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Abstract
Today’s complex production systems allow to si-
multaneously build different products following in-
dividual production plans. Such plans may fail due
to component faults or unforeseen behavior, result-
ing in flawed products. In this paper, we propose a
method to integrate diagnosis with plan assessment
to prevent plan failure, and to gain diagnostic in-
formation when needed. In our setting, plans are
generated from a planner before being executed on
the system. If the underlying system drifts due to
component faults or unforeseen behavior, plans that
are ready for execution or already being executed
are uncertain to succeed or fail. Therefore, our ap-
proach tracks plan execution using probabilistic hi-
erarchical constraint automata (PHCA) models of
the system. This allows to explain past system be-
havior, such as observed discrepancies, while at the
same time it can be used to predict a plan’s re-
maining chance of success or failure. We propose a
formulation of this combined diagnosis/assessment
problem as a constraint optimization problem, and
present a fast solution algorithm that estimates suc-
cess or failure probabilities by considering only a
limited number k of system trajectories.

1 Introduction
As the market demands for customized products, the indus-
try struggles to implement production systems that demon-
strate the necessary flexibility while maintaining cost effi-
ciency comparable to highly automated mass production. The
need for human workforce for the setup, the development of
processes and quality assurance systems is a main cost driver
in automated production. The high costs can typically only be
amortized by very large lot sizes. For small lot sizes as found
in prototype and highly customized production, human work-
ers are still unchallenged in flexibility and cost by automated
systems. To facilitate the emergence of mass customization,
levels of flexibility similar to the flexibility of human workers
must be reached at prices only highly automated systems can
achieve.

∗This work is supported by DFG and CoTeSys.

The German research cluster ”Cognition for Technical Sys-
tems” [Beetz et al., 2007] was founded to understand human
cognition and make its performance accessible for techni-
cal systems. Future technical systems are expected to act
robustly under high uncertainty, reliably handle unexpected
events, quickly adapt to changing tasks and own capabili-
ties. A key technology for the realization of such systems
is automated planning combined with self-diagnosis and self-
assessment. These capabilities can allow the system to plan
its own actions and also react to failures and adapt the behav-
ior to changing circumstances.

From the point of view of planning, production systems are
a relatively rigid environment, where the necessary steps to
manufacture a product can be anticipated well ahead. How-
ever, from a diagnosis point of view, production systems typ-
ically have only few available sensors, and therefore it can-
not be reliably observed whether an individual manufactur-
ing step went indeed as planned. Instead, this becomes only
gradually more certain while the production plans are being
executed. Therefore, in the presence of faults or other unfore-
seen behavior, the question arises how likely it is that plans
that are ready for execution or already being executed will
succeed, and whether it is necessary to revise a plan or even
switch to another plan.

To address this problem, we propose in this paper a model-
based capability that estimates the success probability of pro-
duction plans in execution. We assume that a planner pro-
vides plans given a system model. A plan is a sequence
of action and start time pairs where each action is executed
at the corresponding start time. Whenever the system pro-
duces an observation, it will be forwarded to a module that
performs simultaneous plan assessment and plan prognostic
using probabilistic hierarchical constraint automata (PHCA)
models [Williams et al., 2001] of the system. We propose a
formulation of this problem as a soft constraint optimization
problem [Schiex et al., 1995] over a window of N time steps
that extends both into the past and the future, and present a
fast but approximate solution method. The resulting success
or failure prognosis can then be used to autonomously react
in different ways depending on the probability estimate (for
instance, continue with plan execution, discard the plan, or
augment the plan by adding observation-gathering actions to
gain further information [Kuhn et al., 2008]).

In the remainder of the paper, we first motivate the ap-



Figure 1: Effects of milling tool deterioration until breakage
in machining. Image (c) Prof. Shea TUM PE

proach informally with an example, and then present our al-
gorithmic solution and some experimental results.

2 Example: Metal Machining and Assembly
At TUM, a customized and extended Flexible Manufacturing
System (FMS) based on the iCim3000 from Festo AG is in-
stalled for evaluation purposes (see figure 4). It resembles a
typical setup for fully automated manufacturing and assembly
of small products made from machined metal. The system
consists of a conveyor transport and three stations: storage,
machining (milling and turning), and assembly.

All products are transported on custom pallets which can
be handled by the stations’ robots and the pallet carriers of
the palletized conveyor transport. For the handling of pallets
and parts at the assembly and machining stations, Mitsubishi
RV3SB robots are used. A linear three axis storage robot
is used for handing over pallets between the storage buffers
and pallet carriers on the conveyor. Machining capabilities
are provided via a milling and a turning machine, which are
loaded by a robot mounted on a linear axis enabling it to travel
between the two CNC machines and the conveyor stopper po-
sition. The setup was recreated in a physical 3D simulation1

in order to facilitate software development and testing.
For our model-based method, we need a model of this

manufacturing system which allows to track system behavior
over time, including unlikely component faults. The model is
shown in figure 2. We model the setup using the probabilistic
hierarchical constraint automata (PHCA) framework, which
we explain in detail later. In our example we use a simplified
setup consisting only of a milling and an assembly station.
Both components have an idle state and a work state. The
milling station model can transition to a “drill blunt” com-
posite state, where its behavior is basically unchanged, but
abrasions are caused during operation due to a blunt drill.
Also, in this state it’s very probable (probability 0.5) that the
drill breaks, leading to a failure state. The assembly station
model contains a composite state which models occasional
abrasions, occurring in each time step with probability 0.2.

Two products are being produced using a single production
plan Pprod: (1) a toy maze consisting of an alloy base plate
and an acrylic glass cover, held together by pins, and (2) an al-
loy part of a robot arm (see figure 3), which is used in manual

1Based on Gazebo, http://playerstage.
sourceforge.net/gazebo/gazebo.html(March, 2009).

Figure 3: The robot arm product. (c) Prof. Shea TUM PE

assembly later. The production plan Pprod consists of these
steps: (1) drill holes and maze into base plate, (2) assemble
base plate and cover (3,4,5,6) mill robot arm part.

All steps require a single time step, except for the milling
of the robot arm part, which can take up to four time steps
(yielding variations of Pprod). Thus the plan takes 2 - 6 time
steps (starting at t = 0 and ending at t = 6 at its latest, with
the last step starting at t = 5). To keep the example sim-
ple, we did not model transportation events, such as conveyor
belts or robot arms fetching parts from the storage shown in
figure 4.

The plan is considered successful if both products are
flawless. A product is flawless only if the product qual-
ity is ok, modeled through a model variable PF (t) ∈
{OK,FAULTY } (see figure 2). In the example, a prod-
uct is flawed only if the drill of the milling station breaks
(PF (t) = FAULTY ). In other words, as long as the drill
doesn’t break, the production plan will succeed.

A vibration sensor at the assembly station allows partial
binary observations of the form “abrasion occurred” and “no
abrasion occurred”. Abrasions may occur in the milling sta-
tion due to a blunt drill or in the assembly station due to rough
assembly steps. The observation is partial because the sen-
sor doesn’t differentiate between these two causes. The drill
going blunt is slightly less likely than an abrasion occurring
in the assembly. Abrasions in the assembly don’t affect the
plan; a blunt drill however is likely to break and then ruin any
milled products (see figure 1).

In our scenario, after the second plan step (assembling the
maze base plate and its cover) at t = 2 an abrasion is observed
(Abrasion(2) = OCCURRED). Two hypotheses can ex-
plain this observation: (a) the abrasion occurred within the
assembly, or (b) a blunt drill caused an abrasion in the milling
station. Hypothesis (a) is slightly more likely than (b). How-
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Figure 2: Simplified PHCA of the manufacturing system. Two components are modeled as parallel running complex locations
(indicated by dashed borders): a milling station and an assembly station. Variables appearing within such a location are local
to this location. mill.cmd refers globally to the command variable cmd within complex location mill. The dependent variable
PF (t) ∈ {OK,FAULTY } models the product feature. In this example, a broken drill deteriorates the product feature beyond
usability (PF (t) = FAULTY ), which means that the production plan fails. A single observation is possible: whether an
abrasion has occurred (Abrasion(t) = OCCURRED) or not (Abrasion(t) = NONE). An abrasion may be caused by a
blunt drill in the milling station or within the assembly station.

ever, (b) contains the possibility of a fatal breakdown (drill
breaks). The question for the planner now is: How likely is it
that the current plan still succeeds?

In the following, we describe a method which computes
this likelihood by estimating most likely states from past ob-
servations, while at the same time it assesses the remaining
success probability by projecting the current production plan
into the future. Before we describe our method in detail, we
examine the necessary prerequisites.

3 Modeling System Behavior with PHCA
Probabilistic hierarchical constraint automata (PHCA) were
introduced in [Williams et al., 2001] as a compact encoding
of Hidden Markov Models (HMMs). These automata have
the required expressivity to uniformly model both proba-
bilistic hardware behavior (e.g., likelihood of component

failures) and complex software behavior (such as high level
control programs).

Definition 1 (PHCA)
A PHCA is a tuple < Σ, PΞ,Π, O,Cmd, C, PT ) >, where:

• Σ is a set of locations, partitioned into primitive loca-
tions Σp and composite locations Σc. Each composite
location denotes a hierarchical, constraint automaton. A
location may be marked or unmarked. A marked loca-
tion represents an active execution branch.

• PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is the set of
start locations (initial state). Each composite location li
∈ Σc may have a set of start locations that are marked
when li is marked.

• Π is a set of variables with finite domains. C[Π] is the



Figure 4: The hardware setup used for experimentation,
showing storage, transport, robot and machining components.

set of all finite domain constraints over Π.

• O ⊆ Π is the set of observable variables.

• Cmd ⊆ Π is the set of command variables.

• C : Σ → C[Π] associates with each location li ∈ Σ a
finite domain constraint C(li).

• PT (li), for each li ∈ Σp, is a probability distribution
over a set of transition functions T : Σ

(t)
p × C[Π](t) →

2Σ(t+1). Each transition function maps a marked loca-
tion into a set of locations to be marked at the next time
step, provided that the transition’s guard constraint is en-
tailed. We denote the set of all transitions as T , and the
guard of a transition τ ∈ T as G(τ), where function
G : T → C[Π] maps transitions to their guards.

Definition 2 (PHCA State)
The state of a PHCA at time t is a set of marked locations
called a marking m(t) ⊂ Σ.

The example PHCA shown in figure 2 illustrates the PHCA
definition. The main factory components mill and assembly
are encoded as top level composite locations. A dashed bor-
der indicates that locations may be marked at the same time,
which means they can run in parallel. There is a third top level
location at the bottom of figure 2 whose behavioral PHCA
constraint encodes that an observed abrasion is caused by
one of the two components or both. Behavioral and guard
PHCA constraints express which observations and commands
are consistent with which locations and transition guards.
Primitive locations are for example mill.idle and mill.drill,
which encode the milling station being in an idle state and
working on a piece. An example for an observable variable
is Abrasion, which encodes whether an abrasion has oc-
curred or not. The dependent variables mill.Abrasion and
assembly.Abrasion encode for each component whether it
caused an abrasion. A command variable is, e.g., mill.cmd.
It occurs in the guard PHCA constraint for transition idle →

drill within composite location mill: mill.cmd = drill.
The transition is non-deterministic: Given the guard is sat-
isfied, it is taken with probability 0.9. The remaining possi-
bility ( completing the conditional probability distribution) is
the transition from idle to the composite location drill blunt,
which has the same guard and is taken with probability 0.1.

4 Plan Tracking as Constraint Optimization
Plan assessment requires tracking of the system’s plan-
induced evolution. In our case, it means tracking the evolu-
tion of PHCA markings. In previous work [Mikaelian et al.,
2005] we introduced an encoding of PHCA as soft constraints
and casted the problem of tracking PHCA markings within an
N -stage time window as a soft constraint optimization prob-
lem [Schiex et al., 1995]. The solutions to this problem are
the most probable trajectories (sequences of markings) within
this time window. In the following, we recap this encoding
and show how the problem of tracking plans is formulated
as constraint optimization problem based on an encoding of
a PHCA model, available observations, and the production
plan as soft constraints.

4.1 Encoding of PHCA Models as Probabilistic
Constraints

The PHCA model is encoded as variables and constraints of
a probabilistic variant of a constraint optimization problem
(COP), which is defined as follows:

Definition 3 (Constraint Optimization Problem) A Proba-
bilistic Constraint Optimization Problem (COP)R is a triple
(X,D,C) whereX = {X1, ..., Xn} is a set of variables with
corresponding set of finite domains D = {D1, . . . , Dn}, and
C = {C1, . . . , Cn} is a set of constraints (Si, Fi) with scope
Si = {Xi1, . . . , Xik} ⊆ X and a constraint function Fi :
Di1 × . . .×Dik → [0, 1]. The constraint function maps par-
tial assignments of variables in Si to a probability value in
[0, 1]. Given variables of interest (solution variables) Y ⊆X ,
a solution to the COP is an assignment to Y that has an exten-
sion to all variables X that maximizes the global probability
value in terms of the functions Fi.

The PHCA model encoding as a probabilistic COP consists
of:

• Set of variables X(t)
Σ ∪ Π(t) ∪ X(t)

Exec for t = 0..N ,
where X(t)

Σ = {L(t)
1 , ..., L

(t)
n } is a set of variables that

correspond to PHCA locations li ∈ Σ, Π(t) is the set of
PHCA variables at time t, and X(t)

Exec = {E(t)
1 , ..., E

(t)
n }

is a set of auxiliary variables used for encoding the ex-
ecution semantics of the PHCA within an N -step time
window.

• Set of finite, discrete-valued domains DXΣ
∪ DΠ ∪

DXExec
, where DXΣ

= {Marked, Unmarked} is the
domain for each variable in XΣ, DΠ is the set of do-
mains for PHCA variables Π, and DExec is a set of do-
mains for variables XExec.

• Set of logical (hard) constraints R ⊆ C that include the
behavioral constraints associated with locations within



the PHCA, as well as the encoding of the PHCA execu-
tion semantics.

• Set of soft-constraints which encode all probabilis-
tic features, such as the probability distribution PΞ

of PHCA start states and probabilities associated with
PHCA transitions PT .

Hard constraints such as behavioral PHCA constraints are
represented by a soft constraint function F mapping (partial)
variable assignments disallowed by the constraint to 0.0 and
allowed assignments, or models, to 1.0. The optimal solu-
tions to the COP are assignments to solution variables X(t)

Σ
for {t, . . . , t + N}, representing the most probable PHCA
state trajectories. To avoid confusion, we refer to the behav-
ioral and guard constraints of a PHCA as PHCA constraints,
and COP (soft and hard) constraints simply as constraints.

Executing a PHCA, given a marking m(t), means to iden-
tify possible target locations to be marked at t + 1, proba-
bilistically choose transitions and check consistency of ob-
servations and commands with transition guards as well as
behavior of the targets. Also, it involves checking for interde-
pendencies encoded in behavior PHCA constraints, e.g., that
an abrasion occurs iff an abrasion occurs in the mill or the
assembly. Finally, targets have to be marked correctly regard-
ing, among other things, the hierarchical structure of a PHCA
and initial marking.

These execution semantics are encoded as COP constraints
for single time points, consisting of consistency and marking
constraints, and for transitions between time points. The COP
consists ofN copies of these constraints, corresponding to the
N time steps of the time window. Variables belonging to time
step t are marked by superscript (t). Marking constraints are
less important here, therefore we focus on consistency and
transition constraints.

PHCA constraints are local to locations (behavior) or tran-
sitions (guards), i.e., if inconsistent, they render a specific lo-
cation or transition impossible. In contrast, COP constraints
always globally refer to the complete model. If inconsistent,
no COP solution and therefore no PHCA trajectory exists.
This means PHCA constraints cannot be mapped directly to
COP constraints. The solution are consistency constraints:
they explicitly encode consistency of behavior and guards
by connecting the PHCA constraints with auxiliary variables
Behavior

(t)
L , Guard

(t)
τ ∈ XExec for locations L and transi-

tions τ at time t:
Behavioral Consistency: (∀t ∈ {0..N},∀L ∈ Σ :

Behavior
(t)
L = Consistent⇔ C(L)(t))

Transition Guard Consistency: (∀ t ∈ {0..N − 1}, ∀ τ ∈ T
: Guard

(t)
τ = Consistent⇔ G(τ)(t))

Transition choice constraints encode, for a given location,
that a single outgoing transition may be probabilistically en-
abled at time t. All transitions are assigned auxiliary variables
{T (t)|t ∈ {0..N}} with domain {Enabled,Disabled}, en-
coding whether a transition T is possible in between t and
t+ 1, regardless of guard satisfaction.
Probabilistic Transition Choice:2 (∀t ∈ {0..N − 1},∀P ∈

2Where {T |Source(T ) = P} is short for {T ∈

mill.cmd(0) assembly.cmd(1) mill.cmd(2) p

drill assemble drill 1.0

Table 1: Command constraint for plan Pprod. Assignments
mapped to 0.0 are omitted as well as noop commands.

Σp : (∃τ ∈ {T |Source(T ) = P} ⇒ [P (t) = Marked ⇔
(∃T ∈ {T |Source(T ) = P} : T (t) = Enabled ∧ (∀T ′ ∈
({T |Source(T ) = P} − {T}) : T ′(t) = Disabled ))]

∧
[P (t) = Unmarked ⇔ (∀T ∈ {T |Source(T ) = P} :
T (t) = Disabled)]))

The probability distribution over all possible transitions is
represented by the following soft constraint function FT with
scope ST = {P (t)} ∪ {T (t)

i |Source(Ti) = P}, mapping
each model M of the transition choice constraint to probabil-
ity values:

FT (M ) =

{
Prob(Ti) if(∃T (t)

i : T
(t)
i = Enabled)

1.0 otherwise

If a transition is enabled with some probability > 0, it’s
guard must be satisfied. This is encoded through transition
consistency constraints, which specify allowed assignments
to variables T (t) and Guard(t)

τ .
For a more in depth discussion of the COP encoding of

PHCAs we refer to [Mikaelian et al., 2005].

4.2 Encoding Plans as Constraints
We consider a plan P and its goal G. A plan is a sequence
of action and start time pairs P = ((a, 0), (a, 1), . . . , (a, n)).
The starting times here are simply represented by indices of
time steps. An action is an assignment to command vari-
ables Cmd(t) ⊆ Π(t) for the corresponding start time t, re-
ferred to by a(t). For example a(t)

drill and a(t)
assemble are as-

signments mill.cmdt = drill ∧ assembly.cmdt = noop
and assembly.cmdt = assemble ∧ mill.cmdt = noop.
P is then mapped to the following logical constraint: ∀t ∈
{0..N} : a(t).

As an example table 1 shows the command soft-constraint
for plan Pprod = (adrill, aassemble, adrill) (with the second
drill operation consisting of only a single drill step) from the
example scenario.

Now we consider the plan’s goal, which is generally
to produce a flawless product. We encode this infor-
mal description as a logical constraint over product fea-
ture variables at the end of the execution, tend: G ≡
∀PF (tend) ∈ RelevantFeatures(P) : PF (tend) = OK.
RelevantFeatures() is a function mapping a production
plan to all product feature variables which define the product.
Each system component is responsible for a product feature
in the sense that if it fails, the product feature fails. In our
example, there is only a single product feature PF , which
is faulty if the drill is broken. The goal constraint for the
above mentioned plan (three time steps long) is accordingly
PF (3) = OK.

T |Source(T ) = P}.



Abrasion(2) p

OCCURRED 1.0

Table 2: Constraint for observation Abrasion(2) =
OCCURRED. Assignments mapped to 0.0 are omitted.

4.3 Encoding Observations as Constraints
Observations made during the plan execution (such as the
occurred abrasion at t = 2) are added as soft-constraints
over observable variables in the PHCA. These constraints are
very similar to soft-constraints over command variables re-
sulting from production plans. An observation at time t is
basically encoded as an assignment to a corresponding ob-
servable variable: obsV ar(t) = obsV alue. In our exam-
ple, an abrasion occurs at t = 2, resulting in the assignment
Abrasion(2) = OCCURRED. These assignments can be
directly expressed as soft-constraint function, as shown in ta-
ble 2.

5 Solving Soft Constraints to Enumerate
Most Probable System Trajectories

Together, the three described soft constraint encodings
(PHCA model, plan, observations) form a COP that captures
the probabilistic behavior of the system over a horizon of N
time steps. The model encoding can be done offline, while
the plan and the observations have to be encoded and added
to the COP online. The solutions of the COP are system state
trajectories, or more precisely, PHCA marking trajectories,
which can be used to compute a plan’s success probability.

For a given plan P we enumerate the system’s k most
likely execution traces or trajectories as the k best solu-
tions to the COP. An execution trajectory is simply a se-
quence of markings for each time step, encoded as assign-
ment to location variables. These are the variables of inter-
est for our COP. For example, Table 3 shows the most likely
execution trajectory of the example PHCA, given produc-
tion plan Pprod = (adrill, aassemble, adrill) and observation
Abrasion(2) = OCCURRED.

The effect of the plan actions and the observations is that
these additional constraints render certain PHCA trajectories
impossible (zero probability). For example, the observation
of an abrasion renders impossible the trajectory which doesn’t
entail an observed abrasion. The goal constraint, however, is
not added to the COP, since adding this constraint would ren-
der all non-goal-achieving or plan failure trajectories impos-
sible. But these are needed for normalization in computing
the success probability, as we will see shortly.

The k-best enumeration is done by translating the gener-
ated COP (as part of the compilation step) into the WCSP
format as used by the soft constraint solver Toolbar [Bouveret
et al., 2004]. In the online step, we used a modified version of
Toolbar that implements mini-bucket elimination to generate
a search heuristic for the problem. The heuristic is used by a
subsequent A* search to enumerate the k-best solutions. This
approach is described in more detail in [Kask and Dechter,
1999].

time marking

0 assembly.abrasion.idle
(0)
L , assembly.idle(0)

L ,
mill.idle

(0)
L

1 assembly.abrasion.idle
(1)
L , assembly.idle(1)

L ,
mill.drill

(1)
L

2 assembly.abrasion.abrasion
(2)
L ,

assembly.assemble
(2)
L , mill.idle(2)

L

3 assembly.abrasion.idle
(3)
L , assembly.idle(3)

L ,
mill.drill

(3)
L

Table 3: Most probable PHCA trajectory for production plan
Pprod = (adrill, aassemble, adrill), given an abrasion oc-
curred at t = 2. A shown variable X(t)

L indicates a marking
of location L at time t.

6 Combining Plan Tracking and Prognosis
In the previous sections, we described a method to track plan
execution within an N -step time window based on a system
model and observations. To assess a plan’s probability of
success, we require not only to analyze past behavior, but
also to predict its evolution in the future. In principle, this
could be accomplished in two steps: first, diagnose the sys-
tem given the past behavior, and then predict its future behav-
ior given these diagnoses and the plan. However, this two-
step-approach leads to a problem. Computing a complete set
of diagnoses (belief state) is intractable in general, and thus
the first step must be replaced by some approximation (e.g.,
computing only k most likely diagnoses [Kurien and Nayak,
2000]). But if a plan uses a certain component intensely, then
the failure probability of this component is relevant for as-
sessing this plan, even if it is very low and therefore would
not appear in the set of most likely diagnoses. That is, the
plan to be assessed determines which diagnoses are relevant.

To address this problem, we propose a method that per-
forms diagnosis and plan assessment simultaneously, by
framing it as a single optimization problem. The key idea
is as follows: The COP formulation (see previous section) is
independent of where the present time point is within the N -
step time window. It can be chosen to be the last time point
(window completely in the past, tracking only), the first time
point (window completely in the future, prognosis only), or
somewhere in the middle (tracking and prognosis combined).
In our case, we simply shift the time window just as many
time steps into the future as there are remaining future plan
actions, and choose the present time point accordingly. Now
solutions to the COP are trajectories which start in the past
and end in the future.

We then compute a plan’s success probability by summing
over system trajectories that achieve the goal. We cannot do
this exactly, again due to complexity reasons. Therefore, we
approximate the success probability by generating only the k
most probable ones. Since we have only a single optimization
problem now, we only have one source of error, compared to
two when explicitly computing the belief state and separately
predicting the plan’s evolution. Another advantage is that we



can deal with delayed symptoms as described in [Kurien and
Nayak, 2000], since we don’t have to prematurely cut off un-
likely hypotheses.

6.1 Approximating the Plan Success Probability
We denote the set of all trajectories as Θ and the set of the
k-best trajectories as Θ∗. A trajectory is considered suc-
cessful if it entails the plan’s goal constraint. We define
SUCCESS := {θ ∈ Θ|∀s ∈ Rsol, s ↓Y = θ : FG(s) =
true}, where Rsol is the set of all solutions to the proba-
bilistic constraint optimization problem, s ↓Y their projec-
tion on marking variables, and FG(s) is the goal constraint.
SUCCESS∗ is the set of successful trajectories among Θ∗.
The exact success probability is computed as

P (SUCCESS|Obs,P) =∑
θ∈SUCCESS

P (θ|Obs,P) =

∑
θ∈SUCCESS

P (θ,Obs,P)

P (Obs,P)
=

∑
θ∈SUCCESS

P (θ,Obs,P)∑
θ∈Θ P (θ,Obs,P)

=∑
θ∈SUCCESS P (θ,Obs,P)∑

θ∈Θ P (θ,Obs,P)

The approximate success probability
P ∗(SUCCESS∗|Obs,P) is computed the same way,
only SUCCESS is replaced with SUCCESS∗ and Θ with
Θ∗.

6.2 Algorithm for Plan Evaluation
Plans are generated by the planner and then advanced until
they are finished or new observations are available. In the
latter case the currently executed plan is evaluated using Al-
gorithm 1. It first computes the k-best solutions to the COP
using an external solver (Toolbar in our case). This results in
the k most probable trajectories. Then, using these trajecto-
ries, it approximates the success probability of plan P and
finally compares the probability against the two thresholds
ωsuccess and ωfail. Now we have to address one of three cases:
(1) The probability is above ωsuccess, i.e. the plan will prob-
ably succeed, (2) the probability is below ωfail, i.e. the plan
will probably fail or (3) the probability is in between both
thresholds, which means the case cannot be decided. In the
first case we simply continue execution. In the second case
we have to adapt the plan to the new situation. This is done
by REPLAN(P , Θ∗), which modifies the future actions of
P taking into account the diagnostic information contained
in Θ∗. The third case indicates that not enough information
about the system’s current state is available. As a reaction,
the procedure REPLANPERVASIVEDIAGNOSIS(P , Θ∗) im-
plements a recently developed method called pervasive diag-
nosis [Kuhn et al., 2008]. It addresses this problem by aug-
menting a plan with information gathering actions. We don’t
detail the procedures REPLAN and REPLANPERVASIVEDI-
AGNOSIS here as it would exceed the scope of this paper.

Algorithm 1
1: procedure EVALUATEPLAN(R = (X,D,C), Obs, P)
2: R’← add constraints over Obs and P toR
3: Θ∗ ← k-best solutions ofR’ for Y
4: p← P ∗(SUCCESS∗|Obs,P)
5: if p > ωsuccess then return
6: else if p < ωfail then
7: stop execution of P
8: REPLAN (P , Θ∗)
9: else

10: stop execution of P
11: REPLANPERVASIVEDIAGNOSIS(P , Θ∗)
12: end if
13: end procedure

7 Experimental Results
We ran experiments on the compiled COP of the example
PHCA and scenario described in section 2. The COP had
744 binary variables and 777 constraints. Generating the best
25 trajectories (which in our example includes all trajectories
with nonzero probability, allowing to compute the exact suc-
cess probability) in the online step took approximately five
seconds3.

First results indicate that the general plan assessment ap-
proach works as expected. Figure 5 shows the success prob-
abilities of small variations of Pprod from our example.
The variations make different use of the milling station (0
- 4 times). It can be seen that the more Pprod utilizes
the drill, the less probable the plan is to succeed. Further-
more figure 5 shows the effect of approximation. Decreas-
ing k in our k-best approach means that fewer trajectories
are enumerated and thus the approximate success probability
P ∗(SUCCESS∗|Obs,P) deviates from the exact success
probability P (SUCCESS|Obs,P) (solid line) 4.

8 Related Work
Similar to plan assessment is the problem of probabilistic
verification of model-based programs [Mahtab et al., 2004].
Given a high-level control program, a goal and a model of
a fault-aware system, composed of software and hardware
components (modeling the possibility of probabilistic fail-
ure), the problem is to determine the most likely circum-
stances under which the control program drives the system to-
wards a goal violating state. A plan can be understood as such
a high level control program. So in general, these problems
are similar: Predicting the behavior of a (non-deterministic)
system (soft- and hardware) driven by a plan, given certain
observations. However, our problem differs in that we are
interested in the set of all goal achieving system trajectories,
from which we derive the plan’s success probability, while for
the verification problem, only the single most probable goal
violating trajectories are interesting. So basically, we have to

3On a machine with a recent 2.2GHz dualcore CPU and 2 GB of
RAM.

4Computing the exact success probability was possible in our
relatively small example.
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Figure 5: Approximate success probability (y-axis) of plan
Pprod against varying usage of the milling station (0,1,2,
. . . times, x-axis) after the observation at t = 2. The different
plots show the approximation with different values for k.

go one step further, not only enumerating the trajectories, but
also summing over them to compute the success probability.

McDermott [McDermott, 1993] and Beetz’s [Beetz, 2000]
Reactive Plan Language (RPL) chooses a different approach
to deal with system failures and uncertainty. It employs a hi-
erarchical task decomposition, breaking down top level goals
to a finer granularity recursively. The plan itself is not an
abstract sequence of symbols but executable code. The lan-
guage allows reasoning on and transformation of the plans.
Heuristic routines attain the subgoals and cope with failures
and unexpected events during the execution. A goal for find-
ing a cup could e.g. look in the dishwasher after seeing that
no cups are left in the cupboard. This approach is particu-
larly promising in domains of high uncertainty, where clas-
sical planning fails. However, the RPL approach currently
neglects explicit diagnosis techniques and relies on the ob-
servability of relevant environment states.

9 Conclusion and Future Work
We presented a model-based method that combines diagno-
sis of past execution steps with prognosis of future execution
steps of production plans, in order to allow the production
system to autonomously react to failures and other unfore-
seen events. The method has been implemented, and prelim-
inary results for a real-world machining scenario show it can
indeed be used to guide the system away from plans that rely
on suspect system components. Future work will concern the
integration of the method into our overall planning/execution
architecture, and its extension to multiple simultaneous plans.
We are also interested in exploiting the plan diagnosis/prog-
nosis results in order to update the underlying model, for in-
stance, to automatically adapt to parameter drifts.
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