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Preface

The auditory system has a remarkable characteristic that renders it especially ap-
pealing from a theoretician’s point of view. Making use of only two one-dimensional
quantities –the deflections of the two eardrums– it unfolds a complete three-dimen-
sional world: our auditory scene. But how can such an auditory scene in its full
dynamic be reconstructed based on what seems so little information? This question
has plagued many scientists throughout time and space. Already in the early 1840s
G. S. Ohm –the theoretician– and A. Seebeck –the experimentalist– had vivid dis-
cussions on the underlying strategy of the auditory system [139, 165]. One could
easily believe that now, more than 150 years later, this debate is merely of historical
interest and the topic is finally settled. It turns out, however, that even today’s
evidence cannot give a definite answer to the questions that kept Ohm and Seebeck
involved back in the 19th century.

To cut a long story short: the auditory system is a truly challenging topic of re-
search. This doctoral thesis approaches two important problems in auditory scene
reconstruction. Namely, it addresses the question of how the auditory system can
group different frequency components from one source together so as to identify
a specific signal within a mixture of sounds, and how it can efficiently cope with
acoustic echoes that degrade the signal. The solutions provided here are neuronally
realizable and thus extend our understanding of auditory processing in animal and
man.

The thesis consists of five chapters:

In the first chapter the concept of an auditory object is introduced. In a natural
environment the auditory system picks up a mixture of sound which is separated
into packages of frequency components that originate from the same source. Such a
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package is called an auditory object. There are many cues the auditory system uses
for grouping the individual frequency components into an auditory object, the most
important ones being onset times and temporal modulation. On a neuronal level,
both are reflected in coherent activity. They are, however, degraded by reflections
which permanently occur in a natural environment. These reflections –echoes– thus
need to be coped with in auditory processing, or rather suppressed for the reliable
extraction of information from auditory scenes.

In the second chapter an optimal model for echo suppression is presented based
on the mathematical concept of error minimization. It suppresses echoes and ex-
tracts original signals in various echo scenarios, even in the absence of exact informa-
tion on the specific echo form. The ensuing analysis allows to link echo suppression
to auditory object formation. Moreover, the model can be implemented in a neu-
ronal network that reproduces and extends the analytical results. The neuronal
realization connects smoothly to the two common mechanisms of echo suppression,
a fast monaural and a slower binaural one. Finally, the present model is the first to
treat echo suppression as a sensory process that realizes a fundamental principle of
neuronal information processing: stochastic optimality.

In the third chapter the concept used for echo suppression in the second chap-
ter is extended to a framework for optimal stimulus reconstruction in space-time.
Again, this framework can be implemented neuronally by means of a feedforward
architecture, where different delays account for temporal aspects of stimulus recon-
struction, and the network connectivity pattern covers the spatial aspects. Finally,
the framework is condensed into a quick guide for non-physicists which explains how
to apply the presented concept to arbitrary biological setups. An example in the
spatial domain for such an application, that of optimal reconstruction of a blurred
visual stimulus, completes the chapter.

In the forth chapter auditory object formation is addressed by a detailed math-
ematical analysis of two approaches to neuronal periodicity identification. One ap-
proach relies on excitatory–excitatory interaction and results in a band-pass charac-
teristic via the neuronal analogon to autocorrelation. The approach can principally
be realized in actual biological systems, i.e., it performs well when using neuronal
parameters typical for the mammalian auditory system. Surprisingly, the limitation
of the performance does not arise from the neuronal membrane time constants but
mainly from the temporal precision of the connections between the neurons.
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The alternative approach to neuronal periodicity identification is based on excitatory–
inhibitory interaction. Here the band-pass characteristics vary systematically with
the time constants of excitation and inhibition. Again the model relies on biologi-
cally plausible parameters only. It works best for excitatory and inhibitory neuronal
couplings of equal strength, the so-called “balanced inhibition”. Interestingly, the
variation of a single parameter, the inhibitory time constant, can tune the system
to different frequencies. In summary both approaches allow for the grouping of dif-
ferent frequency components with identical temporal modulation and hence are a
basis for the neuronal formation of auditory objects.

In the fifth chapter a personal perspective of the discussed results is formu-
lated. We hereby provide a “10,000 m-above-ground” perspective covering auditory
processing from echo suppression to the formation of auditory objects and conclude
this thesis with concrete suggestions for follow-up research. That is, we discuss the
potential of adding feedback to optimal echo suppression –the ability to cope with
a dynamic environment– as well as that of applying learning theory to periodic-
ity identification –a possible explanation for the emergence of frequency-selectivity.
Finally, to turn full circle: It seems Ohm and Seebeck both have been right.

ThankUall*

*In order of appearance: My family, J. Leo van Hemmen.
Paul Friedel, Andreas B. Sichert, Christine Voßen, Peter Neubäcker, and Dr. Frank
N. Furter (a scientist).
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Chapter 1

Fundamentals of auditory
processing

Imagine all the people you know and a couple more together in one room. People are
having drinks, they are chatting, moving, flirting, and amongst them, you. Catching
a word here, dropping a sentence there, you glide through the masses and effortlessly
recognize friend and foe . . . – in other words, a cocktail party; cf. Fig. 1.1.

The so-called “cocktail party scenario” [36] nicely illustrates several essential audi-
tory phenomena. Even in a mixture of sounds we are able to pick up a specific sound,
for instance the voice of a friend. Moreover, we are able to do so in a dynamically
changing environment, in this case the cocktail party. At the same time we perceive
this specific sound as exactly the same we know from a static environment without
any distracting sounds. So far it remains unsolved how our auditory system achieves
these tasks. It is known that the auditory system decomposes the sound arriving
at the ear into a large number of frequency components in the cochlea. Which of
these components have arisen from which source of sound, however, is not clear a
priori, and of crucial interest. Namely, different frequency components originating
from the same sound source need to be grouped into one perceptual entity so as to
allow the auditory system to recognize the identity of a signal. This grouping of
frequencies and the subsequent signal recognition directly leads us to a fundamental
concept in cognitive auditory processing, that of an auditory object.
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Figure 1.1: A “cocktail party”. Many different sounds are perceived simultane-
ously – nevertheless, we are able to effortlessly pick up a specific sound out of the
mixture. We are, for instance, able to listen to the blue speaker solely, without
getting distracted by the red one. This phenomenon is commonly referred to as the
“cocktail party effect” and has been coined by Cherry in 1953 [36].

1.1 Definition of an auditory object

Objects as perceptual entity Before moving to auditory objects, the general
concept of an object is worth pausing for a moment. What is an object and how
can it be represented in the brain? Before modern science has approached these
questions, the general notion of “an object” has been prone to intense philosophical
considerations. Amongst them we pick George Berkeley’s because his thoughts
are remarkably similar to what a modern neuroscientist may believe. Berkeley is
of importance to philosophy because he denied the existence of any object [161].
According to him, objects do not exist independently of sensory experience. Rather,
objects exist because they are perceived – they are a mental event. This mental event
is a perceptual entity consisting of a bundle of characteristics, sensory perceptions.
The different sensory perceptions dispose of a contiguity which leads us to mentally
bind them into an “object” – a dispensable, as Berkeley says, conception since it
does not add anything to the perceived characteristics. Furthermore, the conception
is very subjective and ephemeral because perceptions are subject to characteristics
of the individual state of mind of the observer – a very progressive point of view in
the early 18th century.

Interestingly, Berkeley started the development of his philosophy with considerations
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on visual perception, namely “A New Theory of Vision”, first published in 1709. We
see (sic! ) that vision plays a dominant role in the development of thinking – not
only Berkeley’s, but everybody’s: the Oxford Dictionary of English defines an object
as “a material thing that can be seen and touched” [1]. Everybody has a concept
of visual objects based on edges, color, movement, etc. A tremendous amount of
research has been done on vision and the formation of visual objects, or else, the
automatic segmentation of visual scenes into objects has been topic of research up
to the most complex problems such as that of the units of attention [137, 151]. So
far the other senses have not been investigated in comparable depth. We can thus
consider the visual system as a “primus inter pares” in the sensory systems.

Consequently, when studying auditory objects, we might wonder if we can profit
from insights gained in research of visual objects. The definition of a visual object
may seem trivial, as pointed out above. It is a generally fruitful approach to access
a problem via the opposite. Hence here: what is not an object? Everything is an
object, of course – depending on what we are looking (or listening ) for. Compare
figure 1.2: We see either two faces or a vase. Figure and ground are determined
by perceptual grouping mechanisms, subject to our individual state of mind. This
refers to Berkeley’s statement of objects as a mental event. It is not by coincidence
that in the groundbreaking book “Auditory Scene Analysis”1 Bregman speaks of
“streams”, not objects [22]. A stream is an event, whereas an object in the common
notion includes both the source and the event perspective. We consider a written
“a”, for instance. The object can either be oddly shaped ink on paper or else a
meaningful vowel. This ambiguity is true for auditory objects as well. Imagine a
spoken vowel, an “a” again. A priori the question of what the object is here, the
voice as vibrating air or the vowel as meaningful symbol, cannot be answered, and
we see that an (auditory) object is a perceptual entity categorized according to the
task at hand.

Objects as coherent neuronal activity A “perceptual entity” is rather a vague
notion we want to substantiate in the following. As initially mentioned, the prob-
lem is the grouping of different frequency components originating from the same
sound source into the above perceptual entity. This is commonly referred to as the
“binding problem”. An intuitive approach would be the assumption that whatever
originates from the same location in space belongs to the same source. On an em-
pirical level this hypothesis can easily be disproved by listening to a mono recording
of a choral or concert, for instance. Even though arising from the same location, one

1This book is of visionary character since Bregman succeeded in unifying vast amounts of dif-
ferent, mostly experimental, research into the shared vision of “Auditory Scene Analysis”.
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Figure 1.2: What is figure, what is ground? An object is a perceptual entity that
can be categorized according to the task at hand. This categorization is strongly
affected by the individual state of mind. Accordingly, we either identify a cup or
two faces.

speaker, we have no difficulty in distinguishing different contributions to the whole.
Furthermore, similar to visual processing, there are different pathways for handling
the “what” and “where” of a signal in the auditory cortex [117,120,152,182], which
hints at a parallel processing of object identity and object location. This, however,
questions the notion of spatial location as a binding cue on a logical level. On
an empirical level, there is evidence showing that the formation of an object must
occur even before its localization [129]. Furthermore, experimental results suggest
that enhancing object formation reduces misallocation of acoustic features across
objects [40, 42, 108, 167]. Taken together, spatial location is not a good means of
solving the binding problem.

A first step towards a solution to the binding problem would be, for example, to
identify an auditory analogy to edge and contour. Typically, natural acoustic sig-
nals are a superposition of comodulated frequencies [135] that carry information
about their source by frequency content and its fluctuations, the temporal struc-
ture, often called amplitude modulations [108]. These amplitude modulations of
the signal persist in neuronal fluctuations of activity in the auditory nerve [92] and
thus seem to underly a grouping mechanism that has been reported to rely on neu-
ronal periodicity detection after the preprocessing by the cochlea [11, 25]. On the
psychophysical side, there is ample evidence that common amplitude modulations
serve to bind different frequencies together. In human auditory perception they are
vital to speech recognition [166, 175], identification of acoustic events (the initially
mentioned “cocktail party effect”) [22, 36, 196], the perception of pitch [9, 92], and
the “missing fundamental” effect where amplitude modulations evoke the percept
of a non-existent frequency that matches the frequency of the amplitude modula-
tions [9, 173]. In human communication, the amplitude modulations are superim-
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posed on speech due to resonant frequencies in the human vocal tract [4]. Con-
sequently, as every human vocal tract is different, so are the individual amplitude
modulations that allow conclusions, for instance, on the speaker’s size and sex, and
are called “voicing frequency” [4, 171, 172]. Since this voicing frequency is imposed
on any sound originating in the vocal tract, and in addition varies from speaker
to speaker, it is a natural means for binding different frequency components that
belong together. The importance of temporal information in speech is underlined by
the nearly perfect recognition of speech under conditions of greatly reduced spectral
information. With only three bands of noise modulated by the temporal envelopes
of speech, the recognition rate of sentences is still above 80% [166].

Temporal information extraction is important not only for the processing of speech.
In the animal kingdom, several species of echo-locating bat discriminate different
insect species by their characteristic wing beat frequency that leads to a species-
specific time-varying Doppler shift in the echo [164]. This time-varying Doppler shift
is a realization of species-specific amplitude modulations in each frequency compo-
nent of the echo; therefore the bats discriminate auditory objects by amplitude
modulations.

Amplitude modulations, however, are not the only cues the auditory system takes
advantage of to solve the binding problem, that is, to form auditory objects. On
the psychophysical level, Bregman and Yost have subsumed seven cues for auditory
object formation. They conclude that –ordered by importance– onset time, temporal
modulation (i.e. amplitude modulations), offset time, duration, spectral content,
level, and location in space determine what we perceive as an “auditory object”
[22, 195]. What remains to investigate is the neuronal mechanism the auditory
system employs to bind the different frequency components. In the visual system,
there are basically two solutions to the “binding problem”, binding by synchrony
and binding by enhanced firing rate. The former establishes feature binding through
neuronal synchrony in different areas of the brain processing different aspects of the
same object; the latter provides feature binding through a convergent processing
in higher areas of the brain (for a review see [157]). Focussing on the two most
important cues for auditory object formation, common onset and common amplitude
modulations, we see that they have in common a fixed phase relation. Neuronal
activity in the auditory brainstem is indeed locked to the phase of the low-frequency
components and the (amplitude-modulated) envelope of a sound [92, 99, 108, 181].
The phase locking, however, is not preserved in the ascending auditory pathway [160]
but converted into a more stable code, increased local neuronal activity, before the
inferior colliculus [69]. This conversion, the identification of neuronal periodicity
and hence a strategy to form auditory objects in a neuronal network, is subject of
chapter 4.
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In summary, we state that an object is a perceptual entity composed of different
sensory percepts. These percepts are grouped together by binding cues that mark
the individual percepts as belonging to the same source. In the auditory system,
common amplitude modulations are a sufficient binding cue for different frequency
components stemming from one sound source. These amplitude modulations are
reflected by coherent neuronal activity in the auditory brainstem. Within the audi-
tory brainstem this coherent, phase-locked neuronal activity is converted into locally
increased neuronal activity. In chapter 4 we provide two neuronal strategies that
convey a phase code into a rate code and thus realize the formation of auditory
objects by the neuronal identification of periodic neuronal activity.

1.2 Necessity of echo suppression

Signal degradation by echoes Following the above argument for the formation
and separation of auditory objects, we could think we have now solved the cocktail
party problem. If it were true you would not be reading this sentence. In the
setting of the cocktail party we considered the different sources of acoustic signals,
“streams”, our auditory objects. What we have neglected so far is the influence of
the (possibly changing) environment. In any natural environment sound is reflected.
This phenomenon is usually referred to as reverberation and mainly known from
large halls such as railway stations or the refectory, where the presence of many
speakers plus reverberation leads to a setting very similar to the initially mentioned
cocktail party. Reverberation is a consequence of sound propagating not only along
the direct path from sound source to listener but also along any possible, indirect
path that of course includes reflections. Obviously, the indirect paths are longer
than the direct path so that a signal is followed by countless attenuated repetitions
of itself; cf. Fig. 1.3. These repetitions are referred to as echoes.

The word “echo” itself stems from Greek mythology. It is the name of a nymph
whom Zeus ordered to distract his wife Hera so that he had time for his affairs.
Betrayed Hera cursed her so that she was forced to repeat whatever was said to her,
hence our usage of her name. More commonly, when hearing the word “echo” we
think of mountains, maybe a cathedral, or a tiled bath. There, multiple reflections
are audible in contrast to most everyday situations due to large distances between
walls or highly reflective surfaces, respectively. This criterion is also fulfilled in
modern cities with skyscrapers, but there the echoes remain unheard because of the
high amount of background noise. As anybody experiences from time to time, for
instance when talking via voice-over-IP or a bad mobile phone, consciously perceived
echoes are very annoying.
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Figure 1.3: What is echo, what is sound? Sound propagates along the direct and
any possible path. The resulting, misleading spatial information of the reflections
–echoes– needs to be suppressed.

Echo characteristics The invention of the telephone in 1875 may indeed be the
reason why algorithms for echo suppression have a long tradition in the field of engi-
neering. The first telephones were wall-mounted with a fixed microphone into which
one had to speak directly. This decoupled microphone from speaker and minimized
the occurrence of dynamically changing echoes arising from an unpredictable posi-
tion of the speaking person in relation to the microphone. The echoes arising within
the wire can, in contrast, due to their static nature, be suppressed by relatively sim-
ple means (such as in the 1957 Bell System “Speakerphone” or by the 1960 “least
mean square algorithm”; cf. Chap. 2) and hence were the first echoes to be dealt
with in technical systems [76]. Nowadays, technology is much more advanced. The
most sophisticated application of echo suppression algorithms in our every day life
is probably echo cancellation during hands-free telephony. Here loudspeaker and
microphone need to be decoupled to avoid back-coupling, and, in addition, room
echoes in a dynamic environment need to be suppressed.

Concerning the suppression of echoes inside a room, the “room impulse response”
(RIR) is one of the most important concepts. As the name indicates, the RIR
describes the impulse response, i.e., the echoes within a room originating from a
single click. A typical RIR is displayed in figure 1.4, where we clearly discern the
initial click followed by many other clicks that decay exponentially in amplitude. A
natural measure for the RIR is the reverberation time RT60, which is defined as the
time required for reflections of a direct sound to decay by 60 dB below the level of the
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Figure 1.4: Room impulse response (RIR) measured in an office in arbitrary units
[a.u.]. The initial click is followed by many other clicks, reflections of the initial click
that decay exponentially in amplitude and degrade the signal.

direct sound. Just for a reminder, a decay of 60 dB is equivalent to a drop of sound
pressure p to one thousandth of the initial value or, since sound energy E ∼ p2, to
a drop of E to one millionth of the initial value. Thus, an extremely reverberating
“live” environment such as a cathedral is characterized by a large reverberation time
of several seconds. A large reverberation time is bad for speech understanding but
well suited for music, especially organs. An exemplary value is RT60 = 1.7 s for
Carnegie Hall, New York [10], but it can reach more than 4 s as e.g. in Notre Dame
de Kispest, Budapest [168], famous for its organ music2. The other extreme would
be an anechoic chamber without any echoes, often referred to as acoustically “dead”
environment, with a reverberation time of zero seconds. Reverberation times of our
everyday environment lie in between these extremes; a desirable reverberation time
for a typical living room, for instance, is about 0.4 s [159]. We have to keep in mind,
though, that the RIR is merely a statistical description of the room acoustics that
is greatly influenced by position and orientation of both sound source and listener
as well as by room geometry and size.

There are several characteristics that determine the RIR. Most important, the laws
for the reflection of sounds resemble the laws for the reflection of light – namely, the
angle of incidence equals the angle of reflection; cf. Fig. 1.3. Similar to light, the
refraction of sound is determined by the size of the structure of the reflecting surface
as compared to the wavelength of the sound. This leads to frequency-dependent

2For connoisseurs: The organ was originally made in 1927 by Rieger Bros., opus 2256. It was
reconstructed between 1995 and 2002 by László Varga according to the plans and direction of
Bertalan Hock.
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damping in natural rooms determined by the density of the reflecting material or
medium. A tiled bath, for instance, reflects both low and high frequencies with high
amplitude; when covered with a curtain only low frequency reflections will remain.
Nevertheless, we have to keep in mind that the frequency components of an echo do
not influence each other, i.e., any component present within the echo has already
been present in the original sound. Solely the frequency-dependent damping of the
room-at-hand modifies echoes, which are therefore referred to as frequency-specific.
One exception is the Doppler shift which, although e.g. exploited by some types of
bats [164], can be neglected in natural environments.

Biological echo suppression So, echoes, although sometimes hearable and some-
times not, are physically present in any natural environment all the time. In large
rooms such as a church we can register them consciously as a separate auditory
event. Our auditory system, however, is not optimized with respect to listening to
chorals. It is optimized for survival, and survival in a possibly hostile environment
(not only the cocktail party) depends on identifying and localizing friend and foe
fast and reliably. Since in a wide space we perceive echoes with their confusing
spatial information, this environment is obviously not the forte of our auditory sys-
tem. In small rooms, in contrast, we do not consciously perceive echoes and their
location but we can actually exploit them subconsciously –without our even notic-
ing their existence– for an amplification of the signal; then without the additional,
misleading spatial information. This makes sense for localization tasks in a small,
unclear environment with many different physical objects and, consequently, many
reflections. Here the auditory system is of unique importance since it is, in contrast
to the visual system, omnidirectional and extremely fast (auditory neuronal time
constants lie in the range of milliseconds, whereas the visual ones lie in the range of
tenths of milliseconds).

For localization the auditory system mainly uses the direct sound, as proven by
many behavioral and neurophysiological experiments [12, 48]. This phenomenon
is known as the “law of the first wavefront” or the “precedence (formerly: Haas)
effect” [63, 74]. In small and unclear environments the echoes arrive very soon
after the first wavefront and are, as described in the last paragraph, not perceived
consciously, hence suppressed neuronally. A small experiment gives us valuable
insight into the strategy our auditory system is using for this suppression. Given
we are listening to a speaker in a large lecture room. We do not perceive any echo.
Now, we cover one ear. With a short delay, the speaker’s voice will suddenly sound
more echoic. In a small seminar room, however, this will not work [191]. First, this
reveals that there are two mechanisms for neuronal echo suppression, a monaural
and a binaural one. Second, since the “switching off” of the binaural mechanism by
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covering one ear does not affect our perception in a small room where we have only
fast echoes, the binaural mechanism is slower than the monaural one. The existence
of a fast monaural and a slower binaural neuronal mechanism for echo suppression
was already stated by von Békésy and Koenig more than 50 years ago [12]. The entire
experiment gives a feeling for how the world would sound without echo suppression.
We know echoes as a desired effect –for improving music perception in a concert hall
or as an architectural feature like in the main hall of the Pinakothek der Moderne,
Munich– but living in a world completely without echo suppression would be similar
to living in a busy station hall. Obviously, we can consider ourselves lucky to not
consciously perceive at least the fast echoes.

A mathematical estimate based on our ear-covering experiment tells us that the time
span during which we do not perceive echoes covers the range of tenths of millisec-
onds. This means that in order to hear the reflection of a 0.2 s call as a completely
separated echo we need a distance of about 35 m from the reflecting walls. Tenths
of milliseconds are a lot of time in the auditory system since, as we remember, typ-
ical neuronal time constants lie in the range of milliseconds here. Therefore we can
expect quite sophisticated neuronal operations to be involved. To structure our un-
derstanding of biological echo suppression, we introduce the term “echo threshold”
for the maximal delay at which a perceptual fusion of signal and echo occurs. We
know from psychophysical experiments that echo thresholds for impulsive stimuli
typically lie in the range from 5 − 10 ms [12, 116]. This makes them significantly
shorter than the values of up to 30 ms reported for long-duration stimuli such as
continuous speech or music [12, 74, 179]. We can state as a rule of thumb that echo
thresholds for ongoing stimuli are about a factor five longer than echo thresholds for
impulsive stimuli. This rule, however, does not hold exactly since there are ways and
means to manipulate echo thresholds. Strong contextual cues in speech and music
for example can extend echo thresholds [39, 75]. Alternatively, an abrupt change
of source and echo location can reduce the echo threshold, a phenomenon known
as the “Clifton effect” [38, 39]. In a specific setting even echo thresholds as low as
7 − 8 ms, similar to clicks, have been measured using 500-ms complex tones [179].
These findings connect smoothly to the concept of a fast monaural and slow binaural
echo suppression. The fast monaural part of echo suppression is hard-wired in the
cochlear nucleus, the first nucleus in the auditory pathway and the only nucleus that
receives purely monaural input [26,191]. The slow binaural part of echo suppression,
on the other hand, is very flexible and adaptive. There are models for binaural sup-
pression that imitate the complete auditory brainstem [33,197] and that are able to
reproduce, for instance, the “Clifton effect” [197]. Such models help to pinpoint the
functions of different centers within the auditory brainstem – it has been shown, for
example, that a persistent inhibition in the dorsal nucleus of the lateral leminiscus,
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the last center in the auditory brainstem before the inferior colliculus that in turn
projects to the auditory cortex, is sufficient for an ideal observer to identify echoes
and accordingly exhibit echo suppression [146]. The hypothesis of a flexible, adap-
tive filtering mechanism for selective auditory processing in the auditory brainstem
is supported by strong evidence for active suppression of irrelevant inputs [67]. The
importance of echoes and of their suppression as irrelevant input is underlined by
the proposition that the lagging inhibition in the mammal medial superior olive, one
of the first centers in the auditory brainstem for binaural processing and commonly
recognized as localization mechanism [21,71,125], originally evolved for the suppres-
sion of reverberation and echoes, and only later in evolution has been re-used for
localization purposes [73].

Concluding, we state that echoes are, although mostly inaudible, omnipresent.
Sometimes desired, such as in concert halls or alike, they usually are an undesired
artifact degrading auditory perception. In contrast to the technical applications
developed in telecommunication engineering our auditory system is capable of effi-
ciently suppressing echoes even in dynamic environments. Hereunto it employs two
distinct mechanisms for echo suppression, a fast monaural one and a slower binaural
one. In the next chapter we will apply a general theoretical framework for optimal
stimulus reconstruction (see Ch. 3) to auditory processing. The resulting model
provides a unified access to established technical algorithms and features both a
constant fast suppression and a slower part of the suppression that depends on the
environment – a remarkable similarity to the biological combination of monaural
and binaural mechanism for echo suppression. Thus the basic layout of biological
and technical echo suppression can be founded on the mathematical principle of
stochastic optimality.
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Chapter 2

Optimal echo suppression

Any being is connected to the outside world through sensory systems such as vision
or audition. As we could see in the last chapter, in a natural environment the
information the auditory system provides is corrupted by reflections referred to as
echoes. The sensory response therefore has to be processed in order to reflect the
true characteristics of the outside world. In other words, the echoes need to be
suppressed, and, if possible, optimally.

Optimality, vague as it is, asks for a precise definition. When extracting a signal
from a specific sensory response we want the extracted signal to be as similar as
possible –or even identical– to the original one. In a real-world scenario identity
cannot be achieved because of noise and limitations of any sensory system. We
can, however, minimize the difference between extracted and original signal and
then define the model that features the least possible difference between original
and extracted (“reconstructed”) signal to be the optimal model. This approach of
error minimization has already been applied successfully to sensory processing [90]
such as found in the clawed frog and the pit viper [58, 170] as well as to neuronal
information processing as found, e.g., in the multimodal context [45,46,118,148]. In
the present work, we link the general principle of mathematical optimality to known
biological mechanisms of echo suppression.

Namely, we will see that our approach allows to answer a set of fundamental ques-
tions concerning the neuronal substrate of echo suppression. Obviously, we expect
delays and suppression, that is, inhibition, to play an essential role in our neuronal
model setup. For a quantitative understanding, however, more specific questions
need to be asked. What are the delays that play a role? What amount of inhibition
is needed for which delay? Is not only inhibition but also excitation important for



14 Optimal echo suppression

stimulus reconstruction? How does the form of the echo shape the model? How well
does, e.g., monaural echo suppression alone work for stimulus reconstruction? All
these questions can and will be answered by the approach of optimal echo suppres-
sion.

It is important to indicate that our approach is of purely theoretical character. We
start with the principle of stochastic optimality, from where we develop a mathe-
matical model for echo suppression which we then successfully transfer to a neuronal
setup. This being a generic approach we do not aim at explaining specific anatom-
ical details such as parts of the auditory brainstem involved in specific monaural or
binaural mechanisms for echo suppression. Instead, we generate a conceptual insight
into the optimal strategy for auditory signal enhancement and echo suppression as a
whole. Finally, by comparing our results with what is known about biological echo
suppression as well as with its correlate in the technical field, de-reverberation, we
conclude with a comprehensive view on auditory signal reconstruction.

2.1 Derivation of the optimal model

The derivation of the analytical framework of the model is based on the general
framework of signal reconstruction by an inverse transformation; cf. Ch. 3. Here
we ultimately aim at a neuronal implementation of this framework for temporal
processing as found in the auditory system. To this end, we discretize the problem
in time and then concentrate on the basic conditions for signal reconstruction. By
deriving the necessary neuronal connections we form the basis for a smooth integra-
tion of our model into the existing knowledge on auditory processing such as related
physiological and psychophysical results.

The higher auditory system receives a sensory response r(t) that can be described
by means of a convolution of the original auditory signal s(t) and an echo function
h(t) [105]

r(t) =

∫ ∞
−∞

s(t− τ)h(τ)dτ (2.1)

with t denoting time. For the sake of simplicity we take the sensory response r(t) as
the amplitude of the complete signal, that is we leave out the existence of two ears
as well as frequency decomposition taking place in the cochlea and study a single
channel model. The echo function h(t) corresponds to the “room impulse response”
we introduced in chapter 1.2 and depends on the physical surrounding. Due to (2.1)
the acoustic signals that cause the sensory response r(t) are a linear superposition
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of the original auditory signal s(t) and the respective echoes. Therefore, given a
sufficient number of measurements, the response r(t) encodes all original informa-
tion. To decode this information, though, we must find a filter function l(t) that
suppresses echoes contained within the sensory response r(t) so as to compute the
reconstruction ŝ(t) of the original signal s(t). That is,

ŝ(t) =

∫ ∞
−∞

r(t− τ)l(τ)dτ . (2.2)

We now discretize the problem in time. Every signal is then represented by a
vector containing the values of the signal function sampled at discrete points in
time. The convolution becomes a matrix multiplication and we denote the matrices
corresponding to the echo kernel h(t) and the filter kernel l(t) by H and L. We can
thus rewrite (2.1) and (2.2) so as to read

r(t) =

∫ ∞
−∞

s(t− τ)h(τ)dτ ⇒ rt = H τ
t sτ ⇒ r = Hs and

ŝ(t) =

∫ ∞
−∞

r(t− τ)l(τ)dτ ⇒ ŝt = L τ
t rτ ⇒ ŝ = Lr .

(2.3)

The coefficients H τ
t and L τ

t of the matrices H and L are describing how a value of
the incoming signal at the time t− τ is mapped onto the output signal at time t.

Unfortunately real life is not that simple. Any sensory system has to cope with
uncertainties no matter whether they come from measurement errors, variances
within the assumed physical transmission process, or simply through the fact that
space and time are continuous quantities that sensors and especially neurons cannot
continuously represent. Of main interest to us here are the temporal dynamics
which are restricted for technical sensors by the fact that they typically average
over a specific amount of time, and for neurons by their refractoriness.

Altogether, the input-output relation within any system will be corrupted by errors
or noise. We thus rewrite (2.3) by adding the noise term χ accounting for measure-
ment and transmission failures to our sensory response. In addition, our signal of
interest may, and in general will, be disturbed by complementary signals we pool
and refer to as background noise. In our model we hence add a random variable ξ
to the signal. All things considered we arrive at

rt = H τ
t (sτ + ξτ ) + χt . (2.4)

The filter function L in (2.3) thus needs to suppress not only the echo but also needs
to cope with the noise. The task is now to find the best possible, that is, the optimal



16 Optimal echo suppression

values for the coefficients L τ
t of the reconstruction matrix in (2.3). We define the

expectation value of the quadratic error between the original auditory signal s and
its reconstruction ŝ through

Ξq :=
〈
(st − ŝt)(st − ŝt)

〉
, (2.5)

where we use the common tensor notation with upper and lower indices. We then
insert (2.4) into the second equation of (2.3) and substitute the result for the re-
constructed signal ŝt into (2.5). Finally, minimizing Ξ with respect to L τ

t gives us
a system of equations (∂Ξq/∂L ν

µ = 0) for coefficients of the reconstruction matrix
L τ
t . The optimal reconstruction matrix is thus the one with minimal expectation

value for the quadratic error Ξ, that is, it is optimal in the least-square sense.

Before minimizing Ξ we need to discuss some of the terms included in (2.5). Of
course, the input signal st is deterministic, and we would not expect any problem.
But we do not know the exact values of s(t) ex ante. We can overcome this problem
by looking at “biologically relevant” signals. Such a signal belongs to a class of
signals that we denote as “typical”. Consequently a specific sensory signal is a
concrete realization of a class of typical signals. That is, the input signal st is a
stochastic quantity with a defined mean µs.

Furthermore, we take all appearing temporal cross-correlations to be zero. So the
signal value at one specific point in time does not tell anything about the signal value
in the next or any other time frame. Assuming a time-independent input makes the
reconstruction more difficult since we assume knowing less than we actually do.
We therefore can call our model a minimal ansatz. Consequently the results we
will obtain later can be improved by including the correlation information we now
disregard. Similarly we take both types of noise to be independent at different
points in time, each with standard deviation σχ and σξ, respectively. Please note
that the allocative function for the noise need not be Gaussian for the model to
work. Therefore only the autocorrelations remain and are given by

〈sµsν〉 = µ2
sδµν ,

〈χµχν〉 = σ2
χδµν , and

〈ξµξν〉 = σ2
ξδµν ,

(2.6)

with δµν as Kronecker delta.

Of course one might argue that an echo is nothing but an intrinsic correlation of the
auditory signal, and that we therefore should not assume (2.6). We, however, treat
the echo by means of the special structure of the echo function h(t) defined in (2.1).
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We minimize (2.5) and obtain a linear system of equations for the coefficients of the
filter function L depending on the echo function H only,

Lµγ
[
H δ
ν H

γ
δ

(
1 + η2

)
+ σ2δγν

]
= H µ

ν (2.7)

where H δ
ν is the transpose of the matrix Hγδ. The dimensionless parameters σ :=

σχ/µs and η := σξ/µs correspond to inverse signal-to-noise ratios of σ –the mean
signal strength to the variance of the detector measurement errors– and of η –the
mean signal strength to the variance of the accustic noise. The filter function L
now matches the echo function H and allows calculating the reconstruction ŝ of the
original auditory signal s by means of the sensory response r only. Since we have
neither specified the original signal nor used any information such as specific input
correlations (2.6), our algorithm can reconstruct any arbitrary signal. To get an
optimal reconstruction performance in the case of noise we simply need to adjust
the two model parameters σ and η. If we have access to the noise levels σχ and σξ
as well as the typical value of the original input strength µs, the definition of σ and
η gives us good estimates of these values.

Before applying the model to actual scenarios we need to consider that, as stated
before, every physical environment has its own echo function. In our approach
we simplify these widely varying echo functions to some typical types of echoes –
in other words, we generalize. This process of generalization is necessary since,
in the end, we want to provide a framework for a neuronal system that cannot
afford many different sets of neuronal wiring but rather needs one single neuronal
circuitry to cope with every possible situation. We therefore desire the underlying
mathematical algorithm to be robust against variations of the echo so as to allow
one single neuronal wiring to deal with a large set of different situations. Thus we
analyze the behavior of the model performance both in absence and presence of
noise, and in case of filter functions that do alternately match or not match the
echo function.

Very much to our benefit, variations in the physical transmission –the echo function
H– can mathematically be included in the noise parameter χ. This leads to one of
the main advantages of our reconstruction algorithm. In contrast to the common
Wiener filter (for a review on linear filtering see [94]) that corresponds to our model
with fixed η = 0 and σ = 1 [91, 149, 156, 158], we can adjust η and σ to the most
probable situation. That is, we can adjust our model to different physical environ-
ments, noise level, and input strength. Hereby we gain an important advantage
over conventional techniques as our model is robust against variations in the real
noise and fits most of the possible natural situations. This characteristic will be of
special importance in section 2.3 where we come to the neuronal implementation of



18 Optimal echo suppression

the proposed architecture.

2.2 Model analysis for archetype echoes

We now analyze the mathematical model derived in the previous section so as to
observe the intrinsic capabilities and characteristics of our approach. To this end we
take a delta function in the time domain as input signal. This function corresponds
to a click. In the sensory response it then appears slightly smeared out and is
followed by an echo as defined by the echo function at hand. As our echo function
H is the response of an environment, a room, to an acoustical impulse, it corresponds
to the “room impulse response” (RIR) referred to in our introduction. For the sake
of generality, we reduce the variety of echo functions H to three archetype forms in
the following.

The first echo function corresponds to the simplest environment featuring an echo,
which would be a single solid wall in a free space. Here, the echo would be a simple,
weakened repetition of the original signal. Hence for the first echo function we
assume a single, discrete reflection of a click and label the echo “d” for “discrete”.
In matrix notation [defined through r = Hs; cf. (2.3)], the echo function is hence
given by

Hd
µν = exp

[
−(µ− ν)2

2κ2

]
+ exp

[
−(µ− ν + βd)2

2κ2

]
. (2.8)

Here and in (2.9)–(2.10) all constants are real numbers (∈ R), µ and ν denote the
rows and columns of H, and (µ−ν) indicates the relative discretized time difference.
In (2.8) the parameter βd marks the delay between signal and echo, and κ typifies
how signals and echoes get broadened.

The second echo function mimics a typical room impulse response where we have
not one but many walls. Hence the signal is followed by a short silence and many
subsequent reflections [105]. We label this echo function “r” for “realistic” with

Hr
µν = exp

[
−(µ− ν)2

2κ2

]
+ (µ− ν + βr) exp

[
−(µ− ν + βr)

2γ2

]
. (2.9)

The second term is a common alpha function where parameter βr marks the delay
between signal and echo. We choose it so that the reflections reach their maximum
at about 20 ms after the click. The constants κ and γ denote how signals and echoes,
respectively, get broadened.
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For the third echo function we assume the closed space to be even more restricted
and hence do not suppose any gap between signal and reflections. Here we take an
exponential decay of the reflections and therefore mark it with “e”,

He
µν =

 exp
[
− (µ−ν)2

2κ2

]
if µ− ν > 0

exp
[
− (µ−ν)

κ′

]
if µ− ν < 0

, (2.10)

the constant κ denoting how signals get broadened and κ′ being a measure for the
decay of the exponential tail.

By the above discretization into three exemplary echo functions we follow exemplary
RIRs [76] and cover the full range of possible complex echo functions, i.e., explicitly
assuming the reflecting boundaries at very far (case “d”), normal (case “r”), and
close (case “e”) distance. The form of the original auditory signal s, the detector
response with echo rd,r,e as well as the echo matrix Hd,r,e are depicted in figure 2.1.

To test our model, we have calculated input and reconstruction matrix for each of
the three echo functions defined by (2.8) – (2.10). In the following we present an
alternative, abridged version of the reconstruction matrix that is used henceforward.
We evaluate its performance by comparing reconstructed and original signal for
various conditions, including noise and a “mismatch” condition where echo function
H and filter function L do not match; cf. Figs. 2.2 and 2.3.

The abridged version of the kernel does not, in contrast to the complete version,
evaluate the sensory response r at times prior and subsequent to a specific moment t
in time for the reconstruction of the original signal s at t. In other words, where the
complete kernel takes advantage of future inputs the abridged version only uses the
sensory response prior to t, which enables processing in real time. This is depicted
in the top row of figure 2.2 where we see both abridged and unabridged reconstruc-
tion kernels for discrete, realistic, and exponential echo functions. The unabridged
versions feature non-zero values for positive, i.e., future times whereas the abridged
versions do not. The second row of figure 2.2 shows the reconstructed signals for
both abridged and unabridged reconstruction kernels. The complete reconstruction
kernels result in an almost perfect signal reconstruction with, if any, minimal arti-
facts. Using the abridged kernels leads to noticeable artifacts and a lower amplitude
of the reconstructed signal; the overall quality of the reconstruction, however, is still
very good. Additive Gaussian noise χ in the sensory response, i.e. assuming a noisy
sensor, does not significantly change the quality of the reconstruction; see bottom
row Fig. 2.2.

As stated in the derivation of our model in section 2.1, the result of an error or
a variation of the echo function, say Hµν + ∆Hµν , can mathematically be treated
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Figure 2.1: Three variations of echo functions H with the original signal s and
the resulting sensory response r. Here we have reduced all possible echo functions
to three cases, viz., discrete “d” (left), realistic “r” (middle), and exponential “e”
(right) echo, as explained in Sec. 2.2. The upper graphs (A−C) depict the discretized
echo functions Hd,r,e (black = 0, white = 1) in matrix notation as defined by (2.8) –
(2.10). The lower graphs (D−F ) show the original signal s (a delta function, filled
line) and resulting sensory responses rd,r,e (solid line) corresponding to the auditory
system given by r = Hs in arbitrary units.
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Figure 2.2: Reconstruction functions L and reconstructed signals ŝ. Graphs (A−
C) represent the complete reconstruction functions Ld,r,e as defined in (2.7) (grey)
and the abridged version (black). The versions d, r, and e always appear as left,
middle, and right. The reconstructed signals ŝ obtained through both abridged
(black) and unabridged (grey) reconstruction functions are shown in graphs (D −
F ). The complete reconstruction function L leads to higher peak amplitudes and
less artifacts in the reconstructed signals. A noisy sensor still allows for a reliable
reconstruction as depicted in (G−I) with 10% noise as compared to input strength.
All graphs have been expressed in arbitrary units [a.u.]. Original signal and sensory
responses are as in Fig. 2.1.
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as a contribution to the error χ defined in (2.4). Thus our model should react to
variations of the echo function in a similar manner as to noise. Again such kind
of error shows correlations, and we should change the definition of the expectation
value 〈χµχν〉 defined in (2.6). Since there is no universal rule for the variation
of the echo function in any arbitrary natural environment, we do not exploit this
information and turn back to our minimal ansatz for showing the universality of the
model presented here.

We have tested the ability of the model to suppress echoes even in case of a mismatch
between echo function H and reconstruction filter L. In doing so we have used the
wrong reconstruction kernel for reconstructing the signal and have compared model
performance with the “matching” condition. All nine possible cases are depicted
in figure 2.3 and show that our reconstruction filters (mainly Lr) are able to cope
with extreme variations –namely the wrong echo– and effectively enhance the signal.
This flexibility is a prerequisite for any biological system that cannot afford a specific
neuronal wiring for every possible echo (suppression-) scenario.

In our model we can tune the flexibility by choosing σ appropriately. For obtain-
ing the results of figure 2.3 we have used an increased σ as compared to figure 2.2
(σ = 5 vs. σ = 1). Figure 2.4 visualizes the influence of σ on the reconstruction
kernel for discrete, realistic, and exponential echo function. Compared to the initial
kernel the modified kernel loses some of the peaks; it appears “softened” or smeared
out. In particular, the complex form of the “realistic” kernel reduces to two dis-
tinct inhibitory regions; cf. Fig. 2.4. This loss of fine structure renders the three
reconstruction kernels, especially for realistic and exponential echo, more similar to
each other and explains why they perform better in the “mismatch” condition. The
flexibility of our ansatz, the possibility of varying σ, is, as will be explained in detail
in the discussion of section 2.4, a unique property that distinguishes the present
model from a Wiener filter, that is, our model with fixed σ = 1 [91,149,156,158].

Finally, our mathematical ansatz allows to systematically manipulate the filter func-
tion. That is, to set selected entries in the filter kernel to zero and observe the in-
fluence on signal extraction. Specifically, we have checked the impact of each of the
two inhibitory regions of the “realistic” reconstruction kernel for σ = 5 as visible in
figure 2.4. It turns out that the first, fast inhibitory region sharpens the contour of
the signal peak and reduces the exponentially decaying tail of the echo. The second,
slow inhibitory region reduces the steepness of the echo onset that is important for
auditory object formation; for details we refer to the discussion in section 2.4.

In summary, the method of optimal echo suppression gives a good reconstruction of
the original signal for different echo functionsH. The algorithm is able to reconstruct
a signal in real time since it does not require an integration time. The reconstruction
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Figure 2.3: Flexibility of the model. All graphs show the reconstructed signal
ŝ (black) and the actual echo function H (grey) in arbitrary units [a.u.]. In each
column a different echo function H is used to calculate the sensory response whereas
the reconstruction filter L is varied in each row. Echo function and reconstruction
filter match on the diagonal (A,E, I). Even using a filter function different from the
actual echo function (B,C,D, F,G,H) can lead to reasonable results if σ is chosen
appropriately. Here σ = 5. In the case of function mismatch increased σ leads
to results much better than the initial σ = 1, which corresponds to the Wiener
filter [91,149,156,158].
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Figure 2.4: Influence of the noise’s standard deviation σ on the reconstruction

filter L. The kernel of Ld,r,e for σ = 1 (black) and σ = 5 (grey) in arbitrary units.
As σ increases, the kernels get smeared out and lose fine structure. Simultaneously
the reconstruction gains generality, which is advantageous for reconstructing a signal
deformed by an unknown echo function; see Fig. 2.3. Original signal and sensory
response are as in Fig. 2.1. We note that the reconstruction kernels correspond to
the receptive fields of our neuronal model; cf. part 2.3.
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Figure 2.5: Neuronal setting. A noisy response r(t) containing an echo is used to
stimulate a set of neurons A, the so-called detector neurons. The resulting spikes
propagate through delay lines with different delays τ1,..,n and stimulate the neu-
ronal output population B through the corresponding synaptic connection strengths
J1,...,n. The output spike train ŝ(t)B of the neurons B represents the original signal
with suppressed echo and reduced noise.

is robust to noise, and the tuning of a single parameter σ lets the model even
cope with a mismatch setting where assumed and actual echo function differ. This
flexibility distinguishes our approach from common methods.

2.3 Neuronal implementation via receptive fields

A further uniqueness of our approach lies in the ease-of-transfer to a neuronal re-
alization. The rows of the filter matrix L, the reconstruction kernel, are essentially
a temporal receptive field. The receptive field of a sensory neuron is defined as
the region of space, or, in the case of a temporal receptive field, time in which the
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presence of a stimulus alters the activity of the neuron. Therefore we can use the
value of the filter kernel at a specific time τ as the synaptic coupling strength for
a neuronal feedforward connection with delay τ . Hereby our framework allows a
one-to-one match of the optimal filter kernel to the neuronal connections includ-
ing delay and synaptic strength. Sampling the complete kernel (see Fig. 2.4) and
mapping it step-by-step to a feedforward network as depicted in figure 2.5 results
in a neuronal model that suppresses the echo and extracts a signal just as in the
mathematical model. We hereby do not state that echo suppression is done in bi-
ology by means of a single feedforward network. We rather give an existence proof
of our model in neuronal hardware – the feedback found in the auditory brainstem
could, for instance, be used to tune the parameters in a setting very similar to our
feedforward approach. Moreover, we find connections to mono- and binaural echo
suppression, which we are thus able to integrate conceptionally into the field of op-
timality and object formation found in many sensory systems in the discussion in
the next section.

To account for the neuronal preprocessing and to obtain realistic spike trains, we
have used noisy responses r(t) from (2.4) as rate function for Poisson detector neu-
rons [79] (neuron population A in Fig. 2.5). These neurons encode the input by pro-
ducing concrete spike trains r(t)A according to an inhomogeneous Poisson process
with the rate function r(t). An inhomogeneous Poisson process with time-dependent
rate function, r(t) here, is defined by three properties. First, the probability of find-
ing a spike between t and t+∆t is r(t) ∆t. Second, the probability of finding two or
more spikes in this interval is o (∆t), which means that we ignore their occurrence
for small ∆t. Third, events in disjoint intervals are independent, i.e., a Poisson
process has independent increments.

As for the output neuron population B, we model them twice. In the first case, we
take a set of Poisson neurons, driven by an inhomogeneous Poisson process where
the density function ŝ(t) of the spike train ŝ(t)B of the output neurons B is a linear
function of the density function r(t) of the input spike train r(t)A. Thus no effect ex-
cept neuronal noise masks the performance of our model, and echoes are suppressed
just as in the mathematical model. But also in the second, more realistic and thus
more interesting case where we take leaky integrate-and-fire neurons [66] (LIF) to
model the output neurons, the signal is extracted reliably; see Fig. 2.6. When com-
paring top [r(t)A] and bottom [ŝ(t)B] row of figure 2.6 it becomes apparent that the
choice of σ has a considerable impact on model performance. Again, just as in the
mathematical model, an increased σ results in an improved echo suppression. Fur-
thermore, we see that additional features of real neurons such as spontaneous rate,
membrane capacity, neuronal time constants, or threshold behavior do not degrade
the performance. Quite on the contrary, the threshold behavior is actually respon-
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Figure 2.6: Normalized neuronal input and output activity in arbitrary units [a.u.].
The upper row depicts the activity r(t)A of the detector neurons A for the different
echo functions Hd,r,e, the lower row the corresponding activity ŝ(t)B of the output
neurons B for two sets of reconstruction parameters σ. We have used a population
of 140 Poisson neurons to represent the input as calculated with the mathematical
model (noise present) and 140 Leaky-Integrate-Fire neurons as output population.
The kernel of our filter function samples the neuronal connection strength between
input and output neurons; cf Fig. 2.5. For better comparability we have normalized
the neuronal activity to 1. The lower row depicts neuronal activity of the output
population with σ = 1 (black bars) and σ = 10 (D), 5 (E), and 10 (F ) (grey bars).
Choosing the right σ enhances the model performance as compared to σ = 1 that
corresponds to the Wiener filter. The spontaneous firing rate of the output neurons
is roughly 15 Hz, and the noise level is 5% of the input signal strength.

sible for an enhanced echo suppression of the nonlinear LIF model as compared to
the linear Poisson setup.

In summary, our model for optimal echo-suppression is easy to implement neuronally,
and this neuronal implementation works very well. The model thus fulfills the
necessary prerequisites for a true realization in the auditory system as we discuss in
the next section.

2.4 Conjunction with technics and biology

Based on the mathematical concept of error minimization, we have introduced a
model for the real-time extraction of an acoustic signal from a corrupted sensory
response. The model successfully extracts the original signal for three archetypes
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of echoes that cover the whole range of echo functions by mimicking a very large, a
normal, and a very small room. The model can cope with acoustic as well as sensory
noise and can even extract the original signal in the “mismatch” condition where
actual and assumed echo function differ from each other. This proof of robustness
justifies the consideration of our approach as a mathematical ansatz for a universal
model of echo suppression.

We now focus on the links, differences, and advantages of our model in comparison to
common techniques and established technical algorithms. From the technical point
of view, our paper describes a single channel de-reverberation algorithm whereat we
now provide a short overview.

In single channel de-reverberation one can distinguish three major groups of al-
gorithms based on de-convolution, blind de-convolution, and suppression. The first
group assumes known echo functions (i.e. RIR) and deals with approximate and fast
methods for inverting it [76,131,134,142], as real echo functions are usually not exact
invertible [134]. The second group tries to find a filter which accounts for a certain
criterion, for instance the mean power spectral density of speech or noise reduction,
and indirectly reduces the reverberation [52, 55, 68, 76, 185, 193, 194]. As in the pre-
vious case this filter converges to an approximation of the echo function inversion.
The third group estimates the amount of echo power spectral density [19, 76, 112]
and uses suppression methods to perform, for instance, minimum mean square esti-
mation of the original signal. In the state-of-the-art algorithms for echo suppression,
different methods are combined [61,76,78,192].

Our model belongs to the first group and consequently is related to other techniques
that solve the inverse problem [162] and apply linear filtering [94] such as e.g. the
Wiener filter [91, 149, 156, 158]. Actually, our model generalizes the Wiener filter
which is included in our model as a special set of parameters [149] (η = 0 and
σ = 1). This corresponds to the situation where nothing is known about typical
stimulus strength and noise level (µs ∼ σχ).

Furthermore, the advantage of our approach to explicitly specify and link the model
parameters to realistic quantities such as “typical” signal strength µs, input noise α
and detector noise χ, or variations within the echo functions, distinguishes our model
from common techniques. The technique of the pseudo-inverse and the Maximum
Likelihood Estimation [91, 149, 183], which is realized neuronally as a fundamental
computational principle in several areas of the nervous system [45,46,53,83,90,118,
148], are namely to be mentioned here. As a consequence, our model implements the
underlying concepts in a more universal way than the techniques described above
by achieving signal extraction without the need for an external provision of model
parameters.
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Moreover, unlike realizations of the conventional techniques we mentioned, the con-
ceptual design of our approach does not require any integration window and thus
allows real-time information processing. The combined features of the proposed
approach –high flexibility, well accessible parameters, and real-time processing–
make technical application attractive and once more highlight the advantages of
biomimetic concepts.

From the neuro-computational point of view the biological implementation of the
model is straightforward. Initially, we have posed the question as to which neuronal
delays play a role in echo suppression and what their synaptic coupling strengths
are. Furthermore, we have been interested in the relevant time scale. By minimizing
the quadratic error within the framework of the functional description of echoes we
have gained a filter function or, in neuronal terms, a temporal receptive field that
answers these questions. The figures 2.2 and 2.4 illustrate such receptive fields and
give a quantitive answer to the above questions.

The resulting neuronal parameters, strength and delay of the synaptic connections,
follow a very plausible pattern, especially when using the “realistic” echo function.
The most obvious feature here is the emergence of the two distinct time scales
of suppression already described in the last section. First, there is a direct, fast
inhibition with a clear maximum at about 2 ms that lasts about 5 ms. Second,
a delayed shallow inhibitory region follows at about 10-17 ms that does not have
such a clear maximum as the fast one and is therefore called “slow inhibition”. In
the model, the fast inhibition sharpens the contour of the peak and reduces the
exponentially decaying tail of the echo. That is, it reduces the echo amplitude but
is not sufficient for stimulus reconstruction. Because of the fast time scale in a
biological setting it has to be realized monaurally. The slow inhibition reduces the
steep onset of the neuronal response to the echo. Since auditory object formation
strongly relies on the onset of acoustic signals [22,195], it thus hinders the formation
of the echo as aseparate object and a conscious echo perception. As stated before,
the form of the slow inhibition varies with the shape of the echo, that is, with the
environment at hand. That is why a flexible, binaural neuronal realization that can
be modified by top-down processes makes sense here.

The above findings fit very well into today’s picture of auditory processing. The
detection of gap in auditory signals, auditory contrast enhancement, and echo sup-
pression exploit properties of temporal receptive fields, more precise, delayed inhi-
bition [28, 29, 72, 73, 188]. As for echo suppression, it is commonly understood that
it is indeed in part monaural and in part binaural; cf. Sec. 1.2.

The monaural part of biological echo suppression corresponds to the fast inhibition
in our model. It has a maximum at about 2 ms [77], is realized physiologically in
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Figure 2.7: Experimental setup and future application. A pair of Oktava MK 012-
01 microphones is used to record test sounds in a natural echoic environment, our
office. The goal is to make our framework for echo suppression suitable for real-time
processing in a multisensory robotic system, LOLA. Picture of LOLA by courtesy
of the Institute of Applied Mechanics, TUM.

the cochlear nucleus [191], and has been theoretically analyzed before by Bürck and
van Hemmen [28]. As for the binaural part of echo suppression, things are more
complicated by nature. In general, binaural echo suppression is slower than the
monaural one [12,191]. Furthermore, it has been shown that a long-lasting inhibition
in the dorsal nucleus of the lateral leminiscus, called persistent inhibition, is involved
in echo suppression, and stems from binaural mechanisms. Under in vivo conditions
it persists up to 17 ms after stimulus offset, which suggests a correspondence of
persistent inhibition and the slow inhibition in our model [146]. Interestingly, Pecka
et al. [146] emphasize that their elaborate neuronal model can reproduce the “Clifton
Effect” where, depending on the circumstances, echoes are alternately perceived as
separate objects or not [38]. So the binaural model of Pecka et al. is able to suppress
the conscious localization of the echo but at the same time allows the unconscious
perception of its presence in some situations [146]. In other words, a binaural
inhibitory mechanism does prevent the formation of a localizable auditory object
– just as our “slow inhibition” hinders the perception of the echo as an object by
reducing the steepness of the echo onset.

The analogy between the results of our framework Sec. 2.3 and biological echo sup-
pression suggests a biomimetic application of our approach. Figure 2.7 shows the
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experimental setup we are currently using for evaluating our framework in a natural
echoic environment, our office. The gained insights are aimed at an application in
the humanoid walking robot LOLA of the Institute of Applied Mechanics, TUM.
LOLA currently is only equipped with two cameras as sensory system. In coopera-
tion with Dipl.-Ing. Thomas Buschmann the addition of two stereo microphones as
shown in Fig. 2.7 will not only add the capability of omnidirectional sound source
localization to the robot but also the potential for multimodal navigation and object
identification. Such a multimodal approach is advantageous in an adverse environ-
ment, for instance when it comes to the identification of both spoken voice and
corresponding speaker in a dynamic setting such as the cocktail party scenario.

In summary, our model can reliably extract an auditory signal that has been cor-
rupted by different echo functions. Namely, the neuronal implementation gives
reliable results and hence links smoothly to known psychophysical and physiological
phenomena. Furthermore, our approach connects to established algorithms for echo
suppression in technical systems. The approach thus underlines the power of a uni-
versal mathematical principle, that of stochastic optimality, applied to a biologically
motivated problem leading to a shared understanding of both biological and techni-
cal solutions. The model can in principle be extended towards working in a dynamic
environment by a flexible adaptation of the two model parameters. This is to be
realized in cooperation with the Institute of Applied Mechanics for making LOLA
a multimodal robot. The massive feedback projections that exist in the auditory
brainstem could serve as a model for such a parameter adaptation. Having set up
a general theoretical framework for echo suppression, a –as we could see earlier in
section 1.2– necessary prerequisite for the extraction of auditory objects, we now
extend the presented framework to processing in the spatial domain in the next
chapter before dealing with the formation of auditory objects in chapter 4.



Chapter 3

Framework for optimal stimulus
reconstruction in space-time

Our approach for optimal echo suppression in chapter 2 can be generalized into a
more universal framework for optimal stimulus reconstruction in space-time [27].
We do this by first defining the generalized problem of stimulus reconstruction in
space-time and then solving the ensuing ansatz by minimizing the expectation value
of a squared error between estimated and real signal, similar to our proceeding
in the last chapter. We show that the generalized framework can be implemented
neuronally and provide a step-by-step guidance for the application of our framework
to arbitrary biological sensory systems. We complete our extension of the optimal
approach of chapter 2 to spatial processing with visual processing as an examplary
application.

3.1 Definition of the generalized problem

Generally speaking, an object generates a stimulus sx(t) varying in time t and
position x in the external world. The corresponding signal may be, for instance, the
time-dependent sound pressure at a particular location or may denote the presence
of edges or movement at a particular position within the visual field.

The signal induces a response ri(t) in a set of N sensory detectors. Depending on
the problem at hand a single detector i with 0 ≤ i ≤ N can be a complete sensory
organ, such as the hearing system as a whole we considered in the last chapter, or a
part of a detector array such as a specific interval of best frequencies in the cochlea.
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In principle, the detector combines information from past signals within the whole
sensory space. The response is therefore described by

ri(t) =

∫
all space

dx

∫ t

−∞
dτ sx(τ)hxi (t− τ) (3.1)

where the transfer function hxi (t) incorporates the physics of signal transmission and
detection, compare (2.1). The transfer function can be different for each detector i.
Auditory transfer functions, for example, incorporate the position of sound source
and ear with respect to the head midline, and therefore differ between right and
left ear. In general, we can safely assume that hxi (t) = 0 for large values of |x|
and t. This reflects our intuition that events occuring far away or long ago will not
influence the state of a sensor. We will need this property later on. Moreover, since
any detector can only react to temporal-causal, i.e., past signals we set hxi (t) = 0
for t < 0. We can then rewrite the response function (3.1) with adapted integration
limits as a convolution with respect to time,

ri(t) =

∫
dx

∫ ∞
−∞

dτ sx(τ)hxi (t− τ) =:

∫
dx (sx ? hxi )(t) . (3.2)

We see that (2.1) is a special case where we focus on the temporal aspect and omit
spatial information. Equation (3.2) describes the response of an ideal system. In
biological systems the quality of the detector response is limited by at least three
factors.

First, information may get lost during the transfer from the outside object to the
inside sensory system. Second, noise influences all steps in the detection and recon-
struction process [54]. Finally, limitations of the neuronal hardware, for instance,
the limited dynamic range of receptors, constrain possible solutions; see Sec. 3.4 for
details.

Within our mathematical model we incorporate these three restrictive factors by in-
troducing additional noise terms. Accordingly, a term describing background noise
ξx(t) must be added to the signal. Furthermore, we assume that transfer func-
tion and sensory response are hampered by additional noise terms ηxi (t) and χi(t),
respectively. Consequently (3.2) is modified so as to read

ri(t) =

∫
dx [(sx + ξx) ?(hxi + ηxi )](t) + χi(t) . (3.3)

To reconstruct the estimated signal from the detector responses ri(t), the above
transformation must be “inverted” in some appropriate way. We therefore calculate
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li
x(t) + λi

x(t)hi
x(t) + ηi

x(t)

sx(t) + ξx(t) ri (t) + χi (t) ŝx(t)

Figure 3.1: Physical mapping : signal sx(t) with background noise ξx(t) is mapped
onto a noisy receptor response ri(t) + χi(t) through the noisy transfer function
hxi (t)+ηxi (t). Optimal stimulus reconstruction: the (possibly noisy) inverse transfer
function lxi (t) + λxi (t) gives an estimate ŝx(t) of the signal.

Signal sx(t) + ξx(t)
Transfer function hxi (t) + ηxi (t)
Receptor response ri(t) + χi(t)
Inverse transfer function lxi (t) + λxi (t)
Estimated signal ŝx(t)

Table 3.1: Functions and error terms describing detection and processing of sensory
information.

the time-dependent inverse transfer functions lxi (t) between detector i and the map
at position x. When applying lxi (t) to the receptor responses at i we obtain the
estimate

ŝx(t) =
∑
i

[ri ?(l
x
i + λxi )](t) (3.4)

of the original signal sx(t), analogously to (2.2) in chapter 2. Here the hat on ŝx(t)
denotes a reconstruction and the term λxi (t) represents the noise due to the concrete
realization of the theoretical inverse transfer function. We note that in contrast to
elsewhere [144, 150] the present model is non-iterative. This will result in a purely
feedforward network structure when it comes to a neuronal realization in section 3.4.

Figure 3.1 illustrates the complete mathematical procedure of sensory information
processing. All the relevant terms are summarized in table 3.1. In the next section
we will indicate how to calculate inverse transfer functions lxi (t) that enable optimal
signal reconstruction.

3.2 Framework for optimal reconstruction

We want to tune our sensory system to optimally reconstruct not only one specific
situation but the typical environment. In other words, biologically relevant signals
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belong to a class of signals that we denote as “typical”. Consequently a specific
sensory signal is a concrete realization of a class of typical, biologically relevant
signals. That is, it is a stochastic quantity. We therefore minimize the expectation
value of the squared difference between signal and reconstruction.

This is possible because all quantities and functions (cf. Fig. 3.1) involved in both the
process of physical mapping and the neuronal process of optimal signal reconstruc-
tion are self-averaging; cf. Sec. 3.4. The mathematical definition of self-averaging
allows for a description in terms of expectation values [27].

To derive the inverse transfer functions lxi (t) that enable optimal signal reconstruc-
tion for a class of typical signals, we can next minimize the expectation value of the
squared error between estimated and real signal in space-time

E{lx(t), t} :=

〈∫ t

t−T
dt′
∫

dx
[
sx(t′)− ŝx(t′)

]2〉
=

∫ t

t−T
dt′
∫

dx
〈[
sx(t′)− ŝx(t′)

]2〉
.

(3.5)

Here the brackets 〈.〉 denote the expectation value with respect to the different types
of noise, and T is a typical processing time.

To be mathematically precise, an expectation value is an integral on a probability
space with respect to a probability measure p. For arbitrary functions f and g,
if 〈|f − g|2〉 = 0 then f = g with respect to p or, physically, looking at the world
through p’s glasses: what p finds important pops up clearly whereas what p finds
“irrelevant” has hardly any weight. The latter need not correspond to what we
“think” ourselves; see van der Waerden [186].

A quadratic form of the error term has been proven to be a reasonable and prac-
tical choice in many physical optimizing problems; see, e.g., [130]. In case of in-
dependent Gaussian error terms, the formulation via a quadratic error is under
certain conditions identical to results obtained by means of maximum-likelihood es-
timates [27,91,98].

Mathematically, the error (3.5) is a functional assigning to every set of inverse trans-
fer functions one specific value. Minimization of functionals in the above integral
form is a central and well-studied aspect of the calculus of variations [24,37,65,93].
For the present situation the first variation with respect to every inverse transfer
function lj(x, t

′) is to vanish. That is,

∂
〈

[sx(t′)− ŝx(t′)]2
〉

∂ lxj (t′)
= 0 for every j. (3.6)
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In order to solve (3.6), we have to substitute (3.4) for the estimate ŝx(t) and replace
ri(t) by its description (3.3). Expanding the square, we encounter expectation values
of products consisting of varying combinations of noise and signal terms. Here we
assume that all noise terms as well as the signal itself are stochastically independent
of each other so that the expectation of a product of independent term factorizes;
for instance, 〈

sx(t)ηx
′

i (t′)
〉

=
〈
sx(t)

〉〈
ηx

′
i (t′)

〉
.

For a product consisting of the same kind of term we need to consider the definition
of the autocorrelation of a quantity fx(t) as given by〈

fx(t)fx
′
(t′)
〉

= δ(x− x′)δ(t− t′)(µ2
f + σ2

f ) (3.7)

with µf the mean and σf the variance of the quantity fx(t). That is, we assume
in a first step that the values for different spatio-temporal positions are completely
uncorrelated.

Since the means of all noise terms µf vanish we get the following correlation terms〈
ξx(t)ξx

′
(t′)
〉

= δ(x− x′)δ(t− t′)σ2
ξ , (3.8a)〈

χi(t)χj(t
′)
〉

= δijδ(t− t′)σ2
χ , (3.8b)〈

ηxi (t)ηx
′

j (t′)
〉

= δijδ(x− x′)δ(t− t′)σ2
η , (3.8c)

with |x| < xmax and 0 < t < tmax . (3.8d)

Through the final equation we take into account that the noise ηxi (t) vanishes for
large values of t and |x|, in the same way as for the transfer function hxi (t).

The autocorrelation (3.7) of the signal sx(t) itself depends on the problem at hand.
Either the detectors of the sensory system measure absolute signal strengths (µs),
e.g., vision, or modulations of a mean value of the signal (deviation σs), e.g., au-
dition. In any case, one has to choose the corresponding biologically relevant term
and put the others equal to zero. In the following, we choose the expectation value
µ2
s of the signal as the appropriate quantity and therefore take σ2

s zero,

〈
sx(t)sx

′
(t′)
〉

= δ(x− x′)δ(t− t′) µ2
s . (3.9)

While (3.8) incorporates reasonable assumptions for all noise terms, the correlation
(3.9) for the signal is a strong hypothesis. Signals are characterized by spatio-
temporal continuity. That is, objects and their corresponding signals usually do not
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disappear from one point in time or space to the next. A Gaussian correlation term〈
sx(t)sx

′
(t′)
〉

= A exp
(
−
∣∣x− x′

∣∣2/(2σ2
x)
)

exp
(
−
∣∣t− t′∣∣2/(2σ2

t )
)
, (3.10)

for instance, can take into account correlations between neighboring points in space
and time. Here σx and σt are typical spatial and temporal correlation scales. The
application of such a Gaussian correlation, however, does not greatly alter the further
derivation but only smoothens the final estimated signal; for details see [27]. For
reasons of clarity, we will therefore stick to the relation (3.9).

Returning to the (3.6) we have to solve it, and in so doing apply the correlations
(3.8) and (3.9) so as to arrive at

lxj (t)

[
σ2
χ + (µ2

s + σ2
ξ )

∫
|y|<ymax

0<τ<tmax

dydτ σ2
η

]
+(µ2

s+σ2
ξ )
∑
i

∫
dy
[
(hyi ? l

x
i ) ◦hyj

]
(−t)

= µ2
sh

x
j (−t) ; (3.11)

again we refer to [27] for an extensive calculation. The open circle ◦ denotes the
autocorrelation integral

(a ◦ b)(t) :=

∫ ∞
−∞

dτ a(τ)b(t+ τ) . (3.12)

In order to simplify (3.11), as in the last chapter, we define two new noise measures,

τ2 :=
σ2
ξ

µ2
s

(3.13)

and

σ2 :=
σ2
χ

µ2
s

+

∫
|y|<ymax

0<τ<tmax

dydτ
σ2
η(µ

2
s + σ2

ξ )

µ2
s

. (3.14)

The parameter τ represents an inverse signal-to-noise ratio. It is therefore often
reasonable to assume a small value of τ . The parameter σ, on the other hand, de-
scribes the overall measurement noise by relating detection and transmission noise,
σχ and ση, to the signal mean amplitude µs. A priori, its value cannot be assumed
to be small and has to be adjusted according to the situation at hand.

In order to further simplify (3.11) we switch to Fourier space, where convolution (3.2)
and correlation (3.12) become ordinary multiplications combined with complex con-
jugations. Denoting Fourier transforms by capital letters and the complex conjuga-
tion by an overline, (3.11) simplifies to∑

i

Lx
i

[
σ2δij + (1 + τ2)

∫
dy Hy

i H
y
j

]
= Hx

j (3.15)
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where we have used (3.13) and (3.14).

Equation (3.15) is the main result of our derivation. In principle, it allows us to
calculate the inverse transfer functions Lx

i for optimal signal reconstruction. A cal-
culation of the second variation confirms that the inverse transformation we have
found indeed minimizes the error [27]. For convenience we will introduce an alter-
native notation in the next section.

3.3 Alternative notation using matrices

To rewrite (3.15) in a more practical notation we introduce, very similar to (2.3),
“matrices” H and L by putting

H[ix] = Hx
i , L[xi] = Lx

i . (3.16)

The notations illustrate that transfer functions and inverse transfer functions are
linear transformations from a continuous space (the outside world) into a discrete
space (the neuronal reconstruction), and vice versa. H and L are therefore only for-
mally matrices with a spatial coordinate x varying in R. The matrix multiplication
involving the spatial coordinate must consequently be understood as an integra-
tion. A discretization of space, as is usual in numerics, would lead to a true matrix
formulation.

In addition, we introduce the covariance matrix C(R) of the receptor response R as
described, e.g., in [91,98]. In our case we find

C(R) :=
〈

(R− 〈R〉)(R− 〈R〉)T
〉

(3.17)

= µ2
s

(
σ2
1 + τ2H ·HT

)
(3.18)

where the superscript T denotes the matrix transpose and 1 the identity matrix.
Equation (3.15) now simplifies to

M·LT = H with M := µ−2
s C +H ·HT . (3.19)

Given M as an invertible matrix, denoted as the “model matrix”, the solution for
L turns out to be

L =
(
M−1H

)T
= HT

(
µ−2
s C +H ·HT

)−1
. (3.20)

This equation gives a unique solution for the optimal reconstruction for any given
set of transfer functions and noise constants (σ, τ). Using (3.4) in matrix form we
find

Ŝ = L ·R (3.21)
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Figure 3.2: Neuronal realization of optimal stimulus reconstruction. Each sensor
(here hair cells labeled i) connects to several neurons that represent sensory space.
These neurons (encoding the location x) may receive (multiple) connections from
each sensor. Each connection has a well-defined strength and temporal delay t. In
this way, the transformation lxi (t) can be reliably represented in a neuronal network
[58].

as estimated signal from the measured response vector R.

3.4 Neuronal realization of the framework

In section 2.3 we transferred the mathematical model for optimal echo suppression
to a neuronal realization. We now translate the general mathematical algorithm
of optimal stimulus reconstruction into a concrete neuronal context and justify the
validity of this translation. We therefore verify whether the assumptions we have
employed in the above derivation are fulfilled in neuronal processing. That is, we
check whether the neuronal quantities and functions of optimal stimulus reconstruc-
tion are self -averaging. To this end we note on the one hand that firing of neurons
is correlated with neuronal input and that neuronal noise can be described by a
stochastic process, e.g., a Gaussian one; we will see below why. Our framework can
cope with any distribution of neuronal noise as long as the mean is zero. On the other
hand the optimal inverse transfer functions lxi (t) are learned synaptic connections
between the internal representation of a sensory modality and the corresponding
sensory input, hence reflect properties of the underlying learning process. Effective
learning is slow because it needs many independent repetitions. Accordingly time
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scales for learning and individual realizations of an external signal can be separated.
In other words, learning is a self-averaging process where only averaged quantities
enter by the very nature of the process; see [101]. Quantities and functions within
the physical mapping process are self-averaging as well [27]. In conclusion, the con-
ditions needed to exploit the mathematical framework as derived above are fulfilled.

As a consequence, our neuronal realization of optimal echo suppression is valid, and
we can even translate the general inverse transfer functions lxi (t) into neuronal hard-
ware. In such an architecture, the actual spatio-temporal processing is performed
by the synaptic connections between neurons and detectors. Spatial processing is
governed by the topographic structure of the network that defines which detector is
connected to which neuron. Temporal processing on the other hand is determined
by the distribution of delays within the set of connections. Figure 3.2 shows an
example of such a neuronal setup.

In the present derivation we have already taken into account the discrete character
of detectors and the ensuing representation through a discrete number of inverse
transfer functions. Furthermore, the discrete, “spiky” character of response and
reconstruction by the neuronal realization is already taken care of by the noise terms
χi and λxi . That is, we are left with the temporal discretization of the inverse transfer
functions lxi (t). This discretization is realized by a sampling procedure where a
number of dendrites with appropriate delays is chosen to represent the complete
lxi (t). It has indeed been shown that a limited number of synaptic connections
suffices to sample the time course of lxi (t) [58]. Even more so, the response of the
neurons representing sensory space is robust with respect to the sampling method
of the temporal delays [115] as well.

Consequently, as illustrated by figure 3.2, our unified framework can be implemented
by means of a simple feedforward network of excitatory and inhibitory connections
in order to form a neuronal representation of an arbitrary input [58, 115, 170]. It
does not, however, explain how such a connectivity pattern is established in a real
biological system. Here the correct synaptic connections have to be learned. It has
been shown [56, 60] that a teacher such as the visual system can generate correct
synaptic strengths so that a representation can indeed develop in other modalities
by means of (supervised) STDP [27]. Thanks to the present method we can compare
the learned connectivity pattern with the optimal one as given by (3.15) and (3.20).

A meaningful comparison of the mathematically optimal network architecture with
an actual biological setup, though, may not be straightforward. In real biological
systems, the reduction of the error to its minimum as in (3.5) –that is, realizing
the optimal connectivity– may not be possible because of neuronal limitations. The
limited neuronal accuracy that results can be included into our framework by re-
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ducing the error only below a certain error threshold, which may even vary in space.
For instance, the sampling arrays of animal eyes are non-uniform, with different
parts of the visual field being sampled with different spatial and spectral resolu-
tion [85, 178, 198]. Such a focus on specific spatio-temporal domains can mathe-
matically be realized by introducing a positive weighting function into the integral
in (3.5). Accordingly, when reducing the global error below a certain threshold,
the areas within the focus of the weight function have to reach a higher level of
optimization, i.e., of resolution, than the rest.

Taken together, the formalism of optimal stimulus reconstruction provides us with
an optimal neuronal connectivity pattern for stimulus reconstruction in space-time.
The optimal echo suppression we have investigated in chapter 2 is one potent exam-
ple for stimulus reconstruction in time, but the framework can be extended towards
many possible applications in understanding neuronal processing of sensory signals.
We now want to fathom the capabilities of the framework by providing an easy how-
to guide for the application of our framework to other sensory systems and illustrate
this guide with an exemplary application of our framework to visual processing.

3.5 Exploring space-time as non-physicist

Up to now we have shown that an optimal connectivity pattern between sensory
system and signal representation can be calculated [Fig. 3.1 and Eq. (3.15)] and
that it can be realized neuronally (Fig. 3.2). We now focus on concrete applica-
tions of our framework. To this end, we provide a simple how-to that summarizes
the mathematical concepts discussed above. Following this recipe step by step we
then demonstrate how to arrive at optimal stimulus reconstruction not only in the
temporal but also in the spatial domain.

We bring to life the generalized mathematical framework by presenting a quick
guide that allows also the mathematically untrained to find the optimal network
connectivity in a realistic biological setup:

• First, we derive the transfer function hxi (t) that determines the response of
the detector i to a stimulus pulse that occurred t time units ago at position x.

• Next, we calculate the Fourier transform Hx
i of the transfer function hxi (t).

• We choose suitable values of τ and σ. In general the noise-to-signal ratio τ can
be assumed to be much smaller than 1 for any measurable signal. In contrast,
σ needs to be estimated in dependence upon the situation at hand [57,58,170].
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• We then calculate the matrix entries Mij as given by Eq. (3.19) and invert the
model matrix M.

• We multiply the inverted matrixM−1 by the vector Hx
i so as to find the input

connection strengths Lx
i .

• Finally, we calculate the inverse Fourier transform of Lx
i so as to find the

connection strengths lxi (t).

In the following we will demonstrate the power of the above how-to through an
example, the derivation of optimal reconstruction in the spatial domain in the vi-
sual system.Within the visual system each sensory neuron is basically tuned to a
particular spatial position. In mathematical terms, every retinal neuron i receives
input from a spatial position xi, its preferred position, and neighboring positions
within a region determined by resolution ρ. The transfer function corresponding to
such a sensory system is

hxi (t) = exp

(
−|x− xi|2

2ρ2

)
δ(t) , (3.22)

and its Fourier transform reads

Hx
i = exp

(
−|x− xi|2

2ρ2

)
. (3.23)

Within our exemplary setup we assume that the signal position x = (u, v) encodes
positions u, v ∈ [−1/2, 1/2]. As a reminder, we have rescaled positions so as to make
them dimensionless and fit in the square [−1/2, 1/2]2. From the above ansatz (3.22)
and (3.15) we calculate the matrix components

Mij = σ2δij + (1 + τ2) exp

(
−|xi − xj |2

4ρ2

)

×
[
erf

(
ui + uj − 1

2ρ

)
− erf

(
ui + uj + 1

2ρ

)]
×
[
erf

(
vi + vj − 1

2ρ

)
− erf

(
vi + vj + 1

2ρ

)] (3.24)

where erf(x) := 2√
π

∫ x
0 exp

(
−y2

)
dy is the error function. To find the connection

strengths lxi , we numerically calculate the model matrix M for a discretized space
and parameters σ = 1 and τ = 0. With the matrix M we then determine the
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Figure 3.3: Spatial receptive field. Connection strengths to a neuron encoding
the position (u, v) = (0.1,−0.2). The sensory neurons are distributed on a 40 ×
40 grid with preferred positions u, v ∈ [−1/2, 1/2] and a tuning curve width ρ =
0.9. We chose σ = 1 and τ = 0. A clear center-surround receptive field emerges.
Receptor neurons that have a preferred position matching that of the encoding
neuron have excitatory connections (white spot). Receptor neurons having a slightly
off-set position inhibit the encoding neuron (dark circle). Neurons with preferred
positions far away from the encoding neuron have connection strength zero (gray).

connection strengths L. By an inverse Fourier transformation we can numerically
obtain lxi for each position x as shown in figure 3.3. Here the connections from
all receptors to the encoding neuron i, i.e., its receptive field, are plotted for an
arbitrary preferred position xi = (0.1, −0.2). Clearly, the receptors encoding the
preferred position have strong projections to the encoding neuron (bright spot in
Fig. 3.3) but, interestingly, the receptors that encode slightly differing locations
contribute negatively (dark circle in Fig. 3.3).

Such a center-surround profile is called “Mexican hat” and is, e.g., realized by lat-
eral inhibition, a well-known phenomenon first described by Mach [119] in the visual
system in 1866. Up to now this mechanism, studied in the mammalian visual sys-
tem [96, 187], has been discovered as well in, for instance, insect vision [89], snake
infrared vision [170, 177], electric field detection in electric fish [169], and surface
wave detection in the back swimmer [133].

In summary, the above examples show the importance of a center-surround recep-
tive field, the natural consequence of our model. Our approach thus explains lateral
inhibition as an optimal strategy for the reconstruction of a spatially blurred stim-
ulus. Therefore we can record that the mathematical concept of optimality is a
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powerful tool for linking characteristics of the physical environment and the bio-
logical sensory apparatus to the characteristics of the neuronal processing of the
corresponding sensory information. This linking can be consolidated by the above
quick guide so that even the mathematically untrained can apply our framework to
the specific need at hand.

In the context of this thesis, stimulus reconstruction in space-time leads to the
issue of object formation. Any object exists in space-time and hence generates
spatio-temporal stimuli. The reconstruction of these stimuli alone, however, is not
sufficient; for further processing objects need to be identified. In the next chapter
we mathematically analyze different fundamental strategies for the identification of
signal periodicity in neuronal systems so as to allow for auditory object formation.
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Chapter 4

Signal periodicity and auditory
object formation

In section 1.1 we emphasized the important role of common amplitude modulations
of different frequency components for auditory object formation. In the following,
we will discuss how such amplitude modulations (AM) can be identified neuronally.
We start with a conceptual overview on periodicity in the neuronal and acoustic
context.

4.1 Periodicity in neuronal and acoustic activity

The setup we study is of universal interest: it aims at explaining not only the process-
ing of amplitude modulations in mammals but also the more generic identification
of periodicity in neuronal signals. Mammals feature a cochlea as vibration-sensitive
organ that decomposes acoustic signals into their constituting frequencies. Each fre-
quency is further processed in a distinct, frequency-specific neuronal channel. Hence
periodic modulations in the neuronal activity of such a channel reflect amplitude
modulations of the signal. Other animals such as spiders, frogs, or surface feeding
fish detect vibratory signals as well. Even though their vibration-sensitive organs,
in contrast to the cochlea, do not display frequency specificity [6,7,41,95], these an-
imals can distinguish the frequency of vibratory signals [15,18,50,51,97,128] on the
surface of water [5,13,16,107], in spider webs [123], or on plant leaves [5,81]. Hence,
in animals without a cochlea or other frequency-specific organs the periodicity of
vibratory signals needs to be identified neuronally, similarly to the identification of
amplitude modulations in mammals with a cochlea.
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Figure 4.1: Overview of neuronal circuits for periodicity identification. There are
four groups of neuronal networks that can identify amplitude modulations (AM).
Identification of AM either arises from excitatory–excitatory (left) or excitatory–
inhibitory (right) synaptic interaction, and both types of interaction can be realized
by means of a feedforward (top) or a recurrent (bottom) network. The delay lines
∆, crucial for periodicity identification, are indicated as excitatory (+) or inhibitory
(−) connections. The resulting four archetypes of neuronal networks are topic of
the present chapter.

How does one identify periodicity in neuronal activity? As mentioned in section 1.1
it is known that there are neurons selectively responding to specific modulation
frequencies [92, 163, 176]. The question is how such a selectivity, a neuronal band-
pass characteristic, can be explained. On the level of single neurons a band-pass
response can emerge from the cell membrane dynamics. Here the spike-generating
mechanism can induce oscillations of the membrane potential that follow a spike and
thus enhance the firing at certain instants of time after the first spike [88]. Alter-
natively, inhibitory input can cause such an oscillation of the membrane potential,
the so-called “post-inhibitory rebound” [110]. On the level of neuronal circuitry
a band-pass characteristic can be realized by either excitatory–excitatory synaptic
interaction or excitatory–inhibitory synaptic interaction, where each type of interac-
tion can be realized in a recurrent or a feedforward network; cf. Fig. 4.1. As we will
see in the first part of this chapter, the excitatory–excitatory interaction basically
works like a coincidence detector where two spikes can only evoke neuronal activ-
ity if they arrive at a neuron simultaneously, that is, if they arrive in phase. The
timing of the spikes can either arise from delays [59,114] –the neuronal analogon to
autocorrelation– or from “chopper neurons” [127], neurons that produce a series of
well-timed spikes. Similarly, a band-pass characteristic arises if a single excitatory
spike strong enough to evoke neuronal activity is combined with a delayed inhibitory
spike that arrives in anti-phase to the excitatory input [70]. Furthermore, band-pass
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Figure 4.2: The left panel shows a complex signal wave form, composed of three
frequency components (solid grey) and its envelope, the instantaneous amplitude
(dotted black) in arbitrary units [a.u.]. The interference of the frequency compo-
nents causes amplitude modulation on a slow scale. One of the modulation frequen-
cies fm (∼ 100 Hz) has been indicated in the plot.
The right panel shows the Fourier transform of the signal (solid grey) and the en-
velope (dotted black) in arbitrary units [a.u.]. Although the signal consists of three
frequencies in the 1500 − 2000 Hz range, the envelope shows only slow variations,
mainly below 500 Hz. As the envelope has a non-zero mean value the Fourier spec-
trum shows an additional peak at 0 Hz.

characteristics within such an excitatory–inhibitory setup can also arise from differ-
ent time constants for excitation and inhibition [29,136]. This will be elaborated in
the second part of this chapter.

Before presenting the various models for the neuronal identification of signal peri-
odicity, it is important to review some general characteristics of vibratory signals.
We have to bear in mind that vibratory signals are not limited to air-borne sound
but may propagate in a variety of substrates such as sand [2, 23], the water sur-
face [14, 17], spider webs [106, 124], or leaves [121]. All vibratory signals consist of
a time-dependent change in pressure or medium deflection. Even with no explicit
modulation present in a signal, interference effects between different frequency com-
ponents of a natural signal usually lead to complex signal wave forms; cf. Fig. 4.2.
In such a complex signal wave form, fast periodical variations in signal strength are
normally designated as spectral content, or frequencies; slow variations are denoted
as temporal content. The slowly varying amplitude of the signal is called envelope.
In general the distinction between temporal and spectral content is a matter of con-
vention. In our setting, we consider all periodic signal fluctuations which can be
resolved neuronally as temporal content, that is, signal variations with frequencies
lower than approximately 500 Hz are temporal.
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In the following, we will mathematically describe two fundamental neuronal ar-
chitectures for detecting signal periodicity, one based on excitatory–excitatory and
one based on excitatory–inhibitory interaction. We have restricted ourselves to a
minimalistic implementation of the models and do not take into account specific
physiological details. There are two reasons for doing so. First, discussing simple
models allows a detailed mathematical treatment leading to a thorough compre-
hension of the capacities and limitations of the circuitry. Second, since periodicity
identification is a capability of many animals, it is important to understand general
mechanisms rather than any specific realization.

4.2 Identification of signal periodicity in an excitatory–
excitatory setup

We start with the analysis of periodicity identification in the purely excitatory setup,
without any inhibitory connections.

4.2.1 Model essence: excitatory delay lines

The goal of our models will be to identify slow fluctuations present in a specific
input signal. Mathematically, periodic features of a signal s(t) can be detected by
calculating its autocorrelation χ (see e.g. [126]), defined by

χ(∆) = lim
T→∞

1

2T

∫ T

−T
dτ s(τ)s(∆ + τ) . (4.1)

The autocorrelation has maxima for correlation times ∆ corresponding to the fre-
quencies present in the signal, but also for the periods of the envelope fluctuations,
cf. Fig. 4.2. The above calculation immediately suggests two neuronal mechanisms
for detecting periodicity as illustrated in figure 4.3.

The first model consists of a neuron that receives an input signal sin(t). As the neu-
ron spikes, the output spike is fed into a pathway that ultimately projects onto the
neuron itself with a particular delay ∆, corresponding to the correlation time above.
This pathway need not be a direct connection from the axon onto the neuron’s own
dendritic tree. One or more processing steps may occur before the output from the
neuron returns but a well-defined delay needs to be associated with the pathway.
This matter will be further discussed in section 4.2.4. Because of the delay loop,
the neuron detects correlations on a time scale ∆. An array of such neurons, all
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Figure 4.3: There are basically two ways to extract frequency or timing information
from a signal relying on excitatory–excitatory neuronal interaction with spiking
neurons. The first method (upper panel) uses a recurrent loop with time delay
∆. This we call the recurrent model. The neuron is driven by a continuous input
function sin. If the neuron emits a spike at time t = t0, the firing probability is
enhanced at time t = t0 + ∆. Signal periodicity with characteristic time ∆ then
leads to a higher number of spikes in the output signal sout.
The second method (lower panel) is based on the same idea, but uses a feedforward
network, and is called the feedforward model. The first neuron, again driven by sin,
sends two spikes to the output neuron with a delay differing by an amount ∆, e.g.,
using interneurons. Again, correlations in the input signal with period ∆ lead to an
augmented firing probability for the output neuron.

with different ∆, can then function as a periodicity analyzer. We call this model
the recurrent model.

The second model consists of a two-neuron network. If the input neuron fires, its
spikes are fed into two pathways to the output neuron. The temporal durations of
these pathways differ by an amount ∆. The output neuron will have a high firing
probability if spikes arrive from the two different pathways at the same time. Again,
the network reveals correlations on time scale ∆. We call this model the feedforward
model.

Both types of networks have been discussed before in the literature. To our know-
ledge, the first author to propose a network of delay lines to detect signal periodicity
was Licklider [114]. More recent work on feedforward-like models has been done by
Borst et al. [20] as well as Meddis and O’Mard [127]. Both articles presented a
very detailed model, based on specific properties of neuronal circuitry found in
the mammalian auditory system. Cariani [34, 35] discussed a recurrent-like model.
He, however, used an overly simple model in which formal neurons manipulating
strings of 0s and 1s are used. None of these authors have provided a detailed
mathematical analysis of their models. In this section, we provide this missing
analysis and use fairly realistic neuron models for our simulations without settling
on a specific neuronal architecture. We start with analyzing the characteristics of
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our models in more detail.

Detailed description of the recurrent model

The recurrent model consists of Nout output neurons that all receive the same exter-
nal continuous input sin(t). All input neurons have a recurrent connection that feeds
output spikes back into the neuron itself. The recurrent spikes are characterized by
a delay ∆ that is different for each neuron and has a synaptic coupling strength J .
The feedback current is described by a general function g (see also section 4.2.2) for
which we will take an α-function in our simulations [66]

g(t) =
t− t0 −∆

τ2
e−(t−t0−∆)/τθ(t− t0 −∆) . (4.2)

The width of the α-function is given by τ , t0 is the spiking time of the neuron, and
θ denotes the Heaviside step function, i.e., θ(t) = 0 for t < 0 and θ(t) = 1 for t ≥ 0.

The neurons are simulated as leaky integrate-and-fire (LIF) neurons [66]. Their
firing dynamics are governed by a differential equation for the membrane potential
V ,

dV

dt
= −(V − V0)/τmem +

1

Cmem
(Iext + Inoise) . (4.3)

The potential changes under influence of an external input current Iext that drives
the neuron. If there is no input current the potential relaxes to a resting value V0

with characteristic membrane time constant τmem. The last term, Inoise, accounts for
internal noise of the neuron that will be needed in the case of the recurrent model.
The constant Cmem is the membrane conductance of the neuron determining how
effectively the current can change the membrane potential.

If the potential in (4.3) reaches a certain threshold value Vθ a spike occurs and
the potential is reset to a value VR. Refractoriness of the neuron can be taken
into account by disallowing the neuron to fire for a certain period after spiking,
by changing the threshold voltage temporarily to a higher value, or by temporarily
ignoring the input current (see also [66]).

To get the model to work the output neurons must fire a first spike to start with, since
the feedback loop needs input, which can only come from the neurons themselves.
It is not possible to use supra-threshold input since this would imply that all output
neurons would fire in response to the input, regardless the length of their delay loop.
The solution is to use subthreshold input with added internal neuronal noise. Every
now and then the neuron will fire. But only if the delay loop length has the right
value the neuron will be able to resonate in response to the input. The mechanism
described here is called stochastic resonance, reviewed in detail elsewhere [62].
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Detailed description of the feedforward model

The feedforward model consists of Nin input neurons, which we simulate as Poisson
neurons [79]. That is, we assume the firing of the input neurons to be a statistical
process, an inhomogeneous Poisson process. Such a Poisson process is defined by
three properties as we have mentioned in Sec. 2.3. First, the probability of finding a
spike between t and t+∆t is λ(t) ∆t, so λ(t) is the time-dependent firing probability
density or rate function. Second, the probability of finding two or more spikes in
[t; t+∆t[ is o (∆t), which means that we ignore their occurance for small ∆t. Third,
events in disjoint intervals are independent, i.e., a Poisson process has independent
increments.

The Poisson input neurons are driven by an external input sin(t). If one of the
input neurons fires, its spike is fed into an axon branching off to Nout different
output neurons. One spike reaches the output neurons directly, and another spike
resulting from the same event reaches the output neurons with a delay ∆. A specific
delay ∆ is associated with every output neuron; in this way, every output neuron
will turn out to encode a particular frequency f = 1/∆.

The output neurons are simulated as leaky integrate-and-fire (LIF) neurons without
noise, contrary to those in the recurrent model. If a spike is emitted at time t = t0
by any of the input neurons it leads to two postsynaptic current injections arriving
at the output neurons, again in the form of α-functions,

εdirect = J
t− t0
τ2

e−(t−t0)/τθ(t− t0) (4.4)

and

εdelayed = J
t− t0 −∆

τ2
e−(t−t0−∆)/τθ(t− t0 −∆) . (4.5)

The former spike travels to the output neuron without delay, and the latter arrives
with a delay ∆. The synaptic coupling strength is again given by the parameter J .

4.2.2 Analysis: delay and frequency selectivity

In this section we will mathematically discuss the behavior of the two types of
excitatory–excitatory periodicity detector. Explicit analysis of LIF neurons is in
general already quite difficult (for an extensive review, see [30, 31]). We will see,
however, that no explicit analysis of LIF neuron dynamics is needed to gain valuable
insight into the dynamics of our models. In fact, the key properties of the models
are independent of the specific type of neurons that are used.
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Recurrent model

The problem of analytic calculations using integrate-and-fire neurons lies in the
nonlinearity of the spike generation. In the case of the recurrent network we are
discussing here, the problem is even more difficult than usual since the feedback
introduces an extra complication into the system. We therefore simplify our dis-
cussion by considering Poisson neurons again. We will later compare the findings
obtained here with the simulations in section 4.2.3 to see whether the calculations
using Poisson neurons can serve to understand the dynamics of the LIF neurons
used in section 4.2.3.

We can describe the rate function λ of a single Poisson neuron projecting back to
itself with a particular delay time ∆ by the integral equation

λ(t) = sin(t) + J

∫ ∞
−∞

ds g(s; ∆)λ(t− s)

= sin(t) + J(g ? λ)(t) .

(4.6)

The rate function consists of the sum of the external input sin and the delayed
input from the recurrent loop, “smeared out” due to the finite width of kernel g.
The feedback strength is given by J , and we choose g to ensure causality [g(t) =
0 if t < 0] and to have unit weight∫ ∞

−∞
dt g(t) = 1 . (4.7)

In (4.6) the convolution integral of λ with the kernel g assumes that we may use
the expectation value of the firing rate λ to describe the neuron output instead
of a specific realization of the output. We thereby ignore the “spiky” character
of the neuron output. This approach is only correct for very high firing rates or,
mathematically equivalent, a large number of Poisson neurons with a low firing rate.
The total amount of output spikes must be high enough so that the output signal
is reliably sampled by the output spikes. An example of such a smooth convolution
of λ and g is shown in figure 4.4.

To solve (4.6) for the output firing rate λ we take the Fourier transform of the
equation. The Fourier transform of a function h is defined by

H(ω) = F [h(t)] (ω) :=

∫ ∞
−∞

dt e−iωth(t) (4.8)

and has the useful property that, when transformed, a convolution becomes an
ordinary product. Denoting the Fourier transform of each input term by a capital
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Figure 4.4: Stochastic fluctuations in the response of a Poisson neuron are smaller if
the firing rate is higher. The convolution of a signal s (inset) with the response kernel
g in black is compared to two explicit realizations of the firing process (normalized
in arbitrary units [a.u.] for comparison). The grey curve was obtained using about
40 spikes, the black dotted curve results from about 300 spikes. Clearly, a high
firing rate (or, mathematically equivalent, a large population of Poisson neurons) is
needed for (4.6) to apply.

letter we obtain

Λ(ω) = Sin(ω) + JG(ω)Λ(ω) . (4.9)

The solution is then given by

Λ =
Sin

1− JG
. (4.10)

The solution as a function of time can then be found by taking the inverse Fourier
transform

λ(t) = F−1 [Λ(ω)] (t) :=
1

2π

∫ ∞
−∞

dω eiωtΛ(ω) . (4.11)

Given any input function sin and response function g(t) we can now explicitly calcu-
late the firing probability of the neuron. In our simulations we will use an α-function
for g to model the response function [see (4.2)]. The Fourier transform of this re-
sponse function is given by

G(ω) =
e−iω∆

(1 + iωτ)2
. (4.12)

Since we are interested in identifying periodicity, we must know which frequency f
corresponds to a certain delay time ∆. A first guess would be to set f = 1/∆; but
since the response function transforms the recurrent signal this relation cannot be
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expected to hold exactly. We therefore consider the response of the system to an
incoming pure sine wave of frequency f and find the corresponding ∆ that maximizes
the amplitude of the response. We then have an explicit connection between the
delay ∆ and the signal frequency that is decoded optimally through this delay.

For harmonic input given by

sin(t) = A cos(ωt) = A cos(2πft) (4.13)

we calculate the response to be

λ(t) = L cos(ωt+ φ) , (4.14)

where φ is a phase that is not relevant for our further calculations and L is an
amplitude given by

L =
2(1 + ξ2)2√

J2 + (1 + ξ2)2 − J [2(1− ξ2) cos(ω∆)− 4ξ sin(ω∆)]
, (4.15)

with the definition ξ := ωτ . The amplitude L of the response is maximal if the
relation

2(1− ξ2) cos(ω∆)− 4ξ sin(ω∆) = 0 (4.16)

holds. The delay must therefore satisfy

∆ = ω−1

[
arctan

(
2ξ

ξ2 − 1

)
+ nπ

]
, (4.17)

with n = 1 if ξ > 1 and n = 2 for ξ < 1. If the width of the kernel g approaches
zero (ξ → 0) this relation indeed reduces to

∆ =
2π

ω
=

1

f
. (4.18)

As a more complicated and realistic example let us consider an input of the form

sin(t) =

∫ ∞
0

dσ B(σ) cos [σt+ φ(σ)] . (4.19)

Instead of a single harmonic component we now describe the input by a distribution
of input frequencies with arbitrary amplitude and phase. The Fourier transform of
such an input is given by

Sin(ω) =

∫ ∞
0

dσ B(σ)πeiφ(σ)ω/σ × [δ(σ − ω) + δ(σ + ω)] , (4.20)
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with δ(.) the Dirac delta function. Plugging this result into (4.10) and (4.11) gives
the solution for the firing rate of the output neuron

λ(t) =

∫ ∞
0

dσ B(σ)R

[
ei(φ(σ)+σt)

1− Je−iσ∆/(1 + iστ)2

]
, (4.21)

where R[x] denotes the real part of x. We note that the signal function (4.19)
need not be positive, although a negative firing rate certainly does not make sense
for a Poisson neuron. We therefore always use half-wave rectified signals in the
simulations. Unfortunately, exact calculations are not feasible in this case. In spite
of this drawback (4.21) captures the essence of the network response. If the solution
(4.21) is plotted for various input spectra B(σ) the amplitude of λ is largest if the
length of the delay loop ∆ corresponds to a frequency that is present in the input
signal. Due to its complicated form, (4.21) is of limited practical use. A better way
to gain insight into the model dynamics are the numerical simulations we provide
in section 4.2.3.

Feedforward model

For the analytic description of the feedforward model we will use an input population
of Poisson neurons which are, just as before, driven by an input sin(t) identical for
each neuron. We consider LIF neurons as output neurons. Every output neuron re-
ceives input from the Poisson neurons via two distinct pathways: a direct connection
and a connection with a delay ∆ which is different for each output neuron.

If we calculate the expectation value of the current that arrives at the output neurons
a sinusoidal function results. The response of LIF neurons to harmonic input is
difficult to calculate but several exact results have been presented by Burkitt [32]
as will be discussed below.

We start our calculations by considering input given by

sin(t) =
A

2
[1 + cos(ωt)] . (4.22)

The input current that one output neuron with a particular delay time ∆ receives
from the set of Nin input neurons is given by [referring to (4.4) and (4.5)]

εtotal = εdirect + εdelayed . (4.23)

As a consequence of the Poisson nature of the input neurons, the expectation value
of the current to the output neurons is given by [79]

〈I〉 =

∫ ∞
−∞

ds sin(s) εtotal(t− s) (4.24)
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and the variance of the current is given by

varI =

∫ ∞
−∞

ds sin(s) ε2
total(t− s) . (4.25)

Equations (4.24) and (4.25) can be evaluated exactly for the given input function
(4.22). The results are

〈I〉 = NinAJ

{
1 +

cos(ω∆/2)

(1 + ξ2)2

[
(1− ξ2) cos

(
ω(t−∆/2)

)
+ 2ξ sin

(
ω(t−∆/2)

)]}
(4.26)

with ξ = ωτ . The amplitude (current arriving at the output neuron) is thus maximal
for integer

∆ · ω
2π
∈ N . (4.27)

That is, a maximal response of the output neurons is to be expected if the input
frequency matches the delay of the system. If the input signal contains a periodicity
with frequency f∗ the neuron with a delay time ∆∗ corresponding to this frequency
will respond optimally. All neurons sensitive to a subharmonic frequency (f∗/n,
with n ∈ N) will also respond, as can be seen from (4.27). This is because an input
signal with a periodicity f∗ is automatically also periodic with frequency f∗/n.

The variance of the current is given by

varI =
NinAJ

2

τ

{
1

4
+

2 cos(ω∆/2)

(4 + ξ2)3

×
[
(8− 6ξ2) cos

(
ω(t−∆/2)

)
+ ξ(12− ξ2) sin

(
ω(t−∆/2)

)]
+M

} (4.28)

where M is given by

M =e−∆/τ

{
1−∆/τ

4
+

1

(4 + ξ2)3

×

[(
16− 8ξ2 +

∆

τ(16− ξ4)

)
cos
(
ω(t−∆)

)
+ 2ξ

(
12− ξ2 +

2∆

τ(4 + ξ2)

)
sin
(
ω(t−∆)

)]}
.

(4.29)

In order to allow correct periodicity detection, the time scale of the periodicity
must clearly exceed the time scale τ of the individual current response functions ε.
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We thus expect the system to work best if the relation ∆ � τ holds, meaning
that the time scale of the periodicity is much larger than that of the post-synaptic
response. In the auditory system we can expect this condition to hold. M can then
be neglected because of the exponential prefactor e−∆/τ in (4.29). If low-frequency
input is presented, we have ω � 1/τ and thus ξ = ωτ → 0. The current and its
variance are then given by

〈I〉 = NinAJ
[
1 + cos(ω∆/2) cos

(
ω(t−∆/2)

)]
(4.30)

and

varI =
4NinAJ

2

τ

[
1/16 + cos(ω∆/2) cos

(
ω(t−∆/2)

)]
. (4.31)

The relative variation of the current is proportional to

δI

I
=

√
varI
I
∝ (NinAτ)−1/2 , (4.32)

which also holds if we do not assume ∆ � τ and ξ → 0. As expected, the current
is less sensitive to random fluctuations if the number of input neurons or the input
amplitude increases. The fact that the current fluctuates more if τ gets smaller can
be attributed to a very short synaptic time scale enhancing the “spiky” character
of the current. The system, however, does not become less reliable since a short
post-synaptic current enables better coincidence detection by the output neurons
[100,102].

The expression (4.26) for the mean current, which is a good approximation if there
are enough input neurons, shows that all output neurons receive a harmonic current.
The amplitude of the current is largest if the delay matches the periodicity of the
input signal. The response of integrate-and-fire neurons to harmonic input is difficult
to calculate but it has been done for a slightly different system [32]. The results
show that the periodicity of the input current is retained in the firing of the output
neuron. This means that the output signal is phase-locked to the current. The vector
strength VS, which can be defined as the absolute value of the first Fourier coefficient
of the signal divided by the zeroth Fourier coefficient, measures the amount of
synchronization or phase locking. For perfect phase locking VS= 1. For a random
distribution of phases (complete absence of phase locking) we find VS= 0. In the
setups we have discussed here, VS tends to be larger in the output neuron than in
the current itself.

Summary of analytical results

The most important mathematical property of the recurrent model is the relation
between loop delay ∆ and optimal coding frequency f . Näıvely, one would expect the
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relation ∆ = 1/f to hold. The recurrent loop does not, however, simply project the
output back to the neuron. The response kernel h rather smears out the feedback,
changing the exact timing of the recurrent input. The exact relationship between
delay and coding frequency is given by (4.17) for synaptic responses in the form of
an α-function.

In the feedforward model, the problem of finding the relation between ∆ and f does
not arise. Both the direct and the delayed pathway smear out the input spikes in
the same manner, and therefore the relative timing of the two signals arriving at the
output neuron is fixed. The most important result for the feedforward model is that
the amount of phase locking (a measure for the accuracy of spike timing) actually
increases. The output neurons thus fire more accurately than the input population
does. This is in accordance with physiological findings in the mammalian auditory
pathway [92].

For a true understanding of the models the mathematical description presented
above does not suffice. Since the nonlinear process of spike generation cannot be
taken into account, numerical simulations are needed to characterize the response
of the models to realistic input. The next section discusses such simulations.

4.2.3 Implementation: neuronal effects and temporal jitter

In this section we discuss results obtained by numerical simulations. The neuronal
networks as described in section 4.2.1 have been implemented through the c++
programming language. To test the performance of the models we have provided
the networks with three different kinds of input: amplitude-modulated (AM) input,
a Gaussian distribution of frequency components, and input mimicking the “missing
fundamental” effect, as explained below. The response of the system was character-
ized by counting the number of output spikes that occurred during one second of
input presentation as a function of the coding frequency of the output neuron. The
coding frequency of the output neurons was calculated using (4.17) for the recurrent
network and (4.27) for the feedforward network. We will see that in both networks
the neurons encoding the periodicity present in the input signal respond maximally.
The networks are thus able to convert a phase code into a rate code as we required
in the introduction.

Half-wave rectification of the signals has always been performed before presenting
them to the network. Hair cells, the basic receptor units of the ear and the lateral
line system, depolarize following one direction of displacement and hyperpolarize
if displacement is in the other direction [84]. Half-wave rectification is therefore
automatically performed upon detection in many biological sensory systems.
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parameter value

number of output neurons Nout = 491
output frequency range 10–500 Hz
synaptic time constant τs = 1 ms
synaptic strength J = 2.5× 10−5

input normalization 1/T
∫ T

0 dt sin = 300
output neuron

membrane time τm = 1.25 ms
absolute refraction time τrefr = 1.0 ms
resting potential Vr = 0
reset potential Vreset = Vr = 0
threshold Vθ = 1
capacitance Cm = 1

Table 4.1: Simulation parameters for the recurrent model.

The input signal to the network was normalized to deliver the same time-integrated
input power in each case. Obviously, it is not realistic to expect external input to a
vibration detection system to be normalized but several mechanisms of neuronal gain
adaptation have been shown to exist; e.g., in the auditory pathway [43,87,174,189].
Such mechanisms are thought to keep neuronal firing rates within an optimal range.
In our case power normalization is needed to keep the output firing under control.
If the input power is too low, the output neurons cannot fire at all. If, on the
other hand, the input power is too high all neurons will fire at a high rate and the
discriminative capacity of the system is lost.

The numerical values of the parameters used in the computations are given in table
4.1 for the recurrent model. According to (4.3) internal noise of the neurons has
been implemented by adding a noise term Inoise to the input of each neuron. In our
simulations this noise term is given by

Inoise =
50∑
n=1

Anoise cos(2πfnnoiset+ φnnoise) (4.33)

where the frequencies are chosen from a uniform distribution fnnoise ∈ [0− 1000 Hz].
Phases are uniformly distributed in φnnoise ∈ [0 − 2π], and the amplitude of every
component is given by Anoise = 0.01/50. For each neuron, independent noise is
assumed and the noise is then added linearly to the input for each neuron.

As for the simulations using the feedforward model, the parameters used are sum-
marised in table 4.2.
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parameter value

number of input neurons Nin = 25
number of output neurons Nout = 491
output frequency range 10–500 Hz
input neuron mean rate 20 Hz
synaptic time constant τs = 1 ms
synaptic strength J = 3.5× 10−4

output neuron
membrane time τm = 1 ms
absolute refraction time τrefr = 0.25 ms
resting potential Vr = 0
reset potential Vreset = Vr = 0
threshold Vθ = 1
capacitance Cm = 1

Table 4.2: Simulation parameters for the feedforward model.

Amplitude-modulated input

We consider two types of AM input signals. First, we present a modulated pure
tone

sin(t) =
A

2
[1 + cos(2πfmt+ φ)] cos 2πfct (4.34)

with modulation frequency fm = 50 Hz or fm = 200 Hz and random modulation
phase φ. The carrier frequency is fc = 2000 Hz.

In the second case we consider noise by composing a signal from 50 sinusoidal
components with frequencies fnrand chosen from a uniform distribution on [0, 1000 Hz]
and random phases φnrand with uniform distribution on [0, 2π] so as to obtain

snoise(t) =

50∑
n=1

cos(2πfnrandt+ φnrand) . (4.35)

We then modulate this signal with modulation frequency fm = 50 Hz

sin(t) =
A

2
[1 + cos(2πfmt+ φ)]× snoise . (4.36)

In both cases the amplitude has been chosen in such a way that the rectified input
signal is normalized appropriately.

The results of these simulations are displayed in figure 4.5. Obviously both network
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Figure 4.5: Response to AM input of an array of neurons, each with a different
delay and corresponding frequency (horizontal axis). The total number of spikes in
one second is shown vertically. Left panel: feedforward model; right panel: recurrent
model. The peaks corresponding to the input periodicity clearly appear in the
graphs. Evidently, both networks correctly identify the signals.

types succeed very well in detecting the periodicity of the input signal. Clear peaks
in the response occur for the correct frequencies. The response peaks for the sub-
harmonic frequencies are also distinctly recognizable. Although the response of the
recurrent model is quite noisy, this drawback may be overcome easily by combining
input from several close-by channels.

Gaussian frequency distribution

The second test for the feedforward and recurrent models consists of taking a dis-
tribution of frequencies as input. To mimic the real biological situation we have
built an input signal from 30 different frequency components chosen randomly from
a Gaussian probability distribution with a center frequency µ and a width σ. The
components were added together with random phases, and the resulting signal was
half-wave rectified and presented to the network. This signal can be considered as
a rough model for a struggling insect on the water surface or in a spider web. The
results of these simulations are displayed in figure 4.6. It is pretty evident that
both frequency profiles with (µ, σ) = (30 Hz, 5 Hz) and (µ, σ) = (100 Hz, 20 Hz) are
correctly identified by the two networks.
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Figure 4.6: Response of an array of neurons to a distribution of frequencies. Input
was presented to an array with neurons, each with a different delay and specific
frequency (horizontal axis). The total number of spikes in one second is shown
vertically. Left panel: feedforward model; right panel: recurrent model. Similar to
Fig. 4.5 the signals are reliably identified.

Missing fundamental

If several pure tones with a common fundamental frequency are presented to a
listener, the subject often perceives a tone with a pitch corresponding to this fun-
damental frequency, even though the fundamental frequency itself is not present in
the input signal. Nonetheless a clear neuronal representation of this frequency is
formed by the subject. To mimic such an experiment we give both models input
consisting of three harmonics

sin(t) =
3∑

n=1

cos(2πfnt+ φn) , (4.37)

with f1 = 200 Hz, f2 = 300 Hz, f3 = 400 Hz and the phases random. The response
of the feedforward model is shown in figure 4.7, together with the response to a pure
tone of 100 Hz. Although the peak is not as clear as with pure tone stimulation, a
pitch of 100 Hz is still easily recognizable.

Because of the noisy response, the “missing fundamental effect” is not reproduced
very well by the recurrent model. A very good response can sometimes be obtained
but this crucially depends on the precise values of the phases φn, which is not realistic
biologically. Results for the recurrent network are therefore not shown here.
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Figure 4.7: Response of the feedforward network to “missing fundamental” input
as in (4.37) with three frequencies 200, 300 and 400 Hz compared to the response to
a pure 100 Hz tone. The peak at 100 Hz is clearly recognizable.

Phase locking

A very important concept in auditory or vibratory processing is phase locking. Phase
locking describes the capability of neurons to spike preferentially at a specific phase
of the input signal. Phase locking is especially important to extract precise temporal
clues from a signal; for instance, in sound localization [73,138]. The amount of phase
locking is characterized by the vector strength VS as discussed above.

For AM noise input, as in (4.36), the vector strength has been displayed in figure 4.8.
Interestingly, phase locking is quite good in the recurrent model although the out-
put firing rate fluctuates a lot. This behavior results from the subthreshold input
dynamics of the recurrent model. Only the presence of noise in the input assures
that every now and then a spike occurs. The occurrence of a spike is of course much
more likely if the input amplitude is large, and consequently the output firing tends
to be phase-locked to the input periodicity. For the feedforward model phase lock-
ing is good if the decoding frequency of the output neurons matches the periodicity
of the input. Again, spike generation is most likely when the input amplitude is
large and the delay time matches the frequency of the input signal – phase locking
results. Remarkably, for both models the phase locking is significantly stronger in
the output signal than in the input signal.

Temporal jitter of delays

The ability to identify signal periodicity crucially depends on the timing of the
delays ∆. We therefore investigate the effect of temporal jitter in the delays on
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Figure 4.8: Phase locking strength as a function of best frequency for the feedfor-
ward and the recurrent model. 50 Hz modulated input as in (4.36). Vector strength
of the input signal is 0.5, as indicated by the horizontal line. The output phase
locking is stronger than the input phase locking in the relevant frequency range.

identification performance. We present four different pure tones with frequency
fin to both networks and add stochastic jitter to the delay time for every emitted
spike. The jitter is Gaussian-distributed with mean 0 and a standard deviation from
0.2 ms to 20 ms. For each trial (a specific combination of input frequency and jitter
strength) we calculate the selectivity Q defined by

Q =

∣∣∣∑j rje
2πi∆jfin

∣∣∣∑
j rj

. (4.38)

Here ∆j is the temporal delay corresponding to output neuron j, and rj is its firing
rate. This definition again has the form of a vector strength. If the output firing
rate peaks for neurons with the correct delay (∆jfin ∈ Z) the value of the numerator
in (4.38) will be large. If much temporal jitter is present all output neurons will
respond, even if their delay does not match the input signal frequency. In this case
the phases in the numerator of (4.38) will cancel out, and Q will have a low value.

In figure 4.9 the selectivity for different input frequencies and jitter magnitudes
is plotted, normalized to the selectivity without jitter. As could be expected, the
selectivity deteriorates if jitter is present in the delays. For high input frequencies
the sensitivity to temporal jitter is largest. For low frequencies, say . 25 Hz, both
models are quite robust and can cope with temporal jitter up to ∼ 10 ms. A jitter of
about 20% of the input periodicity leads to a 50% decrease in selectivity. The amount
of jitter thus determines the fastest input periodicity that can still be identified. For
a temporal jitter of 1 ms this upper limit is approximately 200 Hz.
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Figure 4.9: The selectivity as defined in (4.38) for the feedforward (left) and
recurrent (right) model for several input signal frequencies fin as a function of jitter.
The selectivity Q is normalized with respect to the value in the absence of jitter. As
expected, increasing jitter leads to a decrease in selectivity. For both the feedforward
and the recurrent model a jitter of 20% of the input period leads to a 50% decrease
in selectivity.

4.2.4 Discussion: limits of the excitatory setup

In the present section we have quantitatively analyzed two different models for pe-
riodicity detection based on excitatory–excitatory interaction. We have shown that
both a feedforward architecture and a recurrent loop architecture can be used to
extract periodic modulation from input signals. Furthermore, we have provided
an extensive mathematical characterization. It has been shown that for both ap-
proaches the basic constraints are the same.

As expected, neuronal time constants are a limiting factor for recognizing the peri-
odicity of the input modulation. The width of the post-synaptic current response
presents a fundamental limit to the delay time that can be detected. It limits mod-
ulation recognition to about . 1000 Hz. Indeed the experimental literature tells us
that AM sensitivity reaches frequencies as high as 1000 Hz. The vast majority of
neurons, however, is sensitive to modulation frequencies in the range of 10−300 Hz,
most of them lying in the even more restricted range of 30 − 100 Hz. This finding
is valid for various animals [104,109,153–155]. Relevant biological stimuli on water
surface and in spider webs also tend to contain most of their information in the low
frequency range . 250 Hz [17,106]. Thus the limitations imposed by neuronal time
constants are not the essential ones.

A better explanation for the reported frequency range is the restriction arising from
the limited accuracy of the delay lines. For both approaches the capability of distin-
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guishing different frequencies crucially depends on well-known and constant delay
times ∆. Only then is it possible to reliably assign a particular frequency to the
output neurons. In reality the time it takes for the signal to propagate along the
delay line may, however, vary. Using a deviation of δ∆ ≈ 0.5 ms cuts down the
accessible detection range to about 200 Hz, a value reasonably close to the above
300 Hz.

According to section 4.2.1, the delay times ∆ need not necessarily arise from a direct
connection between two neurons but can be the result of a number of interneurons.
Consequently, these interneurons then have to be driven by a very reliable synapse.
Every input spike should trigger an output spike, and the delay between input and
output spike should be fixed, as it usually is. A very prominent example of such a
reliable “one-to-one” synapse in the auditory pathway is the so-called Calyx of Held
at the end of the auditory nerve. Although this specific type of reliable synapse is
only found in the lower auditory pathway its existence demonstrates that fast and
reliable synapses are present in the auditory system, a neuronal system of exceptional
acuity. For example, in the mammalian auditory brain-stem nuclei neurons can
preserve the relative timing of action potentials passed through sequential synaptic
levels [184]. In the avian auditory system, too, single presynaptic stimuli can produce
short (and thus precise) suprathreshold spikes with a time constant of about 0.5 ms
resulting in reliable information transmission [200]. Another possibility to reliably
transfer precisely-timed signals is the use of synfire chains [49]. Depending on the
input strength, synfire chains can relay information with a temporal precision around
1 ms, accurate enough for use in long-delay feedback and feedforward loops.

Another limitation common to both feedforward and recurrent circuitries is that
they detect only the highest modulation frequency components in any signal. Since
activity in high-frequency channels also excites low-frequency channels it is not
possible to distinguish subharmonics of a high-frequency signal from a direct low-
frequency input. The known phenomenon of the missing fundamental fits well into
the behavior of such a simple network for periodicity extraction. Equivalent to the
above is the fact that every neuron responds not only to its own specific frequency
but also to all of its harmonics. Consequently the perceived similarity between
tones one octave apart from each other [44,47,86] and the interference of harmonic
target-distractor combinations at low frequencies [25] are a natural side-effect of the
proposed architecture.

We conclude that in the excitatory–excitatory approach neuronal time constants do
not limit model performance. Instead, in real biological systems the limiting factor
will be the accuracy of the delay ∆. Since relatively long and well-defined delay
times ∆ can be realized by means of interneurons, this presents no fundamental



4.3 Excitatory–inhibitory periodicity identification 67

problem to our model. The fact that every neuron responds not only to its own
specific frequency but also to all of its harmonics is to be considered a feature rather
than a limitation.

Before proceeding to the excitatory–inhibitory setup, we have to state that the
two models, the recurrent and the feedforward one, differ in their behavior as far
as their robustness is concerned. By design, the recurrent network is much more
susceptible to noise and, as a consequence, can be disturbed by noise more easily
than the feedforward model. This is a common problem of excitatory recurrent
networks in general since in such networks perturbations tend to amplify themselves.
Consequently we will mainly focus on a feedforward network and only briefly discuss
the recurrent network in the excitatory–inhibitory setup we treat in the next section.

4.3 Identification of signal periodicity in an excitatory–
inhibitory setup

Similar to the SFIE (same frequency inhibition and excitation) model proposed by
Nelson et al. [136] the approach we will develop in the following is based on a band-
pass characteristic arising from different time constants for excitatory and inhibitory
postsynaptic potential (PSP). This is possible because every synapse is a low-pass
filter with the “cut-off” frequency determined by the neuronal time constant τ of the
PSP. A larger τ will lead to a lower “cut-off” frequency of the synapse. According
to this consideration the combination of an excitatory synapse with small τexc and
an inhibitory synapse with large τinh projecting to the same population of neurons
will lead to a bandpass characteristic which is then governed by absolute value and
difference of the excitatory and inhibitory time constants.

4.3.1 Model essence: inhibitory time constants

Below we provide a detailed analysis of two minimal models for periodicity identifi-
cation on the basis of excitatory–inhibitory interplay. The models are “minimal” in
that they feature two neurons or neuron populations at most, and only two synapses,
one inhibitory and one excitatory; cf. Fig. 4.10.

Analogous to the considerations in the last section, the first model consists of two
neurons or neuron populations [59]. If the input neuron (population) fires a spike,
it is fed into two distinct pathways leading to the output neuron (population). One
pathway will project onto the output neuron via an excitatory synapse, the other,
delayed pathway via an inhibitory synapse. In a biological realization the delayed
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Figure 4.10: Similar to the setup in the last section, there are two ways of ex-
tracting frequency or timing information neuronally from a signal using excitatory–
inhibitory interaction. As before, the first method (upper panel) uses a feedforward
network, and is called feedforward model. The input neuron, driven by a continuous
input function sin, sends two spikes to the output neuron, one via an excitatory
(closed circle), the other, delayed one, via an inhibitory synapse (open circle). De-
pending on excitatory and inhibitory time constants, certain temporal correlations
in the input signal lead to an augmented firing probability for the output neuron.
The second method (lower panel) is based on the same idea, but uses an inhibitory
recurrent loop with time delay ∆. This we call the recurrent model. The neuron
is driven again by sin, this time via an excitatory synapse. If the neuron emits a
spike at time t = t0, its firing probability is reduced at time t = t0 + ∆ because
of inhibitory feedback. Depending on excitatory and inhibitory time constants, a
certain signal periodicity leads to a higher number of spikes in the output signal
sout. In a biological realization both systems will feature at least one additional
neuron that forwards the inhibitory signal.

pathway will consist of at least one reliable interneuron. Certain combinations
of delay, inhibitory and excitatory time constants, as well as the strength of the
synapses will lead to maximal firing rates for different frequencies. We call this
model the feedforward model.

The second model consists of a single neuron (or, again, a neuron population) that
receives an input signal via an excitatory synapse. If the neuron spikes, the output
spike will be fed into a pathway (again biologically realized by an interneuron) that
projects back to the neuron itself with a particular delay. The spike will result in an
inhibitory PSP characterized by its strength and a time constant different from the
excitatory one. Such a setting leads, as we will see in the following sections, to a
maximal firing rate for one specific frequency. A set of neurons, each with different
time constants and coupling strengths, should then act as a frequency analyzer. We
call this model the recurrent model.
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Detailed description of the feedforward model

Just as in the excitatory–excitatory setting, the feedforward model features an input
neuron population of Poisson neurons [79]. The Poisson input neurons are driven
externally by a function sin(t) and form a simple input stage for the model, similar
to, e.g., the auditory nerve. If any of the input neurons fires, its spike is fed into
two pathways, one excitatory and one inhibitory, to an output neuron population
– Poisson neurons again. The excitatory spike reaches the output neurons directly,
the inhibitory spike is delayed by ∆ due to interneurons. We note that in princi-
ple the delay ∆ could be negative, that is, the excitatory spike could be delayed
more than the inhibitory one by excitatory interneurons. Since we want to keep the
setup simple, and in biological systems excitatory signals usually are converted into
inhibitory signals by means of inhibitory interneurons, delayed inhibition is a rea-
sonable assumption. The connection to every output neuron population is therefore
described by a specific combination of inhibitory time constant τinh, delay ∆ and
inhibitory coupling strength Jinh on the one hand, and excitatory time constant τexc

and excitatory coupling strength Jexc on the other hand.

If a spike is emitted at time t = t0 by any input neuron it leads to two postsy-
naptic responses ε in the output neuron. Again we will model the postsynaptic re-
sponses with weighted α-functions [66]. The excitatory connection in the excitatory–
inhibitory setup corresponds to the direct connection in the excitatory–excitatory
setup, and its postsynaptice response is hence, similar to (4.4), described by

εexc = Jexc
t− t0
τ2

exc

e−(t−t0)/τexcθ(t− t0) . (4.39)

Analogously to (4.5) we get

εinh = Jinh
t− t0 −∆

τ2
inh

e−(t−t0−∆)/τinhθ(t− t0 −∆) . (4.40)

for the inhibitory postsynaptic response. Here J is the synaptic weight, positive for
excitatory and negative for inhibitory synapses, t0 the spiking time of the presy-
naptic neuron, τ determines the width of the α-function, and ∆ is the delay of the
inhibition. θ denotes the Heaviside step function [θ(t) = 0 if t < 0, θ(t) = 1 if t ≥ 0].

Detailed description of the recurrent model

The recurrent model consists of Poisson output neurons that are driven by the con-
tinuous input function sin(t) convoluted with the excitatory postsynaptic response.
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All neurons feature a recurrent connection that feeds output spikes back into the
neuron. The recurrent connection is characterized by a specific combination of in-
hibitory time constant τinh, delay ∆, and inhibitory coupling strength Jinh. Again,
inhibitory and excitatory currents are described by α-functions of the form (4.39)
and (4.40).

4.3.2 Analysis: tuning of time constants

We are now going to mathematically discuss the behavior of the two types of peri-
odicity detectors in more detail.

Feedforward model

We mimic a realistic, usually half-wave rectified periodic signal by a shifted cosine
similar to the (positive) envelope of an AM signal just as in (4.22). As a conse-
quence of the properties of a Poisson neuron, this input function then describes the
inhomogeneous firing probability density λin of the input neuron,

sin(t) =
A

2
[1− cos(2fπt)] = λin(t) . (4.41)

As in the last section, the total response εtotal of one specific output neuron to
the input neuron activity is given by [referring to (4.39) and (4.40), and (4.23),
respectively]

εtotal = εexc + εinh . (4.42)

Contrary to our analysis of the excitatory–excitatory setup we stick with Poisson
neurons as output neurons. Hence, similar to (4.24), the firing probability density
λout of the output neurons is then given by

λout(t) =

∫ ∞
−∞

ds sin(s) εtotal(t− s) . (4.43)

Equation (4.43) can be evaluated exactly for the given input function (4.41) with
result

λout(t) =
1

2
Jexc

[
(1+4ζ2exc)

2
+(−1+4ζ2exc) cos(2fπt)−4ζexc sin(2fπt)

(1+4ζ2exc)2

]
+

1

2
Jinh

[
(1+4ζ2inh)

2
+(−1+4ζ2inh) cos[2fπ(t−∆)]−4ζinh sin[2fπ(t−∆)]

(1+4ζ2inh)
2

] (4.44)
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where we assumed A = 1 and ζj = fπτj for τj = τexc and τinh, respectively. The
symmetry between excitation and delayed inhibition is obvious.

In order to analyze (4.44), it is desirable to reduce the number of free parameters.
We therefore set Jexc = 1 in the following. Furthermore, it is easy to see that (4.44)
is of the form λmax(Jinh; ∆; τexc; τinh) ∗ cos(2fπt + φ), φ being a phase shift of no
further interest. It is thus sufficient to consider the amplitude λmax to obtain an
understanding of the system:

λmax =
1

2
+
Jinh

2
+
{ 1

2 (1 + 4ζ2
exc)

2 (1 + 4ζ2
inh

)2×[ (
Jinh + 4Jinhζ

2
exc

)2
+
(
1 + 4ζ2

inh

)2
+ 2Jinh

(
1 + 16ζ2

excζ
2
inh

− 4ζ2
exc + 16ζexcζinh − 4ζ2

inh

)
cos(2fπ∆)

+ 8Jinh(ζexc − ζinh) (1 + 4ζexcζinh) sin(2fπ∆)
]} 1

2
. (4.45)

Next, we want to get rid of Jinh as a free parameter. For an optimal performance of
our model the maximum of the response should be a clear peak. We can minimize
λmax at the boundary of the range of frequencies we are interested in – that is,
positive frequencies. If λmax is minimal at the left and at the right border of the
frequency range under consideration, the peak, somewhere in between these two
limits, should be easy to distinguish. At f =1 Hz, λmax is minimal for an inhibitory
coupling strength Jinh of −1 to −0.99, depending on the parameters chosen. This is
true for the complete range of accessed parameters; that is ∆, τexc, and τinh taking
any value from 1 ms to 10 ms each. At the same time, the limiting value of (4.45)
for f →∞ is (1 + Jinh)/2. The optimal inhibitory coupling Jinh is therefore -1, the
same absolute value as the excitatory coupling. This is called balanced inhibition;
see Sec. 4.3.3.

In the following, we will take the delay ∆ to be 2 ms. This assumption is equivalent to
our concept of constructing a “minimal” model since, in order to turn an excitatory
signal inhibitory, we need at least one interneuron. Two milliseconds are a reasonable
time for a signal passing one neuron. At the end of this section we will discuss the
influence of the delay and its variation on the behavior of the model.

Figure 4.11, left, illustrates the behavior of the solution (4.45) for four different
parameter sets. We see that the solutions have a clear maximum for one specific
frequency ranging from about 14 Hz (solution A) to approximately 140 Hz (solution
D), depending on the combination of time constants τexc and τinh. Before analyzing
(4.44) further, it is interesting to compare its behavior with numerical simulations
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and excitation. Stronger and faster excitatory inputs interact

with weaker and slower inhibitory inputs in ways that de-

pend on the stimulus f m to produce the final model VCN cell

response. For low and intermediate modulation frequencies

!i.e., 10 Hz! f m!200 Hz), the more sluggish inhibitory in-
puts (" inh"2 ms) are not able to follow the fast fluctuations
in the AN responses as faithfully as the excitatory inputs

("exc"0.5 ms). Higher synchrony results because excitation
dominates for a more focused time interval !near the modu-
lation period onset#. For f m#200 Hz, the slow inhibitory

component acts to effectively remove a DC offset from the

excitatory component. This causes higher modulation gain

values and higher sync-MTF cutoff frequencies for model

cells that receive stronger inhibition. VCN sync-MTF corner

frequencies are lower than those in the model AN fibers !re-
gardless of the relative strength of inhibition# because they
are limited by the excitatory synaptic properties that modify

the ascending VCN model cell inputs.

For nearly equal-strength inhibition and excitation !CN
S inh#0.6, not shown#, model VCN rate-MTFs are more

band-pass in shape than has been reported in most physi-

ological studies of bushy cells. When the overall strengths of

the cell’s two inputs are nearly the same, there is a narrow

range of f m for which the temporal interactions between in-

hibition and excitation cause high firing rates in the postsyn-

aptic cell. At very low f m and very high f m , the two inputs

are similar in their ability to keep up with the stimulus modu-

lations, resulting in a low discharge rate since inhibition is

nearly as strong as excitation. To avoid band-pass rate-

MTFs, the strength of inhibition in the model VCN bushy

cells was set to 0.6 when they were used to provide inputs to

model IC cells.

C. Model IC cell responses

1. MTFs and effect of varying time constants and
delays

A second layer of model cells receiving inhibition-

dominated SFIE inputs is hypothesized to represent IC units

that integrate information from many convergent inputs. The

most basic results observed in the model responses are that

IC cells fire only over some narrow range of f m !i.e., they are
rate-tuned to f m), and their AM responses are highly syn-

chronized to the modulation period. This is consistent with

physiological responses in the gerbil !Krishna and Semple,
2000# and cat !Langner and Schreiner, 1988#. The BMF of a
given IC model cell is determined mainly by the time con-

stants of the inhibitory and excitatory influences: fast-acting

inputs give rise to high BMFs; slower time constants result

in lower BMFs. We constrain the inhibitory " to always be
equal to or longer than the excitatory " when generating
model responses. The range of BMFs that can be obtained by

varying these parameters over a physiologically realistic

range is illustrated in Fig. 8. Each rate-MTF describes the

responses of a model cell with a given combination of " IC,exc
and " IC,inh . The same model AN fiber and VCN cell provided
inputs to each of these model IC cells !i.e., rate-tuning in the
IC is not determined by synchrony-tuning in the VCN#. Ab-
solute rate !top panel# and normalized rate-MTFs !bottom
panel# are shown. Note that a wide range of rate-BMFs

($40–120 Hz# can be obtained with a fixed " IC,exc , and
variation of " IC,inh from 1 to 7 ms. Tuning to even slower

envelope frequencies is achieved by assuming longer time

constants !cell A in Fig. 8, with " IC,exc"5 ms and " IC,inh
"10 ms, is tuned to $20 Hz). The upper limit of model
BMFs ($120 Hz) is consistent with that observed in the
gerbil IC !Krishna and Semple, 2000#. This boundary is de-
termined in the model by restricting the time constants of the

excitatory and inhibitory inputs to be longer than 1 ms !Wu
et al., 2002; Carney and Yin, 1989#.

The exact f m that elicits the largest rate-based model

response can be further adjusted by changing the delay be-

tween excitation and inhibition. When the inhibitory delay is

kept within a physiologically realistic range (!10 ms), rate-
based BMF shifts at low modulation frequencies are rela-

tively small but systematic. Longer delays result in a shift of

rate-MTF peaks to lower f m and increases in rate at BMF.

Short delays between inhibition and excitation cause maxi-

mal overlap in the envelope-locked inputs, and thus decrease

the overall firing rate and increase the cell’s BMF. Grothe

!1994# has proposed a scheme for AM tuning in the bat

medial superior olive !MSO# that uses a pure delay between
inhibition and excitation to set the model cell’s BMF. We

chose not to rely on such a mechanism because of one spe-

cific consequence that is not observed in the physiology: a

multi-peaked rate-MTF results, with rebounds in rate at en-

velope frequencies that are multiples of the ‘‘fundamental’’

f m . This problem is avoided in the current model by the use

of strong inhibition that is desynchronized at high f m .

2. Effect of varying stimulus modulation depth

Responses of model IC cells change for stimuli with

different modulation depths in a way that is consistent with

physiological observations !Krishna and Semple, 2000#. Fig-
ure 9 shows an example of physiological MTFs !top panels,
from Krishna and Semple, 2000# and model MTFs !bottom
panels#; the parameter in the figure is stimulus m . Firing rate
increases with modulation depth, most significantly near

BMF. Synchrony saturates rapidly as m is increased. The

possible shapes of the model IC sync-MTFs are limited be-

FIG. 8. Absolute and normalized rate-MTFs of four model IC cells with

different combinations of excitatory and inhibitory time constants. " IC,exc
and " IC,inh ; cell A: 5 ms and 10 ms; cell B: 2 ms and 6 ms; cell C: 1 ms and
3 ms; cell D: 1 ms and 1 ms. Common parameters to all four cells: AN

CF"8 kHz; AN SR"50 sp/s; VCN "exc"0.5 ms; VCN " inh"2 ms; DCN

"1 ms; SCN,INH"0.6; D IC"2 ms; S IC,INH"1.5. Stimulus carrier frequency
"AN CF; m"1; SPL"24 dB.

2180 J. Acoust. Soc. Am., Vol. 116, No. 4, Pt. 1, October 2004 P. C. Nelson and L. H. Carney: Model of neural responses to AM

Figure 4.11: Frequency detection by excitatory–inhibitory networks. Left : time-
invariant amplitude λmax of the firing probability density against frequency of the
input signal sin. Four sets of parameters are shown, each resulting in a maximum
of the amplitude at different frequencies. Characteristics of the solutions match
numerical results from [136]; cf. right panel. The parameters except Jinh were taken
from [136]: A(τexc; τinh) = (5 ms; 10 ms), B(2 ms; 6 ms), C(1 ms; 3 ms), D(1 ms;
1 ms); ∆ = 2 ms; Jinh = −1. Right : absolute rate modulation transfer function
of the SFIE model [136], rate versus frequency [Hz]. Four different model cells in
the inferior colliculus have been simulated, every cell responding maximally to a
certain modulation frequency of the signal. The match of analytical and numerical
results for identical parameters is surprising since the SFIE model [136] is much
more complicated than our setup.

published before [136]. In the latter, time constants as well as delay between excita-
tion and inhibition used by us have led to almost identical results; see Fig. 4.11, right.
It is noteworthy that, motivated by physiological findings, the setup of the model of
Nelson and Carney [136] is much more complicated than ours: two subsequent stages
of delayed inhibition and excitation with different coupling strengths featuring three
cell populations (auditory nerve, cochlear nucleus, and inferior colliculus) and four
synapses lead to quantitatively the same results regarding frequency selectivity.

Ideally, a maximum that is to be discerned clearly should have a big amplitude (in
this respect, cell A in the right panel of Fig. 4.11 would be a bad example). As a
consequence we are interested in those regions of our solution where the amplitude
λmax is maximal. Since an analytical solution is not feasible we will revert to a
graphical approach.

Figure 4.12 shows the amplitude of the solution (4.45) for different time constants
and frequencies. For low frequencies we can discern two distinct regions of maximal
amplitude: amplitude is maximal when inhibitory and excitatory time constants
have a maximal difference (dark areas). In the figure, the amplitude is minimal for
τinh = τexc + 0.5∆ (bright area), but this relation only holds if ∆ is small compared
to the time scale of the frequency under consideration. As the frequency increases
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Figure 4.12: Amplitude of the response of the feedforward model for low and high-
frequency signals with a fixed delay as a function of excitatatory and inhibitory time
constant. Black stands for a large, white for a small amplitude. Big: low-frequency
stimuli (here: 14 Hz) lead to two clearly separated areas of maximal response. The
response is maximal for a large difference of τexc and τinh, and a larger inhibitory
time constant results in a higher amplitude (∼ 0.5 vs. ∼ 0.4 in case of larger exci-
tatory time constant). Right, top to bottom (units same as on the left): increasing
frequency of the stimulus (here: 50, 90, and 130 Hz) leads to a merge of the two
areas of maximal response and a decreasing amplitude. The amplitude is maximal
when either excitatory or inhibitory time constant is very small. Here ∆ = 2 ms,
Jinh = −1.
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(right side of Fig. 4.12, top to bottom), the two regions of maximal amplitude move
towards the origin and merge. The overall amplitude shrinks but is still largest
for one of the time constants being very small. At 130 Hz, finally, the amplitude
maximum is reached at combinations of very small inhibitory with even smaller
excitatory time constants.

The response magnitude dependence upon excitatory and inhibitory time constant
as shown in figure 4.12 does not, however, elucidate how the frequency with maximal
response amplitude depends on the combination of excitatory and inhibitory time
constant and their respective delay. Since the derative of λmax (4.45) with respect
to inhibitory and excitatory time constants is not tractable analytically, we have
to stick to a graphical solution once more. Figure 4.13 depicts the dependence of
the maximum of (4.44) upon excitatory and inhibitory time constants. Generally,
lower time constants lead to a maximum for higher frequencies. Lower frequencies
can be accessed by larger time constants, leading to no strict cutt-off in the low-
frequency range. The delay breaks the symmetry of the solution and results in an
“anomaly” along the line τinh = τexc + 0.5∆ if ∆� 1/f . Since the amplitude of the
solution is minimal along this axis, useful maxima lie at small values of either the
excitatory or inhibitory time constant. In principle every combination of a small
excitatory with a larger inhibitory time constant has an equivalent combination of
small inhibitory with larger excitatory time constant, but the discrimination ability
for high frequencies is poorer (see maximum for 90 Hz and 130 Hz in Fig. 4.13). In
addition, combinations of small excitatory with larger inhibitory time constants lead
to higher amplitudes, so that our original idea of filtering and subtracting different
frequencies with help of different time constants seems suggestive.

The considerations above are, however, only valid if the assumption of ∆ being much
smaller than T = 1/f holds. If ∆ is varied independently of f the landscape of the
solution changes, as figure 4.14 illustrates, drastically.

Figure 4.14 shows the amplitude λmax as a function of dimensionless time constants
τ ′ and delay ∆′. We define dimensionless units x′ as x′ = x/T . For integer multiples
of the cycle periods T of the signal the amplitude behaves very similarly to figure
4.12, big panel, viz., two distinct areas of maximal amplitude are separated by a
diagonal of minimal response. The reason is that a delay of 2 ms is small compared
to the cycle period of 14 Hz, ∼70 ms. Increasing the delay ∆ (Fig. 4.14: to 0.25T )
shifts the axis of minimum response to the right; that is, to larger excitatory time
constants. At the same time the maximum moves towards smaller inhibitory time
constants. The very same behavior occurs when signal frequency is increased but
the delay is kept constant. The increase of frequency from 14 Hz to 50, 90, and
130 Hz at a constant delay of 2 ms in figure 4.12 corresponds to an increase of the
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Figure 4.13: Contours of the maximal response amplitude in the τinh-τexc-plane
for different signal frequencies with fixed delay. Black solid, dashed, and dotted line,
grey solid, dashed, and dotted line: amplitude maxima for 130, 90, 50, 30, 20, and
14 Hz; thin grey line: τinh = τexc + 0.5∆. As the frequency increases, the maximal
amplitude appears at smaller time constants. We note that the performance of the
model can only be estimated in combination with the absolute amplitude; cf. Fig.
4.12. Here ∆ = 2 ms, Jinh = −1.

delay from 0.028 T to 0.1, 0.18, and 0.26 T in the current setting. At a delay
corresponding to half the cycle period of the signal, symmetry is restored, and a
single maximum exists at (τexc; τinh) = (0; 0); that is, the PSPs behave like δ-
instead of α-functions. Since at this particular delay the inhibitory signal operates
in the valley of the excitatory signal, a minimal excitatory–inhibitory interference
leads to a maximal response. The minimal interference is provided by δ-functions
as PSPs. At a further increase of the delay the maximum wanders towards larger
excitatory time constants, and a second maximum appears for small excitatory and
large inhibitory time constants. For ∆ = T , the contour of the amplitude is finally
symmetric again, featuring two clearly separated areas of maximal response.

Two considerations restrict our interest to the regime shown in the upper half of
figure 4.14. First, in various animals most neurons that are sensitive to amplitude
modulation are responding maximally to frequencies between 30 and 100 Hz. Sec-
ond, the initial motivation for a model of neuronal frequency identification by means
of inhibition has been the lack of evidence for delay lines with ∆ > 10 ms in bio-
logical systems, so only “short” delays are of interest to us. A delay of 4 ms, which
is a value well within the range of physiological constraints, corresponds to 0.5 T
at 125 Hz. In order to obtain a maximal response to amplitude-modulated stimuli
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Figure 4.14: Influence of the delay on the amplitude in dimensionless units. Ampli-
tude of the solution to (4.45) as a function of dimensionless excitatory and inhibitory
time constant in cycle periods T of the signal. Upper left: in case of no delay or
the delay matching exactly one period of the signal frequency, the solution is com-
pletely symmetric relative to excitatory and inhibitory time constants. Upper right:
increasing delay shifts the axis of the minimum to larger excitatory time constants
and the maximum to the origin. Lower left: a delay of T/2 leads to a maximal
response for minimal excitatory and inhibitory time constants; that is, δ-functions
as PSPs. Lower right: the axis of the minimum reappears at further increase of
the delay, this time at larger inhibitory time constants. Since we are interested in
low frequencies and delays of limited length, only the regime displayed in the upper
panel is relevant. Jinh = −1.
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in this frequency range, it therefore makes sense to combine small excitatory with
larger inhibitory time constants.

The delay can also be varied so as to allow a broader range of frequencies. A
very short delay of ∆ = 0.3 ms pushes the upper limit of about 140 Hz for a ∆ of
2 ms to about 500 Hz. Longer delays extend the accessible frequency range to lower
frequencies. Changing the delay from 2 ms to a ∆ of 15 ms, for example, lowers the
preferred frequency for (τexc; τinh) = (1; 15.5) from 14 Hz to 10 Hz.

With a given delay we can take the excitatory time constant to be a very small value
(e.g. 1 ms) and vary the inhibitory time constant in order to control the preferred
frequency of our model; cf. Fig. 4.13. We thus arrive at a neuronal band-pass
filter characterized by the biologically plausible variation of a single parameter, the
inhibitory time constant.

The analytical calculations above have been verified by numerical simulations. As
in the last section we have used a population of Poisson input neurons and LIF
output neurons. The outcome matched our analytical results very closely. This was
to be expected, since (4.43) does not only describe the firing probability density for
Poisson neurons but also holds for the expectation value of an input current to LIF
neurons; cf. (4.24). Interestingly, the phase locking of the output spikes has been
increased by the model even further than in the excitatory–excitatory setup.

Recurrent model

The idea of a neuronal band-pass filter we developed in the last section can be
compressed into an even simpler setup. One single population of neurons suffices if
we use a recurrent inhibitory connection; see the bottom panel of Fig. 4.10. Again,
we will consider Poisson neurons for our analytic calculations.

For sufficient neuronal activity [59] we can describe the rate function λ of a single
Poisson neuron or neuron population projecting back to itself with a particular delay
time ∆ by an integral equation similar to (4.6), namely

λ(t) =Jexc

∫ ∞
−∞

ds gexc(s)sin(t− s) + Jinh

∫ ∞
−∞

ds ginh(s; ∆)λ(t− s)

=Jexc(gexc ? sin)(t) + Jinh(ginh ? λ)(t) .

(4.46)

The rate function consists of the sum of the external input sin and the delayed
inhibitory input from the recurrent loop, both “smeared out” by the kernel gexc and
ginh, respectively. The feedback strength is given by Jinh, and we choose g to be
α-functions as in (4.39) and (4.40) so as to ensure causality and obtain unit weights.
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To solve (4.46) we change to Fourier space where convolutions are ordinary products.
The Fourier-transformed version of (4.46) reads

Λ(ω) = JexcGexc(ω)Sin(ω) + JinhGinh(ω; ∆)Λ(ω) , (4.47)

where the Fourier transform of each input term is denoted by a capital letter. The
solution is thus given by

Λ =
JexcGexc

1− JinhGinh
Sin (4.48)

and can be transformed back into a function of time by taking its inverse Fourier
transform. This equation corresponds to (4.10) in the excitatory–excitatory setup.

In a way similar to (4.19) the last section, we mimick a half-wave rectified signal by
a shifted cosine function

sin(t) =
1

2
[B − cos(2fπt)] (4.49)

where B denotes the shift of the cosine along the y-axis. This is a necessary precau-
tion in order to avoid a negative rate function. We obtain a solution that is, just as
described in the feedforward model by (4.14), of the form

λ(t) = λmax(B; Jexc; Jinh; ∆; τexc; τinh) cos(2fπt+ φ) . (4.50)

As before, φ is a phase shift of no further interest. For any finite solution we can
find a B that can shift the solution to positive values and prevent a negative rate
function. Since this shift does not affect the solution otherwise, we can as well
forego the shift; that is, in the following we set B = 0 for the sake of convenience.
In analogy to (4.15) we now turn to the time-invariant amplitude λmax that is of
interest for a characterization of the system,

λmax =
Jexc√

2

(4f2π2τ2
inh + 1)√

Υ2 + Ω2
(4.51)

where

Υ =
√

2Jinh

(
−1 + 4ζ2

exc

)
+ 2
√
π×{ [

1 + 16ζ2
excζ

2
inh − 4

(
ζ2

exc + 4ζexcζinh + ζ2
inh

)]
cos(2fπ∆)

+ 4(ζexc + ζinh) (−1 + 4ζexcζinh) sin(2fπ∆)
}

(4.52)

and

Ω = −4Jinh

√
2ζexc − 2

√
π×( (

1 + 16ζ2
excζ

2
inh − 4

(
ζ2

exc + 4ζexcζinh + ζ2
exc

))
sin(2fπ∆)

+ 4(ζexc + ζinh) (−1 + 4ζexcζinh) cos(2fπ∆)
)

(4.53)
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Figure 4.15: Frequency detection of the recurrent excitatory–inhibitory network
for balanced inhibition in the form of the time-invariant amplitude λmax of the
rate function against the frequency of the input signal sin. The parameter sets are
identical to those of Fig. 4.11 and lead to a maximal response for virtually identical
frequencies. The quality of the peaks is low as compared to the feedforward model.
A smaller overall amplitude and a relatively high amplitude for low frequencies
deteriorates the recurrent network performance. Parameter values are A(τexc; τinh)
= (5 ms; 10 ms), B(2 ms; 6 ms), C(1 ms; 3 ms), D(1 ms; 1 ms); ∆ = 2 ms; Jinh = −1.

with ζj = fπτj for τj = τexc and τinh. In order to reduce the number of parameters
we set Jexc = 1 again.

Figure 4.15 illustrates the performance of the recurrent model. Parameter sets that
are identical to the ones we have used in the example for the feedforward model
(Fig. 4.11) lead to a very similar behavior, viz., maximal response at virtually
identical frequencies. The peaks are, however, less clear since for low frequencies
the amplitude does not drop as in the feedforward model. In addition, the overall
amplitudes are lower.

For a quantitative understanding of the recurrent model, we proceed as in the
last section and change to dimensionless units. We derive the inhibitory coupling
strength Jmax for which the dimensionless version of (4.51) is maximal,

Jmax =
√

2π
[
(1− ζ2

inh) cos(2fπ∆)− ζinh sin(2fπ∆)
]

(4.54)

By combining this inhibitory coupling strength with the dimensionless version of
(4.51) we arrive at a λmax in dimensionless units that is dependent only on the
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excitatory and inhibitory time constant as well as the delay,

λmax =
1√
2π
×

1 + ζ2
inh

(1 + ζ2
exc)[2ζinh cos(ζ∆) + (1− ζ2

inh) sin(ζ∆)]
(4.55)

where ζ∆ = 2fπ∆. Obviously the excitatory time constant does not characterize
the band-pass response of the model but simply scales the amplitude; we will not
discuss this parameter in the following.

We can now easily derive a constraint for the relation between inhibitory time con-
stant ζinh = fπτinh and delay ζ∆ = fπ∆: Equation (4.55) is maximal if

ζ∆ = arctan

(
2ζinh

ζ2
inh − 1

)
+ nπ (4.56)

with n = 0 if ζinh > 1 and n = 1 if ζinh < 1. For the inhibitory time constant
approaching zero, that is, δ- instead of α-functions as PSPs, (4.56) reduces to ζ∆ = π
or, in dimensional units,

∆ =
1

2f
= 0.5T , (4.57)

just as in the feedforward model where the amplitude is maximal for (τexc; τinh) =
(0; 0) if the delay is 0.5 T .

Equation (4.56) could be interpreted as if an arbitrary short delay could be com-
pensated by an appropriate inhibitory time constant. This is not the case since, as
a consequence of (4.54), such an arbitrary short delay would require a very large
inhibitory coupling. For instance, a delay of ∆ = 0.05T would result in τinh = T
and Jinh = −101. But how far can we get with a realistic inhibitory coupling?

From figure 4.15 we see that restricting the inhibitory strenght to a balanced inhi-
bition (Jinh = −1) as in the feedforward model still gives reasonable results. What
is, however, the relation between parameter set and preferred frequency, the fre-
quency for which the response of the model is maximal? Analytic insight is easy in
dimensionless units but hard to transfer into dimensional units, so we will stick to
a graphical approach as before.

The relation between excitatory time constant τexc, inhibitory time constant τinh,
and preferred frequency is shown in figure 4.16. As in the feedforward model, lower
inhibitory time constants lead to a maximum for higher frequencies. However, con-
trary to the feedforward model, there is no symmetry between combinations of large
excitatory with small inhibitory and combinations of large inhibitory with small ex-
citatory time constants. All maxima that are characteristic to a given frequency
feature inhibitory time constants that are larger than the excitatory ones. Since,
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Figure 4.16: Contours of the maximal response amplitude in the τinh-τexc-plane
for different signal frequencies with fixed delay for the recurrent model. Black solid,
dashed, and dotted line, grey solid, dashed, and dotted line: amplitude maxima for
130, 90, 50, 30, 20, and 14 Hz. As the frequency increases, the maximal amplitude
appears at smaller time constants. We note that the performance of the model can
only be estimated in combination with the absolute amplitude; as in the feedfor-
ward model largest amplitudes are obtained for small excitatory time constants. In
contrast to the feedforward model, all maxima that are characteristic for a given
frequency feature inhibitory time constants that are larger than the excitatory ones.
Here, ∆ = 2 ms, Jinh = −1.
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just as in the feedforward model, the amplitude of the solution is maximal for small
excitatory time constants, it makes sense to choose the excitatory time constant as
small as possible. The result is a system where –given delay and inhibitory strength
fixed– the frequency response can again be tuned over one order of magnitude by a
variation of the inhibitory time constant.

4.3.3 Discussion: potency of the mixed setup

As we have seen, a simple excitatory–inhibitory feedforward model can identify
frequencies in the range of approximately ten to several hundred Hertz relying on
biologically plausible parameters only, viz., short delays and balanced inhibition.
The model works best for a very short, fixed excitatory time constant. Given a spe-
cific delay, the frequency where the response of the model is maximal –the preferred
frequency of the model– can be varied by tuning the inhibitory time constant. Al-
ternatively, the inhibitory time constant can be taken to be short and the model can
be tuned by the excitatory time constant. A recurrent setup shows a behavior very
similar to the feedforward model and can identify frequencies in the same range.
The amplitude peaks, however, are shallow as compared to the response maxima in
the feedforward model. Furthermore, in contrast to the feedforward model, a short
excitatory time constant is necessary for the model to work. Again, the model can
be tuned by choosing the appropriate inhibitory time constant.

Interestingly, the characteristics of the neuronal band-pass filter at hand are quite
different from the initial conception we formulated in the introduction. The näıve
picture of simply subtracting the envelopes of two low-pass-filtered signals does not
explain the characteristics of the system. If the neuronal band-pass filter followed
such a simple relation and we had defined the cut-off frequency as the frequency
where the response of the system is half of the maximal response, the preferred
frequency would be given by fpref = 1/(4π2τexcτinh)1/2. This would lead to plain
hyperbola-like curves instead of the odd-shaped curves depicted in figure 4.13. Ob-
viously an in-depth analytical description is crucial in order to arrive at a thorough
understanding of the system.

Although motivated by our intention to create a “minimal model”, the delay of 2 ms
chosen in the current calculations may appear arbitrary. Appearances, however, are
deceiving as can be seen through experimental results of inhibition being delayed
by 2.4 [188] and 2 ms [111] in the auditory cortex. In the auditory brainstem one
can expect even shorter delays like 0.6 ms for the inhibition [190]. Thinking of
the influence a short delay has on the preferred frequency of our model, these short
delays fit the concept of the auditory brainstem dealing with higher frequency signal
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periodicity than the cortex. In fact, sensitivity for amplitude modulations up to
1000 Hz has been reported in the experimental literature [92]. However, neurons
sensitive to modulation frequencies > 300 Hz are few and far between, while the
majority of the neurons is confined to the range of 30-100 Hz. This finding is valid
for various animals [104,109,153–155] so that, from a conceptual point of view, most
of the AM sensitivity of neurons can be explained by our model.

Quite surprisingly, “balanced inhibition” (BI) turns out to be the optimal choice
for the inhibitory coupling strength. Balanced inhibition denotes inhibitory input
of approximately the same strength as the excitatory input. It has been observed
at several locations and under various conditions, ranging from cat visual cortex
[3, 132] to the cochlear nucleus in rats [145], and in ongoing as well as sensory-
evoked neuronal activity [140]. A number of possible functions has been proposed
for BI, but its actual purpose is still a matter of ongoing debate.

Our findings suggest an additional role for BI, namely in the processing of signal
periodicity such as amplitude modulations and/or the processing of vibratory sig-
nals. The findings of single whisker deflections causing a sequence of excitation and
BI in the rat barrel cortex [82], and BI changing the chopping frequency in chopper
neurons in the very same animal [145] fit here nicely. Balanced inhibition has been
proposed to account for enhancing temporal precision and regulating random back-
ground activity [188]. Furthermore, experimental evidence supports the importance
of BI in the processing of frequency modulated tones [199].

The idea of BI acting as a kind of gate or filter between cortical areas [82] agrees with
our present results in that the frequency range of our model covers the β (13-30 Hz)
and γ (30-100 Hz) oscillations that are believed to contribute to the communication
between different parts of the brain, and to attention, a related topic. Furthermore,
BI is locked to noise envelopes in the cat auditory cortex, and locking is suppressed
by low-level tones [111]. This can be taken as a hint towards BI playing a role in
the attentional framework.

4.4 Neuronal binding and signal recognition

We have shown that without any specialized architectural features –a generic neuron
model, short delays and a variation of time constants– the modulation frequency
components of a signal can be resolved neuronally. In their remarkable simplicity,
the models already show characteristics that are surprisingly consistent with ex-
perimental data. A small number of input neurons is enough to sample the input
signal with sufficient accuracy. Importantly, the neuronal parameters necessary for
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periodicity identification lie in the range of milliseconds, comparable to the typical
auditory time scale. Concerning the biological relevance, however, there is a problem
with the purely excitatory approach. For the identifcation of low AM frequencies
very long neuronal delays are required. Such neuronal delays have not been found
at least in the mammalian auditory system in spite of extensive research. The role
the delays play in the excitatory–excitatory setup can be taken over by chopper neu-
rons, though, if spiking regularity meets the required precision; cf. Sec. 4.2.3. The
excitatory–inhibitory approach by contrast ab initio only relies on neuronal building
blocks well-documented in the auditory system, namely long inhibitory time con-
stants and balanced inhibition. Thus both principles are biologically realizable for
the initially discussed conversion of a phase code into a rate code. Regardless which
strategy is the preferred one, the output of the networks can be further enhanced
by post-processing mechanisms. Lateral inhibition, for example, can be used to
sharpen the peaks in the frequency response.

At this point we want to emphasize that extracting the slowly-varying envelope from
an input signal is easily accomplished in a biological system. Half-wave rectification
of the signal and subsequent low-pass filtering suffice. This can be accomplished by
simple means as a slow synapse that filters out all high frequency components. Even
if the slow envelope of the signal has been extracted, however, the frequency of the
envelope oscillations is still unknown. The advantage of the proposed models is their
ability to identify the frequency of the envelope oscillations. Such an identification
of envelope frequency is of great importance since the recognition of sounds depends
on the capability of determining the periodicity of the input signal, which brings us
back to the concept of auditory objects.

Namely, it is exactly this identification of periodicity that makes our models suitable
for the neuronal formation of auditory objects. In concreto, our models connect the
two main advantages of the concept of an object to neuronal mechanisms in the
following way.

The first advantage, as we remember, is the idea of binding together different as-
pects, here frequencies, of one signal that belong together for efficient processing. As
already discussed in the introduction, common amplitude modulations are a suffi-
cient cue for achieving such binding; cf. Sec. 1.1. In our auditory system, the cochlea
acts as an initial frequency decomposer that splits the neuronal processing of audi-
tory signals into distinct channels that enable frequency-specific processing. Within
such a frequency channel, we now can deploy a set of AM-identifying circuits, each
with a different preferred AM frequency. Each frequency channel is thus further
decomposed into AM channels. As a consequence different frequency components of
one auditory signal with identical AM frequencies will lead to activity in the same
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Figure 4.17: The principle of auditory object formation based on common ampli-
tude modulations. A superposition of two signals is illustrated by our initial cocktail
party comic (left; cf. Fig. 1.1). The cochlea resolves frequency, but cannot identify
the frequency components belonging to the individual sources. An array of neuronal
periodicity detectors resolves the individual frequency components by decomposing
each cochlear frequency channel into AM channels (grey box). Subsequently, the dif-
ferent auditory objects, here the red and the blue speaker, can be processed further
(right).

AM channels. This is how we can realize grouping for auditory object formation by
means of our models; cf. Fig. 4.17. In a subsequent stage our auditory system can
then selectively process the frequency components of that very object, for instance
by means of an attentional framework.

The second advantage of the concept of an object is that of signal recognition. As
just described, binding allows to select frequency components belonging to the same
source. Since each auditory object is consequently defined by its specific combination
of contributing frequencies (bound together by identical AM), the identity of the
auditory object can be recognized independently of the surrounding by memorizing
this specific combination. This is indeed what is happening in our auditory system
as we will expound in the following.

Both advantages are nicely illustrated by human speech. For this purpose we recall
the “cocktail party” from the very beginning of the thesis. For a reminder, within
a complex mixture of sounds, we want to extract what our vis-à-vis is trying to tell
us. To keep things simple, we stick to the vowel “a” as an example. Analogously to
what we have described above we need to first bind the right frequency components
together and second recognize the vowel, that is, identify both the vowel and the
speaker so as to understand him.

First, we address the idea of binding. We know that human speech consists of several
frequency bands that are comodulated by a guttural frequency called the voicing
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frequency or fundamental frequency ; cf. Sec. 1.1. In figure 4.18 we see the Fourrier
transform of the vowel “a”. The voicing frequency is visualized by the distance
between the bars that represent the isolated frequency components. In the top
panel, each component is modulated by 100 Hz, and in the bottom panel by 220 Hz.
As the voicing frequency differs from speaker to speaker, any frequency component
belonging to an individual speaker can be grouped by means of our models1. We
hence in our cocktail party scenario have arrived at the level where we do not have to
deal with a mixture of sounds any more but where we dispose of frequency packages
that originate from different sources. Thus, by focussing attention on specific AM
frequencies, we can switch between these packages and separate contributions from
different individuals. These isolated sound packages can be localized by standard
mechanisms based on interaural time differences since the necessary information
hereunto, the phase locking of the input, is preserved throughout the processing in
our models. Auditory object formation would then occur before object localization.
This agrees not only with our reasoning in the introduction of this thesis but also
with previous experimental work showing that spatial separation of sounds is indeed
linked to the comodulation of signal amplitude across several frequency channels. So
we know which frequency components belong together and where they come from,
but we do not know what vowel is pronounced and who the speaker is.

Second, we address the idea of signal recognition. Here our goal is to recognize the
identity of the vowel, here “a”, as well as the identity of the individual pronouncing
it. Figure 4.18 visualizes the situation: A signal, a spoken “a” as in “father”,
consists of many modulated frequency components of different averaged intensity,
or loudness, depicted as bars. The peaks (∗) in the spectrum determine the identity
of the vowel. The three peaks at about 750, 1100, and 2600 Hz are characteristic
for an “a”. An “e” as in “heed”, for instance, would be determined by peaks at
about 250, 2250, and 3250 Hz. So the identity of each vowel is defined by peaks at
characteristic frequencies in a given frequency distribution. A distribution is not
only determined by its peaks, though – the ratio of the different peaks in respect
to each other is another important characteristic. It determines the identity of
the individual who pronounces the vowel. We explain this by figure 4.18. The
grey shaded areas in the top and bottom panel, the envelopes of the frequency
distributions, indicate that different individuals pronounce the same vowel since the
peaks are identical whereas their ratio is not. Contrariwise the black bars in the

1There is an alternative concept for frequency grouping: As we see in figure 4.18, our auditory
system could exploit the relation between AM frequency and the distance of the relevant frequency
components with respect to each other along the spectral axis. This relation, however, then needs
to be learned for each and every possible combination of frequency components and AM frequency
– a, given the ease of our approach, incredibly wasteful strategy that will hardly be realized in a
biological system.
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Figure 4.18: Exemplary spectra of the vowel “a” as in father in loudness versus
frequency. The peaks of the spectra, the formants, are clearly discernible, and
their position (∗) marks the vowels as “a”. The voicing frequency is reflected in
the distance of the frequency components (bars). The voicing frequency is 100 Hz
(top), and 220 Hz (bottom), respectively. The shaded areas mark the envelope of
the spectrum, a characteristic identifying the individual who pronounces the vowel.
The black bars in the bottom originate from the same speaker as the black bars in
the top with a higher modulation frequency, whereas the grey bars in the bottom
can be attributed to another individual. Adapted from [8].
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bottom level can easily be attributed to the speaker of the top panel, only that he
speaks the vowel with a higher modulation frequency.

In summary, everyday experience proves that our auditory system does not only
exploit and memorize isolated features of auditory signals such as the identity of
peaks that determine a vowel. Rather, complex contextual relations, for instance
the relative ratio of the peaks, vitally contribute to auditory object recognition such
as the attribution of speech to a specific, known individual. A necessary prerequisite
for all this, however, is the correct grouping of frequencies stemming from one source,
that is, a possibility to reliably access them. Our models give this possibility in a
very simple and natural way, and hence are to be considered as archetypes for the
formation of auditory objects in neuronal networks.



Chapter 5

Synopsis and research
perspective

After zooming in from the general concepts of auditory objects and echoes of chap-
ter 1 onto specific theoretical concepts and their neuronal realization in chapter 2
and 4, we now want to zoom out so as to obtain a “10.000 m-above-ground” perspec-
tive. From up there what we have gained in almost hundred pages can be condensed
into two fundamental statements. First, the mathematical concept of stochastic op-
timality gives us a framework for evaluating biological strategies for echo suppres-
sion. Namely, we are now able to compare optimal environment-dependent temporal
receptive fields to their neuronal counterparts in the auditory brainstem. Second,
the neuronal limitations for the identification of signal periodicity allow for AM-
based object formation. Again, we can now compare characteristics of neurons in
the auditory brainstem such as the temporal jitter of spikes or neuronal time con-
stants with the theoretical requirements and the performance of existing auditory
circuitry.

We conclude this thesis with three personal remarks on promising sites for future
research. The first one concerns the extension of our view on biological echo sup-
pression towards a multimodal perspective. The second one is on the conceptual
advantage of using many different frequencies for information transmission in a nat-
ural environment. The third one sheds light on a possible origin –learning via spike-
timing-dependent plasticity– of neuronal circuitry for periodicity identification. In
the final paragraph of this thesis we come back to Seebeck and Ohm.
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Figure 5.1: Auditory processing overview. Object localization, object formation,
and echo suppression are the three core tasks the auditory system has to perform
after the Fourier transform in the cochlea. Object localization and object formation
both strongly rely on phase relations within the signal, and efficient echo suppression
is necessary for the phase relations to remain intact. All three tasks can be supported
in a multimodal approach, for instance, by vision providing top-down information
about auditory source localization, identity, and echo structure as determined by
the environment.

5.1 The multimodality of echo suppression

We remember that amplitude modulations are one of several cues for auditory object
formation. Apart from AM an important cue, especially when it comes to short
signals, is the “common onset”. Common onset and common amplitude modulations
can be subsumed to the unifying cue of a fixed phase relation, as we did in chapter 1.
Interestingly, this concept –a fixed phase relation– immediately entangles spatial
location. Namely, for sound source localization we compare the relative phases
at the two ears that depend on the of the source to each ear. These two effects,
phase relation for accessing both object identity and object location, are already
complex in their combination and are further complicated by the existence of echoes.
Echoes completely mess up the phase relation in an unpredictable way. Hence, the
auditory brainstem has to deal with the phase relation of any signal concerning three
different aspects at the same time: object formation, object localization, and echo
suppression; cf. Fig 5.1.

While tremendous amount of research has been done on auditory signal localization,
the two remaining aspects have been widely ignored. The present thesis, however,
lays a cornerstone for understanding the formation of auditory objects in biological
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systems by mathematically analyzing intrinsic limitations and potency of neuronal
periodicity identification. It turns out that in auditory localization and especially in
auditory object formation, the handling of dynamic, environment-dependent echoes
is a key ingredient. Our optimal model for echo suppression can, as we saw in chap-
ter 2, be tuned to a high degree of generality and consequently deal with a variety
of environments. We could extend our model, though, by adding the possibility to
adjust the generality of the reconstruction filter to the actual need. Since our setup
for echo suppression is of feedforward quality, the model in its present form cannot
adapt itself to the environment-at-hand. Here, a feedback structure could enhance
the capabilities of the presented framework by realizing a dynamic adaptation via
real-time adjustment of the model parameters.

Such a feedback control is an evident step since, interestingly, the auditory system
is known for massive feedback projections, some of which even reach the cochlea.
Bearing our model in mind we easily can imagine feedback projections to several
stages within, e.g., the auditory brainstem modifying the flexible components of
the reconstruction function. These modifications of the processing pathway would
then correspond to the above real-time adjustment of our model. Since our model is
based on the mathematical concept of error minimization, the feedback loops within
the auditory pathway would then basically convey an error code to the individual
nuclei, a consideration that we find for instance in a recent approach to feedback in
the auditory system by Gonzalo Otazu et al. [143].

An interesting extension of our model would be the inclusion of input from other
modalities into auditory feedback signals. Since the environment shapes the echoes
that we need to suppress, it makes sense to exploit this information as it is available
from other senses. Vision, for instance, can provide a whole clutch of cues that
reduce the possible echo characteristics. Such cues can be, e.g., the size of the
room-at-hand, the listener’s distance from the next wall, the speaker’s distance
from the next wall, or the speaker’s size and sex. All this information then would
influence our expectation on the degradation of the signal and, consequently, alter
and improve signal reconstruction, i.e., echo suppression, via feedback control. The
walking robot LOLA equipped with both microphones and cameras will be a nice
example demonstrating the power of a biomimetic multimodal approach.

5.2 The spreading of information across frequencies

Another intriguing thought is the following: bearing chapter 3 in mind, namely the
importance of amplitude modulations, we might wonder why there is so much ado
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about different frequency components belonging to one auditory object. We know
that already three bands of amplitude-modulated noise give a very good sentence
intelligibility. If most of the information is transmitted in the range of several
hundred Hertz, the arising question is why most of the energy in our speech is
contained in the frequency range of thousands of Hertz.

An appealing answer results from a simple consideration. Within the natural en-
vironment, obviously there are many sounds that may disturb a signal we want to
communicate. So as to obtain a reliable signal communication it is a good strat-
egy to spread the signal we want to transmit onto several transmission channels,
in our case the carrier frequencies in the range of several thousand Hertz. Such a
spreading of information is a common technique in modern communication systems
and comes in various colors and forms depending on the space in which you spread
the information. Since we are talking about the frequency domain, we give a short
explanation of frequency-division multiplexing.

In contrast to single carrier modulation, where information is transmitted only by
variations of phase and amplitude of a single carrier frequency, frequency-division
multiplexing (FDM) extends this concept by using multiple subcarrier frequencies
within one transmission channel. The total information to be sent in such a chan-
nel is usually divided between the various subcarriers. A good example of FDM is
the current NTSC television multiplex. Frequency-division multiplexing offers an
advantage over single-carrier modulation in terms of narrowband frequency interfer-
ence since narrowband interference will only affect one of the subcarriers. The other
subcarriers will not be affected by the interference, hence a more reliable information
transmission is achieved.

So we can consider the fact that we spread information across several frequencies
when communicating as a biological realization of FDM. Or rather, since speech
has been there first, FDM is a technical realization of our natural communication
strategy. Although the idea of FDM and similar technology has been around for a
while in the field of technical application, its realization has been rendered possible
rather lately by the invention of the microprocessor. Complementary, the emergence
of the AM processing scheme in neuronal networks is an interesting question yet to
be answered.

5.3 The learning of periodicity identification

As we discussed in chapter 4, it is straightforward to arrange the neuronal building
blocks we have derived for periodicity identification into an array that allows to
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Figure 5.2: Learning of AM identifcation in an excitatory–inhibitory setup. Pre-
ferred frequency is plotted against training frequency in Hertz. The grey line marks
the identity of training frequency and preferred frequency, the black dots our pre-
liminary analytical results. We see a linear relation close to identity between the
preferred frequency of the setup and the frequency used for training. For obtaining
the results we have employed an adapted STDP learning rule that takes into account
the location of a synapse along the dendritic tree.

access frequency components with identical AM. Such an array is then a map for
amplitude modulations. For a reminder, a map is a neuronal representation of the
external world, or, more precise, a neuronal representation of a specific feature of
the external world – in our case of frequency components with similar AM. Maps
in general are an important theoretical concept and play a major role in sensory
processing [80,103].

In the auditory system there are different kinds of maps, amongst them maps for
frequency, interaural time difference, interaural amplitude difference, and even, not
surprising to us after having learned so much about their importance, amplitude
modulations [64, 122, 141, 147, 163, 180]. Their mere existence, however, does not
tell us why they exist or how they can emerge. While we cannot provide a definite
answer to the first question, at least the latter has been answered for some maps.
Interaural time difference maps, for instance, can be achieved by applying a specific
learning theory, spike-time-dependent plasticity (STDP) [113]. For details on the
STDP learning theory we refer to elsewhere [79].

This learning theory can also be deployed to the formation of AM maps. A pre-
liminary result for a subset of neurons in an excitatory–inhibitory setting is depicted
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in figure 5.2. To obtain the result displayed, we have combined one fixed excitatory
with several learning inhibitory synapses. The learning is realized by an adapted
STDP learning rule that, by taking into account the location of the synapses along
the dendritic tree, allows the learning of different time constants, hence, according
to section 4.3, the learning of different preferred frequencies. Such a setting can
lead to a linear relation between, or even identity of the frequency that is used
to train the network and the frequency the network responds to maximally, its
preferred frequency; cf. Fig. 5.2. So our analytical calculations underlying figure
5.2 constitute a solid starting point for a mathematical explanation of the emergence
of AM maps, a matter to be explored in detail in future work.

Last but not least, let’s come back to poor old Seebeck and Ohm, both of whom had
so furious battles about who is right and who is mistaken. In Seebeck’s opinion, very
similar to the ideas underlying chapter 3, our auditory system relies on periodicity
cues for analyzing the auditory scene. He was an experimentalist and based his
concepts on experiments with sirens, mainly. Ohm being a theoretician proclaimed
that, since a Fourier transform of any signal will give an unambiguous mean of
identifying this very signal, the auditory system will employ a Fourier transformation
for auditory scene analysis. Now, 150 years later, we finally can settle the affair:
They both have been right. As discussed in section 4.4 signal periodicity is used
for solving the binding problem, the formation of auditory objects, and a Fourier
transform is needed for the interpretation of the object, for instance, for recognizing
a vowel.
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[46] Denève, S., Latham, P., Pouget, A.: Efficient computation and cue integration
with noisy population codes. Nat. Neurosci. 4(8), 826–831 (2001)

[47] Deutsch, D.: Octave generalization of specific interference effects in memory
for tonal pitch. Percept Psychophys 13, 271–275 (1973)

[48] Devore, S., Ihlefeld, A., Hancock, K., Shinn-Cunningham, B., Delgutte, B.:
Accurate sound localization in reverberant environments is mediated by robust
encoding of spatial cues in the auditory midbrain. Neuron 62, 123–134 (2009)

[49] Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of syn-
chronous spiking in cortical neural networks. Nature 402, 529–533 (1999)

[50] Elepfandt, A.: Localization of water surface waves with the lateral line system
in the clawed toad (Xenopus laevis daudin). In: D. Varjú, H. Schnitzler (eds.)
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