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Preface

Abstract

The Minimal Supersymmetric Standard Model based on flavor symmetries and models
with a warped extra dimension as first proposed by Randall and Sundrum represent two
of the best founded theories beyond the Standard Model. They provide two appealing
solutions both to the gauge hierarchy problem and to the Standard Model flavor hierarchy
problems. In this thesis we focus on a particular Randall-Sundrum model based on the
custodial symmetry SU(2);, x SU(2)r X Prr in the bulk and on two Supersymmetric
flavor models: the one based on a U(1) abelian flavor symmetry, the other on a SU(3)
non abelian flavor symmetry. We first analyze and compare the flavor structure of the
two frameworks, showing two possible ways to address the New Physics flavor problem:
warped geometry and custodial protection vs. flavor symmetry. Subsequently, we study
the impact of the new particles (Kaluza-Klein states in the Randall-Sundrum model and
superpartners in Supersymmetry) in the K and B meson mixings and rare decays. We
perform a global numerical analysis of the new physics effects in the models in question
and we show that it is possible to naturally be in agreement with all the available data
on AF = 2 observables, even fixing the energy scale of the models to the TeV range, in
order to have new particles in the reach of the LHC. We then study distinctive patterns of
flavor violation which can enable future experiments to distinguish the two frameworks.
In particular, the specific correlations between the CP violating asymmetry in the B? — BY
system, the rare decays B 4 — p '~ and K — wvw allow in principle for an experimental
test of the Randall-Sundrum model and of the two Supersymmetric flavor models and a
clear distinction between the two frameworks, once new data will be available.

Zusammenfassung

Minimale Supersymmetrische Erweiterungen des Standard Modells mit Flavor Symme-
trien und Modelle mit einer gekriimmten Extradimension, wie sie zuerst von Randall und
Sundrum vorgeschlagen wurden, stellen zwei der am besten motivierten Theorien jenseits
des Standard Models dar. Sie bieten attraktive Losungen sowohl fiir das Eichhierar-
chieproblem als auch fiir die Flavorhierarchieprobleme des Standard Models. In dieser
Doktorarbeit konzentrieren wir uns auf ein bestimmtes Randall-Sundrum Modell, das auf
der kustodialen SU(2)r, x SU(2) g X Pr.r Symmetrie in der Extradimension basiert, und auf
zwei supersymmetrische Flavormodelle: eines, das auf einer abelschen U(1) Flavorsymme-
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trie basiert und ein anderes, das auf einer nicht-abelschen SU (3) Flavorsymmetrie basiert.
Wir untersuchen und vergleichen zuerst die Flavorstrukturen beider Modelle und zeigen
zwei Moglichkeiten auf, das sogenannte “Flavorproblem von neuer Physik” zu behandeln:
eine gekriimmte Extradimension und kustodialer Schutz auf der einen Seite, Flavorsymme-
trien auf der anderen Seite. Anschliefend untersuchen wir den Einfluss der neuen Teilchen
(Kaluza-Klein Teilchen in Fall des Randall-Sundrum Modells und Superpartner in Fall von
Supersymmetrie) auf K und B Meson Mischung und auf seltene Zerfille. Wir fithren eine
umfassende numerische Analyse der neuen Physik Effekte in den untersuchten Modellen
durch und zeigen, dass es in beiden Modellen méglich ist, auf natiirliche Art und Weise
mit den zu Verfiigung stehenden Daten zu AF = 2 Observablen {ibereinzustimmen. Dies
gilt, obwohl wir die Energieskala der Modelle auf den TeV Bereich setzen, um die neuen
Teilchen in der Reichweite des LHCs zu haben. Im Anschluss untersuchen wir die charak-
teristischen Muster von Flavorverletzung, die es zukiinftigen Experimenten erlauben, die
beiden Modelle zu unterscheiden. Insbesondere die Korrelationen zwischen der CP ver-
letzenden Asymmetrie im BY — BY System und den seltenen Zerfillen Bs 4 — p*pu~ und
K — wvv erlauben es im Prinzip, das Randall-Sundrum Modell und die zwei supersym-
metrischen Flavormodelle experimentell zu testen. Eine klare Unterscheidung zwischen
den Modellen wird moglich sein, sobald neue Daten zu Verfiigung stehen werden.
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Chapter 1

Introduction

The idea for a Large Hadron Collider (LHC) was born at CERN already in the early
1980s. After a long period of work by more than 10,000 scientists, coming from more than
40 different countries, LHC is now finally running. High hopes rest on the experiment
that, for the first time in the history of particle physics, will test energies considerably
higher than the electroweak (EW) scale. Several fundamental questions are waiting for the
results of the LHC: is the Higgs mechanism for generating elementary particle masses via
electroweak symmetry breaking (EWSB) indeed realized in nature? What is the nature of
the Dark Matter? And also, is the Standard Model (SM) the complete theory of nature? Is
supersymmetry, an extension of the Standard Model and Poincaré symmetry, realized in
nature, implying that all known particles have supersymmetric partners? Are there extra
dimensions?

The Standard Model augmented by neutrino masses provides a remarkably successful
description of presently known phenomena, except gravity. Given the striking success of
the SM why are we not satisfied with that theory? The main reason is that there are
strong conceptual indications for physics beyond the SM (BSM).

The computed behavior of the SU(3). x SU(2)r, x U(1)y couplings with energy clearly
points towards the unification of the electroweak and strong forces (Grand Unified Theories
(GUTs)) at energy scales Mgyt ~ 1016 GeV. It is quite unlikely that the SM without
New Physics (NP) is valid up to such large energies, because of the so called hierarchy
problem [1,2] that is related to the presence of light elementary scalar fields in the theory
with quadratic mass divergences and no protective extra symmetry at low energy. Hence,
already the hierarchy problem would hint towards a theory beyond the Standard Model
that is able to stabilize the electroweak scale and that arises, consequently, at an energy
just above that scale. This is the strongest theoretical motivation which leads us to believe
that there is New Physics beyond the Standard Model.

The hierarchy problem is certainly not the only conceptual problem of the SM. We
should also mention the problem of the unification of the coupling constants, the pro-
liferation of parameters and the mysterious pattern of fermion masses and mixings (the
so called SM flavor problem). But differently from the gauge hierarchy problem and the
problem of the unification, the SM flavor problem can be postponed to the final theory
that will take over at very large energies, and not at a low scale of O(1TeV).



Finally also experiments seem to hint towards the presence of New Physics. First of
all, there is a solid astrophysical and cosmological evidence that most of the matter in the
universe is dark, namely does not emit electromagnetic radiation. However the SM does not
contain any particle with the right properties to form dark matter. Moreover, the simple
fact that neutrino masses vanish in the Standard Model implies that the experimental
evidence for neutrino oscillations, and hence for massive neutrinos, indicates the existence
of New Physics beyond the Standard Model. Additionally, also Baryogenesis cannot occur
in the framework of the Standard Model, since the CP violation of the Standard Model is
far too weak to explain the process; additional sources of CP violation would be required.
Finally there is a good experimental evidence that in the first fraction of a second of the
big bang the universe went through a stage of extremely rapid expansion called inflation.
The fields responsible for the process cannot be Standard Model fields and hence also the
process of inflation hints towards the presence of New Physics.

With all these motivations at hand, we consider worth to analyze theories beyond the
Standard Model, that try to solve, or at least to address, some of the aforementioned open
issues. Probably this is one of the most exciting time to perform this kind of investigation,
since the TeV scale, namely the energy scale at which we indeed expect New Physics, is
exactly the energy scale that LHC will probe within the next several years.

Presently, at the dawn of the LHC, great importance is given to the study of the
possibility to directly detect the Higgs boson and additional new particles not present in
the framework of the Standard Model. What is then the role of flavor physics in this era?

As we have already mentioned, the Standard Model flavor sector suffers of a concep-
tual problem: the SM flavor problem. Additionally, comparing the huge amount of data
on flavor observables and the corresponding SM predictions, small discrepancies arise.
Moreover, low energy precision experiments test the predictions of the Standard Model
and of theories beyond to a high level of accuracy, putting stringent constraints on the
possible forms of New Physics. They can in fact reveal the main properties of the new
particles, thanks to the study of their footprints in low energy processes in which they are
involved. In this sense, the indirect searches are complementary to the direct searches of
new particles at the LHC, even if the former can in principle be sensitive to much shorter
scales than the latter.

In the future, once new data from LHC will be available, it will be necessary to have
tools to disentangle between the several theories beyond the Standard Model. Presently,
in fact, there are very many BSM theories that are collecting a large interest and that are
addressing some of the main problems of the SM, like the gauge hierarchy problem: Super-
symmetric theories [3], theories with extra dimensions both with flat metric and warped
metric [4, 5], theories based on Technicolor [6], the Little and Littlest Higgs models [7,8].

In this thesis we will analyze the quark flavor sector of two of the most accredited
models BSM: the Minimal Supersymmetric Standard Model (MSSM) (for an extensive
review see [9]) and the Randall-Sundrum (RS) Model [5]. The main aim will be to show
the power of flavor physics in supplying a tool to distinguish between the two frameworks
through the different pattern of predictions of the MSSM and of the RS model in flavor
observables.



The thesis is organized as follows. In Chapter 2, we first explain in detail the flavor
puzzle and subsequently we introduce the two NP frameworks: Sec. 2.2 is dedicated to
the Randall-Sundrum model with custodial protection, Sec. 2.3 to two Susy flavor models,
the one based on a U(1) flavor symmetry, the other on a SU(3) flavor symmetry. The two
sections are organized in an analogous manner: we first show how to address two of the
main problems of the Standard Model, the gauge hierarchy problem and the SM flavor
puzzle and, secondly, we present the details of the models analyzed, focusing particularly
on the quark flavor sector. In Chapter 3, we explain how to limit the (in general too
large) NP effects on flavor changing neutral currents (FCNCs), first (Sec. 3.1) in the RS
model with custodial protection, and secondly (Sec. 3.2) in Susy flavor models. We will
show in fact the big role of the RS-GIM mechanism and of the enlarged gauge group of the
RS model in protecting flavor changing neutral vertices from being too large. Thanks to
these protection mechanisms, the model can be in agreement with the experimental data
on quark flavor observables, in spite of the flavor changing neutral currents arising already
at the tree level. In parallel, we will demonstrate the importance of flavor symmetries
in reducing the NP effects in flavor changing neutral couplings in the framework of Susy.
Chapter 4 is devoted to the analysis of the impact of the flavor changing neutral currents
previously studied, first (Sec. 4.1) on K and B meson oscillation observables, and secondly
(Sec. 4.2) on rare B and K decays. We will study the effective Hamiltonians responsible
for the several processes, putting a particular attention on the comparison between the
different NP contributions and on the understanding of the theoretical structure of the two
frameworks responsible for the several results for the AF = 2 and AF = 1 observables.
Each section is concluded by a brief discussion of the present experimental status of the
measurements and of the corresponding SM predictions. Already from this chapter we can
get a feeling for the expected relative size of NP effects in the several flavor transitions.
The expectations will be confirmed in Chapter 5 that is dedicated to our numerical
analysis. In Sec. 5.1 we present the details of our numerical investigation, specifying
the particular scan we performed for the two NP frameworks. Secondly, in Sec 5.2, we
analyze, both in the RS model and in the two Susy flavor models, the constraints we have
to impose on the parameter space, in order to be in agreement with all the well measured
AF = 2 observables. After having restricted the parameter space of the two theories, we
examine the possibility to obtain large NP contributions in the CP violating asymmetry
of the B? — BY meson system, Sy,. That observable is in fact a golden channel for flavor
physics, since present experiments seem to show a discrepancy at the level of 30 with
the SM prediction. In Sec. 5.3, we will turn our attention to the numerical analysis of
rare K and B decays. A significant part of our study is dedicated to the investigation of
possible correlations between different flavor channels, since these can be seen as parameter
independent signatures of the two models. Particular attention is dedicated to the rare
decay mode By — putp~ and to its correlation with Sy, since also this By decay is one of
the golden channels to be explored at the LHC. Finally, in Sec. 5.4 we will summarize how
to distinguish the two NP frameworks through a comparative study of the flavor channels
analyzed in this thesis, once that new data will be available. Our conclusions are reported
in Chapter 6 and some technical details are relegated to the Appendices.



Chapter 2

The two models

2.1 The flavor problem

This thesis is dedicated to flavor physics, namely to the study of the interactions and
of the masses of the fermions of the SM. Consequently, we should first justify for which
reason flavor physics is interesting.

We have to mention that the flavor sector of the SM has a conceptual problem: the SM
flavor problem. The large hierarchies between the several masses and mixings of the SM
fermions are still a mystery. This puzzle became even more severe after the measurement of
the very small neutrino masses and mixings, since the SM does not predict any particular
structure for the free parameters neither in the quark nor in the lepton flavor sector.

Still the interest in flavor physics goes beyond this only motivation

e CP violation is closely related to flavor physics. Within the Standard Model, there is
a single CP violating parameter, the Kobayashi-Maskawa phase ok [10] (in addition
to the QCD @ term). Baryogenesis tells us, however, that there must exist new
sources of CP violation. Measurements of CP violation in flavor changing processes
might provide evidence for these new sources.

e Past experiments showed the important role of flavor precision tests in probing New
Physics:
— The smallness of Iif{(%m led to predict a fourth (the charm) quark [11].
— The size of the mass difference AMp led to a successful prediction of the charm
mass [12].

— The size of the mass difference AMy led to a successful prediction of the top
mass (for a review [13]).

— The measurement of the CP violating observable ex led to the prediction of
the existence of a third generation quarks [10].

e Present experiments of specific flavor observables show small discrepancies with the
SM predictions at the level of (2 — 3)o. Two of the most relevant examples are the
discrepancy in the anomalous magnetic moment of the muon ((g — 2),) (see [14]

4



2.1 The flavor problem

for an updated discussion) and in the time dependent CP asymmetry in Bs — 1,
Sye [15,16].

These arguments emphasize the important role covered by flavor physics and in partic-
ular by the study of flavor physics in theories BSM. However, the SM Cabibbo-Kobayashi-
Maskawa (CKM) [10,17] picture of flavor and CP violation has been very well experimen-
tally established in the last decades. Present experiments overconstrain the four parame-
ters of the CKM matrix and lead to a mainly consistent! determination of the CKM free
parameters [22,23]. Consequently, New Physics theories are strongly constrained in the
flavor sector by the experimental data.

Let us take a generic beyond the Standard Model theory. We can adopt a general
bottom-up approach for the analysis, namely we can assume that the new degrees of
freedom are heavier than SM fields, we can integrate them out, and describe the NP
effects by means of an effective gauge invariant non-renormalizable Hamiltonian. Since
the method of effective Hamiltonians is quite relevant for this thesis, we discuss it now
briefly.

The flavor transitions involve at least two different energy scales: the electroweak scale,
relevant for the flavor changing weak transition, and the scale of strong interactions Agcp.
Using the method of Operator Product Expansion (OPE) [24,25], these processes can be
described by effective weak Hamiltonians where all the particles heavier than the W boson
are eliminated as dynamical degrees of freedom from the theory [26-31] (integration out
of the heavy particles). The effect of particles heavier than My, enters only through the
Wilson coefficients (WCs) ¢;, namely the effective couplings multiplying the operators of
the effective Hamiltonian.

In all generality, the effective Hamiltonian will look like

(d)
C; d
Het = Hsum + ) NG o, (2.1)
% NP

where the operators Ol(d) have dimension d > 4 and they are constructed in terms of the

SM fields, and Anp is the NP scale at which the new degrees of freedom arise.

Some of the non-renormalizable operators in (2.1) can mediate flavor transitions. Hence
the experimental constraints on flavor observables can be summarized in terms of con-
straints on the cgd) parameters, as functions of the NP scale Anyp. Let us consider for
instance the subset of left handed operators (present already in the SM) which mediate

transitions of two units of flavor, namely

ye) 2 o )
AHap—s = 22 (5p9Mdr)? + A%(bm’“dL)2 + A%(bLW”SL)Q t 2 @y ur)?®. (2.2)
NP NP NP

Each of these terms contributes to the mass splitting between the corresponding neutral
mesons. For example, the term (b;y*dy)? contributes to AMy, the mass difference between
the two neutral By mesons.

!Note however the existence of small tensions as pointed out in [18,19] and in [20,21].



2.2 WED with custodial protection

If the New Physics has a generic flavor structure, namely cg) = O(1), the constraints
from AF = 2 observables (see also Tab. 4.5 for a list of the several constraints coming
from AF = 2 observables in the meson system) impose a lower bound on the scale of New
Physics [32], as shown in the second column of Tab. 2.1. From the numbers collected, it
is evident that, in the hypothesis of a generic flavor structure, the scale of NP for flavor
cannot be the TeV scale, as for the electroweak sector. This gives rise to the NP flavor
problem, namely the problem in explaining the hierarchy between the two scales of NP,
the one for the EW sector and the other for the flavor sector.

The problem can be also rephrased imposing the NP scale Axp to be around the TeV
scale. The third column of Tab. 2.1 shows the upper bounds on the parameters 05]2-)
that specific case. It is obvious that, if we insist that the New Physics emerges in the TeV
region, we have to conclude that it possesses a highly non-generic flavor structure.

n

Operator | Bounds on Anp in TeV Bounds on cg) Observables
Re Im Re Im

)2 9.8x10%2 1.6x10* |9.0x1077 3.4 x 107" AMy; e

)2 | 5.1x10°  9.3x10% [33x107° 1.0x107°| AMy; Syke
Ly"sr)? 1.1 x 102 7.6 x 107° A M

2| 12x10°  29x10° [ 56x1077 1.0x 1077 | AMp; |¢/p|, ép

Table 2.1: Bounds on the dimension-six AF' = 2 operators listed in (2.2). Bounds on Axp
(2)
j
cg)’s are set assuming Axp = 1 TeV [32]. Observables related to CP violation (CPV) are
separated from the CP conserving (CPC) ones with semicolons. In the Bs system we only
quote a bound on the modulo of the NP amplitude derived from AM,. The motivation

will become clear in Sec. 4.1.6.

are quoted assuming couplings c;;” = 1, or, alternatively, the bounds on the respective

In this thesis we will review different mechanisms to protect BSM theories from having
too large NP effects in flavor observables, still maintaining a NP scale around the TeV.
More precisely we will investigate the role of

e Warped Geometry and custodial symmetry SU(2)r x SU(2)gr X Prr in the context
of the RS model (Secs. 3.1.3 - 3.1.4);

e Degeneracy and Alignment of squark mass matrices implemented by Susy flavor
symmetries in the context of the MSSM (Sec. 3.2.2);

e Sfermion decoupling in the context of the MSSM (Sec. 3.2.2 or also our recent pub-
lication for the Next to Minimal Supersymmetric Standard Model (NMSSM) [33]).

2.2 WED with custodial protection

In this section we will analyze the basic theoretical features of the Randall-Sundrum model
with custodial protection. At the beginning we will show how to address some of the open



2.2 WED with custodial protection

issues of the Standard Model with the use of a five-dimensional (5D) space with warped
metric. Afterwards, we will present the particular RS model analyzed in this thesis.

2.2.1 Motivations

In this section we will show in detail how the the Randall-Sundrum model can address
some of the most important open issues of the Standard Model: the gauge hierarchy
problem and the SM flavor problem. However, a complete review of the virtues of the RS
model goes beyond the scope of this work. For this reason we will omit issues like the
problem of the gauge coupling unification and the discussion of a dark matter candidate.
For the investigation of the problem of the gauge coupling unification, we can refer the
reader to [34,35]. For the discussion of a dark matter candidate we refer instead to [35-38].

Energy scales and the gauge hierarchy problem

The idea that nature is composed of more than four dimensions is almost one hundred years
old. The first proposal was in 1914 by Nordstrém, who tried to simultaneously describe
electromagnetism and a scalar version of gravity [39]. With the discovery of General
Relativity, Kaluza [40] (1919) and Klein [41] (1926) pursued the idea, realizing that the 5D
Einstein theory with one spatial dimension compactified on a circle can describe both the 4-
dimensional (4D) gravity and electromagnetism. However, it turned out that their theory
was not a viable model to describe nature. For many years the idea of extra dimensions
was almost forgotten. However, with the developments in supergravity and superstring
theories in the late 1970’s, 1980’s, the concept of additional spatial dimensions had a
renewed interest, because of the requirement of extra dimensions by superstring theories.
Still the extra dimensions considered by these theories were beyond any possibility of
testing, since extremely small, of the order the Planck length.

In the 1990’s, the possibility that the extra spatial dimensions show themselves at
(or near) the TeV scale was considered. The origin of this idea was in the work of An-
toniadis [42] who first proposed to employ a TeV~! - size extra dimension in order to
address the problem of the unification of the gauge couplings. Afterward, Arkani-Hamed,
Dimopoulos and Dvali (ADD) [4, 43, 44] proposed the use of a large extra dimensional
model, in order to address the gauge hierarchy problem.

Just one year after, an alternative approach to solve the problem was proposed by
Randall and Sundrum [5]. In that model the metric of the five dimensional space (the
bulk) is not factorisable, since multiplied by a warping factor which is a rapidly changing
function of the additional dimension y

ds* = gundzMda™N = e_%ynu,,d:z:“d:v” — dy?, (2.3)

where k is the 5D anti-de-Sitter space (AdSs) curvature scale, of the order the Planck scale,
and 7, is the Minkowski metric 7, = diag(— + ++). Additionaly, the fifth dimension y
is orbifolded, modding out the symmetry S'/Zs which leaves the points y = 0 and y = L
fixed. Consequently, the fifth dimension is limited in the finite interval 0 < y < L; the
endpoints of this interval are the so called 3-ultraviolet (UV) brane and 3-infrared (IR)
brane, respectively.
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In the model, since distances, and hence energy scales, are location dependent, the
hierarchy problem can be redshifted away, just for geometrical reasons.
To be more precise, let us consider the action of a scalar Higgs field H, localized on the
IR brane

L
S = /d%/ dy\/—G1r (gfg@ﬂHT&,H — \(H? - v§)2> Sy — L), (2.4)
0
where ght is the metric on the IR brane (giy = ¢"“(y = L)) and Gig = det(gly ) = —e FL.
Performing the integration over the fifth dimension, one should also redefine the H field
H — e*“H _ in order to get a canonical normalization for the kinetic term

S = /d4x (8“HT8uH CAN(H? - vge_QkL)2> = /d“x (6"H*8ﬂH — \H? - v%m)) :

(2.5)
The physical mass scales are then set by the symmetry-breaking scale

vorR = voe FL. (2.6)

Consequently, if the warping factor e * is of the order 10716, the warped geometry

produces an EW physical mass scale on the IR brane (also called SM brane) from a
fundamental mass scale vy of the order the Planck scale (10'? GeV). Fixing then the
product kL to be around 35, allows the fundamental parameters k and vg to be of the
same order of the Planck scale, still being in agreement with the requirement that the
effective scale of the Higgs boson is the electroweak scale. The gauge hierarchy problem
is then addressed.

In principle, this geometrical framework (called also RS framework) would have as free
parameters, in addition to £ and L, also the bulk and brane cosmological constants and
the masses of some heavy fields introduced to stabilize the length of the fifth dimension
L. However, these additional parameters are not relevant for our purposes: we can simply
assume that the combination f = ke * is the only free parameter coming from the
geometry, since the product kL is fixed to be kL ~ 35, in order to address the gauge
hierarchy problem. In this thesis we will then treat f for the Kaluza-Klein (KK) mass
Mgk ~ 2.45f.2

Fermion fields and the SM flavor problem

In the original RS model [5] all forces and matter fields, except for the graviton, do not
propagate in the bulk, but are localized on the IR brane. However, this localization is in
principle, only required for the Higgs field, in order to address the gauge hierarchy problem.
In addition, if the matter fields are not allowed to propagate in the bulk, the theory cannot
address the flavor problem, since, using the language of the effective operators (see the
previous section) the higher dimensional operators in (2.2) would be suppressed just by

2In Appendix A, we will show that the KK mass corresponds to a physical mass, more precisely it is
the mass of the first KK excitation of a gauge boson with (+4) boundary conditions.
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the electroweak scale Axp = O(v = vg1R), as in a generic extension of the SM. This, as
already observed, would not be sufficient to cure the NP flavor problem?.

Consequently, models where the several SM fields (both gauge bosons [45,46] and
fermions [47-49]) are allowed to propagate in the bulk are phenomenologically more sound.
In fact, by placing the SM matter fields in the bulk, the effective cut-off scale Axp will
depend on the precise localization of the fields and hence can be even significantly larger
than the electroweak scale. Therefore, in what it follows, we will restrict our analysis to
RS models in which only the Higgs boson is confined on the IR brane, while the fermions
and gauge bosons are 5D fields allowed to propagate along the extra dimension.

Now we will demonstrate that the localization of the SM fermions in the bulk can even
alleviate the SM flavor problem [47,49-51].

Neglecting the possible brane kinetic terms for fermions, the action of a free fermion
in a warped metric is given by

+ (" Lo m
Sy :/d :c/o dyv'G 51/1(2I‘ (Onm +wir) — ck)y + hee., (2.7)

where I'M are the gamma matrices in 5 dimensions, I'M = eﬁ’m, where e‘& is the fiinfbein
defined by gy n = ef/[ eﬁnAB and 74 = (Ya,75) are the usual gamma matrices in the flat
space. G is introduced in order to obtain an invariant integration measure and is given
by G = det(garn), was is the spin connection and ¢ the fermion bulk mass. The variation

principle 0.5, = 0 yields to the equation of motion [47]

[_6_2@77””3#&/ + M o5 (6_@35) —cleE 1)]‘52} ey g2t y) =0, (28)

where we have explicitly separated the left and right handed components of the field
(Yr.r = £75¢1 r) and c(c £ 1)k? are the corresponding bulk mass terms.

To solve this differential equation, one can make use of the Kaluza-Klein decomposition
for the fields 91, r, separating the dependence on x# and on the fifth component y

) = & 3 () (1) £ 2.9
TJZ)L,R( 7y) \/Z Z¢L7R( ) L’R(y) ) ( )
n=0

where fén])_z(y) is the so called fermion shape function for a left/right handed fermion.
Inserting then inside the equation of motion (2.8), one finds

[852 — ks — (ele £ 1)k - erymi)] ) =0, (2.10)
where m,, is the mass of the n-th KK mode, given by

7,0, () = 2™ (a). (2.11)

A comment is in order. Differently from the SM, in the RS model (or more generally
in all the extra dimensional scenarios [4,42,52]), the solution of the equation of motion

3The same kind of problem arises from the proton decay rate if the SM fermions are localized on the
IR brane.
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is not unique. All a Kaluza-Klein tower of particles is solution of the same equation of
motion. As we will analyze more in detail in the following, all these fields have common
quantum numbers, but different masses.

The equation which specifies the shape function of the n-th fermion in the extra dimen-
sion (2.10) is a differential equation of the second order; consequently, a solution f(™(y) is
unambiguously determined only after specifying two additional conditions. The two most
simple choices, usually adopted in the literature, is to impose at the boundaries of the
interval (y =0 and y = L)

e Dirichlet boundary condition (BC): f(”)(y)}bmne = 0. Also denoted with (—).

e Neumann boundary condition (BC): (95 + ck)f(™ (y)}brane = 0. Also denoted with
(+)-

This approach of neglecting all interaction terms, in particular the interactions of
fermions with the Higgs boson, in the fermion action of Eq. (2.7) and of considering the
above BCs is referred to as the perturbative approach. In this approach first the solution
of the free equation of motions and the KK fermion masses m,, are worked out, secondly
the effects of electroweak symmetry breaking are taken into account and treated as small
perturbations O(v?/f?) of the previously obtained KK masses?.

Solving the equation of motion (2.10) with the above BCs, one finds the solutions for
the left handed fields [47]

1—-2c)kL _.
féo) (y,c) = eEI_QC)kL)_l e kya (2.12)
f(")(y ¢,BC) = ctv/2 [J (%&y) + ba(my)Y, (%ekyﬂ (n=1,2,...),(2.13)
L g Nn « ]{I (e n)toa k‘ ) Syt )y .

where a = |¢ 4+ 1/2] and J, Y are the Bessel function of first and second kind, respectively.
Some comments are in order

e The zero modes (2.12) turn out to be massless (mp = 0) and exist only for (++)
BCs. Consequently they correspond to the SM fermions.

e The several fermion fields f én), with n = 0,1, 2,..., satisfy the orthonormality con-
ditions
L (m) () oy —
7/, dye™ [ (y, ) fr (Y, ¢) = Snm (2.14)

which determine the normalization constants N,,.

4Differently, the effects of EWSB can also be treated exactly, introducing in the fermion action the
interaction terms with the Higgs boson (see [53-57] for the study of this equivalent approach).
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e The functions b,(my) and the masses m,, are determined through the BCs on the
two branes (see [47] for additional details or Appendix A where a similar discussion
is performed for the gauge bosons). In particular, an approximate expression for the
fermion masses, particularly accurate for large n, is given by

1 1
c+‘—1>IF4>7Tf, (2.15)

mn2<n+;< 9
(

where the F sign corresponds to a (+) BC for the left handed fermion mode on the
IR brane.

e For right handed fermions the discussion follows the same lines, changing the bulk
mass ¢ suitably: ¢ — —c and taking opposite BCs. For example if the left handed
fermion has (++) BCs, then the corresponding right handed fermion will have (——)
BCs, and vice versa.

e The bulk masses ¢ are in general 3 x 3 hermitian matrices in flavor space, not
proportional to the identity matrix (flavor non-universality).

e To make the localization of the zero mode more explicit, one can also normalize the
fermion fields with respect to the flat metric. The factor e*¥ in (2.14) is reabsorbed
in the shape function of the fermion fields and the zero mode acquires the form

#(0) (1 — 2C)kL (%—c)ky

L (y,0) = me ’ (2.16)

which shows the relevance of the bulk mass ¢ in the localization of the zero mode
in the bulk. In Figure 2.1 the dependence of the zero mode shape function on the
parameter ¢ is shown: for ¢ > 1/2 the fermion is localized towards the UV brane,
for ¢ < 1/2 towards the IR brane.

One consequence of allowing SM fermions to be localized anywhere in the bulk is that
Yukawa coupling hierarchies are naturally generated by separating the SM fermions from
the Higgs on the IR brane. The SM flavor problem is then addressed.

Indeed, since the Higgs boson is forced to be localized on (or near) the IR brane, to
address the gauge hierarchy problem, we can parametrize its shape function normalized
with respect to the warped metric as

Mt y) = —=H(@)h(y) = H@)s(y - L). (217)

Some comments are in order. In the bulk Higgs scenario, one could take into account

the KK decomposition also for the scalar particles. The shape functions of the several

Higgs bosons then can be found analyzing an equation of motion similar to Eq. (2.10)
obtained for fermions, obtaining for the zero mode

1 2kL(B~1) shy

et ) = —=H(@)h) = £H )| S (2.18)
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Figure 2.1: Localization of the fermion zero modes in the bulk for different values of the ¢
parameter: ¢ = 0.6 in red, ¢ = 0.5 dashed and ¢ = 0.4 in green.

where (3 is a free parameter. Then, one forces the Higgs to be localized towards the IR
brane, choosing the limit 8 — oo. However, for our purposes, it is sufficient to use the
limiting case (2.17), placing the Higgs directly on the IR brane and reducing the KK tower
of scalar particles to the SM Higgs only.

The effective 4D Yukawa matrices Y;; for zero modes are then proportional to

L
d , A
Yij 0</0 L Nh ) £ (. ) Y (g, ), (2.19)

kI3/2
where );; are the fundamental 5D Yukawa couplings and éo), f](?? ) the SM left handed
and right handed fermion shape functions, normalized with respect to the warped metric.
Replacing, then, inside these couplings the shape function of the Higgs boson (2.17) and
the shape functions of the two fermions (2.12), we find the simple expression

ekt (0) i (0) j Aij kL(1—citcl)

We notice that, in order to reproduce the hierarchies between the different elements
of the Yukawa coupling matrices, it is not necessary to have hierarchical 5D Yukawas.
Large hierarchies in the elements Y;; are generated, even for totally anarchical and O(1)
Aij, if the bulk mass parameters ¢ and ¢/ are chosen to be just slightly different. Hence,
localizing the quark zero modes in a flavor dependent manner in the bulk® (light quarks
towards the UV brane, heavy quarks towards the IR brane) the flavor problem can be
addressed. Still the RS model does not actually solve the SM flavor problem, since a more
fundamental theory would be required to predict the values of the bulk masses and in
particular the small differences between the several bulk masses that originate in the large
hierarchies in the 4D Yukawas.

°It is interesting to notice the apparent analogy between the aforementioned manner of addressing the
flavor problem and the proposal by Froggatt and Nielsen [58] (see also our Sec. 2.3.1). See [57,59] for a
detailed analysis of the analogy, in spite of the very different physical framework.
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The next natural step would be to discuss the more general NP flavor problem in the
framework of the RS model. Since the problem is non-trivial and needs some more basic
knowledge about the model, we postpone the analysis to Sec. 3.1.5.

2.2.2 The gauge group

In this thesis we discuss a particular RS model with the gauge group in the bulk given
by [60-67]

Gbulk = SU(?))C X 0(4) X U(l)X ~ SU(?})C X SU(Q)L X SU(Q)R X U(l)X X PLR7 (2.21)

where the symmetry group Prg is the discrete symmetry interchanging the two SU(2)
groups®.

To justify the particular choice of the gauge group, few comments on how the RS
model developed are worth. In the original RS model, the gauge group of the bulk was the
Standard Model SU(3).xSU(2)r,xU(1)y. However, it was realized that this particular RS
model had very stringent constraints arising especially from the electroweak observables,
in particular from the Peskin-Takeuchi parameters [70] S [60] and T [54,71-73] and from
the anomalous Zbzby, coupling [60].

The usual “model-building rule” to protect the 1" parameter is to ensure that the
Higgs sector, when considered in isolation from gauge and fermion fields, has a custodial
isospin symmetry after EWSB. Consequently, since putting in the bulk an additional gauge
SU(2)r symmetry implies the existence of an unbroken custodial SU(2)y symmetry in
the Higgs sector, the T parameter is protected from too large contributions in the case of
a SU(2)r x SU(2)r gauge symmetry. Enlarging the gauge group in the bulk with an extra
SU(2) symmetry weakens the bound on the KK mass Mkk arising from the 7" parameter
from ~ 10 TeV to (2 — 3) TeV [73].

The S parameter on the other hand is not protected by the custodial symmetry and
depends weakly on the details of the particular gauge group. In RS models, the bound on
the KK scale given by S is always around (2 — 3) TeV [74].

As far as the anomalous coupling Zbrby, is concerned, it was found that the model
needs an additional symmetry to suppress unwanted large corrections: the discrete Prgr
symmetry [64]. Let us consider in a generic theory the coupling of the Z boson with bb,

g

QL - Qs o), (222)

9z =

where Q% and @ are respectively the 3rd-component SU(2)[, charge and the electric charge
of the left handed bottom quark and 8y is the Weinberg angle. Since the electric charge
is conserved, possible modifications to the coupling Zbrby, can only arise from corrections
to Q%. Before EWSB Q% =T E, but this relation is not guaranted after EWSB anymore.
In particular, the Vacuum Expectation Value (VEV) of the Higgs boson is responsible for
the breaking SU(2);, x SU(2)g X PLr — SU(2)y x Prgr. Most importantly, the subgroup

SWe refer the reader to [57,68,69] for the study of a RS model based on the SM gauge group in the
bulk.
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U(l)y x Ppr remains unbroken: this is the symmetry group responsible for the protection
of the Zbpby, coupling. In fact, by U(1)y invariance, we have that 6Q3, = 6Q3 +5Q§’3 =0,
and, by Ppr invariance, we have 6Q3 = 5@%. The two conditions imply that 6Q3 = 0,
or, in other words, that, thanks to the symmetry SU(2)L x SU(2)r x PLr, the coupling
Zbrby, is protected.

It is evident that this principle is applicable to all the couplings of the Z boson with
a fermion eigenstate of the symmetry SU(2); x SU(2)gr X Prgr, namely with a fermion
which satisfies the conditions”

Ty, =Tr, TP =T3. (2.23)

In Sec. 3.1.4 we will show indeed the generalization of the protection to a larger groups of
fermions, which couplings with the Z boson turn out to be SM-like. This completes our
brief discussion of the gauge group of our theory.

In the development of this thesis, we will show how the aforementioned choice of the
gauge group in the bulk has profound consequences in the phenomenology of the model,
not only concerning electroweak observables, but also on flavor observables.

2.2.3 The field content
The gauge sector

The gauge group introduced in (2.21) is broken on the two branes in order to have viable
phenomenological predictions. In particular, on the IR brane, the Higgs mechanism breaks
Ghulk to

SU@B)e x SU(2)r, x SUR2)r x U(1)x X PLr — SU(3)e x SU(2)y x U(1)em . (2.24)

Additionally, since LEP2 and Tevatron did not discover additional relatively light
gauge bosons, the gauge group SU(2)r should be broken. One possibility is to break
it on the UV brane through appropriate BCs (see the definition of gauge boson BCs in
Appendix A) of the gauge bosons of the theory

Ga(+4), Wi(++), Bu(++),
Wa(—+) s Zxu(—+), (2.25)

where A = 1,...,8, a = 1,2,3 and § = 1,2. The fields B, and Zx, are orthogonal
combinations of the original fields

Zx, = cosqﬁWgu—sinqﬁXﬂ, (2.26)

©w

B, = sin ¢W}3§# +cos ¢ X, , (2.27)

"In [64] it is shown that the theorem is also valid for the coupling of a fermion with T3 = T5 = 0, even
if not eigenstate of the symmetry SU(2)r X SU(2)r X PLR.
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with the mixing angle ¢ given by

cos ¢ = S — ) (2.28)
VIt gk
where, thanks to the Prpr invariance, we could define the unique 5-dimensional SU(2)
coupling constant gr, = gr = ¢,% that is related to the measured 4-dimensional coupling
constant by g = v/L ¢*P.
The assignment of BCs (2.25) explicitly breaks both SU(2)r and U(1)x on the UV
brane (see also Fig. 2.2)

SU(?))C X SU(2)L X SU(Q)R X U(l)x X PLR — SU(3)C X SU(Q)L X U(l)y. (2.29)

From the discussion in Appendix A, it follows that only the fields G;‘, Wi, and B,
(which have (4++) BCs) have a massless zero mode which corresponds to a SM gauge field.
The KK tower of the remaining fields <ngu and Zx,) starts from the first excited state,
with a mass given by ~ 2.40f (see Eq. (A.12)).

Before finishing this section, it is useful to define the following fields for later pur-
poses [75]

W}, FiWw; Wg, FiW3
Wi, = e R 7 . Tl ) (230)
V2 g V2
and
Z, = cosy Wgu —siny By, , (2.31)
A, = siny WEH +cosy B, , (2.32)

where 1) is given in terms of the angle ¢ already defined in (2.28) by
1

V1+sin?¢

cosy =

The fermion sector

In this section we present briefly the particular fermion representation of the RS model
analyzed by us. The main motivations for the specific choice are also listed.

The SM fermions are embedded in full representations of the bulk gauge group O(4) x
U(1)x. In all generality, there are only three possible representations of SU(2)y x SU(2)g:
(2,2), (1,1) and (3,1) @ (1, 3). Phenomenology provides guidelines towards which mul-
tiplets to choose for which field.

In order to have a custodial protection of the Zby by, coupling, the choice by, € (2,2)
with T}j = T}% has to be enforced. Additionally, also the left handed top quark should

8See Sec. 5.1.1 for a discussion of the value of the several 5D couplings ¢, gx.
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SU2) x SU(2)g
X P % U(1)x
SU@)v x U(l)x

(by gauge boson BCs) XFLR

S["'(Q)L X U(l)y (by the Higgs)

UV brane IR brane

Figure 2.2: EW gauge symmetry group in the bulk and on the two branes.

belong to the same bidoublet, since left handed quarks must transform as doublets of
SU(2)r. Although in order to satisfy EW precision measurements only the third quark
generation needs to preserve the Prr symmetry, the incorporation of CKM mixing requires
the same choice of O(4) representation also for the first two quark generations. Therefore,
we embed the entire SM SU(2)1, doublet into the representation (2, 2).

As far as the right handed quarks are concerned, in principle two possible choices are
available: (1,1) and (3,1) @ (1,3). However, the only choice compatible with the gauge
invariance of the Yukawa couplings (see in the following the representation of the Higgs
field) and with the electric charge of the several quarks, is given by br € (3,1) @ (1,3)
and tgp € (1,1). Hence, the fermion representation is given by [63,65,76,77]

i X1 (=+)s/3 ap (++)2/3

g, = ( i i , 2.34
e X% (—+)23 q‘E (++)-1/3 2/3 (2.34)

&r = uR(++)ays, (2.35)
' ' 4 Vip(=+)s/3 VR (—+)s/3

§sp = Tir®Tip= | Up(—+)23 © | Ug(—+)o3 ; (2.36)

Di(=+)-1/3 2/3 DR (++)_1/3 2/3

where SU(2)y, acts vertically while SU(2)r acts horizontally. To these fields we have also
to add the corresponding with opposite chirality and hence opposite BCs. The subscript of
a multiplet denotes the U(1) x charge and the subscript of the individual fields corresponds
to the electric charge determined by the relation

Q=T +Tp+X. (2.37)

Some comments are in order. From our discussion of Sec. 2.2.1, it follows that, before
EWSB, only the fields written in boldface q%’“i, ul and DY, have a massless zero mode
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which corresponds to a SM fermion field. In the spectrum, one needs also to add additional
up, down and charge 5/3 vector-like fields to fill the three representations of O(4) (the
ones with BCs (—+)). As shown in Eq. (2.15), choosing a KK scale at the level of (2 —3)
TeV?, the first excited state of these exotic fermions would be at the TeV scale and in
principle could be a smoking gun signature of the model at the LHC.

Finally, from the discussion of Sec. 2.2.2, we expect that the left handed couplings of
the SM Z boson with the down quarks q%' and the right handed couplings of the SM Z
boson with the up quarks u’é are all SM-like, since all the fermion fields q%' and u’é are
Prr eigenstates. The discussion will be detailed in Sec. 3.1.4.

The electroweak symmetry breaking

The study of the Higgs sector of the theory is beyond the scope of our analysis. However,
it is worth to study the effects of the EWSB on gauge and fermion fields, which cover a
central role in our analysis of the flavor phenomenology.

In order to preserve the custodial symmetry, the Higgs field needs to transform as a
self-dual bi-doublet under the electroweak gauge group of the bulk

(R i)
H_<(h0+i7r0)/2 ) >0’ (2.38)

+0 are Goldstone bosons and h° is the physical Higgs boson whose VEV leads to

where 7
EWSB.

The interaction between the gauge bosons and the Higgs field are then through the
kinetic terms of the Higgs field

SHiggs = / dix /D ' dy VG Tr [(DMH)T(DMH)] : (2.39)

with Djs the covariant derivative of the Higgs bidoublet.
With the breaking of the electroweak symmetry through the Higgs VEV (v = 246
GeV)

(H) = <092 v 2) : (2.40)

a mixing between the several gauge bosons with the same electric charge is induced.
In particular, neglecting the mixing with the excited states heavier than the first KK
excitation

9As we have already discussed, a KK scale of (2 — 3) TeV is not disfavored by the EWPTs in our
particular model with an enlarged gauge group in the bulk. In Sec. 5.2 we will investigate the consequences
of a relatively low KK scale in flavor physics.



2.2 WED with custodial protection

18

<W£0)+ W+ W}Q”) M aged Wél;— , (2.41)
1)—
WR
7(0)
L0 (1) M) pq2 Z(1)
5 (Z zZ ZX )Mneutral : (242)
A%

The process of EWSB induces O(v?/MZy) corrections to the elements of the initial
mass matrices Mgharged,o = /\/lrzleutm,0 = diag(0, (2.45f)2, (2.40f)?), with Mgy ~ 2.45f,
as already mentioned.

Additionally, since the symmetries SU(3). and U (1), must not be broken, the gluons
and the photons (both zero and excited modes) neither mix nor acquire mass through
EWSB. Therefore, the theory will have in the spectrum massless zero modes of gluons

and of the photon and first excited with mass M ,u) = Mga) ~ 2.45f, coming from the
geometry.

To conclude, we list the several mass eigenstates of gauge bosons after EWSB (this
notation will be used throughout the thesis)

A0 GO 40 )
wt, Wﬁ JWE (obtained diagonalizing Mcparged in (2.41)), (2.43)
Z,Zy, 7 (obtained diagonalizing My eytra) in (2.42)) .
The discussion of the interaction of the quarks with the Higgs boson follows the same
lines. For the several fermion fields (both zero and KK modes) we expect 4D Yukawas of

the type in (2.19). To be more specific the most general Yukawa coupling action of the
three quark field representations in (2.34)-(2.36) is given by

L 3 , . . _ ,
Sy = /d%c/0 dyvVG Ty \/5[— A ELHE] + V2N (51 T{H + & 1 TgH) + h.c.} :

ij=1
(2.44)
where 7% are the Pauli matrices and T3, T} are given in terms of the fields in (2.36)
(BN ()
mi= | Swi-ph |, Ti=|Hwi-D)| . (2.45)
Ulz U//z

After EWSB, the several quarks of the same electric charge mix and their mass matrices
receive corrections of O(v?/Mxk), to be added to the initial diagonal mass matrices with
diagonal elements given by 0 in the case of SM fermions , and by ~ f in the case of KK
excitations (see also Eq. (2.15)).

The details of the computation of 4D Yukawas and mass matrices for gauge bosons
and fermions go beyond the scope of this thesis. We refer the reader to [78].
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2.3 Susy flavor models

In this section we will analyze the basic theoretical features of Supersymmetry. At the
beginning we will present briefly how to address some of the open issues of the Standard
Model with the use of symmetry arguments. Afterwards, we will introduce the particular
Susy flavor models analyzed in this thesis.

2.3.1 Motivations

In this section we will discuss two of the main motivations for which Supersymmetry is
a well founded theory: it can address the gauge hierarchy problem and the SM flavor
problem. The argument is quite well known in the literature and we treat it here briefly
with the main aim to show the different approach of Susy and of the RS model in solving the
open issues of the Standard Model: the “RS approach” is based on geometrical arguments;
the “Susy approach” on symmetry principles.

Superpartners and the gauge hierarchy problem

N = 1 supersymmetry [79-81] makes the gauge hierarchy of the Standard Model natural,
by relating bosonic and fermionic degrees of freedom. Supersymmetry in fact implies
equal masses for SM bosons and corresponding superpartners and it can thus protect
small scalar masses if the associated fermion mass is protected by a chiral symmetry.
Indeed, supersymmetry eliminates all quadratic divergences from the theory at all orders
in perturbation theory, leaving only logarithmic wave function renormalization [82]. Hence
the corrections to the Higgs mass (or to the EW scale) will be just logarithmic in the
GUT scale and consequently the gauge hierarchy problem discussed in the Introduction is
addressed.

Even in the process of Susy breaking, these nice properties are not spoiled, as long
as the breaking is done softly [83], namely preserving the cancellation of the quadratic
divergences.

Flavor symmetries and the SM flavor problem

A viable way to address the SM flavor problem is to relate the origin of both the hierarchies
and the smallness of the quark masses and mixing angles to a symmetry principle. In fact,
as articulated by 't Hooft [84], small numbers are natural only if an exact symmetry is
acquired when they are set to zero (naturalness principle).

The first in pursuing this possibility were Froggatt and Nielsen [58] who introduced a
Gr = U(1) flavor symmetry in the SM to explain the origin of the large quark mass ratios.
They assume that at high energy M > 1 TeV there are additional quarks, interacting with
the SM ones, that transform non-trivially under the flavor group Gr and that acquire a
mass of order M. The SM quarks are instead massless at the high scale M. When
the heavy quarks are integrated out, higher dimensional operators are generated in the
Lagrangian
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U~ (p Ngj DA T @ n;7
where H is the SM Higgs field (neutral under Gr), ® is a scalar field (+1) charged under
Gr (the flavon) and the Yukawa couplings Y'V"P are naturally assumed to be of O(1). The
eight free parameters n;; and ngj are function of the Gr charges of the SM quarks

nij = Qr(Q:) — Qr(v;), nj; = Qr(Qi) — Qr(d;). (2.47)

The flavor symmetry is spontaneously broken through the VEV of the flavon, and,
consequently, canonical Yukawa couplings are generated in the Lagrangian. Finally, at
the EW scale, masses and mixings of the SM quarks are generated (together with their
hierarchies) as function of the small G breaking parameter %), that is assumed to be of
O()\) (with X\ the Cabibbo angle A ~ 0.22) in order to reproduce the observed expansion
in A of the CKM matrix elements and of the quark masses.

How predictive is this framework? To define the theory, eight charges have to be fixed
by hand. The model then explains the order of magnitude of nine parameters: the four
of the CKM matrix and the five ratios of quark masses. Consequently the model predicts
a single order of magnitude relation. Usually one quotes as prediction of the model the
ratio |Vip/Vep| that is predicted to be [85]

Vub
Veb

showing a potential weakness of the original Froggatt-Nielsen (FN) model, since experi-
mentally'® |V,;,/Vep| ~ A2 and instead |Vys| ~ A [85]. In spite of the fact that the original
FN model is experimentally ruled out, the idea of implementing a flavor symmetry to pre-
dict the pattern of the SM quark masses and mixing angles is still adopted even in models
beyond the Standard Model. A relevant example is Supersymmetry. In the literature
there are many different proposals to implement a flavor symmetry in the framework of
Susy.

Before entering into the details of two particular Susy flavor models (see Sec. 2.3.4
and 2.3.5), we need to introduce the basics of Supersymmetry.

~ [Vas|, (2.48)

2.3.2 The MSSM Lagrangian

We start this section with a brief description of the MSSM and with establishing our
notation and conventions which will be used throughout this thesis. The MSSM gauge
group is the one of the SM, namely SU(3). x SU(2)r x U(1)y. The matter content can
be written in the form of SU(3). x SU(2)r x U(1)y representations

10T his is a numerical approximation, in spite of the fact that the Wolfenstein parametrization [86] would
predict this ratio to be indeed of order A.
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(1,2,-3) (1,1,1) (3,2,3) (3,1,3) (31,-2) (1,2,—-3) (1,2,%)

LI EI QI DI UI Hl HQ
24 28 vl 28 78 vl (2

where capital letters in the second row denote complex scalar fields and the fields in the
third row are left handed fermions. The upper index I = 1, 2,3 labels the generation.

The supersymmetric part of the Lagrangian is expressed by the most general renor-
malizable superpotential that is invariant under the R parity!!

W:,U,HlHQ+Y61JH1LIEJ+YdIJH1QIDJ+YJJH2QIUJ, (249)

where, in all generality, ;4 is a complex parameter and Y, 4, are complex 3 x 3 matrices
in flavor space, the supersymmetric Yukawa couplings. From this expression, it is evident
that in Susy two Higgs doublets (H', H?) are needed in order to give mass to both up
and down quarks, still maintaining an analytic superpotential?.

The remaining part of the MSSM Lagrangian consists of the soft supersymmetry break-
ing terms: gaugino masses (first line), scalar masses (second and third line) and trilinear
scalar interactions (fourth line)

1 ~ . ~ . ~ o~
[fsoft = _5 (MS,&CLT(QCL)C‘FMQW’LT(WZ)C+M1BTBC + hC)
_M12{1H1 'I‘Hl o M[Q{QHQ ]LHQ _ LIT(MIQ/)IJLJ o EIT(M%)IJEJ
_QIT(MQ%)IJQJ _DIT(M%)IJDJ _ UIT(M(%)IJUJ + (BIUHIHZ + hC)

+(AFH'L'E) + AJH'Q'D” + A/ H?Q'U” + h.c.) (2.50)

where ¢© indicates the charged conjugate of the field ¢. Ms, My, and M, are the gluino,
wino, and bino mass terms, respectively. Each matrix in the second and third line is a
3 x 3 hermitian matrix in family space and can have complex entries. B is, without loss of
generality, a real parameter. Finally in the last line the trilinear terms appear as complex
3 x 3 matrices in family space.

After electroweak symmetry breaking, the several quarks and leptons mix, giving rise
to the physical mass eigenstates that are obtained by the rotations (see e.g., [88] for a
review of the flavor sector of the MSSM)

Uy, = VP, U, - VEG, | 05 5 VEUS, Uy = VI, Uy, — VP, ,
vl — VP we - vEwe (2.51)

from where we can define the CKM matrix V = VLU VLD f

"The discrete R parity is defined such that a field with B baryon number, L lepton number and S spin
has an R parity equal to (—1)38TE+25 [87].
12 Also the requirement of cancellation of the anomalies implies the presence of two Higgs doublets.
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In “parallel” also the squarks and sleptons are rotated with the same rotation matrices
to a basis (7, L,U, D) called the super CKM (SCKM) basis

e - (VFPL, -~ _(VZo = [ VPQ2
In the study of flavor transitions the mass matrices of the latter three multiplets in

(2.52) are essential'3. For this reason we give here the explicit form of the three 6 x 6
mass matrices

M~ ( (M) +mi + <52 (MG —2ME)L (Mg = tanButm ) |
(M?)1p — tan Bumy (MZ)Rp +mj — cos2BM7 sin” Oy 1
M~ ( (M), + r;ziT— €028 (\12 _ 4M2)1 (M)~ cot Bym > |
(M) g — cot Bumy (M%)ER—Fmi—F%BM%sm? O 1
(2.53)
iy (OB S O e
(M2)} g — tan Bumg (M3)grR +my — =5~ Mzsin® by 1

where the masses m,, 4; are the diagonal 3 x 3 SM fermion masses, and 1 stands for the
3 x 3 unit matrix. Finally the flavor changing entries are given by

(M2)pp = VEMRVEY  (M2)pr = VEME V! (M2 = —22PVE ALV
(M2)pr = VEMEVYT (M2)pe = VEMETVT (ME)Lr = —Ufi/%BVLUA?}VRUT (2.54)
(ME)op = VPMEVIT (M2)pr = VEMEVE"  (ME)r = —=22vP ALV,

where 3 is defined through the VEVs of the two Higgs doublets H! and H?: (H}) =
veos B, (HE) = vsin B.

As we will analyze more in detail in the following, flavor changing neutral current
processes are sensitive to particular entries in the above nine matrices. It is useful to
parametrize the squark and slepton mass matrices as [89]

MZ = diag(m?) + m?6; , M3 = diag(m?) +m?6, , M3 = diag(m?) +m*6g, (2.55)

where m? is an average squark and slepton mass. The corrections to the leading term

diag(m?), also called Mass Insertions (MIs), are then further decomposed according to the
“chirality” of the squarks and sleptons

5LL 6LR
0= ( SRL §RR ) : (2.56)

13From here on we will discuss only the massive fermions of the SM and the corresponding sfermions,
neglecting the details about neutrinos and their superpartners that are not relevant for the scope of this
work.




2.3 Susy flavor models

23

It is also convenient to define the trilinear terms A, ,, 4 in terms of the trilinear terms
appearing in the Lagrangian (2.50) Ag y,p, following the convention of [90]

VoA, = VI ARVET | VA, = VI AGVET | YaA = VP ApVET (2.57)

so that we can write the LR MIs for the third generation squarks and sleptons as

20733 = —mr (Ar + ptg), M2 (65133 = —my (A + p* /tg)
1 (84™)33 = —my (Ap + p*tg) (2.58)

where we have shortened tg = tan .
This completes our very brief presentation of the MSSM, mainly focused on the flavor
sector of the theory (for an extensive Susy review see [91]).

2.3.3 The MSUGRA hypothesis

Unlike the supersymmetry preserving part of the MSSM Lagrangian, the soft breaking
Lagrangian (2.50) introduces many new free parameters that were not present in the
ordinary Standard Model. A careful count [92] reveals that there are 110 masses, phases
and mixing angles in the flavor sector of the MSSM Lagrangian that cannot be rotated
away by redefining the quark and lepton supermultiplets, and that have no counterpart in
the ordinary Standard Model. Thus, in principle, supersymmetry breaking (as opposed to
supersymmetry itself) appears to introduce a tremendous arbitrariness in the Lagrangian.

A way to escape this proliferation of free parameters is the class of models in which at
the Planck scale the soft parameters obey some very simple relation

Ms = M= M =my, (
Mg = Mg =Mp=M;=Mg=mil, (
My, = Mps=mj, (2.61
Ay = AoYy, Ap=AoYy, Ap=AoYe., (

where the three free parameters myy,mg, Ag are the universal mass scales of fermion
and scalar masses and of the trilinear terms, respectively. An additional free parameter
of the MSUGRA scenario is tan 8, while the absolute value of u is determined by the
requirement of a correct EWSB: v = 246 GeV. Thanks to the very few free parameters,
the framework described just above is highly predictive. It is referred to as the minimal
supergravity (MSUGRA) scenario [93].

Evidently the conditions (2.59)-(2.62) are not valid at the EW scale. The soft parame-
ters are in fact affected by the renormalization group (RG) running from the Planck scale
to the EW scale, that alters their relations [94]. A popular approximation (that we will
also perform in our analysis) is to start this RG running from the unification scale Mgyt
instead of from the Planck scale. The reason for this is more practical than principled:
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the apparent unification of gauge couplings gives us a strong hint that we know some-
thing about how the RG equations behave up to Mgyr, but unfortunately gives us little
guidance about what to expect at scales between Mgyt and Mpianck-

As we will show with two explicit examples in the next two sections, Susy flavor models
predict deviations from this simplified setup, since several off-diagonal soft masses are
predicted to be non-zero, and several trilinear terms not proportional to the corresponding
Yukawa couplings. However, we will adopt an “MSUGRA working hypothesis” at the
GUT scale, namely we will assume the conditions (2.59) and (2.61) and, in addition, two
common mass scales mg and Ag for sfermion soft masses and trilinear terms, respectively
(see Sec. 5.1.2 for an accurate discussion of the scan we performed on the several free
parameters in our numerical analysis).

2.3.4 The abelian flavor model

As we have mentioned in the previous section, implementing a flavor symmetry 4 la
Froggatt-Nielsen in the Susy framework introduces deviations from the simple relations
(2.59)-(2.62) for the soft parameters of the MSSM Lagrangian at the Planck (or GUT)
scale. In particular in this section we present a flavor model by Agashe and Carone (AC)
based on the abelian flavor symmetry U(1) embedded in a non-trivial extra-dimensional
topography [95], putting a special attention on the predictions of the model for the soft
Lagrangian. Before entering into the details of the model, we have to warn the reader that
this kind of Susy models based on a single U(1) flavor symmetry are usually disfavored
by constraints on FCNC processes [96-98]. More successful models are realized through
the abelian flavor group U(1)p; x U(1) 2 [96]. However, thanks to the use of a particular
localization of the fermions in the extra dimensions, also the model [95] analyzed in this
section can fulfil the constraints from FCNCs, as we will also prove in our Sec. 5.2.4.

In the AC model, two extra spatial dimensions, compactified on the orbifold (S'/Z?)?
with the same compactification radius R, are assumed. The MSSM fields are localized as
shown in Fig. 2.3. In this particular topography, the Gr = U(1) flavor symmetry group is
introduced at the high scale M, that is assumed to be equal to the GUT scale MgyT. The
flavor symmetry is then broken by means of the VEV of a flavon, as in the Froggatt-Nielsen
model, with

(@)
— =A~0.22. 2.63
- (2.63)
With the particular U(1) charge assignments of the matter supermultiplets
Q' ~ (=3,-2,0), D'~ (=3,-2,-2),
Ul ~ (—=5,-2,0), H'H? ~0, (2.64)

one can compute the masses and mixings of the SM quarks, obtaining the experimental
measured hierarchies between quark masses and mixing angles. The off-diagonal entries
of the soft masses and trilinear terms at the GUT scale are also predicted by the model
as function of the Cabibbo angle A
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Figure 2.3: Extra-dimensional topography of the AC model.

x 0 0 x 0 0
FE~ 0 « A, FB~ 0 o« R | (2.65)

0 A2 % 0 e R %
e 2 = X, (6712 ~ NP (2.66)

where we have suppressed the O(1) real coefficients which multiply the individual elements
of the matrices and where ¢r is a free parameter. Additionally, we mention that the
chirality-flipping LR MIs are vanishing.

It is interesting to note that a O(X) (65%)12 is not a peculiar feature of the abelian
model analyzed by us, but a common characteristic of all the models based on abelian
flavor symmetries. Indeed, abelian symmetries do not imply any pattern for the diagonal
entries of the squark mass matrices. The diagonal soft masses are hence naturally split.
This mass splitting unavoidably implies the 1 <+ 2 flavor transition in the up squark sector
of order (6EF)51 ~ X of Eq. (2.66).

This can be easily understood by recalling that the SU(2); gauge symmetry relates
the left-left blocks of up and down squark matrices, i.e. (M(%)LL and (M%)LL, in such
a way that (M(%)LL = V*(MI%)LLVT. In turn, the expansion of this relation at the first
order in A implies that

21
(MZ)Tp = |VA(MR)eVT | = (MR)ih, + A (2, — i) (2.67)
where g, and mg, are the masses of left handed up squarks of first and second generation,
respectively. Thus, even for (M]%)%IL = 0, which is approximately satisfied in abelian flavor
models, there are irreducible flavor violating terms in the up squark sector driven by the
CKM matrix as long as the left handed squarks are split in mass.

2.3.5 The non abelian flavor model

In addition to the abelian flavor symmetry U(1), there are many candidates for the flavor
symmetry group G, each having several distinct symmetry breaking patterns. In general,
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Gr must be contained in the full global symmetry group of the SM in the limit of vanishing
Yukawa couplings, U(3)%. In particular, concerning non abelian flavor symmetries, a great
attention is received by models with a U(2) symmetry [99-102] acting on the lightest two
generations and also models with SU(3) symmetry [103-106]. The former are motivated
by the large top mass, the latter by the observed neutrino mixings; they are indeed able
to naturally predict an almost maximal atmospheric neutrino mixing angle 623 ~ 45° and
to suggest a near maximal solar mixing angle 6,2 =~ 30°.

In this section, we will present a particular non abelian flavor model based on a
SU(3) symmetry, the RVV model (from Ross, Velasco-Sevilla, Vives, the names of the
authors) [105]. The detailed presentation of the model goes beyond the scope of this the-
sis. However we mention briefly few theoretical aspects. Thanks to the large symmetry
group, the pattern of flavor symmetry breaking is more involved than in the case of the
U(1) flavor symmetry. Two flavons 63 and 23 (respectively a 3 and a 3 of SU(3)) are
needed. They break SU(3) in two steps

(03) (023) .
SU(3) — SU(2) —= nothing. (2.68)
The corresponding two expansion parameters, € and &, are fixed to be ¢ ~ 0.05 and
€ ~ 0.15 at the symmetry breaking scale (that is taken approximately equal to MguT), in
order to fit the SM quark masses and mixing angles.

The particular flavor symmetry breaking fixes the superpotential, however the Kahler
potential is not uniquely defined and, hence, the soft sector is not unambiguously deter-
mined. In the following, we will analyze a particular case of the RVV model to which we
refer to as RVV2 model [107]. At the GUT scale, again suppressing the O(1) coefficients,
the expressions for the flavor off-diagonal entries in the soft mass matrices read [107]'

. _ 23 giwus _z2 92'5 ei(wWus—x+PB3)
of ~ —&3 gmiwus * Ey)oeixhs) , (2.69)
_z2 yg‘5e—i(wus—x+53) §y8-5ei(x—53) *
* _€2§eiwus & y?~5ei(wus—2X+63)
oM~ —g2g g wus * e yPoe~(2x=Fs) , (2.70)
55y2.5671‘(wu572x+ﬁ3) 5%9-561'(2)(*/33) *

where y; ; are the top and bottom Yukawas, respectively, and the phases wy,, x and 33 are
set, to a large extent, by the requirement of reproducing the CKM phase; in particular,
it turns out that w,s ~ —X and (x, f3) ~ (20°,—20°) (or any other values obtained by
adding 180° to each). Additionally, it is found that the up quark MIs are given by [107]

(OhF)2 =AY, (65) 12 ~ A0, (2.71)

Differently from the abelian model, here the (65%)15 (as well as (657)15) MI is quite
small. This is, in fact, a general feature of non abelian flavor models based on a SU(3)

4 Compared to the original RVV2 model [107], in (2.69), (2.70) we have set to zero an extra CPV phase,
B5 that is not constrained by the requirement of reproducing a correct CKM matrix. This simplifying
assumption will turn out to be useful, once we will study the flavor phenomenology of the model, since
this additional phase 85 could bring unwanted accidental cancellations among different phases.
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flavor symmetry. SU(3) implies, indeed, an approximate degeneracy of the three genera-
tion squarks and, hence, large (651)15 MIs cannot be generated because of SU(2) gauge
invariance, as instead it is the case of abelian flavor models.

The trilinear couplings follow the same symmetries as the Yukawas. In the SCKM
basis, after rephasing the fields, the trilinears lead to the following flavor off-diagonal LR
MIs [107]

* 6_3 e—iwus 6_3 e—iwus A
3 _ 0
SER ~ g3 e~ wus * g2 —5 Mp - (2.72)
53 ei(wus +253_2X) 52 €2i(ﬂ3_X) * mO

Differently from the abelian models, the RVV model is embedded in a SO(10) Susy
GUT model, and thus correlations between flavor violating processes in the lepton and in
the quark sector naturally occur, making additional tests of the model possible.

In particular, the flavor off-diagonal soft breaking terms of the leptonic sector arising
in the RVV2 model are given by [107]

N 7%5—3 7%5—2 yg-5ei(—x+ﬁ3)
5;21% ~ _%53 % gy2~5e*i(X*r33) , (2.73)
_ %52 yl()].5ei(x—63) gygﬁei(x—ﬁs) *
N —le2g leg y0-5i(=2x+5s)
o ~ —1e% * ey)Be i (2x—Ps) , (2.74)
%653/?.561‘(2)(—,83) e 05 ei(2x—Ps) *

while the leptonic off-diagonal LR MIs have the following structure

* 53 53 A
5€LR ~ &3 * 382 —2 mr . (2.75)
53 0i(285-2x) 322 2i(Bs—x) 4 My

2.3.6 The running of the parameters of the Lagrangian

As specified in the previous two sections, flavor models predict the pattern of the several
MIs as function of one (or more) small expansion parameter, at a scale that is quite higher
than the EW scale. Thus, to obtain reliable predictions on the phenomenology, one should
keep into account the running of the several parameters from the high energy scale (in
the case of the aforementioned flavor models, from the GUT scale) to the low energy
scale at which the physical observables are defined. In this subsection we are interested
in answering to the crucial question:

Are the textures of the squark mass matrices predicted by a

flavor model RG stable?

In this discussion we will disregard off-diagonalities in the trilinear couplings, i.e. LR
and RL MIs, since they are in general suppressed with respect to the LI, and RR MIs by
the factor Mz/mg (as shown explicitly in (2.72) for the RVV2 model).
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A close inspection of the RG equations (RGEs) [94] relevant for the RR sector shows
that the RR MlIs are approximately not generated at the low energy scale through the
running, if they are not present already at the high energy scale. In fact, neglecting 1st
and 2nd generation Yukawa couplings, the RGEs for the off-diagonal elements of M? ,, of
Eq. (2.50) read at the one loop level 7

d ]

165 5 (M3)5; % 2 (42) (M) (0 + 65). (2.76)
d i#j

16725 (MB)ij % 2 (42) (MB)i5 (0 + 053 (2.77)

where t = log(u/uo). As can be easily observed, (Mg )12 are RG invariant in this
approximation; we have checked that this holds numericalfy to an excellent approximation
even if light generation Yukawas and LR-RL MIs are taken into account!®. Concerning
the entries which involve the third generation squarks, we observe that their values are
affected by the running. Including also light generation Yukawas and LR-RL Mls, we
find that between the GUT scale and the low energy scale (of the order 1 TeV) they are
reduced by at most 15%.

The situation in the LL sector is different; there, also mixing with the RR sector and
between different generations takes place. Consequently, the elements can be generated
by RG effects even if they vanish at the GUT scale. Of course, both these effects are
suppressed by combinations of CKM elements, since they would be absent if the CKM
matrix was diagonal. Neglecting the LR and RL MIs, the RG equation for the off-diagonal
elements of Mé reads

i
(MB)i; & 2 (Yaiya;) (MB)ji + (y2) (MB)ij (i3 + 0j3) + yi (MB)iwAkj+

+ Y7 (MB)ij ik + 2y7mipeNij + 2y7 (Mgr)33Nij

qa
¢

1672
67rd

(2.78)

where \;; = V,;V;; and we have neglected light generation Yukawas, except in the first
term, which in the case of (ij) = (23) is only suppressed by ys/yp, but unsuppressed
by CKM angles and can therefore be comparable in size to the remaining terms. One
should notice that in the RGE just presented, some of the terms are inducing a mixing
among the LL elements (see for example the term th(Mgg)ik)\kj), some others describe the
CKM-induced generation of LL. MIs, which takes place even in a completely flavor blind
situation at the GUT scale (see for example the term 2y7m?2,\;;).

Finally, let us also mention that the attained values for the MIs defined in (2.55) are
renormalization scale dependent mainly because of the fact that the diagonal elements of
the soft mass matrices are strongly affected by RG effects (see [94]).

15The invariance under RGE of the RR MIs for the first two generations is approximately valid also at
the two loop level.



Chapter 3

The New Physics flavor problem

In this chapter we discuss the theoretical features of the flavor sector of the RS model with
custodial protection and of Susy flavor models. For both frameworks, at first sight, the NP
flavor problem seems to be particularly grave, because of the too large new physics contri-
butions to flavor observables, or, in the language of effective Hamiltonians (see Sec. 2.1),
because of the too large Wilson coefficients corresponding to operators mediating flavor
changing neutral current processes. However, both models exhibit mechanisms suitable to
protect the flavor transitions from too large NP effects. The main focus of the chapter is
indeed on the discussion of the several protection mechanisms that allow the frameworks
to have the possibility to be consistent with the experiments on flavor observables, still
having a NP energy scale of O(1TeV), as hinted by the gauge hierarchy problem.

3.1 Flavor changing transitions in the RS model

3.1.1 Flavor changing neutral currents at the tree level

The RS model shows several characteristic features in the flavor sector. Among the most
relevant, one should number the appearance of flavor changing neutral currents already
at the tree level, due to the non-universality of the couplings of the several SM fermions
with the gauge bosons. These non-universalities are arising mainly because of two effects:

e The non-uniform localization of the gauge bosons (both KK and the zero modes) in
the bulk [47,50,59, 108];

e The mixing of the fermion zero modes with the KK excitations with the same electric
charge, through EWSB [109, 110].

We now review in detail the two effects responsible of FCNCs at the tree level in the

RS framework. In the discussion, as also anticipated in Sec. 2.2.3, we will not take into
account the presence of fermion and gauge boson excitations heavier than the first.

29
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Gauge boson mixing impact on FCNCs

In Sec. 2.2.1 we have shown that the bulk profiles of the zero mode fermions are not flat
along the fifth dimension, but depend exponentially on the respective bulk mass parame-
ters ¢; (Eq. (2.12) and Fig. 2.1). Before EWSB the KK gauge bosons, namely the gluons
G,(})A, the EW gauge boson Zx, in (2.25) and the KK excitation of the Z boson and of
the photon A, in (2.31) and (2.32), have a shape function peaked towards the IR brane
(see Eq. (A.7)). The couplings of the zero mode fermions with the KK gauge bosons with
BCs (++) and (—+) are then proportional to

Lol _ R 3
chles) =7 /O dy fim(v:e0)’9y) . epples) = 7 /O dy i Ry, co)3(y),  (3.1)

respectively, where g(y) and g(y) are the shape functions of the KK gauge boson with
BCs (++) and (—+), respectively (reported in Appendix A) and fg?%(y, ¢y) are the shape
functions of a SM left handed and right handed fermion, normalized with respect to the
flat metric (reported in Eq. (2.16)).

Since the bulk masses ¢, are flavor dependent, in the flavor basis the couplings of
the zero mode fermions together with the KK gauge bosons will be diagonal but flavor
non-universal. This will give rise to off-diagonal couplings of the SM fermions with KK
gauge bosons, once that we rotate to the mass eigenstate basis for fermions. These off-
diagonalities are an intrinsic feature of the model and they cannot be rotated away by a
redefinition of the fermion fields. Going then to the mass eigenstate basis also for gauge
bosons, tree level flavor changing neutral vertices, of the type in the left panel of Fig. 3.1,
appear.

On the other hand, in Appendix A (Eq. (A.6)) we show that, before EWSB, the shape
function of the SM gauge boson Z,, (defined in Eq. (2.31)) is flat along the fifth dimension.
Consequently we do not expect FCNCs at the tree level involving Z,,. However, with the
breaking of the electroweak symmetry, the SM gauge boson mix with its KK excitation
Zf}) and with the gauge bosons Zx, coming from the additional SU(2)r symmetry (see
Eq. (2.42)), developing also a non-flat shape function. In conclusion, thanks to the EWSB,
also the SM gauge boson Z,, acquires flavor changing neutral vertices at the tree level, as
represented in the right panel of Fig. 3.1.

Finally the zero modes of the gluons GLO)A and of the photon A,&O) do not have flavor
changing neutral couplings, because they do not experience EWSB.

This concludes the explanation of the first effect that induces FCNCs at the tree level
in the RS model.

KK fermion impact on FCNCs

Up to now, we have neglected the mixing between the zero mode fermions fg)}% and the
KK excitations with the same charge, induced by EWSB (see also end of Sec. 2.27.3). In the
following we will analyze in detail this second source of tree level flavor changing neutral
vertices of the SM Z boson following closely our analysis in [110].
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Figure 3.1: Flavor changing (i # j) vertices allowed at the tree level in the RS model.

A particular suitable way to investigate the effects of mixing of the fermion zero modes
with the KK excitations is to write down the effective Hamiltonian generated at the TeV
scale, after having integrated out the vector-like heavy fermions [111,112] (see also [113]
for a more general analysis).

We start in all generality with a model-independent analysis. We take a theory which
resembles the SM, but which has in the spectrum N + M additional vector-like quarks:
N of charge 2/3 and M of charge —1/3 (in the particular case of the RS model, N =5
and M = 3)

vi(2/3) = (ug, UL, UZ,....UD) |
Uh(2/3) = (ug, U, Up,..., UR), (3.2)
v7(-1/3) = (di, D}, Di,.... DY),
Uh(~1/3) = (dr, D, D, ..., DY),

where with uy, g and d;, g we indicate the SM fermions and with Uz r and DiL7 r the heavy
fermions. All the flavor indices are suppressed.

It is important to notice that this kind of theory mimics exactly the RS model for all
our purposes: in fact the charge 5/3 quarks present in the RS model do not mix with
the SM fermions through EWSB and hence are not relevant for the corrections to gauge
bosons-SM fermions vertices.

Before integrating out the heavy degrees of freedom, the fundamental EW Lagrangian
relevant for our analysis! is given by

L= ['kin + Emass + £Yuk + EW + ﬁZ . (33)

Neglecting for the moment the couplings with the gauge bosons, the canonically nor-
malized kinetic terms for all the quarks of the theory are given by

"More specifically, £z and Lw indicate the terms of the Lagrangian arising from the couplings between
quarks and two linear combinations of gauge fields that, after EWSB, will be identified with the Z and
W¥ bosons, respectively. The term Ly will not be analyzed in detail, since we are interested only to the
flavor changing neutral currents of the theory. We refer the reader to the original paper [110] where also
Lyw is discussed, in view of the analysis of the unitarity of the CKM matrix in the RS model with custodial
protection.
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Lin = UL(2/3)ip0L(2/3) + UR(2/3)idWr(2/3)
£ TL(-1/3)iPTL(~1/3) + Tr(~1/3)ipUp(~1/3), (3.4)

to which we have to add the interactions of the quarks with the (neutral and charged)
gauge bosons

Ly = (90(2/3)7, A7 (2)W1(2/3)

r(2/3)7, AN (2) U R(2/3)
L(—1/3)0 AL (2) W (~1/3)
r(=1/3)3 AR (Z2) U (-1 /3)) 7z, (3.5)

(=T = TR N

+
+
+

=

where the matrices AE/Z(Z) and AZ%B(Z) are 3(N+1)x3(N+1) and 3(M+1)x3(M+1)
real diagonal matrices respectively, and

Lw = (Pr(2/3)7,G0(WH)¥r(-1/3)
+ UR(2/3)7.Gr(W ) Ur(-1/3)) W=, (3.6)

where G, (W) are 3(N + 1) x 3(M + 1) real matrices.
Additionally, the couplings of the several quarks with the Higgs boson are given by

Ly = —®(V1(2/3)V(2/3)¥r(2/3)
+ Wp(=1/3)Y(-1/3)¥r(-1/3) + h.c.), (3.7)

where Y(2/3) and Y(—1/3) are 3(N 4+ 1) x 3(N + 1) and 3(M + 1) x 3(M + 1) complex
matrices, respectively, and ® is the Higgs doublet.

If the theory contained only chiral fermions, then, before EWSB, the fermion La-
grangian would be the sum of the terms (3.4)-(3.7), only. However, the additional heavy
fermions are assumed to be vectorial, so, even before EWSB, the theory has two non-trivial
mass terms

Lonass = —VL(2/3)M(2/3)UR(2/3) — UL(~1/3)M(=1/3)TR(~1/3) + h.c.,  (3.8)

where M(2/3) and M(—1/3) are 3(N +1) x 3(N +1) and 3(M + 1) x 3(M + 1) diagonal
matrices, respectively. The first three entries correspond to SM quark masses and hence
vanish before EWSB, while the remaining entries are of the order f , the New Physics scale
at which the new quarks arise (f > v)2.

2In the RS model f = Mxk.
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At this point, we have all the elements to integrate out the heavy fermions at the tree
level, using their equations of motion. Expanding then in powers of v/ f , we can get the
effective Lagrangian at the low scale, where the only degrees of freedom are the SM quarks
(and gauge bosons).

To be more specific, after the process of integrating out the heavy quarks, we will
get, as effective Lagrangian, the SM Lagrangian and, in addition, several operators of
dimension D = 6 (keeping terms until the order v?/ f? in the expansion) corresponding
to the corrections due to the interaction between SM fields and the new heavy fermions.
Performing then EWSB implies the replacement of ® with its VEV & = % Making this
replacement in the effective Lagrangian allows to find the corrections to the SM couplings
that result from the mixing with heavy vector-like fermions. Worth to notice is that, in
order to get a canonical propagator of the SM quarks, one should guarantee the canonical
form of their kinetic terms, after the integrating out of the heavy degrees of freedom.
Operatively, one can achieve that, simply redefining suitably the SM quarks.

In the next step, we want to analyze, how relevant are these corrections, in terms of
FCNCs. To simplify the notation, we will denote the 3 x 3 matrices in flavor space that
build up the several matrices Az g, Gr,r and Y (introduced in (3.5)-(3.7)) by (AL R)as,
(GL,R)ap and Y,g respectively, where o, 5 = 0,1,..., N (or M). In particular, fora = 5 =0
we have exactly the coupling matrices of the SM quarks in the absence of heavy vector-like
states.

The same comment is also valid for the mass matrices. However, at this stage after
EWSB, we are not dealing with the matrices in (3.8) containing just vector-like masses
anymore, but with the mass matrices M which take into account also the mass terms
arising from the Higgs mechanism. In fact, once that the Higgs field is replaced by its
VEV, Ly in (3.7) brings new contributions to the mass matrices (we refer the reader
to [78] for the explicit form of the two mass matrices after EWSB). Consequently the
matrices M,z will have the properties

1. My = O(f), with k # 0;
2. My = O(v);
3. M;; with i # j are O(v) but could also vanish;

4. My and Myg are generally O(v) but if My, # 0 then Myy = 0 and vice versa. This
follows from the known property that only one of the chiralities of each vector-like
fermion couples to the SM quarks through mass terms [114].

In [110] we studied in detail the corrections to the couplings between SM left and right
handed quarks and the neutral Z gauge bosons. We found that, after the integrating out
of the heavy fermions
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AL(2) = [AL(Z)]gy + Mor M [AL(Z)) ), My " M,
1

— Mol My [AL(Z)]g

1 _
T3 [AL(Z)]OO MOkMk QMgk ’ (3-9)

AR(Z) = [AR(2))gg + MMyt [AR(Z)), My Mio
1 _
_ iM,IOMkQMkO[AR(Z)]OO

(AR ]op MM Mo, (3.10)
where we have denoted My, = My, (k # 0) for the 3x 3 mass matrices with identical indices,
and summation over repeated indices is understood. We note that these formulae are valid
both for charge +2/3 and charge —1/3 quarks, changing suitably the mass matrices and
the couplings [Ar r(Z)], 5 involved in the expressions.

The structure of the interaction of left and right handed SM quarks with the Z bosons
looks very similar: both couplings have a leading term (Az r(Z))oo to which one has to

add three corrections of O (;—2) The first originates in the interactions of the heavy

fermion fields with the SM gauge bosons and the remaining terms are consequence of the
redefinitions of the light SM fields, to maintain canonically normalized kinetic terms?.
Finally, one has to express the result in the mass eigenstate basis for the SM quarks.
For that purpose, one has to write down the two effective 3 x 3 up and down mass matrices
and diagonalize them. More in details, following the procedure discussed above, namely,
integrating out the heavy fermions and defining the SM quarks in such a way that their

kinetic terms are canonically normalized, one finds for the mass terms of the SM quarks

M = MOO + M()kMkileijileo
1 . _
— 5 [Moe M0 Moo + Moo MM Mo (3.11)

with k # j, valid for both up and down quarks.
These two mass matrices are diagonalized by means of two suitable rotations of the
left handed and right handed SM quarks

Maiag(=1/3) = D} M(~1/3) Dg, (3.12)
Maiag(2/3) = U} M(2/3)Ug. (3.13)

Finally, in the mass eigenstate for SM quarks, the couplings with the Z boson are given
by

3In the following section we will investigate the importance of this second kind of contribution in the
particular case of the RS model with custodial protection.
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(00) | (L) | (22) | (33)
AL gih () | g @) | ¢ (D) | gin(d)
AR gth(d) | g5 () | 2P (D) | g¥n(d)

Table 3.1: Weak charges in the coupling matrices of down quarks to the Z gauge boson.

(0,0) (1,1) (2,2) (3,3) (4,4) (5,5)
AP g (w) | g u) | g ) | 98P W) | g (Y | 98P(u)
AP | o) | g () | 9P | g U | g () | g¥ ()

Table 3.2: Weak charges in the coupling matrices of up quarks to the Z gauge boson.

—-1/3 —-1/3
[AL,}é (Z)} = D} R ALY (Z)DLr, (3.14)
[Ai/,gR(Z)} - UE R A2/3 r(Z)ULR. (3.15)
This ends our model-independent analysis of the effects of heavy vectorial fermions on

the couplings of the SM quarks with the Z gauge boson. Now we can apply our formalism
to the RS model in which the quark field content (3.2) is explicitly given by

vi(-1/3) = (", o', DL, DL)

Vh(-1/3) = (DR i, Dy, D) (3.16)
wi2/3) = (ap"ap, UL UF X )

vhe/3) = (ui” Uk UR k)

and the scale at which the heavy fermions arise is given by f = Mgk.

The block coupling matrices of the several quarks with the Z boson (Ar r)as are
proportional to 3 X 3 unit matrices with proportionality factors collected in Tabs. 3.1
and 3.2 and given explicitly in Appendix B.

We can finally adapt Egs. (3.9) and (3.10) for the effective Z couplings to this particular
model, finding for the charge —1/3 quarks the corrected couplings (the values of the several
weak charges given in Appendix B are already replaced inside the expressions for the
couplings)

g4D

AL (Z) = gZ,L(d)]]' + gcosw <M M2 MO3 MOQWMO2> 5 (317)
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and
4D

_1/3 4D g 1 + 1 T 1
Ap "(Z2) = gz r(d)1 — " ( M MQMlo + MQQ@MQO : (3.18)
where the values of g4ZPR(d) and g4Z7 7.(d) are listed in Appendix B.

Analogously, using Tab. 3.2 with the corresponding values for the up-weak charges, we
find for the couplings of the SM up quarks with the Z gauge boson

1 g 1
AY(2) = giB,(u)1 — (M My + Mg~y My + Mg~ M] ) . (3.19)
L s M2 02 M?? 03 ME? 05

2 cos P
and
2/3 4D 1 94D i1
AR (Z) = gz r(u )]l+§cos¢ Mloﬁlngo M40M2M40 : (3.20)

where the values of g%%(u) and g%» 7 (u) are listed in Appendix B%.

With all these formulae at hand, we can now compare the impact of the mixing of the
SM fermions with the lightest KK fermions with the impact of gauge boson mixing on the
(flavor changing) neutral couplings of the SM fermions with the Z boson, and identify the
dominant contribution. Namely, we are now ready to compare the relevance of the two
sources of FCNCs, listed at the beginning of this section.

To simplify the discussion we denote the contribution to FCNC couplings from gauge
boson mixing presented at the beginning of this section as Ag and the contributions from
KK fermion mixing as AﬁK We can then write for a generic coupling of a SM quark with
the Z boson the two contributions as

149 (26 = K7 5 <n+ INRY >|G>, (3.21)

a2
My

02

A2 (D) = K (14 57212 (D) (3.22)
KK

where K f r is the coupling constant of the SM field in question with the Z boson, in the

absence of New Physics.

As an example, in Fig. 3.2 we compare the contributions from gauge boson mixing and
KK fermion mixing that enter the flavor violating Zt1¢;, and Zsrdp couplings. We present
the couplings in two density plots: lighter colors correspond to higher densities of points,
darker colors to the lower densities. The plots are obtained for a set of parameter points
that reproduces the quark masses and mixings as well as the well measured observables
in K9 — K° and BY, — Bgd oscillations (see also Secs. 5.2.1, 5.2.2). From the figure it
is evident that the KK fermion contribution is generally smaller than the contribution
arising from gauge boson mixing for a majority of points in the parameter space, and
in particular for those points that produce the largest effects in the respective coupling.

“To note that the last term in (3.17)-(3.20) arises because of the redefinition of the SM quark fields to
maintain canonically normalized kinetic terms.
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We have checked that this feature is totally general, independently of the two quarks
involved in the coupling with the Z boson; indeed, what we have presented in Fig. 3.2 is
the most unfortunate case in which the contribution from the KK fermion mixing is not
fully negligible, as instead it is in many other cases, like for all the couplings of the type
Zdidi and ZuiRqu (see also Sec. 3.1.4).

1078

107

]Ufl(). -
1075 1074 1073 10710 107 1078 1072 1076 107

273 -13 ., sd
1L @)gauge 147 " @Dlgauge

Figure 3.2: Comparison of contributions from KK fermion mixing and gauge boson mixing to the
Ztrcr, (left panel) and to the Zsrdg (right panel) coupling.

In conclusion, in view of this investigation and in view of the many uncertainties in
the calculation of the several AF = 2 flavor observables in Secs. 5.2.1, 5.2.2, as well as of
the several branching ratios of rare B and K decays of Secs. 5.3.1 - 5.3.3, we consider safe
not to take into account further the contributions of the KK fermion mixings to FCNC
processes. Therefore all the phenomenology of Chapter 5 will be developed, not taking
into account the presence of KK fermions.

Independently of the source of flavor changing neutral interaction, the main conclusion
of this section is that the model shows FCNCs already at the tree level. Consequently,
using the effective field theory language, once that the gauge bosons mediating the FCNC
interactions are integrated out, we expect operators of the type (2.2) with an effective
coupling CZ(~2) that is not suppressed by one loop factors, but is typically of O(1). Therefore,
following the discussion of Sec. 2.1, we can expect that either the NP scale Axp (which
corresponds to Mk in the RS model) is quite high, or the model is not in agreement with
the experimental constraints on flavor transition observables. Due to the FCNCs at the
tree level, the NP flavor problem seems particularly grave in the RS model.

Fortunately, this is just a naive conclusion: in Secs. 3.1.3 and 3.1.4, indeed, we will
study the mechanisms which weaken the NP flavor problem, in spite of the tree level flavor
changing couplings. We will show that the Wilson coefficients cz@) are not naturally of
O(1), but smaller.
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3.1.2 Higgs mediated flavor changing neutral currents

Recently, the study of the effects of FCNCs due to the exchange at the tree level of one (or
more) Higgs boson generated a lot of interest, both in the context of Two Higgs Doublet
Models (2HDMs) (see e.g. our recent work [115]) and in the context of composite Higgs
models [116] and hence also in the RS model [117,118].

Let us analyze the main features of the Higgs mediated FCNCs in the RS framework.
In addition to FCNCs at the tree level due to the exchange of gauge bosons, the warped
extra dimensional (WED) structure of the model can also lead to Higgs mediated FCNCs
at the tree level. In fact, quark masses and Yukawa couplings can be not aligned.

Focusing for simplicity on the down quark sector, the main source of misalignment
is represented in Fig. 3.3 in the mass insertion approximation (see also Sec. 3.2.1 for a
pedagogical explanation of the mass insertion approximation in the framework of Susy).
The second diagram in the figure affects masses and Yukawa couplings in a different manner
since its contribution to the Yukawa couplings arises setting only two of the three Higgs to
the VEV v and hence, contrary to the contribution to the masses, a combinatorical factor
of three appears.

H Hl Hl H|

I
f f { f

&> o L 2 ® L 2

d (0 0 d (0 n n d(n d
qL( ) D%) qL( ) Dg{) D(L) q}I{( ) ¢

) po

Figure 3.3: Contributions to masses and Yukawa couplings of SM down fermions using the mass
insertion approximation (the mass insertions are denoted with a diamond ¢).

In [117] it was pointed out that the misalignment is indeed non-vanishing, in spite of
the Dirichlet boundary conditions on the IR brane of the fields Dy, and g% (see also the
field representation in Egs. (2.34)-(2.36)). In fact, their profiles do not exactly vanish on
the IR brane but display a small discontinuity that is proportional to the Higgs VEV®.
After regularizing this discontinuity and summing over the infinite tower of fermion KK
modes it is found that a non-vanishing misalignment between quark masses and Yukawa
couplings is generated by the above diagram.

More specifically, using the notation of [117], if one defines the misalignment for the
i-th flavor as

d_  d d
Af = migm — Yismv (3.23)
then, after the sum over the entire KK tower of fermions

Al — (Y7 Ya)i0?

3.24
T (3:24)

5The tiny discontinuity does not appear in our perturbative approach (see Sec. 2.2.1).
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where Y; o are the two Yukawa couplings for down quarks defined by

L 3
Syuk = / de / dyvVG Tr Y VoH [YI TiDp+ Yo @hDyr + h.c.] : (3.25)
0 ij=1

Rotating then to mass eigenstates for SM fermions, the several misalignments produce
flavor changing neutral couplings of the SM fermions with the Higgs boson, that could
be in principle competitive with the flavor changing neutral couplings of SM down quarks
with gluons [117], that we have presented in the previous section.

One should however notice that this conclusion does not apply to the particular RS
model that we are studying in this thesis. Analyzing in fact the structure of the Yukawa
couplings just mentioned, we note the appearance of an additional Yukawa coupling matrix
(Y2) that is not required for generating the SM fermion masses. Hence, as also shown by
the Yukawa couplings of the model analyzed by us in Eq. (2.44), one could simply put
that matrix to zero. Keeping this approach, the aforementioned contribution to FCNCs
would vanish.

Finally, to conclude the discussion of the Higgs mediated FCNCs, one should also
mention another source of misalignment between SM quark masses and corresponding
Yukawa couplings: the modification of the kinetic terms by the mixing of SM quarks
and KK quarks after EWSB, that we have analyzed in the previous section. Indeed,
these flavor-dependent corrections to the kinetic terms make redefinitions of the SM quark
fields necessary to keep canonically normalized kinetic terms, which in turn give rise to
an additional shift between quark masses and Yukawa couplings. In [110] we have found
that the contribution is negligible for the first two generation quarks, but not for the third
generation.

In our numerical analysis of Chapter 5 we will not include these effects, that in any
case would not spoil the overall picture of the phenomenology studied by us.

3.1.3 The RS-GIM mechanism

In the Standard Model the FCNC processes are kept under control by the so called
Glashow-Iliopoulos-Maiani (GIM) mechanism [11]. GIM implies the absence of flavor
changing neutral transitions at the tree level thanks to the unitarity of the CKM matrix.
Additionally, if the masses of quarks were equal, GIM would also imply that flavor chang-
ing neutral transitions are not present at one loop either. However, as it is well known, the
quark masses are different, leading to the breaking at one loop of GIM and consequently
to the appearance of FCNC transitions in the SM.

In the RS model a suppression of flavor changing neutral currents is due to a similar
mechanism, hence called the RS-GIM mechanism [51,119].

As already anticipated at the beginning of Sec. 3.1.1, in the flavor eigenstate basis, the
coupling of a SM quark with a gauge boson with BCs (++) or (—+), can be expressed
by the flavor dependent overlap integrals afLE’ g in (3.1). In order to go to mass eigenstates
for quarks (neglecting, as already explained, the mixing with the heavy KK fermions), the
3 x 3 diagonal matrices formed by the flavor dependent terms zsf’ r on the diagonal should
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be rotated with biunitary transformations, similarly to what we have seen in (3.14)-(3.15).
In particular, for up and down quarks, dropping the + sign indicating the BCs of the gauge
boson involved in the coupling, we have

ALK = Digeri’Drr, (3.26)
AR = UlgelnUrr, (3.27)

where with Dy, g and U, g we denote the rotation matrices that diagonalize the SM quark
mass matrices (namely, the matrices Dy, g and Uy, g which diagonalize the mass matrices
My for down and up quarks in (3.11)).

It is clear that if the couplings €7, r were proportional to the identity matrix, then,
because of the unitarity of the matrices Ur g and Dy g, ACL?’ r would be diagonal and hence
the model would not have FCNCs at the tree level. The RS-GIM mechanism would then
be exact. However, the several elements of the couplings €7, g depend on the bulk masses
cfb, that are flavor non-universal, because of the requirement to reproduce the different
quark masses (see also Eq. (2.44) after EWSB). Consequently, FCNCs at the tree level
arise.

’ But how large can they be?

Let us take first a heavy KK gauge boson. As discussed in Appendix A, the KK gauge
boson is mainly localized towards the IR brane. Hence the couplings of the zero mode
fermions to the KK gauge bosons are roughly proportional to the square of the shape
function of the fermions computed on the IR brane (see Eq. (3.1)). In particular for the
quark SU(2)1, doublet and the up and down singlet we can write, respectively

(@), x Py o2
(6??/3>n' o ~I(%0)(Lycz)27 (3.29)
(), o TR (3:30)

These couplings depend strongly on the bulk masses cég w.q» and so, in principle, flavor is
strongly violated. However, the first two generations of quarks are mainly localized towards
the UV brane, because of their lightness. Consequently, their overlap with the gauge boson

shape function, namely (si/ %’71/ 3) with ¢ # 3, will be quite small. Performing then the

rotation to the mass eigenstate basis for SM quarks (3.26)-(3.27), the resulting off-diagonal
elements, corresponding to the first two generations, will be small as well. The RS-GIM
mechanism works quite well for the first two light generations, resembling hence the GIM
mechanism of the SM.

The third generation of quark merits a different treatment. Because of the heaviness
of the top quark, third generation quarks (both up and down) cannot be localized near the
UV brane. Consequently for the third generation, we do not expect small couplings ¢y, g,
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namely a strong suppression of flavor changing neutral couplings because of the RS-GIM
mechanism, that is now strongly violated by the top mass (once more resembling the SM
GIM mechanism).

Still, the RS-GIM mechanism can be regarded as one of the reasons for which the RS
framework may avoid the severe constraints from FCNC processes even with a quite low
KK scale, alleviating in such a way (especially for the first two generation quarks) the NP
flavor problem. We can compare this setup with the flat extra dimensional model, which
does not have an analog of the GIM mechanism and which consequently naturally requires
KK masses as high as (1000 TeV) [51] to satisfy FCNC constraints.

Until now we have just considered the couplings of KK gauge bosons with the SM
quarks. An analogous discussion holds also for the SM Z boson. In fact, after EWSB, the
Higgs VEV mixes zero and KK modes of Z with the SU(2)r gauge boson Zx (see Eq.
(2.42)), leading in the interaction basis to a non-universal shift of the coupling of the SM
quarks to the physical Z. It is straightforward to prove, in terms of overlap integrals, that
this shift will be quite small for the first two generations quarks and larger for the third
generation, showing the impact of the RS-GIM mechanism. In conclusion, also for the SM
Z gauge boson we can conclude that the RS-GIM mechanism helps in reducing the flavor
changing neutral couplings and consequently in alleviating the NP flavor problem in the
RS framework.

3.1.4 The custodial protection

In the RS model with enlarged gauge group, it turns out that the RS-GIM mechanism
is not the only mechanism for keeping under control the flavor changing neutral current
effects. In this section, we will show how some of the flavor changing neutral couplings are
protected simply by the enlarged gauge group of the model and by the particular fermion
representations.

In Sec. 2.2.2 we have learned that in the RS model, as well as in all models containing in
the gauge group the symmetry SU(2)r, x SU(2)g X PR, a fermion with quantum numbers
which obey the relations

T, =Tr, TP =T}, (3.31)

has SM-like couplings (or does not couple, if it is not a SM fermion) with the SM Z boson.
As we mentioned briefly in that section, the authors of [64] have also noticed that for a
fermion with Tp, # Tk satisfying

T3 =T =0, (3.32)

the Z couplings are protected as well.

As pointed our first by us in [59, 110], the custodial protection generalizes also to
off-diagonal Z couplings. In other words, if a fermion F' satisfies one of the conditions
(3.31)-(3.32), then, indicating with F* the i-th flavor, all the couplings of the type ZF*FJ
with also 7 # j are either SM-like (in the case of F' a SM fermion) or 0 (in the case of F'
a KK fermion). In [59,110] we pointed out the relevance of the protection of the several
flavor changing neutral couplings in flavor transitions.



3.1 Flavor changing transitions in the RS model

42

Now we want to demonstrate pedagogically the previous statement, writing in all the
details the several couplings that we expect to be protected. We restrict our analysis to
the couplings of the SM fermions; the discussion of the couplings of the heavy fermions
follows in a straightforward manner.

After EWSB, the NP corrections to the couplings of the Z boson with a left or right
handed SM quark (i, are flavor indices) are given by

— —IfAiLj’R(Z(l)) + 7, cos ¢ cos ¢Ag7R(Z§§))} +A’g7R(Z)KK_fermions ,

(3.33)
where the angles ¢ and 1) are defined in (2.28) and (2.33) respectively, and the two overlap
integrals Z of the Higgs boson with gauge bosons with (++) and (—+) BCs are defined
as

N
= 1 [ e gn (334
— 1 L —2ky ~ 2
I, = L/o dy e *g(y)h(y)?, (3.35)

with the Higgs boson shape function given in (2.17) and the gauge boson shape functions
9(y), g(y) reported in Appendix A.

For the time being, we will just analyze the contributions within the square brackets;
the last contribution arising from the mixing between SM and KK fermions will be dis-
cussed afterwards. To simplify the notation, we simply consider the couplings of a left
handed fermion. For right handed ones, the discussion is exactly the same: one has only
to change the chirality indices.

The two AzLJ(V) with V = 21, Zg(l) represent the coupling of the quark with the gauge
bosons Z() and Zg(l) before EWSB

AL(V)=Dié,(V)Dy, (V =z, Z§§)> : (3.36)
if the SM quark is of down type, and
Ay =Ufern  (v=20.2y). (3.37)

if the SM quark is of up type. The rotation matrices Uy, and Dy, were already introduced
after Eqs. (3.26) and (3.27), and the overlap integrals £7(V) are proportional to the £
integrals in (3.1) and are given by

. Lt
ez = o et = a7 [ A e o). (3.39)

. - Lt _
ez =wy e = R /0 dy F1 (v, c0)*3() (3.39)
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Additionally, g%D and K%D are the 4 dimensional charge factors of the SM fermion
examined. More specifically, if the fermion has got quantum numbers T’ g, TI% and @ then®

g4D

97°(F) = oor [T = Gmy)q] (3.40)
g4D

KPP (F) = - [T} — (Q — T})sin® ¢] . (3.41)

Now we have all the ingredients to show the custodial protection of some of the Z
boson couplings.

To simplify still a bit the notation, from now on we will restrict our analysis to a down
type fermion. The generalization to up quarks is straightforward: one has just to replace
the correct quantum numbers and the rotation matrix properly.

If the symmetry Ppp is unbroken, then the relations Z;" = Z; and € = aJLr hold, since
the shape functions ¢g(y) and §(y) correspond to a SU(2)r and a SU(2)r gauge boson,
respectively, and hence are equal in the limit of exact symmetry. Consequently, one can
write the contributions in the bracket of Eq. (3.33) as

2
_ M
gauge MIQ(K

DTngr (—g%D + cos ¢ cos wﬁ%D) DI} . (3.42)

(a2(2))
This expression is proportional to the so called “magic combination”
g3 (F) — cos ¢ cos P (F), (3.43)

that is exactly zero for a fermion obeying the condition 77 = T}%, as can be easily seen
from Egs. (3.40), (3.41), once that the relation between the angles 1) and ¢ in Eq. (2.33)
is employed.

As we have anticipated at the beginning of the proof, the protection of the Z couplings
with Ppr eigenstate fermions is also valid for KK fermions: their couplings with the Z
boson will be exactly zero for an unbroken Prp symmetry.

To conclude, we have demonstrated that both flavor conserving and flavor
violating Z couplings with a SM (or KK) quark which respects the condi-
tion T3 = Tg do no receive any NP contribution, in the hypothesis that the
symmetry Prr is unbroken.

Looking at the fermion representation (2.34)-(2.36), it is clear that the coupling Zbz b,
is not the only one to be protected. All the following Z couplings, both flavor conserving
and flavor violating with

1. left handed couplings of SM down quarks,

2. right handed couplings of SM up quarks,

5In Appendix B we report the explicit form of the couplings ¢g5° and k3 of all the quarks of the theory.
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3. couplings of X%i R
4. couplings of U ]’f r and of U j’;’fR

are protected and do not experience NP contributions if the symmetry Ppr is unbroken.
We note that this implies that the KK fields Xf r+UL > Ul'g do not couple at all with
Z, in that hypothesis.

It remains to prove that this conclusion is not spoiled by the mixing between SM and
KK fermions, namely that also the last term in (3.33) is zero, for quarks satisfying the
condition 7% = T}%. In other words, we have to demonstrate that all the couplings of SM
right handed up quarks and of SM left handed down quarks with the Z boson do not
receive NP corrections because of the mixing with KK fermions, in the limit of exact Prgr
Symmetry.

In Sec. 3.1.1 we have already obtained the general formulae for the couplings of the
SM fermions with the Z boson in terms of the elements of the mass matrices (Eqs. (3.17)-
(3.20)), in the presence of the first excited KK fermions. Now we analyze the impact of
the symmetry Ppr on the two protected couplings (point 1. and 2. listed above).

e Couplings of the right handed up quarks (Eq. (3.20)): the custodial symmetry Prr
acts on the quark fields as Prr(q}) = XC}%. This relation guarantees that also the
corresponding mass matrix elements have to be equal, namely

|Mio| = [Muo| , My = My. (3.44)

Inserting these relations in (3.20), one finds that the last two terms cancel. One
should notice the relevance of the term coming from the redefinition of the SM
fields, to maintain canonically normalized kinetic terms. Without this contribution
the cancellation would not be possible. Consequently, all the couplings of the right
handed up quarks with the Z boson do not receive any NP contributions coming
from the mixing between SM and KK fermions, thanks to the symmetry Ppg.

e Couplings of the left handed down quarks (Eq. (3.17)): the custodial symmetry Prr
acts on the quark fields as Prr(Dy) = D7 . This relation guarantees that also the
corresponding mass matrix elements have to be equal, namely

|Mos| = [Mo2| , Mz = M. (3.45)

Inserting these relations in (3.17), one finds that the last two terms cancel (thanks
still to the redefinition of the SM fermion fields to maintain canonically normalized
kinetic terms). Consequently, all the couplings of the left handed down quarks with
the Z boson do not receive any NP contributions coming from the mixing between
SM and KK fermions, thanks to the symmetry Prpg.
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In conclusion, we have demonstrated explicitly that, thanks to the underlying Prg
symmetry, the protection of the flavor conserving and flavor violating Zuﬁéﬂ%,
ZdiLJJL couplings is not spoiled by the mizing of the SM quarks with the KK
fermions.

Up to now we have performed the analysis in the hypothesis of an unbroken Prpr
symmetry. However in the model the parity symmetry is broken because of the boundary
conditions of the gauge bosons on the UV brane (see Eq. (2.25) for the fields W}, and
W)

Indeed, including the effects of the breaking of the custodial symmetry Prgr our two
statements in the boxes are not valid anymore: non-trivial NP effects arise also for the
protected couplings. However, we checked that the NP contributions coming from the
mixing between SM and KK fermions are still negligibly small. As far as the effects
coming from the mixing of gauge bosons after EWSB concern, they are not negligible,
but still smaller than the NP contributions of the couplings that are not protected. In
Sec. 4.2.9, we will analyze their importance for flavor transitions, and in particular for the
rare decays of K and B mesons.

As an example, in Fig. 3.4 we compare the flavor changing protected couplings Zsrdy,
and Zbr,5;, with the unprotected ones Zsrdgr and Zbgrsr. The points in blue represent the
points that we obtain in the custodial protected model, once that we have fitted the quark
masses and mixings, and the well measured observables of the K° — K° and BS q— Bg d
systems (see also Secs. 5.2.1, 5.2.2). The mixing between SM and KK fermions is neglected.
It is evident that the unprotected couplings are larger than the protected ones by two (in
the case of sd) or one (in the case of b3) orders of magnitude.

In the same figure, we present in purple how our results would look like if the protection
of the left handed Z couplings to down type quarks was not present. In order to get a rough
idea we simply removed the contributions of the Z Xl ) gauge boson to the Z couplings that
are generated in the process of electroweak symmetry breaking (Eq. (3.33))7. From the
purple points we observe that the hierarchies of the several couplings completely change:
A34(Z) tends now to be larger than A3¢(Z), while AY(Z) fully dominates over A (Z2),
as it was expected from the fact that the relevant left handed down modes belong to the
same representation of the left handed up modes and hence are localized closer towards
the IR brane than the right handed down modes.

Before finishing this section, it is also of interest to have a brief look at the couplings
of the SM quarks with the heavy Z’ gauge boson (the heaviest of the neutral gauge bosons
arising from the mixing (2.42)) and with Zp. Neglecting the mixing with the KK fermions,
the couplings of Z’ to up and down quarks are given by

1
\/icosw a

"The points in blue in the figure can fit, in addition to quark masses, CKM matrix and AF = 2
observables, also constraints coming from EWPTs. The removal of the custodial protection as done here
in general can lead to tensions with EWPTs. For a more detailed analysis one should take these constraints
into account as well.

AiLj7R(Z’) = AiL{R(Z(l)) + cos ¢ cos @bAiLj’R(Zggl)) . (3.46)
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Figure 3.4: |AY(Z)| versus |A%(Z)| for ij = sd (left) and ij = bs (right). The blue points
are obtained in the custodially protected model after fitting SM quark masses and mixings and
after imposing all constraints from AF = 2 observables (see also Secs. 5.2.1, 5.2.2). The purple
points show the effect of removing the custodial protection. The solid lines display the equality

A7 (2)] = |AR(2)].

In the case of Pr g symmetry these couplings are proportional to the combination present
already in the couplings of the SM quarks with the Z boson (3.33). Thus, also all the
diagonal and off-diagonal couplings Z’ uﬁéﬁ% and Z' diLJ]L are protected by the custodial
symmetry Ppr. Based on analogous considerations we can conclude that also the couplings
of Z' with the heavy fermions U} p, U] p and X7’ are protected.

Differently, none of the couplings of the Zx boson with SM (or heavy KK) quarks are
protected by the custodial symmetry Prg, since they are given by the combination

A (Zn) = cos ¢ cos pAY ,(zM) + A R(zgg>>] . (3.47)

1
\/§COS¢

3.1.5 The NP flavor problem

We come back to the NP flavor problem, mentioned already at the end of Sec. 2.1. At first
sight, the RS model seems to introduce a severe flavor problem, because of the presence
of flavor changing neutral currents already at the tree level, which could be disastrous for
the model when compared with the flavor observable measurements. As already discussed
at the end of Sec. 3.1.1, one would in fact expect that the RS model is ruled out by flavor
precision experiments because of the too large NP contributions to the flavor observables
that are well in agreement with the SM, unless it holds at a very high energy scale Mk,
not addressing consequently the gauge hierarchy problem.

However, in the last two sections of this thesis, we saw that this conclusion is not
necessarily true. In fact, the RS model with custodial protection develops also protection
mechanisms which weaken the potential huge NP effects in flavor observables. We have
presented in detail the RS-GIM mechanism, which protects mainly the flavor transitions
involving the first two families of quarks, and the custodial protection, due to the Prgr
symmetry which protects some (flavor changing) couplings of the SM Z boson and of
the heavy Z’ boson. These protection mechanisms decrease the natural expectation for
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the Wilson coefficients ¢; of Eq. (2.1) that are not expected to be naturally of O(1).
Consequently, we expect that the model can be a viable model of flavor, even with a not
too large Mkxk scale. Indeed, it was found that, assuming O(1) entries for the 5D Yukawa
couplings (defined in (2.44)), Mgk has a lower bound of roughly Mk > 20 TeV [120].
This result has been confirmed by us in [59] and will be presented in this thesis in Sec. 5.2.1.

In addition to the RS-GIM mechanism and to the custodial protection, in the literature
several other alternatives to protect the model from too large NP contributions to flavor
transitions are studied. Contrary to our simple assumption of completely anarchical 5D
Yukawas, all these approaches incorporate some sort of flavor symmetry.

One possible set up is to protect the model from all tree level FCNCs by incorporating
a U(3)? flavor symmetry, so that all flavor mixing is generated by kinetic terms on the UV
brane [121]. A more recent proposal postulates that the only sources of flavor breaking are
the two anarchical Yukawa spurions, implementing hence the Minimal Flavor Violation
(MFV) principle (see also Sec. 3.2.2 for a detailed explanation of the MFV ansatz) in
the five dimensional theory [122]. Finally, another recent approach [123] is based on two
horizontal U(1) flavor symmetries, which force the alignment of bulk masses and down
Yukawas and hence strongly suppress FCNCs in the down sector. FCNCs in the up sector,
however, can be close to the experimental limits.

All these approaches based on flavor symmetries enforce the final statement

In addition to the SM flavor puzzle, the RS model can alleviate
also the NP flavor problem.

This statement is in any case valid even for the original RS model (without any imposition
of flavor symmetries) that we will be analyzed in this thesis.

3.2 Flavor changing transitions in Susy flavor models

In parallel with what we have shown in the previous section for the RS model with custodial
protection, we want now to analyze in detail the NP flavor problem in Susy flavor models.
First, we will show how serious is the problem in the general MSSM. Secondly, we will
discuss what are the protection mechanisms that can be implemented in the MSSM to
ameliorate the problem. Particular relevance is devoted to the role of flavor symmetries.
This should be regarded as a different approach, when compared to the “geometrical
approach” adopted in the RS model.

3.2.1 Large one loop flavor changing neutral currents

Contrary to the Randall-Sundrum model, Supersymmetry does not contain quark and lep-
ton flavor changing neutral vertices at the tree level, thanks to the Susy-GIM mechanism,
which resembles closely the GIM mechanism of the SM. FCNC processes arise only at the
one loop level and are very sensitive to the soft parameters in (2.50). In particular the
most relevant vertices for our discussion of quark flavor violation are the ones in which
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both quarks and squarks are present. There are three types of such vertices: ffx~, ffx°
and ff§, where we have indicate with f ( f ) a generic mass eigenstate fermion (sfermion),
with x~ (x") a mass eigenstate chargino (neutralino) and with § a gluino. In Fig. 3.5 we
show as an example one of these three classes of vertices, the one with the gluino. The
other two types of vertices are perfectly analogous and hence will not be listed here.

Y8 Y8
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Figure 3.5: Gluino-quark-squark vertices. i, j are the flavor indices, «, 8 the SU(3). indices.

One indeed can work in mass eigenstates, as shown in Fig. 3.5, but the expressions for
the elementary vertices containing neutralinos and charginos are then quite complicated.
Additionally, in the mass eigenstate basis, flavor transition amplitudes often look highly
non-transparent. For this reason, it is often convenient to work in the SCKM basis defined
in Eq. (2.52). In this basis, all the couplings of fermions and sfermions to neutral gauginos
are flavor diagonal, while the flavor changing is introduced by the non-diagonality of
the sfermion propagators. This procedure is justified as long as the several MIs defined
in (2.55) are significantly smaller than one and the diagonal entries in the soft terms

<M5 fj)AB (AB = LL,RR,LR,RL) in Eq. (2.54) are approximately degenerate®. In
that case the sfermion propagators can be expanded as a series of the several Mls, as
shown explicitly in Fig. 3.6 for the K* — K mixing (see also Sec. 4.1.4). This method of

computing flavor transitions is often called Mass Insertion Approximation (MIA) [125].

Two main advantages come from the use of the MIA: first of all, one does not need
the full diagonalization of the sfermion mass matrices to perform a test of the Susy model
under consideration in the FCNC sector. In addition the formulae are much simpler and
hence transparent, allowing to identify easier the main properties of the flavor transition,
as we will show in Secs. 4.1, 4.2. At the same time, the limiting aspect is that the MIA
breaks down when the sfermion flavor violating mixing angles are of O(1), as it is indeed
predicted by many flavor models, as the ones we have presented in Secs. 2.3.4 - 2.3.5.
Indeed our numerical analysis of those models will be performed exactly, working with
mass eigenstate fermions (see Chapter 5).

In spite of the fact that the Susy contributions to flavor observables are only at the
one loop level, the NP flavor problem in Susy is not weaker than in the RS model. In fact,
precise measurements of FCNC transitions put severe upper bounds on the several entries
of the sfermion mass matrices in (2.54) at the low energy. The common approach to set

8The phenomenological implications of a highly hierarchical sfermion scenario have been recently ad-
dressed in [124].
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Figure 3.6: Mass Insertion Approximation applied to the gluino contribution to the K 0_ K9 meson
mixing system. f indicates a mass eigenstate sfermion, F' indicates a sfermion in the SCKM basis,
as introduced in (2.52). The several Mass Insertions are represented with a diamond ¢.

bounds on the MIs is to switch on only one MI at a time, in order to avoid accidental
unnatural cancellations between different Susy contributions [126].

In [90] we have performed an extensive study of the bounds on the several deltas. Here
we cite just one of the results, in order to show how severe is the Susy flavor problem. In
our numerical investigation we set at the GUT scale an MSUGRA spectrum, as explained
in Sec. 2.3.3, and at the EW scale we switch on only one MI at a time. In Fig. 3.7 we
show the bounds we obtain on the element 21 of the MI LL (in the left panel) and LR
(in the right panel) of the down sector, namely we present the bound on the LL soft mass
and trilinear term connecting the first two generations of down squarks.

From Fig. 3.7 we can observe that the bounds on the MIs are quite strict, when com-
pared to the expected O(1) MI parameters. One notes also that the bound is particularly
severe for a phase in the MIs of 7/4, for which the constraint from the CP violating ob-
servable ek is quite strict. Vice versa, for a phase equal to zero or 7/2, the bound is
looser, since the CP conserving observable AM provides only a mild constraint (see also
Sec. 4.1.4 for the discussion of the two observables of the K system). The bounds can
be of course weakened by choosing heavier soft masses mg and m, /5, that in any case are
forced to be at around the TeV scale in order to address the gauge hierarchy problem (see
Introduction). The main conclusion will not change: to naturally satisfy the bounds on
FCNCs coming from the experiments, one has to implement in Susy a “protection mecha-
nism”, preserving the Mls from being too large. Indeed in Secs. 2.3.4 - 2.3.5 we have shown
with two explicit examples that abelian and non abelian flavor symmetries can accomplish
this requirement, since they predict Mls suppressed by powers of small flavor symmetry
breaking parameters. Studying the phenomenology of these two models (Secs. 5.2.4, 5.2.5)
in the AF = 2 meson sector, we will show in detail which are the constraints arising to
satisfy the several FCNC constraints.
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Figure 3.7: Bounds on the MIs (651)2; (in the left panel) and (65%)s; (in the right panel) as
obtained by imposing the experimental constraints from the well measured AF = 2 observables (see
Tab. 4.5), in particular from ex and AMg. The scan is performed on the MSUGRA parameters
my o <200 GeV, mo < 300 GeV, [Ag| < 3mp and 5 < tan 3 < 15. For further details see [90].

3.2.2 The Susy protection mechanisms

In this section we want to overview the main protection mechanisms that can be imple-
mented in Susy” in order to protect the theory from too large NP contributions to the
well measured flavor observables.

e Degeneracy. At a high energy scale, e.g. the GUT scale, squark mass eigenstates are
approximately degenerate in mass. This leads naturally to a strong GIM suppression
of the off-diagonal MIs in the SCKM basis. Since the most severe constraints are
coming from 1-2 transitions, one can also soften the requirement, imposing it to the
first two generation squarks only.

It was found that bounds on the squark mass degeneracy are in the range of few
percents (and hence not highly strict), even for the first two generations, as long as
their masses are around 1 TeV [127].

Such degeneracy could naturally arise from models with gauge-mediated supersym-
metry breaking (GMSB) in which the masses of squarks (and sleptons) depend only
on their gauge quantum numbers and hence are naturally degenerate [128]. In ad-
dition also Susy flavor models based on non abelian flavor symmetries can achieve
that scope. In fact, as also explained in Sec. 2.3.5, an unbroken SU(3) or U(2) flavor
symmetry would imply at the high energy scale the degeneracy of at least the first
two families and hence the absence of the corresponding off-diagonal MIs. The NP
flavor contributions would arise just as symmetry breaking effects and hence would
be naturally suppressed.

e Alignment. Quark-squark alignment is a different idea which relies on a strong
correlation between fermion and sfermion mass generation. At the high energy scale

9The last two mechanisms in the list are usually applied also to other models beyond the Standard
Model, in order to suppress FCNCs.
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it exists a basis (the SCKM basis) in which both the down type squark mass matrix,
the down trilinear terms and the down quark mass matrix are diagonal [96]. Hence
at that scale all the off-diagonal terms (675 )ij with AB = (LL, RR, LR) would be
zZero.

The alignment cannot be valid also for up type quarks-squarks. The SU(2), gauge
symmetry relates in fact the left-left block of up and down squark matrices, i.e.
(M%)LL and (M]%)LL respectively, in such a way that (M%)LL = V*(M]%)LLVT.

Consequently, it is not possible to diagonalize the down squark mass matrix M% and

the up squark mass matrix M(gj simultaneously in the same basis, if the left handed
squarks are non-degenerate in mass, as it is natural in this class of models.

Such alignment could naturally arise from models with abelian flavor symmetries [85,
96], in which the contributions of misalignment arise only as flavor symmetry break-
ing effects. In particular models based on the flavor group Gr = U(1) x U(1) and
with expansion parameters fixed to be e; = A and e = A\? [85] lead to a satisfactory
alignment between down quark and squark mass matrices and hence suppression of
the NP effects in FCNC transitions in the down sector.

MFV principle. The several off-diagonal MIs could be different from zero but de-
pendent only on some particular combination of the off-diagonal CKM elements and
hence small. This turns out to be the result of the Minimal Flavor Violation principle
applied to Susy flavor models [129, 130].

In the Standard Model, switching off the Yukawa couplings, the quark flavor symme-
try is given by U(3)3 [131,132]. The only source of flavor symmetry breaking are the
Yukawa couplings. Models with Minimal Flavor Violation resemble the SM in the
sense that the dynamics of flavor violation is completely determined by the struc-
ture of the two ordinary Yukawa couplings. In this class of models one can restore
the U(3)? flavor invariance by promoting the Yukawas to spurions with quantum
numbers

Yu ~ (37 37 1)SU(3)2 , Ygr~ (37 1, g)SU(3)2 : (348)

Following this prescription, one can write the several soft masses and trilinear terms
presented in (2.50) as series in the spurion fields Y, 4 that are invariant under the
U(3)? flavor symmetry. In particular, restricting only to the first terms of the ex-
pansion [129] we have
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ME = W (a1]1 b Y, Y 4 baYaY] 4 bV VYLV 4 by, Y,y ) , (3.49)
M2 = (@1 +b4Yqu) , (3.50)
MY = @ (ag]l v b5Yij) : (3.51)
Ay = A <a4]l + b,V ) Ya, (3.52)
Ap = A <a51l n meJ) Yy, (3.53)

where a; and b; are unknown order one coefficients (a123, b124,5 real and as s, bz 67
in general complex [133]). To obtain Egs. (3.49)-(3.53), high order contributions in
the small first two generation Yukawas are neglected.

Thanks to the smallness of the Yukawa couplings of the first two generations, also
the off-diagonal MIs turn out to be naturally small in the MFV framework. The
same conclusion holds when the soft masses and trilinear terms are rotated to the
SCKM basis. The off-diagonal MIs will be given in terms of the (small) off-diagonal
CKM elements and hence will be suppressed.

e Decoupling. The decoupling hypothesis is a completely different approach. The
protection of the flavor transitions does not rely anymore on a symmetry principle,
but on the fact that the sfermion mass scale m is taken to be very high. This usually
brings an unwanted high level of fine-tuning of the theory, since the lightest Higgs
mass (or equivalently the EW scale) receives huge one loop corrections proportional

mg,

to the factor log (%), where m;, , are the masses of the two stops. However a
2 ,

“hybrid” scenario in which the first two generation squarks are heavy and split from
the third generation that arises at the EW scale could ameliorate the fine-tuning
problem just mentioned [134-136]'°.

The encouraging feature of this framework is that, in spite of the heaviness of the
superpartners, such a scenario may be probed at the LHC through non-decoupling
effects such as the super-oblique parameters [138].

0For an alternative solution of the fine-tuning problem in Supersymmetry see also our recent work [33]
and [137].



Chapter 4

Impact on flavor observables

At present, at the dawn of the LHC, great interest is given to the study of the properties
of new particles not present in the Standard Model that could be detected directly by the
machine, establishing hence the presence of NP. While direct detection of new particles will
be the main avenue at the LHC, indirect searches will provide precious complementary
information. In particular, precision measurements and computations in the realm of
flavor physics are expected to play a key role in constraining the unknown parameters of
the Lagrangian of any NP model.

In this chapter we will pursue the indirect approach for the two models that we have
already introduced in Chapter 2. We first investigate the flavor observables arising from
the mixing of meson and corresponding antimeson, and secondly we analyze some decays
of B and K mesons that are highly suppressed in the SM: rare B and K meson decays
into purely leptonic states (such as Bsq — ptp~ or Kj, — ptp™) or into semileptonic
states (such as K — wvw).

Since the chapter is relatively long, we consider it worth to present here a brief sum-
mary. The chapter is composed of two sections structured in an analogous manner.

The first section deals with the AF = 2 transitions. First the SM effective Hamiltoni-
ans for the K and B system are presented (Sec. 4.1.1); then, restricting to the K system
(we comment on how to generalize the formulae to the Bj 4 systems), the NP contributions
to the effective Hamiltonian are worked out in both the RS (Secs. 4.1.2, 4.1.3) and the
Susy (Secs. 4.1.4, 4.1.5) frameworks. Finally in Sec. 4.1.6 we review the formulae for the
several AF = 2 observables and we end with a brief summary of the experimental status
and the comparison with the SM predictions.

The second section deals with selected rare K and B decays. We present the effective
Hamiltonian for the elementary process s — dvv first in the SM (Sec. 4.2.1) and secondly
in the RS (Sec. 4.2.2) and Susy (Sec. 4.2.3) frameworks. Subsequently, in Sec. 4.2.4 we
present the general formulae for the branching ratios of the K+ — 7ntvw and K, — n0vi
decay modes, valid both in the RS model and in Susy. Afterwards, we present first the most
general effective Hamiltonian for the elementary processes s — d¢™¢~ and b — (s, d){T(~
first in the SM (Sec. 4.2.5) and secondly the new physics contributions arising from the RS
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Figure 4.1: Box diagrams contributing to K° — K° mixing in the Standard Model [31].

model (Sec. 4.2.6) and from supersymmetry (Sec. 4.2.7)%. In Sec. 4.2.8 we discuss then the
formulae for the branching ratios of By 4 — ptp~ (in the RS model and in Susy) and of
Kp — ptu~ (in the RS model). In Sec. 4.2.9 it follows a discussion of the anatomy of the
NP contributions to the several decays in the RS model (we do not perform the anatomy
also for the Susy flavor models, since in that framework it is quite clear which are the
main contributions) and finally we end the section with a small review of the experimental
status of the rare B and K decays analyzed in this thesis and of the SM predictions for
their branching ratios (Sec. 4.2.10).

4.1 Operator structure for AF = 2 transitions

Particle-antiparticle mixing has always been of fundamental importance in testing the
Standard Model and represents often a serious constraint to satisfy for theories beyond
the Standard Model. In the past it was a very successful tool to test heavy flavor physics: to
mention some of the main examples, from the calculation of the K — Kg mass difference,
Gaillard and Lee [12] could estimate the value of the charm quark mass before the charm
discovery; BY — BY mixing [139,140] gave the first indication of a large top quark mass.

4.1.1 AF = 2 processes in the SM

We apply the method of operator product expansion, already introduced in Sec. 2.1, to the
case of particle-antiparticle mixing (K° — K% BY, — BY ). In the Standard Model, the
effective Hamiltonian responsible for the AF = 2 flavor transitions is particularly simple,
since it just contains one operator, that is arising from the box diagrams shown in Fig. 4.1.
In the case of Kaon mixing, at scales p below the charm threshold p. = O(m.), we can
write the effective Hamiltonian as [30]

We restrict only to the case of the elementary process b — s¢T¢~, since the other two are perfectly
analogous.
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G2
M g = JoiaMiv [N mSo(ae) + N mSo(an) + 208N s, a2) | x
a®

X [agi”)(ﬂ)] 2 [1 + 547£M) J3

Q(AS =2) + h.c. (4.1)

where /\Z(K) = ViV, aﬁ?’) (w) is the strong coupling constant at an energy p at which the
number of “effective” flavors is given by 3. The renormalization scheme dependent Jj3 is
given in the NDR scheme by J3 = 1.895 [30] and the correction factors 1,72 and 13 keep
into account the short-distance (SD) QCD effects and are given at the next to leading

order (NLO) by [141-143]

m = 1.44£0.35, 12 = 0.57 £0.01, n3 = 0.47 £ 0.05. (4.2)

Finally the functions Sy(z), So(x,y) are smooth functions of the ratios z; . = m? ./Mg;
and can be found in Appendix C. As we can note from Eq. (4.1), the effective Hamiltonian
for the mixing of K% — K9 consists of a single four-quark operator

Q(AS =2) = (5d)y—_a(5d)y—a = [5y,(1 —v5)d] ® [579"(1 — v5)d] , (4.3)

and the Wilson coefficient is proportional to G2 2./(1672) indicating that the effect arises
only at the one loop level.

An analogous result holds also for B0 B 4 meson mixing, for which, neglecting both
the long-distance (LD) and the charm quark contrlbutlons the effective Hamiltonian is
given by

(5)
as” () Js

41

G? s.d)) 2 -5
[HAB 2]SM = 1671;2 MI%V <)‘§ 7Ul)) UBSO(xt) [O‘gm(ﬂb)} *

1+

(4.4)
with ng = 0.55 +0.01 [142], Af’d) = Vi3 Vi(s,a) and ol (1) is the strong coupling constant
at an energy up at which the number of “effective” flavors is given by 5. J5 = 1.627 in the

NDR scheme [144] and the scale py, is of O(mp). The only operator involved is now given
by

Q(AB = 2) = (b(s, d)v—a(b(s, d))v—a = [y"(1 — 75)(s, )] @ [y*(1 — 35)(s,d)] . (4.5)

From the two effective Hamiltonians (4.1) and (4.4), it is easy to compute the contri-

bution to the off-diagonal mixing amplitude M fg’s’d defined in the case of K° — K° mixing
as

2mic (M{3)5m = (K°| [Had =] g 1K) (4.6)

and analogously for the B 4 systems. Computing the matrix elements, one finds

Q(AB = 2)+h.c.,
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G2
(M) gy = 127 LS Fi Biemie My, [)‘( 12180 (xe) + M 21250 () +2/\§K)/\§K)7l350(%93t)]
X (4.7)
where the renormalization group invariant parameter By is defined by
, —2/9 a®)
Br = Bie) [o@ )] " e @ g (45)
and the decay constant Fx by
o B 8
(R|(sd)y—a(sd)y—a | K°) = < Brcl) Pk (4.9)
with mg the mass of the Kaon.
For the mixing in the Bj 4 systems, we have completely analogous formulae
2 2
7d G 7d *
(M35") . = T5ea Fh. B, My [(A,ﬁs ") nBSo(xt)] , (4.10)
where the renormalization group invariant parameters B B, are defined as
. —6/23 a®
By, . = Ba..(n) [af (1) [1 p WL (4.11)
and the decay constants Fp, , by
o _ 8
(BYI(ba)v—a(ba)v—alBY) = S B, () FR_m% . (4.12)

with mp, (mp,) the mass of the meson By (Bjg).

4.1.2 AF = 2 processes in the RS model: operator structure

In the RS model, the effective Hamiltonians characterizing the particle-antiparticle mix-
ings get new contributions, thanks to the flavor changing neutral vertices present in the
theory already at the tree level (see Fig. 3.1). The first complete analysis of all these new
contributions, including those arising from the exchange of the EW gauge bosons, was
performed by us in [59]. Previous studies can be found in [51,55,119, 120, 145-147]. In
the following we will focus on the K° — K¥ mixing system (that will turn out to give the
most relevant constraints in the RS model); the corresponding formulae for the Bg} i Bg} d
systems can be easily obtained by properly adjusting all the flavor indices.

The new tree level contributions from the exchange of KK gluons, EW gauge bosons
(Zg, Z' and Z) and the KK photon A lead to the Hamiltonian

[%AS 2] KK = CYLLQYLL + CYRRQYRR + ClLRQfR + CQLR@%R’ (413)

*

)
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that is valid at energy scales O(Mxkxk), at which the Wilson coefficients C; are evaluated.
We perform the analysis in the operator basis introduced in [148] defined as

QYLL = (8%, Prd®) (EﬁV“PLdﬁ>,
Q= (5%, Prd®) (gﬁ’Y“PRdﬁ),
Ot = (577, PLd®) (579" Prd”) |
O — (s*Pa®) (5" Prd”) . (4.14)

where a, § are color indices and P, p = (1 F 75)/2 are the chirality projectors. We note
the presence of 3 additional operators when compared to the case of the SM, where the
only operator is, apart from a numerical factor, given by ~ QYLL. The Wilson coefficients
at the scale Mkg are given by the sum

Ci(Mxk) = Ci(Mgx)€ + Ci(Mxx)™ + Ci(Mgg)?#% (4.15)

where the superscripts indicate the gauge boson responsible for the contribution. We now
briefly recall the main features of the several terms. We want in particular to show the
importance of the EW gauge boson contribution, especially in the B, 4 systems. Indeed,
at odds with what we found, in the most part of the literature the contribution C;(Mgkx)“
due to the exchange of KK gluons was assumed to yield the dominant effect not only in
the K% — K9 system but also in the Bg{d — BY ; systems [51,55,119,120, 145-147].

The KK gluon contribution

Using Fierz transformations, we can easily compute the Wilson coefficients Ci(MKK)G,
corresponding to the basis presented in (4.14). In the absence of brane kinetic terms we
obtain (see the original paper [59] for a brief discussion of the effect of the brane kinetic
terms on the AF = 2 Wilson coefficients)

1 N 2
VLL G _ sd (1)
Y M0 = gy (83161
1 ~ 2
O M (Myk)© = Ag(GM)) -,
GMI%K< )
1 o "
Crli(Mii)® = - AF(GU)AR(GD),
KK
1 4 o
Cyf (M) = = A(GMAF(GD), (4.16)
KK

where the flavor violating couplings ASLC’IR(G(D) are defined as function of the overlap

integrals e} g defined already in (3.1). More precisely, dropping the flavor indices, we
have the relations
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AGY) = TEDlef(enDy = g Dlef(e)Ds, (4.17)
Ap(@W) = JLDheh(cs)Dp = g*” Dhely(es) D, (4.18)

VL

where the rotation matrices Dy g are those which diagonalize the 3 x 3 down type mass
matrix, as introduced in Eq. (3.26), and g, is the fundamental 5D strong coupling which,
at the tree level and in the absence of brane kinetic terms, is related to the experimentally
determined 4D strong coupling by gs = v Lg2P.

Comparing this result with the Wilson coefficient present in the SM (Eq. (4.1)), it
is evident that the NP contributions do not have any suppression by the loop factor
G2%/(167?), indicating that the effects are already arising at the tree level. Instead, we
have a suppression by the factor MI%/ /MI%K because of the exchange of heavy particles,
instead of the W boson.

The KK photon contribution

We find the following Wilson coefficients

1 ~ 2
CVLL(MKK)A _ ASd(A(l)) ,
! 2M2y [ L ]
1 . 2
CVRR(MKK)A — ASd(A(l)) 7
! 2M2y [ R ]
1 . .
CLR(MKK)A — ASd(A(l)) ASd(A(l)) 7
1 Wy (A1) [0
Cy(Mgx)* = 0, (4.19)

where the couplings ASLd(A(l)) are defined analogously to the case of the KK gluons, but
with the strong coupling replaced by the fundamental 5D electric charge Qe, related to
the experimentally measured 4D electric charge by Qe = vLQe*”. Already from the
expressions of these Wilson coefficients, two observations are evident

e We expect that the contribution of the KK photon is quite suppressed when com-
pared to the contribution of the KK gluons, because of the suppression by the ratio
aqep/as(Mkk) and by the charge factor 1/9. These suppressions are partially com-
pensated by the absence of the 1/3 color factors in (4.19). This suppression will be
confirmed in our numerical analysis.

e Without O(ay) corrections (see also next section) to the tree level exchange of the
KK photon, the coefficient C%R(MKK)A vanishes. Strictly speaking for a NLO-QCD
analysis the O(a,) corrections to the result (4.19) should be included. But as these
corrections are small we can neglect them.
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The EW gauge boson contribution and the role of the custodial symmetry

While the KK gluon and photon contributions are universal for all the RS models with bulk
fermions, the contributions due to the EW gauge bosons Zy, Z’ and Z depend sensitively
on the EW gauge group and on the choice of fermion representation. Consequently we
do not expect to obtain the same results obtained in the RS model without custodial
protection studied for example in [57,69]. Similarly to the computation of the contribution
of the KK photon, we can work out the contribution to the several Wilson coefficients from
the exchange of the heavy EW gauge bosons Zy and Z’. Adding the two contributions
we find

, 1 ~ 2 R 2
VLL Zy 2" _ sd( 7(1) sd( (1)
CYEE(Micx) i | (A + (A2

, 1 A 2 /.
VRR Zy 2" _ sd( r7(1) sd (1)
Cy " (Mkk) o2, [(AR (Z )) + (AR (Zx )) } ;
CH (M) ? = o [A(Z AR EW) + AP ARED)] |

KK

Cyf(Mgx) 77 =0, (4.20)

where the two coupling Ay, p(Z()) and ALyR(Zg)) have been already defined in (3.36).
At this level, without considering RG running, the operator QX% is not generated. Addi-
tionally, even if not observable from the structure of the Wilson coefficients (4.20) where
we summed up the contributions of Zy and Z’, the effect of Z’ is smaller than the effect of

Z 1 because of the suppression of the left handed couplings due to the custodial symmetry
Prr (see also Sec. 3.1.4).

Finally, it remains to discuss the contribution of the light Z boson. Naively, one could
expect that this contribution dominates the contribution of the heavy EW gauge bosons,
because of the light propagator present in the Feynman diagram responsible for the process
(suppression by a factor 1/M2%, instead of by 1/MZy). However, examining the expressions
for the couplings of the Z boson with down type quarks (Eq. (3.33)), one can notice the
additional suppression by the factor M% /MI%K with respect to the mediation of the heavy
EW gauge bosons, due to the fact that the Z boson does not have FCNCs before EWSB.
In addition, in Sec. 3.1.4 we have demonstrated that the Z flavor violating couplings to
left handed down quarks vanish in the limit of exact Prr symmetry. For these reasons
one could neglect the contribution of the Z boson in AF = 2 processes?. Still we would
like to point out that, even in the case of a RS model without custodial protection, we do
not expect a non-negligible Z contribution, because of the suppression factor M% /J\Jf{K
discussed just above.

2In Sec. 4.2.9 we will show however that the statement is not valid for AF = 1 transitions, for which
the Z contribution turns out to be the dominant effect.
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Adding all contributions

Having all contributions to the AS = 2 effective Hamiltonian at hand, we can now add
them up, using Eq. (4.15), and compare the size of the contributions arising from the
exchange of the KK gluons and of the EW gauge bosons. For that scope, we factor out
all the couplings and charge factors from the several ASL‘fR couplings. Neglecting then the
small effects of Prp symmetry breaking due to the different boundary conditions of Z()
and Zg(l) on the UV brane, the remaining AstfR are universal. Indeed the inclusion of
the breaking would amount only to some percent effects, so, at this level of discussion,
it is safe to neglect it (in our numerical analysis of Secs. 5.2.1 - 5.2.3 also the symmetry
breaking effects will be included). In that approximation we find

1 _
CYLE(Mygk) ~ ——5—(0.67 +0.02 4+ 0.56)(A3%)?,

4MZE
CVER(Myk) =~ %{(0.67 +0.02 + 0.98) (A2,
CER(Mgk) =~ %(—0.67 +0.04 + 1.13) (A3?A3Y) |
Cif(Mgk) =~ %(—4 +0+0)(A32AY), (4.21)

where, as indicated in Eq. (4.15), the first contribution is due to the exchange of KK
gluons, the second of the KK photon and the third of the EW gauge bosons.

From these expressions, we can conclude that at the high energy scale Mk the EW
gauge boson contributions to the Wilson coefficients C}EL, O} EE and CFF (but not to
CIR) are of the same order of the KK gluon contributions and have to be taken into
account, to have a reliable phenomenological prediction of the model. On the other hand
the KK photon contributions turn out to be negligible in all cases, being suppressed by
the small electric charge of down type quarks.

This terminates the study of the effective Hamiltonian at the high energy scale Mgk
responsible for the AF = 2 transitions in the RS framework.

To further investigate which is the main contribution responsible for AF = 2 transi-
tions, we have to examine the QCD renormalization group effects and the chiral enhance-
ment of the hadronic matrix elements.

4.1.3 Chiral enhancement and renormalization group effects (1)

We now perform the renormalization group evolution of the effective Hamiltonian obtained
in the previous section down to the low energy scale 1, depending on the system analyzed:
po = pur, ~ 2 GeV for the K system and po = up >~ 4.6 GeV for the B, 4 systems.

In all generality, independently of the system analyzed, the SM (V — A)® (V — A) op-
erator (5d)y—4(5d)y—a (and the analogous ones for the B, 4 systems) can be renormalized

separately from the operators present in the NP effective Hamiltonian [H%SZQ] kK- We
recall indeed that the operator Q‘{LL (as well as its “chirality partner” operator QYRR)

renormalizes without mixing with the other AF = 2 operators [148-150]. Consequently,
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we can first deal with the renormalization of the NP effective Hamiltonian in (4.13) (and
the corresponding for the B, 4 systems), and afterwards add the contribution coming from
the SM effective Hamiltonian in (4.1) (or (4.4) for the B 4 systems).

In order to investigate which are the main contributions to the AF = 2 observables,
both in terms of operators and of gauge bosons exchanged, few observations on the renor-
malization group running are worth [148-150]

e QLY and QY% do not mix with the other operators and their anomalous dimen-
sions are the same, since QCD is a chirality blind theory.

e QIR and QI mix under renormalization so that their RG evolution operator is a
2 x 2 matrix. The running of these operators is in general stronger than the one
experienced by QYLL and QYRR. At the low scale pg the QfR and Q%R Wilson
coefficients are strongly enhanced, contrary to those of the two operators Q} “* and
QYRR, which are instead weakly suppressed.

e Comparing the K and the B, 4 systems, we notice that in the former the RG en-
hancement is a bit larger than in the latter, since the relevant scale in K physics is
lower than the one in B physics.

We can then finally write the effective Hamiltonian for the K% — K° mixing at the low
scale p13

(Mt =ik = OF F(up) QU M+ OV ¥ () QF - OF () Q1 - O3 (i) Q5™ (4.22)

and analogous expressions for the AB = 2 Hamiltonians at the low energy p.

It remains then to compute the contribution to the off-diagonal mixing amplitude
(ME)kk, that will be then added to the corresponding contribution already obtained in
the SM (4.7)

2myc (M) ey = (K| [Hatf =i 1K°) = ZCE(ML)(KOIQAKO) : (4.23)

The hadronic matrix elements (K°|Q;| K°) can be parametrized as follows, with explicit
dependence on the low energy scale ur,

_ _ 2

(ROIQYPHIK®) = (ROIQYPRIK®) = Sk FEBY M (ur) (424)
_ 1

(ROIQERIK®) = =R (up)mi FRBE () (425)
_ 1

(RUQEIKY) = SR (uuymicFBE®(ur) (426)

where the decay constant F was already defined in Eq. (4.9) and the B;(uz,) parameters
are known from lattice calculations. Their numerical results calculated in the MS-NDR
scheme are given in Tab. 4.1.

3See [148] for the explicit expressions of the renormalized Wilson coefficients C;(uz,).



4.1 Operator structure for AF = 2 transitions

62

Finally the chiral enhancement factor R¥ (uz) of the chirality-flipping operators Qfg
is given by

2
mg
R¥(up) = ( > : 4.27
(uz) mi(pz) +ma(pr) (427
This factor is responsible for a O(20) enhancement of the Qfg contributions, with
respect to QYLL and QYRR.

BYIE | BER | BER | o
KO-KO%| 0.57 | 0.56 | 0.81 | 2.0GeV
BY%-BY | 0.87 | 1.73 | 1.15 | 4.6 GeV

Table 4.1: Values of the B; parameters in the MS-NDR scheme obtained in [151] (K°-K°) and [152]
(B°-BY). The scale o at which B; are evaluated is given in the last column. For By in (4.8)
and for Bp, , in (4.11) we use Bx = 0.724 + 0.008 £ 0.028 [153] and Bp, , = 1.22 + 0.12 [154]
respectively.

We can now write the NP tree level contribution to the off-diagonal mixing amplitude
(M{5)kx

1
(M) = gmucFi| (CV (ue) + O * () BY ()
1 3 *
- §RK(ML)C1LR(NL)31LR(ML)+ZRK(ML)02LR(ML)BQLR . (4.28)

Analogous expressions can be derived for (Mféd)KK for the B, 4 systems

s 1
(M), = 5mB.aFR,, [ (CYFE (o) + OV PR () BY ()
1 S 3 S *
S R o) CER a0 BER (1) + LR ) CF 1) BER 1) (4:29)

where now the chiral enhancement is given by

RSvdmb):( =Y ) (4.30)
my(pp) +msa(pw)) '

that is much smaller than in the K system (only ~ O(1)) because of the suppression by
the heavy bottom quark mass.

To avoid ambiguities, we have to notice that the values of the Wilson coefficients C}
in (4.29) differ from those in (4.28) as different couplings A¥ are involved and also the
scales py, and pp are different. Similarly the B; parameters in (4.29) differ from the ones in
(4.28) as now hadronic matrix elements between B 4 and Bs,d are evaluated (see Tab. 4.1
for a collection of the B; parameters).
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Figure 4.2: Left: Re(M{)kk/Re(M{S)sm and Im(ME )i /Im(M{)sm, plotted on logarithmic
axes. Right: Re(M7y)kk and Im(M7,)kk, normalized to |(M7y)sm| and plotted on logarithmic
axes. Lighter colors correspond to higher densities of points.

Finally, the results for M{S, M{, and Mj,, which govern the analysis of the AF = 2
transitions in the RS model with custodial protection, are given by

M{;2 = (M{Z)SM + (M{Q)KK (Z = K: d7 S) ) (4'31)
with (M{y)gy, given in (4.7), (4.10) and (M) in (4.28), (4.29).

We now estimate the size of the NP effects in M g’s’d, when compared to the SM values.
In Fig. 4.2 the complex (ME)kk and (Mj,)kk planes are shown. In particular, in the
left panel of Fig. 4.2, we show in a density plot Im(M{$)kk /Im(ME)sy as a function of
Re(M{)kk /Re(M{5)sn. We observe that while Re(M{S )kx is typically of the order of the
SM contribution, the KK contribution to Im(M{$) typically exceeds the SM by two orders
of magnitude (to recall that lighter colors correspond to higher densities of points). This
is due to the fact that, while we expect Im(M{5)kk ~ Re(ME)kk, in the SM Im(M{S)sum
is suppressed with respect to Re(M{$)sy by roughly a factor 100 (see Eq. (4.7))%.

Analogously, in the right panel of Fig. 4.2, we show Re(M7j,)kk and Im(M7,)kk,
normalized to |(M7,)sm|. We observe that the KK gauge boson contribution tends to be
of roughly the same size as the SM contribution, and that, contrary to the SM, Re(M7,)kk
and Im(M7,)kk are generically of the same size, so that an O(1) new physics phase can
be expected. For completeness we mention that the results for M{jQ are very similar to
those for M7,, and hence we do not show them here.

We postpone to Sec. 5.2 the numerical analysis of the AF = 2 transitions described by
the off-diagonal mixing amplitudes Mg’s’d. However, here we want to get a feeling for the
importance of the various operators. Therefore in Fig. 4.3 we show the ratio of the Q&%
and QY *¥ operator contributions to (M{3)kk in the left panel and to (M5,)kxk in the right
panel. In the K system, as we already expected from the analysis of QCD renormalization
effects and chiral enhancement, we observe that the LR operator contribution is by far

4In Sec. 5.2.1 we will show that this leads to a strong constraint on the parameter space, coming from
the CP violating observable ex but not from the mass difference A M.
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Figure 4.3: The ratio of the contribution of the operator Q4% and QYL to (M )kk (left panel)
and to (M$,)kk (right panel), as a function of (M{y)kk/(Mis)sm (i = K , s) plotted in logarithmic
scale. In the two plots, the blue lines indicate an equal contribution of the two operators QX and
QVLL,

the dominant one, while the LL contribution is typically below 10%. Differently, in the Bs
system the QYL and QL® operator contributions turn out to be competitive in size, and
in most cases Q) “L even yields the dominant contribution. Additionally we have found
that the results for the By system are very similar to those of the B system. This different
feature of the K and B; 4 systems is due to the absence of the chiral enhancement in the
By 4 system and to the weaker renormalization group QCD enhancement, experienced by
the B systems.

From the left panel, we can also conclude that in the K system the KK gluons, which
are, at the tree level, the only responsible for the operator QX bring the main contribu-
tion. Vice versa, from the right panel we deduce that in the By (and By) system the EW
gauge bosons are competitive with the KK gluons, since the operator Q%% which is also
due to the exchange of EW gauge bosons, brings an important contribution.

In Fig. 4.3 we have not shown the contribution of the operator QY #*%. Indeed, we have
investigated numerically that it is negligibly small. Naively we would have expected to
find a contribution of the same size of the one coming from its “chirality partner” QY %L,
This conclusion works roughly for the K system, where, as we have analyzed above, the
contribution of the operator LL is in any case subleading, but not for the B system for
which quarks of the third generation are involved. We have in fact to recall that the Wilson
coefficient of the RR operator depends on the off-diagonal couplings Ag(Z @, Zg(l)) (Eq.
(4.20)) and that these couplings are much smaller than the corresponding with the opposite

chirality AZLJ(Z OX Zg(l)). In fact, the SM right handed down quark bg, contrary to the left
handed by, does not belong to the same representation of the SM left handed up quark ¢y,
(Egs. (2.34)-(2.36)) and hence has a different bulk mass. In order to reproduce a large top
mass, t7, (as well as by,) has to be localized towards the IR brane, while the right handed
field bp is UV localized. Equivalently, the couplings of the left handed down quarks with
KK gauge bosons is much larger than the corresponding couplings of the right handed
down quarks.



65

4.1 Operator structure for AF = 2 transitions
K system | K system: | B system: | B system:
RG Chiral RG Chiral KK gluons | EW bosons
QVLL v v
QYRR v v
orft v v ~ v v
QLR v v ~ v

Table 4.2: Summary of the main features of the four quark operators involved in AF = 2
transitions in the RS model with custodial protection. In the first four columns we indicate with a
v'a strong effect of enhancement, and with a ~ if the enhancement is present but not particularly
relevant. In the last two columns we indicate which are the gauge bosons responsible for the several
operators.

As conclusion of this section, in Tab. 4.2 we summarize the main features of the
operators involved in AF' = 2 transitions, both in the K system (first two columns) and
in the B system (second two columns). In Sec. 4.1.5 we will generalize this table, including
also the AF = 2 operators arising in Susy.

4.1.4 AF = 2 processes in the Susy flavor models: operator structure

In Susy, the effective Hamiltonians characterizing the particle-antiparticle mixings get
contribution from additional operators not present in the RS model effective Hamiltonians.
To provide a direct comparison with the formulae reported for the RS framework, we
pursue here the study of the K° — K° mixing system. A comparison with the features of
the B ¢ meson mixing systems will be also performed.

Within the MSSM, the effective Hamiltonian in the basis defined in [126]® has the form

5 3
[HQTSZﬂSUSY = Z CiQi + Z CiQ; +h.c., (4.32)

=1 i=1

with the operators ); given by

Q1 = (5%y,Ppd®) (5°y*PLd’) = Q" ,
Q: = (5°PLd*) (3°P,dP) ,
Qg = (§aPL dﬁ) (§5PL da) s
Qs = (5%Ppd*) (5°Prd®) = QL7 |
QLR
Qs = (3°Ppd%) (5Prd®) = —=1— . (4.33)

®Commonly in Susy the operator basis presented in (4.14) for the RS model is not adopted. For this
reason we decided to perform our analysis in the usual basis presented in Eq. (4.33), implementing then
explicitely a comparison with the operators present in the RS model (reported in blue in Eq. (4.33)).
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The operators QLQ’:} are obtained from 123 by the replacement L <+ R (Ql = QV iR,
Comparing to the effective Hamiltonian of the RS framework, we notice that the MSSM
effective Hamiltonian for AS = 2 transitions has four additional operators (Q2,3 and the
corresponding ones with opposite chirality). We write in blue the operators also present
in the RS model (see Eq. (4.14)).

The process receives contributions from box diagrams with the exchange of gluinos
G [126], charginos ¥*, neutralinos ", mixed neutralino/gluino and charged Higgs, and
from double penguins [155,156] with the exchange of the neutral Higgs H°?, A°. How-
ever in models with non-MFV, the contribution arising from chargino, neutralino, neu-
tralino/gluino and charged Higgs boxes are usually subdominant, when compared to the
other two contributions. Thus, in the following we will discuss in detail only the contribu-
tions of gluino boxes and double Higgs penguins. The several Wilson coefficients will be
given by the sum

C;=c?+ ol Ci=C9+CH. (4.34)

We now recall the main features of the several contributions at the high scale, making
use of the MIA (Sec. 3.2.1). Subsequently, the effects of the RG running to the low energy
scale and of the chiral enhancement are discussed.

The gluino contribution

Four different gluino-down squark boxes contribute to the AS = 2 flavor transition. In
order to facilitate the comprehension of the results of the corresponding Wilson coefficients
we represent the gluino Feynman diagrams, showing only the leading contributions in the
MIA, in Fig. 4.4.

54 Sy (5(?A)12 Dp dp 54 dp

gA (6(?A)12 DD

g g
— .-
dp Dp (5/:(’) . Sc S¢
a 12
SA !7 (]H
~ , ~
SA | | DB
(574), % * (55,
Dp! 3.
o
dp g sc

Figure 4.4: Gluino contributions to the AS = 2 transition. A, B,C,D = {L, R}.

The Wilson coefficients arising from these diagrams are given by
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- ag 2
cf = ~55 (08" ().

g o} RLy 12

5 ~ T2 [(5d )12] 92(5'39) )
" a? 2

Cg ~ _W [(5§L)12] 93($g) )

2
~ as
Cf = ——3 [(65)12(05 )12 galzg) + (65)12(67 )12 gi(zg)]

cl ~ —ﬁf’z [(655)12(65)12 g5(xg) + (055)12(67 )12 g5(29)] (4.35)

where z, = M, 92 /m? (Mj is the gluino mass) and the analytic expressions for the loop
functions g1234.5, and 9275 can be found in Appendix C. It is important to notice that

the loop function g4 entering the expression of the Wilson coefficient Cg (corresponding
to the operator @y, or, in the language of the RS model, to the operator QX%) is roughly
a factor 30 larger than the one entering the expression of the Wilson coefficient of the SM
operator Q1 (or QY ¥ in the language of the RS model). Finally, the Wilson coefficients of
the Q; operators are obtained from the Cf Wilson coeflicients with the exchange L < R,
applied to the several Mls. As a final observation, one should note the decoupling of the
Wilson coefficients with the Susy mass scale m.

The Wilson coefficients for the B 4 systems can be obtained straightforwardly from
(4.35), changing properly the flavor indices.

Higgs contribution

Three different neutral Higgs two loops Feynman diagrams contribute to the AS = 2 flavor
transition at the second order in the MIA. In order to facilitate the comprehension of the
results for the corresponding Wilson coefficients we represent the double Higgs penguin
Feynman diagrams in Fig. 4.5.

SR dr SR dr dr
Sk Dp Ty Dr
Y * AN »*
) 19 0 R
7 St mmmme oo Y Sr g -t Y Sr § g
0 - ! 0
o« H . N\, A H .
Dy S Tr SL

dr, s, dr. 1

Figure 4.5: Feynman diagrams responsible for the dominant Higgs mediated contributions to the
AS = 2 transition. The leading contribution proportional to tan* 3 comes from the self-energy
corrections in diagrams where the Higgs propagators are attached to the external quark legs.

In the regime of large tan 3, the Feynman diagrams in Fig. 4.5 contribute only to the
operator @4 in (4.33). In particular, taking into account both gluino and chargino loops
we have
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a2ay m? t% ’MPM?
CH ~ _ s s g 6LL 5RR h 2
4 4 2MZ, 1+ etg|t Mf,m4( a 200 )1z [ o)
2 2 +4 2 2 _
Qs Mg B |l mi AiMg RR *
h h 1) VidV,
T Tum 2ME L et M2 [MVZ‘V 2 1(Te)ha(3) (0d Th2ViaVis
Mo M
+ mQg(55L)12(55R)12h1(xg)hzx(%xu)] ; (4.36)
where the mass ratios x, = |u|?/m?, xo = |M2|?/m? (M4 is the mass of the neutral

pseudoscalar Higgs boson) and to simplify the notation we adopted again the abbreviation
tg = tan. The loop functions hj 34 are reported in Appendix C. Finally, € is the
well known resummation factor arising from non-holomorphic (¢g enhanced) threshold
corrections (see e.g. [157,158]). The dominant gluino contribution reads

€~ %”Mgf(mg) : (4.37)

T 3m m?
with the loop function f given in Appendix C.
We stress that the contribution in (4.36) is suppressed by the square of the small
strange quark mass mgs and hence negligible, contrary to what instead happens for the
B 4 system contributions where the suppression is given by m§.6 We know that instead in
MFV scenarios the double penguin contributions are suppressed by mgsmg, mymg, mpms,
respectively. In the presence of RR mass insertions instead, this strong suppression is
lifted and replaced by the proportionality to mg in the case of Bg = BS 4 mixing. For the
K system, the most relevant effect coming from the neutral Higgé exch&inge arises only at
the fourth order in the MI expansion, where the s — d transition is generated by a double
(s — b)(b — d) flavor-flip. The corresponding contribution is also proportional to m?. We
find the following expression

Colay mi th |

(th: 4 2 1 0N[2.54
™ 2My, (1 +etg)t M3m

(647)32(0")13(05)32(5 ) 13ha(2g)® . (4.38)

with ho given in Appendix C.

Comparing the Wilson coefficient arising from the exchange of a neutral Higgs boson
C’f and the one from the exchange of gluinos C{, some observations should be pointed
out

e The Higgs contributions are in general suppressed compared to the gluino contribu-
tions, since the former are a two loop effect (suppression by a?as/47) and the latter
are arising already at the one loop level (suppression by a?).

5The double Higgs penguin contribution to the B, (and Bg) meson mixing systems is given by Eq.
(4.36), once that the flavor indices (including the masses) are changed accordingly.
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e However, in the regime of large tan 8 the Higgs contributions can dominate, or at
least compete, with the gluino contributions. We note in fact the enhancement of
the Higgs contributions by the fourth power of tan 5 [156].

e Also for a quite heavy Susy mass scale m, we can expect that the Higgs contributions
are relevant. We note in fact that the gluino contributions decouple with the Susy
scale, contrary to what happens to the Higgs contributions which are suppressed
just by the Higgs mass My.

4.1.5 Chiral enhancement and renormalization group effects (2)

Now that we have the effective Hamiltonian responsible for the meson-antimeson mixing
at the high scale in Susy, we have to study the renormalization group evolution of the
several operators, exactly as we performed in Sec. 4.1.3 for the operators present in the
RS model effective Hamiltonian (Eq. (4.13)).

As far as the operators ()1, Q4 and Q5 are concerned, we refer the reader to Sec. 4.1.3.
In fact, as already noticed, these operators are exactly the operators present in the RS
model (Q}1F, QLR and QFE| respectively).

On the contrary, the operators Q2 and (3 merit a careful analysis. Analogously to
the operators Q4 and ()5, the two new operators mix under renormalization so that the
RG evolution operator is a 2 X 2 matrix. ()2 and ()3 experience a strong running, even
if a bit weaker than the one which involves the operators Q45 [148-150]. As a result the
operators Q2 and Q)3 are quite enhanced by the running between the GUT scale and the
o low energy scale”.

We can now write at the low scale u, the effective Hamiltonian responsible for the K
meson mixing. We have

[Het? | stsy = ZC ne QHrZC u)Qi +he. (4.39)

=1 =1

from where we can compute the contribution to the off-diagonal K meson mixing amplitude
K
(M12 ) SUSY

2mp (M12)SUSY = (K |[HAS Q]gILJSY’K0> = (4.40)

w

= ZCi(MLW_(O!Qz‘\KO Z (1) (K)Qi K°) . (4.41)

=1 =1

In Sec. 4.1.3 we have already computed the hadronic matrix elements of the operators
Q1,45 and Q1 (Egs. (4.24)-(4.26)). Now it remains only to parametrize the matrix elements
(K% Q2,3|K") and the corresponding with opposite chirality. We have [159]

"Notice that the same observations are also valid for the operators Q2 and Qs since QCD is a chirality
blind theory.
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(ROQIKY) = (KOIQaIK®) =~ RX (u)mi FiBa(pr), (442)
(ROQsIK®) = (ROIQs|K%) = <o R (uu)micFE Ba(us) (4.4

where R¥(puy) is the chiral enhancement already defined in (4.27) and Fy the decay
constant defined in (4.9). Finally the values of the B;(ur) parameters, known from lattice
calculation, are reported in Tab. 4.3, which generalizes Tab. 4.1 presented for the RS model.
It is important to note that the operators Q23 (and the corresponding Q273) experience
the same chiral enhancement exhibited by the operators Q45 (see Eqgs. (4.25)-(4.26)).
Quite analogous expressions hold also for the contribution of Q2 and @3 to the off-
diagonal B, and B; meson mixing amplitudes <M féd) , even if the chiral enhancement

is much weaker, as already discussed for the operators ()4 and Q)5 in Sec. 4.1.3.

BYML | By | By | BfFE | BER |y
KO-KO| 0.57 |0.68 | 1.06 | 0.56 | 0.81 | 2.0GeV
BY%-B% | 0.87 | 0.83]0.90| 1.73 | 1.15 | 4.6 GeV

Table 4.3: Complete table of the values of the B; parameters in the MS-NDR scheme obtained
in [151] (K°-K°) and [152] (B°-B°). The scale o at which B; are evaluated is given in the last
column. For Bk in (4.8) and for Bp, , in (4.11) we use Bx = 0.724 + 0.008 £ 0.028 [153] and

Bp, , = 1.22 4 0.12 [154], respectively. For completeness we repeat in blue the values of BY E,
BlL§ already discussed in Tab. 4.1.

To conclude this section, we now summarize in Tab. 4.4 the several virtues of the
operators present in the AF = 2 Hamiltonians (both in the K and in the B system) in
the Susy framework. Already from the table, we can observe that the operator Q4 has the
potentiality to be the most important operator in both K and B, 4 systems. Thus, the
double Higgs penguin diagrams in Fig. 4.5 can be quite relevant.

The running of the parameters of the Lagrangian

Before terminating this section, we want to apply what we have learned about the running
of the parameters of the Lagrangian in Sec. 2.3.6, to the two Susy flavor models that we
have presented in Secs. 2.3.4 - 2.3.5.

We have already noticed that the operator Q4 can potentially give the largest contri-
bution to K and B meson mixings. However, from the expressions in (4.35) and (4.36),
(4.38) for its WCs, we note that @4 is present in the Lagrangian at the TeV scale only
if both LL and RR MIs are present. From Sec. 2.3.6 we have also learned that the RR
MIs can be present at the low energy scale, only if they are already present at the high
energy scale. Therefore, we can conclude that a specific Susy flavor model can have large
NP contributions in the K and B meson mixing systems only if the corresponding RR MI
is predicted to be sizable at the high energy scale; on the contrary, there are no particular
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K system | K system: | B system: | B system:
RG Chiral RG Chiral Gluino | Higgs boson
Q v
Q2 v vV ~ v
(OF} v v ~ v
Ay v vV v vV vV
s vV vV v v

Table 4.4: Features of the four quark-operators involved in AF = 2 transitions in Susy. In the
first four columns we indicate with a v v/, if the effect of enhancement is strongly present, with a
V'if the effect is present and with a ~ if the effect is present but not particularly relevant. In the
last two columns we indicate which are the particles exchanged in order to generate the several
operators.

requirements for the LL MIs, since they can be generated at the low energy scale, even if
not present at the high energy scale.

Analyzing the pattern of the MIs of the two flavor models of Secs. 2.3.4 - 2.3.5, we
can hence deduce that we expect large NP contributions in the Bg meson system in both
models. Smaller effects are instead predicted in the K and By systems, especially in the
abelian model in which at the GUT scale (5§R) 9= (5§R) 13 =0

4.1.6 AF = 2 Observables: compendium of formulae

This section is a brief compendium of the formulae for the AF = 2 observables that we will
use in our numerical analysis of Sec. 5.2. Before starting, we would like to emphasize that,
although physical observables are phase convention independent, some of the formulae
collected in this section depend on the phase convention chosen for the CKM matrix and
yield correct results only if the standard phase convention [160] is used consistently.

Let us start with the CP conserving observables: the mass differences of the K0 — K
and BS} q— Bg 4 Systems

AMg = 2[Re(Mf5)q, +Re (Mf3) ] (4.44)
AM, = 2 \(MfQ)SM + (Mf2)NP\ (g=d,s), (4.45)

where (Mi2)yp is the NP contribution to Mia, namely (Mis)iyk in the RS model and
(M12)gugy in Susy flavor models.
As far as the CP violating observables concern, in the K system e is given by

KetPe

K= S AN [Im (M5) gy, + Im (M{5) (] (4.46)
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where ¢, = (43.51 £0.05)° and k. = 0.94 £ 0.02 [18,161] take into account that p. # 7/4
and include long-distance contributions to ex. (AM K)exp is the measured value of the
mass difference AMp.

Finally for the B; 4 systems, let us write the off-diagonal mixing amplitude as [22]

MYy = (Miy)g + (Miy)np = (M) g CBq€2i@Bq ) (4.47)
where
M ) - ‘(Md ) ‘ 28 ~ 220 4.48
( 12 ) 12 ) € B ( )
(Mi2)sm = |[(M73)gpl e*Ps Bs ~ —1°. (4.49)

Here the phases § and (3, are defined as functions of the CKM matrix elements through
Via = |‘/td|e_zﬂ and Vi = _H/ts|€_iﬁs . (450)

We can then define the CP violating asymmetries of the B; g systems (Sy¢ and Sy,
respectively) as

[ (Ba(t) = ¥K,) =T (Ba(t) > ¥Ks) _

T (Balt) = oK) 7T (Ball) = 0Ks) Syi, sin(AMgt) , (4.51)
[ (B(t) > ve) —D(Bst) > ve) o
F(B(t) = vd) 4T (Bo(t) > vy~ vosin(AMad). (4:52)

where the CP violation in the decay amplitude is set to zero. The two asymmetries are
given, in terms of the angles 8 and 55 by

Syks = sin(28+2¢p,), (4.53)
Spe = sin(2|Bs| — 2¢p,). (4.54)

Thus in the presence of NP phases ¢, and ¢p, these two asymmetries do not measure
the angles of the CKM matrix elements 5 and 35 but (8+¢p,) and (|8s|—¢B, ), respectively.

Finally, we end this section with the discussion of the semileptonic CP asymmetries
A} (g =s,d), defined by

(B, = (t*X)-T(B, = {*X)
['(B; = (+X)+T(B, = {tX)
One can express these asymmetries as

AT — Tm ( ri, )SM cos2¢p, Re ( ri, )SM sin2¢p,
St M{ZQ Ch Mfz Cp,

q

Al = (g =s,d). (4.55)

(4.56)

q
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where we have defined with I'{, the absorptive part of the Bg — Bg mixing amplitude
in the presence of new CP violating phases beyond the CKM. This expression for the
semileptonic asymmetries should be compared with the SM prediction

(A2 )™M = m (%YM . (4.57)
- My,

o : o re, \SM re, \SM
It is important to notice that, since in the SM Re (Mqu> > Im (Ml5> , even
12 12
a small new physics phase ¢p, can induce an order of magnitude enhancement of Al
relative to the SM.
For later purposes, we recall also the model-independent correlation between the CP
asymmetry Sy and the semileptonic asymmetry Ag; involving Cp,, pointed out first

in [162]

SM1

ITZ
—8, 4.58
C ] [l ( )

s _
SL =™ 7 | ars.
M,

and investigated model-independently in [163].
In Secs. 5.2.3 and 5.2.4, 5.2.5 we will confirm numerically this correlation in the frame-
work of the RS model and of the two Susy flavor models.

Status of the measurements and comparison with the Standard Model

In the last decade, a huge progress in the experimental determination of AF = 2 observ-
ables has been achieved. The main result is that for the largest part of the observables
the room of New Physics is quite narrow, since the SM prediction is in very good agree-
ment with the measurement. Some hints of New Physics come from the CP violating
observable e, that, with the last improved value of the hadronic parameter By from
unquenched lattice QCD [153] and with the additional suppression by the multiplicative
factor ke [18,161], seems to show a small discrepancy between the SM prediction and the
experiments [18,161]. Still the deviation is not a very clear signal of New Physics.

The asymmetry Sy represents an exception in the pattern of good agreement be-
tween the SM predictions and the experimental values. Indeed, CP violation in b — s
transitions is predicted to be very small in the SM, thus, any experimental evidence for
sizable enhancements in the B system would unambiguously point towards a NP evi-
dence. Relatively recent messages from the CDF and DO experiments [164—-166] seem to
indicate that this indeed could be the case [15,16]. In fact, taking into account the two
experiments, the Heavy Flavor Averaging Group (HFAG) collaboration [167] gives the
average Syp = 0.81f8:§§, that is roughly 30 away from the SM prediction. This message
has been subsequently confirmed by the very recent measurement by DO [166], but not by
CDF [168].

In Tab. 4.5, we summarize and compare the present status of the several AF = 2
observables discussed in this section.

From the table we can observe that, while in AM, there is still room for a NP con-
tribution at the 25% level, scenarios with large new CP violating phases are strongly
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Observable Experiment SM prediction Exp./SM
AMp (5.292 4 0.009) x 1073 ps~! [169]

5% (2.229 4 0.010) x 1073 [169] (1.91 £0.30) x 1072 | 1.17£0.18
AM, (0.507 & 0.005) ps~! [167] (0.51+0.13) ps—* 0.99 4+ 0.25
SyKs 0.672 4 0.023 [167] 0.734 £ 0.038 0.92 +0.06
Ady —0.0047 4+ 0.0046 [167] —(6.441.4)-107* [170]

AM; (17.77 £0.12) ps—* [171] (18.3+5.1) ps~! 0.97 +0.27

S 0.8110-33 [167] 0.0366 + 0.0015 [172] 22+6

A% —0.0146 4+ 0.0075 [166] (2.6 +0.5) - 1072 [170]

AMy/AM; (2.85 4 0.03) - 1072 (2.85 +0.38) - 1072 1.00 £0.13

Table 4.5: Experimental values and SM predictions for the AF = 2 observables. The SM pre-
dictions are obtained using CKM parameters from the NP UTfit [22]. The fourth column shows
the ratio of the measured value and the SM prediction, signaling the room left for NP effects in
the corresponding observable; in particular in red we show the observables for which one could
expect large NP contributions, still being in agreement with the experiments. We do not give a
SM prediction for AMg because of unknown long-distance contributions.

constrained by the bound on Sy k. Finally we can also note that, contrary to the mass
differences AM and AM, alone, the ratio AMy/AM; is also a quite relevant constraint
on NP, since its SM prediction is more accurate than the prediction for AM, and for AMj,
thanks to the cancellation of the most part of the hadronic uncertainties in the ratio

AMy _ ma, |Via " 1 (459)
AM; B mp, | Vis 52 ’ '
where € is defined as £ = VBi:FB: and it is given by the accurate value £ = 1.2140.04 [154]
Bp,Fp,

(see also Tab. 5.2).

4.2 Operator structure for AF = 1 transitions

We now analyze in the context of the RS model with custodial protection and of the two
Susy flavor models the rare decays of K and B mesons. We will restrict our analysis to few
particular decay channels that will show distinctive patterns, allowing us to give recipes
to distinguish the two frameworks with the use of low energy observables. We will discuss
the theoretically very clean decays K — 7w, the purely leptonic decays K, — pu+u~ and
Bs g — ptp~. We refer to [173] and [90] for the analysis of additional rare K and B decays
in the RS model with custodial protection and in the Susy flavor models, respectively.
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4.2.1 The SM effective Hamiltonian for s — dvv

The K — wrv decays are known to be one of the best probes of NP in the quark flavor
sector, since they are very suppressed in the SM and theoretically very clean. In the SM
the processes arise only at the one loop level, through penguin and box diagrams with
internal charm and top exchanges® (see Fig. 4.6). The resulting effective Hamiltonian is
given by

o = B Y. MO Xow(we) + A X (@) )y aev)voa + e, (4.60)
l=e,u,T

where z; = m?2/M32,, )\( ) = = V;;V,, and, for convenience, we have introduced the effective
coupling g2, = ?f m Finally, the function X (), as well as X{yy (¢), comprises

internal top (and charm) quark contribution and it is known to high accuracy including
QCD corrections [174-176] (see also Appendix C where it is reported at the leading order).

K* §

Figure 4.6: The penguin and box diagrams contributing to K+ — ntvi. For K — 7w only
the spectator quark is changed from u to d. (Diagrams from [177].)

4.2.2 New tree level contributions in the RS model

Thanks to the flavor violating vertices present in the RS model (see Fig. 3.1), | ZE]K
receives tree level contributions from the Z boson and from the heavy neutral gauge
bosons Zy and Z’. Because of these new effects, the effective Hamiltonian will contain

new operators when compared to the one of the SM.

8The internal up quark contribution is needed only for the GIM mechanism, but can otherwise be
neglected.
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Combining the three new physics contributions, we find

[ gg}f((K:ggM)‘gK) > [(XX_A>KK}(Ed)V—A(ﬁV)V—AJr[(X%)KK](§d)v(ﬁew)V—A+h.C.,

l=e,pu,T
(4.61)
where the Lorentz structure of the new operator is given by
Bd)v(rv)v—a = [39"d] @ [Py, (1 —y5)v] . (4.62)
The functions XI‘?A’V are given by the sums
V—A _ K\V—-A
(K = 2 (39 e (463
i=Z,7' Zy
e = 2 (X)) (4.6
i=2,2" 2y

where the several factors are functions of the off-diagonal couplings of the EW gauge
bosons with the SM fermions and of their couplings with neutrinos. More specifically, for
1=27Z,7', 7y

- 1 A7) dg; d;
(x4 =~ AT - ARG (4.65)
1 AY(0) .
XKy = — L A(), 4.66
(( ) )KK /\gK) 2M229§M R( ) ( )

where the several off-diagonal couplings A3, (i) (i = Z, Z', Zy) have been already defined
in (3.33), (3.46) and (3.47), respectively, and M; are the masses of the gauge bosons that,
in first approximation, are equal to Mz and to Mgk (= Mz ~ Mz, ~ M 4)). The flavor
universal neutrino couplings A}” (%) are given by

4D

g
AY(Z) = —— 4.67
P2 = S (467)

/ —g'P (1) 2 2 (1)

AP (ZY) = ——r [5” Z\)) + cos“pcos® pe (Z ] ) 4.68
L' (Z) V2 cos? U L(Z) Yeos” per(Zy) (4.68)

4D

w goCeoso [, L v (1)

AV (Z :7[5 AP A , 4.69
V) = e L)~ () (4.69)
where we have defined the overlap integrals between neutrinos and the neutral gauge

eigenstates Z(1) and Z;cl) as in Eq. (3.1) for the quark couplings: &% (Z()) = z-:'f(c%) and

EE(Zg(l)) = £, (¢;,), with the suitable choice of the bulk mass ¢y, (see also Sec. 5.1.1 for the
discussion of the bulk masses for neutrinos).

It is relevant to note that, contrary to the SM in which the function X (z;) is flavor
universal, here the functions XV =4V depend on the quark flavors involved, through the
flavor indices in the ASL‘fR couplings and through the prefactors 1/ )\IEK).



4.2 Operator structure for AF =1 transitions

77

We conclude this section with the functions that govern the analysis of the K — 7wvw
decays in the RS model with custodial protection

XA = X(z) + (vaf_A>KK’ (4.70)

Xl‘é = (XI‘Q)KKv (4.71)

with (X[V;A) o and (X)) e given in (4.63)-(4.66).

4.2.3 New one loop contributions in the Susy flavor models

In Susy, the NP contribution to the effective Hamiltonian of the elementary process s —
dvv is still the sum of two operators, as we have already shown in Eq. (4.61) for the RS
model

A gnggK)ZZ [(XIV;A>SUSY}(gd)v_A(mw)v_A (4.72)
=e,u,T

+ [(XX)SUSY] (3d)v (Peve)v—a + h.c..

can arise only

Sizable contributions to the two functions (XI‘Q_A>SUSY and (X[‘Q)SUSY

from

e chargino/up squark loops [178-181] (see Fig. 4.7),
e charged Higgs/top quark loops [182] (see Fig. 4.8).

The chargino/up squark loops of Fig. 4.7 give a contribution only to the operator
(8d)y—a(vv)y—4 . In particular, the most important contribution arises only at the second
order of the MIA and it is given by

x* 1
(X5 qusy = g e a8 (). (4.73)
where the loop function /¢ (z) is reported in Appendix C and xy = |Ms|?/m?.

One should remark that in principle, in the case of K — wvv decays also other Z
penguins and supersymmetric box diagrams could provide effects (see e.g. [183]). However,
the remarkable feature of Eq. (4.73) is that it is not explicitly suppressed by the ratio
MI%V /m?, as other contributions are. In conclusion, the only sizable contribution coming
from chargino/up squark loops is expressed by Eq. (4.73) and is thus present only in Susy
flavor models which predict sizable LR MlIs in the up sector.

This requirement seems at odd with the predictions of the two flavor models analyzed
in this thesis (see Secs. 2.3.4 and 2.3.5). Indeed, in Sec. 5.3.4 we will confirm numerically
that the NP effects coming from chargino/up squarks are quite small.

Concerning the second possible sizable contribution to the two functions XK_A and
X}é, the Z penguin amplitudes generated at the one loop level by charged Higgs/top quark
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Figure 4.7: Chargino/up squark penguin diagrams contributing to the decays K — wvi.

diagrams give only rather small contributions to the functions XI‘?_A’V, which result to

be the sum of terms suppressed either by the second power of tan 8 or by the light quark
masses mq - mg. Sizable contributions arise only at the three loop level in the presence of
(5§R)13 and (5§R)32 mass insertions, thanks to the diagrams shown in the upper panels
of Fig. 4.8. The leading contribution to the effective coupling H +7jiLd§% (shown with a
blue square in the Figure) is given by the gluino loop diagram shown in the lower panel
of Fig. 4.8.

Evaluating the charged Higgs/top quark leading contributions to the K — wvw effec-
tive Hamiltonian, one finds [182]

mgt% |5RR|27%
2MZ, 1+ etg|*

(XI‘Q)H -2 (XV_A)H =2 [<5§R>13(5§R)32 fa(yen),  (4.74)

Susy — K Jsusy A(F)
t

where yip = m?/M% (My is the mass of the charged Higgs), the loop function fy(x) is
given in Appendix C and the resummation factor € was already introduced in Sec. 4.1.4
(see its approximate expression in Eq. (4.37)). Additionally, to have a compact notation,
we have introduced the quantity

2ce
€RR = JidegHii(deg’ Ldrg» deg) ) (4.75)

3m Mj
where we have defined the ratios 24, 54 = (M(2Q7D))11/M§2 and the loop function Hj is
given in Appendix C.

One should remark that this contribution is sizable only in Susy flavor models which
predict down RR MIs in the (1 — 3) and (2 — 3) sectors both large.

This requirement seems, once more, at odd with the predictions of the two flavor
models analyzed in this thesis (see Secs. 2.3.4 and 2.3.5). Indeed, in Sec. 5.3.4 we will
confirm numerically that the NP effects on the K — wrv decays coming from charged
Higgs/top quark are quite small.

4.2.4 The decays KT — wtviv and K, — wviv

Having at hand the effective Hamiltonian for the s — dvv transition in the RS model
and in Susy flavor models, it is now straightforward to obtain explicit expressions for the
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Figure 4.8: First row: Irreducible charged Higgs/top quark one loop diagrams contributing to the
decays K — mvi. Second row: Effective vertex Htu' d7,.

branching ratios Br(K+ — nv) and Br(K — 7). Reviews of these two decays can
be found in [177,184,185].

Since in the two NP frameworks, in addition to the SM operator (sd)y_a(vv)y—a,
also the operator (8d)y (vv)y_4 is present, one has to evaluate both matrix elements
(m|(3d)y—a|K) and (7|(5d)y|K). However, since both K and m mesons are pseudoscalars,
a simplifying relation holds

(m|(sd)v-alK) = (r|(sd)v|K) . (4.76)

This means that effectively, in both models, the effects of NP can be collected in a
single function that generalizes the SM X (x;) function presented in (4.60). We denote
this function with

Xie = XA+ XY = | Xkl X (4.77)

Note that, in contrast to the real function X (x;), the new function Xy is in general
complex implying new CP violating effects that can be best tested in the very clean CP
violating decay Kj — w'up.

Generalizing then the formulae in [186], we find

Br(K, — n'vp) = rpr? [sin(B5)]% | Xk|?, (4.78)
Br(Kt — ntvo) = rky [r7|Xk|? + 2r1P(2)| Xk | cos(B%) + PX(z)] ,  (4.79)
where we have denoted r; = W’fi\‘# and B¥ = B — B, — 0%. Additionally we have [187]

wr = (2.314£0.01)-1071%, k. = (5.36 £0.026) - 10~ (4.80)
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and P.(x) includes both the NNLO corrections [176] and the long-distance contribu-
tions [188]

_ A2
P.(z) = <1 — 2> P.(z), P.(x)=0.4240.05. (4.81)
As we already anticipated, the decay Kj — mvv is a very good test of CP violation

in rare K decays. In fact the ratio

BI‘(KL — 7T0VI7) XK

Br(Kp — m%ui)sy | X (24)

2 [sinségﬁ—ggﬂs)] 2 (482)

is very sensitive to the total phase 9)[? and is theoretically very clean.

4.2.5 The SM effective Hamiltonian for s — d¢*¢~ and b — (s,d)€T ¢~

At the parton level the decays Kj, — ptp~ and Bsq — ptp~ are given by analogous
transitions: s — d¢T¢~ for the first and b — ¢ft¢~ (¢ = d,s) for the second decays.
However, as we will learn in Sec. 4.2.8, the two decays are rather different, concerning
both the theory and the experimental prospects.

The analysis of the effective Hamiltonian responsible for the short-distance contribution
to the process Kj — uTpu~ proceeds essentially in the same manner as for the decays
K — wvw. In particular let us recall that in the SM the top quark contribution to the
effective Hamiltonian for s — d¢*¢~ reads®

]S = e MOV )] (s a@)y -

+4g2, sin? Gy [AgK)Z(xt)} (5d)y_a(0)y + hec. . (4.83)

Here Y (z;) and Z(x;) are loop functions, analogous to X (z;), that result from various
penguin and box diagrams (see Appendix C for their expressions, once that the QCD
corrections are neglected). The charm contributions and QCD corrections are irrelevant
for the discussion presented below and will be included only in the numerical analysis of
Chapter 5.

Finally, the effective Hamiltonians for the processes b — (s,d){T¢~ can be obtained
from (4.83) by properly adjusting all the flavor indices. In addition, we should remark
that in principle also the dipole operators

e
Q7fy = m?mb (EUMVPRb) F/.LV s (484)

Qs = Juzmy (50" T Prb) Gy, (4.85)

9Tn Sec. 4.2.8 we will show that the operator (5d)v—a(2¢)y does not contribute to the branching ratio of
the decay K1 — putpu~. However in this section we want simply to analyze the full effective Hamiltonian
for the elementary process s — d¢*¢~ (and the corresponding processes b — (s,d)¢T¢~ for the decays
Bs.a — ptp). This more general analysis could be used for the investigation of the decay K — 74T ¢~
for which the operator (3d)v —a(€€)v plays a central role.
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should be included in the Hamiltonian. However, as it turns out, they do not contribute
to the decays Bsq — putp.

4.2.6 New tree level contributions in the RS model

As we have argued at the beginning of the previous section, the effective Hamiltonians
of the elementary processes s — d¢™¢~, b — s{*¢~ and b — d¢T¢~, contributing to the
decays K — putp~ (SD contribution) and to Bsgq — utu~ are perfectly analogous.
Therefore we will restrict our discussion to the elementary process b — s/~ only.

[Héﬁf] B receives tree level contributions from the exchange of the Z, Z' and Zy gauge
bosons, and, as now charged leptons appear in the final state, also the KK photon A1)
contributes.

Following the same method used for the K — wrv decays, we can write the new physics
contributions to the effective Hamiltonian in the compact form

i e = s 57 (577) ] 0
+4g2\; sin? Oy [)‘t (ZV A)

~gin M (V) | (GO (2
4g2, sin? Oy [)\ff) (Zg)KK] (3b)v (20)y + h.c., (4.86)

all)y-

K}sbv AP0y
v

to which we should add the dipole operators in (4.84), (4.85). We can notice the appear-
ance of two additional operators, when compared to the SM effective Hamiltonian in Eq.

(4.86). We have introduced the functions (YE‘;_A’V>KK and (ZE_A’V) K defined as:

(YBV*A>KK = > (DY Nk (4.87)

i=2,7' Z g, AL

(Z?A)KK = DR (V3 M P (4.88)

i=2,7' Z g, AL

(V¥ )kk = > (P ) ks (4.89)
i=2,2",Z g, A0
(ZB)kx = S (ZP)Y) e s (4.90)

i=2,2" Zg, AL

where the several factors are function of the off-diagonal couplings of the EW gauge
bosons with the SM fermions and of their couplings with leptons. In particular, for
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i=2,2" Zyg, AV

174 i) — o i
() e = —A;) [ALiﬂ%ggj( ) [S{OEIN (O] (4.91)

1 A%()
zZP)V-A = 1 AP (i) — AR (i 4.92
(( 7 ) )KK )\ES) 8M12‘9§M Sin2 HW [ L (2) R(Z):| ) ( )
1 [A%6) — A%®)]
v;B)Y = — L RN (), 4.93
1 A%()
7BV _ R AL 4.94
(( g ) )KK )\ES) 4MZ'2.9§M sin2 QW R(Z)’ ( )

where the several off-diagonal couplings ASLI’, () (i = 2,7, Zy, AV) has been already
defined in (3.33), (3.46), (3.47) and below Eq. (4.19), respectively, and M; are the masses
of the gauge bosons that, in first approximation, are equal to Mz and to Mgk (= My ~
Mz, ~ M 41)). The flavor universal lepton couplings A‘g (%) are given by

o g*P I .9 0 g
AT (Z) = P (—2+sm ¢> , AR(Z) = cos1/18m (' (4.95)
4D 1, o2
0 P cos¢ (—5 +sin’y) 1y 1 0
AL (ZH) = \/ﬁCOS'Iﬂ L(Z ) 2(—%—|—sin2 1/}) 5L(ZX ) a(496)
o0 _ g cos<;581n2zp ¢ ()
Mj(zy) = LZOAY { - et (1.97)
4D 2 2
i 9 (=g +sin’y) |, (1) cos“pcosTh 4 (1)
AL(Z) - \/ECOS27J} 8L(Z (—%+Sin2 1[)) EL(ZX) ) (498)
s )
afiz) = =% ?ﬁn : [“L(Z(”HCOZZ e (28 )>]» (4.99)

where we have defined the overlap integrals between leptons and the neutral gauge eigen-
states Z() and ngl) as in Eq. (3.1) for the quark couplings: 4 (Z(M) = az(ci) and
ef;(Zg)) = 52(0&), with the suitable choice of the bulk mass cf;) (see also Sec. 5.1.1 for the
discussion of the bulk masses for leptons).

Finally, we can write the functions that govern the analysis of the process b — sf™¢~
in the RS model with custodial protection

it = Yo+ (YY), (4.100)
ZVA = Z(w)+ (zg—A)KK, (4.101)
VY = (X5)kk - (4.102)
ZE = (ZB)xk - (4.103)
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Figure 4.9: Feynman diagrams for the dominant Higgs mediated contributions to By — pu*pu™.
The leading contribution to the decay amplitude proportional to tan® 3 comes from the self-energy
corrections in diagrams where the Higgs propagators are attached to the external quark legs.

with (Y;/*A’V)KK and (ngA’V> KK given in (4.87)-(4.94).

4.2.7 New one loop contributions in the Susy flavor models

In Susy, the effective Hamiltonian responsible for the process b — s¢™ ¢~ includes certainly
the two operators already present in the SM (see Eqgs. (4.83)-(4.85)). In addition it con-
tains several additional operators, in particular the scalar and the pseudoscalar operators

Qs and Qp,

Qs = my (§PRI)> (ZZ) , Qp=my (§PR[)) (575£) , (4.104)

as well as the corresponding Qg and Qp that are obtained by the exchange L < R.
The main NP contributions come indeed from the scalar and pseudoscalar operators just
introduced. For this reason, in this section we will analyze only the corresponding WCs (for
a complete analysis see e.g. [189]). We can then write the relevant effective Hamiltonian
as

B ~ o~ ~ o~
M|, . = CsQs + CpQp + CsQs + CrQp. (4.105)

The main contribution to the Wilson coefficients C's p (and to the corresponding 6’57 P)
is given by the Higgs penguin diagrams shown in Fig. 4.9.

The leading contributions to the Wilson coefficients arising from these diagrams are
given, to a very good approximation, by

Cp~—-Csg, Cp~Cgy, (4.106)
with
2 3 2
Cs ]\O%Hl;\n/[%[/ (1+ etﬂ)?zl + ertp) J\Zbév ﬁig‘/}b‘@:hg(:m) + %(&L)wm(mz’ n)
Q2% T £ Mot (SELYo b () (4.107)
M2 AM2, (1+ etg)2(1 + etg) m2 ¢ /2201090
Oy = 220 T ' Mgp” (64)32ha () | (4.108)

M2 AM2, (1+ etp)2(1 + egtg) 12
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where we have included the tan 8 enhanced non-holomorphic corrections for the lepton
Yukawas €. In particular, in the limit of degenerate Susy particles it turns out that
€y ~ —3a/167. Finally, the loop functions hq, hs and hy are given in Appendix C and
were already introduced in Eq. (4.36) for the double Higgs penguin contribution to the K
and B 4 meson mixing. Indeed, already from the comparison of the Feynman diagrams in
Fig. 4.9 for the decay Bs — pu =~ and those coming from Fig. 4.5 (changing accordingly
the flavor indices) for the B? — BY mixing, one expects a correlation between the branching
ratio of By — pp~ and the observables of the By meson mixing system, if the double
Higgs penguins produce a large contribution to the BY — BY mixing. In Sec. 5.3.4 we will
analyze in detail this correlation in the two Susy flavor models of Secs. 2.3.4, 2.3.5.

From the expression for the Wilson coefficients C's and Cy it is important to notice the
enhancement by the third power of tan 3, that can induce orders of magnitude enhance-
ment in the branching ratio of the decay By — putu~ (and By — ptp~). Finally one
should also note that the WCs do not decouple with the Susy scale m, but with the mass
of the Higgs M4, as also exhibited by the WCs of the double Higgs penguins mediating
AF = 2 transitions (Eq. (4.36)).

4.2.8 The decays B;yg — ptp~ and Ky — ptp~

In this section, we first discuss the theory and the experimental prospects of the decays
K — ptp~ and Bsg — ptp~. Secondly, we analyze the several branching ratios.

The rare decay Ky — putu~ is a CP conserving process and, in addition to its short-
distance part, given in the SM by Z penguins and box diagrams, receives important
contributions from the two-photon intermediate state. This fact is rather unfortunate be-
cause the short-distance part is, similarly to the decays K — wvv, almost free of hadronic
uncertainties and hence would give a clear test for the theories beyond the Standard
Model. Additionally the extraction of the short-distance part from the data is subject to
considerable uncertainties.

Concerning the rare B decays, there are many motivations to study Bsq — ptu™.
Differently from the K; — pu™p~ decay examined previously, these decays are short-
distance dominated and, after the decays B — X vv, are the theoretically cleanest decays
in the field of rare B decays. Additionally, there are well founded hopes to measure the
branching ratio of By — pu™ ™ in the coming years at LHCb and any experimental evidence
for sizable NP effects in the Bs 4 — ptp~ decays would unambiguously point towards a
NP evidence, since in the SM their branching ratios receive a strong chiral suppression.

The theoretical computation of the By 4 — p™p~ and K — pp~ branching ratios
is analogous. The dipole operators in (4.84)-(4.85) do not contribute. Consequently, the
calculation of the two branching ratios requires only the knowledge of the matrix element
of the four operators in (4.86) for the RS framework and also of the operators Qg and Qp
(and the corresponding ones with L <+ R) in (4.104) for the Susy flavor models.

Two simplifications occur. First, when evaluating the matrix elements (0|(gb)v—4|By)
and (0|(gb)v|B,) (and the corresponding ones for the K decay) only the 7,75 part con-
tributes because of the pseudoscalar nature of the B, 4 (and K) mesons, so that
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(0/(gb)v|By) = 0. (4.109)

Then, due to the conserved vector current, the vector component of the ppu-vertex drops
out as well and, as in the SM, only the 7,75 component of the ppu-vertex is relevant.
Therefore, we can conclude that

e In the RS model only the SM operator (V' — A) @ (V — A) contributes to the three
branching ratios.

e In Susy in addition to the SM operator also the scalar operators Qg and Qp (and
the corresponding ones with L <+ R) contribute to the processes.

In the following we will give first explicit formulae for the branching ratios of Bs 4 —
putp~ in the two NP frameworks'?. Secondly, we will restrict ourselves in reporting the
expression for the branching ratio of K, — pu~ only in the RS model. In Chapter 5 we
will in fact show the importance of the decay, but only in the framework of the RS model.

The B; g — ptp~ decay in the RS model and in Susy

In the RS model, we can define, analogously to what we have performed for the K — mvv
decays, the generalization of the SM Y (z;) function presented in Eq. (4.83)

Vi = (Yy—he, (4.110)

where we decided to insert an explicit flavor index, not present in the definition of the
function Y];/ ~# for the process b — s¢T¢~ in (4.100). The function Y3 is in fact flavor
non-universal, contrary to what happens in the SM.

Using this function, we can then easily write the branching ratios of By — ptpu~

Br(By — ptp s _ VRS
Br(B; — ptp~)sm  Y(x)?’

(4.111)

where in the SM

G2 o 2 4m?2
N _vr QED 2 2 Koy 2 2
Br(By = p " )sm = - s (47r Sin? 9W) F mp,my[1— ming VipVig" Y (1),

(4.112)

where 7p, is the life time of the B; meson.

In Susy instead the expression for the two branching ratios appears a bit more com-
plicated, because of the presence of the two additional operators Qg and Qp (and the
corresponding ones with tilde). We have

10%WWe could simply give the formulae for the branching ratios in Susy, since, as we will show, the results
for the RS model are just a particular case of the more general formulae we obtain in the Susy framework.
However, for completeness, we will list the formulae for both theories.
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B 5, F5,mY m2 m?
BR(By =y pi” )susy = # 1— 4mTH 1BI* {1~ 4m72“ +AP ), (4113)
Bq Bq

where A and B are given by the two linear combinations of Wilson coefficients

o . ) -
A= Cy-aw-a +m, (cp=Cp) . B=ms, (Cs-Cs) | (4.114)

where C(y_4)v—4) is the Wilson coefficient of the SM operator (V — A) ® (V' — A) that,
neglecting the NP contributions, is given by Cry_ayv—a) = —ggM)\l(tQ)Y(a:t) as shown by
Eq. (4.83) for the SM effective Hamiltonian (with the suitable change of flavor indices).
Cs.p,Cs.p are given in (4.106)-(4.108).

One should note that this expression for the two branching ratios is nothing other
than the generalization of what we have obtained in the RS model (Egs. (4.111), (4.112)).
Indeed, putting to zero the Wilson coefficients of the scalar operators Qg p (and the
corresponding ones with tilde) in (4.113) and changing suitably the Wilson coefficient
C(v—a)(v—a), one gets exactly the expression in Eq. (4.111) for the branching ratios.

The K; — pTp~ decay in the RS model

As we have already discussed, the short-distance contribution to the decay K — putpu~
calculated here is only a part of the dispersive contribution to K — u*p~ that is by
far dominated by the absorptive contribution with two internal photon exchanges. Con-
sequently the SD contribution constitutes only a small fraction of the branching ratio. In
the following we will give the expressions for the SD contributions to the branching ratio
of K, — up~ in the RS model.

In the RS model, we can define the generalization of the function Y (x;) present in
the SM, analogously to what we have shown just above for the decays B, — utu~ (Eq.
(4.110)), changing the flavor indices suitably

Yie = YV A = [yY -4 (4.115)

Following [186], we find for the SD contribution

Br(Kp — ptp")3e =2.08- 1077 [P. (Yi) + A*Ry |Yi| cos B{ﬂ? : (4.116)
where we have defined
_ _ _ A2
K=p-p,—08, P.(vg)= (1—2> P.(Yx) , (4.117)

with P. (Vi) = 0.113 £ 0.017 [190].

4.2.9 Anatomy of contributions (RS model)

In this section we will compare in the framework of the RS model the several contributions
to the rare K and B decays. Through this comparison we can already anticipate some
patterns of flavor violation that will be confirmed in our numerical analysis of Secs. 5.3.1-
5.3.3.
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Contributions of the EW gauge bosons in the RS model

As we have already shown, four EW gauge bosons are contributing to the several K and
B decays: Z, Z', Zy and the photon A, However the contribution of the photon turns
out to be small (if not absent) in all cases, since it is suppressed by the smallness of the
electromagnetic coupling e and the electric quark charge. Let us hence restrict our analysis
to the other three EW gauge bosons. Numerically we find the following patterns for their
couplings with down quarks (Egs. (4.118)-(4.119)) and leptons (Eq. (4.120))

AV (Zy): A9(Z'): AY(Z) ~ O(10%): 0(10%) : 1, (4.118)
AS(Zg) : AI(Z) AU(Z) ~ O(10%): O(10%) : 1, (4.119)
AR (Zr)  APZ)  AYR(Z) ~ 0(107Y) 10107 i1, (4.120)

where the first two relations hold for the K, B; and By systems likewise, that is for ij = sd,
ij = bd and tj = bs, respectively.

With our knowledge of the flavor sector of the model, we could have already anticipated
the most part of the features listed above. In particular

o As far as AiLj(a) concern, as presented in Sec. 3.1.4, in the presence of an exact Prp
symmetry, the flavor violating couplings A’E(Z ) and AZB(Z’ ) would vanish identi-
cally. Taking into account the Prr symmetry breaking effects on the UV brane, the
custodial protection mechanism is not exact anymore and the Z and Z’ couplings
are non-zero. However they are suppressed, when compared to the Zp couplings.
Additionally in the case of Z’, the mixing angles for Z(!) and Zg(l) are modified by
roughly 10% when including the violation of the Prg. Accordingly, the protection is
weaker for the Z’ couplings, when compared to the Z couplings and, in fact, in Eq.
(4.118) we read that A% (Z’) is suppressed only by one order of magnitude compared
to AY(Zg).

e As far as Ag(a) concern, the suppression of the Z couplings is due to the factor
MZ% Mz presented in Eq. (3.33). For all these couplings the custodial symmetry
Prr is not effective, since the right handed down quarks are not eigenvalues of the
symmetry Prp.

o As far as Azyﬁz(i) concern, in contrast to Zy and Z’, the Z boson exhibits SM
couplings and hence it is expected to dominate over Zg and Z’, that have couplings
that are suppressed by overlap integrals'!.

In addition to the several couplings, we have also to keep into account the mass of the
particle exchanged in the process. Assuming that the neutral gauge bosons Zy and Z’

"The results in (4.120) are obtained using a bulk mass parameter for neutrinos and leptons equal to
£0.7 (for left handed and right handed particles respectively). This assumption is in fact motivated by the
lightness of the leptons and consequently by their localization towards the UV brane (see also Sec. 5.1.1
for a more detailed discussion).
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are degenerate in mass (see also Appendix A), their contribution to rare K and B decays
is suppressed by a factor MZ /M2, ~ O(1073) with respect to the Z contribution.

Now we have all the building blocks to investigate which is the main contribution to
the decays in question. Analyzing all the several orders of magnitude in (4.118)-(4.120)
and the suppression given by propagator of the gauge boson exchanged, it turns out that
the main contribution can come either from the couplings A7 (Zy), that are of the same
magnitude of the couplings AiLj(Z), or from the couplings Ag(Z). However we know
that, due to the custodial protection and the particular structure of the model, the Z
boson couples much more strongly to right handed than to left handed down quarks,
AYNZ) > AV (Z).

Thus, the main message from our semi-analytic analysis is the following;:

If the new effects in rare K and B decays are significant, they are dom-
mantly caused by the Z boson coupled to right handed down quarks.

K physics vs B physics in the RS model

Up to now we have not distinguished between the B and the K system. Now we aim
to predict, starting from the flavor structure of the model, the average relative size of
NP contributions in the K and B systems and also possible correlations between the NP
contributions in the two systems. As the tree level Z contributions turn out to be domi-
nant, from now on we restrict our discussion only to these contributions, if not differently
specified.

Having a closer look at the NP contributions ((X*, Y7, Zi)V_Ay)KK,(i = K,d, s) listed
in (4.65)-(4.66) and in (4.91)-(4.94), we observe that the possible size of NP effects are
proportional to the factors

1
—y ~ 2500, — ~ 100, — ~ 25, (4.121)

T A
for the K, By and B; system, respectively. Therefore, we would naively expect the de-
viation from the SM functions in the K system to be by an order of magnitude larger
than in the B; system, and even by a larger factor than in the B system. However this
strong hierarchy in the factors 1/ )\EZ) is partially compensated by the opposite hierarchy
in Ag(Z ), due to the fact that the third generation quarks is localized closer to the IR
brane than the first two generations. Numerically we find as an average on a large number
of parameter sets!'?

A7) A%(Z2): A%(Z)~1:6:9. (4.122)

Thus, we can conclude that the size of the NP contributions on average drops by a
factor of four when going from the K to the By system and by another factor of two when
going from the By to the B system.

12The parameter sets we are using fit quark masses and mixings, in addition to all the well measured
AF = 2 observables.



4.2 Operator structure for AF =1 transitions

89

‘ 0.00005 "
5.x107°fm"g = mm . - - " - = - -
-
w " u = =
4.x1070F - =" oocoos [ .g . T, = T T -
' . e, . -
= B "o N a B = .- .
o+ - . - v .
A 3.x10°F = - - = 4 0.00003 .- . .
2 . - = X = = - - "
2 = == =" = e = =" .
& axiof - e A 5 000002 . .
" -
a4 I .-- - " - g . I
= "m = l.
1.x107°F - J;-'.: - - 0.00001 :.
aml g = Fg " B ==
= Fam®"
e e "
ok, ol

L L L L I}
0 2.x102 4.x10™ 6.x10™? 8x10? 1x10™

~ o
AR (ZD)?

L L L L |
1x10° 2x10° 3x10° 4x10° 5x10°

o o
AL @D

Figure 4.10: Absolute squares of the couplings of the first excitation of the Z boson (Z(1)) with
quarks down-strange and bottom-strange. In the right panel the right handed couplings are shown,
in the left panel the left handed. Lighter colors correspond to higher density of points.

It is of interest to investigate this issue in the case of absence of the custodial protection
Prr. Following the same arguments as before, it is easy to find that the left handed Z
couplings to down quarks would yield the dominant contribution to tree level rare decays.
In addition, using our parameter sets'® we discover that these couplings exhibit roughly
the opposite hierarchies than the ones shown by the CKM elements in (4.121)

A7) A%(Z) : A% (Z) ~1:30:130. (4.123)

Hence in the RS model without custodial protection we expect the relative NP effects
in the K and B rare decays to be roughly of the same size. This is a clear feature that
distinguishes the RS model with custodial protection from the model without protection.
It will be also confirmed by our numerical analysis in Sec. 5.3.3.

Anticorrelation between different couplings

At present, we have always analyzed the absolute size of the several contributions to rare K
and B decays. However, it is relevant also to investigate the relative contributions, namely
to examine if several contributions are correlated and in which way. As an example, in
Fig. 4.10 we present in two density plots the correlation between different elements of
the coupling of the first excitation of the Z boson (Z(1)) with left handed and right
handed down type quarks: A%(Z(l)) VS. AZE(Z(U) (in the right panel) and Asd(Z(1)
vs. Al(Z() (in the left panel). The figure shows clearly that typically the off-diagonal
couplings cannot be simultaneously large. We have investigated and we have found that
this feature is totally general, since it is valid also for the KK gauge boson Zg(l) couplings.

130ne should note that removing the protection also modifies the predictions for the AF = 2 observables,
so that the points from our parameter scan do in general not fulfil the associated constraints any more.
On the other hand we have seen that the most severe constraint comes from €, which is dominated by
KK gluon contributions and thus insensitive to the precise structure of the EW sector. Consequently we
do not expect our results to be affected significantly by this simplified working assumption.
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This general characteristic of the flavor violating couplings derives from the defini-
tion of the couplings in Eq. (3.36) (and the corresponding ones for the right handed
quarks). In fact, those expressions imply an upper bound on the sum of off-diagonal
terms |Ap g3, + |AL g3, + |AL R, [191]. Hence, typically, two off-diagonal couplings
cannot be simultaneously large, as shown by our Fig. 4.10.

This is an important message, since it implies that whenever we find large NP contri-
butions in K physics we cannot have large NP contributions in B physics and vice versa.
This feature will be confirmed by our numerical analysis in Sec. 5.3.

4.2.10 Status of the measurements and comparison with the Standard
Model

Differently from the AF = 2 observables analyzed in Sec. 4.1.6, the branching ratios
of the several rare decays analyzed in this thesis are not well measured (most of them
are indeed not measured at all). Contrary, from a theoretical point of view, in the SM
the branching ratios are accurately predicted!® and, since they are based on higher order
electroweak effects, they are expected to be very small. Consequently, from a theoretical
point of view, rare decays of K and B mesons have still a largely open room for NP;
from an experimental point of view, an improvement on the measurements of the several
branching ratios would be an efficient test of the SM and of the several theories beyond
it.

In recent years, many experiments have been performed to precisely measure many
Kaon decay parameters. Lifetimes and charge asymmetries have been measured with
unprecedented accuracy for Ky, and K. However, concerning the very rare K+ — 7 vi
and K — m'vp decay modes, only for the charged mode seven candidate events have
been found by the E949 [192] experiment at the Alternating Gradient Synchrotron (AGS)
of the Brookhaven National Laboratory, implying

Br(KT — 7 w0)ex, = (1.737182) - 10710, (4.124)
Contrary, for the decay K — 7'vv only a very loose upper bound exists. The present

bound from E391a at KEK [193] is given by
Br(Kp — m'00)exp < 2.6 - 1078 (4.125)
that is still larger than the limit of Br(Kj — 7'vp) < 12.4-10710 at 90% CL, arising from
the model-independent Grossman-Nir (GN) bound [194]
Br(Kj — 'v) < 4.3Br(KT — 7vp). (4.126)

The situation of the Standard Model prediction is radically different. The accuracy
of the SM prediction for K; — 7%v and K+ — 7tvo has been improved considerably
during the last five years. This progress can be traced back mainly to the improved values

YFor the K1, — utp™, as already discussed, only the SD contributions are computed precisely in the
SM.
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of m; and of |V| and to some extent to the inclusion of NLO QCD corrections. In
particular we have [176,195]

Br(Kp — mvi)sm = (2.8+0.6) 1071 (4.127)
Br(K™ — ntvi)sy = (85+0.7)-1071, (4.128)

From these numbers, it is evident that the SM prediction for the K+ decay is consistent
with the experiments and, on the contrary, the prediction for the K decay is still far
below the experimental results.

Future experiments plan to improve the measurements of the decays K — nwvv. In
particular the NA62 experiment at CERN SPS (see e.g., [196]) has been proposed with the
purpose to measure the branching ratio for the rare decay K+ — 7T vi with a statistical
precision of less than 10%. Studies of the KT decay are also planned at the J-Parc
experiment which has the goal to collect more than 50 K™ — wtvi events from KT
decays at rest [197]. Still at J-Parc, the experiment KOTO is a dedicated experiment to
search for the CP violating rare decay mode Kj — w%vi that also Project-X at Fermilab
plans to measure.

Concerning the rare B decays, the situation is quite similar. Up to today there are only
experimental upper bounds on the two modes By 4 — pu~ by CDF [198] and DO [199]
(in parenthesis)!®

Br(Bs — pp Jexp < 3.3(5.3)-1078, (4.129)
Br(Bs — pp Jexp < 1-107%, (4.130)

which are still more than a factor of 10 larger than the respective SM predictions [201]'6

Br(B, — pu )sm = (3.24£0.2)-1077, (4.131)
Br(By — ppu)sm = (1.0£0.1)-1071. (4.132)

Searches for By — up~ are only carried out at hadron machines, whereas By — pu™ ™
is being searched for at the B-factories as well, even if the measurements are no longer
competitive with the Tevatron results. The decay Bs — pu™p~ is one of the most promising
channels for New Physics at LHCb. This experiment will be able to exclude branching
ratios above the SM level, with just 2fb~! of data corresponding to one nominal year of
data taking. Instead, a 5o discovery at the SM level will require several years of data
taking, since it is only possible after 10fb~1 [202].

15The numbers given above are updates presented at the EPS-HEP09 conference. More information is
given in [200] .

16WWe report here the most updated result for the SM prediction for the two branching ratios. However,
to be consistent with the table of input parameters we give for our numerical analysis (Tab. 5.2), we should
quote [90] Br(Bs — ptp™) = (3.6 £ 0.37)107°, Br(Bs — pTp~) = (1.08 £ 0.11) - 1071°.
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LHCD will also perform studies of the decay By — '™, even if it is not clear yet if it
will have the capacity to reach the SM expectation for the branching ratio, that is around
one order of magnitude smaller than the one of By — ptpu™.

Finally, there are several experiments which have measured the rare decay K —
ptp™, as for example BNL791 [203] and KEK137 [204]. The world average is given
by [169]

Br(Kp — " i Jexp = (6.84 £0.11) - 1077 (4.133)

More problematic is the comparison between the SM prediction (for the short-distance
contribution) and the experiment. In fact, as already discussed, the decay is dominated
by the contributions from the two-photon intermediate state (absorbitive part) which are
difficult to calculate reliably. Consequently the SD contribution constitutes only a small
fraction of the branching ratio. The most recent estimate of the short-distance contribution
extracted from the data gives [205]

Br(Kp — ptp )52 <25.1077, (4.134)

exp

that one should compare with the short-distance contribution computed in the SM. At
the NNLO of QCD we have [190]

Br(Kp — ptp )8 = (0.79+0.12) - 1077, (4.135)
We conclude the section with a table which summarizes the present status of the SM

predictions and of the measurements of the several K and B rare decay branching ratios
presented in this thesis.

Decay Experiment SM prediction Future
Kp — vp <2.6-107% [193] (2.8 4 0.60) - 10711 [176] | J-Parc, Project-X
Kt = 71tuvp (1.737752) - 10710 [192] (8.5+0.7) - 1071 [195] NA62, J-Parc
(Kr, — ptp™)sp < 2.5-1077 [205] (0.79 £ 0.12) - 1072 [190]
By — putu~ <3.3(5.3)- 1078 [198,199] | (3.2+0.2)- 107 [201] LHCb
Bg — ptp <1-1078 [198] (1.0 +0.1) - 10710 [201] LHCb

Table 4.6: Experimental values and SM predictions for the rare K and B decays analyzed in this
thesis. Additionally the last column shows which are the experiments, if any, from which we can
expect an improvement in the measurement of the several branching ratios in the coming years.
Note: for the SD contribution to the K, — u*u~ decay we do not have direct experimental access.
In the table we put the result of the most recent estimate of the extraction of the SD part from
the data [190].



Chapter 5

Numerical analysis

After the discussion of the flavor sector of the RS model and of the two Susy flavor
models, and after the analysis of the several flavor observables of the K and B meson
mixing systems and of the branching ratios of the rare decays of K and B mesons, we can
now perform a global numerical analysis of particle-antiparticle oscillations and rare K
and B decays. The main focus will be on the comparison of the three models and on the
discussion of the possibility to distinguish them, through the measurement of few flavor
observables at upcoming experiments, and in particular at the LHCb. Particular attention
will be given to the theoretical understanding of our numerical results, pointing out the
main theoretical features of the models which lead to the numerical results.

5.1 Preliminaries

In this section, we summarize how the numerical analysis has been performed. For the RS
model, the strategy for the analysis has been developed in [59] (for the AF = 2 transitions)
and in [173] (for the AF = 1 transitions). For the Susy flavor models instead, we refer
the reader to [90].

5.1.1 Numerical strategy for the RS model

As we have already discussed in Sec. 2.2.2, the custodial symmetry of the RS model allows
consistency with EWPT for masses of the lightest KK states as low a (2—3) TeV, with only
moderate constraints on the fermion bulk mass parameters ¢’s. Therefore, throughout our
numerical analysis, we set

f=1TeV <= Mgk ~245TeV, (5.1)

in such a way that the first KK modes of fermions and gauge bosons could be in principle
detectable via direct searches at the LHC.

This terminates the discussion of the only free parameter coming from the geometry.
The discussion of the constraints on the bulk masses ¢’s is more involved. First of all, we
have to remind the number of free parameters coming from the flavor sector (see also [51]).
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First, the 3 x 3 complex 5D Yukawa coupling matrices introduced in (2.44)
PP (5.2)

contain each 9 real parameters and 9 complex phases. This is precisely the case of the
SM. New flavor parameters enter through the three hermitian 3 x 3 bulk mass matrices

Q> Cu Cd (53)

which bring in additional 18 real parameters and 9 complex phases. Altogether this
counting leads to 36 real parameters and 27 complex phases. However, not all of them are
physical: some can be eliminated thanks to the quark flavor symmetry U(3)3 which, as in
the SM (see Sec. 3.2.2), exists in the limit of vanishing A*? and cg,, 4. 9 real parameters
and 17 phases can be eliminated by making use of this symmetry. One phase cannot in
fact be removed as it corresponds to the unbroken U(1)p baryon number. We are then
left with 27 real parameters and 10 complex phases: 18 real parameters and 9 phases in
addition to the free parameters of the SM in the quark sector.

In our numerical analysis it will be convenient to work in the special basis in which
the bulk mass matrices cg, 4 are diagonal and real and thus comprise only 9 real pa-
rameters. The remaining 18 real parameters and 10 physical phases are then collected
in the 5D Yukawa coupling matrices \* and A% It will be essential to have an efficient
parameterization of A% in terms of only these physical parameters.

A useful parameterization of A*¢

The 5D Yukawa matrices, as every complex 3 x 3 matrix, can always be singular value
decomposed as ' ‘
A= UID Ve, X =e®iUuDaVy, (5.4)

where the D,, 4 are real and diagonal and the U, 4, V, 4 € SU(3).

At this stage the decompositions in (5.4) contain each (0,1) 4+ (3,5) + (3,0) + (3,5) =
(9,11) parameters, corresponding to 9 real parameters and 11 phases. Two of those phases
are of course spurious, since a complex 3 x 3 matrix is described by (9,9) parameters.
In order to find a description in terms of physical parameters only we use the Euler
decomposition for SU(3) matrices [206]

U(Ol, a,v,c, ,Ba b, 07 ¢) — ez)\gaez)\gaez)\3'yez)\5cez)\gﬁez)\gbez)\géez)\g¢ 7 (55)

where \; (i = 1,...,8) are the Gell-Mann matrices. Additionally a,b, ¢ are real mixing
angles and «,~,3,0,¢ are phases. As we will show in the following, the parameters
appearing in this last decomposition are all physical.

In the basis in which cg 4, are diagonal and real we have the freedom to make the
following diagonal rephasing

Qr — eMSaUde_iAgd)U”QL, (5.6)

up — e~ Wu o —1A30v,, =Py, uR,

dp — e PagmNalvye=iNstvyq
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Additionally, the unitary matrices U,V in a singular value decomposition are defined
up to an internal diagonal rephasing

UDV = (UesAtdsB)p(e=sA=NsBy) = i/ DV’ | (5.9)
Using this freedom and an additional rephasing of the quark fields we find the equivalence

A= Uz]:(()? Ay, s YUy s CUy » Bqu quv 0Uu7 0) D, Vu(OéVu, AV, s YV s CVy s BVuy me 0, 0)
= UJ(O7aUu77Uu +T, CUu7BUu -, qu79Uu7T/\/§) Du
Vu(Oévu7 av, , YV, +r, CVy BVu -, qua 07 T/\/g) . (510)

The entries 7/ V/3 can be again rotated to zero due to the freedom to rephase the quark
zero modes. Using this invariance parameterized by r allows us to choose vy, = 0. We
can finally define A* and A% in terms of physical parameters only

>‘u == U,i(o,aUu70, CUu,,BUu,qu,eUu,O) -Du Vu(aVuvaVuu/—quvCVuMBVu7qu7070)7 (511)
)\d == Ud(07aUd77Ud7cUd76Ud7bUdaoao) Dd Vd(an7ananydachaﬁVd7de7070) ) (512)

with D, = diag(y.,y2,y3) and Dy = diag(yl, y2,v3). Altogether we find 18 real parame-
ters and 10 physical phases contained in the 5D Yukawas, as already discussed previously.

The parameter scan

The starting point of our numerical analysis is the generation of random 5D Yukawa
coupling matrices A%, The first requirement one has to satisfy is the requirement of
perturbativity which forbids the Yukawa couplings A*¢ to be arbitrary large (see for
example [51,120,207]). Imposing that the one loop contribution to the Yukawa couplings
with loop momenta cut off at energies as large as the mass of the n-th KK mode is smaller
than the tree level term brings the constraint (A\%?) < 27/N, where (A\%%) is the typical
size of the 5D Yukawas A\*“. Hence the loosest constraint we can obtain (for N = 2) is
given by (A\*?) < 3. Consequently, we will perform our scan on

0<yha<3 (i=1,23), (5.13)
pursuing hence the idea of completely anarchical and of O(1) 5D Yukawa couplings.

Additionally, the real mixing angles

ay,, cu,»bu,, av,, cv,, bv,, au,, cu,, bu,, av,, cv,, by, (5.14)

and the CP violating phases

BUM ’ eUua AV, , VWV 5Vu7 ’YUda BUdv anv FYVCN /BVda (515)

will be varied in their physical ranges given by [0, 7/2) and [0, 27), respectively. This com-
pletes the discussion of the free parameters appearing in the 5D Yukawas A\%“, parametrized
as in (5.11)-(5.12).
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Finally, we have also to discuss the range allowed for the bulk masses ¢’s. Putting
together constraints from the electroweak parameters (in particular 7') and from pertur-
bativity of the theory, one can find that [64, 76] the bulk mass C3Q has to be close to
the conformal point c3 < 0.5 and that the right handed top quark bulk mass ¢ has to
be strongly localized towards the IR brane c 2 0. For this reason, throughout all the
numerical analysis, we will scan in the ranges'

04<c) <05, ¢ >0. (5.16)

The remaining bulk mass parameters will then be fitted, imposing the constraints coming
from quark masses and CKM parameters, listed in Tabs. 5.1, 5.2 at the 20 level. One
should also mention here that, in order not to depend on unphysical phases at this stage,
we choose to fit the Jarlskog determinant [208]

Jop = Im(V, V. Vi V) (5.17)

sV us ¥ cd

rather than the CKM angle v = arg(Vyp).

For those parameter points that reproduce the SM quark masses and mixing angles
we subsequently evaluate the AF = 2 observables discussed in Sec. 4.1 and finally the
branching ratios of K and B decays analyzed in Sec. 4.2. All the numerical analysis is
performed neglecting the mixing between the SM fermion and the KK excitations, analyzed
in Sec. 3.1.

uw=2GeV u=46GeV =172GeV  pu=3TeV
my(p) | 3.0(10) MeV  2.5(8) MeV 6( )MeV  1.4(5)MeV
mg(p) | 6.0(15)MeV  4.9(12) MeV  3.2(8) MeV  2.7(7) MeV
ms(p) | 110(15)MeV  90(12) MeV  60(8)MeV  50(7) MeV
me(p) | 1.04(8)GeV 0. 85(7) GeV  0.55(4)GeV  0.45(4) GeV
my (1) — 42(1)GeV  2.7(1)GeV  2.2(1) GeV
(1) — — 162(2) GeV  135(2) GeV

Table 5.1: Renormalized quark masses at various scales, evaluated using NLO running. The 1o
uncertainties are given in brackets.

The lepton and the gauge sector

The discussion of the free parameters of the lepton sector is quite less involved than what
we have just shown for the quark sector. In fact, for our scopes it is sufficient to neglect
the mixings between the several leptons, so that lepton flavor eigenstates coincide with
the mass eigenstates and hence to neglect the effects of lepton flavor changing neutral
currents. We thus consider degenerate bulk masses for all the SM leptons. Since leptons
are significantly lighter than quarks, we have to choose them to be localized towards
the UV brane and in our numerical analysis we simply set all the bulk mass parameters

1One should mention that this particular range for c:ég and ¢ is only viable because of the protection of
the Z couplings to the right handed up quarks from large corrections. A localization of the right handed
top quark so close to the IR brane would be disastrous in the RS model without custodial protection.
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to Cfb = +0.7 for left and right handed leptons, respectively. This assumption is well
motivated by the observation that the flavor conserving couplings of leptons with gauge

bosons depend only very weakly on the actual value of cf;}, provided that cfp > 0.5. Hence

we consider safe not to scan on the parameter cfp.

The discussion of the free parameters coming from the neutrino sector proceeds on the
same lines. Also for (left handed) neutrinos, we simply fix a universal bulk mass given by
c, =0.7.

P

Also the gauge sector does not show any new free parameter. In fact, in the absence
of brane kinetic terms, the 5D EW gauge couplings g and gx presented first in Sec. 2.2.3
are not dimensionless and are related to the measured 4D couplings as g; = \Eg;-w . The
same discussion holds also for the strong 5D coupling gs that, in the absence of brane
kinetic terms, gets the value g, = v/LgP. For a discussion of the impact of brane kinetic
terms on the gauge couplings and on flavor observables we refer the reader to [59,120].

parameter | value parameter | value

By 0.724 + 0.008 & 0.028 [153] || as(Mz) | 0.118 & 0.002

Fp, (245 + 25) MeV [154] em(Myz) | 1/127.9

Fg, (200 + 20) MeV [154] m 1.44 + 0.35 [141,209]

Fy (156.1 £ 0.8) MeV  [210] 2 0.57 £ 0.01 [142]

Bp, 1.22 £ 0.12 [154] n3 0.47 4 0.05 [143,209,211]
Bg, 1.22 4 0.12 [154] nB 0.55 4 0.01 [142,212]
FpsV/ Bas | (270 4 30) MeV [154] A 0.2258 4 0.0014 [213]
FBd\/Bin (225 + 25) MeV [154] ¢ 1.21 + 0.04 [154]

Ve (41.241.1) x 1073 [169) \7 (3.8 £0.4) x 1073 [169]

Table 5.2: Input parameters used in the numerical analysis. Note: the input parameters listed
here are those used in the chronologically last paper reviewed in this thesis [90] and hence they are
slightly different than those used in our papers on the RS model [59,110,173].

5.1.2 Numerical strategy for the Susy flavor models

As we have already discussed in Sec. 2.3.3, the MSSM has in the flavor sector a very large
number of free parameters, in addition to those already present in the SM: 110. Only in
the quark sector we have to number 45 real parameters and 19 phases. Obviously the risk
of such a huge parameter space is the weakening of the predictive power of the theory.
However, as we will show in our numerical analysis of Secs. 5.2.4, 5.2.5, 5.3.4, the adoption
of an “MSUGRA like” spectrum (see Sec. 2.3.3) and of the soft parameters predicted by
the two Susy flavor models reduces considerably the number of free parameters of the
theory and hence increases strongly its predictive power.

Let us then introduce the free parameters of the two Susy flavor models analyzed. First
of all, the MSSM with the MSUGRA hypothesis contains (assuming vanishing flavor blind
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phases) five parameters: my /o, mo, Ao, tan 8 and the sign of u. However, a positive y is
preferred by the muon anomalous magnetic moment constraints [14,214,215] and hence, in
our numerical analysis we will simply assume g > 0. Consequently only four parameters
are left.

Moreover, the flavor models do not predict the exact value of the off-diagonal soft
masses and trilinear terms, but only their order of magnitude, as function of one (AC
abelian flavor model, Sec. 2.3.4) or more (RVV2 non abelian flavor model, Sec. 2.3.5)
expansion parameters. Consequently, we have as free parameters also the several O(1)
real coefficients multiplying the off-diagonal entries of the soft masses and trilinear terms
in (2.65)-(2.66) and (2.69)-(2.75) for the abelian and the non abelian model, respectively.
Additionally, in the abelian model (Sec. 2.3.4) it appears also an undetermined phase (¢r)
on which we have to scan (see below for the range).

Finally a few words concerning the diagonal entries of soft masses and trilinear terms.
In principle, for each 3 x 3 matrix we would have three independent free parameters on the
diagonal of order mg (for the soft masses) and Ay (for the trilinear terms). The abelian
and non abelian models show a quite opposite behavior:

o Abelian Model: the U(1) flavor symmetry does not imply any pattern for the diagonal
entries. The diagonal soft masses are hence naturally split. Consequently, in our
numerical analysis, we impose a large mass splitting between the first and the second

generation squarks, such that at the GUT scale mgz, = 2ms, = 2mi, = 2mo.
Additionally we simply assume a common mass scale Ag in the diagonal trilinear
terms.

e Non abelian Model: the SU(3) flavor symmetry implies an approximate degeneracy of
the three generation squarks. Hence, we simply assume to have an exact degeneracy
both in the diagonal soft masses (= mg) and in the diagonal trilinear terms (= Ap).

The parameter scan

Having listed the several parameters of the two Susy flavor models, we are now in the
position to explain the type of parameter scan we have performed.
First of all, concerning the “MSUGRA parameters”, we scan in the following ranges

mo < 2TeV, my g < 1TeV, |AQ| <3mg, H<tanf <55. (518)

This particular choice was dictated by the requirement of a not too heavy sparticle spec-
trum (and hence the upper bound on mg and m,/5) and by the requirement of vacuum
stability (and hence the upper bound on Ay as a function of mg). The discussion of the
technical details on the bound on the trilinear mass scale Ag goes beyond the scope of this
thesis: see e.g., [216].

Secondly, we scan over the several O(1) coefficients multiplying the off-diagonal entries
of soft masses and trilinear terms, independently, in the range £[0.5,2]. Additionally, the
undetermined phase ¢ appearing in the soft mass matrix (5§R of the abelian model (Eq.
(2.65)) is varied in the range [0, 27).

We impose then several constraints coming from the experiments:
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1. Requirement of a correct electroweak symmetry breaking and vacuum stability;
2. Lower bounds on sparticle masses, coming from direct Susy searches;
3. Agreement with the experiments on electroweak precision observables.

4. Requirement of a neutral lightest Susy particle (i.e. requirement of a dark matter
candidate).

For those parameter points that satisfy these four requirements we subsequently evalu-
ate exactly (i.e. not making use of the MIA) the AF = 2 observables discussed in Sec. 4.1
and we impose the corresponding bounds listed in Tab. 4.5. We impose then the additional
constraints listed in Tab. 5.3 (like Br(b — sv), Br(B — 7v)) and we finally compute the
branching ratios of K and B decays analyzed in Sec. 4.2.

5.2 K and B meson oscillation

In this section we will analyze the K and B meson mixing observables first in the RS model
with custodial protection, and secondly in the two Susy flavor models. In particular, for
both frameworks, we will investigate how strict are the constraints coming from all the
several observables, but Sys. Subsequently, once that the constraints are imposed, we
analyze the possibility to have large new physics contributions in the phase of the BY — BY
system, Sy.

The approach to the analysis is a bit different in the two frameworks: in contrast to
the Susy flavor models, in the RS model we study also the fine-tuning required to fit the
several observables (see Eq. (5.19) for the definition of fine-tuning).

5.2.1 The ex constraint in the RS model

Our analysis of the KK contributions to M{g of Sec. 4.1.3 already raised the problem of
reconcilability of ex with the experimental data which agree with the SM value, within
uncertainties (see Tab. 4.5). From the left panel of Fig. 4.2 we could already conclude
that generically ex is more than two orders of magnitude too large. However, from that
panel, we could also notice that quite few points of parameter space are able to arrange a
value for e in agreement with the experiments.

The issue we want now to analyze is how large fine-tuning we have to introduce in the
model in order to fit the experimental ex. To this end we will use the measure of fine-
tuning introduced by Barbieri and Giudice [217] and most commonly used in the literature:
the amount of tuning Apg(O;,pj) in an observable O; with respect to a parameter p; is
defined as the sensitivity of O; to infinitesimal variations of p;. Explicitly,

p; 00;

Agc (04, pj) = 0, op:
i Opj

: (5.19)

where the normalization factor p;/O; appears in order not to have a fine-tuning sensitive
to the absolute size of p; and O;. The overall fine-tuning in the observable O; which
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depends on m parameters p; is then given by

ABG(Oi) = man:l,...,m{ABG(Obpj)} > (520)

where the index j runs over all m dimensions of parameter space. Obviously, the larger
Apg(0;), the more sensitive is the value of O; to small variations in the parameters p;,
i.e. the more fine-tuning is required to keep O; stable.

In the left panel of Fig. 5.1 we show in a density plot the fine-tuning in ex as a
function of ex normalized to its experimental value. We observe that, while for generic
values ex /(€K )exp ~ O(100) the fine-tuning is typically relatively small, Apa(ex) ~ 20,
the average required tuning (blue line in the plot) strongly increases with decreasing values
of ex. Generically for e ~ (€K )exp @ fine-tuning of the order Apa(ex) ~ 700 is required,
i.e. the amount of fine-tuning increases by roughly a factor 30 — 40 when going from the
generic prediction for ex down to values in accordance with the experiments. This high
level of average fine-tuning required to fit the experimental € g shows the “cx problem” of
the RS model. Obviously, despite this generic trend, there are areas in parameter space for
which ex roughly reproduces the experimental value and the required tuning is moderate
(Apc(ex) < 20). In particular, for SM-like ex roughly 30% of the points lie still in the
range with small tuning.

Another way to study the problem is to derive a generic lower bound on the KK scale
Mxkxk (that is not fixed anymore to 2.45 TeV as in all the rest of the numerical analysis)
arising from the e constraint. In the right panel of Fig. 5.1 we show the average required
fine-tuning in £, obtained by taking the arithmetic mean of Apg(ex) on those points that
fulfil the e constraint within +30%, as a function of Mkk. We observe that Apg(ex)
decreases roughly as 1/MZ2,, as expected from the dependence of (M{)kk on the KK
scale (Eq. (4.28)). From the figure we can derive a bound for Mgy dependent on the
maximum level of fine-tuning we allow. If we set the maximum tuning to 20, then we
obtain the lower bound on the KK scale

Mgk > 18 TeV, (5.21)

that is roughly in agreement with the previous findings of [120]. The bound shows clearly
that, to have a low level of average fine-tuning on g, the Mgk scale cannot be fixed to
2.45 TeV as in Eq. (5.1).

However, we would like to stress again, that although this bound can be considered as
a naturalness constraint on the theory coming from g, we have found, even for a KK scale
as low as 2.5 TeV, regions of parameter space which yield i in rough agreement with the
experiments with a moderate amount of fine-tuning. Still one should be aware that, in
this particular region of parameter space, loop corrections to the tree level contributions
to ex could be potentially sizable. Keeping into account also these effects would lead to
a modified prediction for ex for a given point of the parameter space; however, thanks to
the large number of free parameters of the theory, we do not expect the overall picture to
be modified at the qualitative level.
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Figure 5.1: Left: the fine-tuning Apg(ex) plotted against ex normalized to its experimental
value. The blue line displays the average fine-tuning as a function of ex. Right: the average
required fine-tuning in £ as a function of the KK scale Mkx.

5.2.2 The measured AF = 2 observables in the RS model

In the present section we will extend our analysis to the remaining AF = 2 observables
that have been well measured experimentally (see also Tab. 4.5). The main aim is to
investigate if the problem in fitting the observable e is a peculiar problem of ex or if it
is a general problem for all the well measured AF = 2 observables. In the former case, we
would like to understand the motivations for which ex is special.

We start with the mass difference AMj which is sensitive to the real part of M{S,
the fundamental quantity which is involved also in €. Already from the left panel of
Fig. 4.2 we could guess that in average the NP contributions to AMp are not as large
as those to e (which depends on the imaginary part of M{5). Indeed this observation is
confirmed by the left panel of Fig. 5.2 which shows the fine-tuning Agg(AM ) plotted as
a function of A M, with the latter normalized to its experimental value. Contrary to e,
the theoretical uncertainties due to the non-perturbative LD contributions to AMp are
large. Hence, we consider safe to assume that the computed SD contributions to AMp
amount to (70 £ 30)% of the measured value only. From the figure, it is evident that, in
correspondence of this phenomenologically relevant region, the average fine-tuning turns
out to be really small. Indeed the KK scale Mgk would not get any relevant lower bound
from the constraint Apg(AMg) < 20. We thus conclude that the model does not have
any problem in fitting AMp with low fine-tuning.

Next we analyze the CP asymmetry Sy, which is sensitive to the CP violating phase
in the B; mixing system (see Eq. (4.53)). In the right panel of Fig. 5.2 we show the
fine-tuning Apg(Syk,) plotted as a function of Sy, . We observe that the RS prediction
is generically very close to the SM prediction (= 0.734 4 0.038, see Tab. 4.5) and slightly
larger than the experimental value (= 0.672+0.023, see Tab. 4.5). The average fine-tuning
corresponding to the experimental data is quite small, typically smaller than 5.

Finally, we do not show the results for the mass differences AM, and AM, since their
plots are very similar to the one for Syx,. AM; and AM, are easily fitted in the RS
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Figure 5.2: Left: The fine-tuning Agg(AMy) plotted against AMy normalized to its experi-
mental value. Right: the fine-tuning Apg(Syxg) plotted against Syr. In both panels the blue
line displays the average fine-tuning.

model and the associated average fine-tuning is quite small.

Our analysis of the well measured AF = 2 observables showed the facility of the
RS model (with custodial protection) in fitting all the several observables, but the CP
violating observable ex. Thus, a natural question arises:

What are the special features of e, when compared to all
the other AF = 2 observables?

Here we just summarize the properties of € g that have been already mentioned throughout
Sec. 4.1.3:

e In the K system, contrary to the By 4 systems, the NP contribution coming from
the operator QL% in (4.14) is quite large (see Fig. 4.3). In the K system, in fact,
the chirality-flipping operator experiences a strong chirality enhancement and RG
running from the high KK energy scale to the low energy scale of ~ 2 GeV.

e Within the K system, the NP contribution to M{g obeys naturally to Im(M{g JKK ~
Re(M{)kk. However, in the SM, because of the small phase of ViV.q in (4.7),
Im(M{5)sm < Re(M{$)sm and hence the relative NP contribution to the imaginary
part is much larger than the relative NP contribution to the real part (see also left
panel of Fig. 4.2), resulting in a strong enhancement of ex, but not of AMg-.

However, the main message of the section is not the RS “cx problem”, but the possibil-
ity of the model in fitting all the well measured AF = 2 observables simultaneously, even
with a moderate amount of fine-tuning. We have shown indeed that the ex constraint
is the most severe and its imposition drastically reduces the available parameter space,
but still there exists a subspace of parameter space able to satisfy the constraint. In that
subspace all the other constraints from the well measured observables are easily satisfied.

In the following, the entire numerical analysis of the RS model will be performed in the
region of parameter space which predicts the observables AMy, AMy, AMg, AMy/AMs,
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Figure 5.3: Left: The semileptonic asymmetry A, normalized to its SM value, as a function of
Sye- In addition to the requirement of correct quark masses and CKM mixings, also the available
AF = 2 constraints are imposed. Right: The same, but in addition the condition Apg(ex) < 20
is imposed.

ex and Sy in agreement with their measurements with at most a deviation of +50%,
+30%, +£30%, +20%, +£30% and +20%, respectively. We impose rather conservative
uncertainties, since we are aware of the theoretical uncertainties entering our analysis due
to the several approximations we made. We are indeed taking into account the mixing
of the SM gauge bosons with only the first Kaluza-Klein excitation gauge bosons (and
not with the entire KK tower of modes) and neglecting the mixing between SM and KK
fermions.

5.2.3 The CP violating phase in the B, system

Having at hand the constrained parameter sets constructed in the previous section, we
are now in the position to investigate the possible size of NP effects in the not yet pre-
cisely measured CP violating observable of the B, system, Sy4. As described in detail in
Sec. 4.1.6, the CP violation in the By system is one of the best probes of NP in the quark
flavor sector, especially after the new recent data from DO [166]. Hence we consider it
worth to dedicate a section to the study of the CP violation in the BY — BY mixing system
in the RS model.

In the left panel of Fig. 5.3 we present the correlation between the semileptonic asym-
metry Ag; (see Eq. (4.56)) and Sy that emerges after imposing all available AF = 2
constraints analyzed in the previous two sections. From the density plot, we read that the
full range for Sy is possible. We observe that, while values of this asymmetry close to
the SM prediction turn out to be most likely, a sizable amount of points lie also close to
the central value Sy ~ 0.81 recently reported by the HFAG collaboration [167]%.

In addition we note the model-independent correlation between Sy and Ag; pointed
out first in [162] and described by us in Eq. (4.58). Thanks to this strong (model-
independent) correlation between the two observables, in correspondence to the central

ZPresently the central value of Sy is debated because of the new measurement of DO [166]. We simply
report here the central value valid when we wrote the papers to which we are referring in this thesis (before
the DO measurement).
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value for Syg of 0.81, the semileptonic asymmetry Ag; would be enhanced by roughly two
orders of magnitude relative to its SM value.

In the right panel of Fig. 5.3 we show what changes in the correlation, when we impose
on the employed region of parameter space not only to fit the AF = 2 observables, but
also to exhibit a low level of fine-tuning (< 20) in the observable . The basic features
of the correlation do not change, although the overall number of parameter points shown
in the plots of course decreases (by roughly a factor of 3). Still a substantial enhancement
of the two asymmetries is possible.

5.2.4 AF = 2 transitions in the abelian flavor model

We study now the predictions of the abelian Susy flavor model on the AF = 2 transitions,
focusing especially on the promising CP violating phase of the B, system. The analysis will
be substantially different than what we have just presented for the RS model, since now we
will not perform a study of naturalness, but first an investigation of the main constraints
to be imposed on the parameter space and, subsequently, a study of the possibility to
achieve a large NP contribution in the CP violating phase of the BY — B? mixing system.

Let us start with the K© — K° mixing system. The matrices for the soft masses
predicted by the abelian flavor model in Eq. (2.65) show that, at the high energy scale
both LL and RR mass insertions for the transition s <+ d are zero. Thus, at the low
energy scale, the model has only a LL mass insertion generated through the RG running
(see Sec. 2.3.6) of size ViV, (MFV type MI). We know from the literature [218-220]
that the Susy flavor models based on the MFV ansatz predict only small contributions to
AF = 2 observables. Thus, we can conclude that we expect only tiny NP contributions to
ex and to AMg since, for those transitions, the model resembles the MSSM with MFV.

To be more specific, we obtain a NP contribution to ex at most of the order 10%
(for a relatively light Susy spectrum) and hence within the theoretical uncertainty of the
prediction of the SM.

It is appealing to note that the smallness of the NP effects in e is a common feature
of the abelian flavor models that are indeed built in such a way to contain the NP effects
in the s <+ d sector [85,96].

A different trend is exhibited by the constraints coming from the D° — D° mixing,
that involves a AF = 2 transition in the up sector of the type u <> c¢. Already from
the predicted MI (654)15 = A we could have expected huge NP contributions to the M{)
matrix element. Fortunately, at the low scale, where we evaluate the Susy contributions to
the physical observables, (§21); is significantly smaller than A, thanks to the RG running
(for details see [94]), so that the constraints coming from D° — D® mixing can be satisfied,
even for squark masses of a few hundred GeV. Still the D meson mixing system represents
one of the most severe constraints for the abelian model.

It is interesting to notice that the previous observations on the D meson mixing system
are not peculiar to the abelian flavor model analyzed by us, but are valid for all the flavor
models based on abelian symmetries. In fact, the abelian flavor symmetries do not predict
any degeneracy between first and second generation up squarks and hence, as explained
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Figure 5.4: Left: correlation between the semileptonic asymmetry Ag; normalized to its SM
prediction and Sy in the abelian flavor model. Right: the same for the non abelian flavor model.
In both panels the dot represents the SM prediction for the two observables.

in Sec. 2.3.4, large (65%)15 Mls are always generated, leading to large NP contributions in
the D — D mixing system.

In our numerical analysis we do not study the several observables in the DY — DO
mixing system in detail, but we simply imposed the condition [221]

| M| qygy < 0.02ps™. (5.22)

Finally, constraints coming from the mass differences AMy, AM; and from the ratio
AM;/AM, are imposed on the parameter space of the theory. In particular, the mass
difference in the B; meson mixing system is a relatively loose constraint to satisfy. Looking
at the soft masses predicted by the model (Eq. (2.65)) we can in fact note that at the
GUT scale (65F)15 = (65)15 = 0 and hence, exactly as for the K* — K system, the NP
contributions in By mixing system are MFV like and hence small.

A different behavior is exhibited by AM;, and by the ratio AM;/AM,y. At the GUT
scale the RR MI for the transition s <+ b is in fact sizable (‘551%‘23 ~ 1) and induces a
large NP contribution to the mass difference of the Bgs meson mixing system, thanks to
the operator @4 defined in Eq. (4.33) that is RG enhanced and multiplied by a large loop
function g4 (see Appendix C for its expression). Effects of O(1) are possible.

In our numerical analysis we require to the parameter space of the model to fit the sev-
eral mass differences, both in the By and in the B systems and the mass ratio AMg/A Mg,
at the 20 level (see also Tab. 4.5).

Having imposed all the AF = 2 constraints, it is interesting to investigate if the model
has still room for large NP effects in the CP violating phase of the B; meson mixing
system. In the left panel of Fig. 5.4 we present our results for the correlation between the
semileptonic asymmetry Ag; and Sy4 in the abelian flavor model analyzed by us.

As also discussed in Sec. 5.1.2, the several points represented in the plot satisfy, in
addition to the AF = 2 constraints, also the constraints coming from Br(b — sv),
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observable Experiment SM prediction

Sercs 0.44 4 0.17 [167] sin 26 + 0.02 £ 0.01 [222]
Swkg 0.59 4 0.07 [167] sin 26 + 0.01 £ 0.01 [222]
Br(p — ey) < 1.2-10711 [223] ~0

|de| (ecm) < 1.6 x 10727 [224] ~ 10738 [225)

|dn| (ecm) < 2.9 x 10726 [226] ~ 10732 [225)

Br(B — X,v) (3.5240.25) - 10~* [167] (3.15 4 0.23) - 107 [227]
Br(B — Xg0t47) | (1.59 £ 0.49) - 1076 [228,229] | (1.59 £ 0.11) - 1076 [230]
Br(B — 1v) (1.73 4 0.35) - 107 [231] (1.10 4+ 0.29) - 10~ [90]

Table 5.3: Current experimental sensitivities and SM predictions for the observables most relevant
for our analysis. The branching ratio of B — X T¢~ refers to the low dilepton invariant mass
region, ¢z, ,- € [1,6] GeV?2.

Br(B — 7v) and Br(B — X /T¢7) that are imposed throughout our analysis at the 20
level (the detailed analysis of these additional constraints goes beyond the scope of this
thesis, see e.g., the original paper [90]). In Tab. 5.3 we report all the additional constraints
we imposed on the parameter space (in both abelian and non abelian flavor model).

From the plot, it is evident that the entire range for the asymmetry Sy4 can be in
principle covered by the model, which hence can easily settle the last results of CDF
and DO [164-166], still being compatible with all the constraints coming from the well
measured flavor observables. Finally, due to the strong correlation with Ag;, the latter
asymmetry can be enhanced by as much as two orders of magnitude.

5.2.5 AF = 2 transitions in the non abelian flavor model

In this section we want to present an analogous analysis for the non abelian flavor model,
still with the aim to answer the question: How large can the NP effects in the CP wvio-
lating asymmetry Syq be, still being in accordance with the several experiments on flavor
transitions?

We start the discussion with the K° — K° mixing system. Contrary to what we have
shown for the abelian flavor model, in the non abelian framework the LL and RR MIs
corresponding to the flavor transition s <> d are relatively large. Indeed, in the SM the
typical size of the transition would be |VisV5i| ~ A° and this should be compared with
(65F)12 and (677)15 predicted by the model, that are given by 22 ~ A% and & ~ A4,
respectively. Hence the constraints arising from the K meson mixing system, especially
from the very well measured CP violating observable g, are severe and represent the
main source of exclusion of points of parameter space coming from the quark sector.

A different trend is exhibited by the constraints coming from the D° — D° mixing. The
SU(3) flavor symmetry, on which the model is based, does not lead to any mass splitting
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between the first and the second generation squarks, as it was instead the case of the
abelian U(1) flavor symmetry. Consequently the (62%);5 MI predicted by the model is
very small (~ A\*) and induces only negligible NP contributions to the D® — D° system.
In conclusion the D° — D system is only a very loose constraint for the non abelian flavor
model. This is probably one of the most characteristic features which distinguishes non
abelian flavor models from abelian ones.

Finally constraints coming from the mass differences AMy, AM, and from the ratio
AM,;/AM, are imposed on the parameter space of the theory. The mass differences in the
1 — 3 and 2 — 3 sectors are indeed stringent constraints for the non abelian model which
predicts, as shown in Egs. (2.69), (2.70), LL and RR MIs both sizable in the two sectors,
generating hence the very powerful left-right operator Q4. Effects of the order 10% (for
the 1 — 3 sector) and 50% (for the 2 — 3 sector) are possible.

In our numerical analysis we require the parameter space of the model to fit the several
mass differences, both in the By and in the By systems, at the 20 level (see also Tab. 4.5).

Having imposed all the constraints, it is interesting to investigate if the model has still
room for large NP effects in the CP violating phase of the Bs meson mixing system. In the
right panel of Fig. 5.4 we present our results for the correlation between the semileptonic
asymmetry Ag; and Sy4 in the non abelian flavor model analyzed by us.

The several points represented in the plot satisfy also the constraint coming from
Br(b — sv) at the 20 level. Additionally, since the non abelian model is embedded
in a SO(10) Susy GUT model (see Sec. 2.3.5), one should also take into account the
constraints coming from lepton flavor violating observables. The most severe to satisfy
is the branching ratio of p — ey because of the relatively large MlIs in the lepton 1 — 2
sector®. We impose this additional constraint at the 20 level (see Tab. 5.3 for the list of
the additional constraints imposed on the parameter space).

From the plot, it is evident that large values for Sy, are allowed while being compatible
with all the constraints coming from quark and lepton flavor violating observables. How-
ever, contrary to the abelian model, the entire range for Sy cannot be reached (because of
the smaller MIs in the 2 — 3 sector), however, the central value Sy ~ 0.81 of HFAG [167]
can be attained, even if hardly. Accordingly, also the semileptonic asymmetry Ag; can be
enhanced by roughly a factor 50 beyond its SM value.

5.3 Rare decays of K and B mesons

In this section we will discuss, first in the RS model with custodial protection and secondly
in the Susy flavor models, the rare K and B decays already analyzed theoretically in
Sec. 4.2. Before entering into the details of the discussion, we have to mention that

e In the plots we will show for the RS model, blue points correspond to points of
the parameter space which fulfil all the AF = 2 constraints presented in Secs. 5.2.1
and 5.2.2 only, orange points instead satisfy also the requirement of a small amount

3For a complete analysis of the lepton flavor violating processes in the non abelian Susy framework see
the original paper [90].
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of fine-tuning (Apg(ex) < 20) in ex. Only on occasion we will remove the custodial
protection from the RS model for the purpose of illustration. In this case, red points
correspond to points of the parameter space which fulfil all the AF = 2 constraints
and green points imply also a small amount of fine-tuning.

e In Susy flavor models only the points satisfying the several constraints mentioned in
Secs. 5.2.4 and 5.2.5 are presented.

5.3.1 Rare K decays in the RS model

As discussed in Sec. 4.2.10, the K — wvv decays are theoretically very clean and highly
sensitive to NP, thus they can offer an excellent possibility of distinguishing between
different BSM frameworks, once both branching ratios Br(K+t — ntvw) and Br(K, —

7%vp) will be accurately measured.
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Figure 5.5: Br(K; — 7°v) as a function of Br(K+ — ntvi). The shaded area represents the
experimental 1o range for Br(K+ — 7T vi) (the central measured value is represented by a dashed
line). The GN bound of Eq. (4.126) is displayed by the dotted line, while the solid line separates
the two areas where Br(Ky — mvi) is larger or smaller than Br(K ™ — 77v). The black point
represents the SM prediction (note that they are slightly different than the updated values we put
in Tab 4.6; in fact the point in the plot represents the SM prediction at the time of our numerical
analysis (Dec 2008)).

Already from the discussion of Sec. 4.2.9, we expect possible large NP contributions
for the branching ratios of the two modes in the RS model with custodial protection.
This is indeed confirmed by Fig. 5.5 where we show Br(K; — 7%w) as a function of
Br(K* — ntvw). We observe that the K™ — 7 v decay rate can be enhanced by up to
a factor ~ 2, reaching the central experimental value of ~ 1.7 - 10710 (see also Tab. 4.6).
For the decay Kj — 7’vi the enhancement can be even larger, reaching ~ 3 times the
SM prediction, still being consistent with the measured value of Br(K* — 7 Tvr).

From the plot it is evident that no correlation holds between the two branching ratios:
for a given value of Br(K+ — ntvp) all values for Br(Ky — 7%vp) consistent with the
Grossman-Nir bound in (4.126) can be reached. The reason for this non-correlation has
been pointed out in [232] and relies upon the importance of the operator Q&% which brings
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the largest NP effect to the K — K9 mixing system. Because of that operator, the new
CP violating phases in K° — K° mixing and the rare K decays turn out to be independent
of each other, and the ex constraint does not enforce any correlation between the neutral
and charged K — mvv modes.

Correlation between rare K decays and Sy

We have shown how in principle both the rare decays K — wvv and the CP violating
asymmetry Sy can obtain a large NP contribution in the RS model with custodial pro-
tection. It is now interesting to investigate if the NP effects in the two channels are
totally uncorrelated or, on the contrary, if there is a precise pattern regulating the two
NP contributions.

In Fig. 5.6, we show the correlation between the branching ratio of K™ — 7#7v and
Sye. The most striking feature of the plot is that large enhancements in Br(K* — ntvi)
exclude large NP effects in Sy4 and vice versa. Therefore, if the present hints for a large
value of Sy, by CDF and DO [164-166] will be confirmed, visible effects in Br(K — 77 vp)
in the context of the RS model with custodial protection will most likely be excluded.
Vice versa, if future experiments on Sy will lead to a SM-like Sy, then the room for NP
contributions to the rare K decay will be largely open.
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Figure 5.6: Br(K "™ — ntvi) as a function of Sy. The dashed line represents the central measured
value for the branching ratio of K+ — nTvi. The shaded area represents the experimental 1o
range for Br(K+ — mTvi), and the black point the SM prediction (note that they are slightly
different than the updated values we put in Tab 4.6; in fact the point in the plot represents the
SM prediction at the time of our numerical analysis (Dec 2008)).

The correlation between the CP violating decay branching ratio Br(K; — 7'v7) and
Sye turns out to be perfectly analogous and hence we do not show it here (see the original
paper [173]).

We mention that we could have already anticipated the anticorrelation shown in Fig. 5.6
from Sec. 4.2.9. Sy and the rare K decays involve in fact two different flavor transitions:
s <> b for the first observable and d <+ s for the second ones. In Fig. 4.10 has been shown
that large flavor changing neutral vertices in one sector (Alf ) preclude the possibility to
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have large flavor changing neutral vertices in another sector (AidR). The anticorrelation
shown in Fig. 4.10 for the flavor changing neutral vertices corresponds exactly to what we
have obtained in terms of physical observables in Fig. 5.6.

We conclude with the main message of this section. Fig. 5.6 shows the relevance of the
next experiments NA62 and LHCb in confirming the pattern between the decays K — mvv
and Sy or in putting the RS model with custodial protection under pressure, in the case
of finding large NP contributions in both flavor channels.

5.3.2 Rare B decays in the RS model

We want now to discuss the very promising decays Bs 4 — putp~, following the same
strategy used in the previous section for the K — wv¥ modes. By — ptpu~ is one of
the LHCDb golden channels, hence it is worth to discuss it in detail in the context of NP
models, such as the RS model with custodial protection.

In Sec. 4.2.9 we have already anticipated that the NP contributions to rare B decays
are expected to be quite smaller than those entering in the rare K decays. This is in-
deed confirmed by Fig. 5.7 where we show the correlation between Br(Bs; — p*u~) and
Br(B; — ptp7) in the RS model with custodial protection.
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Figure 5.7: Br(Bs; — ptp~) versus Br(B; — ptp~). The straight line represents the MFV
correlation (r = 1 in Eq. (5.23)) and the black point is the SM prediction (note that they are
slightly different than the updated values we put in Tab 4.6; in fact the point in the plot represents
the SM prediction at the time of our numerical analysis (Dec 2008)).

We observe that the NP effects on the two decays are rather small: By — u™pu~ can
get at most a 20% effect compared to the SM prediction and even smaller contributions
are shown for the decay Bs — utpu~ that can acquire at most a 10% NP effects. The
smallness of the deviations from the SM predictions for the two rare B decays can be
traced back to the absence of the scalar operators which could in principle bring large NP
effects, and to the custodial protection of the left handed Z couplings being more effective
in B than in K physics (see also Sec. 4.2.9). Indeed in the following section we will show
how remarkable is the impact of removing the custodial protection on the two rare B
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decays.

Finally the straight line drawn in Fig. 5.7 represents the correlation between Br(B; —
ptp~) and Br(Bg — pt ) predicted by models with MFV. In those models, the ratio
between the two branching ratios is predicted to be equal to the prediction of the SM [233]

Br(B, — p p )urv B, @AMST

Br(By — ptpu~)umrv  Bp, 7B, AMg
with 7 = 1. This MFV correlation is obviously strongly broken in the RS model (see the
formulae (4.111), (4.112) for the branching ratios) but still the deviations from the straight
line shown in Fig. 5.7 are probably too small to allow LHCDb to distinguish between models
with MFV and the RS model using these decay modes only*.

In Fig. 5.8 we confirm this statement, showing the correlation between the quantity r
as a function of the CP violating observable Sy4. The departure of r from unity measures
the violation of the MFV relation (r = 1 in Eq. (5.23)) in the framework of the RS model
with custodial protection.

(5.23)
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Figure 5.8: r of Eq. (5.23) as a function of Sy4. The solid line indicates the MF'V prediction and
the black dot the SM value.

We observe that most points lie in the range
0.60 <r <1.35, (5.24)
with only a mild anticorrelation with Sy.

We conclude this section with the main message coming from Fig. 5.7. The By 4 —
™ rare decays do not receive sizable NP contributions in the RS model with custodial
protection. It will be very challenging for LHCb to disentangle a possible NP effect coming
from the custodially protected RS model in rare B decays. In particular LHCb could in
principle put seriously under pressure the model finding a branching ratio for By — putpu~
highly deviating from the SM prediction.

“In the following section we will present a more effective way to distinguish the RS model from frame-
works based on the MFV principle.
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5.3.3 RS model vs MFV

In the previous section we have shown how challenging is to distinguish the RS model with
custodial protection from models based on the MFV principle, using just rare B decay
modes. The reason is that, in spite of the fact that theoretically the RS model is definitely
at odds with the MFV framework, the NP effects in rare B decays are small and difficult
to be measured by the next experiments.

One possibility to circumvent the problem would be to analyze correlations predicted
by the MFV framework that involve both rare K and B decays. The huge NP effects in
rare K decays would most probably lead to a hard breaking of those correlations.

As an example, we study here the pattern of correlation between the SD contribution
to the branching ratio of K;, — p™p~ and the branching ratio of By — putp~. In
models with MFV, the several functions regulating the flavor transitions (XV:V =4, yV:V -4
and ZV'V~4) are flavor universal, as in the SM. Hence, comparing the formulae for the
branching ratios of By — p*pu~ and K — ptpu~ presented in (4.111) and in (4.116)
respectively, one can deduce that, in the absence of NP phases (@{f = 0), a straight
correlation between the two branching ratios exists. In Fig. 5.9 we present the branching
ratio of K, — ptu~ as a function of the By — u™p~ branching ratio. The MFV prediction
is presented as a solid black line.
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Figure 5.9: Br(K; — p*u~)sp as a function of Br(Bs; — putu~). The dashed line indicates
the experimental upper bound on Br(Kj — p*u™ )sp. The solid line shows the MFV prediction,
while the black point represents the SM prediction (note that they are slightly different than the
updated values we put in Tab 4.6; in fact the point in the plot represents the SM prediction at the
time of our numerical analysis (Dec 2008)).

From the plot we notice that, indeed, the MFV prediction can be strongly violated
thanks to the much more pronounced NP effects in Br(Kj — p*p~)sp than in Br(Bs —
put ™). In principle, this study could represent a possibility to distinguish between models
with MFV and the RS model with custodial protection. However, we have to be aware that
this investigation would be quite complicated because of the problems in the extraction of
the SD contribution to Kz — ptu~ from the experiments (see Sec. 4.2.10). Still future
theoretical and experimental developments in the decay could open the road to a better
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understanding of the non-MFV nature of the RS model with custodial protection.

It is instructive to investigate how these results would look like if the custodial protec-
tion of the RS model was not present. In particular we are interested in inferring if the
difficulty in distinguishing models with MFV from the RS model is a peculiar problem
of the model with custodial protection or, more generally, of the RS model itself. With
this purpose in mind, in Fig. 5.10 we show the correlation between Br(Bs; — u™p~) and
Br(By — utp~) once that the custodial protection is removed from the model (see also
end of Sec. 3.1.4 or Sec. 4.2.9 for the details on the particular procedure adopted).
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Figure 5.10: Br(Bs — ptpu™) versus Br(Bg — ptu™) in the RS model without custodial protec-
tion. The straight line represents the MFV prediction (r =1 in Eq. (5.23)) and the black point is
the SM prediction (note that they are slightly different than the updated values we put in Tab 4.6;
in fact the point in the plot represents the SM prediction at the time of our numerical analysis
(Dec 2008)).

From the figure, we note that, removing the protection, large NP contributions in the
two rare B decay branching ratios are now possible: By — utu~ and Bs — p™u~ typically
get up to a 50% and 80% of NP effects, respectively (to compare with the 20% and 10%
obtained in the case of the model with custodial protection, in Fig. 5.7). Evidently, in the
case of no custodial protection, the deviations from the MFV prediction (straight line in
the figure) is quite sizable and could in principle be measured by next experiments.

It is worth to remind the theoretical reason for which the NP effects in rare B decays are
largely enhanced in the case of removal of the custodial protection (see also Sec. 4.2.9). As
we have shown in Fig. 3.4, without the custodial protection, the flavor violating couplings
A7 (Z) are larger than the corresponding right handed couplings A%}(Z). This enforces
the predominance of the contribution of the Z boson (coupled this time with left handed
down quarks) on the branching ratios of the several rare B (and K) decays. Additionally,
contrary to the case of custodial protection, AY(Z) exhibit a similar hierarchy as the
CKM factors qu), )\IEK) and hence relative NP effects of roughly equal size are expected

in K and B decays. In few words, the main effect of removing the custodial protection is
the enhancement of the NP effects in B physics.
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We can conclude this section with the main message: the difficulty in distinguishing
between MFV frameworks and the RS model resides exclusively in the custodial protection
of the model, which reduces the NP effects in rare B decays. Still we have to point out
that a comparative study of rare K and B decays can give the possibility to discriminate
between the two frameworks, even in the presence of the custodial protection.

5.3.4 Rare K and B decays in the Susy flavor models

In this section we analyze the rare K and B decays in the framework of the abelian
AC model and of the non abelian RVV2 model, with the aim to show clear patterns to
distinguish the two Susy flavor models from the RS model with custodial protection. As
for the RS model, the essential channels for our scope are

o K — mvu;
e B, = ptu;
e Their correlation with the CP violating asymmetry Sy.

The most immediate difference between the RS model and the Susy flavor models
concerns the theoretically clean decays K — wvv. In Sec. 4.2.3 we have shown that, in
Susy, large NP effects can arise only through

1. Chargino/up squark loops in the presence of sizable flavor changing trilinear couplings
of the up squarks (see Eq. (4.73));

2. Charged Higgs/top quark loops in the presence of sizable right-right down MIs, both
in the 1 — 3 sector and in the 2 — 3 sector (see Eq. (4.74)).

However, the Susy flavor models we have analyzed in this thesis do not satisfy neither
the first, nor the second condition. Thus we expect the branching ratios of the K — wvv
decays to be mostly SM-like. This is indeed confirmed by our numerical analysis. The NP
contributions are at the percent level in both models, with slightly larger effects in the
non abelian model due to its larger ((5§“R)13723 mass insertions.

Comparing the NP contributions to the SM predictions reported in Tab. 4.6, we can
conclude that the Susy effects on the K branching ratios are well within the theoretical
errors and thus uninteresting. For this reason, we decided not to give plots of these decays
here, contrary to what we have done for the RS model (Fig. 5.5 and 5.6).

The clear message from the rare K decays is that, if the upcoming experiments
NA62, KOTO and Project-X will decrease the experimental error on the measurement
of Br(K+ — n7vp) and will, at the same time, confirm the present central value for that
branching ratio (~ 1.73-1071%), then the Susy flavor models discussed in this thesis will be
put under serious pressure and disfavored compared to the RS model with custodial pro-
tection. The same conclusion arises if the experiments will detect the decay K — mvi
and will set a central value significantly larger than the SM prediction. Vice versa, if the
central value of Br(K™ — 7tv) will decrease with the future measurements, and also
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Br(Ky — %) will turn out to be SM-like, then no clear message will originate from
these rare decay modes.

The discussion of the decays B, — ptp~ is a bit more involved and will show a
different pattern for the abelian and the non abelian model.

First of all, it is of primary interest to investigate if the correlation between Br(Bs —
ptp~) and Br(Bg — putp~) predicted by models with MFV, and discussed by us in
Sec. 5.3.2, is highly violated or, as it occurs in the RS model with custodial protection,
does not supply a powerful tool to distinguish the Susy flavor models from the MFV
framework.

Already from the relevant MIs predicted by the two models, we could assert that
probably the correlation is strongly broken, mainly because of the very large effects in the
branching ratio of By — u™p~. Indeed this expectation is confirmed by Fig. 5.11 where
we present the result of our numerical investigation for the two rare B decays, in the left
panel for the abelian model and in the right panel for the non abelian one.

2%107° 2% 107
—_ —
'y 1x107 'y 1x10°
+ +
3 _ = [
L Sx107° L 5x 10710
Q q |
el e
% i
m
2x107'° 2x107'°
1x10710 ' 1x10710 3 ;
1x107%2% 107 5x 1071 x 102x 10 5x 1071 %107 I1x109%107° 5x10°1x10 2 x10°° 5x 101 x 1077
4+, - + -
BR(Bs—p u™) BR(Bs—p p™)

Figure 5.11: Left: correlation between Br(Bs — p*p~) and Br(By — pp~) in the abelian AC
model. Right: the same for the non abelian RVV2 flavor model. In both panels the dot represents
the SM prediction (note that they are slightly different than the updated values we put in Tab 4.6;
in fact the point in the plot represents the SM prediction at the time of our numerical analysis
(Sept 2009)), the straight green line the prediction of MFV frameworks. Finally the red vertical
line represents the experimental upper bound on the branching ratio of By — putpu~.

Several messages can be read from the two plots

e An order of magnitude enhancement is possible for the two branching ratios. In the
abelian model Br(Bs — u" 1~ ) can even reach easily its experimental upper bound.

e The two models predict very striking deviations from the MFV prediction. More
specifically, since the NP flavor structure of the two models affects mainly (or at
least more strongly) the b — s sector than the b — d sector, then the ratio Br(By —
ptp™)/Br(Bs — ptp~) is dominantly below its MEV prediction. The feature is
noticeable especially in the abelian model in which the b — d sector is not affected
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by beyond MFV structures and hence the ratio can be even much smaller than the
MFV prediction.

e As a consequence of the previous point, the two decay channels can offer to LHCb
a perfect tool to investigate and eventually to disprove the MFV hypothesis.

e Finally, one should note the striking difference between the above features and the
pattern of prediction of the RS model with custodial protection on the two rare B
decays, in which the NP effects are at the level of (10 — 20)%.

From the above discussion it is evident that for the two Susy flavor models the B; —
ptp~ (and By — ptp~) decay and Sy are the two golden channels in the quark sector
(in addition to be two of the main golden channels for the future experiments). It is then
worth to investigate if there is a correlation between the two observables. In Fig. 5.12 we
represent the branching ratio of By — pp~ versus the CP violating asymmetry Syg in
the abelian flavor model (left panel) and in the non abelian flavor model (right panel).
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Figure 5.12: Left: correlation between Br(Bs, — p*p~) and Sy in the abelian AC model.
Right: the same for the non abelian RVV2 flavor model. In both panels the dot represents the
SM prediction for the two observables (note that they are slightly different than the updated
values we put in Tab 4.6; in fact the point in the plot represents the SM prediction at the time of
our numerical analysis (Sept 2009)), the horizontal dashed line represents the experimental upper
bound on the branching ratio of By — putpu™.

The two plots show a basic difference: the AC abelian model exhibits a strong cor-
relation between Br(Bs — ptp~) and Sye, in the RVV2 non abelian model instead the
correlation is washed out, although both observables can differ spectacularly from their
SM predictions. More specifically in the AC abelian model large effects in Sy predict a
lower bound on Br(Bs — putu~) at the level of Br(Bs — ptp™) > 1078 for |Sye| > 0.3
(the converse is obviously not true).

To understand the theoretical reason for this correlation, one has to recall our analysis
of the Susy contributions to the two observables of Secs. 4.1.4 and 4.2.7. We have explicitly
shown that the main NP effects in Br(Bs — putu~) arise (if present) from the Higgs
penguins of Fig. 4.9 that contribute to the scalar and pseudoscalar operators Qg and Qp
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(and the corresponding Qg, Qp). The situation for Sye is a bit more involved. In principle
both the double Higgs penguins of Fig. 4.5 and the gluino boxes of Fig. 4.4 can give sizable
NP effects. However, the most relevant difference between the two contributions is that,
contrary to the gluino boxes, the double Higgs penguins do not decouple with the Susy
mass scale .5

Additionally, in the AC model the huge NP contributions to the DY — D° system force
the Susy mass spectrum (m) to be relatively heavy, in order to be in agreement with
the experiments on D — DY mixing. Consequently, the double Higgs penguins bring the
dominant NP contribution to Sy4 and hence large NP effects in Sy correspond to large
NP effects in the branching ratio of By — putpu™.

In the RVV2 model, the absence of the D% — DY constraints, as well as the more
complicated flavor structure of the model (as for instance the presence of left handed
currents carrying new sources of CPV) washes out the above correlation as shown in the
right panel of Fig. 5.12.

The different role of the constraints from the D° — D system in the two Susy flavor
models is also shown by Fig. 5.13 in which we present the plane for the lightest stop mass
(mgz,) vs. the lightest chargino mass (m)zli) on the first row and the plane for the charged

Higgs mass (Mp+) vs. tan 8 on the second row. The plots in the first column correspond
to the abelian AC model, the ones in the second column to the non abelian RVV2 model.
From the plots in the first column (for the abelian model), we can clearly read that large
effects in Sy, (darker colors) are only possible for a heavy spectrum, even beyond the LHC
reach, but for a relatively light Higgs boson (and large tan 3). This feature confirms once
more the special role of the double Higgs penguins in generating large NP effects in Sy4
in the abelian model. From the plots in the second column (for the non abelian model),
we can instead recognize that the importance of a heavy spectrum and of a light Higgs
boson is weaker: the gluino boxes acquire in fact more relevance.

Beyond the importance of the double Higgs penguin contribution, from the left up-
per panel in Fig. 5.13 a very important message arises: there exist regions of the Susy
parameter space at the border or even beyond the LHC reach where we can expect clear
non-standard signals in flavor processes, such as in Sy. In these regions, flavor phenomena
represent the most powerful tool to shed light on NP.

5.4 Comparison and future prospective to distinguish

The main aim of this thesis is to supply a way to distinguish the RS model with custodial
protection from the two Susy flavor models, using only few low energy flavor observables.
We therefore complete this chapter with a summary of the main numerical results that
clearly show different patterns of predictions of the two frameworks.

e All the three models can predict large new physics effects in the CP violating asym-
metry Syq. However, the new physics effects in the RVV2 non abelian flavor model

5 Another important feature is that, contrary to the gluino box contribution, the double Higgs contri-
bution is enhanced by tan S to the fourth power.
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Figure 5.13: First row: The plane of the lightest stop mass (mjz, ) vs. the lightest chargino mass
(mili). Second row: the plane of the charged Higgs mass Mpy+ vs. tanB. The first column
corresponds to the AC model; the second to the RVV2 model. The different colors show the
possible values for Sy4 in these models as indicated in the overall bar.

cannot be so large to cover the entire range for Sy (—1 < Syg < 1). Hence we can
write

(Sys)RVve < (Syp)RS™ & (Syg)Ac - (5.25)

e While Br(Bs; — putu™) in the two supersymmetric flavor models can get huge NP
contributions, the enhancements of Br(Bs; — pu* ™) in the RS model with custodial
protection do not exceed 10%. The feature is strongly connected to the custodial
protection of some of the Z boson couplings (see Sec. 5.3.3).

e The opposite pattern is found for the K — wvv decays. In the two supersymmetric
flavor models, Br(K — mwvr) are basically SM-like. On the other hand in the RS
model the Br(K — mvi) can be enhanced by as much as a factor 1.6 (for Br(K+ —
ntvp)) and 2.5 (for Br(Kp — 7n0v)).

e Particularly interesting would be the consequences of a confirmation of a large value
for the CP violating asymmetry Sy, by future experiments:

— The AC abelian model would imply a lower bound on Br(Bs — utu™) signifi-
cantly higher than possible values that the RS model with custodial protection
can reach. Consequently simply the measurement of Br(Bs — putu™) could
distinguish the two models.
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5.4 Comparison and future prospective to distinguish
AC RVV2 RS
DY — DO *kk | K ?
€K * | hokok | hokok
Sy *kk | dokk | kokok
Acp (B = Xgv) * * ?
By — ptu~ *kk | hkk *
By — ptp *kok | hkok *
Kt = ntup * * | kkok
Kp — v * * Y%k Kk
p— ey Kkok | dokk | kokok

Table 5.4: “DNA” of flavor physics effects for the flavor observables studied in this thesis in the
two Susy flavor models and in the RS model with custodial protection. % v % signals large effects
and % implies that the given model does not predict sizable effects in that observable. Finally
with “?” we indicate those flavor observables that are not studied in the literature yet.

— The RS model with custodial protection would exclude the possibility to have
large NP contributions in the Br(K — 7vw) decays. Hence in that case, it
would be really difficult to distinguish the RS model from the two Susy flavor
models. However, this prediction of the RS model could provide the possibility
to future experiments on the rare K decays to put under pressure the model,
in the case of a discovery of a non-SM K decay branching ratio.

e The AC abelian model and the RVV2 non abelian model predict an opposite pattern
for the observables of the D? — D° mixing system: a strong enhancement is in general
predicted by the AC model, a SM-like D° — DY mixing is predicted by the RVV2
model. As noticed in Secs. 5.2.4, 5.2.5, this feature is a general feature of abelian and
non abelian flavor models, independently of their characteristics (e.g., flavor group,
pattern of flavor symmetry breaking). Possibly, this different prediction of abelian
and non abelian flavor models could be tested by a SuperB factory [234,235].

We conclude this chapter with Tab. 5.4, which reports a summary of the potential size
of deviation from the SM results allowed for the observables considered in the text, when
all existing constraints from the well measured observables of Tabs. 4.5 and 5.3 are taken
into account. We distinguish among

e large effects (three red stars),

e vanishingly small effects (one black star).
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This table can be considered as the collection of the DNA’s for various models. These
DNA’s will be modified as new experimental data will be available and in certain cases
will allow us to declare certain models to be disfavored or even ruled out.

The table does not take into account possible correlations among the observables listed
there. As we have explained above, the correlations are additional informations that can
be really useful in order to distinguish between the different models. We have shown in
fact that in some models, it is not possible to obtain large effects simultaneously for certain
pairs or sets of observables and consequently future measurements of a few observables
listed in Tab. 5.4 will have an impact on the patterns for the other observables shown in
this DNA table. It will be really interesting to monitor the changes in this table when the
future experiments will provide new results on flavor observables.



Chapter 6

Summary and outlook

The Randall-Sundrum model with custodial protection and the MSSM based on a flavor
symmetry are two of the most sound theories beyond the Standard Model. They represent
two very interesting possibilities to address both the gauge hierarchy problem and the
Standard Model flavor puzzle in generating strongly hierarchical quark masses and mixing
angles. While the starting point of the MSSM is a symmetry principle, the one of the RS
model is geometry. In fact, while in Susy flavor models the gauge hierarchy problem is
solved by relating bosonic and fermionic degrees of freedom through Supersymmetry, in
the RS model it is addressed by the virtue of the warped background metric. Analogously,
while in Susy flavor models the generation of a hierarchical quark spectrum relies on
abelian or non abelian flavor symmetries 4 la Froggatt-Nielsen, in the RS model it is
achieved by the non-uniform localization of the quark field shape functions along the fifth
dimension.

However the general MSSM exhibits a severe difficulty in being in agreement with
the experiments on flavor changing neutral observables, since the New Physics effects in
flavor changing neutral currents are generically too large to be in accordance with the
data which amazingly confirm the Cabibbo-Kobayashi-Maskawa picture of the Standard
Model. Nevertheless, implementing a flavor symmetry in the MSSM softens naturally the
problem. Abelian flavor symmetries enforce indeed an approximate alignment between
down type squark masses and down Yukawa couplings. Non abelian flavor symmetries
instead accomplish an approximate degeneracy between the several squark masses (both
of the up type and down type). Both effects (alignment and degeneracy) induce a strong
reduction of the off-diagonal entries in the squarks soft mass matrices and hence a limi-
tation of the New Physics effects in flavor changing neutral currents, that will appear as
functions of small flavor symmetry breaking parameters. Thus, Susy flavor models can
address the New Physics flavor problem.

In parallel, also the RS model suffers in general from too large New Physics contribu-
tions to flavor changing neutral transitions. In fact, as a byproduct of the non-uniform
localization of the SM fermions in the fifth dimension, flavor changing neutral currents
appear in the model already at the tree level. However, the effects are strongly related to
the difference in mass of the SM quarks involved in the transition. Hence flavor chang-
ing transitions involving the first two generation quarks will be protected from too large
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New Physics effects (RS-GIM mechanism). Additionally, the RS model with custodial
protection, namely with an additional SU(2)r X Prr gauge symmetry in the bulk, can
ameliorate the NP flavor problems thanks also to the protection of several off-diagonal
couplings of the SM Z boson with quarks.

After having discussed quantitatively how to address the NP flavor puzzle in the two
frameworks, we analyzed in detail several flavor observables with the main aim to show
some possible recipes to distinguish the two Susy flavor models analyzed by us from the RS
model with custodial protection with the use of low energy observables, once that new data
will be available. Quite importantly, we decided to fix a not too high NP energy scale in
both frameworks, in order not to compromise the possibility to have direct detection of new
particles at the LHC. In particular in the RS model we have set Mk ~ (2 —3) TeV, while
in the Susy flavor models we have scanned over the soft Susy scale mg < 2TeV. Our study
was twofold: first we investigated the New Physics effects on meson-antimeson oscillation
observables; secondly, we analyzed the possible implications in the rare K and B decays.
For both sets of observables, we first derived analytic expressions in the two frameworks,
hinting already on the possible numerical results, and subsequently we performed a global
numerical analysis.

In the AF = 2 sector we focused mainly on the mass differences AMpg, AM; and AMy
of the KY — K° BY — BY and Bg — Bg systems, respectively, and on the CP violating
asymmetries ex and Sy, with the main purpose to constrain the parameter space of the
two frameworks, imposing the strict experimental bounds coming from these observables.
Subsequently we analyzed the NP effects on the CP violating observable of the B? — BY
system, Sy, showing explicitely the possibility of having large NP contributions, while
being compatible with the several constraints coming from the other AF = 2 observables.
This is certainly an important message from both NP frameworks, in the light of the
recent hints of CDF and DO on the presence of NP effects in Sy4. Finally we have studied
the role of the D° — DY mixing in the Susy flavor models. Here a summary of our main
findings in the AF = 2 sector

e In the RS model with custodial protection

1. K%— K9 oscillations are dominated by the chirality-flipping operator Q%R which
is strongly chiral and QCD enhanced. Only KK gluons are responsible for that
operator and hence the KK gluons bring the most important contribution.

2. In the Bg} q— Bg’ 4 Systems the SM operator QYL is competitive with QF%,
since the latter is weaker QCD and chirally enhanced in the B system than in
the K system. Hence the EW gauge bosons Zy and Z’ and the KK gluons are
equally important.

3. The strongest constraint is represented by the CP violating observable e.
Our fine-tuning analysis shows that to have agreement with the data, with an
average of fine-tuning smaller than 20 and completely anarchical 5D Yukawa
couplings, a Mgk scale of around 20 TeV would be required. However, even for
Mxk ~ (2 — 3) TeV, the constraint from ex can be satisfied with a moderate
fine-tuning, if the assumption of strictly anarchic Yukawa couplings is slightly
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relaxed. No particular problem arises in fitting all the other well measured
AF = 2 observables with a low level of fine-tuning.

. Having imposed all the AF = 2 constraints, large NP effects in the CP asym-

metry Sygs are still possible, such that the entire range —1 < Sy4 < 1 can
be reached. Because of the strong correlation with the semileptonic asymme-
try A, also the latter observable can be highly enhanced (by two orders of
magnitude), when compared to the SM prediction.

e In the two Susy flavor models

1.

Both K°—K° and Bg d—BS 4 oscillations are dominated by the chirality-flipping
operator Q%R because of a strong QCD enhancement and a large loop function.

. In the abelian flavor model the constraints coming from DY — D® mixing are

quite severe and impose the soft Susy mass scale mg to be relatively high. Vice
versa, in the non abelian flavor model the D° — D mixing does not represent a
serious restriction, and hence also lighter soft Susy mass scales are acceptable.

. In the abelian flavor model no other important constraint is arising from AF =

2 transitions. Vice versa, in the non abelian flavor model the CP violating
observable €x can receive in general sizable NP contributions, both coming
from gluino boxes and from double Higgs penguins. However, the constraint
coming from the data can be accommodated by the model relatively easily.

. Concerning the B meson mixing system, in the abelian flavor model effects

are coming mainly from double Higgs penguins that are not suppressed by the
Susy mass scale mg. Contrary, in the non abelian flavor model the effects of
the double Higgs penguins are comparable to those arising from the gluino
boxes. In both models large values of the CP violating asymmetry Sy, can be
reached, with in general slightly larger effects in the abelian model than in the
non abelian one.

. Finally, especially in the case of the abelian flavor model, large effects in Sy¢

can be possible also for a quite heavy spectrum. Hence, there exist regions of
the SUSY parameter space at the border or even beyond the LHC reach where
we can expect clear non-standard signals in flavor processes.

It is also important to notice that the points 2.-3. are always valid, independently
of the particular flavor model analyzed. They are simply a result of abelian and non
abelian flavor symmetries.

Subsequently we determined the size of NP effects in various rare B and K decays
that remain possible after imposing all existing constraints from the AF = 2 transitions
analyzed previously and from other relevant constraints such as from Br(b — sv) in the
Susy flavor models. We considered for both frameworks the branching ratios of the decay
modes KT — ntvi, K, — 7vi, Bsg — ptp~ and finally of K, — pp~ in the RS
model. More specifically we investigated first the several branching ratios and secondly
the possible correlations between them and together with Sy4. Here we summarize the
main results we obtained
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e In the RS model with custodial protection

1. The main contributions, both in rare K and B decays, are coming from the
exchange at the tree level of the SM Z boson, coupled with right handed down
quarks.

2. Strong enhancements are possible in the rare K decays. Vice versa, quite small
effects (up to (10—20)%) are found for the rare B decays. This opposite pattern
of K and B decays is a result of the custodial protection of the model, that
affects more the B sector than the K sector.

3. The CP asymmetry Sy is strongly correlated with the rare K decay branching
ratios. Simultaneous large enhancements in both systems are strongly disfa-
vored.

4. Because of the quite small NP effects in rare B decays, the possibility to dis-
tinguish the RS model from models with Minimal Flavor Violation using only
rare B decays (such as the correlation predicted by MFV models between the
branching ratios of Bs — u™u~ and of By — ptu™) is quite unlikely. More
promising is the investigation of correlations between rare B and K decays,
such as between K — putpu~ and By — ptp~.

e In the two Susy flavor models

1. The rare K decay branching ratios are SM-like.

2. The rare B decay branching ratios can get huge NP effects, thanks to the Higgs
penguin contribution. In particular in the abelian model the experimental
bound on the branching ratio of By — utu~ can be reached.

3. A strong correlation between the asymmetry Sy and Br(Bys — p7 ™) arises in
the abelian model: the confirmation of a non SM-like Sy at future experiments
would lead to a quite high lower bound on the braching ratio of By — pu*pu~,
at the level of 1078,

4. The prediction of MFV models for the correlation between Br(Bs — ptp™) and
Br(By — pp~) can be strongly broken in both Susy flavor models, opening
the possibility to distinguish between them and the MFV framework as soon
as new data on rare B decays will be available.

This summary shows that the simultaneous study of various flavor violating processes
can allow us to distinguish the two New Physics frameworks. For this reason, we proposed
a DNA-flavor test that will help us to shed light on the “correct” New Physics model,
once that new data on flavor observables will be available.

In particular we have shown the big role of Sy and of the braching ratio of By — putp~
in distinguishing between the three models analyzed throughout this thesis. It will be of
course of great interest to monitor the future results of LHCb and of Tevatron on the two
observables, in order to start to disentangle between the several New Physics theories,
using low energy observables.
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In conclusion, flavor physics might prove itself again to be one of the big actors in
particle physics and it can play a major role in letting us understand whether nature
possesses supersymmetry, or whether other scenarios like the Randall-Sundrum model
with custodial protection are realized in nature.



Appendix A

Basic notation and formulae for
WED models

In this Appendix we report the main formulae and concepts of warped extra dimensional
models, that were not introduced in the main text, since they were not crucial for the
main line of this thesis.

Neglecting the possible brane kinetic terms for gauge bosons, the action of a free gauge
boson in a warped metric is given by

L
Sy = /d%«/ dyvV'G (—iFMNFMN> + h.c., (A1)
0

where FMN — gMy N _ 9Ny M ig the field strength tensor.
The variation principle §Sy = 0 yields to the equation of motion [47]

[—6_2]‘33/17“”8“&, + &2k 5 <e_2ky(95>} Va(z#,y) =0. (A.2)

To solve this differential equation, we make use of the KK decomposition, employed
already for the fermion fields in Eq. (2.9)

1 o
Va(a",y) = —= S vV (z0) £ (y) | A3
(=",y) ﬁ;a( )y (y) (A.3)
Inserting then this KK tower of fields inside the equation of motion (A.2), one finds
92 — 2kds + e%ymi] M) =0, (A.4)
where m,, is the mass of the n-th KK mode gauge boson, given by

8,0,V (at) = m2vim) (A.5)

As discussed for the fermion fields in Sec. 2.2.1, in order to solve the equation of motion
for the gauge bosons, one has to specify the BCs. Usually, the BCs adopted are

e Dirichlet BC (—): f(y) =0,

brane
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e Neumann BC (+): 85f‘(,n) (v) =0.

brane

The solutions of the equation of motion (A.4) are then given by

P = 1, (A.6)
k
Py = jVZ[Jl (Be) + bi(ma)yi (Se)] (n=1,2,..), (A7)

where J,Y are the Bessel function of first and second kind, respectively, IV,, is the nor-
malization factor of the gauge field set by the condition

L
1 / dy 1 @) 15 () = b (A8)

L Jo
and where, as in the case of fermions, the zero mode f‘(/0 ) exists only for (++) BCs and
it corresponds to a SM gauge boson. An interesting and phenomenologically important
feature is that all KK excitation gauge bosons are strongly peaked towards the IR brane
as can be seen from the exponential factor in front of (A.7).
The coefficient by (m,) and the mass of the n-th KK state m,, depend on the boundary
conditions on the branes. For (++) fields one obtains [47]

J1(man/k) +mn/k Ji(mn/k) kL
bi(my) = — = bi(my , A.
10T = = S ) + YRy ) (4.9)
which can be solved numerically. However, for the first excited state the approximate
expression

mi(++) ~245f (A.10)

holds (where f was defined in Sec. 2.2.1).
For (—+) fields instead one obtains [47]

~ Ji(mn€t k) + mp etk T (mgpett k) Ji(ma k)
D) = = R e L R Y (e e ) — Vi (i B) (A1)

For the first excited state the approximate expression

mi(—+) ~ 2.40f (A.12)
holds.



Appendix B

Couplings and charge factors in
the RS model

In this Appendix we list all the couplings and the charge factors that were used in this
thesis. They can be easily worked out using the formulae of Eqs. (3.40), (3.41), and the
quantum numbers of the several fermions presented in Eqs. (2.34)-(2.36). However, for

completeness, we report here the explicit form.

First, we give the charge factors in the couplings of SM down quarks (both left and
right handed) to the Z and Zx gauge bosons

4D 94D
d = —_
QZ,L( ) cos ¥ {
4D
4D g
d =
“Z,L( ) cos ¢

4 ) =

4D
g 1.
cos Y [3 S w] ’

4D

(B.1)

%%PR(CZ) S [—1 + 1sim2 qb} . (B.2)

cos ¢ 3

Analogously, the charge factors in the couplings of SM up quarks (both left and right
handed) to the Z and Zx gauge bosons read

4D 94D
gz,L(U) = cos
4D
4D g
KR u =
Z,L( ) cos &

|

2

1
2

2
3

1
6

[1 — Zsin? ¢] ,

— — sin2¢] ,
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Finally, the charge factors in the couplings of the additional vector-like fermion fields

i

(x*', x*, U, U" and D) to the Z, Zx gauge bosons are given by
aD | 4D
4D [ u g L5 . AD [ uy _ 9 L7 . 9
= -0 - S B.
9z (X") cos |2 3 o T/J] » Kz ) cos ¢ [2 6" ¢ (B.5)
aD | 4D
ap [ d g L2 4D(d> g L 5.9
— _-_Zz = — 4= B.6
9z <X) costp | 2 3> 4 Rz X cosp | 2 o 9| - (B6)
aD T 4D
aD (77 g 2 .9 ap (7 _ 9 2 .9
9z (U') cos® | 5 sin @ZJ] . k7 (U) cosgb[ 3 sin qﬁ] , (B.7)
4D T 4D
aDrmy 9 _2 .2 4D (rrmy _ 9 _2 .2
g7 (U") = cost | 5 5in ¢] . Ky (U") = p— [ 5 sin 4 , (B.8)
4D (py g'? L.y 4D (py g*P T4 B
- 14 - = . 9
92" (') cos | + 3> w} - w7 (D) cos [3 i (b] (B.9)




Appendix C

Explicit expressions for the loop

functions

C.1 Loop functions for the AF = 2 mixing amplitudes

SM contribution

Sﬁ(xa y)

S[)(.’I}) =

Gluino box contribution

gi(z) =
g2(z) =
g3(z) =

ga(z) =

11 + 144x + 2722 — 223

4o — 1122 + 23 323logx

( y 3y
x| log = —

4(1 — x)? 2(1—x)3

3y2 log y

)

z  A(l-y)

4(1 —y)?

(13 4 17x)

108(1 — z)4
17z(2® — 922 — 9z + 17)

C18(1 — )P
172(1 + 3x)

108(z — 1)5

3

_792($) = —

17

2 — 99 — 54x? + 723

18(x — 1)
r(x® — 922 — 92 + 17)

log

log

9

).

z(1+ 3x)

36(x — 1) a
(54 19x)

18(1 — )4
10 + 117z + 1822 — 23

- 1
3(1_zp 8

z(11 + 13x)

54(1 — x)4
B 11(—2% — 922 + 9z + 1)

9(1— )P
11z(1 4 )

54(x —1)5

15 ,
11

9(x —1)°
15(—2% — 922 + 9z + 1)

6(x—1)5

log

logz ,

log x

152(1 + )

—gy(z) = —

54(z —1)5
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C.2 Loop functions for the rare decays K — mvv 131
Double Higgs penguin contribution
41+ x) 8x
h 1 1
W)= g T e e 8T (C.10)
4(2 + 5z — 2?) 8z
h = - — 1 A1
2(?) ol —ap  BI-ax)f T (1)
ha(a) = -0 T g (C.12)
ST T — ) T 21— a2 B '
hy(z,y) = — ! + 7 log:c%—#logy(C 13)
4’ I-o)(1-y) -0 y—a) =y2a@—y)
Chargino box contribution
flz) = ——2FL T (C.14)
! 1122 21—z BT '
22 —6x—17 3z +1
: = — 1 1
fo(a) 61—t (T-ap B (G.15)
C.2 Loop functions for the rare decays K — wviv
SM contribution
T (xz+2 3z —6
X == 1 . 1
(@) =5 (252 2 o) (C.16)
Higgs penguin contribution
x x
= | 1
Ju(@) H1—2) a1 _a2 BT (C-17)
x1log x1 r2log xo
Hy(xy,x = , C.18
2(71,2) (I —z1)(w1 —22) (1 —a2)(wa —71) (C.18)
Ho(xz1,29) — Ho(x1, x:
H3(z1,22,73) = 2(21,22) = Hy(@r,@s) (C.19)
Ty — T3
Chargino box contribution
1— -9 2 2
fo(w) = — L= DT =2 T oga (C.20)



C.3 Loop functions for the rare decays B, — pu"pu~
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C.3 Loop functions for the rare decays B, — ptu~

SM contribution

r (xz—4 3z
Y(z) = 3 (x—l + @12 logx) ,
Z(x) - 1 log 2 + 182% — 16323 4 25922 — 108z
9 144(z — 1)3
3224 — 3823 — 1522 + 18z log
72(x —1)4 '

C.4 € resummation factor

1 x

flx) = 1_$+(1_$)210g£6.

(C.21)

(C.22)

(C.23)
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