Hemidactylus frenatus using a local sound source and compared the response to ipsi- and
contralateral local stimulation. The qualitative form of those calculated gain functions over
frequency is similar for data from the ICE model and experiments. The calculated data
further show a smoother behavior and less extreme minima and maxima. This analytically
soluble part of the ICE model, however, includes a cylindrical mouth cavity with a volume
significantly smaller than the realistic one, thus additional modification is possible for
the directional response that results from the eigenfrequencies of the realistically shaped
mouth cavity.

For Hemidactylus frenatus the comparison of the data from the ICE model with the
cylindrical mouth cavity and the experimental data [27] concludes with the evaluation
of a possible neuronal processing based on the internal amplitude difference (iAD); see
Fig. 2.12, top. The latter measures the vibration amplitude difference (in dB) between the
input from the ipsi- and contralateral ear by subtracting the free field eardrum vibration
(in dB) of the two eardrums. In fact, subtraction of dB values corresponds to division but
is assumed to reflect the neuronal processing because, within a neuron’s dynamic range,
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Figure 2.11: Transmission gain amplitude (left side in dB) and phase (right side in
radians) defined as the response ratio of eardrum vibration with contralateral and ipsilateral
local stimulation (so only one sound input) for Hemidactylus frenatus (gekkonid). The
transmission gain as calculated by the ICE model with a cylindrical mouth cavity is
depicted as light line, the measured transmission gain [28] as black line. Calculated and
experimentally measured transmission gains show the same tendencies and are in a good
agreement. Only for frequencies above 4 kHz is there a gap between the calculated and the
measured gain.

the spike rate is a linear function of the sound level in dB. The iAD is therefore defined as

iAD := 20 log
(
|u̇0|
|u̇L|

)
. (2.34)

The processing function iAD corresponds to the IVAD function of Jørgensen et al. [103]
and is measured in dB. As compared to experimental data from Christensen-Dalsgaard [28],
the calculated function (positive values for angles exceeding zero, negative for those below
zero) shows the same behavior. In both cases the response of the system is directional.

In addition to iADs, the vibrations of the tympani can differ in time as well leading to
internal time differences (iTDs) defined as

iTD := arg
(
u̇0

u̇L

)
/ω . (2.35)

Calculated iTDs are shown in Fig. 2.12, bottom left. For sound source directions ±π/2
and resulting from the internally coupled ears, the maximal iTDs are around ±86 µs for
frequencies below 2.5 kHz. These differences illustrate the enhancing effect of ICE, as a
system with independent tympanic membranes and head size of Hemidactylus frenatus
would, in comparison, produce maximal interaural time differences (ITDs) of ±30 µs. The
enhancement factor of maximal iTDs for internally coupled ears in comparison to maximal
ITDs for independent ears in dependence upon sound frequency is illustrated in Fig. 2.12,
bottom right. For frequencies below 3 kHz the internal coupling results in iTDs that
are a factor 3 higher than ITDs for independent ears. Localization due to iTDs could
therefore be possible at the signal level even for animals with a small interaural distance.
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Figure 2.12: Overview of possible localization cues for Hemidactylus frenatus (gekkonid).
Top: Internal amplitude differences (iADs) in dB [cf. Eq. (2.34)] as a function of direction
(x-axis, negative directions contralateral, 0 frontal, and positive directions ipsilateral) and
frequency (y-axis) resulting from the ICE model with the cylindrical mouth cavity (left)
and from experiments [28] (right). The obtained iADs systematically vary with direction of
sound source for frequencies above 1 kHz. Calculated and experimental iADs [28] show a
similar profile. The cylindrical ICE model, however, overestimates iADs for high frequencies
and underestimates iADs for low frequencies. Bottom left: Internal time difference (iTDs)
in µs [cf. Eq. (2.35)] as a function of direction (x-axis) and frequency (y-axis). Calculated
iTDs vary with direction of sound source for low frequencies. Bottom right: Enhancement
factor of maximal iTDs resulting from the ICE model with the cylindrical mouth cavity for
animals having internally coupled ears in comparison to maximal ITD = kL sin (θ = π/2)
of animals having independent ears in dependence upon different sound frequencies. For
frequencies below 3 kHz the internal coupling leads to iTDs that are a factor 3 higher than
ITDs for animals with independent ears. Taken together iADs and iTDs could deliver
localization cues in complementary frequency ranges hinting at separated pathways for iTD
and iAD processing; see Sec. 3.2 for details.
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As the vector strength (see Fig. 3.3 for details) decreases substantially for frequencies
above 1 kHz [148], this frequency seems to be a natural limit for evaluation of the iTD
cues.

Figure 2.13: Calculated first eigenmodes of simplified geometries with length 2 cm and
top and bottom diameter of 0.5 cm. In comparison to the cylindrical geometry (middle)
the two other geometries are either narrower (left) or broader (right). The plots show
surfaces of equal pressure from the negative minimum (black) to the positive maximum
(white). The absolute value of the extrema is equal and indicated below the geometries.
The obtained lowest eigenfrequencies are 4.0 kHz (left), 8.6 kHz (middle), and 13.1 kHz
(right) as indicated. A narrowing of the geometry therefore decreases, a widening increases
the lowest eigenfrequency of the geometry.

2.4.2 Eigenmodes of a realistic mouth cavity

The directional differences predicted by the cylindrical ICE model for Hemidactylus frenatus
above 5 kHz contradict experimental data (see Fig. 2.10) and may result from the strongly
simplified cylindrical model of the mouth cavity. Eigenfrequencies of the realistic mouth
cavity could modify the response of the system. To test this hypothesis, two questions
have to be addressed. First, what are the eigenfrequencies for complex geometries, in
particular, for the realistic mouth cavity of Hemidactylus frenatus. Second, what is the
influence of the lowest eigenfrequency on the response of the system, that is, on amplitudes
of tympanic vibration, iTDs, and iADs.

To address the first question, numerical simulations of simplified geometries investigate
the effect of a narrowing or widening of the geometry on its lowest eigenfrequency. The
analyzed geometries are modifications of a cylinder of length 2 cm and radius 0.25 cm.
Modification of this cylinder results in geometries that either widen or narrow in the
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Figure 2.14: Calculated eigenfunctions of the realistic mouth cavity (snout to bottom)
for Hemidactylus frenatus (gekkonid) with the corresponding eigenfrequencies and their
maximal amplitudes; see Fig. 2.7 (right) for the used three-dimensional mesh of the realistic
mouth cavity. The estimated positions of the tympanic membranes are marked by blue
circles. The plots show surfaces of equal pressure from the negative minimum (black) to
the positive maximum (white). The absolute value of the extrema is equal and given in the
table for each eigenfrequency. Shown in the bottom-right corner are the eigenfrequencies of
the cylinder that corresponds to the space between the two eardrums used for calculations
in the cylindrical ICE model; cf. Fig. 2.3. The eigenfrequencies of the cylinder lie high
above the treated region and therefore have no effect on the system’s response. In contrast,
the eigenmodes of the realistic mouth cavity have eigenfrequencies starting at 5.1 kHz and
may influence the directional response of the tympanic membranes.
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middle; cf. Fig. 2.13. Calculation of the eigenfrequencies reveals that a narrowing of the
geometry decreases, a widening increases the lowest eigenfrequency of the geometry.

In the next step, numerical simulations based on the constructed three-dimensional
mesh of the realistic mouth cavity of Hemidactylus frenatus (see Fig. 2.7, right) allow for
the calculation and analysis of the corresponding eigenfrequencies. Figure 2.14 contrasts
the calculated eigenfunctions of the realistic mouth cavity with the eigenfunctions of
the corresponding cylinder used for the ICE model. In detail, the eigenfunction of the
realistic mouth cavity with the lowest eigenfrequency, 5.1 kHz, shows a horizontal pattern.
Intermediate eigenfunctions occur at around 12.2 kHz and 13.0 kHz with the highest
pressure amplitudes, and weaker vertical eigenfunctions are around 14.1 kHz. In contrast,
the lowest eigenfrequency for the corresponding cylinder used in calculating the ICE
model lies at 17.2 kHz, therefore, outside the region of interest. Furthermore, strong
intermediate eigenmodes are missing. To summarize, the eigenfrequencies of the realistic
mouth cavity are lower than those of the corresponding cylinder. Therefore, they can
modify the directional response, calculated using the cylindrical ICE model, in particular,
in the frequency region above 5 kHz.

In the following, the second question is addressed, that is, how the lowest eigenfrequency
influences the response of the system, in particular, amplitudes of the tympanic vibration,
iADs, and iTDs. Here a re-calculation of tympanic vibrations with parameters as given in
Table 2.3 and corresponding input ITDs but with varying length of the internal cylinder
provides the possibility to estimate the influence of different lowest eigenfrequencies on
the directional response of an ICE system. The cylinder varies between L = 1 cm, 2 cm,
and 3 cm corresponding to lowest eigenfrequencies of 17.2 kHz, 8.6 kHz, and 5.7 kHz.
Figure 2.15 summarizes the resulting amplitudes of the tympanic vibration for the three
different interaural distances in dependence upon sound direction and frequency. With
decreasing lowest eigenfrequency of the used cylinder the frequencies of maximal amplitudes
of the tympanic vibration are shifted towards lower frequencies. As a consequence, vibration
amplitudes for lower frequencies around 1 kHz increase. When sound frequency corresponds
to the lowest eigenfrequency of the internal cavity the internal pressure reaches a local
maximum. According to Eq. (2.17) the force acting on the tympani is therefore dominated
by the pressure in the mouth cavity that is independent of the direction of the sound signal.
The external inputs hardly influence the tympanic vibrations so that tympanic vibrations
for the lowest eigenfrequency show almost identical amplitudes for all directions of sound
source.

As illustrated in Fig. 2.16, iADs and iTDs are attenuated with decreasing lowest
eigenfrequency of the mouth cavity. When the lowest eigenfrequency decreases from
17.2 kHz to 5.7 kHz, the maximal iTD decreases at the same time from 86 µs to around
50 µs, the maximal iAD from 15 dB to 8 dB. When sound frequency corresponds to the
lowest eigenfrequency, tympanic vibrations do not vary anymore with direction of the
sound source so that iADs and iTDs vanish. Localization based on iTDs or iADs therefore
becomes impossible when reaching the lowest eigenfrequency. In particular, a rapid and
complete decay of iADs has been measured experimentally for Hemidactylus frenatus at
5 kHz [28] which fits nicely to the calculated lowest eigenfrequency of the mouth cavity;
cf. Fig. 2.14. A systematic calculation of the eigenfrequencies of several different mouth
cavities together with the corresponding experimental data for iADs could verify whether
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Figure 2.15: Calculated amplitudes of the tympanic vibration in dependence upon the
direction of sound source (x-axis) and frequency (y-axis) for varying lowest eigenfrequency
of the mouth cavity. For the parameters of Hemidactylus frenatus as given in Table 2.3 and
corresponding input ITDs only the length of the internal cylinder varies and consequently so
does the eigenfrequency of the mouth cavity vary between 17.2 kHz (left column), 8.6 kHz
(middle), and 5.7 kHz (right column). With decreasing lowest eigenfrequency (stepping
to the right) the frequencies of the maximal amplitudes of the tympanic vibration are
shifted towards lower frequencies. Vibration amplitudes for lower frequencies around 1 kHz
increase. When sound frequency corresponds to the lowest eigenfrequency of the internal
cavity the internal pressure reaches a local maximum. According to Eq. (2.17) the force
acting on the tympani is therefore dominated by the pressure in the mouth cavity that is
identical for every direction of the sound signal. The external inputs hardly influence the
tympanic vibrations. For the lowest eigenfrequency tympanic vibrations therefore show
almost identical amplitudes for all directions of sound source. In other words, directional
hearing becomes impossible for the lowest, or whichever, eigenfrequency.

the lowest eigenfrequency limits sound processing in the described way. For Tokay gecko
this analysis is performed below.

In conclusion, for Hemidactylus frenatus the systematic increase within the estimation
error between calculated and experimentally measured amplitudes of tympanic vibrations
(cf. Fig. 2.10) could well result from a missing first eigenfrequency around 5 kHz. Without
such an eigenfrequency, the ICE model with the cylindrical mouth cavity systematically
overestimates iADs in the corresponding frequency region.

2.4.3 Generalization of the ICE model

The previous calculations are performed for Hemidactylus frenatus that is, with an interaural
distance of 10 mm, one of the smallest lizards. To illustrate that the ICE model can generally
describe tympanic vibrations of animals having internally coupled ears, in particular, all
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Figure 2.16: Calculated iADs (top) [cf. Eq. (2.34)] and iTDs (middle) [cf. Eq. (2.35)]
in dependence upon the direction of sound source (x-axis) and frequency (y-axis) and
enhancement factor of maximal iTD for varying lowest eigenfrequency of the mouth cav-
ity; for a description of the setup see caption of Fig. 2.15. The bottom row shows the
enhancement factor of maximal iTDs resulting from the ICE model with the cylindri-
cal mouth cavity for animals having internally coupled ears in comparison to maximal
ITD = kL sin (θ = π/2) of animals having independent ears in dependence upon different
sound frequencies and lowest eigenfrequency of the mouth cavity. With decreasing lowest
eigenfrequency (stepping to the right) iADs and iTDs are attenuated for frequencies below
the lowest eigenfrequency. Frequencies of maximal iADs are further shifted towards lower
frequencies. The enhancement factor of maximal iTDs in comparison to maximal ITDs
decreases for decreasing lowest eigenfrequency, e.g., for a narrow mouth cavity; cf. Fig. 2.13.
When sound frequency corresponds to the lowest eigenfrequency the amplitudes of the
tympanic vibrations are almost identical for all directions of sound source; cf. Fig. 2.15.
As a consequence, differences between tympanic vibrations, i.e., iADs and iTDs vanish
completely for the lowest eigenfrequency. Localization based on iTDs or iADs therefore
becomes impossible when reaching the lowest, or whichever, eigenfrequency.
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kinds of lizards, the model is evaluated as well for Tokay gecko, the second largest Gecko
species. An agreement of experimental and analytical results for Tokay gecko then shows
that the ICE model covers a large range of animals with different interaural distances
having ICE. Chapter 4 further shows that the ICE model makes reasonable predictions
for the best frequency, i.e., the frequency with the lowest hearing threshold, for different
species of animals having ICE. Taken these two arguments together, the ICE model can
be seen as universal model for describing internally coupled ears.

Table 2.4: Geometry parameters for Tokay gecko. Length of the cylinder, i.e., interaural
distance, is taken from [27], the other parameters are linearly scaled from the parameters
of Hemidactylus frenatus; cf. Table 2.3. In particular, the interaural distance L = 10 mm
of Hemidactylus frenatus is used for the scaling below.

L = 22 mm Length of the cylinder (interaural distance)
a = 3.5 mm · (22 mm/10 mm) Radius of the tympanic membrane

α = 1000 Hz/(2 · 1.2) · (10 mm/22 mm) Damping coefficient of the membrane
ρm = 3.2 mg/mm3 Density of the membrane

d = 10 µm · (22 mm/10 mm) Thickness of the membrane

The following comparison of calculated and experimental data analyzes vibration
amplitudes of the tympanic membranes, iTDs, iADs, and the eigenfrequencies for the
realistic mouth cavity of Tokay gecko. All calculations are performed with parameters
as given in Table 2.4. The length of the cylinder, i.e., the interaural distance, is taken
from [27], the other parameters are scaled from the parameters of Hemidactylus frenatus
under the assumption that the geometry scales linearly with size. In detail, the radius a
and the thickness d of the membrane increase linearly, whereas the eigenfrequencies of the
tympani decrease linearly, with size; cf. [50, p. 74] for details.

Figure 2.17 contrasts calculated and experimentally measured amplitudes of tympanic
vibration for Tokay gecko in dependence upon different directions and frequencies of
sound. Both profiles show similar vibration amplitude patterns with identical maximum
of 10 dB re 1 mm/s/Pa. The ICE model with the cylindrical mouth cavity, however,
overestimates the directional response of the system above 2.5 kHz and underestimates the
directional response for low frequencies. A lowest eigenfrequency of the realistic mouth
cavity at round 3 kHz could provoke such a modification; cf. Fig. 2.15. At the same time,
such a lowest eigenfrequency would modify as well internal amplitude differences (iADs)
and internal time differences (iTDs) that are calculated in the following.

Figure 2.18 summarizes iADs and iTDs for Tokay gecko in dependence upon different
directions and frequencies of sound. For frequencies above 1 kHz incoming ITDs are
translated into directional iADs up to 15 dB. As already observed for Hemidactylus frenatus,
the obtained iADs systematically vary with direction of sound source and reproduce
experimental iADs [27]. For frequencies above 2.5 to 3 kHz, however, experimentally
measured iADs vanish more quickly than the calculated iADs hinting at a modification
due to a lowest eigenfrequency of the realistic mouth cavity around 3 kHz; cf. Fig. 2.16.
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Figure 2.17: Calculated (left) and experimental (right) amplitude of tympanic vibration
for Tokay gecko in dB re 1mm/s/Pa, dependent on the sound source direction (x-axis
with directions varying from −180◦ to 180◦; negative directions are contralateral, 0 is
frontal, and positive directions are ipsilateral) and frequency (y-axis). The calculated
results are based on the ICE model with a cylindrical mouth cavity and parameters as given
in Table 2.4. Measured eardrum vibration amplitudes for Tokay gecko are from Christensen-
Dalsgaard [27]. The ICE model reproduces the measured vibration amplitude pattern but
overestimates the directional response of the system above 3 kHz. In addition, calculated
amplitudes of tympanic vibration are lower for frequencies below 1 kHz than experimentally
measured vibration amplitudes. According to Fig. 2.15 a lowest eigenfrequency of the
realistic mouth cavity around 3 kHz could provoke the observed modified response of the
measured vibration amplitudes. A numerical calculation of the lowest eigenfrequency of
the mouth cavity is therefore necessary.
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Figure 2.18: Overview of possible localization cues for Tokay gecko. Top: Internal amplitude
differences (iADs) in dB [cf. Eq. (2.34)] as a function of direction (x-axis, negative directions
contralateral, 0 frontal, and positive directions ipsilateral) and frequency (y-axis) as resulting
from the ICE model with the cylindrical mouth cavity (left) and from experiments [27] (right).
The obtained iADs systematically vary with direction of sound source for frequencies above
1 kHz and reproduce experimental iADs [27]. Bottom left: Internal time difference (iTDs)
in µs [cf. Eq. (2.35)] as a function of direction (x-axis) and frequency (y-axis). Calculated
iTDs vary with direction of sound source for low frequencies. Bottom right: Enhancement
factor of maximal iTDs resulting from the ICE model with the cylindrical mouth cavity for
animals having internally coupled ears in comparison to maximal ITD = kL sin (θ = π/2)
of animals having independent ears in dependence upon different sound frequencies. For
frequencies below 1.5 kHz the internal coupling produce time differences that are a factor
of 3 higher than those for animals with independent ears. The additional enhancement
could guarantee that an animal with a small head size could still localize sound signals by
means of iTDs for frequencies below 1 kHz. Taken together iADs and iTDs could deliver
localization cues in complementary frequency ranges.
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For low frequencies calculated iTDs are up to ±225 µs for the large Tokay gecko and vary
with direction of sound source. For frequencies below 1 kHz the internal coupling enhances
iTDs in comparison to ITDs by a factor 3; cf. enhancement factor in Fig. 2.18, bottom
right. Similar to the directional localization cues for Hemidactylus frenatus (cf. Fig. 2.18)
iADs and iTDs could together deliver localization cues in complementary frequency ranges.

In a final step, the eigenfrequencies of the realistic mouth cavity of Tokay gecko
(cf. Fig. 2.6, bottom) are calculated to account for a modification of tympanic vibrations
due to the lowest eigenfrequency of the realistic mouth cavity (Figs. 2.15 and 2.16).
Due to the complex shape of the cavity the eigenfrequencies can only be calculated
numerically. For the eigenfrequency analysis the reconstructed three-dimensional mesh of
the realistic mouth cavity (Fig. 2.8, right) is loaded into the simulation program COMSOL.
Figure 2.19 illustrates the obtained eigenmodes and the corresponding eigenfrequencies.
As already observed for Hemidactylus frenatus (cf. Fig. 2.14) the eigenfunction of the
realistic mouth cavity with the lowest eigenfrequency, here 3.2 kHz, shows a horizontal
pattern. Eigenfunctions of higher eigenfrequencies 5.9 kHz, 6.0 kHz, and 7.4 kHz with the
highest pressure amplitudes show intermediate to vertical patterns. In comparison, the
lowest eigenfrequency for the corresponding cylinder used in calculating the ICE model
with the cylindrical mouth cavity lies at 7.8 kHz. The lowest eigenfrequency of the realistic
mouth cavity could therefore modify the directional response as calculated using the
cylindrical ICE model, in particular, in the frequency region around 3 kHz and below
1 kHz; cf. Figs. 2.15 and 2.16.

Taken results from Hemidactylus frenatus and Tokay gecko together, the ICE model
can explain vibration patterns as observed in experiments. In this way, the ICE model
presents itself as universal model to generally describe tympanic vibrations of animals
having internally coupled ears.
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Figure 2.19: Calculated eigenfunctions of the realistic mouth cavity for Tokay gecko with
the corresponding eigenfrequencies and their maximal amplitudes; see Fig. 2.8 (right) for the
used three-dimensional mesh of the realistic mouth cavity. The estimated positions of the
tympanic membranes are marked by blue circles. The plots show surfaces of equal pressure
from the negative minimum (black) to the positive maximum (white). The absolute value of
the extrema is equal and given in the table for each eigenfrequency. The eigenmodes of the
realistic mouth cavity have eigenfrequencies starting at 3.2 kHz. Similarly to Hemidactylus
frenatus, the realistic eigenfrequencies lie below the lowest eigenfrequency of the cylinder
used by the ICE model. According to Figs. 2.15 and 2.16, the lowest eigenfrequency of the
realistic mouth cavity can modify the directional response of the system around 3.2 kHz.
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2.4.4 Spatial vibration pattern of the membrane

The final step of the evaluation consists of the analysis of the spatial pattern in the
membrane with respect to the exciting frequency. The tympanic vibration pattern was
measured experimentally by Manley [144] for a Tokay gecko with the strongest vibration
response around 1 kHz. Manley determined the vibration amplitude for eight locations
on the membrane and measured a complex pattern (see Fig. 2.20, right) that does not
correspond to a symmetrical eigenmode with only one maximum. Between 4 kHz and
8 kHz, the pattern shows two maxima, hinting that higher modes are likely involved.

Figure 2.20: Calculated (left) and experimental (right) vibration amplitude pattern over the
membrane, dependent on sound frequency from 0.5 to 10 kHz for Tokay gecko. Experimental
data have been taken from Manley [144]. The calculated data result from the ICE model
with a cylindrical mouth cavity. In both cases, a similar complex vibrational pattern varies
with frequency. The inclusion of higher eigenmodes in the ICE model results in complex
amplitude patterns over the membrane that are in good agreement with experimental data.

In the ICE model with a cylindrical mouth cavity, higher modes are necessary to satisfy
the boundary conditions of the membrane resulting from the attached extracolumella of
the middle ear. Figure 2.20 (left) illustrates the vibration amplitude pattern over the
membrane, calculated using Eq. (2.26) for different frequencies with the parameters in
Table 2.4 for Tokay gecko. The omitted segment represents the attached extracolumella.
The comparison of the calculated data with the experimental data is qualitative, as the
parameters used are only estimated values. The aim of the calculation is to show that
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reproduction of a complex vibrational pattern over the membrane is possible. As measured
experimentally (cf. Fig. 2.20, right), the asymmetrical pattern varies with frequency. Due
to the inclusion of higher modes into the ICE model the spatial vibration pattern of the
tympanum has a complex shape that clearly differs from a symmetrical pattern. Depending
on the frequency the calculated profile can either show a pattern with only one maximum
or with two neighboring maxima. That is, the model results correspond qualitatively with
experimental results such that the vibration pattern is no longer rotation symmetric and
contains more than one maximum. Consequently, the appearance of higher modes for the
tympanic membrane could influence its vibration pattern.

2.5 Conclusion

Figure 2.21: Overview of the two processing pathways as resulting from the ICE model;
cf. Fig. 2.12 and [221]. This figure assumes a small interaural distance so that amplitude
differences between the sound waves at the two ears can be neglected. Incoming interaural
time differences (ITDs) are processed by the vibrating membranes coupled through the
mouth cavity and, hence, giving rise to internally coupled ears (ICE). For low frequencies
ITDs are translated into internal time differences (iTDs), for high frequencies into internal
amplitude differences (iADs).

In summary, this chapter has presented a general model of internally coupled ears,
the ICE model, that consists of a cylindrical, analytically soluble model to calculate the
vibration pattern of two loaded membranes coupled by the internal cavity and a numerical
eigenfrequency analysis of the realistic mouth cavities. To include the effect of the attached
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extracolumella of the middle ear, as found in lizards, higher modes of the membrane
vibration are part of the solution. The calculated results together with the numerical
calculations agree well with experimental data. Evaluating membrane vibration at the tip
of the extracolumella for different angles of the sound source and frequencies, the model
can largely reproduce the directional responses of ICE systems as found in Hemidactylus
frenatus and Tokay gecko.

For Hemidactylus frenatus the ICE system creates iTDs up to ±86 µs for low frequencies
which reflects an enhancement of the incoming ITDs due to the internal coupling by a
factor 3. Incoming ITDs are translated into directional iADs up to 20 dB for high frequencies.
For the larger Tokay gecko calculated iTDs are up to ±225 µs for low frequencies, and
calculated iADs are up to 15 dB for high frequencies. Taken together, iADs and iTDs could
deliver localization cues in complementary frequency ranges for both animals. Figure 2.21
summarizes the frequency-dependent response of an ICE system to incoming ITDs.

To further analyze the effect of the internal mouth cavity, three-dimensional meshes of
the realistic mouth cavities of Hemidactylus frenatus and Tokay gecko are reconstructed
from scanned data. The eigenfrequencies for the internal cavities are then calculated
numerically. For Hemidactylus frenatus the eigenmodes start at 5 kHz (see Fig. 2.14), for
the larger Tokay gecko at 3 kHz; see Fig. 2.19. In both cases the lowest eigenfrequency
may well provoke a modified response of the realistic ICE system in comparison to the
ICE model based on a simplified cylindrical mouth cavity. In concrete terms, the lowest
eigenfrequency could limit the range of directional hearing in such a way that iADs and
iTDs vanish for sound signals around this frequency. For Hemidactylus frenatus and
Tokay gecko experimentally measured iADs [27, 28] confirm this hypothesis by vanishing
around the calculated lowest eigenfrequency of the corresponding realistic mouth cavity. A
systematic calculation of eigenfrequencies for realistic mouth cavities in combination with
measured iADs could finally confirm the hypothesis and would be an interesting topic for
further study.

The results of Sec. 2.4.1 could be obtained by means of a simple model including three
impedances for the two membranes and the cavity [27, 28]. However, the new ICE model
explains much more of the experimental data and can be generalized for all kinds of species.
A new, interesting feature of the model is the activation of higher modes. Compared to the
fundamental eigenmode that is rotationally symmetric with one maximum at the middle
of the circular membrane, higher vibration modes exhibit a pattern with a number of
maxima. Including higher modes in the solution therefore breaks the rotational symmetry
and reproduces the complex vibration patterns observed experimentally.
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The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
’Eureka!’ (I found it!) but ’That’s funny ...’

Isaac Asimov (1920 - 1992)

3. Neuronal processing of iTDs and
iADs

3.1 Introduction

The neuronal processing ensuing from iTDs and iADs is exemplarily analyzed by means of
data from Hemidactylus frenatus. For the larger Tokay gecko maximal iADs are in the
same range and maximal iTDs are even larger than those of Hemidactylus frenatus. As
a consequence, the neuronal processing has to cope with the smaller species as the more
difficult case. For Hemidactylus frenatus, analytical results of the ICE model based on a
simplified cylindrical mouth cavity (cf. Fig. 2.12) and experimental data [27, 28] show that
the tympani of lizards respond to sound signals in a manner dependent on the horizontal
direction of the sound source. More precisely, internal time differences (iTDs) and internal
amplitude differences (iADs), as they appear at the level of the tympanic membranes, vary
systematically with the angle of the sound source. In the next step of sound processing,
the iTD and iAD sound localization cues have to be extracted from the vibrations of the
tympani.

Vibrations of the tympanic membranes are first transmitted by the middle ear (through
the columella) to the cochlea and to the embedded basilar membrane; cf. Fig. 1.3. Due to
the systematically varying stiffness, the basilar membrane is tonotopically organized in
such a way that each of its hair cells is maximally excited by stimulation at one specific
characteristic frequency (CF). Hair cells along a small region of the basilar membrane
in turn enervate local auditory nerve fibers. As a consequence, the frequency-specific
tonotopic representation is also preserved at the level of neuronal processing. Accordingly,
the simulations below have been performed for one specific frequency.

The mechanical transduction process from tympani to the hair cells of the basilar
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Figure 3.1: Different neuronal projections from low- and high-frequency auditory nerve fibers
to the first nuclei the nerve fibers encounter in the auditory brain stem. Figure modified
from Szpir [208] for Alligator lizard. Left: Low-frequency fibers project to the lateral
nucleus angularis (NAL) and the lateral and medial nucleus magnocellularis (NML and
NMM). Right: In contrast, high-frequency fibers project almost exclusively to the medial
nucleus angularis (NAM). The different projection pathways of low- and high-frequency
nerve fibers suggest an independent processing of low- and high-frequency signals.

membrane to the auditory nerve is simplified in such a way that the response of the auditory
nerve is proportional to the corresponding tympanic vibration. This simplified model might
not be the case in the real world, the assumption, however, ensures that the iTD and iAD
properties are conserved. That is, if mechanical processing of the membrane vibration
reduces amplitude or shifts the phase of the signal, the modifications apply at both sides
in the same manner. Modifications made along the path cancel each other out, and iADs
and iTDs remain unchanged by the specific transduction from tympanic vibration to the
response of the auditory nerve. Low-frequency auditory nerves are therefore assumed to
reproduce the temporal profile of the membrane vibrations. Spike rates of high-frequency
auditory nerves are assumed to be linear functions of the tympanic vibration level in dB.
In the next steps of neuronal processing, low and high frequencies, i.e., iTDs and iADs,
are assumed to be treated separately.

3.2 Separated pathways for iTD and iAD processing

Results of the analytical calculations for Hemidactylus frenatus (gekkonid) as illustrated in
Figs. 2.21 and 2.12 show fundamental differences between iADs and iTDs for frequencies
below and above 1 kHz. For the low frequency range, there are iTDs available ranging up
to 86 µs (Fig. 2.12, bottom left), whereas intensity differences are negligible. In contrast,
for high frequencies, Fig. 2.12 (top) illustrates that there are iADs up to 20 dB between the
vibrations of the two tympanic membranes. Consequently, separated processing pathways
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for iTDs in the low frequency and for iADs in the high frequency regions are probable. For
mammals, such a “duplex theory of sound localization” has been suggested more than 100
years ago by Thompson [212] and Rayleigh [178]. They stated that phase and amplitude
cues are used for sound localization in complementary frequency ranges.

For lizards, the hypothesis of two separated processing pathways for iTDs and iADs is
supported by a number of experimental studies. Manley [148], for instance, showed that
auditory nerve fibers cannot reliably represent, i.e., they do not phase-lock to, periodic
signals above 1 kHz; see Fig. 3.3 and next section for a detailed explanation. Thus, neuronal
processing of iTDs becomes impossible.

Furthermore, the basilar membrane of lizards, which follows the tympanic membrane
in the mechanical sound processing chain, differs from the mammalian basilar membrane.
It is divided into two segments: the apical segment and the basal segment [127, 145].
Whereas hair cells on the apical segment react best to low frequencies, hair cells on the
basal segment are best tuned to frequencies above 1 kHz. This separation of low and high
frequencies is conserved within the neuronal projections from the hair cells to different
brain areas; see Fig. 3.1 and [208]. Based on these data, low and high frequencies, i.e.,
iTDs and iADs, are likely processed independently in the brain.

In contrast to the above measurements, the subsequent neuronal processing pathways of
iTDs and iADs, i.e., the involved brain areas and their connections, are not experimentally
determined for lizards. Therefore, the parallel existence of two widespread processing
strategies has been analyzed suggesting a Jeffress-like model for low-frequency signals and
excitatory-inhibitory (EI) processing for high-frequency signals.

3.3 Processing of iTDs

The most popular and strikingly simple model for neuronal localization through iTDs is
the Jeffress model [99] as suggested by Lloyd Jeffress in 1948; see, e.g., [73, 104] for further
information. Figure 3.2 illustrates the Jeffress-like model that is equivalent to the Jeffress
model (see [57]) and used for iTD processing in lizards. The Jeffress-like model consists of
the following three elements.

• Phase-locked and phase-shifted inputs from the two sides
Vibrations of the tympani are translated into phase-locked neuronal spike patterns of
the auditory nerve. That means that spikes always occur at a specific phase of the
incoming wave, e.g., at the maximum; see Fig. 3.3 (left) for illustration. This translation
of the sound waves into spikes is not precise but shows a certain variation around a
perfect synchronization. For the first time, Goldberg and Brown [69] have quantified
synchronization by computing a cycle histogram of spikes plotted relative to their phase
within the cycle. The length of the average vector, called vector strength, corresponds
to the degree of synchronization. As a convex combination, the vector strength lies in
the interval [0, 1]. A vector strength of 1 represents perfect synchronization since all
spikes have to point at exactly the same direction in the cycle histogram. For a vector
strength of 0 all spikes are randomly distributed within the cycle histogram, there
is no synchronization at all. Figure 3.3 (right) shows vector strengths for low- and
high-frequency fibers of the lizard Tiliqua rugosa in dependence upon sound frequency.
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Figure 3.2: Visualization of sound localization by means of interaural time differences
through a Jeffress-like model illustrated for two different positions of a sound source;
figure modified from [126]. Input signals from the ipsilateral ear arrive at all map neurons
(coincidence detectors) simultaneously whereas input signals from the contralateral ear
arrive at each map neurons with a certain delay that systematically varies over the array of
map neurons. Left: Sound signals from a source directly in front of the head arrive at the
two tympani at the same time. The neuron that fires the most is the one with delay lines
that show an equal delay for the ipsi- and contralateral side. Right: Sound waves from a
sound source at the contralateral side of the head arrive earlier at the contralateral than at
the ipsilateral tympanum. The neuron that fires the most is the one with delay lines that
compensate for this time shift, that is, the delay of the ipsilateral axon is longer than the
delay of the contralateral axon.

For a specific frequency ω smaller than 1 kHz, the firing rate fipsi of the ipsilateral
auditory nerve has to reflect both timing information of the tympanum and coding
precision of the auditory nerve fiber. According to Friedel et al. [57] the firing rate
can therefore be described by a sum of Gaussian profiles with maxima at ωt = 2πn for
n ∈ N0 leading to

fipsi(t) = A exp


min (|ωt− 2πn| , n ∈ N0)︸ ︷︷ ︸

∈[0,π]


2 /(

2σ2
) (3.1)

with standard deviation σ and A as maximal amplitude. The value of σ can be
determined from measured vector strengths (Fig. 3.3 B) as the absolute value of the
ratio between first and zero-th Fourier coefficient; see [57] for details. For σ → 0, the
firing rate converges to a sum of delta functions with frequency ω. Small values of σ
therefore correspond to a very precise neuronal representation of the incoming wave,
and large values result in a blurred representation.
Given that the inputs are phase-locked they also have to be phase-shifted. This is
the case since the firing rate fcontra of the contralateral auditory nerve is delayed by
the internal time difference (iTD) with respect to the ipsilateral firing rate fipsi. The
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Figure 3.3: (A) Illustration of phase-locking. The neuronal firing pattern of a phase-locking
neuron (top) reproduces the form of the incoming sound wave (bottom). That is, a neuron
always fires at one specific phase of the sound wave (e.g., at its maxima). Figure taken from
Grothe [73]. (B) The quality of phase-locking is measured by the vector strength. A vector
strength of 1 corresponds to perfect synchronization between incoming wave and neuronal
spike pattern; a vector strength of 0 denotes completely uncorrelated signals. The plot
shows averaged vector strengths of auditory-nerve fibers with low and high characteristic
frequencies (CFs) for the lizard Tiliqua rugosa [148]. Whereas low-frequency fibers show a
vector strength near 1 for frequencies below 1 kHz, high-frequency nerves are not tuned
to phase-lock to incoming signals with a high reliability. The animal can therefore exploit
iTDs for sound localization only below about 1 kHz. Figure taken from [148].

iTDs result from the ITDs of the incoming sound signal and their processing by the
internally coupled ears and depend on the angle θ of the sound source. The firing
rate fcontra of the contralateral auditory nerve is therefore given by Eq. (3.1) with a
modified arriving time

fcontra(t) = A exp


min (|ωt+ ω iTD− 2πn| , n ∈ Z)︸ ︷︷ ︸

∈[0,π]


2 /(

2σ2
) . (3.2)

Taken together, firing profiles from ipsi- and contralateral auditory nerves provide
phase-locked and phase-shifted inputs.

• An array of coincidence detection map neurons
In the next step, the phase-locked and phase-shifted signals from the ipsi- and contralat-
eral auditory pathways arrive at an array of coincidence detection neurons referred to as
map neurons. Each neuron fires maximally when spikes from the two sides temporally
coincide, i.e., arrive simultaneously.

• Systematically varying delay lines
The map neurons are connected to left and right input neurons by axons that transmit
input signals with a certain delay. For a Jeffress-like model this delay is identical for
all axons from the ipsilateral side whereas the delays of axons from the contralateral
side vary systematically over the array of map neurons. That is, a specific spike from
the contralateral side arrives at each map neuron at a slightly different time compared
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to the neighboring map neurons. The coincidence detection map neurons then react
most to sound input with the specific iTD that compensates exactly for the difference
between the delay times of the axons from the two sides. Given that iTDs correspond
to different angles of the sound source, the array of iTD-detecting neurons corresponds
to a spatial map. Figure 3.2 illustrates the Jeffress-like model for two examples of
sound sources at different horizontal directions. A sound source directly in front of the
listener maximally excites the neuron in the middle of the array, that is, the neuron
connected by axons with an identical delay to the ipsi- and contralateral side. In
contrast, a sound source at the right side of the listener maximally excites a neuron at
the left edge of the array.

The following numerical simulations of the Jeffress-like model refrain from specifying
the exact brain areas and auditory pathways (possible projections through intermediate
brain areas). Instead, the model includes right and left input neurons as well as map
neurons in an abstract way. With regard to Fig. 3.1 (left), the input neurons might be
neurons of the nucleus magnocellularis, the map neurons of the superior olive or the
nucleus laminaris. In any case, input neurons are modeled as stochastically firing Poisson
neurons (see Sec. 1.3.3 for details) with firing rate functions defined by Eqs. (3.1) and (3.2).
Their number is estimated by about 30, which corresponds to the measured number of
low-frequency auditory nerve fibers [146].

The map neurons are modeled as leaky integrate-and-fire neurons; see Sec. 1.3.2 and [67]
for details. Each map neuron is directly connected through axons to the input neurons.
The total current Itotn arriving at the n-th map neuron is given by the sum of ipsi- and
contralateral currents. According to the assumption of the two processing pathways for
low frequencies these currents only differ in phase, whereas the temporal course and the
strength of the currents are identical. Based on these considerations, the ipsilateral current
is defined to be I(t). The contralateral input then corresponds to the ipsilateral current,
except it is shifted in time by two effects. On the one hand, the vibrating tympani generate
iTDs that depend on the angle of the sound source θ. On the other hand, the neuronal
response is delayed through the map neuron-specific axonal delay ∆tn. Taken together,
the contralateral current is the given by I[t+ ∆tn + iTD] so that the total current arriving
at the n-th map neuron equals

Itotn (t) = I(t) + I(t+ ∆tn + iTD) . (3.3)

As a coincidence detector, the n-th map neuron fires maximally for input from a pre-
ferred iTDn that exactly compensates for its neuronal delay, i.e., ∆tn = −iTDn. Another
iTDm 6= iTDn does not perfectly compensate for the neuronal delay. Therefore, the more
the input iTDm differs from a neuron’s specific axonal delay, the more the firing rate of
that neuron decreases. Thus within an array of coincidence detection neurons with varying
delay lines neurons with preferred iTDs corresponding to the incoming iTD fire most, and
other neurons fire in an attenuated manner depending on how much their preferred iTD
differs from the incoming iTD.
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Figure 3.4: Firing pattern of iTD map neurons (left) in dependence upon incoming iTDs
(green line) for a Jeffress-like models without and with additional GABAergic inhibition
(right). The intensity of the gray color indicates the number of the spikes from the map

neurons as denoted. Yellow dots denote the estimated îTD as resulting from a rate-weighted
mean of the firing profile of the iTD map; cf. Eq. (3.4). Top: Simulation results of a Jeffress-
like model (right) with parameters given in Table 3.1, in particular, with a membrane
constant τm = 500 µs and a synaptic strength J = 0.015. The estimation error for the firing
profile is calculated to be E = 39 µs over a range of [−86 µs, 86 µs] for the angles [−π/2, π/2].
The horizontal angle of misestimation is then approximately 39 µs/86 µs ·(π/2) ≈ 41◦.
Bottom: Simulation results of a Jeffress-like model with additional GABAergic inhibition
(right) as found in birds [58, 96, 238]. Additional GABAergic inhibition leads to a reduced
membrane constant τm = 250 µs [37]. The synaptic strength is set to J = 0.021 to ensure
sufficient firing activity of the map neurons. With additional GABAergic inhibition the
firing profile of the iTD map sharpens and the misestimation angle reduces to ≈ 19◦.

Given the firing activity of all map neurons, the system can calculate the estimated
îTD as a rate-weighted mean of the map

îTD =

(∑
i

νi iTDi

)/∑
i

νi (3.4)

where every map neuron “votes” with its firing rate νi for its encoded iTDi. Such
an evaluation corresponds to an evaluation of the population vector; for details see,
e.g., [65, 206, 218]. The advantage of a such “democratic” evaluation is that information,
i.e., firing rates, of all map neurons is considered, in contrast to a determination of the
estimated îTD by the maximum of the iTD map. For broad firing profiles without a clearly
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defined maximum, only a calculation of the rate-weighted mean is reasonable at all. To
quantify the quality of the estimates the root mean square error E can be calculated. That
means for M different inputs iTDi with 1 ≤ i ≤M , and corresponding neuronal estimates
îTDi the error is defined as

E :=

√√√√[ M∑
i=1

(
iTDi − îTDi

)2
]

/ M . (3.5)

The value of the error E then gives the mean mismatch between the input iTD and the
estimated îTD.

Numerical results of simulations performed with parameters as given in Table 3.1 are
illustrated in Fig. 3.4, left. The upper plot shows the firing profiles of the iTD map and the
estimated îTDs [cf. Eq. (3.4)] in dependence upon different input iTDs for a Jeffress-like
construction; Fig. 3.4, top right. Given that iTDs for Hemidactylus frenatus are very
small in comparison to neuronal time scales, e.g., the length of an excitatory postsynaptic
current (EPSC), the membrane constant, or the refractory period of typical neurons, the
firing profile of the iTD map is very broad. To account for the slow decay of the firing
profile, the neuronal map has to represent a large range of iTDs that by far overshoot the
physically accessible range. The phenomenon has been measured, e.g., in alligators [24],
where the range of the neuronal iTD map of 1000 µs extremely exceeds the physically
accessible range. In the simulations the overshoot is fixed at 5, which means that map
neurons cover an iTD range from [−5 iTDmax, 5 iTDmax], where iTDmax is the maximal
iTD within the natural physically accessible range, i.e., iTDmax = 86 µs for Hemidactylus
frenatus; cf. Fig. 2.12, bottom left.

The estimation error for the firing profile as shown in Fig. 3.4 (top left) is calculated to
be E = 39 µs over a range of [−86 µs, 86 µs] for the angles [−π/2, π/2]. The horizontal an-
gle of misestimation is then approximately 39 µs/86 µs ·(π/2) ≈ 41◦. This huge estimation
error results from the fact that the firing activity between neighboring map neurons is very
similar; cf. Fig. 3.4, top left. The Gaussian profile almost resembles a constant function.
The rate-weighted mean, i.e., the estimated îTD [cf. Eq. (3.4)], for a constant function
corresponds to the center of the map. In a similar way, the estimated îTDs (Fig. 3.4 top
left, yellow dots) for the calculated almost flat firing profile of the iTD map shift toward
the center of the map and away from the input iTDs (Fig. 3.4 top left, green line). The
neuronal system therefore systematically underestimates the input iTDs.

A possibility of how the map firing profile could be sharpened is an additional GABAer-
gic inhibition of the iTD map neurons as found in birds [58, 96, 238]. Here iTD-processing
neurons of nucleus laminaris (NL) receive long-lasting depolarization from neurons of the su-
perior olivary nucleus (SON). Since inhibition seems to be present in neuronal processing of
lizards as well (Catherine Carr and Jakob Christensen-Dalsgaard, personal communication)
the effect of such an inhibition on iTD processing is incorporated into the presented model
and evaluated in the following. The resulting circuit is illustrated in Fig. 3.4, bottom right.
Experimental data [37, 58, 156, 238] unraveled that GABAergic inhibition can increase the
precision of time information processing. More precisely, GABAergic inhibition decreases
the membrane resistance Rm of the map neurons, which has two effects as neatly visible
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Figure 3.5: Temporal course of an excitatory post-synaptic potential (EPSP) of nucleus
laminaris (NL) neurons in chicks without (control) and with GABAergic inhibition (with
GABA) due to Funabiki et al. [58]. In birds coincidence detecting NL neurons receive a
long-lasting depolarization from neurons of the superior olivary nucleus (SON) [58, 96, 238]
that speeds up the rise and decay times of excitatory post-synaptic potentials of NL
neurons. GABAergic inhibition therefore sharpens the firing profiles of the iTD-processing
NL neurons and may serve to increase coincidence detection.

in Eq. (1.4) for a leaky integrate-and-fire neuron and a constant input current. First,
more excitatory current Iinj is needed to increase the membrane potential above its firing
threshold. This effect is called gain control [73] and prevents monaural summation at high
sound intensities. Thus, the coincidence detection neurons remain within an appropriate
working range. Given that simulated neurons are already modeled within their working
range, the inclusion of an additional gain control does not alter the results of the presented
Jeffress-like model.

The second effect, however, is more promising. That is, GABAergic inhibition reduces
the membrane time constant τm := RmCm and consequently speeds up the rise and decay
times of excitatory post-synaptic potentials; cf. Fig. 3.5. For Eq. (1.4) the exponential
function tends to 0 more quickly when τm decreases. In concrete terms, Dasika et al. [37]
showed that the membrane constant of the map halfens with additional inhibition so that
map neurons can still react to smaller time delays.

For the numerical simulations inhibitory neurons are not explicitly modeled since their
exact firing activity is smeared out by the long-lasting character of the inhibition. As a
consequence, the effect of GABAergic inhibition is incorporated as reduced membrane
constant τm = 250 µs of the map neurons. The Jeffress-like model therefore remains the
same only that the parameters of the map neurons are adapted.

For a coincidence detector neuron the width of the excitatory post-synaptic potential
determines the size of the time window within that two spikes are received as simultaneous.
As a consequence, the neuron fires less when τm decreases. To nevertheless ensure a
sufficient firing of the map neurons synaptic strengths are increased for a Jeffress-like
model with GABAergic inhibition. All used parameters are summarized in Table 3.1 and,
if different from the ones previously used, are specially marked.

Figure 3.4 (bottom left) shows the obtained firing profile of the iTD map in dependence
upon different input iTDs, including the effect of GABAergic inhibition. The estimated
îTDs [cf. Eq. (3.4)] nicely reproduce input iTDs. The estimation error reduces to E = 18 µs,
and thus the misestimation angle is calculated as 18 µs/86 µs ·(π/2) ≈ 19◦. Similar
resolutions are found in birds, such as 23◦ for great tits [118], 27◦ for budgerigars [169], and
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Parameter Value

maximal iTD (Hemidactylus frenatus) iTDmax = 86 µs
auditory nerve firing rate A = 300 Hz
auditory nerve vector strength VS = 0.95
number of input neurons Nin = 30
number of map neurons Nmap = 100
ITD range of map neurons iTDmap ∈ [−430 µs, 430 µs]
synaptic strength J = 0.015

with inhibition J = 0.021
post-synaptic current width τepsc = 250 µs
membrane constant of map neuron τm = 500 µs

with inhibition [37] τm = 250 µs
map neuron refraction time τrefr = 1000 µs
map neuron capacitance C = 1
map neuron resting potential Vo = 0
map neuron threshold Vthresh = 1

Table 3.1: Parameters used in computer simulations of a Jeffress-like model. If not marked
otherwise, all parameters are taken from Friedel et al. [57]. Parameters that change as a
consequence of an assumed additional GABAergic inhibition are marked and written in
blue. With decreasing membrane constant the map neuron can distinguish more reliable
between non-coinciding input spikes and fires less. To ensure a sufficient firing of the map
neurons despite additional inhibition the synaptic strength J is increased.

29◦ for canaries [169]. The proposed Jeffress-like model with GABAergic inhibition therefore
provides reasonable results for iTD processing. Exact time constants for Hemidactylus
frenatus and the existence of a long-lasting depolarization through GABAergic inhibition,
however, have to be experimentally verified.

3.4 Processing of iADs

Similar to neuronal processing of iTDs in lizards, neuronal processing of iADs is not
yet experimentally clarified. A neuronal construction to estimate amplitude differences,
however, are EI neurons, that is, neurons that receive inhibitory input from the ipsilateral
side and excitatory input from the contralateral side. Experiments [59, 69, 155, 173, 191]
show that EI neurons are sensitive to amplitude variation. In the following, firing activity
of EI neurons are simulated in response to inputs differing in amplitude between the
two sides by the tympanic iAD as calculated from the ICE model based on a simplified
cylindrical mouth cavity; cf. Chap. 2. As illustrated by Fig. 3.6 the model consists of
two stages. First, tympanic vibrations excite neurons of the nucleus angularis (NA); cf.
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Figure 3.6: Suggested neuronal circuit to process iADs. For both the experimental and the
natural stimulus Eq. (2.26) of the ICE model allows for the calculation of the tympanic
vibration amplitudes |u̇0| and |u̇L| in dB. The latter are used as input firing rates for the
Poisson neurons of the ipsi- and contralateral nucleus angularis (NA). In the next step, the
ipsilateral NA projects via inhibitory synapses (white sphere) and the contralateral NA
projects via excitatory synapses (black sphere) to EI neurons that are modeled as leaky
integrate-and-fire neurons; see Sec. 1.3.2 for details.

high-frequency projection in Fig. 3.1. In the second step, the contralateral NA projects
via excitatory synapses, and the ipsilateral NA projects via inhibitory synapses to EI
neurons. Given that neuronal projections from the NA remain to be elucidated, the exact
location of these EI neurons and the exact projecting pathway from the NA to these EI
neurons, e.g., through intermediate neurons, are not specified. In mammals, EI neurons
are topographically organized within the inferior colliculus (IC) [59, 69, 173]. In chicks, EI
neurons are found within the dorsal lateral lemniscal nucleus (LLD) [191].

3.4.1 Experimental and natural stimulus

To estimate the stimulus exciting the auditory nerves, amplitudes of the tympanic vibrations
are calculated. More concretely, Eq. (2.26) of the ICE model applies for incoming pressures
pex0 and pexL . For the latter two different stimuli are possible.

• Experimental stimulus
To reproduce experimental setups the incoming pressure is varied in intensity between
the tympani, IAD 6= 0, but not in phase, ITD = 0. Hence, pressure functions at the
two tympanic membranes (x = 0 and x = L) are given by

pex0(ω, IAD; t) = |pex| exp
(

IAD
20

)
exp (iωt) ,

pexL(ω; t) = |pex| exp (iωt)
(3.6)

where IAD = 20 log (|pexL/pex0 |) induces the exponential form of the amplitude mod-
ification. The input IADs, however, do not necessarily enter the neuronal sound
processing circuits. In contrast, internally coupled ears first modify the stimulus at the
level of the tympanic vibrations, resulting in iADs 6= IADs.
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• Natural stimulus
For an animal of small head size such as Hemidactylus frenatus (gekkonid) shielding
effects due to the head can be neglected. That is, natural stimuli only differ in phase
between the two sides, ITD 6= 0, whereas intensity differences can be neglected, IAD = 0.
Similarly to Eq. (2.1) incoming pressures pex0 and pexL are then given by

pex0(ω, ITD; t) = |pex| exp [iω(t+ ITD)] ,
pexL(ω; t) = |pex| exp (iωt) .

(3.7)

The reason why such a stimulus is not used in experiments is obvious, there are no
amplitude differences in the stimulation, so why should an experimentalist who looks
for neuronal circuits for amplitude processing expect a reaction? The answer lies within
the properties of ICE. Given external ITDs, internally coupled ears generate iADs up
to 20 dB between the vibrations of the two tympani for frequencies above 1 kHz; cf.
Fig. 2.12, top. In other words, neuronal circuits are not characterized by the properties
of the input but by the properties of the tympani. Thus neurons can only be iTD-
or iAD-sensitive. Given that simultaneous measurements of the tympanic vibrations
are necessary to estimate the input to the neuronal system, experiments with the
natural stimulus are, at a first glance, more complicated than experiments with the
experimental stimulus. For the latter, the experimentalists do not have to be aware of
the modification due to the internally coupled ears. Neglecting the generation of iADs
from ITDs could nevertheless lead to wrong interpretations of experimental results,
e.g., wrong classification of iAD-sensitive neurons as ITD-sensitive neurons.

The following simulation of NA neurons distinguishes between the experimental and the
natural stimulus. Measured data are only available for homologous brain areas in chicks in
response to an experimental stimulus [191].

3.4.2 Simulation of nucleus angularis (NA)

In a first step, simulation of NA neurons requires an estimation of how these neurons react
to tympanic vibrations of varying intensity. Köppl and Manley have measured responses
of the auditory nerve for the experimental stimulus in the bobtail lizard Tiliqua rugosa;
see [128] and Fig. 3.7. According to this study, auditory nerves possess a dynamic range
in which the firing rates vary linearly with sound pressure level in dB. Exploiting these
experimental results, the model concentrates on the dynamic range of the NA neurons that
are consequently simulated as Poisson neurons; see Sec. 1.3.3. Their input rate functions
are assumed to be proportional to the amplitudes of the tympanic vibrations |u̇0| and |u̇L|
in dB as calculated by Eq. (2.26) of the ICE model.

Simulations of contra- and ipsilateral NA neurons in response to the experimental and
the natural stimulus of 1 kHz lead to firing profiles as illustrated in Fig. 3.8. The obtained
firing profiles for the experimental stimulus (left) nicely reproduce experimental data from
the contralateral auditory nerve of chicks in response to varying IADs; cf. Fig 3.9 (top left)
by Sato et al. [191]. Given that internally coupled ears have been experimentally proven in
several birds [17, 33, 88, 183], in particular in chicks [95], the assumptions made for the
modeling input and the firing of NA neurons seem reasonable for an ICE system.

64



3. Neuronal processing of iTDs and iADs

Figure 3.7: Discharge rates of auditory nerve fibers of Tiliqua rugosa with a characteristic
frequency (CF) of 2.1 kHz dependent on incoming sound pressure level. Within the dynamic
range from 40-80 dB SPL, the firing of the auditory nerve varies almost linearly with the
stimulus strength in dB. Figure due to Köppl and Manley [128].

The firing activity of NA neurons for the natural stimulus of ITDs ∈ [−28 µs, 28 µs]
are presented in Fig. 3.8, right. Here firing activities vary monotonically with input ITDs.
The firing activity of ipsilateral NA neurons is maximal for positive ITDs and minimal
around −20 µs where it hardly varies. The firing activity of contralateral NA neurons is
exactly the opposite with maximal values at negative ITDs.

3.4.3 Simulation of EI neurons

In a second step, neurons of the ipsilateral NA project via inhibitory synapses and neurons
of the contralateral NA project via excitatory synapses to EI neurons; cf. Fig. 3.6. EI
neurons are modeled as leaky integrate-and-fire neurons; see Sec. 1.3.2. Due to the
assumption of two processing pathways, high frequency inputs only contain amplitude
and not timing information. The firing rates of NA neurons are therefore assumed to
be constant over time. Equation (1.4) determines the membrane potential of a leaky
integrate-and-fire neuron in the case of a constant input current Iinj as

V (t) = Vr +RmIinj

[
1− exp

(
− t

CmRm

)]
(3.8)

with t0 = 0. The injected current Iinj is the sum of excitatory currents from the contralateral
NA and inhibitory currents from the ipsilateral NA. Given that neurons of the NA fire
with a probability νipsi and νcontra, the injected current can be expressed as

Iinj = Jinh νipsi + Jexc νcontra (3.9)

with Jinh ≤ 0 and Jexc ≥ 0 being the strengths of inhibitory and excitatory synaptic
connections, respectively. With Jinh = −Jexc and νipsi and νcontra being proportional to the
vibration amplitude of the tympani, the injected current Iinj is proportional to the iAD.
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Figure 3.8: Simulated firing profiles of neurons from the ipsilateral (blue) and contralateral
(red) nucleus angularis (NA) (cf. Fig. 3.6) in response to tympanic vibration amplitudes |u̇0|
and |u̇L| in dB as calculated from Eq. (2.26) of the ICE model. Simulations are performed
with parameters given in Table 3.2. Left: Simulations performed with the experimental
stimulus, i.e., varying input IADs. Here the firing rates of ipsilateral and contralateral NA
neurons have either a clear minimum or maximum and cannot represent the input IADs in
an unambiguous way. Right: Simulations performed with the natural stimulus, i.e., varying
input ITDs. The firing rates of ipsilateral and contralateral NA neurons vary monotonically
with the input ITDs and can therefore unambiguously represent the stimulus.

As analyzed in Sec. 1.3.2, the neuron will not spike at all if Vr +RmIinj lies below the
firing threshold V . Otherwise, the spike rate is proportional to 1/T , with T being the
constant interspike interval. The latter is given by Eq. (3.8) and V (t = T ) = V , such that

V = Vr +RmIinj

[
1− exp

(
− T

CmRm

)]
. (3.10)

Given that the interspike interval is limited by the refractory period Trefrac as the minimum
interval, the interspike interval can be calculated to be

T =

{
−CmRm ln

(
1− V−Vr

RmIinj

)
for T ≥ Trefrac

Trefrac for T < Trefrac

. (3.11)

This formula is simplified by the prerequisite for a firing neuron, that is, Vr +RmIinj > V .
As a consequence, the fraction (V − Vr)/(RmIinj) < 1. For (V − Vr)/(RmIinj) � 1 the
logarithm can be approximated by ln(1 + x) ≈ x which leads to

T =
{
Cm

(
V − Vr

)
/ Iinj for T ≥ Trefrac

Trefrac for T < Trefrac
. (3.12)

Altogether the neuron shows three different firing behaviors. Either it remains silent
(Vr +RmIinj < V ), fires constantly at its maximal rate (T < Trefrac), or shows a firing rate
1/T that varies with Iinj = Jinh νipsi + Jexc νcontra.

66



3. Neuronal processing of iTDs and iADs

Figure 3.9: Top: IAD processing in chicks [191]. Auditory nerves first project to the
nucleus angularis (NA). The contralateral NA then projects via excitatory synapses and
the ipsilateral NA via inhibitory synapses to the dorsal lateral lemniscal nucleus (LLD).
Top left: Measured firing rate in impulses per second [imp/s] of intensity-sensitive neurons
of the contralateral NA with best frequency BF = 800 Hz in response to the experimental
stimulus, i.e., varying IADs. Top right: Responses of LLD units with BF = 1068 Hz to
binaural sound with varying IAD. Rate-intensity curves are measured in a single LLD unit
at five different contralateral sound levels above the threshold of this unit (34 dB SPL),
as indicated, while the ipsilateral sound level was varied. The measured responses of NA
and LLD neurons to the experimental stimulus nicely correspond to calculated data for
the experimental stimulus, as illustrated in Figs. 3.8 (left) and 3.10 (left). Bottom: IAD
processing in bats [170]: measured firing rates of intensity-sensitive neurons in response to
varying IADs. When the input from the inhibitory ear gets more intense the EI neuron stops
firing at a neuron-specific IAD denoted as IAD of complete inhibition. Within the array
of EI neurons, IADs of complete inhibition systematically vary over the whole physically
accessible range of possible IADs. For a specific input IAD neurons with IADs of complete
inhibition above the considered IAD fire, whereas the other neurons remain silent. Thus,
the IAD of complete inhibition of the neuron at the edge of this step function could encode
the estimated ÎAD. Since the IADs systematically vary with the direction of the sound
source (cf. head-related transfer function [141]) the bat can use IADs to localize a sound
source. It is therefore fair to say that the neurons represent a neuronal map of estimated
ÎADs and hence a neuronal map of the horizontal direction of the sound source.
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Figure 3.10: Simulated firing profiles of EI neurons receiving inhibitory inputs from the
ipsilateral side and excitatory inputs from the contralateral side; cf. Fig. 3.6. Simulations
are performed with parameters given in Table 3.2. Strengths of excitatory and inhibitory
synapses vary systematically between 0 and 1. Red indicates more excitation than inhibition,
and blue represents the opposite. The intensive red line, for instance, corresponds to strong
excitatory synapses near 1 and almost ineffective inhibitory synapses with strength almost
0. Left: Simulated firing activity of EI neurons in response to the experimental stimulus.
An arrow marks the firing profile for an EI neuron for which excitatory and inhibitory
synapses are assumed to have the same strength, i.e., Jinh = −Jexc. This firing profile nicely
fits experimental data for EI neurons, as shown in Fig. 3.9, top right. The other profiles,
however, either have a maximum at −15 dB or a minimum at 15 dB indicating that the
presented EI neurons are not optimally adapted to the stimulus. Right: Simulated firing
profiles of EI neurons in response to the natural stimulus. ITDs of complete inhibition vary
systematically with strength of inhibition and cover large parts of the physically accessible
range. Only high ITDs above 15 µs do not induce firing activity of the shown EI neurons.
EI neurons from the other side of the brain, however, respond to the corresponding negative
ITDs. Firing profiles of both ipsi- and contralateral EI populations therefore provide an
encoding strategy for sound source localization (viz., direction) that is similar to the one
found, e.g., in bats; see Fig. 3.9 (bottom) and Park et al. [170].
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As before the numerical simulations of EI neurons distinguish between the experimental
and the natural stimulus. The input rates of the NA neurons are proportional to the
tympanic vibration amplitudes |u̇0| and |u̇L| in dB; cf. Eq. (2.26). Firing rates of EI
neurons as a result of simulations with the experimental stimulus are shown in Fig. 3.10,
left. Here inhibition and excitation systematically vary in strengths. An arrow marks the
firing profile of the EI neuron where excitatory and inhibitory synapses have the same
strength Jinh = −Jexc. Firing profiles with similar strength of inhibition and excitation
vary monotonically with input IADs and show the above described three different firing
behaviors. For negative input IADs the excitatory input dominates the input currents,
and the EI neuron fires at maximal rate. Around 0 dB the firing rate decreases with input
IADs in a linear manner; cf. Eq. (3.12). As soon as input IADs reach a certain threshold,
called IAD of complete inhibition, the inhibitory input is so strong that the membrane
potential remains below its firing threshold, and the neuron stops firing. Firing profiles
obtained as a result of the numerical simulations for Jinh ≈ −Jexc have been measured in
the dorsal lateral lemniscal nucleus of chicks; cf. Fig. 3.9 lemniscal nucleus, top right.

Firing profiles of EI neurons with different strengths of inhibition and excitation
(Fig. 3.10, left), however, do not monotonically vary with input IADs. Instead the profiles
either have a maximum at −15 dB or a minimum at 15 dB. The occurring ambiguity could
indicate that the used experimental stimulus does not correspond to the stimulus the map
is tuned for. If this hypothesis holds true firing profiles of EI neurons should rather be
adapted to the natural stimulus.

Figure 3.10 (right) shows the according firing profiles of EI neurons in response to the
natural stimulus with varying strengths of inhibition. Here the firing activities of EI neurons
are perfectly adapted to the natural stimulus in such a way that they monotonically vary
with input ITD, i.e., horizontal direction of sound source. In addition, ITDs of complete
inhibition systematically vary with the strength of inhibition and cover large parts of
the physically accessible range. The ITDs of complete inhibition of the EI neurons could
therefore encode the horizontal direction of sound. For a whole array of EI neurons with
varying strength of inhibitory and excitatory synapses the map firing profile in response to
a specific input ITD looks like a step function. Neurons with ITDs of complete inhibition
above the considered ITD fire, whereas other neurons remain silent. Thus, the ITD of
complete inhibition of the neuron at the edge of this step function could encode the
estimated ÎTD and hence the horizontal direction of the sound source. A similar encoding
principle based on IADs has been measured in bats [51, 170]; cf. Fig 3.9, bottom.

3.5 Conclusion

Based on the results of the ICE model with a simplified cylindrical mouth cavity for
Hemidactylus frenatus (gekkonid) and experimental data, two separated pathways for low
and high frequencies are suggested, a Jeffress-like model without and with GABAergic
inhibition for processing of iTDs and EI neurons for processing of iADs.

Concerning the processing of iTDs, the simulation of an exclusively excitatory Jeffress-
like model results in a horizontal estimation error of ≈ 41◦. An additional GABAergic
inhibition could improve the angle of misestimation to ≈ 19◦. Both values are in good
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Parameter Value

experimental stimulus: maximal input IAD IADmax = 25 dB
natural stimulus: maximal input ITD ITDmax = 28 µs
excitatory synaptic strength Jexc ∈ [0; 1]
inhibitory synaptic strength Jinh ∈ [−1; 0]
post-synaptic current width τepsc = 500 µs
map neuron time constant τrelax = 500 µs
map neuron refraction time τrefr = 1 ms
map neuron capacitance C = 1
map neuron resting potential Vo = 0
map neuron threshold Vthresh = 1

Table 3.2: Parameters used for simulations of EI neurons for iAD processing. For the
simulations the experimental stimulus (varying input IADs) and the natural stimulus
(varying input ITDs) are used as denoted.

agreement with resolutions found in birds. Exact time constants for Hemidactylus frenatus
and the existence of a long-lasting depolarization through GABAergic inhibition, however,
have to be experimentally verified.

Concerning the processing of iADs, the neuronal activity of the NA and the ensuing EI
neurons have been calculated. Here two different stimuli were specified. The experimental
stimulus varies the input IADs, whereas the natural stimulus varies the input ITDs. The
obtained firing rates of NA and EI neurons in response to the experimental stimulus are in
perfect agreement with the measured firing rates of corresponding brain areas in the chick.

Firing rates of EI neurons in response to the natural stimulus with varying strengths of
inhibition provide systematically varying ITDs of complete inhibition and hence a possible
encoding strategy of horizontal sound source direction within an array of EI neurons.

Taken together, the results of the two processing pathways of iTDs and iADs are reason-
able and fit experimental results from closely related birds. Given that auditory processing
could, however, differ between lizards and chicks, neurophysiological measurements from
the lizard’s auditory systems are needed to finally verify the suggested processing of iTDs
and iADs. In particular, the involved brain areas and pathways have to be clarified.
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The smaller the lizard, the larger its hope to
become a crocodile.

Proverb from Abyssinia

4. Auditory Sensitivity and
Internally Coupled Ears

The vertebrate auditory system exhibits large variations in structure and mechanics. In
contrast to the acoustically independent ears of mammals, many other vertebrates have
morphologically and functionally coupled tympanic membranes, called internally coupled
ears (ICE). Here general relations between a vertebrate’s head size, i.e., interaural distance,
and its best frequency, viz., the frequency with the lowest hearing threshold, are explored.
Time and amplitude differences between the membrane vibrations determine hearing
abilities of animals with internally coupled ears. The corresponding equations then deliver
an inverse relation fbest ∝ L−1 between interaural distance L and best frequency fbest,
which is confirmed by experimental data. Experimental best frequencies of animals with
independent ears provide an inverse dependence with an exponent around -0.5 that cannot
be explained by analysis of the corresponding acoustics. Apart from different dependences
upon interaural distance, calculations and experimental measurements show that animals
with internally coupled ears have in general lower best frequencies than animals of the same
interaural distance with independent ears. Internally coupled ears thus present themselves
as a distinct auditory mechanism that assures an animal’s capabilities of hearing low
frequencies despite a small head size.

4.1 Introduction

Internally coupled ears are probably the least studied among the various hearing systems,
despite being common in both invertebrate and vertebrate taxa. By means of the direct
coupling of the left and right middle ear cavities, the vibration of each tympanic membrane
shows a directional response to incoming sound signals, the so-called pressure-gradient
receiver characteristic, as first described by Autrum [4] for locusts. This means that phase
as well as amplitude of a single tympanic membrane vibration varies with respect to that
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Figure 4.1: Illustration of anatomical variations within the auditory system. The plots
show cross-sections through the head at the level of the ear of animals with ICE (A and
B) and with independent ears (C and D). Black (tympanic membrane), white (middle ear
cavity), yellow (Eustachian tube), gray (pharynx), red (direct linkage). A Directly linked
middle ear cavities with Eustachian tubes, e.g., lizards, frogs, alligators, and birds. For
lizards all cavities are merged to one huge mouth cavity so that the middle ear cavities are
directly linked through Eustachian tubes and pharynx; cf. Fig. 1.2, right. B Directly linked
middle ear cavities without Eustachian tubes, e.g., chameleons. C Indirect connection
of the middle ear cavities through Eustachian tubes and pharynx, e.g., mammals. D No
connection between the middle ear cavities, e.g., a number of lizards and snakes.

of the other membrane depending on the direction of the sound source. The expression
“pressure-gradient receiver” refers to the fact that such a system is not sensitive to the
pressure amplitude of a sound wave at one specific point but rather to the direction
of the sound wave already at the stage of the tympani. More precisely, Autrum [4]
noted that such a receiver reacts to the pressure difference between the tympani. To
avoid misunderstandings concerning technical terms, throughout the thesis cavity-coupled
tympanic membranes are referred to as internally coupled ears (ICE). Descriptions and
measurements of ICE are available from a number of different animals including crickets
[150], frogs [29, 49, 103], barn owls and other birds [17, 33, 88], and lizards [27, 28].
Evolutionary aspects have been covered in several reviews [19, 20].

Simplistically the ears of the tetrapodal (or non-piscine) vertebrates can be classified
into one of the conditions (Fig. 4.1), with a variety of anatomical variation in each condition.
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The first auditory condition (Fig. 4.1 A) in which there is a direct connection between the
right and left middle ear cavities, as well as an indirect connection via Eustachian tubes
linking the middle ear cavities to the pharynx, occurs in some frogs, lizards, alligators,
and birds, and has frequently been interpreted as an auditory specialization. For lizards
direct and indirect connection are identical since all cavities are merged to one huge mouth
cavity. The middle ear cavities are therefore directly linked through Eustachian tubes
and pharynx; cf. Fig. 1.2, right. The rarest arrangement (Fig. 4.1 B) is for the middle
ear cavities to be directly linked, but for the Eustachian tubes to be either absent or
represented by a single opening between the pharynx and the connection between the right
and left middle ear cavity. In this condition, best represented by the Chameleons [231],
the pharynx does not play any role in establishing a pressure difference. A more common
configuration (Fig. 4.1 C) occurs when the middle ear cavities are only indirectly linked by
paired Eustachian tubes opening into the pharynx. This condition typifies the mammalian
ear but is also frequently encountered in reptiles. In the fourth configuration (Fig. 4.1
D) the contralateral middle ear cavities are anatomically isolated from one another, and
maybe greatly reduced or even lost. This configuration is encountered, for instance, in a
number of lizards and snakes.

Using experimental measurements of directional and dependent vibrations of the
two tympani most animals group as having either independent ears or ICE. In general,
conditions A and B from Fig. 4.1 are found in animals with ICE, while conditions C and
D are found in animals with independent ears. The question of how direct the coupling
between the middle ear cavities has to be in order for the ears to form ICE remains
unsolved. The following analysis explores the relationship between head size, more exactly
interaural distance, and peak auditory sensitivity since head size has a direct impact on
the morphometrics of the coupling(s) that establish the ICE.

The inverse relation between body size and frequency of peak sensitivity both among and
within species was recently reviewed [71]. Previous studies have used a variety of metrics
for animal size including body mass, head width, and functional head width (interaural
distance divided by the speed of sound in the surrounding medium). Nevertheless, the
relationship between peak sensitivity and size in animals (excluding subterranean species)
with independent ears [80, 81, 82, 83] is clearly different from the relationship reported in
animals with ICE as described, e.g., by Werner [229, 230] and Gleich [68]. The primary
purpose of the present chapter is to explore the biophysical basis of this difference and, by
doing so, explore aspects of the functional performance of ICE.

4.2 Theoretical description of membrane vibrations

In general, sound processing is based on differences between the vibrations of the tympanic
membranes. In the following equations for time and amplitude differences between the
membrane vibrations both for independent and internally coupled ears are derived. The
best frequencies correspond to the frequencies where these differences become maximal.
This is reasonable since the best frequency is determined by the frequency with the lowest
hearing threshold; cf. Fig. 4.2.

Membrane vibrations are responses to sound waves of a certain frequency ω from a
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Figure 4.2: Visualization of best frequency at the example of human hearing [81]. The
audiogram shows hearing thresholds in dependence upon the frequency of the sound signal.
The best frequency is defined as frequency with the lowest hearing threshold. In the present
example the best frequency corresponds to 4 kHz.

specific sound source at distance D and angle θ. Because of the different positions of the
two tympani with respect to the sound source the sound pressure waves pex0/L

arrive at
different times and with different amplitudes at the two tympani. The pressure at a point
with angle θ on a spherical head can be calculated [see, e.g., Kuhn [133]] to be

pex0/L
(θ, ω; t) = iρc/(4πL2)e−iωt

∑
n

Pn[sin(±θ)]hn
(ω
c
D
)
/h′n

(ω
c
L
)

(4.1)

where L is the interaural distance, c the velocity of sound, and ρ the air density. Furthermore,
Pn is the Legendre polynomial of order n and hn is the spherical Hankel function of order n.
Thus sound arrives at the contralateral tympanum later and more alleviated than at the
ipsilateral tympanum. For ω/c L less than one, the difference between the two arriving
pressure functions reduces to a phase shift. Experimental data from vertebrates with ICE
(see Table 4.1) fulfill this assumption. Accordingly, the simplification generally applies for
internally coupled ears and for independent ears in the low-frequency range. In this case
the differences between the input pressures are sufficiently described by the interaural time
difference

ITD = (L/c) sin(θ) ; (4.2)

for details see Sec. 2.2.1. In doing so the effect of sound traveling around the head is
neglected.

For independent ears and higher frequencies, Eq. (4.1) cannot be simplified. Interaural
amplitude differences (IADs) are calculated by the full solution to be

IAD := 20 log [|pex0(θ, ω; t)|/|pexL(θ, ω; t)|] . (4.3)

For a sound source directly in front of the head, the angle θ becomes zero, and consequently
so do the corresponding ITD and IAD values.
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4.2.1 Membrane vibration differences of independent ears

For independent ears the two membranes process incoming sound independently. The
membrane vibrations u̇0/L are therefore solutions of a forced membrane equation [50, 221].
That is,

u̇0/L(r; t) = Ω−1

[
pex0/L

∫
S
f0(r)dS

]
f0(r)eiωt (4.4)

with the definition

Ω−1 :=
1
ρmd

iω(
ω2

0 − ω2
)

+ 2iωα
. (4.5)

The parameters are the following
r, t solution parameters: radial position on the membrane and time,
S surface of the membrane,
a radius of the membrane,
d thickness of the membrane,
ρm density of the membrane,
ω0 first eigenfrequency of the membrane, and
α damping coefficient of the membrane.

The fundamental vibration mode of the membrane, a normalized Bessel function [35, p.
313] of first kind of order 0, is denoted by f0(r) := [J1(k1a)]2 J0(k1r) with the k1 defined
by J0(k1a)=0. To determine the specific parameters for different systems, values for the
gecko Hemidactylus frenatus (gekkonid) [221] are used and linearly scaled with the system
as a whole. Radius a and thickness d of the membrane therefore increase linearly. In
contrast, the eigenfrequencies of the tympani ωmn decrease linearly with head size, i.e.,
interaural distance and radius. The inverse relation between ωmn and radius is illustrated
by Eq. (2.7) that is valid for the radial function g(r) of internal cavity and membrane.
When the geometry is scaled by γ the radius r in Eq. (2.7) is replaced by r = γr′ leading
to

∂2g(γr′)
γ2 ∂r′2

+
1
γr′

∂g(γr′)
γ ∂r′

+
[
k2
qs −

q2

γ2 r′2

]
g(γr′) = 0 . (4.6)

Multiplying the equation by γ2 leads to

∂2g(γr′)
∂r′2

+
1
r′
∂g(γr′)
∂r′

+

γ2 k2
qs︸ ︷︷ ︸

:=(k′qs)2

− q
2

r′2

 g(γr′) = 0 . (4.7)

The resulting scaled solutions are again Bessel functions [35, p. 313] but with modified
k′qs. Since the eigenfrequencies of the original system are given by ωmn = kqscM with
cM the propagation velocity on the membrane [50, p. 74] the eigenfrequencies of the
scaled membrane are given by ωmn = kqscM = k′qs/γ cM = ω′mn/γ. In particular, the
eigenfrequency of the fundamental mode scales as ω0 = ω′0/γ for r = γr′.
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The time shift between the membrane vibrations for independent ears ITDind can
then be calculated as a difference between the arguments, denoted as arg, of the complex
vibrations of the tympani leading to

ITDind = {arg[u̇0(r; t)]− arg[u̇L(r; t)]} /ω
= arg[u̇0(r; t)/u̇L(r; t)]/ω
= arg[pex0/pexL ]/ω . (4.8)

The ITDind of independent ears consequently reproduces the time shift of the exciting
external pressure waves; cf. Eq. (4.2). As a consequence of neuronal phase-locking, which
only occurs if the frequency is low enough, ITDs are only used in the low-frequency range
so that application of the simplification (4.2) leads to

ITDind = L/c sin(θ) . (4.9)

The difference between the vibration amplitudes of the membranes, i.e., the IADind, can
be calculated as

IADind = 20 log [|u̇0(r; t)/u̇L(r; t)|]
= 20 log (|pex0/pexL)|) . (4.10)

Again the vibration amplitudes of the membranes of independent ears reflect the IADs of
the incoming sound wave; cf. Eq. (4.3).

4.2.2 Membrane vibration differences of internally coupled ears

Tympani of internally coupled ears do not vibrate independently but influence each other.
That is, the external stimuli and the internal coupling determine the membrane response.
Differences between time and amplitude of membrane vibrations (iTD and iAD) can be
described by the ICE model presented in Chap. 2 and [221]. For reasons of simplicity the
problem is assumed to be rotationally symmetrical, i.e., a possible asymmetry within the
attachment of the middle ear is neglected. By a reduced ICE model [see Eqs. (2.26)-(2.28)]
membrane vibrations can be calculated to be

u̇0(r; t) = Gipsi(r; t) pex0 +Gcontra(r; t) pexL ,

u̇L(r; t) = Gipsi(r; t) pexL +Gcontra(r; t) pex0 , (4.11)

with the ipsilateral filter

Gipsi(r; t)

= −
∫
S
f0(r) dS

{
−ρci cot(ω/cL) + Ω

[Ω− ρci cot(ω/cL)]2 + ρ2c2 sin−2(ω/cL)

}
f0(r) (4.12)

and the contralateral filter

Gcontra(r, ω; t)

=
∫
S
f0(r) dS

{
−ρci[sin(ω/cL)]−1

[Ω− ρci cot(ω/cL)]2 + ρ2c2 sin−2(ω/cL)

}
f0(r) (4.13)
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where ρ denotes density of air in the internal cavity. The other parameters have been
introduced in the previous section.

The internal time difference (iTD) for internally coupled ears is then given by

iTD
:= arg [u̇0(r; t)/u̇L(r; t)] /ω (4.14)

= arg
{

[ρci cot(ω/cL)− Ω] pex0 − ρci[sin(ω/cL)]−1 pexL

[ρci cot(ω/cL)− Ω] pexL − ρci[sin(ω/cL)]−1 pex0

}
/ω

where the first equality is a definition and the second follows from (4.11) to (4.13). Fur-
thermore, the internal amplitude difference (iAD) for internally coupled ears is in a similar
way given by

iAD
:= 20 log [|u̇0(r; t)/u̇L(r; t)|] (4.15)

= 20 log
{∣∣∣∣ [ρci cot(ω/cL)− Ω] pex0 − ρci[sin(ω/cL)]−1 pexL

[ρci cot(ω/cL)− Ω] pexL − ρci[sin(ω/cL)]−1 pex0

∣∣∣∣} .

For internally coupled ears iTDs and iADs are responses of the whole acoustical system
and not simply a direct reflection of the vibrations of the incoming ITDs and IADs.

4.2.3 Empirical analysis

In the next step, for every interaural distance L best frequencies both for independent and
internally coupled ears are estimated by maximizing amplitude differences between the
tympanic vibrations.

Since best frequencies for animals with independent ears are above the region where
ITDs are used, Eq. (4.10) determines the frequency where calculated IADs become maximal
for every interaural distance L; see Fig. 4.3, top. This figure also presents literature data
for interaural distance and best frequency for a number of species with independent ears;
see Table 4.1. Linear regression analysis of the literature data reveals a slope of around
−0.5 with R2 value of 0.4; see Table 4.2. The theoretical curve cannot reproduce the
experimentally found regression function, rather it consistently underestimates the best
frequency. Since the presented model only includes the acoustical system and its processing
through the tympani, experimental data for animals with independent ears could reflect
substantial middle ear and neuronal processing, which could also explain the greater level
of variation (lower R2 value) in this data set.

Despite vanishing IADs within the input function, internally coupled ears create iADs
for higher frequencies as illustrated in Fig. 2.12. The animal can therefore use iTDs and
iADs depending on the frequency of the incoming sound; cf. Fig. 2.21. Similar to animals
with independent ears, for every interaural distance L the frequency where iADs (4.15)
become maximal provides an estimation of the best frequency, viz., the frequency with
the lowest hearing threshold (cf. Fig. 4.2), of the system. Figure 4.3 (bottom) shows the
resulting theoretical best frequencies together with literature data for interaural distance
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Figure 4.3: Best frequencies [kHz] (vertical axis) as a function of the interaural distance [cm]
(horizontal axis) for animals with independent ears (top) and internally coupled ears
(bottom). The regression functions as calculated from experimentally measured best
frequencies are shown in black; cf. Table 4.2. The gray curves and areas show possible
statistical variations of the curve resulting from different slopes; cf. Table 4.2. Top: For
independent ears the blue curve shows best frequencies as resulting from maximizing
IADs (4.10). The mismatch between predicted and experimental data probably results
from middle ear and neuronal processing that are not included in the presented purely
acoustical model. Bottom: For internally coupled ears the red overlaying curves show best
frequencies as resulting from maximizing iADs (4.15). Predicted best frequencies nicely fit
to the experimentally obtained range of best frequencies.
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Figure 4.4: Maximal temporal differences [µs] (vertical axis) as a function of the interaural
distance [cm] (horizontal axis) for animals with independent ears (dashed red line) and
internally coupled ears (solid blue line). Values are calculated by Eq. (4.9) for ITDs of
independent ears and Eq. (4.14) for iTDs of internally coupled ears. Depending on the
interaural distance the coupling of the tympani enhances time differences starting from
a factor of around 3.5 for an interaural distance of 0.5 cm to a factor of around 2 for a
head size of 5 cm. The internal coupling of the tympani therefore effectively causes a
magnification of interaural distance.

and best frequency for a number of species with ICE; see Table 4.1. Linear regression
analysis of the literature data reveals a slope of around −1 with R2 value of 0.8. Figure 4.3
(bottom) illustrates the good fit between the theoretical data and this experimental data
set.

Comparing data of internally coupled and independent ears, the calculated regressions
for the two literature data sets, and for the two theoretical curves, are significantly different
(cf. Table 4.2), reflecting the underlying different biophysics of these two hearing systems.
In Fig. 4.3 the horizontal axes are the same, whereas the vertical axes are different. These
different vertical axes may obscure one of the key differences between these two auditory
systems; animals with internally coupled ears have lower best frequencies than animals
with independent ears, often by a factor of 2− 4. The system of internally coupled ears
may ensure an animal’s capabilities of hearing low frequencies despite a small head size.

The presented theoretical model of the tympanic vibrations predicts an enhancement of
the time differences between the membrane vibrations for a system with ICE in comparison
to independent ears. Figure 4.4 compares maximal ITDs for independent ears and iTDs
for internally coupled ears. Depending on the interaural distance, the enhancement factor
lies between 2 and 3.5. The internal coupling of the tympani therefore effectively causes a
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magnification of interaural distance, so that best frequencies of systems with internally
coupled ears are consistently, and significantly, below those of similar-sized organisms
with independent ears; see Table 4.1. Calford [17] has documented these time differences
experimentally and reported an enhancement of the same magnitude predicted by the
presented biophysical analysis.

4.3 Conclusion

In principle, internally coupled ears (ICE) translate an external signal arriving with
interaural time differences (ITDs) and interaural amplitude differences (IADs) at both ears
into coupled vibrations of the two tympanic membranes with internal time differences (iTDs)
and internal amplitude differences (iADs), the latter two being the result of both the external
signal and the internal coupling. Because of the coupling of the tympanic membranes the
iTDs are, according to analytical calculations and experiments [17], enhanced in comparison
to the incoming ITDs by a factor depending on interaural distance, of two to three for low
frequencies; see Fig. 4.4.

For animals with ICE there is both a theoretically and empirically significant inverse
relation between functional head size and best frequency, reflecting the limitations resulting
from the wavelength of the signal. The slope of this relation is nearly twice as steep in
animals with internally coupled ears (−1) as compared to animals with independent ears
(−0.5), a difference that is significant. The different regression functions suggest a different
sound processing for animals with independent and internally coupled ears. Animals with
internally coupled ears have enhanced capabilities to hear low frequencies.

4.A Methods: Empirical analysis

For the empirical analysis interaural distance L and best frequency fbest for a number
of different animals are collected. Table 4.1 summarizes experimental data [3, 12, 17,
27, 44, 48, 87, 162, 192]. The animals presented have either independent or internally
coupled ears, as indicated. The sound propagation velocity used for the calculation of the
functional head size L/c is c = 343 m/s when transmission is through the air at 20◦ C
and c = 1483 m/s when the transmission is through water at 20◦ C.
To cope for the expected inverse relation exp(a)Lm = fbest between interaural distance L
and best frequency fbest the equation is linearized in the form

log fbest = m logL+ a (4.16)

with slope m and the intercept parameter a. Since the measured data points are blurred
by noise they fulfill a given relation only within a certain error range. To find opti-
mal estimates for the slope and the intercept a minimization of the expectation value
〈log(fbest)−m log(l) + a〉 with respect to m and a is necessary. Equivalently, minimization
of the sum of squared residuals

∑N
i=1[log(fbesti

)−m logLi− a]2 determines m and a. This
method is called a least-square linear regression analysis [235]. A measure for the quality
of the fit is the R2 of the regression. Let f̂besti

be the estimated value of fbesti
as computed
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through a fit by means of (4.16) and the sample average by fbest = N−1
∑N

i=1 fbesti
. The

R2 of the regression, sometimes called coefficient of determination, is defined as

R2 :=

∑N
i=1

(
f̂besti

− fbest

)2

∑N
i=1

(
fbesti

− fbest

)2 ∈ [0; 1]. (4.17)

The R2 measures the ratio of the explained variation compared to the total variation, i.e.,
the fraction of the sample variation in fbest that is explained by L. The R2 equals 1 for a
perfect and 0 for a poor fit. An additional t-test on the estimation results further evaluates
a hypothetical relation between two variables, that is, whether the regression coefficients
are likely to be zero. The t-test therefore analyzes whether there is a statistically significant
relation between the explaining and the explained variable. The result of the t-test, called
p-value, gives the likelihood that the coefficients m and a are equal to zero. It is common to
define a relation to be statistically “significant” for p-values of 0.05 or 0.01, corresponding
to a 5% or 1% chance of an outcome like the observed one without a correlation between
the variables. For details on regression analysis see, e.g., Wooldridge [235].
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Table 4.1: Overview of different animals with their interaural distance L in [m], their
functional head size L/c in [µs] with the speed of sound c in the surrounding medium, and
their best frequencies in [kHz] taken from papers as indicated in the 4th column. The
animals have independent or internally coupled ears, as indicated in the 5th column. For the
porpoise and the alligator in water the sound propagation velocity is taken to be 1483 m/s.
Otherwise the sound propagation velocity in air is 343 m/s.

animal interaural functional best internal
distance [m] head size [µs] frequency [kHz] coupling

budgerigars 0.01 43.7 2.86 [12] yes
zebra finch (owl) 0.011 32.1 4.0 [48] yes

skink 0.013 37.9 3.2 [27] yes
agamid 0.013 37.9 3.19 [27] yes
pigeon 0.015 58.3 2.0 [17] yes

grass frog 0.019 55.4 1.1 [48] yes
kestrel (owl) 0.02 58.3 1.5 [17] yes

chick 0.021 61.2 1.5 [192] yes
gekkonid 0.022 64.1 1.82 [27] yes

alligator (water) 0.025 167.9 0.8 [87] yes
tree frog 0.03 87.5 0.9 [48] yes

leopard frog 0.03 87.5 1.1 [162] yes
iguanid 0.032 93.3 1.95 [27] yes
bullfrog 0.075 218.7 0.6 [48] yes

cotton rat 0.015 42.3 8.0 [48] no
mouse 0.018 52.5 15.0 [48] no
gerbil 0.03 87.5 4.0 [48] no

rat 0.05 145.8 8.0 [48] no
rabbit 0.095 277.0 10.0 [48] no

chinchilla 0.1 291.5 2.0 [48] no
porpoise (water) 0.12 80.9 8.0 [3] no

cat 0.15 437.3 8.0 [48] no
dog 0.20 568.5 3.0 [48] no

sheep 0.2 583.1 10.0 [48] no
human 0.21 612.2 1.5 [48] no

cow 0.295 860.1 8.0 [48] no
horse 0.3 874.6 2.0 [48] no

elephant 1.3 3790.1 1.0 [48] no
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Table 4.2: Regression analysis for the best frequency in dependence upon the functional
head size (i.e., interaural distance L divided by propagation velocity of sound c) for
animals with independent and internally coupled ears as given in Table 4.1. Slope m and
the intercept parameter a with a given confidential rate and standard errors have been
calculated by minimizing the expectation value 〈log(fbest)−m log(l) + a〉. The calculations
were performed only for internally coupled ears (left column), for animals with independent
ears (column in the middle), and for the two groups together (right column). The dummy
variable C equals 0 for independent ears and 1 for internally coupled ears. It indicates
to which degree the two populations differ. The value R2 is the fraction of the sample
variation in fbest that is explained by the functional head size L/c; cf. Eq. (4.17). That is
R2 = 1 would be a perfect, R2 = 0 a poor fit. The p-value further gives the likelihood that
the coefficients m and a are equal to zero, i.e., whether there is a statistically significant
relation between the explaining and the explained variable. P-values of 0.05 or 0.01 indicate
statistically “significance”, corresponding to a 5% or 1% chance of an outcome like the
observed one without a correlation between the variables. The results show a statistically
significant inverse relation between functional head size and best frequency for animals
with internally coupled ears. In contrast best frequencies of animals with independent ear
show an inverse dependence upon the functional head size with an exponent around -0.5.
The high values of R2 and the low p-values underline the goodness and reliability of the fit.
The difference between the two groups is statistically significant.

Variables Internally Independent both
Coupled Ears Ears

m -0.97*** -0.46** -0.52***
(0.16) (0.16) (0.11)

C -1.8***
(0.3)

a 11.5*** 11.0*** 11.4***
(0.7) (0.9) (0.7)

R2 0.8 0.4 0.7

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

85





All our knowledge has its origins in our per-
ceptions.

Leonardo da Vinci (1452 - 1519)

5. Optimality in mono- and
multisensory map formation

In the struggle for survival in a complex and dynamic environment, nature has developed
a multitude of sophisticated sensory systems. To exploit the information provided by these
sensory systems, higher vertebrates reconstruct the spatio-temporal environment from
each of the sensory systems they have at their disposal. That is, for each modality the
animal computes a neuronal representation of the outside world, a monosensory neuronal
map. The here presented universal framework allows for the calculation of the specific
layout of the involved neuronal network by means of a general mathematical principle,
viz., stochastic optimality. A step-by-step tutorial illustrates how to apply the theoretical
framework to concrete situations. That is, given a known physical signal transmission and
rudimental knowledge of the detection process, the approach allows to predict neuronal
properties of biological systems. Finally, information from different sensory modalities has
to be integrated so as to gain a unified perception of reality for further processing, e.g.,
for the creation of distinct motor commands. Concepts of multimodal interaction and the
evolvement of a multimodal space by alignment of monosensory maps are briefly discussed.

5.1 Introduction

A mouse hears a rustling in the grass, sees some leaves moving and – escapes from the
predator. Thus, the perception of the outside world by sensory systems and the consequent
translation of their response into a reliable neuronal representation that, for instance,
allows for directional motor commands is an essential concept for surviving. A neuronal
representation of the external world is denoted as neuronal map. Depending on the map
processing information from one or many sensory systems, the map is called uni- or

87



5. Optimality in mono- and multisensory map formation

Monosensory maps

Sensory responses

Multisensory map

Object

Physical mapping

Optimal map formation

Multisensory integration

Figure 5.1: The three steps of sensory processing leading to the formation of a unified
multisensory map. An object in the outside world generates physical input signals, which
can be detected by different sensory systems. To form a map, the physical mapping must
be “inverted” in some suitable way. After monosensory map formation, the distinct maps
are combined into a unified multisensory map.

multimodal. The advantageous concept of a neuronal map is discussed in detail in the next
section.

The processing of sensory information, from its generation to multimodal map formation,
can be subdivided into the “golden three” of sensory processing: physical mapping, optimal
map formation, and multimodal integration; see Fig. 5.1.

Physical Mapping. An object in the outside world reveals its presence by generating
different signals that are transmitted along distinct physical pathways. A running animal
may, for instance, generate sound and a changing visual image as it moves, as well as
vibrations and an infrared profile. In concrete terms, given any signal that varies as a
function of spatial position and time, it is possible to calculate the time-dependent response
of the receptor neurons. That is, the physical mapping of the signal onto the neuronal
detector response can be described by a set of transfer functions, indicated by the upper
arrows in Fig. 5.1. The responses of the sensory systems then represent particular physical
quantities such as sound, light intensity, volatile molecules, or heat originating from the
object.

Optimal map formation. From the sensory responses an observer needs to reconstruct
a map that represents the spatio-temporal stimulus. For some sensory systems a pre-stage
map already exists inherently, e.g., for the visual system on the retina. For other systems,
such as the auditory system [9, 21, 22, 111, 136], spatial information is not readily available
and a neuronal map must be constructed more explicitly. In either case, the map has to
represent the environment as accurately as possible, that is, optimally. The task of the
brain is to obtain an optimal reconstruction of the signal; cf. Fig. 5.1, middle arrows. The
key to success is the choice of the right neuronal connections between the sensory systems
and the corresponding maps. That is, the synaptic connections have to be adjusted in
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such a way that the network “inverts” the physical mapping of the signal to the sensory
response [168, 210, 241]. The firing activity of the map neurons then accurately represents
the spatio-temporal signal.

Multimodal integration. In a final step of sensory processing the monosensory maps
merge into a single unambiguous multisensory map. Here two difficulties arise. First, the
successful fusion of unimodal maps requires proper map alignment as observed, for example,
in the superior colliculus (SC)1 [18, 112, 204]; see Sec. 5.2. Second, the monosensory maps
should be combined optimally [74, 158] to maximize the quality of the integrated map in
comparison to that of the contributing maps. Besides this “integration of information” the
multimodal map together with the aligned unimodal maps allows for a new concept in
multimodal processing, the so-called “pooling” of information, an efficient way to identify
and characterize an object by its sensory properties.

The first processing step, physical mapping, is a purely physical description of the
signal generation and detection process. For internally coupled ears, the ICE model
describes the process of physical mapping of auditory stimuli; cf. Chap. 2 and [221]. This
chapter therefore focuses on optimal map formation and touches multimodal integration
superficially; a detailed model of multimodal map alignment is presented in Chap. 6.
Section 5.2 provides a review of the concept of a neuronal map. Section 5.3 discusses a
general framework that describes how a neuronal map can emerge from a given sensory
input in a stochastically optimal way [160]. After introducing in Sec. 5.4 a “recipe” how the
presented framework can be applied to realistic situations, Sec. 5.5 treats the integration of
monosensory into multisensory maps and reviews the current literature from the perspective
of maps. Basic concepts such as “integration” and “pooling” of information are presented.
The final section addresses the question of how a common sensory space can develop at all.

5.2 Fundamental concept of neuronal maps

A major role in sensory processing is reserved for maps [124, 217]. A neuronal map is a
neuronal representation of the external world realized by a topographically arranged array
of neurons. Neighboring map neurons respond to similar sensory stimuli.

As an example, visual input in the mammalian brain is processed through multiple
cortical layers that are organized according to the topography of the retinal input cells
(“retinotopic organization”) [107, 227]. Here neighboring neurons respond to visual input
from neighboring points in space. Such spatial maps have been discovered in various
sensory systems in many groups of vertebrates [23, 43, 91, 114, 116, 119, 151, 202, 207].

One might argue that neuronal maps exist simply because their neuronal architecture
only follows the sensory surface of their input modality. From this point of view, for
instance, the visual layers are retinotopically organized because they receive their input
from the retina. Similarly, a frequency map just reflects the tonotopic organization of the
cochlea.
1 The SC is called optic tectum in non-mammals. Here “SC” simply refers to either the optic tectum or

the superior colliculus, depending on the context.
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Figure 5.2: The firing profile of a map encodes the likelihood of finding an object at a
certain position in sensory space. Focusing on the firing rate of only a single neuron such
as neuron xi and ignoring its neighbors prevents a faithful perception of reality. A faithful
perception can only be achieved if the activity of the whole neuronal map is taken into
account, that is, just compare the ‘neighborhood’ of xi with the rest. Consequently, even
though the nominal value of the firing rate of neuron xi is identical in case A and B, the
represented physical reality differs significantly in both cases.

This argument, however, does not hold for every sensory map, in particular, not for
auditory maps of interaural time and amplitude differences [24, 147, 167, 209]. In this case
it is certainly not straightforward to build a map; cf. Chap. 3.

A key question [217] therefore is: What is the function of a neuronal map? That
is, why choose a map structure for neuronal processing? One argument is that, in
contrast to arbitrary population coding, neuronal maps ensure a topographic neuronal
organization. This organization then underlies the neuronal processing and provides an
efficient representation of a continuously varying input signal. For instance, it allows for
the interpretation of a firing pattern on a spatial map as the likelihood to find a sensory
object at a certain position [41, 98, 174, 195, 217]. As illustrated by Fig. 5.2, in the map
perspective one needs to consider the activity of the complete map in order to retrieve
meaningful information from the firing rate of a single neuron.

Nelson and Bower [163] suggested a justification of maps based on their function by
comparing computational principals of the brain and parallel computers. Accordingly, they
distinguished three types of maps.

• Continuous maps are topographically arranged neuronal arrays that represent a contin-
uous parameter. Interaction within the map mainly takes place between neighboring
neurons. An exemplary continuous map is found in the somatosensory cortex of
rats [228]. Here neurons are locally interconnected through shortrange axonal arboriza-
tion of stellate cells. Continuous maps are used for spatial filtering and local feature
extraction. The local connectivity ensures a balancing of the load.

• Scattered or discrete maps are characterized by a lack of systematic structure, i.e.,
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non-topographic arrangement of the neurons. The used definition of a map therefore
excludes scattered maps. A neuronal example is the olfactory cortex of rats [76] since
the olfactory inputs do not provide a topographic order. Consequently an extensive
network of fibers interconnects all cortical regions.

• Patchy maps are intermediate between continuous and scattered maps. The interaction
within the map has both a local and a global component. The somatosensory map
within the cerebellar cortex of rats [196] constitutes a neuronal example of a patchy
map. The neuronal structure includes long-distance parallel fiber connections as well
as strong local influence through shortrange axons. The task of this brain area is the
analysis of local sensory information within a more global sensory context.

In summary, structure and function of a map are highly correlated. For each computational
unit the load-balance should be optimized with respect to the given task. Within a neuronal
context the limited capacity of the supply network requires such a load-balancing since
oxygen and glucose are transported to the cells via supply networks of small capillaries. A
high, local increase in tissue metabolic activity leads to an undersupply of the neurons.
Brain areas that perform, e.g., local feature extraction are therefore organized in continuous
maps with strong inter-neighbor connections to distribute computational load equally.

The real computational power of neuronal maps, however, can only be appreciated when
the interplay of several maps is considered. Here the SC is a beautiful, well-studied example
of a collection of different maps of sensory systems that provide spatial information in a
map-like form [18, 204]. The SC contains multisensory, predominantly monosensory, as well
as motor maps, i.e., motor neurons organized in a map-like structure. All neuronal maps are
mutually aligned to gain a unified multisensory representation of sensory space [18, 112, 204].
The combined sensory information can then, for instance, activate motor maps and generate
directional motor responses [138, 203, 219]. Direct evidence for this hypothesis has recently
been found in eye tracking experiments [77].

Moreover, external objects can be identified by their position encoded through the
firing pattern in a neuronal map. More concretely, the position serves as appropriate and
necessary information for defining a sensory object. When combining different sensory
systems, the spatial information is needed to bind information associated with the same
sensory object into one single multimodal percept for further processing.

5.3 Mathematical model

The mathematical model for optimal stimulus reconstruction derived in the following is
based on the initial division of sensory processing into three major steps (see Fig. 5.1) but
focuses on optimal map formation. That is, stimulus characteristics have to be extracted
at the best from the sensory response as described in Sec. 5.1. Mathematically the inverse
transfer function is needed that can perform an optimal reconstruction of a particular
stimulus from the sensory response. This inverse transfer function can then be translated
into a neuronal connectivity pattern.
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The derivation below is based on two reasonable simplifications. First, all sensory
maps are assumed purely monosensory which reflects that many spatial maps are clearly
dominated by a single sensory modality [226].

The second assumption is a linear relation between the stimulus and the receptor
response of the sensory system. That means that the detector responses change propor-
tionally to the signal strength. Nonlinear relations between the stimulus and the detector
responses, e.g., a logarithmic response [34, 102, 132, 134, 166], can in principle be treated
with the presented model as well (see Appendix 5.A for details) but are excluded in the
following.

5.3.1 Definition of the problem

An object generates a stimulus sx(t) varying in time t and position x in the external world.
The corresponding signal may be, for instance, the time-dependent sound pressure at a
particular location or may denote the presence of edges or movements at a particular
position within the visual field.

In the next step, the signal induces a response ri(t) in a set of N sensory detectors.
Depending on the problem at hand a single detector i with 1 ≤ i ≤ N can be a complete
sensory organ, such as the left ear, or a part of a detector array such as a specific interval
of best frequencies in the cochlea. In principle, the detector combines information from
past signals within the whole sensory space. The response is therefore described by

ri(t) =
∫

all space
dx
∫ t

−∞
dτ sx(τ)hx

i (t− τ) (5.1)

where the transfer function hx
i (t) incorporates the physics of signal transmission and

detection. The transfer function can be different for each detector i. Transfer functions
within the auditory system, for example, incorporate the position of sound source and ear
with respect to the head midline and therefore differ between right and left ear.

In general, hx
i (t) = 0 for large values of |x| and t. This property reflects the intuition

that events occurring far away or long ago do not influence the state of a sensor. Moreover,
since any detector can only react to temporal-causal, i.e., past signals, it is hx

i (t) = 0 for
t < 0. The response function (5.1) with adapted integration limits then transforms to a
convolution [see (5.3) and box for definition and further information] with respect to time,

ri(t) =
∫

dx
∫ ∞
−∞

dτ sx(τ)hx
i (t− τ)

=:
∫

dx (sx ? hx
i )(t) .

(5.2)

The above equation describes the response of an ideal system. In biological systems the
quality of the detector response is in contrast limited by at least three factors.
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Convolution (?) and autocorrelation (◦)
for arbitrary functions a(t) and b(t) are defined by

(a ? b)(t) :=
∫ ∞
−∞

dτ a(t− τ)b(τ) (5.3)

and

(a ◦ b)(t) :=
∫ ∞
−∞

dτ a(t+ τ)b(τ) . (5.4)

Useful properties are

a ? b = b ? a , (5.5)
a ?(b ? c) = (a ? b) ? c , (5.6)
(a ◦ b)(t) = (b ◦ a)(−t) . (5.7)

For a Fourier transformation F , in particular, it is

F(a ? b) = F(a)F(b) , (5.8)
F(a ◦ b) = F(a)F(b) . (5.9)

Compositions of convolution and autocorrelation can be calculated as

(a ? b ? c)(t) =
∫ ∞
−∞

dτ (a ? b)(t− τ)c(τ)

=
∫ ∞
−∞

dτ dτ ′ a(t− τ − τ ′)b(τ ′)c(τ) , (5.10)

[(a ? b) ◦ c] (t) =
∫ ∞
−∞

dτ (a ? b)(t+ τ)c(τ)

=
∫ ∞
−∞

dτ dτ ′ a(t+ τ − τ ′)b(τ ′)c(τ) . (5.11)

First, information may get lost during the transfer from an object of the external world
to the detecting sensory system. Second, noise influences all steps in the detection and
reconstruction process [47]. Third, limitations of the neuronal hardware, for instance, the
limited dynamic range of receptors, constrain possible solutions; see Sec. 5.3.5 for details.

The mathematical model incorporates these three restrictive factors as additional noise
terms. Accordingly, a term describing background noise ξx(t) must be added to the signal.
Transfer function and sensory response are hampered by additional noise terms ηxi (t) and
χi(t). Consequently (5.2) is modified for a biological system so as to read

ri(t) =
∫

dx [(sx + ξx) ?(hx
i + ηxi )](t) + χi(t) . (5.12)
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li
x(t) + λi

x(t)hi
x(t) + ηi

x(t)

sx(t) + ξx(t) ri (t) + χi (t) ŝx(t)

Figure 5.3: Illustration of functions and entities involved in the process of optimal stimulus
reconstruction. Physical mapping: signal sx(t) with background noise ξx(t) is mapped onto
a noisy receptor response ri(t) + χi(t) through the noisy transfer function hx

i (t) + ηxi (t).
Optimal map formation: the application of the (possibly noisy) inverse transfer function
lxi (t) + λx

i (t) provides an estimate ŝx(t) of the original signal.

Signal sx(t) + ξx(t)
Transfer function hx

i (t) + ηxi (t)
Receptor response ri(t) + χi(t)
Inverse transfer function lxi (t) + λx

i (t)
Estimated signal ŝx(t)

Table 5.1: Functions and error terms describing detection and processing of sensory
information.

To reconstruct an estimated signal from the detector responses ri(t), the above transfor-
mation must be “inverted” in some appropriate way. The time-dependent inverse transfer
function between detector i and the map at position x is calculated as lxi (t). Application
of lxi (t) to the receptor responses at i leads to the estimate ŝx(t) of the original signal sx(t)
given by

ŝx(t) =
∑
i

[ri ?(lxi + λx
i )](t) (5.13)

where the term λx
i (t) represents the noise due to the concrete realization of the theoretical

inverse transfer function. In contrast to elsewhere [168, 175] the present model is non-
iterative so that the neuronal realization results in a purely feedforward network structure
as described in Sec. 5.3.5.

Figure 5.3 summarizes the whole mathematical procedure of sensory information
processing, corresponding to the first two steps of Fig. 5.1. All the relevant terms are
summarized in Table 5.1. The next section indicates how to calculate inverse transfer
functions lxi (t) that enable optimal signal reconstruction.

5.3.2 Optimal reconstruction

Sensory system are tuned to optimally reconstruct not only one specific situation but
the typical environment. In other words, biologically relevant signals belong to a class of
signals that are denoted as “typical”. Consequently a specific sensory signal is a concrete
realization of a class of typical, biologically relevant signals. That is, it is a stochastic
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quantity. An optimal reconstruction therefore requires to minimize the expectation value
of the squared difference between signal and reconstruction.

This is possible because all quantities and functions (cf. Figs. 5.1 and 5.3) involved
in both the process of physical mapping (see Appendix 5.B) and the neuronal process of
optimal map formation (cf. Sec. 5.3.5) are self-averaging. The mathematical definition of
self-averaging allows for a description in terms of expectation values.

The consequent derivation of the inverse transfer functions lxi (t) that enable optimal sig-
nal reconstruction for a class of typical signals requires the minimization of the expectation
value of the squared error between estimated and real signal

E [lx(t), t] :=
〈∫ t

t−T
dt′
∫

dx
[
sx(t′)− ŝx(t′)

]2〉
=
∫ t

t−T
dt′
∫

dx
〈[
sx(t′)− ŝx(t′)

]2〉 (5.14)

with lx(t) the vector of lxi (t). Here the brackets 〈.〉 denote the expectation value with
respect to the different types of noise. The typical processing time is denoted by T .

To be mathematically precise, an expectation value is an integral on a probability space
with respect to a probability measure p. For arbitrary functions f and g, if 〈|f − g|2〉 = 0
then f = g with respect to p or, physically, looking at the world through p’s glasses: what
p finds important pops up clearly whereas what p finds “irrelevant” has hardly any weight;
see van der Waerden [222].

Minimizing the mean squared error means to minimize both the variance of the estimate
and the systematic shift between estimate and expectation value of the signal. For further
details see van der Waerden [222]. In addition, a quadratic form of the error term has been
proven to be a reasonable and practical choice in many physical optimization problems [152].
In case of independent Gaussian error terms, the formulation via a quadratic error is
under certain conditions identical to results obtained by means of maximum-likelihood
estimates [101, 108]; see Sec. 5.3.4.

Mathematically, the error (5.14) is a functional assigning to every set of inverse transfer
functions one specific value. Minimization of functionals in the above integral form is a
central and well-studied aspect of the calculus of variations [31, 63, 105, 215]. For the
present situation the first variation with respect to every inverse transfer function lxj (t′) is
to vanish. That is,

∂
〈

[sx(t′)− ŝx(t′)]2
〉

∂ lxj (t′)
= 0 for every j. (5.15)

Solving Eq. (5.15) requires to substitute (5.13) for the estimate ŝx(t) and replace ri(t)
by its description (5.12). Expanding the square produces expectation values of products
consisting of varying combinations of noise and signal terms. Here all noise terms as well
as the signal itself are assumed to be stochastically independent of each other so that the
expectation of a product of independent terms factorizes, for instance,〈

sx(t)ηx
′

i (t′)
〉

=
〈
sx(t)

〉〈
ηx
′

i (t′)
〉
.
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For a product consisting of the same kind of term, the autocorrelation of an arbitrary
quantity fx(t) is given by〈

fx(t)fx′(t′)
〉

= δ(x− x′)δ(t− t′)(µ2
f + σ2

f ) (5.16)

with µf the mean and σf the variance of the quantity fx(t). That is, the values for different
spatio-temporal positions are in a first step completely uncorrelated, a kind of worst-case
scenario.
Given that the means of all noise terms µf vanish the autocorrelations for the noise terms
reduce to 〈

ξx(t)ξx
′
(t′)
〉

= δ(x− x′)δ(t− t′) σ2
ξ , (5.17a)〈

χi(t)χj(t′)
〉

= δijδ(t− t′) σ2
χ , (5.17b)〈

ηxi (t)ηx
′

j (t′)
〉

= δijδ(x− x′)δ(t− t′) σ2
η

with |x| < xmax and 0 < t < tmax . (5.17c)

The final equation accounts for the fact that the noise ηxi (t) vanishes for large values of t
and |x| in the same way as it does for the transfer function hx

i (t).
The autocorrelation (5.16) of the signal sx(t) itself depends on the problem at hand.

Either the detectors of the sensory system measure absolute signal strengths µS , e.g.,
vision, or modulations of a mean value of the signal (deviation σS), e.g., audition. In any
case, one has to choose the corresponding biologically relevant term and put the others
equal to zero. In the following, choosing the absolute signal strength µS of the signal as
the appropriate quantity and therefore taking σS zero reduces Eq. (5.16) to〈

sx(t)sx
′
(t′)
〉

= δ(x− x′)δ(t− t′) µ2
s . (5.18)

Whereas (5.17) incorporates reasonable assumptions for all noise terms, the corre-
lation (5.18) for the signal is a strong hypothesis. Signals are namely characterized by
spatio-temporal continuity, e.g., objects and their corresponding signals usually do not
disappear from moment to the next. A Gaussian correlation term〈

sx(t)sx
′
(t′)
〉

= A exp
[
−
∣∣x− x′

∣∣2/(2σ2
sx

)
]

exp
[
−
∣∣t− t′∣∣2/(2σ2

st
)
]
, (5.19)

for instance, can take into account correlations between neighboring points in space and
time. Here σsx and σst are typical spatial and temporal correlation scales. The application
of such a Gaussian correlation, however, does not greatly alter the further derivation but
only smoothens the final estimated signal; see Appendix 5.D for details. For reasons of
clarity, relation (5.18) is used in the following.

To solve (5.15) the application of the correlations (5.17) and (5.18) leads to

lxj (t)

[
σ2
χ + (µ2

s + σ2
ξ )
∫
|y|<ymax

0<τ<tmax

dydτ σ2
η

]

+ (µ2
s + σ2

ξ )
∑
i

∫
dy
[
(hy
i ? l

x
i ) ◦hy

j

]
(−t) = µ2

sh
x
j (−t) ; (5.20)

96



5. Optimality in mono- and multisensory map formation

for details on the calculations see Appendix 5.C. The open circle ◦ denotes the autocorre-
lation integral as defined in (5.4). To simplify (5.20) two noise measures are introduced.
The parameter τ represents an inverse signal-to-noise ratio and is defined by

τ2 :=
σ2
ξ

µ2
s

. (5.21)

For processing of sensory signals it is reasonable to assume a small value of τ . The second
noise parameter σ defined by

σ2 :=
σ2
χ

µ2
s

+
∫
|y|<ymax

0<τ<tmax

dydτ
σ2
η(µ

2
s + σ2

ξ )
µ2
s

(5.22)

describes the overall measurement noise by relating detection and transmission noise, σχ
and ση, to the signal mean amplitude µs. A priori, the value of σ cannot be assumed to
be small and has to be adjusted according to the situation at hand.

To further simplify (5.20) the equation is translated to Fourier space, where convo-
lution (5.3) and autocorrelation (5.4) become ordinary multiplications combined with
complex conjugations; cf. Eqs. (5.8) and (5.9). Denoting Fourier transforms by capital
letters and the complex conjugation by an overline, Eq. (5.20) with the introduced noise
measures (5.21) and (5.22) simplifies to∑

i

Lx
i

[
σ2δij + (1 + τ2)

∫
dy Hy

i H
y
j

]
= Hx

j . (5.23)

Equation (5.23) is the main result of the presented derivation. In principle, it allows to
calculate the inverse transfer functions Lx

i for optimal signal reconstruction. A calculation
of the second variation confirms that the obtained inverse transformation indeed minimizes
the error; see Appendix 5.C, in particular, Eq. (5.48), for details.

5.3.3 Matrix notation

To rewrite (5.23) in a more convenient notation “matrices” H and L are introduced by

H[ix] = Hx
i and L[xi] = Lx

i . (5.24)

The notation illustrates that transfer functions and inverse transfer functions are linear
transformations from a continuous space (the outside world) into a discrete space (the
neuronal map) and vice versa. H and L are therefore only formally matrices with a spatial
coordinate x varying in R. The matrix multiplication involving the spatial coordinate
must consequently be understood as an integration. A discretization of space, as is usual
in numerics, leads to a true matrix formulation.

In addition, the covariance matrix C(R) of the receptor response R as described, e.g.,
in [101, 108], is calculated to be

C(R) :=
〈

(R− 〈R〉)(R− 〈R〉)T
〉

= µ2
s

(
σ2I + τ2HHT

)
(5.25)
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where the superscript T denotes the matrix transpose and I the identity matrix. Equa-
tion (5.23) now simplifies to

MLT = H with the ‘model matrix’ M := µ−2
s C +HHT . (5.26)

Given that M is an invertible matrix the solution for L turns out to be

L =
(
M−1H

)T = HT
[(
µ−2
s C +HHT

)−1
]T

. (5.27)

This equation gives a unique solution for the optimal reconstruction for any given set of
transfer functions and noise constants (σ, τ). The estimated signal can be calculated from
the measured response vector R using (5.13) in matrix form as

Ŝ = L ·R . (5.28)

5.3.4 Relation to the maximum-likelihood approach

The challenge of signal reconstruction has a long tradition, and, accordingly, the above
formalism should incorporate methods that have been established in this field. The
following discussion, in particular, relates the presented model to methods based on the
maximum-likelihood analysis [101, 108]. Within the maximum-likelihood scheme one
computes the stimulus that is the most likely one given a set of detector responses R.
Experiments have shown that optimal or near-optimal stimulus combinations can indeed
describe several phenomena of sensory processing [1, 45, 84, 93, 129, 158]. A method of
optimal stimulus combination like the maximum-likelihood approach is therefore highly
relevant to neuronal information processing and ought to be included in the present model.

The maximum-likelihood approach tries to find the most probable input signal S given
the detector responses R, a known transfer function H, and no apriori knowledge about
the signal (σs =∞). The following analysis assumes a linear relation

R = HS + χ (5.29)

with χ representing the noise. The noise follows a Gaussian distribution with zero mean
and the standard deviation σχ. The maximum-likelihood method minimizes the noise
χ. That is, based on the fundamental definitions of Bayesian statistics, it maximizes the
conditional probability density function

p(R|S) ∝ exp
[
− 1

2σ2
χ

(R−HS)T (R−HS)
]

(5.30)

with respect to the signal S. This leads to a linear system of equations

S =
(
HTH

)−1
HT︸ ︷︷ ︸

=:LML

R . (5.31)

Using on the other side the above assumptions for the presented model, viz., σs = ∞,
η = 0, and ξ = 0, Eq. (5.26) reduces to(

HHT
)
LT = H . (5.32)

98



5. Optimality in mono- and multisensory map formation

 

II  
I  

I I I  
 

I I
I

 I

 
 I I I

 
 
 

I

Ii

 
 

I  
 
 I

II

 
 
 

I  
 II

II   

III   

I

map neurons

detectors

li
x(t)

ii-1 i+1

x

synaptic connections

yw....

Figure 5.4: Neuronal realization of optimal stimulus reconstruction. The sensory response of
the detector neurons (here hair cells labeled by i) to an external sensory object is projected
onto map neurons. The synaptic connections have to be adjusted in such a way that the
network “inverts” the physical mapping of the signal to the detector response. That is, the
synaptic connections have to represent the inverse transfer functions lxi (t). To this end,
each sensor connects to several map neurons. Spatial processing is then governed by the
topographic structure of the network, that is, which detector i is connected to which map
neuron (encoding the location x). Temporal processing is determined by the distribution of
delays within the set of connections. Together the inverse transfer functions lxi (t) can be
reliably represented in the neuronal network.

To test whether the two filters are equal, LML is inserted into (5.32). Application of the
transposition rules shows that with the used assumptions it is L = LML. Under the made
assumptions the two strategies are therefore identical; for details see [101, 108, 182, 190].

5.3.5 Neuronal realization of the model

The general mathematical algorithm of optimal stimulus reconstruction is now translated
into a concrete neuronal context. One therefore has to verify first whether the assumptions
made in Sec. 5.3.2 are fulfilled in neuronal processing. That is, neuronal quantities and
functions of optimal map formation have to be self-averaging. As mentioned before,
quantities and functions within the physical mapping process are indeed self-averaging;
see Appendix 5.B. For the neuronal side this assumption is as well fulfilled since on the
one hand firing of neurons is correlated with the self-averaging input, and neuronal noise
can be described by a stochastic process, e.g., a Gaussian one; as discussed in a minute.
The mathematical framework can cope with any distribution of neuronal noise as long
as the mean is zero. On the other hand the optimal inverse transfer functions lxi (t) are
learned synaptic connections between the maps associated with different modalities and
hence reflect properties of the underlying learning process. Effective learning is slow
because it needs many independent repetitions. Accordingly time scales for learning and
individual realizations of an external signal can be separated. In other words, learning is
a self-averaging process where only averaged quantities enter by the very nature of the
process [109]. In conclusion, the conditions needed to exploit the mathematical framework
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(cf. Sec. 5.3) are fulfilled.
Consequently, a translation of the inverse transfer functions lxi (t) into neuronal hardware

is possible. In a neuronal architecture, the actual processing is performed by the synaptic
connections between detectors and neurons. The mathematical framework already takes
into account the discrete character of detectors and maps through a discrete number of
inverse transfer functions. Furthermore, the discrete, “spiky” character of response and
reconstruction by the neuronal realization is already taken care of by the noise terms χi
and λx

i . Spatial processing is then governed by the topographic structure of the network,
that is, which detector is connected to which neuron. Temporal processing is determined
by the distribution of delays within the set of connections. That is, a number of dendrites
with appropriate delays are chosen to sample the time course of lxi (t) in a sufficient way [54].
The response of the map neuron is shown to be robust with respect to the sampling method
of the temporal delays [137].

Figure 5.4 shows an example of the whole neuronal setup. As illustrated a feedforward
network of excitatory and inhibitory connections can implement the presented unified
framework and can form a unimodal map from arbitrary input [54, 137, 198]. The question,
however, remains how such a connectivity pattern is established in a real biological system.
Franosch et al. [52] and Friedel et al. [56] have shown that correct synaptic connections can
be learned from a teacher such as the visual system. Non-visual maps can develop by means
of (supervised) STDP; for details see Sec. 5.5.2. By means of the present mathematical
framework the learned connectivity pattern can be compared with the optimal one as given
by Eqs. (5.23) and (5.27).

A meaningful comparison of the mathematically optimal network architecture with an
actual biological setup, though, may not be straightforward. In real biological systems,
error minimization as in Eq. (5.14) – that is, realizing the optimal connectivity – may not
be possible because of neuronal limitations. The mathematical framework can nevertheless
cope for the limited neuronal accuracy by reducing the error only below a certain error
threshold, which may even vary in space. A biological example of non-uniform stimulus
reconstruction are visual fields being sampled with different spatial and spectral resolu-
tions [92, 200, 239]. Such a focus on specific spatio-temporal domains can mathematically
be realized by introducing a positive weighting function into the integral of Eq. (5.14).
Accordingly, when reducing the global error below a certain threshold, the areas within the
focus of the weight function have to reach a higher level of optimization, i.e., of resolution,
than the rest.

Taken together, the formalism of optimal map formation is capable to deliver concrete
neuronal connectivity pattern, just as illustrated in Fig. 5.4. As a consequence, the
mathematical framework can make direct forecasts of the firing activity of concrete maps.

5.4 A recipe of making maps

In the previous section optimal connectivity pattern between sensory system and map was
calculated [Fig. 5.3 and Eq. (5.23)] and realized neuronally [cf. Fig. 5.4].

To bring to life the mathematical framework of Sec. 5.3, an easy step-by-step “recipe”
provides the optimal connectivity in a realistic biological setup:
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• First, the transfer function hx
i (t) is specified that determines the response of the detector

i to a stimulus pulse that occurred t time units ago at position x.

• Next, the Fourier transform Hx
i of the transfer function hx

i (t) is calculated.

• Values of τ and σ are chosen in a suitable way. The noise-to-signal ratio τ can be
assumed to be much smaller than 1 for any measurable signal. In contrast, σ needs to
be estimated in dependence upon the situation at hand [53, 54, 198].

• The entries of the model matrix Mij are calculated by Eq. (5.26). Inversion of the
matrix leads to M−1.

• The inverted matrix M−1 is multiplied by the matrix H so as to find the input
connection strengths LT .

• Finally, transposition and inverse Fourier transformation of LT provide the inverse
transfer functions lxi (t).

5.5 Multimodality

In deriving the mathematical framework in Sec. 5.3 all sensory maps are purely monosensory.
In spite of this assumption, animals and humans perceive their environment through several,
multimodal, sensory systems. To fully access the complete information of all monosensory
maps, their information has to be combined. Physiological and behavioral experiments
show that the monosensory perceptions are not independent but mutually interact with
each other [1, 11, 46, 197]. A combination leads to the formation of multisensory maps,
i.e., maps receiving input from more than one sensory system [106, 158].

A number of brain areas, such as the midbrain in mammals, more precisely the SC [204],
or even higher brain areas, such as the Anterior Ectosylvian Sulcus (AES) [25], contain
clearly distinct monosensory as well as multisensory neurons. Since the perceptual and
behavioral role of higher brain areas remains vague the well-studied SC is used as an
example for multimodal interaction in the following.

The SC features a layered organization of spatial maps from all sensory systems that
dispose of topographic, map-like information (such as vision but not olfaction) [204]. All
these maps, uni- or multisensory, are mutually aligned [18, 112, 204] and thus provide a
common reference system of sensory space.

5.5.1 Multimodal interaction

In general, there are two categories of multimodal interaction: integration and pooling of
information.

Integration. Congruent spatial information from different sensory systems can be in-
tegrated into a single merged and, hence, multimodal map. Such an integrated map, as
compared to the unimodal maps, features increased information reliability and saliency and
an improved sensitivity in both space and time [77, 130, 131, 184]. For example, if visual
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and auditory sensory system both register a signal, e.g., “brown ahead” and “barking
ahead”, it is very probable that the signal corresponds to an actual object rather than to
a sensory artifact. At the same time, the integrated signal is stronger and allows for faster
reactions (e.g., “escape!”). In some cases an integrated signal is even optimal [74, 158].
Despite increased reliability of the integrated map, its individual input streams cannot
be distinguished anymore. That is, the information of which monosensory map has deter-
mined the position is lost. Within the above example the multimodal map may indicate
a multimodal event ahead but the triggering modality, for instance, vision or audition,
remains unresolved.

Chapter 6 provides a detailed description of multimodal integration. Further neuronal
models based on statistical methods have been presented elsewhere [40, 41, 42]. Concrete
theoretical models of multimodal integration within the SC have been developed as well
[2, 142, 171, 185, 186, 214].

Pooling. Within a common reference system all monosensory as well as multisensory
maps are present in parallel. Since all maps are aligned a simultaneous access to the
diverse information, thus, signal characteristics, is possible. Consequently an object at one
specific position in space-time can be identified and characterized by this location in order
to select, e.g., motor responses in a complex environment. For example, a rattle snake
may detect spatial coherent activity in its visual and/or infrared map. Only if the encoded
object is visible and warm it will be identified as a living object, in other words, a possible
prey. If it is visible and cold the snake will discard the information. Experimental evidence
for such a pooling of information is provided by neuronal AND and OR processing steps
for the combination of visual and infrared map [164, 165]. These prominent examples of
pooling in the SC could enable target selection and ensure appropriate motor commands
in a complex environment.

In summary, integration of information allows for a reliable spatial determination of
an object, the key task of object formation. Pooling of information assures an access to
the details of an object necessary for object identification. Switching between integration
and pooling corresponds to a switch between parallel and serial data processing to best fit
different tasks.

5.5.2 Development of multisensory space

To enable efficient multimodal interaction such as integration and pooling, alignment of
the different mono- and multisensory maps is of crucial importance. Only then can a
multimodal stimulus at a specific spatial location be identified. An alignment of sensory
maps, however, is not present at birth and must be learned [120, 205, 217]. The following
section and Chap. 6 discuss the question of how a common multimodal space can evolve at
all.

An obvious strategy would be the determination of one dominant modality as reference
for all other modalities [120, 122]. Modifications of this reference map would then auto-
matically lead to modifications of all other maps. Experimental and physiological studies
have shown that, in many animals, destruction or disturbance of the visual pathway leads
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to disorganized and abnormal sensory maps in non-visual modalities. These findings have
been obtained in hamster [157], cat [224, 226], clawed frog [30], ferret [115], barn owl [123],
and snakes [70]. Psychophysical experiments with congenitally blind and normally sighted
humans have shown that visual input early in life is necessary for multimodal interaction
to occur [90, 176, 180]. Consequently vision seems to be the dominant guiding modality,
i.e., the “teacher”, for non-visual modalities.

A plausible argument supporting this idea is the intrinsic topographic order of the
retina. It is known that layers of neurons can self-organize into topographic maps, provided
that initially a small set of correctly organized neurons exists [213, 232]. Together with
the subsequent development of deeper layers in the visual cortex (for mice, see [100]) the
intrinsic topography of the retina could step-by-step dictate the organization and alignment
of higher visual and, potentially, also multimodal maps.

An example where the alignment has been studied in detail, both experimentally and
theoretically, is audio-visual integration within the SC of the barn owl. Here experiments
[94, 122] have shown that the auditory map follows systematic changes within the visual
input. The general mechanism facilitating such an alignment of maps is supervised
spike-timing-dependent plasticity (STDP) [6, 7, 36, 66, 109, 149, 199, 216, 240]. The
precise nature of the teaching signal has not been clarified experimentally but selective
neuronal disinhibition, or gating, seems to play a key role [75, 233]. Theoretical studies
have confirmed that excitatory and inhibitory teaching input can account for proper map
formation and thus development of multimodal space [38, 56]. It is, however, only by
inhibitory teaching input that an already aligned map can be re-aligned later on [56].

In summary, the above studies support the idea of vision as teacher modality to
align other monosensory maps but there are contradicting findings as well. It has been
shown both theoretically and experimentally that, although imprecise, a map of azimuthal
sound location can be learned without any visual input [111, 122] though admittedly
on a genetically determined substrate. In addition, non-visual modalities can influence
each other as well, e.g., audition can influence haptics [11]. Moreover, somatosensory
maps already sharpen in a postnatal phase when only auditory but no visual neurons are
present [223, 225]. Behavioral and psychophysical studies show that visual perception can
even be influenced by other modalities such as haptics [46] or audition [55, 197, 201]. More
importantly, vision itself can improve, respectively sharpen as found in the visual system
of young cats [223, 225].

Taken together, the presented experimental and theoretical findings put into question
the current picture of vision-guided map alignment [113]. Wallace and Stein [225] have
pointed out that the development of different modalities starts in parallel and in temporal
coincidence with the appearance of multimodal integration. They hereby suggest a common
mechanism driving both map development and multimodal integration. A concept of
integrated multimodal teaching that is based on these considerations is presented in
Chap. 6.
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5.6 Discussion

In summary, sensory processing is based on three general concepts, denoted as the ‘golden
three’ of sensory processing: physical mapping, optimal map formation, and multimodal
integration; cf. Fig. 5.1. Given transfer functions to describe how a signal stimulates
a detector, the formulated mathematical framework is able to quantify how the detec-
tor response is processed so as to lead to a “reconstruction” of the original signal. In
the context of neuronal information processing the framework extends the established
maximum-likelihood method by linking its parameters to easily accessible experimental
quantities. The mathematical principle of stochastic optimality leads to a discrete and
optimal representation of the outside world – a map.

Most importantly, the mathematical setup can be translated into neuronal architecture.
That is, a discretization in space-time of the mathematical model allows for a derivation
of synaptic connection patterns between detector and map neurons. To illustrate the
relation to real biological settings, a step-by-step recipe offers the possibility of applying the
mathematical framework to concrete biological situations. The generality of the method of
optimal map formation can now be tested to model and analyze experimental results. In
particular, the measurement of internal connections, for instance, in the SC, and firing
profiles for specific sensory systems would provide a possibility to experimentally access
the inverse transfer functions as defined in Sec. 5.3.1.

Based on the understanding of monosensory map formation, multimodal interaction and
the development of multisensory space have been discussed. Here the concept of neuronal
maps as compared to single neuron effects can deliver new perspectives on multimodal
interaction, viz., integration and pooling of information. While integration of information
allows for a reliable spatial localization of an object, pooling of information assures the
access to the details of an object. Pooling of information could be the reason as to why
multiple maps are found in the SC instead of a single multimodal map.

Finally, the importance of proper map alignment for multimodal interaction was
emphasized. Here STDP learning algorithms with an inhibitory teacher signal can account
for both initial map formation and even subsequent re-alignment of maps. Further
experimental studies on inhibitory teacher input, e.g., within the SC, are nevertheless
needed to clarify the precise role of inhibition in the alignment process. In addition, such
experiments could answer the crucial question of which sensory systems determine the
formation of multimodal space.

In other words, a deep understanding of how multimodal interaction is realized and
established at an anatomical level requires more experimental and theoretical studies. For
example, through which concrete mechanism could a collection of aligned maps allow
for the pooling of information? Does such a mechanism also include feature selection in
a common sensory space? How does multimodal interaction of maps contribute to the
formation of a common sensory space? And to what extent does such a finding contradict
the current picture of vision-guided map alignment? Finally, to what extent does the
mathematical framework, that has been substantiated so far only by findings in the SC,
apply to other areas of the brain, such as the AES, a well-defined multisensory cortical
area observed in cats.

Some of these questions are addressed in the following chapter where a concept of
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multimodal teaching is presented.

Appendix

5.A Nonlinearities in information processing

The presented model assumes a linear relation between stimulus and detector response. For
a number of sensory systems, however, non-linearities appear during sensory processing.
First, the transfer function h can be a non-linear function h̃. Second, the neuronal detector
response can be nonlinear, typically logarithmic [34, 102, 132, 134, 166]. In case of a
nonlinear transfer function and a logarithmic response the detector responses r̃i(t) have to
be rewritten from (5.1) as

r̃i(t) = log
[∫

all space
dx
∫ t

−∞
dτ sx(τ)h̃x

i (t− τ)
]
. (5.33)

To nevertheless apply the presented model an incorporation of an additional computational
step can in a first step cancel the logarithm. In a biological system this can be realized,
e.g., by neurons with exponential firing behavior. Assuming such a neuronal step the
detector response r̃i(t) remains with a nonlinear h̃ as compared to (5.1). A linearization of
the nonlinear transfer function can be achieved by a redefinition of the signal s→ s̃. That
is, appropriate characteristics of the stimulus are identified that are linearly related to r.
For example, instead of looking at the heat distribution T (x, t) the intensity distribution
of the corresponding radiation ∼ T 4(x, t) can be considered due to the Stefan-Boltzmann
law. Together, the incorporation of an additional computational step and the reasonable
redefinition of detector response and signal allow for an optimal stimulus reconstruction
by means of the presented linear framework.

5.B Self-averaging

Why can physical but noisy input quantities be expected to be self-averaging? To under-
stand this valuable property a detector receives input signals fi with 1 ≤ i ≤ N as a sum
ηN
∑N

i=1 fi where ηN is a scaling factor. For the sake of convenience ηN is set to 1/N to
get a decent scaling behavior as N increases. Moreover, fi are stochastic random variables
with mean ai and finite variance. Finally, if the 1 ≤ i ≤ N represent, for example, different
positions in space, in biological reality the stochastic correlation between positions that
are far apart is small. Hence fi = ai + φi where the noise terms φi (cf. Fig. 5.3) are taken
as independent random variables that by construction all have zero mean. For inputs of
the form

N∑
i=1

fi =

(
N∑
i=1

ai

)
+

(
N∑
i=1

φi

)
=: AN + ΦN (5.34)

the number AN is deterministic. Regarding ΦN the strong law of large numbers (for
details see [216], Appendix A) applies, so as to conclude that, as N →∞, it is ηN ΦN → 0
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independent of the specific realization of the {φi}. The latter circumstance is exactly what
is needed in practical work since one never knows the realization until it is all over. The
strong law of large numbers guarantees that ΦN vanishes as N becomes large.

The only, minor, drawback of all this is twofold. First, in reality the φi are never
perfectly independent. Nevertheless, as long as correlations fall off fast enough as the
distance |i − j| becomes large, the strong law of large numbers still holds. Second, in
practical work N is and remains finite. Then the central limit theorem as described in
Appendix A of [216] shows that for arbitrary independent φi provided the second moment
〈φ2
i 〉 is finite and N large

1√
N

N∑
i=1

φi (5.35)

has a Gaussian distribution with mean zero. The standard deviation gives information
about the width of the Gaussian. The same holds true for weakly dependent φi as found
in biophysical reality.

5.C Remaining derivation steps leading to (5.23)

The following section elaborates some steps skipped in the derivation of (5.23). Here
ideas due to the calclulus of variations [105] apply. Equation (5.15) is used as starting
condition to minimize the expectation value of the quadratic error with respect to the
optimal inverse transfer functions lxj (t). This leads to

∂
〈

[sx(t′)− ŝx(t′)]2
〉

∂ lxj (t′)
= 0

⇔

〈[
sx(t′)− ŝx(t′)

] ∂ ŝx(t′)
∂ lxj (t′)

〉
= 0 for every j. (5.36)

To solve (5.36), the estimate ŝx(t) is expanded using Eqs. (5.12) and (5.13) giving

ŝx =
∑
i

{
χi ? l

x
i + χi ? λ

x
i +

∫
dy
[
sy ? hy

i ? l
x
i + sy ? hy

i ? λ
x
i + sy ? ηyi ? l

x
i + sy ? ηyi ? λ

x
i

+ ξy ? hy
i ? l

x
i + ξy ? hy

i ? λ
x
i + ξy ? ηyi ? l

x
i + ξy ? ηyi ? λ

x
i

]}
.

(5.37)

Variation of ŝ leads to
∂ ŝx(t′)
∂ lxj (t′)

=
[
χj +

∫
dy
(
sy ? hy

j + sy ? ηyj + ξy ? hy
j + ξy ? ηyj

)]
(0) . (5.38)

As before, all noise terms as well as the expectation of the input are stochastically
independent of each other. All noise terms have zero mean. With these assumptions, the
expectation values 〈s ∂ŝ/∂l〉 and 〈ŝ ∂ŝ/∂l〉 from (5.36) can be written〈

sx(t′)
∂ ŝx(t′)
∂ lxj (t′)

〉
=
∫

dy
〈
sx(t′) (sy ? hy

j )(0)
〉

(5.39)
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and combining (5.37) and (5.38)

〈
ŝx(t′)

∂ ŝx(t′)
∂ lxj (t′)

〉
=
∑
i

{〈
(χi ? lxi )(t′)χj(0)

〉
+
∫

dydy′
[ 〈

(sy ? hy
i ? l

x
i )(t′)(sy

′
? hy′

j )(0)
〉

+
〈

(sy ? ηyi ? l
x
i )(t′)(sy

′
? ηy

′

j )(0)
〉

+
〈

(ξy ? hy
i ? l

x
i )(t′)(ξy

′
? hy′

j )(0)
〉

+
〈

(ξy ? ηyi ? l
x
i )(t′)(ξy

′
? ηy

′

j )(0)
〉 ]}

.

(5.40)

To illustrate the calculations, which simplify (5.39) and (5.40), two isolated terms from (5.40)
are considered as concrete example. The other terms are treated in a similar way. First
consider

∑
i

∫
dydy′

〈
(sy ? hy

i ? l
x
i )(t′)(sy

′
? hy′

j )(0)
〉

=
∑
i

∫
dydy′dτdτ ′dτ ′′

〈
sy(t′ − τ − τ ′)hy

i (τ ′)lxi (τ)sy
′
(−τ ′′)hy′

j (τ ′′)
〉 (5.41)

where the definition of the convolution (5.3) and the composition rule (5.10) are applied.
Exploiting the autocorrelation for the signal (5.18) this expression becomes

µ2
s

∑
i

∫
dydy′dτdτ ′dτ ′′δ(y − y′)δ(t′ − τ − τ ′ + τ ′′)hy

i (τ ′)lxi (τ)hy′

j (τ ′′)

= µ2
s

∑
i

∫
dydτdτ ′′hy

i (t′ − τ + τ ′′)lxi (τ)hy
j (τ ′′)

= µ2
s

∑
i

∫
dy[(hy

i ? l
x
i ) ◦hy

j ](t′)

(5.42)

where the last step results from the composition rule of convolution and autocorrelation
(5.11). Focusing on the third term in the right-hand side of (5.40) leads in a similar way to

∑
i

∫
dydy′

〈
(sy ? ηyi ? l

x
i )(t′)(sy

′
? ηy

′

j )(0)
〉

=
∑
i

∫
dydy′dτdτ ′dτ ′′

〈
sy(t′ − τ − τ ′)ηyi (τ ′)lxi (τ)sy

′
(−τ ′′)ηy

′

j (τ ′′)
〉 (5.43)
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which simplifies with (5.17) and (5.18) to

µ2
sσ

2
η

∑
i

∫
|y|<ymax

0<τ ′<tmax

dydy′dτdτ ′dτ ′′δ(y − y′)δ(t′ − τ − τ ′ + τ ′′)

δijδ(y − y′)δ(τ ′ − τ ′′)lxi (τ)

= µ2
sσ

2
η

∫
|y|<ymax

0<τ ′<tmax

dydτdτ ′δ(−τ + t′)lxj (τ)

= µ2
sσ

2
η

∫
|y|<ymax

0<τ ′<tmax

dydτ ′lxj (t′) .

(5.44)

Taken together, the final expressions for the expectation values become〈
sx(t′)

∂ ŝx(t′)
∂ lxj (t′)

〉
= µ2

sh
x
j (−t′) (5.45)

and 〈
ŝx(t′)

∂ ŝx(t′)
∂ lxj (t′)

〉
= σ2

χ l
x
j (t′) + σ2

η(µ
2
s + σ2

ξ )
∫
|y|<ymax

0<τ<tmax

dydτ lxj (t′)

+ (µ2
s + σ2

ξ )
∑
i

∫
dy
[
(hy
i ? l

x
i ) ◦hy

j

]
(t′) .

(5.46)

Equation (5.36) therefore transforms to

lxj (t)

[
σ2
χ + (µ2

s + σ2
ξ )
∫
|y|<ymax

0<τ<tmax

dydτ σ2
η

]

+ (µ2
s + σ2

ξ )
∑
i

∫
dy
[
(hy
i ? l

x
i ) ◦hy

j

]
(−t) = µ2

sh
x
j (−t) .

(5.47)

Inserting the parameter σ and τ and applying a Fourier transformation finally leads to
Eq. (5.23).

To test whether the obtained extremum is a minimum, the second variation is calculated,
which reads

∂2
〈

[sx(t′)− ŝx(t′)]2
〉

(
∂ lxj (t′)

)2 = 2
∂

∂ lxj (t′)

[〈
sx(t′)

∂ ŝx(t′)
∂ lxj (t′)

〉
−

〈
ŝx(t′)

∂ ŝx(t′)
∂ lxj (t′)

〉]

= 2

[
σ2
χ + σ2

η(µ
2
s + σ2

ξ )
∫
|y|<ymax

0<τ<tmax

dydτ + (µ2
s + σ2

ξ )
∫

dy
∫

dτ
[
hy
j (τ)

]2]
.

(5.48)

Since the appearing squares and integrals are positive, so is the second derivative and thus
the extremum is a minimum.
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5.D Gaussian blurred signal

This subsection presents an equation equivalent to (5.23) but for a Gaussian blurred
signal. As in (5.19), a realistic signal would fulfill some kind of Gaussian relation for the
expectation value

〈
sx(t)sx

′
(t′)
〉

= A exp

(
−|x− x′|2

2σ2
sx

)
exp

(
−|t− t

′|2

2σ2
st

)
. (5.49)

For this case a derivation of an equation like (5.23) is possible analogously to Appendix 5.C.
Since for the signal the Gaussian correlations, however, replace the delta functions, e.g.,
in (5.42) and (5.44), integrals over space and time cannot be evaluated directly. Instead
they can only be restricted to the region where the Gaussian is non-negligible. Denoting
these temporal and spatial limits by εt and ε, the analogue to (5.23) is derived as∫

dε dεt A exp

(
− |ε|

2

2σ2
sx

)
exp

(
−|εt|

2

2σ2
st

)
hx+ε
j (t′′ + εt)
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χ l
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ησ
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∫
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)
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+
∑
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dydεdεtA exp
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2σ2
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x
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j

]
(t′′ + εt) .

(5.50)

The effect of the additional spatio-temporal integrals as compared to (5.23) is a smoothening
of the final reconstruction. Not only is the value at a specific point in space and time (y, t′′)
taken into account but neighboring points in a nearly area surrounding it are included as
well.
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Was die Abbildung der Raumverhältnisse be-
trifft, so geschieht eine solche allerdings an
den peripherischen Nervenenden im Auge
und an der tastenden Haut in einem gewissen
Grade, aber doch nur in beschränkter Weise,
da das Auge nur perspectivische Flächenabbil-
dungen giebt, die Hand die objective Fläche
auf der ihr möglichst congruent gestalteten
Körperoberfläche abbildet. Ein directes Bild
einer nach drei Dimensionen ausgedehnten
Raumgrösse giebt weder das Auge noch die
Hand. Erst durch die Vergleichung der Bil-
der beider Augen, oder durch Bewegung des
Körpers, beziehlich der Hand, kommt die Vor-
stellung von Körpern zu Stande.

Helmholtz [85], p.445

6. Multimodal map formation:
Calibration of neuronal maps
through integrated
Multimodal Teaching (iMT)

For neuronal processing of sensory information and motor commands, spatially aligned
uni- and multimodal maps play a key role. The precise alignment of maps, however, is
not present at birth but has to be learned during the development of an animal. Here
the unifying concept of integrated Multimodal Teaching (iMT) is introduced that is based
on supervised spike-timing-dependent plasticity (sSTDP) and multimodal integration to
calibrate inputs from different sensory modalities. Analytical calculations and numerical
experiments demonstrate that a multimodal teacher can ensure proper intrinsic map
formation and alignment. New interpretations of existing experiments are presented
and the dominance of vision in guiding map alignment is demonstrated to be a natural
consequence of the exceptional precision of the visual system. Finally, new experimental
setups that can shed light on and clarify intrinsic development of an aligned multisensory
space are suggested.

6.1 Introduction

The ability to act in a dynamic and complex environment relies first and foremost on the
precise interaction of the different sensory modalities that form a congruent perception of
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Figure 6.1: Illustration of integrated Multimodal Teaching (iMT) as fundamental concept
for unimodal map formation and alignment. All unimodal modalities are integrated into
an integrated multimodal map (gray arrows). The activity of the multimodal map then
induces an inhibitory teaching signal (black arrows) that leads to an adaptation of the
unimodal maps by means of supervised spike-timing-dependent plasticity (sSTDP). The
detailed model setup employed in this chapter is explained in Sec. 6.2.2.

the external world. This precise interaction of the different modalities is not present at
birth but has to be learned during the first period of sensory experience in life [213, 226].

The process of sensory calibration is commonly seen as vision-guided; cf. King’s
review [113]. Several remarkable experiments show that destruction or disturbance of the
visual pathway leads to disorganized and abnormal sensory maps in non-visual modalities.
These findings, obtained in hamster [157], cat [224, 226], clawed frog [30], ferret [115],
barn owl [123], and snakes [70], support the idea of vision as teaching modality. However,
vision-guided map calibration is not as evident as it seems at a first glance. First, sensory
maps, although imprecise, can form without any visual input [111, 122, 213]. Experiments
on visually deprived animals and humans have shown that despite a missing visual system,
the auditory and somatosensory systems can develop normally; see [117, 177, 181] for
details. Second, behavioral [10, 46, 55, 197, 201] and physiological [158] studies have
shown that vision is not static but can be influenced by other modalities. Third, and
most importantly, Wallace and Stein [223, 225] have pointed out that non-visual sensory
maps in the superior colliculus (SC) already sharpen at times where no visual neurons are
present. Furthermore, they have observed that all modalities, including vision, develop
in a temporally coinciding way. But if vision acts as teaching modality, how can it guide
calibration without being present and how can it improve itself?

Together, the above paradoxical experimental and theoretical findings question the
current picture of vision as the only predominant guiding modality. That is, what is a
coherent alternative to vision as a teaching modality?

For the following, two findings serve as starting points. First, the formation of different
modalities begins at the time of appearance of multimodal integration [225]. Second, the
motor, i.e., a multimodal map in the superior colliculus (SC) and in its non-mammalian
homolog, the optic tectum (OT), has been suggested to provide a teaching signal for
auditory space alignment; cf. [139] and Fig. 6.2.

Therefore, an integrated Multimodal Teaching concept (iMT) (cf. Fig. 6.1) is suggested
that can unify contradictory findings as to how different modalities can be aligned with
respect to each other as well as explain the well-proven dominance of the visual system.
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Figure 6.2: Schematic drawing of the SC and its connectivity. The SC is a layered
arrangement of aligned uni- and multisensory maps that are intrinsically connected. Inputs
to the SC come from all sensory systems that provide information in a map-like structure.
The SC produces output for motor responses and partially to influence the alignment
process of associated sensory systems [139]. Altogether the SC is a beautiful example to
study unimodal map formation and alignment.

The introduction of an integrated multimodal teacher requires a careful discussion of its
intrinsic characteristics and implications on a conceptual level. Here the focus lies on map
formation within the SC/OT by means of long-term potentiation (LTP) and long-term
depression (LTD) of synapses that can be described by supervised STDP. The question
of dynamic adaptation is omitted as appearing in many animals that can move their
sensory organs (eyes, ears, whiskers, etc.) independently of their body. The mechanism
underlying this adaptation is not known, but retinotopic coordinate systems seem to play
a key role [61]. Attempts to model this issue can be reviewed in [60, 72, 188, 189]. Within
the SC/OT, however, multisensory and predominantly monosensory layers are mutually
aligned to gain a unified multisensory representation of sensory space [18, 112, 204]. The
combined sensory information can then be used to generate directional responses in the
SC/OT motor map [130, 131, 138, 203, 219]. In other words, at this stage all sensory maps
share a common representation system. Similar to other theoretical models [56, 234], the
suggested iMT concept concentrates on the question of map calibration appearing in the
context of the very common sensory space.

Besides the derivation of the general concept for iMT, applications of the model to
concrete examples are presented. In particular, the experiments of Knudsen et al. [123]
are reanalyzed in detail and contrasted with findings of Wallace and Stein [223, 225] in
the light of the iMT concept. Finally, the concluding section gives experimentally testable
predictions of the model.
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6.2 The integrated multimodal teacher

The iMT concept structurally consists of a stack of unimodal maps, each connected with
the multimodal map; cf. Fig. 6.1. In a first step, different unisensory modalities are merged
into the multimodal map. Such a multimodal integration of unimodal maps was found
within the experimentally well described SC/OT [204, 225]. In the next step, the integrated
multimodal map projects back to the unimodal maps. Thus, the multimodal map induces
a teaching signal that guides the calibration (formation and alignment) process of the
different unimodal maps. The teacher input therefore does not originate from a single
modality, for example, vision, but from a common integrated multimodal map.

In general, map calibration can be divided into two different classes. The first describes
the situation in which sensory maps have to be learned from scratch. Connections between
sensory systems (input maps) and representing maps contain hardly any information and
are randomly distributed or coarsely pre-wired; see Sec. 1.4. The connections have to evolve
during the calibration process by means of LTP and LTD of the synapses (in mathematical
terms described by STDP). This case is denoted as map formation.

The second class requires a collection of already pre-wired maps (see Sec. 1.4 and [213])
and corresponds to an alignment of maps, for instance, during growth or in shifting
experiments [122, 123]. The stimulus position is displaced in comparison to the position of
the teacher input. By means of activity-based synaptic plasticity, the synaptic pattern
of the map is modified so as to compensate for the misalignment between the map and
teacher input.

A careful analysis of the consequences of applying an integrated Multimodal Teaching
(iMT) signal requires an understanding of map formation and alignment from a procedural
point of view. In general, the iMT process (as shown in Fig. 6.3) constitutes a closed
feedback loop that consists of three repeating steps. First, during multisensory integration,
different sensory modalities are optimally merged into an integrated multimodal map.
Second, during multimodal teaching, the integrated multimodal map induces an inhibitory
teaching signal that guides the calibration process, i.e., formation and alignment, of the
different sensory maps. Third, during unimodal map adaption, the adapting and adapted
unimodal maps again modify the integrated multimodal teacher.

The three phases are inherently connected by means of three important questions: How
do unisensory maps determine iMT? How do the characteristics of iMT influence map
adaptation? And how does iMT calibrate different unimodal maps? Taken together, these
three questions provide a structure for the analysis of the iMT concept and guide through
the following sections.

6.2.1 How do unisensory maps determine iMT?

To start the analysis, the essential terms have to be clarified. A sensory modality is
referred to as its neuronal representation on a spatial map [15, 140, 213, 217]. On such a
map one can interpret the firing rate as the likelihood to find a stimulus at the position
that the neurons encode. In this manner, sensory maps represent position estimators or
population codes [41, 98, 174, 195, 217]. Reflecting the statistics of the firing profile, the
mean µ corresponds to the estimated position and the deviation σ describes the estimator’s
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Figure 6.3: Main procedural aspects of iMT. The multimodal map as combination of
different unimodal maps shows certain characteristics. What are these characteristics and
how do they influence map calibration by means of supervised spike-timing-dependent
plasticity (sSTDP) where the multimodal signal serves as teaching signal? To close the
feedback loop, the question has to be answered how different unimodal maps adapt to a
common teaching signal. Taken together, these three questions provide a structure for the
analysis of the iMT as presented in this chapter.

accuracy. The integration of different sensory maps is therefore equivalent to a combination
of position estimators [1, 45, 74, 84, 93, 129, 158].

The exact neuronal mechanism as to how different modalities are integrated into a mul-
timodal map [41, 42] is still largely an open question. The family of Bayesian combination
schemes nevertheless mathematically describes the result of optimal multimodal integration.
For the sake of simplicity, the following analysis is reduced to the maximum-likelihood
combination of two modalities, namely, vision V and audition A. The combination of three
modalities is described in Appendix 6.B. The visual and auditory maps are characterized by
their means, i.e., the position estimates, µV (vision) and µA (audition). Furthermore, the
accuracy of the position estimates is given by σV (vision) and σA (audition) as illustrated
by Fig. 6.4.

The multimodal position estimate µM as a maximum-likelihood combination from
temporally coinciding visual and auditory inputs is given by [101, 108]

µM =
σ2
V

σ2
A + σ2

V

µA +
σ2
A

σ2
A + σ2

V

µV . (6.1)

As a consequence of optimal integration, the multimodal estimator features the smallest
possible standard deviation σM as given by

σM = σAσV /
√
σ2
A + σ2

V . (6.2)

For a detailed derivation of the two above equations, please see Appendix 6.A.
The distance between the multimodal position µM and the unimodal positions µA/V

by means of (6.1) are computed to

|µM − µA/V | = σ2
A/V |µA − µV | /

(
σ2
A + σ2

V

)
. (6.3)
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Figure 6.4: Multimodal integration of two unisensory maps. The firing profiles of neuronal
maps for audition, vision, and the multimodality can be interpreted as position estimators
of the stimulus and are therefore assumed to be Gaussian functions with mean µA/V/M and
standard deviation σA/V/M . The multimodal map is integrated by means of a maximum-
likelihood method; cf. Eqs. (6.1) and (6.2). (A) Accordingly, the multimodal map shows
the smallest standard deviation σM < σV < σA and is thus the most precise of all maps;
cf. (6.2). (B) If the unisensory maps are shifted µV 6= µA, the multimodal map µM (red
profile) is located more closely to the more precise modality (blue profile); see (6.3).

That is, the multimodal and therefore the teaching signal is located more closely to the
position of the more precise modality, e.g., vision in comparison to audition, as shown here
and in Table 6.1.

In the next step the integrated multimodal map provides the guiding signal for unimodal
map formation and alignment. The equations of optimal combination, however, do
not describe how unimodal maps change during the learning process. Map formation
and alignment are effects of synaptic plasticity (mathematically described by STDP),
as discussed in Sec. 6.2.2. This section focuses on fundamental characteristics of the
multimodal map that follow directly from optimal multimodal integration. The unimodal
maps that form the multimodal map are presumed to be variable in time. More precisely,
on the one hand, the position of the unimodal maps µA/V (t) can and will vary during the
calibration process. On the other hand, the maps can improve in precision such that σA/V (t)
decreases. These two effects lead to a variable multimodal map with time-dependent µM (t)
and σM (t) [see Eqs. (6.1) and (6.2)], in particular, during the calibration process of the
unimodal maps.
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Figure 6.5 illustrates two varying unimodal maps together with their combined multi-
modal map; see Eqs. (6.1) to (6.3). One of the unimodal maps changes in precision (A) or
position (B) while the other remains constant. First, a sensory map that becomes more
precise (Fig. 6.5 A, blue profile) “attracts” the position of the multimodal map, i.e., the
learning signal. Sensory maps that increase in accuracy get more positionally stable during
sSTDP learning processes. Second, a shifting sensory map (Fig. 6.5 B, blue profile) induces
a shift of the multisensory map toward the stationary sensory map (yellow profile). The
upshot in the context of map alignment is that a more static sensory map attracts the
teaching signal and will therefore hardly adapt at all.

Figure 6.5: Characteristics of an integrated multimodal map. During the iMT learning
process the different modalities align with the teaching signal (µA/V changes) and their
neuronal representations become more precise (σA/V decreases). Given that the multimodal
map is a combination of the unimodal sensory maps [cf. Eqs. (6.1) to (6.3)], its precision
and position are determined by the unisensory maps and consequently change as well. Here
one modality (blue profile) exemplarily varies in precision (A) and position (B) whereas
the other modality (yellow profile) remains unchanged. The resulting multimodal teacher
is depicted as red profile. (A) The modality (blue profile) that gets more precise attracts
[see Eq. (6.3)] and sharpens [see Eq. (6.2)] the multimodal teacher (red profile). (B) The
modality (blue profile) that aligns with the teacher (red profile) induces the multimodal
map to shift as well. The distance between the multimodal teacher and the stationary map
(yellow profile) therefore decreases as well; cf. Eq. (6.3).
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Figure 6.6: Model architecture. A multimodal object such as a water drop hitting the skin
produces sensory input for audition, somatosensory modality, and vision. The input is

modeled by means of a Gaussian f
A/S/V
i (y) so as to stimulate neuron i of the corresponding

input layer. Neurons of the input layer project through all-to-all synaptic connections
Jj

A/S/V (t) to neuron j of the map layer. These synaptic connections are learned by means

of sSTDP to align the output of the map layer to the inhibitory teacher input.

In summary, the analysis of the optimally integrated multimodal map has unraveled
three essential aspects. First, the multimodal map is always more precise than any unimodal
map; cf. Eq. (6.2). Second, the optimal multisensory teaching signal is located more
closely to the position of the more precise modality; see Eq. (6.3). Third, on the basis of
an adaption of the monosensory maps through sSTDP learning rules, Eqs. (6.1) and (6.2)
describe how position µM (t) and precision σM (t) of the multimodal teacher vary for given
µA/V (t) and σA/V (t) of the input maps.

6.2.2 How do iMT characteristics influence map adaptation?

In the previous section, an integrated multimodal teacher has a specific variance and
position that both depend on the characteristics of the input maps; cf. (6.1) and (6.2). In
addition, these characteristics and consequently the teacher vary during map calibration.
This section therefore discusses how teachers with different accuracies and teachers that
are shifting during learning affect map alignment.

The results as presented in the following are based on numerical simulations of an
inhibition-mediated STDP map alignment process. The basic structure of the model
consists of the three modalities audition A, the somatosensory modality S, and vision
V that adapt to the multimodal inhibitory teacher modality T via STDP learning rules;
see Fig. 6.6. The fundamental principles of inhibition-mediated STDP map alignment
have been described elaborately by Friedel and van Hemmen [56]. All sensory maps are
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one-dimensional maps of N Poisson neurons [109]. Each modality consists of an input map
with a Gaussian firing profile

f
A/S/V
i (y) := SA/S/V exp

[
−(y − xi)2/(2σ2

A/S/V )
]

(6.4)

for 1 ≤ i ≤ N , with stimulus position y, the i-th map neuron’s preferred position xi,
standard deviation σA/S/V , and SA/S/V being the maximal amplitude of the activity. For
two different maps, e.g., audition A and vision V , the accuracies differ and σA 6= σV . The
input layer projects via all-to-all synapses JjA/S/V (t) onto neuron j of the map layer. In
addition, each neuron of the map layer receives inhibitory input from one corresponding
neuron of the teacher modality T . The synapses connecting teacher and map are modeled
as static one-to-one synaptic connections.

The simulations incorporate a teacher that shows the essential characteristics derived
in Sec. 6.2.1. A neuron p of the teacher map therefore responds to a stimulus at position y
in form of an “inverted” Gaussian function

fTp (y) := ST
{

1− exp
[
−(y − xTp )2/(2σ2

T )
]}

, (6.5)

with xp being the preferred position of neuron p, ST being the maximal firing activity of
the teacher neurons, and σT being the width of the teacher influence. The process where a
teacher suppresses map activity at locations different from the real object’s position y, is
called selective disinhibition [56, 94].

For numerical experiments on map alignment a shift ∆ is introduced in the sensory
position of the modality, e.g., through prisms in the Knudsen [122, 123] experiment on
the barn owl. As explained in Sec. 6.3.1, a shift of vision induces at the same time a
displacement of the multimodal teacher. Consequently, a shift of all sensory maps with
respect to the position of the combined multimodal teacher occurs, that is, against intuition,
lenses shifting vision hardly displace vision with respect to the teacher but displace all other
sensory maps with respect to the multimodal teacher. In mathematical terms, y + ∆A/S/V

replaces y in Eq. (6.5) where the shift depends on the modality according to Eq. (6.3).
Therefore, the biological experiments and the numerical experiments agree.

The changes within the synaptic connectivity pattern during the alignment process
can be described and explained by STDP [56, 109]. The map estimation error E as a
least-square error quantifies changes within the synaptic pattern. It measures how well a
map can reproduce spatial information of M systematically varied incoming signals,

E =

√√√√ M∑
i=1

(
xi − xTi

)2
/M (6.6)

where xi denotes the mean position of the firing profile of the map and xTi represents the
theoretical position. The smaller the value for the error E, the better the map reproduces
the real (theoretical) position of an object. The parameters used in the numerical experi-
ments are given in the Table 6.2.

Multimodal teacher with varying variance
One of the essential characteristics of the multimodal teacher is its ability to improve
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in precision during the alignment process as a consequence of dynamic unimodal maps;
see (6.2). After birth, most animals first have to learn how to interpret the sensory
information they receive. All available maps as given by genetics are very inaccurate [140,
213]. Furthermore, Wallace and Stein [225] observed that multisensory neurons in cats
younger than 28 days reliably respond to inputs from more than a single modality but
do not show multimodal enhancement or depression. These observations, however, are
measurements on the level of single cells. Subsequent conclusions in the context of neuronal
maps and estimators are elusive. To cope for the worst situation, it is necessary to show
that learning still works or at least starts with a highly inaccurate teacher. The less
accurate the unimodal maps, the larger the variance of the multimodal teacher (6.2),
that is, the estimated position and thus the teaching signal is spatially less accurate.
Consequently, the teacher accuracy is modeled by an Gaussian distributed random shift
∆T added to the correct teacher position. As a result of the numerical experiments with
different teacher shifts ∆T , the unimodal maps adapt more slowly and with a larger map
estimation error to a less accurate teacher signal; cf. Fig. 6.7. Within a given time window,
an inaccurate teacher therefore slows down but does not prevent the map alignment process.
In conclusion, the iMT concept does not depend crucially on the concrete realization of
the multimodal integration.
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Figure 6.7: Influence of teacher precision ∆T on map alignment. The plot presents the
map estimation error E [see Eq. (6.6)] for map alignment with a multimodal teacher of
different precisions. The map estimation error drops faster and to a lower level with a more
precise teacher (lower ∆T ). The precision of the teacher therefore influences the temporal
development of map alignment but does not prevent it.

Multimodal teacher with dynamically changing position
Similar to Fig. 6.5, the position of the integrated multimodal teacher continuously shifts in
space during the alignment process. As a consequence, the influence of a shifting teacher,
more concretely, its shifting velocity, on map alignment has to be analyzed. Figure 6.8
shows the synaptic pattern of sensory maps for the time step t = 2000 s. Synapses are
modified by means of teaching signals shifting with different velocities. The dynamic of the
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teacher essentially determines to which degree a map adapts to the teacher. The slower the
teacher position shifts, the better a map can adapt to the teacher. Moreover, the critical
velocity up to which map adaption works properly depends on the precision of the sensory
modality that is reflected in the precision of the input map; cf. Eq. (6.4). A less precise
modality can still adapt to a teacher with a given velocity, whereas a precise map cannot
follow anymore; cf. Fig. 6.8, change from top to bottom.

In conclusion, a low teacher accuracy does not prevent alignment of different maps

Figure 6.8: Influence of dynamically changing teacher position on map alignment. Simu-
lations performed with input standard deviation σ = 0.03 (top line), σ = 0.05 (bottom),
and teacher standard deviation σT = 0.02. For details regarding the parameters, see
Appendix 6.C. The teacher signal, that is, the inverse Gaussian profile, is shifted in space.
The red lines indicate the mean position of the teacher. In the numerical experiments
the teacher position starts shifting from the dashed red line (∆ = 0.1). The straight red
line indicates how far the teacher has shifted within the simulated time of 2000 s. By
stepping to the right, the teacher velocity doubles. The synaptic pattern of the sensory
maps are initially located around the diagonal and are modified by means of supervised
spike-timing-dependent plasticity (sSTDP). The box at the top left shows the synaptic
pattern at time 2000 s caused by a slowly shifting teacher. With a certain delay, the
synaptic pattern of the map has adapted to the teacher map. With increasing teacher
velocity, that is, by stepping to the right, the map adapts much less. For the synaptic
pattern in the top right box the teacher velocity has reached a critical level where the map
does not adapt at all. The velocity of the teacher therefore essentially determines to which
degree a map adapts to the teacher. This effect can be compensated by decreasing map
precision as realized from the box at top middle to the box at bottom middle. Here the
synaptic pattern of the less accurate map still adapts very well to the teacher map. The
critical velocity of non-adaptation is therefore higher for a low-precision map than for a
high-precision map.

by means of sSTDP but influences the temporal development and, to some degree, the
accuracy of the final state. The shifting velocity of the teacher position determines to
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which degree a map can adapt to the teacher. A less accurate map is more flexible than
an accurate map because it can adapt to a faster dynamically changing teacher.

6.2.3 How does iMT calibrate different unimodal maps?

The third and last step of the iMT analysis (see Fig. 6.3) addresses the question of how the
essential characteristics of the different modalities, in particular, the different accuracies of
the sensory systems, influence map formation and alignment. Results of the corresponding
simulations are shown in Fig. 6.9. Here map formation and alignment by means of the
multimodal teacher map are possible for inputs of different accuracies. However, the
quality and temporal progress of map formation and alignment depend on the accuracy
of the sensory system. Within the alignment process, a high-precision map reaches a
modified synaptic pattern that is again more precise than that of a low-precision map.
More importantly, a high-precision map adapts more slowly to the teacher input than a
map with low precision. In conclusion, the higher the precision of a sensory map, the more
static the map.

6.3 Applications of the iMT concept

After detailed analysis of multimodal teaching, the experiments presented in the intro-
duction are reviewed in the light of the iMT concept. In doing so, the aforementioned
experiments that can be explained by a vision-guided concept of map calibration and those
that cannot are treated separately. The iMT concept offers explanations for both.

In the following a group of experiments is analyzed that motivated the idea of vision as
the dominant guiding modality: the prism glass experiments of Knudsen and coworkers [94,
122]. These experiments are explained while denying a vision-guided map alignment. A
re-interpretation of experimental results from Stein et al. [223, 225] further illustrates how
the iMT concept could work.

6.3.1 Experiments pro-vision-guided map formation

The most prominent experiments supporting vision-guided map formation are the shifting
experiments by Knudsen et al. [94, 122]. Here prisms shift the visual system of owls by a
certain angle. After a learning period the neuronal projections from the auditory map are
rearranged to compensate for the misalignment between visual and auditory maps. The
visual map, in contrast, remains constant during the whole alignment process.

Can the iMT concept reproduce this dominance of vision within the learning process?
To answer this question the alignment of maps with different variances and distances [cf.
Eq. (6.3)] to the teacher map has been simulated. The visual system usually has a much
higher spatial resolution (about a few arc minutes) than all other sensory systems, e.g.,
the auditory system (about a few degrees); see Table 6.1 for details. The iMT concept
now serves to reconsider synaptic plasticity during a prism shift experiment.

• Initial state (Fig. 6.10, top)
Auditory and visual maps are shifted with respect to each other because of an artificial
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Figure 6.9: Influence of varying input precision σ on map formation (A) and alignment (B).
Both plots show the map estimation error E as given by Eq. (6.6) between the unimodal
maps and the teacher. The input maps differ in precision (input standard deviation σ) as
indicated. The graphs show the map estimation error E for map formation (A) and for
map alignment (B). The boxed region in the bottom plot is enlarged to clearly visualize
which map adapts faster. Both plots show that maps with a high precision adapt more
slowly to the teacher input than low-precision maps but regain higher precision after the
map calibration.

shift of the visual system that is introduced by prisms. Given that the multimodal
teacher map is a combination of the unimodal maps, its activity mean has shifted as
well. An adaptation process of all unimodal maps is induced. Against normal intuition,
shifting vision does not result in a shift between vision and the multimodal teaching
signal; it instead results in a shift of all sensory maps compared to the multimodal
teacher map. As a consequence of the greater precision of the visual system, the
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Animal σA σV

∣∣∣µA−µM
µV −µA

∣∣∣ ∣∣∣µV −µM
µV −µA

∣∣∣
Human 1◦ 0.02◦ 99.96 % 0.04 %

Barn owl 2◦ 0.3◦ 97.8 % 2.2 %
Cat 8◦ 0.2◦ 99.93 % 0.06 %

Table 6.1: Visual and auditory localization capabilities of human [39, 153], barn owl [78, 121],
and cat [8, 26]. The visual resolutions are originally given in cycles per degree, i.e., how
many lines can be distinguished in one degree of the visual field. The resolutions are
assumed to be the inverse of these values. By means of the variances the two unimodal
maps are combined to a multimodal teacher and the distance of each map to the multimodal
map [cf. Eq. (6.3)] is calculated and normalized by the distance between the two modalities.
The visual map as more precise map is nearer to the multimodal map than the less accurate
auditory map.

multimodal teacher map is mainly determined by the characteristics of the visual map,
that is σM ≈ σV and µM ≈ µV ; cf. Eqs. (6.1) and (6.2). Equation (6.3) illustrates
that the shift between vision as the most precise sensory system and the multimodal
teacher map is smaller than for any other system.

• Intermediate state (Fig. 6.10, middle)
Synaptic connections to the auditory map start changing to compensate for the shift
between audition and the multimodal teacher. Based on the previous studies as
presented in Secs. 6.2.2 and 6.2.3 and because of its higher precision, the visual
map adapts much more slowly than the auditory map. Due to the adaptation of
the auditory map the teacher, as a combination of the two modalities, nevertheless
shifts toward the visual map. The auditory map adapts again to the teacher input and
hence continues to shift toward the visual map, which stays almost static; see Fig. 6.5 B.

• Final state (Fig. 6.10, bottom)
The two maps have been realigned. The position of the visual map has hardly changed,
whereas the auditory map has shifted almost the whole distance induced by the prisms
at the beginning of the experiment.

In summary, the iMT concept can reproduce the different steps of the shifting experiments
of Knudsen and others [94, 122]. Here the observed dominance of the visual system only
reflects the more general concept of a dominance of accuracy following from the iMT
concept.
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Figure 6.10: Numerical realignment experiments. The plot illustrates the shifting process
for the auditory map A with variance σA = 0.07 and the visual map V with σV = 0.03.
The distances between teacher and unimodal map positions are calculated by Eq. (6.3) for
the corresponding variances. The array plots show the synaptic connectivity pattern for
vision (left column) and audition (right column). The synaptic strengths hereby range
between 0 and 1 (see color code in the bottom left corner). The activity profiles of the
auditory map A, the visual map V , and the teacher map are shown in the middle column;
for details of the activity profiles see Sec. 6.2.2. The color code is specified in the bottom
right corner. The plot illustrates how synaptic plasticity depends on the accuracy of a
modality. In concrete terms, the more precise visual map V shifts more slowly and far
less than the less accurate auditory map A. In summary, the iMT concept can therefore
reproduce experiments pro-vision-guided map formation.
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6.3.2 Experiments contra-vision-guided map formation

The introduction has reviewed some experiments that question a vision-guided learning
process. The analysis of the iMT concept has shown that vision plays a dominant role
because of its high precision but that vision is not static. It can be modified by a dynamically
changing multimodal teacher map and therefore by any unimodal map [46, 55, 158, 197,
201].

Furthermore, the iMT concept should be able to reproduce formation of unimodal
maps in visually deprived animals. Studies [117, 177, 181] show that blind humans, cats,
and ferrets can localize sound as precisely as individuals with normal vision. Measurements
of Wallace and Stein [223, 225] support the critical view of vision-dominated learning by
showing that sensory maps already sharpen at a time when no visual neurons are present.
Learning is possible without vision but is dominated by vision in cases in which it is
available.

In the context of the iMT concept a multimodal teacher map can exist without a visual
map but it has a much lower precision. Formation of the other maps is therefore still
possible within certain limits; cf. Fig. 6.7 and [111, 122, 213]. Furthermore, in the intrinsic
learning process all maps develop and improve in parallel, as reported in experiments such
as [223, 225]. Here the reproduction of unimodal map formation in a visually deprived
animal allows for studying whether somatosensory and auditory maps can develop without
vision, i.e., with a very imprecise teacher.

• Initial state (Fig. 6.11, top)
Somatosensory and auditory maps are only coarsely pre-wired, and the visual map
does not exist at all. The multimodal map as a combination of somatosensory and
auditory maps is very imprecise; cf. Eq. (6.2).

• Intermediate state (Fig. 6.11, middle)
Even with a very imprecise teacher map the auditory and somatosensory maps start to
improve so that their variances decrease. The earlier calculations (see Fig. 6.7) illustrate
that the learning process with an imprecise teacher starts very slowly, corresponding
to the topmost curve in the plot. Nevertheless, the unimodal maps improve slightly,
as does the multimodal map, that is a combination of the two sensory maps, as a
consequence. With the improving teacher (see Fig. 6.7), the learning process accelerates.

• Final state (Fig. 6.11, bottom)
The two maps are aligned and have reached their best-possible resolutions.

Together, an interpretation of both experiments pro-vision-guided map formation and
contra-vision-guided map formation is possible within the iMT concept. As a consequence,
iMT is a successful concept for calibrating different unimodal maps that is in accordance
with known experimental results of map formation and alignment.
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Figure 6.11: Numerical map formation experiments with an improving teacher. Activity
profiles of the auditory map A (σA = 0.03), the somatosensory map S (σS = 0.045), and
the teacher map are shown in the middle column. Colors of the profiles are specified in
the bottom right corner. The blurred teacher projects onto the maps with a precision that
starts at ∆T = 0.1 and then reduces linearly in time to ∆T = 0.02 for t = 7500 s. The
black bars below the firing-activity plots (middle column) denote the regions within the
teacher is projecting for the corresponding time step. The array plots show the synaptic
connection pattern JA for audition (left column) and JS for the somatosensory modality
(right column). The synaptic strengths range between 0 and 1; see color code in the bottom
left corner. The initial synaptic pattern is only coarsely pre-wired. Despite the initially
imprecise teacher, both maps develop properly. The iMT concept can therefore reproduce
experiments contra-vision-guided map formation.
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6.4 Discussion

In summary, the present chapter has introduced the concept of integrated Multimodal
Teaching. The application of iMT to map formation and alignment leads to four fundamen-
tally new ideas. First, the integrated teacher contains all available information of the maps
involved. Second, the teacher is intrinsic to the system because it is generated only from
information available within the system of maps. Third, as a consequence, the teacher
itself is dynamic with the potency to shift in position and to improve in precision during
the learning process. Forth, the more precise a sensory system is, the more slowly it adapts
to teaching signals. This natural consequence, which is denoted as dominance of accuracy,
explains observations where a dominance of vision within the alignment process may be
wrongly interpreted as purely visually driven.

Comparison to the state-of-the-art
Here simulations of multimodal teacher characteristics for map calibration on the level
of spiking neurons and synaptic plasticity, namely, sSTDP, are presented. The teacher
signal influences the unimodal maps by selective disinhibition as proposed by an increasing
number of experimental findings, for instance, in the ICC-ICX-OT pathway [5]. Taken to-
gether, the iMT concept therefore connects two fundamental neurophysiological phenomena:
inhibition-mediated map calibration and multimodal integration.

Previous theoretical studies have focused on one or parts of these aspects. Gelfand and
Mysore [64, 161] proposed models for Hebbian map calibration based on the assumption
that vision serves as teacher signal to modify, for instance, synapses of the auditory
projection pathway. As already pointed out in the introduction, vision as teacher signal
nevertheless has to be questioned. Stein and Wallace [223, 225] therefore suggested a
connection between multimodality and map formation in cats. The latest experimental
studies on barn owls from Bergan and Knudsen [5] also show that cross-modal effects exist in
the ICX and may influence experience-dependent calibration of converging representations.

Including these experimental findings, Witten et al. [234] developed a theoretical model
for bimodal map alignment. In their model, the synapses of both the auditory and the
visual map are adapted due to Hebbian learning. By these means, the model can reproduce
the dominance of vision such that the channel with the weaker or broader neuronal
representation always exhibits most or all of the plasticity. However, the theoretical model
of Witten et al. is exclusively based on excitatory inputs and rate codes. These conditions
are both quite implausible in the context of map alignment in ICX and OT. In concrete
terms, experimental data from Bergan and Knudsen [5] suggest that teaching signals to
the ICX are gated by inhibition. In addition, Kempter et al. [109] demonstrated that the
assumptions underlying rate-based Hebbian learning are not necessarily valid, in particular,
not in the auditory system of the barn owl.

Including these experimental results, Friedel et al. [56] developed a theoretical model
of map alignment by means of selective disinhibition on the level of spiking neurons. The
model shows that an inhibitory teacher is essential to realign already calibrated unimodal
maps. However, the model only contains plasticity within the auditory system, that is, the
visual system is static and provides the guiding signal for auditory map alignment.

The present iMT model combines the fundamental aspects of the models from Witten
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et al. [234] and Friedel et al. [56]: spike-timing dependent learning based on both selective
disinhibition and full plasticity within all contributing modalities, that is, all available
information is integrated into a multimodal map at a first step. In a second step, the
multimodal map provides a teaching signal for map calibration to all modalities. Therefore,
the iMT model can explain the dominant role of vision in map alignment, plasticity in
non-visual modalities without vision, plasticity within the visual modality guided by other
modalities, plasticity of non-visual modalities guided by other non-visual modalities, and
any combination of these settings.

Testable predictions of the iMT concept
Given that the iMT concept can reproduce both experiments supporting and questioning
vision-dominated learning, suggestions regarding how the iMT concept can be experimen-
tally verified are needed. To distinguish vision-dominated teaching from iMT, experimental
setups have to bypass the dominance of vision. To this end, they can either study artificial
situations in which the precision of sensory maps is equal, investigate animals with a
poorly developed visual system, or observe map formation while multimodal maps are
experimentally deactivated.

To first equalize the precision of sensory maps, one could, for instance, perform shifting
experiments with prisms that displace and blur the visual input at the same time. Second,
studying map formation and alignment for animals with a more precise sensory system than
vision could also identify the teaching modality. A third possibility would be to deactivate
the multimodal integration during the learning process. Given iMT, deactivation of the mul-
timodal map(s) corresponds to a deactivation of the teaching modality. Map formation and
alignment should fail in this case. In contrast, for a vision-dominated teaching scenario (e.g.,
vision-guided map alignment), no negative effect should be observed on the learning process.

6.A Optimal combination of two modalities

The firing profile of a neuronal map can be interpreted as the likelihood to find an object
at a specific position. In other words, neuronal maps encode position estimators by means
of their firing profiles. A modality, for instance, audition A or vision V , can be represented
through Gaussian firing profiles

fA/V (x) := SA/V exp
[
−(x− µA/V )2/(2σ2

A/V )
]

(6.7)

with map position x and estimated position, i.e., mean µA/V , standard deviation σA/V ,
and maximal amplitude SA/V of the activity profiles. For the sake of simplicity, only
one-dimensional maps are considered here.

To combine two such estimators to a common estimate µM a weighted sum of the mean
values µV and µA is calculated as

µM = gV µV + gAµA (6.8)
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with the weights gV and gA fulfilling gV + gA = 1. Replacing gA by gV − 1 the variance
σ2
M of the combined estimator is then given as

σ2
M = g2

V σ
2
V + (1− gV )2σ2

A . (6.9)

In the next step the weight gV has to minimize the variance σ2
M , that is, ∂σM/∂gV = 0.

Solving the latter equation leads to gV = 1− gA = σ2
A/(σ

2
A + σ2

V ) and therefore to

σ2
M = [σ2

A/(σ
2
A + σ2

V )]2σ2
V + [σ2

V /(σ
2
A + σ2

V )]2σ2
A

= σ2
V σ

2
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2
A + σ2

V ) (6.10)

and

µM = σ2
A/(σ

2
A + σ2

V ) µV + σ2
V /(σ

2
A + σ2

V ) µA . (6.11)

For mathematical fundamentals of the derivation see [222].
In the context of neuronal maps, a multiplication of the activity profiles of two maps

realizes the above optimal combination scheme of the corresponding neuronal estimators
µA/V . The multimodal activity profile is then given by

fM (x) =
{
SA exp

[
−(x− µA)2/(2σ2

A)
]} {

SV exp
[
−(x− µV )2/(2σ2

V )
]}

= SASV exp
[
−1/2 (µA − µV )2 /

(
σ2
V + σ2

A

)]︸ ︷︷ ︸
scaling factor

(6.12)

exp

−1/2
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A

)
/
(
σ2
Aσ

2
V

)]︸ ︷︷ ︸
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M

x− (σ2
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)
/
(
σ2
V + σ2

A

)︸ ︷︷ ︸
µM


2
 .

Standard deviation σM and mean µM of the multiplied multimodal profile are identical to
the optimal values derived above; cf. (6.10) and (6.11).

6.B Optimal combination of three modalities

The optimal combination scheme for two modalities as derived in Appendix 6.A is now
extended to three modalities. The multimodal estimate µM of three modalities, say,
audition A, vision V , and the somatosensory modality S represented by their mean values
µA, µV , and µS and standard deviation σA, σV , and σS is given by

µM =
σ2
V σ

2
S

σ2
Aσ

2
V + σ2

Aσ
2
S + σ2

V σ
2
S

µA

+
σ2
Aσ

2
S

σ2
Aσ

2
V + σ2

Aσ
2
S + σ2

V σ
2
S

µV

+
σ2
Aσ

2
V

σ2
Aσ

2
V + σ2

Aσ
2
S + σ2

V σ
2
S

µS , (6.13)
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a convex combination of µA, µV , and µS . The combined maximum-likelihood estimate
µM features the smallest possible standard deviation σM given by

σM =
σAσV σS√

σ2
Aσ

2
V + σ2

Aσ
2
S + σ2

V σ
2
S

. (6.14)

The distance between the multimodal estimate (6.13) and, for instance, the auditory
estimate A is given by

|µM − µA| = σ2
A

σ2
S |µA − µV |+ σ2

V |µA − µS |√
σ2
Aσ

2
V + σ2

Aσ
2
S + σ2

V σ
2
S

. (6.15)

For distances between the multimodal estimate and V and S one can interchange A with
V or S.

6.C Model Parameters

Table 6.2 summarizes the model parameters as used in the numerical experiments; see
Sec. 6.2.2.
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6. Multimodal map formation

parameter value

number of map neurons N = 100
learning synapses

minimal strength Jmin = 0.0

maximal strength Jmax = 0.25

maximal initial strength (J0)max = 0.25

strength of teacher synapses JT = −1
postsynaptic response time

to input spike τ I = 10 ms
to teacher spike τT = 25 ms

input amplitude SA/V/S = 50 s−1

teacher amplitude AT = 100 s−1

teacher width σT = 0.025

shift maps – teacher ∆ = 0.2

learning trial length T = 0.5 s
simulation time step ∆t = 0.5 ms
learning parameter η = 3 · 10−6

weight change
upon input spike win = 1.5
upon output spike wout = −10.0

Table 6.2: Model parameters as used in the numerical experiments. Shape and parameters
of the learning window are taken from [56] with differing or additional parameters as
indicated above.
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7. Frequently used abbreviations and
functions

abbreviation / description
function

ICE internally coupled ears

ITD interaural time difference
IAD interaural amplitude difference
iTD internal time difference (at the level of the tympanic vibrations)
iAD internal time difference (at the level of the tympanic vibrations)
CF characteristic frequency

(s)STDP (supervised) spike-timing-dependent plasticity
LTP long-term potentiation
LTD long-term depression

NA nucleus angularis
NM nucleus magnocellularis
SON superior olivary nucleus
NL nucleus laminaris
LLD dorsal lateral lemniscal nucleus
EI neuron neuron with excitatory and inhibitory input
SC superior colliculus
OT optic tectum

iMT integrated multimodal teaching
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