
Plan Assessment for Autonomous Manufacturing as
Bayesian Inference ?

Paul Maier, Dominik Jain, Stefan Waldherr and Martin Sachenbacher

Technische Universität München, Department of Informatics
Boltzmanstraße 3, 85748 Garching, Germany

{maierpa,jain,waldherr,sachenba}@in.tum.de

Abstract. Next-generation autonomous manufacturing plants create individual-
ized products by automatically deriving manufacturing schedules from design
specifications. However, because planning and scheduling are computationally
hard, they must typically be done offline using a simplified system model, mean-
ing that online observations and potential component faults cannot be considered.
This leads to the problem of plan assessment: Given behavior models and current
observations of the plant’s (possibly faulty) behavior, what is the probability of a
partially executed manufacturing plan succeeding? In this work, we propose 1) a
statistical relational behavior model for a class of manufacturing scenarios and 2)
a method to derive statistical bounds on plan success probabilities for each prod-
uct from confidence intervals based on sampled system behaviors. Experimental
results are presented for three hypothetical yet realistic manufacturing scenarios.

1 Introduction
In a scenario of mass customization using autonomous manufacturing, a factory is en-
visaged that generates, during the night, the manufacturing plans for numerous indi-
vidualized products to be produced the next day. It employs model-based planning and
scheduling capabilities, which use very abstract models to keep planning/scheduling
tractable, omitting e.g. behavioral knowledge about potential failures of factory stations.
In addition, observations made at execution time are not available at planning/scheduling
time. In the light of such partial observations, it may become clear that certain plans will
fail, e.g. if a plan operates a component that is now likely to be faulty. This leads to a
problem of evaluating manufacturing plans with respect to online observations, based
on models focussed on station behavior. It is especially interesting from the point of
view of autonomous manufacturing control, where systems are rigid enough to allow
automated advance planning/scheduling (rather than online planning), yet bear inherent
uncertainties such as station failures.

We call this evaluation plan assessment [1]. The idea is to compute, for each prod-
uct, bounds on the respective success probability. This allows to decide whether to
1) continue with a plan, 2) stop the plan because it probably will not succeed or 3)
gather more information. It requires a) models of the complex, uncertain interactions
among products and factory stations and b) efficient reasoning. In [1] we proposed
using probabilistic automata models and a solution based on constraint optimization,
? Preprint submitted to KI 2010.

Fig. 1. Effects of cutter deterioration until breakage in machining. Image c© Prof. Shea TUM PE.

which enumerates the k most probable system behaviors to estimate success probabil-
ities. However, computing bounds is not yet possible with this approach. In this work
we choose a different approach, where we a) model entire classes of manufacturing
systems as Bayesian Logic Networks (BLNs) [2] and b) use sampling algorithms for
efficient computation of statistical bounds on success probabilities based on confidence
intervals. The contribution of this paper is 1) to present a BLN model for a class of
manufacturing systems, 2) to propose a method to obtain said bounds from Clopper-
Pearson confidence intervals [3] computed during inference and 3) to demonstrate the
feasibility of this approach through experimental results.

Closest to our work are verification methods such as probabilistic model checking
[4], online verification [5], or probabilistic verification [6]. However, [4] don’t regard
online observations, and [6] deal only with single most likely behaviors, whereas we
have to consider many goal-violating (and achieving) behaviors, and all of them usu-
ally focus on models of single systems such as cars [5]. In contrast, we model a manu-
facturing facility and the products it processes. Other work addressed automated man-
ufacturability analysis. They ask whether machining plans violate design tolerances
or cost constraints [7,8], evaluating them against static constraints. In contrast, we are
interested in dynamic machine behavior (nominal and off-nominal) induced by plan
execution.

Assembly and Metal Machining Example Our factory test-bed – an iCim3000-based
Festo Flexible Manufacturing System – consists of conveyor transports, storage, ma-
chining and assembly. It serves as the basis for hypothetical example scenarios, where
a scheduler schedules the manufacturing of toy mazes (Fig. 1). A maze consists of
an alloy base plate, a small metal ball and an acrylic glass cover fixed by metal pins.
It is manufactured by first cutting the labyrinth groove into the maze base-plate, then
drilling the fixation holes, putting the ball into the labyrinth, putting the glass cover
onto the base plate and finally pushing the pins in place to fixate it.1 While pushing,
the assembly station measures the force to prevent applying too much of it. On its route
through the factory the product might get flawed as a result of being worked on by
faulty stations. Machining stations are suspicious candidates, because their cutter might
break during operation. A broken cutter severely damages maze products (see Fig. 1).
Since machining stations not only cut grooves but also drill the holes for the pins, bro-
ken cutters might also damage these holes. The damage, however, can only be detected
later on: If an assembly station tries to push pins into damaged holes, too much force
is applied and an alarm is triggered. The same alarm might be triggered if the assem-
bly station’s calibration is off, leading to a misalignment of the gripper holding the pin

1 In our abstract scenarios, we disregard transportation processes.

and the base-plate’s hole. This means that one cannot infer from the alarm whether
the assembly station or the machining station is at fault. The question now is: Is the
alarm an indicator for a broken cutter, and how does this possibility affect the different
manufacturing plans?

2 Plan Assessment with Predicted System Behaviors
We address the following plan assessment problem: Given a model Massess and ob-
servations o0:t obtained up to time point t, compute good lower and upper bounds
pl and pu on the probability Pr(Gi | o0:t) of a manufacturing plan Pi succeeding:
pl ≤ Pr(Gi | o0:t) ≤ pu.

We assume a given schedule S of manufacturing operations, i.e. a sequence of N
tuples 〈(pid, cid, t, a)〉j , where a tuple specifies that component cid performs action a
on product pid at time t. It can be seen as a composition of the individual plans Pi for
each product, which are sequences of actions a. Massess is a probabilistic state space
model derived from S, which encodes factory station and product behavior, as well as
possible observations. It defines a distribution describing the possible state evolutions
for all modeled factory stations and products over time and the influence of observations
on this evolution. Variables Xt encode possible states at time t, where St t(Massess) is
the set of all possible (atomic) assignment vectors for Xt, and St(Massess) is the set of
all assignment vectors over all N time steps, i.e. the set of all possible system trajecto-
ries. These trajectories go beyond current time t, thereby predicting system behavior.
Gi represents the event that a manufacturing plan Pi succeeds, i.e. generates a product
according to its specification (e.g. a CAD/CAM model or a Bill of Materials (BOM)).
Our basic assumption is that Pi succeeds as long as no component of the factory fails.
Therefore, we model products as Boolean variablesGtend

i (with True/False for “product
ok/flawed”). Success of Pi means that Gtend

i = True at the future finishing time point
tend of the product. This simple modeling could be extended to cover multiple interme-
diate product states by using richer (finite) domains than {True,False}. We define Gi as
the set of all goal-achieving trajectories Gi = {θ ∈ St(Massess) | θ |= Gtend

i = True}.
We now define the success probability in terms of goal-achieving system trajectories:

Definition 1. Plan Success Probability Given a model Massess, observations o0:t and
a manufacturing plan Pi, we define the probability that Pi will succeed as

Pr(Gi | o0:t) =
∑
θ∈Gi

Pr(θ | o0:t)

In most cases, it is infeasible to compute Pr(Gi | o0:t) exactly as it requires enu-
merating all trajectories to generate the complete distribution. Approximations can be
computed based on a reduced set of trajectories Θ∗ ⊂ St(Massess). In [1] we intro-
duced an approach that enumerates only the k most probable trajectories. Even bet-
ter is to compute hard bounds pl and pu defined as sum over conditional probabili-
ties Pr(θ | o0:t) = Pr(θ,o0:t)

Pr(o0:t)
of goal-achieving and goal-violating trajectories (entail-

ing Gtend
i = False) θ ∈ Θ∗. Unfortunately, these bounds require to exactly compute

Pr(o0:t), which again requires the complete distribution. Therefore, in this work, we

Fig. 2. Bayesian logic network that models a class of manufacturing scenarios with machining
(called cutter) and assembly stations, and their interaction with maze products.

use sampling, which allows us to derive statistical bounds p∗u and p∗l from confidence in-
tervals that we compute from the samples. Then we can apply a decision procedure we
described in [1], with two modifications: 1) p∗l is compared against a threshold ωsuccess

and p∗u against a threshold ωfail (which we assume as given) and 2) approximation with
k most probable trajectories is replaced by sampling.

3 A Bayesian Logic Network Model of Manufacturing Scenarios
We modeled the behavior of factory machining and assembly stations as well as prod-
ucts as a Bayesian logic network (BLN) [2] Bassess (see Fig. 2). BLNs combine first-
order logic (FOL) with probabilistic modeling, allowing for compact representations of
typical manufacturing interactions as well as uncertain events for classes of manufactur-
ing systems, and they are geared towards practical application of many inference algo-
rithms. A BLN is a template for the construction of a mixed deterministic/probabilistic
network [9], which This means Bassess models a class of manufacturing systems, cap-
turing general relations between stations and products, from which models Massess are
instantiated for concrete factories and schedules. We then either convert Massess to a
standard Bayesian net, so we can apply the large body of Bayesian inference techniques,
or do inference in mixed networks directly [10].2 BLNs generalize the well-known for-
malisms of hidden Markov models (HMM) and dynamic Bayesian networks (DBN).

Key elements of a BLN Bassess are abstract random variables (ARVs), entity types,
fragments and logical formulas. ARVs correspond to logical predicates evaluating to
true or false and model states of stations and products as well as relations such as sta-
tions working specific products. Placeholders are used within ARVs to refer to abstract
typed entities. Fragments are associated with conditional probability tables. Distribu-

2 We refer to both Bayesian and mixed nets with Massess

tions over instantiations of ARVs are defined through multiple fragments (ellipses in
Fig. 2) with mutually exclusive first-order logic preconditions (boxes in Fig. 2).

Our model Bassess realizes state evolution over time with two abstract entities t0
and t1, representing successive time points, and ARVs relating to them for successive
actions, states, etc. A time line is enforced through ARV next(t0, t1), which encodes
that t0 precedes t1. When instanciating, successiveness of time points T0, T1, . . . is
ensured by clamping next(T0, T1), next(T1, T2), and so on to True. Uncertain sta-
tion evolution is modeled using two ARVs: assemblyOK(a, t0), assemblyOK(a, t1)
and cutterOk(c, t0), cutterOk(c, t1) for assembly and machining stations. The fail-
ure probabilities 0.03 and 0.01 for machining and assembly stations are encoded in the
fragments for these ARVs. Product state evolution is modeled in a similar way, i.e. we
have the ARVs mazeOK(o, t0), mazeOK(o, t1). Their fragments are different in that
they currently don’t encode any uncertainty. The force alarm observations are encoded
as evidence ARVs: pforceHigh(a, t) encodes that the force measured at the assembly
station a at time t was too high (if True). To encode actions, Bassess consists of rela-
tions for assembly and machining stations working mazes at a certain time, i.e. ARVs
assemblyActionOn(a, o, t) and cutterActionOn(c, o, t). The complex relation that a
force alarm can be triggered by cutter-damaged holes as well as a miscalibrated as-
sembly (section 1) can be expressed as a FOL formula: assemblyActionOn(a, o, t) ⇒
(pforceHigh(a, t)⇔ (¬assemblyOK(a, t) ∨ ¬mazeOK(o, t)))3.

To perform plan assessment for a specific scenario, Bassess is instantiated to a con-
crete model Massess. ARVs are thereby compiled to a set of random variables (e.g.
mazeOK(Maze0,T0)), fragments to conditional probability distributions over them,
and logical formulas to propositional logical constraints. In particular, instances of
ARVs representing product states when the product should be finished encode product
success, i.e. the goal variablesGtend

i . In our scenarios we use goals mazeOK(Maze0,T5),
mazeOK(Maze1,T9), mazeOK(Maze2,T7) and mazeOK(Maze3,T12). A given sched-
ule S determines the set E′ of concrete instances of machining and assembly stations
as well as maze products (e.g. Mach0, Maze0, Assy0). Evidence variables (instantiated
from evidence ARVs) are clamped to values representing the actual observations, e.g.
pforceHigh(Assy0,T4) = True.

4 Computing Confidence Intervals for Plan Success Probabilities
Now we can use Massess to assess manufacturing plans for individual products. Since
we usually cannot have an exact Pr(Gi | o0:t), nor hard bounds (Section 2), we propose
to compute the confidence interval of Pr(Gi | o0:t): “soft” bounds p∗u and p∗l according
to a predefined probability γ, the coverage probability, that Pr(Gi | o0:t) will be within
these bounds.

Theorem 1. The bounds p∗u and p∗l on Pr(Gi | o0:t) are given by the Clopper-Pearson
interval [3].

Proof. Let G be a Bernoulli-distributed Boolean random variable (BBRV) with pa-
rameter p, which is being sampled in a Bernoulli-process, counting appearances of

3 For technical reasons we modeled it using deterministic fragments (i.e. with prob. values 1.0
and 0.0), the FOL formula however is the more elegant equivalent.

coverage Number of samples Exact
rate γ 100 2500 10000
0.95 mazeOK(M2,T7) [0.002, 0.054] [0.035, 0.051] [0.035, 0.042] 0.0387

mazeOK(M1,T9) [0.593, 0.772] [0.591, 0.629] [0.587, 0.606] 0.6041
mazeOK(M0,T5) [0.000, 0.029] [0.000, 0.001] [0.000, 0.000] 0.0000

0.999 mazeOK(M2,T7) [0.010, 0.162] [0.030, 0.057] [0.035, 0.048] 0.0387
mazeOK(M1,T9) [0.359, 0.677] [0.573, 0.637] [0.594, 0.626] 0.6041
mazeOK(M0,T5) [0.000, 0.066] [0.000, 0.003] [0.000, 0.001] 0.0000
runtime 0.06 1.61 6.24 58.76

0.06 1.52 6.00 58.76

Table 1. Confidence intervals on success probabilities for the mazes in scenario 1 obtained with
likelihood weighting and exact results obtained through variable elimination.

G = True and G = False as a and b, respectively. Let γ be the coverage prob-
ability. Then the Clopper-Pearson interval defines bounds p∗l = F−1

a,b,γ(1 −
α
2) and

p∗u = F−1
a,b,γ(

α
2), where α = 1 − γ and F−1

a,b,γ = I−1
a+1,b+1, I being the regularized in-

complete beta function; I−1 is thus the inverse of the cumulative distribution function
(CDF) of the beta distribution. Any manufacturing goal Gtend

i is a BBRV with param-
eter p = Pr(Gi | o0:t). We sample trajectories that correspond to the observations and
entail assignments to Gtend

i . Therefore, the trajectory sampling can be seen as a sam-
pling of Gtend

i . The sampling yields n samples, n
G

tend
i

goal-achieving and n − n
G

tend
i

goal-violating. If we now set G = Gtend
i , a = n

G
tend
i

, b = n − n
G

tend
i

, the theorem
follows.

We quickly recap why this works. We abbreviate Gtend
i to G. The quantities nG,

n − nG determine a distribution over p, which (assuming a uniform distribution over
parameters when there are no samples) is given by the beta distribution [11]. The CDF
FnG,n−nG

(x) = Pr(p ≤ x) allows to compute the probability that p is at most x. Ob-
serve now that the complement of the given γ = Pr(p∗l ≤ p ≤ p∗u), i.e. the probability
that p is outside the bounds of the interval, can be written as Pr(p < p∗l) + Pr(p >
p∗u) = 1− γ = α. We can rewrite this equation as Pr(p ≤ p∗l)+ 1−Pr(p ≤ p∗u) = α,
where all probabilities are represented through the CDF FnG,n−nG

(x). Now we can
use the inverse CDF F−1

nG,n−nG
(y) to compute the bounds p∗l and p∗u. Except in ex-

treme cases, we can assume that α is to equal parts composed of Pr(p ≤ p∗l) and 1
- Pr(p ≤ p∗u), i.e. Pr(p ≤ p∗l) = α

2 = 1 − Pr(p ≤ p∗u). Resolving for p∗l yields
p∗l = F−1

nG,n−nG
(α2) and for p∗u gives p∗u = F−1

nG,n−nG
(1− α

2).

Of course we would like to have as narrow intervals as possible. Increasing the num-
ber of samples gives us narrower intervals. Thus, a practical stop criterion for sampling
algorithms is to predefine the size of the interval to be sufficiently small, and then sam-
ple until the interval is narrower than this predefined size. Note that an estimate for the
success probability itself can be computed in the usual way by dividing the number of
goal-achieving samples by the number of all samples, Pr(Gi | o0:t) ≈ nG

n .

5 Experimental Results

We inferred the success probability of mazes for three different (hypothetical) scenar-
ios, with corresponding ground models instantiated from Bassess, using three sampling
algorithms [12,13,10]. We ran Java implementations of the algorithms on an Intel Core2
Duo with 2.53 Ghz and 4GB of RAM. In all scenarios there were two machining
stations (Mach0/1) and one assembly station (Assy0). In the smaller scenario 1 (310
nodes) Mach0 has become faulty. Its schedule ranges over nine time points for three
mazes (Maze0/1/2). Observations have been made up to T4, and a force alarm was trig-
gered at T4 while the assembly station was pushing pins into Maze0. In scenario 2 (520
nodes) Assy0 is faulty. Here, four mazes (Maze0/1/2/3) are scheduled, covering 12 time
points. Observations are available up to T8. The pin assembly is done at T4, T6 and T8
for Maze0, Maze2 and Maze1 respectively. A force alarm is observed at all three time
points. Scenario 3 (520 nodes) is similar to the former, with the difference that again
Mach0 is faulty. Consequently, at T8 no force alarm is triggered. In all scenarios Maze0
and Maze2 are cut on Mach0, while Maze1 and (in scenarios 2 and 3) Maze3 are cut on
Mach1. Further, Maze0/1/2/3 should be finished by T5/9/7/12, respectively. Note that
results for different products in the same scenario are obtained simultaneously.

In all scenarios we can infer meaningful bounds on the products’ success proba-
bilities and thereby identify jeopardized products. In scenario 2 (Maze0:[0.000, 0.003],
Maze1: [0.000, 0.003], Maze2: [0.000, 0.003], Maze3: [0.002, 0.011]), the observations
strongly indicate a faulty assembly (which is a lot more likely than both Mach0 and
Mach1 failing simultaneously), which means that the unfinished Maze3 will certainly
fail, too. In scenario 3, in contrast, (Maze0: [0.000, 0.000], Maze1: [1.000, 1.000], Maze2:
[0.000, 0.000], Maze3: [0.908, 0.918]) Maze3 is very likely to succeed since, given the
observations, it is highly likely that Mach0 is faulty. Scenario 1 is less conclusive (see
table 1): While Maze2 is clearly certain to fail, there’s an uncertain chance that Maze1
will be ok. So all in all the result could lead to these decisions: In scenario 2, stop all
manufacturing and in scenario 3, continue to finish Maze3. In uncertain cases such as
scenario 1 methods to actively gather information could be triggered [14].

Table 1 illustrates how choosing stricter coverage probabilities γ widens the inter-
val. It also confirms that increasing the number of samples results in better intervals.
Good intervals (γ = 0.95, width less than 0.01) can already be retrieved in under a
minute, sometimes even in under a second (scenario 2, SampleSearch), with less than
1000 samples. Choosing a good algorithm seems to depend on the scenarios (see Table
2): for 1 and 2 SampleSearch is best, while for 3, likelihood weighting is the better
choice. Notably, the runtime does not strictly depend on the problem size, i.e. no single
algorithm can be trusted to be equally quick for all problems. A solution could be to run
algorithms simultaneously (taking advantage of current multi-core technology) up to a
time limit and then take the result with the narrowest interval, or stop when a predefined
interval width is reached.

Note that simplified inference methods such as forward filtering (which one might
use for HMMs) are not applicable to the type of problem we considered, because the
interactions that we modelled result in several coupled temporal chains, which, in par-
ticular, do not have the Markov property. Inference is, therefore, considerably more dif-

Algorithm
maxI |I| likelihood weighting backward simulation SampleSearch

≤ 0.025
5900
3.61

320
0.90

2020
3.82

5820
1.23

200
5.44

-4

-
6180
0.84

200
0.06

1380
13.27

≤ 0.01
36800
22.42

1000
2.67

11800
21.47

37280
7.00

300
7.56

-
-

38440
4.76

660
0.16

5080
42.08

≤ 0.0025
588020
384.38

17420
50.06

185820
362.08

588860
111.95

1200
31.75

-
-

614700
79.70

6460
1.40

181320
1551.25

Table 2. Comparing algorithms on scenarios 1 / 2 / 3 by average number of samples (above)
needed to reach a target confidence interval width, and runtime in seconds (below).

ficult and presents a challenge as problem sizes increase. Advances in lifted inference
[15,16] might soon alleviate this problem.

6 Conclusion and Future Work
We presented a model-based method that samples behavior-trajectories of stations and
products in a manufacturing scenario to compute confidence intervals for success prob-
abilities of the products, thereby allowing an autonomous manufacturing system to re-
act to failures and other unforeseen events. The method uses a Bayesian logic network
(BLN) model of a class of manufacturing systems. Results show that, for multiple sce-
narios generated from the same abstract BLN, we can indeed identify jeopardized prod-
ucts based on the computed bounds. Future work will concern a direct comparison with
our previous work [1] and more experiments in order to assess the method’s scalability
limits. We are also interested in exploiting the obtained results in order to update the un-
derlying model, for instance, to automatically adapt to parameter drifts of components,
or to learn, e.g., failure probabilities in the first place.

References
1. Maier, P., Sachenbacher, M., Rühr, T., Kuhn, L.: Constraint-Based Integration of Plan Tracking and Prognosis for

Autonomous Production. In: Proc. KI-2009. LNCS, Paderborn, Germany, Springer (2009)
2. Jain, D., Waldherr, S., Beetz, M.: Bayesian Logic Networks. Technical report, Technische Universität München (2009)
3. Clopper, C., Pearson, E.: The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26

(1934) 404
4. Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyzing Concurrent and Proba-

bilistic Systems. Volume 23 of CRM Monograph Series. American Mathematical Society (2004)
5. Althoff, M., Stursberg, O., Buss, M.: Online Verification of Cognitive Car Decisions. In: Proc. IV-2007. (2007)

728–733
6. Mahtab, T., Sullivan, G., Williams, B.C.: Automated Verification of Model-Based Programs Under Uncertainty. In:

Proc. ISDA-2004. (2004)
7. Nau, D.S., Gupta, S.K., Regli, W.C.: Manufacturing-Operation Planning versus AI Planning. In: Integrated Planning

Applications: Papers from the 1995 AAAI Spring Symposium, AAAI Press (1995) 92–101
8. Kiritsis, D., Neuendorf, K.P., Xirouchakis, P.: Petri Net Techniques for Process Planning Cost Estimation. Advances

in Engineering Software 30 (1999) 375–387
9. Mateescu, R., Dechter, R.: Mixed Deterministic and Probabilistic Networks. Annals of Mathematics and Artificial

Intelligence 54 (2008) 3–51
10. Gogate, V., Dechter, R.: SampleSearch: A Scheme that Searches for Consistent Samples. In: Proc. AISTATS-2007.

(2007)
11. Bishop, C., et al.: 2. Probability Distributions. In: Pattern Recognition and Machine Learning. Springer (2006) 67–74

4 Backward simulation did not produce any results for scenario 3, because the problem was too
ill-conditioned, such that no countable samples could be generated. SampleSearch does not
have this problem and will always generate usable samples (given enough time).

12. Fung, R.M., Chang, K.C.: Weighting and integrating evidence for stochastic simulation in bayesian networks. In: Proc.
UAI-1989, North-Holland Publishing (1989) 209–220

13. Fung, R., Del Favero, B.: Backward Simulation in Bayesian Networks. In: Proc. UAI-1994, Morgan Kaufmann (1994)
227

14. Kuhn, L., Price, B., de Kleer, J., Do, M.B., Zhou, R.: Pervasive Diagnosis: The Integration of Diagnostic Goals into
Production Plans. In Fox, D., Gomes, C.P., eds.: Proc. AAAI-2008, AAAI Press (2008) 1306–1312

15. Rodrigo de Salvo Braz and Eyal Amir and Dan Roth: Lifted First-Order Probabilistic Inference. In: IJCAI. (2005)
1319–1325

16. Parag Singla and Pedro Domingos: Lifted First-Order Belief Propagation. In: Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence. (2008)

