
Institut für Informatik

Technische Universiẗat München

Particle-based

Flow Visualization

Kai Bürger

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. G.J. Klinker, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Dr. R. Westermann

2. Univ.-Prof. Dr. H. Theisel,

Otto-von-Guericke-Universität Magdeburg

Die Dissertation wurde am 31.08.2010 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 19.11.2010 angenommen.

To my family and friends.

Abstract

Due to technological and algorithmic advances it is by now possible to simulate com-

plicated 3D unsteady flows at a very high spatial resolution.To find relevant features

in such flows and, thus, to gain insight into the underlying flow phenomena, effective

exploration mechanisms are needed. Especially interactive visual exploration environ-

ments are important, since they enable putting experts and their capabilities into the

center of the exploration process. This requires new possibilities to interactively guide

the exploration process by exploiting the humans’ perceptual and cognitive abilities.

This thesis presents a framework for the visual explorationof 3D unsteady flow fields

that addresses the aforementioned requirements. A varietyof techniques for interactive

flow visualization has been developed, consisting of novel concepts as well as extensi-

ons of existing geometry-, texture- and feature-based flow visualization techniques.

We introduce techniques that allow to track huge particle sets and to extract a lar-

ge number of characteristic lines as well as to generate adaptive integral surfaces in

real time. We present a variety of advanced rendering modalities that allow to enco-

de additional flow properties into the extracted geometric representation and, thus, to

communicate even more information in a single visual event.

Particle tracing in 3D can quickly overextend the viewer dueto the massive amount

of visual information that is typically produced by this technique. We alleviate this

problem by presenting importance-driven visualization techniques that automatically

reduce the amount of presented information to a detailed view on relevant features,

while at the same time preserving context information.

Streak surface extraction is a prominent tool for interactive flow exploration. How-

ever, to enable a feature-driven analysis of the flow, one is mainly interested in surfaces

that show separation profiles and, thus, detect unstable manifolds in the flow. We in-

troduce a new method to interactively reveal such features by extracting Lagrangian

coherent structures in a subregion of the flow domain and employing them as seeding

i

ii

structures for the generation of generalized streak surfaces that reside on the boun-

dary layers of dynamically coherent regions. This concept allows to study large scale

transport behavior intuitively, as it reveals the evolution of the global flow geometry in

real time.

Furthermore, we introduce new techniques for interactive surface flow visualiza-

tion, discuss a variety of geometry-based visualization techniques for such fields and

present a view-independent, dense surface flow representation on the basis of line inte-

gral convolution.

To achieve an interactive exploration environment for 3D unsteady flows, we intro-

duce an asynchronous streaming strategy for a time-resolved sequence of flow fields

and present parallelization strategies that effectively exploit graphics processing units

as numerical co-processor. Feature extraction and the successive mapping to renderable

primitives are executed entirely on the GPU to facilitate the real-time performance.

We conclude this manuscript with a brief digression into another field in scienti-

fic visualization, namely volume rendering. Here, we develop an interactive volume

editing framework. We present techniques to directly manipulate or classify the under-

lying data and we employ particle tracing to compute a local iso-surface parametrizati-

on, which in turn is used for advanced volume rendering and illustration techniques.

As all approaches presented in this work rely on consumer class hardware, their ap-

plication is available to a wide range of users. The presented techniques allow scientists

to effectively explore scientific data sets interactively,thus giving rise to new possibili-

ties to gain insight in and communicate the findings of complex phenomena.

Zusammenfassung

Dank technologischer und algorithmischer Fortschritte ist es heutzutage möglich, kom-

plizierte instationäre 3D Strömungen in einer äussersthohen räumlichen Auflösung

zu simulieren. Um relevante Strukturen in solchen Strömungen zu entdecken und da-

mit Einsicht in die zugrunde liegenden Phänomene zu erlangen, werden effektive Ex-

plorationsmechanismen benötigt. Hierbei sind besondersinteraktive visuelle Explora-

tionsumgebungen wichtig, da sie es erlauben, Experten samtIhrer Auffassungsgabe

in den Mittelpunkt des Explorationsprozesses zu stellen. Dies verlangt jedoch nach

Möglichkeiten den Explorationsprozess interaktiv, durch Ausnutzung der menschlichen

Wahrnehmungs- und kognitiven Fähigkeiten, zu steuern.

Diese Dissertation stellt ein Framework vor, das die interaktive visuelle Exploration

instationärer 3D Strömungsfelder ermöglicht und somitobige Anforderungen erfüllt.

Es wurde eine Vielfalt interaktiver Strömungsvisualisierungstechniken entwickelt, be-

stehend aus neuen Konzepten, sowie Erweiterungen bereits existierender Ansätze, in

den Bereichen der Geometrie-, Textur- und Feature-basierten Strömungsvisualisierung.

Wir stellen Techniken vor, die es erlauben, grosse Mengen von Partikeln interaktiv

zu verfolgen sowie charakteristische Teilchentrajektorien und adaptive Integralflächen

in Echtzeit zu extrahieren. Wir präsentieren eine Auswahlunterschiedlicher Visualisie-

rungsmodalitäten, die zusätzliche quantitative Information intuitiv vermitteln können.

Die Partikelverfolgung in 3D tendiert dazu, aufgrund der schieren Flut erzeugter vi-

sueller Information, die menschliche Wahrnehmung zu überlasten. Wir lindern dieses

Problem durch die Einführung neuerfocus+contextTechniken, welche automatisch die

Menge präsentierter visueller Information reduzieren, dabei jedoch wichtige Zusam-

menhänge erhalten können.

Streichflächen sind ein bedeutendes Werkzeug der interaktiven Strömungsvisuali-

sierung. Um jedoch eine Feature-getriebene Analyse der Strömung zu ermöglichen,

sollten möglichst separierende Flächen extrahiert werden, die instabile Mannigfaltig-

iii

iv

keiten aufdecken. Wir präsentieren ein neues Verfahren, das mit Hilfe der Lagrange-

schen Teilchendynamik—und Prinzipien der Morsetheorie—kohärente Strukturen aus

einem Unterbereich des Strömungsfeldes extrahiert. Solch detektierte Strukturen wer-

den daraufhin als Partikel-Saatstrukturen zur Generierung generalisierter Streichflächen

verwendet, die in den Grenzbereichen dynamisch kohärenter Regionen liegen und so-

mit besonders gut dazu geeignet sind das globale Transportverhalten von instationären

Strömungen in Echtzeit zu untersuchen.

Des weiteren wird eine neue Technik präsentiert, die eine interaktive Partikelver-

folgung in instationären Oberflächenströmungen ermöglicht sowie darauf aufbauende

Geometrie- und Textur-basierte Visualisierungsansätzevorgestellt.

Um eine interaktive Explorationsumgebung für instation¨are 3D Strömungen zu ver-

wirklichen, wurde eine asynchrone Streaming-Technik fürzeitaufgelöste Sequenzen

von Strömungsfeldern enwickelt und die den Visualisierungstechniken zugrunde lie-

genden Algorithmen effizient, unter Einsatz von Grafikhardware, parallelisiert. Moder-

ne Grafikkarten bieten die Möglichkeit grosse Datenmengenmassiv parallel zu verar-

beiten und sind somit besonders gut für Partikelbasierte Ansätze geeignet. Weiterhin

hat der Einsatz von Grafikhardware zur Strömungsvisualisierung den Vorteil, dass ex-

trahierte Strömungsmerkmale bereits im lokalen Speicherliegen und somit direkt auf

darstellbare Primitive abgebildet werden können, ohne zusätzliche Datenzugriffe auf

den Hauptspeicher des Systems zu benötigen.

Wir unternehmen am Ende dieser Arbeit einen kurzen Ausflug inein weiteres wis-

senschaftliches Visualisierungsgebiet, die Volumenvisualisierung. Hier stellen wir Tech-

niken vor, die eine benutzergestützte Klassifikation und Segmentierung von volumetri-

schen Skalarfeldern ermöglichen, und wir zeigen, wie die Partikelverfolgung in solchen

Datensätzen eingesetzt werden kann, um eine lokale Parametrisierung von Isoflächen

zu berechnen.

Alle Techniken, die in dieser Arbeit vorgestellt werden, benötigen lediglich Stan-

dard-PC Hardware und stehen somit einer grossen Gruppe von Benutzern zur Verfü-

gung. Die präsentierten Techniken ermöglichen es Wissenschaftlern effektiv und in-

teraktiv wissenschaftliche Datensätze zu explorieren (oder anzureichern) und führen

somit zu neuen Möglichkeiten, Einsicht in komplexe volumetrische Erscheinungen zu

erlangen sowie gewonnenes Wissen untereinander zu kommunizieren.

Acknowledgements

In 2003 Prof. Westermann joined the Technische Universität München and became the

chair of the computer graphics and visualization group. While still being an under-

graduate student at that time, I started to attend his lectures which rapidly aroused my

interest in computer graphics and visualization related topics. I started to participate

in practical courses and seminars offered by the chair and soon became even more at-

tracted to the group due to my supervisors’ friendliness andkeenness to discuss. After

finishing my Diploma thesis under the supervison of Dr. Jens Krüger in 2006—which

lead to my first publication as an undergraduate student—I asked Prof. Westermann

about the possibilities to join his chair and was happy to be offered a position in his

group. The last four years shaped my being not only as a scientist but also as a person,

and I am grateful for the opportunity I have been given.

First and most of all I wish to thank my advisor Rüdiger Westermann not only

for providing me the opportunity to conduct the research presented in this thesis, but

especially for being my biggest inspiration and helping me in evolving as a scientist.

Rüdiger was always open for discussion and inspired many ofthe methods presented

here. Without his encouragement this thesis would definitely not have been possible.

A special thanks also goes to my former colleague Jens Krüger with whom I spent a

lot of time in close collaboration and who tremendously supported this work. Also,

I wish to thank my current and former colleagues, namely Stefan Auer, Matthäus

Chajdas, Christian Dick, Roland Fraedrich, Raymund Fülöp, Joachim Georgii, Ste-

fan Hertel, Polina Kondratieva, Martin Kraus, Hans-Georg Menz, Tobias Pfaffelmoser,

Thomas Schiwietz, Jens Schneider and Marc Treib. They have always been keen to

discuss ideas and supported me in proof-reading this thesis.

I would also like to thank Prof. Holger Theisel and his visualcomputing group at

the university of Magdeburg. Holger contributed many ideasto my recent work on

interactive flow visualization and his group provided additional real-world data sets to

validate techniques presented in this thesis. Thanks also go to my student Florian Ferstl

for implementing and validating two methods presented here.

v

vi

Last but not least, I would like to thank my family and friendsfor their ever ongoing

support. I would like to send special thanks to my mother Elle. Besides the fact of being

a single mother, she managed to fund my undergraduate studies and always supported

me by any means and in any form. Without her, my academic career would not have

been possible.

Contents

Abstract i

Zusammenfassung iii

Acknowledgements v

List of Figures xv

List of Tables xvii

Introduction 1

1 Introduction 1
1.1 Contribution . 4

1.2 Research Publication Summary .7

2 Flow Visualization Fundamentals 9
2.1 Flow Field Terminology . 9

2.2 The Visualization Pipeline .12

2.2.1 Data Acquisition . 12

2.2.2 Filtering . 15

2.2.3 Flow Visualization Techniques 16

2.3 Mathematical Basics . 22

2.3.1 Particle Tracing . 22

2.3.2 Characteristic Flow Lines . 24

2.3.3 Flow Field Interpolation . 25

2.3.4 Numerical Differentiation . 26

2.3.5 Matrix Eigenanalysis . 27

2.3.6 First and Second Order Derivatives 30

vii

viii CONTENTS

2.4 Derived Measures of Vector Fields 31

2.5 Lagrangian Coherent Structures .. 33

2.5.1 Dynamical Systems . 33

2.5.2 Invariant Manifolds and Coherent Structures 34

2.5.3 Finite-Time Lyapunov Exponent (FTLE) 35

2.5.4 Coherent Structure Detection 39

3 Programmable Graphics Hardware 43
3.1 The Rendering Pipeline . 43

3.2 Evolution of GPUs . 46

3.3 Graphics APIs . 47

3.3.1 DirectX 9.0 and the Shader Model 3.0 48

3.3.2 DirectX 10 and the Shader Model 4.0 54

4 Interactive Visual Exploration of 3D Unsteady Flows 57
4.1 Introduction . 57

4.2 Contribution . 58

4.3 Related Work . 59

4.4 3D Unsteady Flow Field Data . 61

4.4.1 Data Handling . 62

4.5 GPU-based Particle Tracing . 64

4.5.1 Texture-based Particle Tracing65

4.5.2 Buffer-based Particle Tracing 67

4.6 Particle Visualization .70

4.6.1 (Oriented) Point Sprites . 71

4.6.2 Clip Planes . 74

4.7 Characteristic Line Extraction .. . 75

4.7.1 Stream Lines . 75

4.7.2 Path Lines . 76

4.7.3 Streak Lines . 76

4.7.4 Performance . 77

4.8 Characteristic Line Visualization 77

4.8.1 Control Points . 78

4.8.2 Continuous Line Segments . 78

4.8.3 Shaded Lines . 79

4.8.4 Ribbons . 80

4.8.5 Tubes . 82

CONTENTS ix

4.9 Focus+Context Boundary Visualization 84

4.10 Summary . 86

5 Importance-Driven Particle Techniques 87
5.1 Introduction and Related Work .88

5.2 Contribution . 88

5.3 Importance-based Particle Visualization 90

5.3.1 Scale-space Particles . 91

5.3.2 Feature-based Importance Measures94

5.3.3 Cluster Arrows . 95

5.4 Anchor Lines . 97

5.5 Rendering Aspects . 100

5.5.1 Particle Morphing . 100

5.5.2 Blending . 101

5.6 Results and Performance Analysis 102

5.7 Summary . 103

6 Interactive Streak Surface Visualization 105
6.1 Introduction and Related Work .105

6.2 Contribution . 107

6.3 Streak Surfaces . 108

6.4 Patch-based Streak Surface Generation 109

6.4.1 Patch Generation and Refinement 109

6.4.2 GPU Implementation . 110

6.4.3 Patch-based Streak Surface Rendering 111

6.5 Mesh-based Streak Surface Generation 113

6.5.1 Particle Refinement . 114

6.5.2 Streak Surface Triangulation and Rendering 118

6.5.3 GPU Implementation . 121

6.6 Results and Discussion . 122

6.6.1 Performance . 123

6.6.2 Quality Comparison . 123

6.7 Summary . 125

7 Interactive Separating Streak Surfaces 127
7.1 Introduction . 127

7.2 Contribution . 129

x CONTENTS

7.3 Related Work . 130

7.4 FTLE . 131

7.5 FTLE Ridge Extraction . 133

7.5.1 Ridge Topology . 135

7.5.2 Sub-pixel Ridge Refinement 138

7.6 Separating Streak-Surface Visualization 140

7.7 Results and Discussion . 143

7.7.1 Visual Exploration . 144

7.7.2 Performance . 147

7.7.3 Limitations . 148

7.8 Summary . 148

8 Flow On Surfaces 151
8.1 Introduction and Related Work .151

8.2 Contribution . 153

8.3 The Orthogonal Fragment Buffer (OFB) 155

8.3.1 OFB Construction . 156

8.3.2 OFB Point Location . 158

8.3.3 OFB Rendering . 158

8.4 Particle Tracing on Surfaces .159

8.5 Geometry-based Surface Flow Visualization 161

8.5.1 OFB Surface Coloring . 161

8.6 Texture-based Surface Flow Visualization 166

8.7 Summary . 168

9 Particle-based Volume Editing 169
9.1 Introduction and Related Work .170

9.2 Contribution . 171

9.3 Volume Editing . 173

9.3.1 3D Texture Painting . 174

9.3.2 GPU Implementation . 176

9.3.3 Structure Removal and Enhancement 176

9.4 Selection Volumes . 178

9.4.1 Upsampling . 179

9.5 Surface Particles . 180

9.5.1 Volume Annotations . 182

9.5.2 Windowed Cutaway Views . 184

CONTENTS xi

9.6 Performance Analysis . 185

9.7 Summary . 186

10 Conclusion 189
10.1 Future Work . 190

Bibliography 192

xii CONTENTS

List of Figures

2.1 A sketch by Leonardo Da Vinci based on flow observations 11

2.2 The Flow Visualization Pipeline .. 12

2.3 Basic sampling grid types . 15

2.4 Flow visualization classes .. 16

2.5 Direct flow visualization examples 17

2.6 Texture-based flow visualization examples 18

2.7 Geometric flow visualization examples 19

2.8 Feature-based flow visualization examples 20

2.9 Illustrations of separatrices and FTLE 35

2.10 Modifications to and variants of the FTLE 38

2.11 FTLE in a stationary 2D flow field of two counter rotating vortices . . . 39

3.1 Data flow of the rendering pipeline 45

3.2 The DirectX 9.0 rendering pipeline 53

3.3 The DirectX 10 rendering pipeline 56

4.1 Visualization of the time-resolved Terashake 2.1 simulation data 58

4.2 Visualization of a large eddy simulation of the flow around a cylinder . 61

4.3 Multi-threaded streaming of 3D unsteady flow field data 63

4.4 Flowchart: Texture-based particle advection 67

4.5 Flowchart: Single-buffer particle update 68

4.6 Flowchart: Multi-buffer particle update 69

4.7 Particle tracers rendered as single point primitives 71

4.8 A sprite texture atlas . 72

4.9 (Oriented) Point Sprites .73

4.10 The application of clip planes in two 3D unsteady flow fields is shown . 74

4.11 Comparison between stream (white), path (red) and streak lines (green) 75

4.12 Characteristic lines: Particle visualization techniques 78

xiii

xiv LIST OF FIGURES

4.13 Characteristic lines: Continuous lines 79

4.14 Characteristic lines: Shaded lines 80

4.15 Characteristic lines: Ribbon .. . 81

4.16 Tube Construction . 82

4.17 Characteristic lines: Tubes .. . 83

4.18 Focus+context boundary visualization on the basis of the ClearView

paradigm . 84

4.19 Focus+context curvature estimate 86

5.1 Importance-driven particle techniques are used to visualize 3D flow . . 90

5.2 Different approaches for 3D flow visualization using particles are shown 93

5.3 Importance measures: The velocity magnitude at different scales 95

5.4 Cluster arrows examples . 96

5.5 Anchor line flow visualization .98

5.6 Anchor lines placed in regions of high FTLE 99

5.7 Image-based morphing from an arrow into an ellipsoid 100

5.8 α-Compositing of unsorted transparent particle primitives. 101

5.9 Importance-driven particle visualization results 104

6.1 GPU-based adaptively refined integral surfaces in 3D flows 107

6.2 Patch-based surface construction 110

6.3 Patch-based surface visualization 112

6.4 Comparison of the sample density to the resulting surface 113

6.5 Mesh-based surface construction 115

6.6 Evolution of a time line over three integration steps 116

6.7 Application of criterion (6.6) prevents a streak surface from unlimited

stretching . 116

6.8 The determination of neighbors on adjacent time lines 118

6.9 Streak line refinement . 118

6.10 Streak surface triangulation 119

6.11 Mesh-based streak surface visualization 120

6.12 Three time lines of nine possible time lines exist 121

6.13 Quality comparison between a patch-based and mesh-based streak surface124

6.14 The plots show the sample density of both approaches during streak

surfaces generation at comparable visual quality 125

7.1 Two FTLE fields on a planar probe at grid size 256×256 133

LIST OF FIGURES xv

7.2 Left: unfiltered height ridges; Right: ridges extractedby our approach . 134

7.3 Steps of the ridge extraction algorithm 135

7.4 Classification of FTLE values into convex and non-convexregions . . . 137

7.5 Ridges extracted with our approach 140

7.6 Particle based visualization of a separating streak surface 141

7.7 Patch-based surface construction 142

7.8 Visual Exploration: Double gyre data set 144

7.9 Visual Exploration: Square cylinder data set 145

7.10 Visual Exploration: Lattice-Boltzmann Flow 146

7.11 Visual Exploration: LES flow around a cylinder 146

7.12 Placing the seeding probe in turbulent regions 148

8.1 Illustration of the OFB construction 156

8.2 Geometry-based surface flow visualization 161

8.3 Attribute advection in the OFB .163

8.4 Surface-sprites: Tangent frame adjustments 165

8.5 Line integral convolution .167

9.1 A volume editing session . 171

9.2 Volume editing with a spherical volume brush 175

9.3 Structure Removal and Enhancement 177

9.4 The use of selection volumes is demonstrated 179

9.5 A piecewise quadratic tensor product spline is used for upsampling . . . 180

9.6 Surface-aligned annotations .. . 182

9.7 Two annotated data sets are shown .184

9.8 Several windowed cutaway views are shown 185

xvi LIST OF FIGURES

List of Tables

3.1 NVIDIA GPU revisions sorted by release year 46

3.2 ATI GPU revisions sorted by release year 47

3.3 Fundamental data types in the Shader Model 3.0 standard 49

4.1 Performance measurements for the flow field stream manager 64

4.2 Performance measurements for the construction of characteristic lines . 77

6.1 Performance statistics for patch-based streak surfaces 123

6.2 Performance statistics for mesh-based streak surfaces. 124

7.1 Performance statistics for GPU-based FTLE computation. 147

7.2 Performance statistics for separating streak surfaces. 147

9.1 Performance statistics for tri-quadratic upsampling 186

9.2 Timings for the construction of surface-aligned annotation grids 186

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Flow fields play an important role in a wide range of scientificand industrial areas.

Just to give a few examples: in fluid dynamics, flow fields are ofspecial interest in the

study of gases and liquids in motion to understand the transport behavior around ob-

stacles or in intermixing processes. In medicine (or biology in general), flow fields are

investigated to learn about basic processes appearing inside living organisms. Even in

fundamental research, the evolution of dynamical system isoften studied by observing

the flow of interdependent parameters along trajectories inphase space.

Particle tracing is a standard tool employed in the study of such fields, and the

history of its application ranges back to the first attempts in fluid flow research itself.

Before the advent of non-intrusive flow measurement, computer aided reconstruction

and visualization techniques, real-world flow explorationbased on the observation of

patterns revealed by the movement of tracer material injected into a flow was the only

way to shed light on internal phenomena. Even today, it is a common technique to

release nearly massless materials (such as dye, hydrogen bubbles or heat energy) into a

flow and to visually track their temporal evolution.

While the direct observation of real-world flow is still of practical relevance, it can

only deliver a qualitative description of flow phenomena. Detailed dynamics and pre-

cise mechanisms underlying the evolution of specific features remain rather unknown.

Furthermore, “global” flow phenomena are often governed by the interaction of chaot-

ically appearing, interacting and disappearing features (such as vortices and eddies) at

a large range of scales. However, the human perception system is often overstrained

in detecting such features due to visual clutter introducedby large amounts of parti-

cles performing rapid directional changes. Yet, there is noway to slow down or halt a

real-world experiment under investigation and, thus, to study such features in detail.

1

2 CHAPTER 1. INTRODUCTION

Due to technological advances over the last decades, nowadays, it is possible to

measure physical flow properties (such as velocity, densityor viscosity) at a high spatio-

temporal resolution and, thus, to reconstruct a quantitative flow evolution. In general,

flow field measurement techniques (such as particle image velocimetry) also rely on

particle motion. They record the evolution of particles over time and reconstruct a

discretized time-resolved velocity vector field by matching particle sets in successively

obtained snap-shots.

Other scientific areas, such as computational fluid dynamics, generate digital flow

data through numerical simulations. Here, physically plausible approximations of real

world flow are developed with the objective to verify fundamental theoretical models.

Lagrangian models (such as smoothed particle hydrodynamics) again rely on a particle

metaphor to develop equations describing the fluid dynamics.

Due to advances in flow reconstruction techniques and thanksto increasing numeri-

cal capabilities, today, digitalized 3D unsteady flow fieldscomprise billions of samples

and the sheer amount of information renders it impossible togain insight into com-

plex flow phenomena through statistical analysis of the resulting data. Thus, effective

techniques have to be developed to filter the information, presenting the observer an

intuitive insight on the data under investigation.

Scientific visualization is the field of research associatedwith the question of how

to map information represented in the form of numbers to visual representations.Flow

visualizationis the subarea of scientific visualization dedicated to the visual investiga-

tion of flow phenomena. Over the last decades a variety of different flow visualization

classes has been developed. However, 3D unsteady flow fields have moved only re-

cently into the focus of flow visualization and while for 2D unsteady and stationary 3D

flows many interactive techniques exist, here, this aspect has barely been tapped. Yet,

interactivity is of special interest in the unsteady case due to the following reasons:

Firstly, preserving the time axis as an important feature ofthe data set is advanta-

geous as the evolution of flow dynamics can be comprehended most intuitively if it is

visualized in a time-dependent context. Yet, to grasp the time-correlation between flow

features, it is important to extract and display them in realtime. An animated visual-

ization clearly communicates the dynamics of extracted flowfeatures and the motion

parallax provides an excellent depth cue, thus, easing to understand the spatial correla-

tion between features interacting over time.

Secondly, occlusion is a problem inherent to the visual study of 3D phenomena.

Thus, it has been proven worthwhile to incorporate user guidance into the steering of

the visual data analysis process. Occlusion problems can bealleviated by restricting the

3

visualization of phenomena to subregions of the flow domain.Yet, to determine regions

of interest efficiently, features need to be extracted and displayed in real-time. Further-

more, if different views on the data set can be generated rapidly, the self-obstruction

of features in the focus region can be solved effectively through camera interaction.

Moreover, the most suitable visualization modality for thephenomena under investiga-

tion can be selected interactively.

Thirdly, interactive visualization techniques give scientists the possibility to imme-

diately examine how changes to computational or experimental parameters affect the

flow phenomenon under investigation. This is a highly desired goal according to the

observations made by McCormick [114].

This thesis focuses on the development of interactive visual exploration techniques

for 3D (unsteady) flow. The underlying velocity field and quantities derived thereof

are of utmost importance in the study of flow as they reveal itsdynamics. Hence, the

approaches presented in this manuscript adhere to the concept of vector calculus.

The most fundamental building block of the algorithms proposed in the following

is Lagrangian particle tracing. We employ this paradigm to approximate line integrals

and, thus, to extract geometry- and texture-based flow representations. We will present

new concepts for these visualization classes as well as new approaches for existing

methods that allow to obtain such representations interactively even in large 3D un-

steady flow fields.

We apply differential operators on the velocity vector fieldto derive further flow

measures, and we incorporate these quantities into the flow visualization process. We

encode such quantities not only into the visual representation to convey additional in-

formation, but we also employ them as importance measure during feature extraction

to automatically reveal relevant flow features while at the same time preserving context

information.

Furthermore, we will combine differentiation and integration to derive Lagrangian

flow quantities which are then used to extract feature-basedflow representations. As

this class of methods is generally not suited for an interactive exploration environment

(due to the necessary intense pre-processing), we will showhow aspects of feature-

based flow visualization techniques can be efficiently combined with geometry-based

approaches to effectively reveal global flow phenomena in real time.

To achieve an interactive flow exploration environment, algorithms underlying the

techniques presented in the following have been tailored for parallel execution on graph-

ics processing units (GPU). GPUs have been introduced rather recently to the main-

stream market and have developed rapidly from simple analogue/digital converters into

4 CHAPTER 1. INTRODUCTION

full-fledged parallel stream processors that are almost freely programmable. Latest

models have a raw-performance of more than 1 teraflop atIEEE floating point single-

precision and, thus, outperform even state-of-the-art multi-core CPU architectures by

far. Even though they are still dedicated graphic chips thatrequire programmers to fol-

low certain paradigms tailored to the needs of real-time computer graphics and games,

they present a cost-efficient alternative—on average less than 500 $ for the current

high-end models—to supercomputers in terms of numerical processing power.

Next to the raw computational power, which facilitates the real-time extraction of

flow features, executing visualization algorithms purely on the GPU yields another ad-

vantage. Data generated on a GPU resides in local video memory and can be rendered

immediately without the need to communicate data between the CPU and GPU, thus,

omitting potential bandwidth bottlenecks in the bus interface between the CPU, main

memory and graphics hardware.

Moreover, the techniques presented in the following can be executed on commodity

PC hardware and can, thus, be integrated into the modern scientists workflow at a rea-

sonable cost expenditure. The suitability of our proposed methods has been approved

by experts from various research areas as well as in two international contests.

1.1 Contribution

We now give an overview of the following chapters. To achievea self-contained

manuscript, we will start with two chapters providing basicknowledge to prepare the

reader unfamiliar with the research topics covered by this thesis.

First, we will introduce fundamental terminology with respect to flow fields and

fluid dynamics, motivate the field of scientific flow visualization and present existing

classes therein. Furthermore, we introduce fundamental theoretical concepts for flow

investigation and basic methods from mathematics used throughout this thesis.

As the presented techniques exploit the numerical capabilities of GPUs to attain an

interactive visual flow exploration environment, we will continue with a broad overview

on the development of graphics hardware architectures in Chapter 3 and introduce the

rendering pipeline –i.e the underlying concepts to programon such hardware– in close

relation to the graphics API employed in the validation of the proposed methods.

The remaining chapters discuss the academic contributionsdeveloped in the course

of this dissertation and are closely related to work published in a series of peer-reviewed

research papers:

1.1. CONTRIBUTION 5

Chapter 4 describes how the particle tracing paradigm can bemapped efficiently

onto the GPU’s rendering pipeline and presents a streaming approach for time-resolved

sequences of 3D unsteady flow fields. It exploits multi-core CPU architectures to de-

couple the visualization from data handling and, thus, facilitates the real-time explo-

ration of such data sets. We discuss fundamental particle-based rendering techniques

and present new strategies to extract and visualize time-dependent characteristic lines

interactively on the GPU. To emphasize the spatial relationship between flow struc-

tures and boundaries of the flow domain, we introduce focus+context visualization

techniques for polygonal models. Work presented in this chapter has been developed

in collaboration with Jens Schneider, Polina Kondratieva,Jens Krüger and Rüdiger

Westermann and was published in [27]. Moreover, the presented concepts have been

validated in the visual analysis of the Terashake 2.1 earthquake simulation data in line

with the IEEE Visualization Contest 2006 [5].

Chapter 5 introduces importance driven particle techniques for flow visualization.

Particle tracing in 3D quickly overextends the viewer due tothe massive amount of

visual information produced by this technique. Thus, this chapter focuses on strate-

gies to automatically reduce the amount of information presented to the user while at

the same time revealing important structures in the flow. We introduce an effective

clustering approach for vector fields which in turn is used togenerate a sparse set of

static primitives depicting regions of constant motion in the flow. We employ scalar

flow quantities at different scales in combination with user-defined regions of interest

to control the shape, appearance and density of particles sothat the user can focus on

the dynamics in important regions while at the same time preserving context informa-

tion. We introduce a new focus for particle tracing, so called anchor lines. These lines

can be used to analyze local flow features by visualizing how much particles separate

over time. This is of particular interest if the finite-time Lyapunov exponent is used to

guide the placement of anchor lines. Work presented in this chapter was published in

collaboration with Polina Kondratieva, Jens Krüger and R¨udiger Westermann in [24].

In Chapter 6, we present techniques for the visualization ofunsteady flows using

integral surfaces. We introduce new GPU-based algorithms to generate and display

adaptively refined streak surfaces. Two different approaches to generate such surfaces

are presented. The first approach computes a patch-based surface representation that

avoids any interdependence between patches. Thus, the surface construction stage can

be parallelized entirely but requires advanced rendering techniques to result in a closed

surface representation. The second approach computes a particle based surface repre-

sentation with particle connectivity. To preserve particle interdependence during adap-

6 CHAPTER 1. INTRODUCTION

tive refinement and coarsening, a multi-pass construction technique is employed which

results in a closed surface representation that can be rendered outright as a triangle

mesh. Techniques presented in this chapter allowed for the first time the construction

and visualization of adaptive streak surfaces in real time and were published in collab-

oration with Florian Ferstl, Holger Theisel and Rüdiger Westermann in [22].

Chapter 7 presents a novel approach that extracts separating streak surfaces in 3D

unsteady flow at interactive rates and, thus, facilitates a visually guided flow explo-

ration based on the concept of Lagrangian coherent structures (LCS). Such structures

confine regions of coherent dynamics and are generally of interest in the study of global

transport behavior. This approach avoids computing LCS in 3D, i.e. 2D FTLE ridges.

Instead, LCS computations are restricted to a 2D manifold inthe flow domain. We

present techniques to compute the FTLE on a planar probe interactively and introduce

a new 1D ridge extraction method that is specifically tailored to the GPU. The extracted

ridges are then employed as seeding structures for a generalized streak surfaces inte-

gration to reveal separating structures in the flow. The workpresented in this chapter

has been developed in collaboration with Florian Ferstl, Holger Theisel and Rüdiger

Westermann and was published in [42].

New techniques for the visualization of flow on surfaces willbe presented in Chap-

ter 8. We introduce the Orthogonal Fragment Buffer (OFB), a sample-based data struc-

ture used to represent arbitrary surfaces. We will show how geometry- and texture-

based flow visualization techniques can be applied to this GPU-friendly data struc-

ture to efficiently reveal surface flow phenomena. We presentadvanced rendering ap-

proaches which employ the OFB to solve rendering issues inherent to geometry-based

surface flow visualization techniques. Moreover, we will present various new render-

ing modalities for geometric surface flow representations.Additionally, we will use the

OFB to create a view-independent texture-based flow visualization on the basis of line

integral convolution. On the one hand, we employ LIC to visualize flow fields living

on a 2D manifold. On the other hand, we compute LIC in 3D (unsteady) flow but re-

strict the extraction and visualization to arbitrarily shaped clip geometry positioned in

the flow domain. Work presented in this chapter has been developed jointly with Jens

Krüger and Rüdiger Westermann and was published in [26].

In Chapter 9, we make an excursion into another field of scientific visualization,

namely volume rendering. Here, we will show how the presented GPU-based concepts

can be applied to develop a framework for interactive volumeediting. We introduce

a volumetric paint metaphor that can be used for a user-guided classification and seg-

mentation of 3D scalar fields, as well as interactive volume illustration. We employ

1.2. RESEARCH PUBLICATION SUMMARY 7

particle tracing to place internal annotations on extracted iso-surfaces and we extend

this technique to realize surface aligned cutaway-views. Such shape-aligned windows

can be employed to effectively reveal internal surface structures. All the techniques

underlying this framework have been developed in collaboration with Jens Krüger and

Rüdiger Westermann and were published in [25].

Finally, we summarize the topics covered by this thesis and give interesting direc-

tions for future research work.

1.2 Research Publication Summary

This thesis does not cover all the research conducted in the course of my dissertation.

Several publications, containing mainly research on computer graphics related topics,

have been omitted. For the sake of completeness, this section provides a list of all

academic research papers published during my work as a PhD student. My dissertation

is supported by the following peer reviewed publications (listed in chronological order):

1. Interactive Screen-Space Accurate Photon Tracing on GPUs: Jens Krüger, Kai

Bürger, Rüdiger Westermann; in Rendering Techniques, Eurographics Sympo-

sium on Rendering 2006 [89].

2. Interactive Visual Exploration of Instationary 3D-Flows: Kai Bürger, Jens Schnei-

der, Polina Kondratieva, Jens Krüger, Rüdiger Westermann; in Proceedings of

Eurographics/IEEE VGTC Symposium on Visualization 2007 [27].

3. GPU Rendering of Secondary Effects: Kai Bürger, Stefan Hertel, Jens Krüger,

Rüdiger Westermann; in Proceedings of Vision, Modeling and Visualization 2007

[23].

4. Importance-Driven Particle Techniques for Flow Visualization: Kai Bürger, Polina

Kondratieva, Jens Krüger, Rüdiger Westermann; in Proceedings of IEEE VGTC

Pacific Visualization Symposium 2008 [24].

5. Direct Volume Editing: Kai Bürger, Jens Krüger, and Rüdiger Westermann; in

Proceedings of IEEE Transactions on Visualization and Computer Graphics 2008

[25].

6. Interpolating and Downsampling RGBA Volume Data: Martin Kraus, Kai Bürger;

in Proceedings of Vision, Modeling, and Visualization 2008[86].

8 CHAPTER 1. INTRODUCTION

7. Real-Time Approaches for Model-Based PIV and Visual Fluid Analysis: Polina

Kondratieva, Kai Bürger, Joachim Georgii, Rüdiger Westermann; in the book

Imaging Measurement Methods for Flow Analysis, Series: Notes on Numerical

Fluid Mechanics and Multidisciplinary Design [85].

8. Interactive Streak Surface Visualization on the GPU: Kai Bürger, Florian Ferstl,

Holger Theisel, Rüdiger Westermann; in Proceedings of IEEE Transactions on

Visualization and Computer Graphics 2009 [22].

9. Sample-based Surface Coloring: Kai Bürger, Jens Krüger, Rüdiger Westermann;

IEEE Transactions on Visualization and Computer Graphics journal 2009 [26].

10. Interactive separating streak surfaces: Florian Ferstl, Kai Bürger, Holger Theisel,

Rüdiger Westermann; in Proceedings of IEEE Transactions on Visualization and

Computer Graphics 2010 [42].

Chapter 2

Flow Visualization Fundamentals

Instead of delving right into details of our developed techniques, we dedicate this chap-

ter to clarify terminology used throughout the work, introduce the basic building blocks

of the visualization pipeline and present a classification for various different visual

flow exploration approaches. We will finalize this chapter with an introduction to basic

mathematical methods and a discussion of fundamental theoretical building blocks em-

ployed throughout this work. The intention of this chapter is to deliver a self-contained

manuscript. Readers unfamiliar with the field of visual flow exploration will be given a

brief introduction to the most important areas—wrt. the work presented in this thesis.

2.1 Flow Field Terminology

As the termflow field is interpreted differently in various areas of science, we will

first clarify the terminology used throughout this thesis. In the majority of cases, the

termflow is related to the properties of a movingfluid. In various technical sciences, all

gases, liquids and plasma are considered to be fluids and theyrepresent matter for which

even small externally applied forces cause a deformation ofthe underlying molecular

structure.Fluid flowscan be classified into different categories based on inherent physi-

cal properties. E.g., thedensity, theviscosityand thevelocityare quantities of particular

interest in the study of fluid dynamics. Each of these quantities can be used to catego-

rize fluid flows into distinct classes as listed in the following:

• Density: Based on the behavior of the fluid density, flows canbe classified into

two categories, namelycompressibleandincompressibleflow. If the fluid density

stays constant under all conditions, the flow is considered incompressible. In

general, all liquids as well as gases moving at slow velocities are presumed to be

9

10 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

incompressible. However, if changes in pressure affect thedensity of a fluid, it is

considered to be compressible. Compressible fluid flows are commonly subject

to the study of phenomena at supersonic (or hypersonic) velocities.

• Viscosity: The viscosity of a fluid is the property abstracting frictional forces

acting within the flow. It is a measure of the resistance of a fluid being deformed

by shear stress or tensile stress. Thus, it describes a fluid’s resistance to “internal

flow”. If internal frictional forces are very strong, a fluid is calledviscous. Fluids

having no resistance to shear stress are known as an ideal fluid and are classified

asinviscid. Gases are commonly regarded as inviscid fluids, whereas liquids such

as oil or syrup are considered highly viscous.

• Velocity: The flow velocity, or more precisely the ratio of acting inertial forces

to viscous forces, is generally used to categorize flows intocreeping, laminar

or turbulentregimes. In fluid mechanics, the Reynolds numberRe is a dimen-

sionless number measuring this ratio and it is generally employed to perform the

classification.

Creepingflow occurs at low Reynolds numbers (Re≪ 1) and it is dominated by

viscous and acting pressure forces. This regime takes placein flow experiments

conducted at microscopic scales, e.g. the swimming of microorganisms or in the

flow of viscous polymers in general.

Laminarflow occurs at increased velocities and is characterized by awide range

of Reynolds numbers. Within this regime, a fluid flows in parallel layers (without

disruption between the layers) and it can continue to move even further due to

internal inertia forces although external forces cease to exist. Creeping flow can

be considered an extreme case of laminar flow where viscous effects are much

greater than inertial forces.

Turbulentflow occurs at even higher velocities and it is characterizedby chaotic

property changes, e.g., rapid variations of pressure and velocity in space and time.

Turbulent flow is dominated by inertial forces and, consequently, frictional forces

can be disregarded. Random and instable flow patterns are inherent to this regime,

unsteady eddies and vortices appear on many scales and interact with each other.

The flow conditions in industrial equipment (such as pipes orducts) correspond

to the turbulent flow regime. Additional examples for turbulent flow are wind-

tunnel experiments (studying the external flow over all kindof obstacles such as

cars or airplanes) or the mixing of warm and cold atmosphericlayers.

2.1. FLOW FIELD TERMINOLOGY 11

Figure 2.1: Left: A sketch by Leonardo Da Vinci based on flow observations(Image under
the Wikimedia Commons licence). Middle: Dye in water visualizes a round jet in a cross flow
(Image courtesy of T.T. Lim, NUS [74]). Right: Smoke injection reveals a wake vortex behind
a starting airplane (image courtesy of NASA [29]).

In fluid mechanics the term flow field is commonly defined from the Eulerian point-

of-view as the collection of all properties of a fluid defined over the whole spatio-

temporal domain [128]. The collection of flow properties contains scalars (pressure,

density, viscosity), vectors (velocity and acceleration)as well as tensor values (stress

and strain).

Another common definition of the term flow stems from the earliest approaches to

understand phenomena appearing within fluids under the influence of external forces.

First scientific attempts to understand the internal structural behavior of moving liquids

are based on the induction of substances—consisting of small, nearly “massless” par-

ticles, so called tracers—into the liquid and the observation of their trajectories. The

advection of particles in currents within the flow sheds light on the local velocity mag-

nitude and direction of matter. Moreover, the observation of developing patterns by the

deformation of tracer material can reveal transport behavior at different scales and is,

thus, well suited to gain insight into the global flow geometry. Figure 2.1 depicts three

examples for flow phenomena revealed by the movement of particle tracers. From this

perspective, the term flow denotes the motion appearing within a fluid (or fluid dynam-

ics). The fluid motion in advection is described mathematically as a vector field, thus,

within the context of particle tracing the term flow field is commonly related to the

underlyingvelocity vector field.

Since this thesis focuses on the visualization of flow phenomena on the basis of the

particle tracing paradigm, we relate to the second definition—namely velocity vector

fields and eventually quantities derived thereof—wheneverwe will refer to flow fields

in the following.

12 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

2.2 The Visualization Pipeline

The visualization pipelinedescribes the whole process of creating visual representa-

tions for scientific data. As shown in Figure 2.2 it can be broken down into four stages,

starting with the generation of data and ending with a visualrepresentation. In the

following we will describe its stages in strong relation to flow visualization.

Data Processing

Measurements,

Simulations,..

Raw

Data

Visualization

Data

Rendering

Representation

Visualization

(image, video)

Data

acquisition
Filtering Mapping Rendering

Flow Visualization Techniques

Figure 2.2: The (Flow) Visualization Pipeline: Starting with information obtained through
experimental measurements or numeric simulations, the data (green) traverses four processing
stages (red) until results in the form of a visual representation are obtained.

The pipeline starts with thedata acquisition. With respect to the visualization of fluid

flow, data is either acquired through experimental flow measurements or numerical flow

simulations. Theraw datais usually not appropriate for visualization. Only parts ofthe

raw data might be of interest during the visual exploration process or a distinct data for-

mat is required. Thefiltering stage prepares the data for visualization. It performs tasks

like clipping, segmentation or resampling to bring the datainto the desired format, and

it usually reduces the amount of data being processed in successive stages. Common

operations in this stage employ smoothing and interpolation algorithms to determine

missing values or to correct erroneous samples and result inthevisualization data. In

themappingstage the input data is mapped to renderable primitives. E.g., particles are

advected in the velocity field and visualized as point primitives, or a differentiation on

the vector field is performed to detect certain features thatare mapped to iconic shapes.

The renderingstage performs the last step in the visualization pipeline by projecting

the renderable primitives onto an image that is finally presented to the user.

2.2.1 Data Acquisition

In the context of flow visualization, the data is usually either acquired through physical

flow measurements of real-world experiments or given as the result of numerical flow

simulations. Flow data sets comprise multifield data representing scalar quantities like

density, vector quantities like velocity or even tensor values like stress and strain.

2.2. THE VISUALIZATION PIPELINE 13

Flow Measurement and Reconstruction

A common class of techniques to measure real-world flow is called Pulsed-Light Ve-

locimetry (PLV). Particle Image Velocimetry(short PIV) is subject to this class and

follows principles of photography to reconstruct a flow velocity vector field. PIV is a

non-intrusive PLV technique that evaluates the displacement of particle tracers within

a certain time interval∆t to construct an instantaneous velocity map of the whole flow

domain. The PIV technique requires a laser—illuminating particles moving along the

flow—and a camera recording at least two images at successivetime stepst andt +∆t.

These images are then divided into tiles of uniform flow movement and each tile will

result in one velocity vector representative for the whole tile area. Each tile, commonly

called interrogation window, contains a discretized function in the form of per-pixel

intensity values of light scattered by particle tracers in the flow. Cross-correlation is

then applied to find the matching function of an interrogation window in the successive

PIV image and the velocity vector is given by the shift that isnecessary to translate a

function in the PIV image captured at timet to its position in the image captured at

t +∆t. Two or multiple cameras and additional registration tasksare required to re-

construct 3D flow velocity fields. Besides cross-correlation, optical flow techniques or

model-based approaches are commonly applied to reconstruct the velocity field. For a

thorough overview on real-world flow measurement and reconstruction techniques, we

refer the reader to [84].

Computational Fluid Dynamics

Over the last two centuries, scientists have developed physically plausible sets of equa-

tions describing the motion of fluids, e.g., the Euler and Navier-Stokes equations. The

Navier-Stokes equations consist of a set of partial differential equations (PDEs) de-

scribing the motion of fluids based on the motivation that changes in momentum are

the product of changes in pressure and dissipative viscous forces acting within the fluid.

However, so far the existence of a closed form solution of theNavier-Stokes equations

has not been discovered [41] and the only way to solve these equations is by means of

numerical methods. Computational fluid dynamics solve the Navier-Stokes equations

in numerical simulations. A detailed introduction to flow simulations is beyond the

scope of this chapter, as this thesis focuses on the visual exploration of existing data.

For a thorough overview on computational fluid dynamics, we refer the reader to [54].

Turbulent flow produces fluid interaction at a large range of length scales. Different

solution methods exist, varying in the approach taken to abstract turbulent motion at

14 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

small scales. In the course of this thesis, various flow fieldsobtained with the following

methods have been employed to validate the usefulness of thepresented techniques:

• Direct Numerical Simulations (DNS): In this technique the Navier-Stokes equa-

tions are resolved at all relevant scales of turbulent motion, so no (turbulence)

model is needed for the smallest scales. This makes DNS simulations the com-

putational most expensive, both in terms of memory consumption and arithmetic

operations. The simulation resolution depends on the Reynolds numberRe. The

number of arithmetic operations required to complete the simulation is propor-

tional to the number of spatial samples and the number of timesteps, and in

conclusion, the number of operations grows asRe3. For the average Reynolds

numbers encountered in industrial applications, the computational resources re-

quired by a DNS would even exceed the capacity of the largest super computers.

Hence, DNS simulations are barely used in practice but are often subject to fun-

damental research at small scales.

• Reynolds-averaged Navier-Stokes Equations ((U)RANS): This technique is pri-

marily used while dealing with turbulent flow, and it is basedon time-averaged

equations of motion for fluid flow. Through Reynolds decomposition, flow vari-

ables (like velocity) are separated into a mean (time-averaged) component and a

fluctuating component. An ensemble version of the governingequations is solved,

which introduces new apparent stresses. The so called Reynolds stress is a nonlin-

ear stress term that requires additional modeling to close the RANS equation for

solving. (Unsteady) RANS simulations employ turbulence models and resolve

only unsteady mean-flow structures.

• Large Eddy Simulation (LES): This method requires less computational effort

than DNS but more effort than RANS methods. LES simulations calculate only

the large scale motions of a flow. Effects on sub-grid scales are modeled us-

ing a so called sub-grid scale (SGS) model. An SGS term, whichis commonly

defined by the Smagorinsky model [158], is added to filtered Navier-Stokes equa-

tions. Unresolved turbulence scales are compensated by theaddition of aneddy

viscosityinto the governing equations. The main advantage of LES overcompu-

tationally cheaper RANS approaches is the increased level of detail it can deliver.

RANS simulations provide ”averaged” results, whereas LES simulations are able

to predict instantaneous flow characteristics and resolve turbulent flow structures.

2.2. THE VISUALIZATION PIPELINE 15

2.2.2 Filtering

The filtering stage is responsible to reassess the raw data collected in the acquisition

stage and to bring it into a format convenient for visualization. Especially measured

data is prone to contain erroneous samples, thus, averagingor smoothing algorithms

are applied to remove outliers from—or determine missing samples in—the input data.

The flow domain is commonly reduced to a region of interest to decrease the amount of

data processed in successive stages of the visualization pipeline. User guided clipping

or segmentation algorithms can be used to determine the dataunder investigation.

Furthermore, resampling methods are subject to the filtering stage to change the

underlying representation of a flow field as well as its resolution. Discretization meth-

ods used to solve the Navier-Stokes equations result in different flow data representa-

tions. Finite-difference methods (FDM) or the Lattice-Boltzmann-Method (LBM) de-

liver structured grids, whereas finite-element (FEM) or finite-volume methods (FVM)

typically result in unstructured grids. On structured grids the connectivity between

samples is implicitly given, whereas unstructured grids contain an irregular topology.

In practice, the grid type a flow field is given on depends on theemployed simulation

or measurement technique applied to obtain the data. A largevariety of grids is used in

practice, which are commonly variations of the basic grid types shown in Figure 2.3.

(a) cartesian (b) uniform (c) rectilinear (d) curvilinear (e) unstructured

Figure 2.3: Basic grid types.

In cartesiangrids, distances between grid points are constant and equalin all di-

mensions. Mapping grid locations to world-space is very fast, as it requires an identical

scaling in all dimensions.Uniform grids also feature constant distances between grid

points along one direction, however, the sampling distanceis not equal in all dimen-

sions. Grid cells have a cuboid shape, and a mapping to world space is given by scaling

the coordinates of a sample point individually by the samplepoint distances in the re-

spective directions.

These types of grids are the most appropriate choice for interactive flow visualiza-

tion, as (trilinear) interpolation enables fast access to data at arbitrary locations in the

flow. Due to fast point location and interpolation, the computation of numerical deriva-

tives is also very fast. Both types of grids can be stored in 3Dtextures on graphics

16 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

hardware and GPU-based operations on such data are extremely efficient due to hard-

ware supported trilinear interpolation.

In rectilineargrids, even distances between sample points along one direction vary.

In fluid mechanics, rectilinear grids are often used to sample the flow domain adap-

tively, e.g., regions of interest like boundaries or vortexdetachment regions are simu-

lated/sampled at higher resolutions. Mapping a sample to world space becomes more

complex as it requires a mapping function for each grid dimension.

An adequate sampling of curved surfaces requires a large resolution even for rec-

tilinear grids. In such cases it makes more sense to employ acurvilinear grid that is

aligned to the curved shape. However, mapping a grid point toworld space becomes

even more complicated.

Due to the implicit connectivity between adjacent samples,structured grids can be

stored efficiently and a point location requires only few accesses to the structured data.

Unstructuredgrids can be employed to sample even complex shapes efficiently as they

allow the most flexible choice for the local sample density. However, point location

becomes rather complex.

2.2.3 Flow Visualization Techniques

This section covers the last two steps in the visualization pipeline, namely themapping

of the visualization data to renderable primitives and therenderinginto the final image.

A large variety of techniques for the quantitative and visual analysis of flow phenomena

has been developed over the last decades and the field of flow visualization is still

a vivid research area. According to [96] quantitative flow visualization approaches

can be broken down into four classes. In the following we willclassify them even

further into two main categories, namelydenseandsparsevisualization techniques.

The classification is shown in Figure 2.4 and explained in more detail in the following.

Direct Visualization

Texture-based Visualization

Geometry Extraction

Feature Extraction

Visualization

Geometry Extraction Visualization

Dense Techniques

Sparse Techniques

Fl
o

w
 F

ie
ld

 D
a

ta

Im
a

g
e

 R
e

p
re

se
n

ta
ti

o
n

Figure 2.4: Flow visualization classes: Dense methods (top) can be categorized into direct (red)
and texture-based (green) methods. The class of sparse approaches (bottom) can be broken
down into geometric (blue) and feature-based (yellow) flow visualization techniques.

2.2. THE VISUALIZATION PIPELINE 17

Figure 2.5: Direct flow visualization examples: Left: Arrow shaped vector field glyphs in
3D (image courtesy of Laramee et al. [97]). Middle: Combination of arrow plots and color
coding in 2D (image courtesy of Kirby et al. [80]). Right: 3D color coding of vorticity in fully
developed turbulence (image courtesy of M. Wilczek et al. [189]).

Dense flow visualizationtechniques deliver a single representation for the whole flow

domain and can be classified into following two sub categories:

Direct Flow Visualization

Direct methods avoid extensive pre-processing and visualize the data directly. These

techniques are also calledglobalapproaches, as they are commonly applied to the entire

flow domain or a large part of it. Arrow plots depicting velocity directions or the color

coding of scalar flow quantities such as the velocity magnitude fall into this category.

Direct visualization techniques can deliver intuitive representations for 2D flows fields.

E.g., the work by Kirby et al. [80] (see Figure 2.5 (middle)) demonstrates the effec-

tiveness of direct visualization methods within the scope of 2D flows, as they combine

arrow plots with color coded imagery to depict multiple flow properties at once.

In 3D, however, global techniques struggle to deliver an intuitive flow representa-

tion. The sheer amount of visual information contained in 3Darrow plots generally

leads to self-obstruction and results in visual clutter. Occlusion is an inherent problem

to the simultaneous portrayal of information at every sample point in the 3D spatial do-

main, thus, selective visualization strategies have to be applied. Boring and Pang [13]

introduced a filtering mechanism for 3D arrow plots, where primitives pointing in a

user defined direction are highlighted. Clipping geometries are also commonly applied

to restrict direct methods to subregions of interest in the flow domain.

Volume rendering in 3D is the natural extension to 2D color coding. Yet, in contrast

to typical scientific areas in which volume rendering is applied (such as medicine), flow

field data is often very smooth. Thus, the mapping of opacity becomes much more dif-

18 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

Figure 2.6: Texture-based flow visualization examples: Left: 2D LIC of the flow around a
cylinder (image courtesy of Schafhitzel et al. [144]). Middle: LIC in 3D flow in combination
with a clipping plane (image courtesy of Rezk-Salama et al. [133]). Right: LIC visualization of
a synthetic vector field on a surface (in combination with arrow glyphs).

ficult as meaningful transfer functions cannot be specified easily. The first application

of volume rendering in the context of flow visualization has been presented in the early

nineties [34]. Later, ray casting was applied to vector fields in [45]. Non-photorealistic

volume rendering techniques have been presented in [39]. The first interactive ap-

proaches, exploiting GPU hardware to speed up the volume rendering process, were

introduced in [31, 51].

Texture-based Flow Visualization

Texture-based techniques employ color convolution to generate a single flow field rep-

resentation revealing directional information. The general idea is to selectively blur a

reference image as a function of the vector field to be displayed, where the reference

image (in 2D) or volume (in 3D) usually consists of spatiallyuncorrelated data (e.g.,

a random noise distribution) defined over the whole flow domain. Spot noise [172]

and line integral convolution (LIC) [28, 161] techniques fall into this category. While

providing a detailed view on flow features, texture-based methods tend to require time-

consuming calculations. Lately, several authors proposedto exploit the GPU to achieve

significant speed-ups [71, 184, 101]. For a thorough introduction to texture-based flow

visualization techniques we refer the reader to [97].

As these techniques yield a single representation for the whole flow domain, they

suffer from self-obstruction in 3D. Thus, the process is usually restricted to regions

of interest such as vortex regions [184] or stream surfaces [160]. The restriction to

regions of interest culminates in image-based techniques [171, 98], which trade highly

interactive frame rates versus artifacts due to the screen-aligned nature of the regions.

2.2. THE VISUALIZATION PIPELINE 19

Figure 2.7: Geometry-based flow visualization examples: Left: Streak lines, Middle: Streak
surface, Right: A semitransparent path surface (image courtesy of Garth et al. [48]).

Traditionally, unsteady fields are problematic, since it isnot a priori clear how non-

instantaneous characteristics such as streak or path linescan be integrated into dense

methods [43, 156]. The problem of spatio-temporal coherence is mostly treated by

a recent publication [184], but at considerable effort. Figure 2.6 depicts exemplary

visualizations results obtained with the LIC technique.

Sparse flow visualizationmethods extract characteristic flow features only at specific,

carefully selected locations within the flow. Following subclasses fall into this category:

Geometry-based Flow Visualization

Geometry-based methods rely on the particle tracing paradigm to integrate discretized

subregions in the flow domain over time, which are then displayed using geometric

objects. A wide range of visualization techniques—employing subregions of different

dimensionality—has been developed over the last decades.

Particle tracing [136, 21] and the visualization of momentary tracer positions by

individual representatives fall into this category. Displaying a huge amount of particles

as single point primitives interactively has proven a worthwhile approach to observe

dynamics in flow. Representing each particle through more advanced shapes, e.g. ar-

rows depicting the local velocity direction, even improvesto grasp flow phenomena

intuitively. Next to the shape, the size, color or opacity ofa primitive can additionally

be used to display further scalar flow quantities.

The extraction and display of characteristic lines [95] (e.g., stream, path or streak

lines) is also a prominent tool in geometry-based flow visualization. Again, advanced

geometric shapes can be used to display additional flow characteristics. E.g., ribbons

can be employed to show the rotation about the flow axis or tubeshaped geometry can

20 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

Figure 2.8: Feature-based flow visualization. Left: Volume rendering of an FTLE field (image
courtesy of Garth et al. [47]). Middle: Critical points, separation curves and saddle connectors
in the Benzene data set. Right: Critical points and saddle connectors in the flow behind a
circular cylinder (images courtesy of Theisel et al. [165]).

be used to depict additional scalar flow quantities such as the velocity magnitude by

adapting the tube thickness accordingly.

Thanks to increased computational resources, integral surfaces—such as path, streak

or time surfaces—have moved into the focus of interactive geometric flow visualization.

E.g., for stream and path surfaces, the main idea is to integrate an advancing front in the

flow and apply if necessary an adaptive refinement or coarsening to it. For a thorough

overview on all kinds of integral objects, we refer the reader to [115].

Geometric flow visualization methods particularly depend on proper seeding strate-

gies [167, 123] prior to integration. Localized probing metaphors mimic the injection

of external material of real-life windtunnel experiments and combined with interactive

visual feedback, they have been proven to be a convenient andeffective method to ex-

plore complex dynamic flow structures [90]. Detailed listings of related work in the

field of geometric flow visualization methods are given in therespective sections of

Chapters 4-7. Exemplary geometric flow visualizations are shown in Figure 2.7.

Feature-based Flow Visualization

This class of techniques lifts the visualization to a higherlevel of abstraction by ex-

tracting physically meaningful patterns such as topological structures and skeletons

from the data set. Features are phenomena that are of particular interest for a certain

problem. In the context of fluid flows, exemplary important features arevortices, shock

waves, recirculation zones, boundary layersandattachmentor separation lines. For an

introduction to and a thorough overview on related work in feature-based visualization

techniques, we refer the reader to [99, 129, 142] (examples are shown in Figure 2.8).

The first step in feature-based visualization isfeature extraction, e.g. on the basis of

image processing, the detection of characteristic physical patterns, selective visualiza-

2.2. THE VISUALIZATION PIPELINE 21

tion approaches [170] or the concept ofvector field topology. The latter approach was

introduced by Helman and Hesselink [64] in 1989 and covers the concepts of critical

points, separatrices and closed orbits. Since then, a multitude of related methods has

been developed for steady flow fields.

In unsteady flow fields difficulties known as thecorrespondence problemarise.

Here, features are objects that evolve over time, thus, the correspondence between fea-

tures in successive time steps has to be determined. Moreover, the goal of feature

tracking is to describe the evolution of features through time, as certain events can oc-

cur, such as the interaction of multiple features or significant shape changes of a single

feature. If features are extracted in separate time steps aninterdependence is generally

determined on the basis of region or attribute correspondence.

Lagrangian feature detectionis another prominent approach. From the Lagrangian

point-of-view the fluid is described by the motion of particles. As these methods an-

alyze trajectories, they are inherently suited for unsteady flows. The finite-time Lya-

punov exponent (FTLE) is the most prominent Lagrangian feature detector and will be

thoroughly introduced in Section 2.5.3.

Space-time domain approacheshandle the problem of detecting features in time

dependent data by lifting this problem into a higher dimension, i.e., by interpreting the

time as an additional axis and thereby assuming the steady case again. This approach

allows a clear definition of path lines by means of stream lines lifted to the higher-

dimensional case. For example,feature flow fields[164] are specially designed vector

fields in 4D space-time that capture parts of the topologicalinformation (critical points,

periodic orbits, vortex axes) in its temporal evolution. Tracking features in unsteady

flows is one of their main application [165, 166, 163].

Let us mention further feature detection classes such as stochastic and multi-field

approaches or local methods. Local methods work on point-wise information, including

higher order derivatives. For example, ridge extraction from FTLE data was proposed

in [153] and has become and established tool for the detection of Lagrangian coherent

structures(LCS). The theory of and extraction methods for LCS will be discussed in

more detail in Section 2.5.

Feature extraction generally results in a binary data set, indicating whether points in

the flow domain belong to a feature or not. This binary data setcan then be visualized,

e.g., with iconic oriented geometric objects or by iso-surfaces of binary regions.

Feature-based flow visualization techniques can achieve a large data reduction (in

the order of three magnitudes), but generally require intense pre-computations. Since

the reduction in data is generally content-based, important information does not get lost.

22 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

2.3 Mathematical Basics

This section introduces basic methods from mathematics (mainly vector calculus) and

the relevant theory from flow visualization used throughoutthis thesis. We will start

with an introduction to Lagrangian particle tracing and discuss numerical integration

schemes used to approximate the solution of the ordinary differential equation under-

lying this method. We present trilinear interpolation to obtain continuous values from

flow fields discretized by uniform grids, and finite differencing schemes to approximate

derivatives in such data sets. Furthermore, we mention the approximation of first- and

second-order derivatives as well as analytic solutions to the eigenvalue problem of small

symmetric matrices. Let us note that this section is not intended to be a comprehensive

guide to the respective topics, but rather lists methods well-suited for the development

of an interactive flow exploration environment.

2.3.1 Particle Tracing

In the following we will assume that a 3D unsteady flow field is given in the form of

a velocity mapv of the fluid, which assigns a velocity vector to each point(p, t) in its

spatial (Ω) and temporal (Π) domains:

v(p, t) : Ω×Π→R
3, p ∈Ω⊆ R

3, t ∈Π⊆ R .

Tracking a (massless) particle through the flow field corresponds to the solution of the

first-order differential equation with the independent variablet (representing time):

dx(t, t0,x0)

dt
= v(x(t, t0,x0), t) . (2.1)

Here, the tangent to the particle trajectory is denoted asdx(t,t0,x0)
dt . The dependent vari-

able, i.e. the time-varying position of the particle initialized at positionx0 in space and

time t0, is represented byx(t, t0,x0). To avoid notational clutter, we will often omit

explicit references tot0 andx0 in the following and simply writex(t). In order to solve

this equation we can express it in integral form:

x(t, t0,x0) = x0+

∫ t

τ=t0
v(x(τ, t0,x0),τ) dτ . (2.2)

In the study of dynamical systems, flow fields are often described in a closed form

2.3. MATHEMATICAL BASICS 23

and equation (2.2) can be solved analytically. Reconstructed as well as simulated flow

fields, however, are commonly represented by a discrete set of samples over the flow

domain. Thus, we have to rely on numerical integration schemes to find an approxima-

tion to the solution. The fastest approximation is given by Euler’s method:

x(t+∆t) = x(t)+v(x(t), t)∆t . (2.3)

Here, the position of a particle at timet +∆t is given by the sum of the previous posi-

tion x(t) and the velocity vector at the corresponding position in theflow field scaled

by an incremental time step∆t. However, by regarding the taylor expansion (2.8) of

equation 2.3 aroundt, one can see that the Euler approximation introduces an error

per step on the order ofO(∆t2). Consequently small increments in time have to be

chosen. Higher order integration schemes yield smaller errors on a per step basis at

increased computational costs with respect to arithmetic operations and memory ac-

cess [32]. With increasing computational numerical processing power of GPUs, it has

proven worthwhile to employ the explicit Runge-Kutta integrator of fourth-order to ap-

proximate the solution of the ordinary differential equation. Here, the error introduced

on a per integration step basis is in the order ofO(∆t5), and it is widely accepted as

optimal compromise between numerical accuracy and computational performance. It

is given as:

x(t+∆t) = x(t)+
∆t
6
· (k1+2k2+2k3+k4) , (2.4)

where

k1 = v(x(t), t) ,

k2 = v(x(t)+ ∆t
2 k1, t+

∆t
2) ,

k3 = v(x(t)+ ∆t
2 k2, t+

∆t
2) ,

k4 = v(x(t)+∆tk3, t+∆t) .

Another class of integrators, so called embedded schemes, yield better results with

respect to accuracy and speed. Within this class, the local integration error is used to

adaptively change the integration step size. An exemplary integration scheme is the

RK3(2) integrator [12]. However, in interactive environments, the distance a particle

moves during one advection step should be in accordance to the local velocity mag-

nitude. Therefore, adaptive schemes require a varying number of integration steps to

adhere to a fixed time interval. Due to this fact, embedded schemes do not map well

to the parallel data processing paradigm of GPUs as they impose a varying load on the

24 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

parallel execution units. While one unit might calculate only one integration operation,

others might have to perform multiple operations, thus, stalling grouped units running

in a lock-step execution mode.

2.3.2 Characteristic Flow Lines

Three distinct types of characteristic lines are commonly employed to depict flow phe-

nomena in unsteady 3D flow:

• Path lines: A path linexpath represents the trace left by a particle induced into

the time-varying flow field and can be obtained by the following integration:

xpath(t, t0,x0) = x0+
∫ t

τ=t0
v(xpath(τ, t0,x0),τ) dτ . (2.5)

• Stream lines: A stream linexstream describes an instantaneous particle path,

which is the trajectory of a particle in an unsteady flow frozen at times. It is

obtained as follows:

xstream(t, t0,x0) = x0+

∫ t

τ=t0
v(xstream(τ, t0,x0),s) dτ . (2.6)

• Streak lines: In contrast to path lines and stream lines, streak lines do not depict

the history of a single particle moving with the flow. This type of line originates

from real-world experiments where external materials are constantly induced into

the flow and the occurring patterns are observed. As streak lines describe the path

traced by dye or smoke continuously released into the flow, they are defined by the

current location of all particles that have passed through afixed spatial position

at a succession of previous times[tstart, tend]. To obtain a streak line, particles at

successive time stepststart≤ ti ≤ tendare released from the starting locationx0 into

the flow and their current position can be obtained with equation 2.5. Connecting

successively released particles forms the streak line.

In flow visualization, integral curves are commonly approximated through numerical

integration, resulting in a discrete set of consecutive control points. Geometry-based

techniques then use this set to construct a piecewise continuous geometric representa-

tion and texture-based approaches use it to collect intensity values along a trajectory.

2.3. MATHEMATICAL BASICS 25

2.3.3 Flow Field Interpolation

As already mentioned in Section 2.2.2, cartesian and uniform grids are the most appro-

priate choices to represent flow fields in an interactive flow visualization environment.

In contrast to unstructured grids where the cell containingan arbitrary point in the flow

domain generally has to be searched (e.g., by traversing an adaptive data structure),

here, finding the indices of the corresponding grid cell requires only a per component

scaling of coordinates. Furthermore to obtain continuous function values, i.e. flow field

quantities at arbitrary locations in the flow domain, an interpolation has to be applied.

In structured data sets, each cell is encircled by the same amount of grid nodes and their

location is inherently encoded in the data structure.

The 3D unsteady flow field data sets used in this thesis are represented by a time-

resolved sequence of velocity data with spatial samples on either cartesian or uniform

grids. Bex = (xp,yp,zp)
T an arbitrary point in the flow domain. To obtain the velocity

vectorv(x) from one of the discrete time-steps, we apply trilinear interpolation between

the eight adjacent samples (xi ≤ xp≤ xi+1,yi ≤ yp≤ yi+1,zi ≤ zp≤ zi+1):

v(x) = (1−α)(1−β)(1− γ) v(xi ,yi ,zi) +

α(1−β)(1− γ) v(xi+1,yi ,zi) +

(1−α)β (1− γ) v(xi ,yi+1,zi) +

(1−α)(1−β)γ v(xi ,yi ,zi+1) +

(1−α)βγ v(xi ,yi+1,zi+1) +

α(1−β)γ v(xi+1,yi ,zi+1) +

αβ (1− γ) v(xi+1,yi+1,zi) +

αβγ v(xi+1,yi+1,zi+1) .

where∆x,∆y,∆z are the uniform sampling distances along either dimension and α, β
andγ denote the fractional parts ofxp

∆x, yp
∆y and zp

∆z respectively.

To calculate an approximationv(x, t) of the velocity vector field at an arbitrary

location in spacex and timet, we sample data from two adjacent time-steps in the

sequence (ti ≤ t ≤ ti+1) and perform one additional linear interpolation:

v(x, t) = (1−δ) ·v(x, ti)+δ ·v(x, ti+1), δ =
t− ti

ti+1− ti
. (2.7)

As linear interpolation assumes that a function behaves linear between sample points,

the data should be sampled at a reasonable rate to avoid inaccuracies. While higher or-

26 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

der schemes such as cubic or hermite interpolation deliver more accurate results, we

employ only the linear scheme as it is directly supported by GPUs and can, thus, be

performed in hardware at negligible costs. Let us further note that spatial flow field

samples of one time-step are always stored in one GPU textureresource corresponding

to a cartesian grid defined over the unit cube. Therefore, point coordinates need to be

scaled accordingly before accessing data from the field.

2.3.4 Numerical Differentiation

For 3D unsteady flow field data discretized by cartesian or uniform grids, we employ

finite differencing schemes to compute numerical derivatives. According to Taylor’s

theorem, the value of a functionf around a pointx can be obtained by the series

f (x+h) = f (x)+
f ′(x)
1!

h+
f (2)(x)

2!
h2+

f (3)(x)
3!

h3+ ...+
f (n)(x)

n!
hn+Rn(x), (2.8)

where the remainder termRn(x) denotes the difference between the original function

and the Taylor polynomial of degreen. It can be proven that the absolute error in the

approximation is upper bounded by the next term of the expansion. Thus, if the function

at pointx and in its vicinity is known, we can rearrange the Taylor expansion (regarding

only the first two right hand terms) to obtain the forward (2.9), backward (2.10) or

central (2.11) differences:

f ′(x) =
f (x+h)− f (x)

h
+O(h), (2.9)

f ′(x) =
f (x)− f (x−h)

h
+O(h), (2.10)

f ′(x) =
f (x+h)− f (x−h)

2h
+O(h2). (2.11)

For reasonable smallh the error introduced by neglecting the remainder term is

commonly accepted. Higher order differences can be obtained analogously. E.g., if we

apply the central differencing scheme with spacingh
2 and then use above central differ-

ence formula for the derivativef ′ at x, we obtain the central difference approximation

for the second order derivative off :

f (2)(x)≈ f (x+h)−2 f (x)+ f (x−h)
h2 . (2.12)

Finite differences can be considered in more than one variable, some partial derivative

2.3. MATHEMATICAL BASICS 27

approximations for a function of two variables are shown in the following:

∂
∂x f (x,y) ≈ f (x+h,y)− f (x−h,y)

2h
,

∂ 2

∂x2 f (x,y) ≈ f (x+h,y)−2 f (x,y)+ f (x−h,y)
h2 ,

∂ 2

∂x∂y f (x,y) ≈ f (x+h,y+k)− f (x+h,y−k)− f (x−h,y+k)− f (x−h,y−k)
4hk

.

Throughout this work, we employ the central differencing scheme to calculate nu-

merical derivatives. Only at boundary regions of the flow domain, where no values are

available in either direction, we fall back to the forward orbackward approaches.

2.3.5 Matrix Eigenanalysis

The eigendecomposition of square matricesA is a standard tool employed in flow vi-

sualization. A non-zero vectore is an eigenvector if and only if it satisfies the linear

eigenvalue equationAe= λe, whereλ is the eigenvalue corresponding toe. If I is the

identity matrix, then we can rewrite the equation as:

Ae−λ Ie = (A−λ I)e= 0. (2.13)

If there exists an inverse(A−λ I)−1 then both sides can be left multiplied by it to arrive

at the trivial solutione= 0. Thus, we require to meet the condition that the determinant

equals zero, i.e. no inverse exists

p(λ) = |A−λ I |= 0.

Finding the eigenvalues ofA amounts to finding the roots of the characteristic poly-

nomial p(λ). According to Abel’s impossibility theorem, for large polynomials (of

order> 4), this problem cannot be solved by a finite sequence of arithmetic operations

and radicals. Yet, to find the eigenvalues of large symmetricmatrices a variety of itera-

tive approaches exist (such as the power iteration, the Jacobi method or the popular QR

algorithm [131]).

However, in the rest of this work we will only be interested inthe eigenvalues of

real symmetric matrices of second order and positive-definite symmetric 3×3 matri-

ces. Here, solutions to the eigenvalue problem can be expressed in analytic form and,

thus, be solved interactively even for a huge number of matrices in parallel. For a real

28 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

symmetric 2×2 matrixA, the real eigenvaluesλ1,λ2 and their respective eigenvectorei

(i = 1∨2) are given as

A =

[

a b

b c

]

, λ1,λ2 =
(a+c)±

√

(a−c)2+4b2

2
, ei =





λi−c√
b2−(λi−c)2

b√
b2−(λi−c)2



 .

Square matrices of third order

To find the roots of the characteristic polynomialp(λ) of an arbitrary 3×3 matrix, a

cubic equation of the formx3+ ax2+ bx+ c = 0 has to be solved. Here, Cardano’s

method [131] can be applied which starts to find a solution by moving the cubic’s point

of inflection to the origin. This substitution removes the quadratic term and gives a

so called depressed cubict3+ pt+q = 0. This equation contains still a linear term,

thus, forp 6= 0 it cannot be solved by means of a single cubic root. The assumption

that a solutiont for the depressed cubic equation can be expressed by the sum of two

cubic rootst = u+ v leads to further substitution and the final solution. Depending

on the discriminantd of the depressed cubic, the characteristic polynomial has either

three distinct roots (d > 0), one real root and two complex conjugate roots (d < 0)

or a multiple root and and all its roots are real. A complete derivation of Cardano’s

method is beyond the scope of this section. We recommend the readers interested in

the concepts of this approach the article by Nickalls [119].Here, the standard method

for solving the cubic is greatly clarified by relating the solution to the cubic’s geometry.

The corresponding eigenvector for an eigenvalueλ can be found by inserting it

in (2.13) and solving the system of linear equations with ,e.g., an iterative Jacobi method.

Positive-definite symmetric 3×3 matrices

According to the spectral theorem, a real symmetric 3×3 matrix has three real eigen-

valuesλi (i = 1∨2∨3) and three linearly independent eigenvectors that are mutually

orthogonal. In Section 2.5.3 we will be interested in the eigenvalues of apositive-

definitesymmetric 3×3 matrixD. This allows us to employ a more specialized analytic

method to find a solution. We employ the method proposed by Hasan et al. [62] which

is based ondiffusion tensor invariantsto find the eigenvalues and eigenvectors ofD. A

cartesian diffusion tensor

D =







Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz







2.3. MATHEMATICAL BASICS 29

has three principal invariantsI1, I2, I3. They are related to the eigenvalues, and defined

by the characteristic equation

|D−λ I |= (λ −λ1)(λ −λ2)(λ −λ3) = λ 3−λ 2I1+λ I2− I3 = 0,

whereI is the 3×3 identity matrix. According to [8, 14], from this equation the three

invariants are given as

I1 = Trace(D) = Dxx+Dyy+Dzz= λ1+λ2+λ3 ,

I2 = (DxxDyy+DxxDzz+DyyDzz)− (D2
xy+D2

xz+D2
yz) = λ1λ2+λ1λ3+λ2λ3 ,

I3 = |D|= DxxDyyDzz+2DxyDxzDyz− (DzzD
2
xy+DyyD

2
xz+DxxD

2
yz) = λ1λ2λ3 .

The eigenvalues and eigenvectors ofD can now be found by an analytic diagonalization

of D that is specific to the positive-definite symmetric cartesian tensor. The following

rotational invariant variables are defined in terms ofI1, I2, I3:

v= (I1/3)2− I2/3 and s= (I1/3)3− I1I2/6+ I3/2.

Since for real eigenvalues it holds thatv> 0 ands2 < v3, we can define

φ =
acos(s

v

√

1
v)

3
.

The sorted eigenvalues(λ1 > λ2 > λ3) can then be expressed as

λ1 =
I1
3
+2
√

v cos(φ), λ2 =
I1
3
−2
√

v cos(
π
3
+φ), λ3 =

I1
3
−2
√

v cos(
π
3
−φ).

According to [62] the orthonormalized eigenvector for theith eigenvalue can be com-

puted as follows. Define following variables

Ai = Dxx−λi , Bi = Dyy−λi , Ci = Dzz−λi ,

ei =







(DxyDyz−BiDxz)(DxzDyz−CiDxy)

(DxzDyz−CiDxy)(DxzDxy−AiDyz)

(DxyDyz−BiDxz)(DxzDxy−AiDyz)






.

The normalized eigenvectorêi for eigenvalueλi is then given by ei
‖ei‖ . Note that due to

the sign ambiguity of equation 2.13,−êi is also a solution to the eigenvalue problem.

Thus, the third normalized eigenvectorê3 can be obtained more efficiently by the cross

30 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

product between the other orthonormal eigenvectorsê1 andê2.

2.3.6 First and Second Order Derivatives

In 3D, a scalar fieldf has three partial derivatives with respect to the three-dimensional

cartesian coordinatesx,y,z. The gradient of a scalar field points into the direction of

the greatest rate of increase and is defined as the vector of its partial derivatives:

∇ f (x,y,z) =







∂
∂x
∂
∂y
∂
∂z






f (x,y,z) =







∂
∂x f (x,y,z)
∂
∂y f (x,y,z)
∂
∂z f (x,y,z)






=







fx
fy
fz






. (2.14)

The gradient of a 3D vector fieldv(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z))T is found

by application of the gradient operator to each of the components of the vector field.

This results in a order 2 tensor field, i.e., the gradient at anarbitrary point in the vector

field is given by a 3×3 matrix of first order derivatives known as theJacobian:

J(x,y,z) = ∇v =







∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z






=







ux uy uz

vx vy vz

wx wy wz






. (2.15)

In flow visualization the Jacobian is often used to compute a number of derived fields.

Furthermore, the vector field topology is determined by an eigenanalysis ofJ, as its

eigenvectors and eigenvalues indicate the direction of tangent curves of the flow.

For a real-valued scalar function in Euclidean n-space (f (x1,x2, · · · ,xn) : Rn→ R),

its Hessianmatrix is a square matrix of order n. Here, matrix entries contain second-

order partial derivatives off , i.e. the Hessian describes the local curvature of a function

of many variables:

H(f) =

















∂ 2 f
∂x2

1

∂ 2 f
∂x1∂x2

. . . ∂ 2 f
∂x1∂xn

∂ 2 f
∂x2∂x1

∂ 2 f
∂x2

2
. . . ∂ 2 f

∂x2∂xn

...
...

. . .
...

∂ 2 f
∂xn∂x1

∂ 2 f
∂xn∂x2

. . . ∂ 2 f
∂x2

n

















=













f11 f12 . . . f1n

f21 f22 . . . f2n
...

...
. . .

...

fn1 fn1 . . . fnn













. (2.16)

If the mixed differentials of functionf are contiguous the order of differentiation does

2.4. DERIVED MEASURES OF VECTOR FIELDS 31

not matter and, thus, its Hessian is symmetric. Iff is a function fromR
n→ R

m, then

the array of second order partial derivatives is not a squarematrix of order n, but rather

a tensor of order 3 (i.e. an array of sizem×n×n).

Non-degenerate critical points (∇ f (x1,x2, · · · ,xn) = 0 ∧|H(f (x1,x2, · · · ,xn))| 6= 0)

are generally studied by an eigenanalysis of the (symmetric) Hessian matrix to deter-

mine the topology of manifolds. Functionf attains a local maximum at such a point if

H is positive definite, and a minimum ifH is negative definite. IfH has positive and

negative eigenvalues there is a saddle point at the respective location. Otherwise this

test is inconclusive. For all other points, however, semi-definite Hessians can be used

to determine iff is locally concave (positive semi-definite) or convex (negative semi-

definite). Again eigenvalues of mixed sign indicate a saddlepoint. We will employ this

test in Chapter 7 for the extraction of ridges from a scalar field in 2-space.

2.4 Derived Measures of Vector Fields

In Chapter 5, we will employ additional scalar quantities for importance driven flow

visualization. These measures indicate certain properties of the flow field and are ei-

ther directly derived from the velocity vector field (by the application of differential

operators from vector calculus) or from one of its derivatives:

• Velocity magnitude: The magnitude of the velocity vector fieldv = (u,v,w)T is:

‖v‖=
√

u2+v2+w2 . (2.17)

• Divergence: The divergence of a velocity field is the extent to which the vector

field behaves like a source or sink at a given position. It measures the extent to

which there is more exiting an infinitesimal region of space than entering it. If the

divergence is nonzero at some location then there must be a source or sink at that

position, otherwise the flow is called divergence-free. This is the common case in

fluid dynamics as most fluids are incompressible. The divergence is defined as:

∇ ·v =







∂
∂x
∂
∂y
∂
∂z






·







u

v

w






= ux+vy+wz . (2.18)

• Vorticity magnitude: Thecurl ωωω of a velocity field is calledvorticity. The vorticity

is a vector field that indicates the axis of rotation as well asthe local angular

32 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

rate of rotation. The vorticity is perpendicular to the plane in which the locally

highest amount of circulation takes place and its magnitudespecifies the strength

of rotation. If the vector field represents the flow velocity,then the vorticity is

also referred to as the circulation density of the fluid. A vector field whose curl

is zero is called irrotational or curl-free. Vortex regionsin the flow may have

a highvorticity magnitude‖ω‖, thus, this quantity can be used to classify such

regions [177]. The vorticity is defined as:

ωωω =







ω1

ω2

ω3






= ∇×v =







∂
∂x
∂
∂y
∂
∂z






×







u

v

w






=







wy−vz

uz−wx

vx−uy






. (2.19)

• Helicity: The helicity is a scalar quantity indicating the extent to which corkscrew-

like motion occurs at a given location. If a moving parcel of fluid rotates about

an axis parallel to the direction of motion, it has helicity.If the rotation is clock-

wise when viewed from ahead of the parcel, the helicity will be positive, if coun-

terclockwise, it will be negative. The helicity can be used to detect vortex re-

gions [190], and it is obtained by projecting the vorticity onto the velocity:

ωωω ·v = (wy−vz)u+(uz−wx)v+(vx−uy)w . (2.20)

• Streamwise vorticity: The streamwise vorticity is the component of vorticity that

is parallel to an ambient (i.e., local mean) velocity vectorṽ:

ωωω · ṽ
‖ṽ‖ . (2.21)

• λ2-criterion: The λ2-criterion [70] is the most widely used measure for vortex

detection. It is based on a decomposition of the velocity field’s Jacobian ma-

trix J = ∇v = S+A. HereS is the symmetric part (or strain tensor) andA the

antisymmetric part (also called the vorticity tensor) of the Jacobian:

S=
1
2
(J+JT), A =

1
2
(J−JT) .

While the strain tensorS holds information about the local stretching of the

fluid, A assesses rotational activity. Vortex regions are then identified by λ2 < 0,

whereasλ2 is the second largest eigenvalue of the symmetric tensorS2+A2.

2.5. LAGRANGIAN COHERENT STRUCTURES 33

2.5 Lagrangian Coherent Structures

The derived measures introduced so far adhere to the conceptof viewing a flow from

theEulerianperspective, i.e. as a set of fixed points in the spatial domain with corre-

sponding quantities (at varying instances in time for unsteady flow). In fluid mechanics,

this is the standard approach for studying the velocity vector fields of fluid flow.

Fluid flows fall into the category ofdynamical systems, i.e., they describe the evo-

lution of interdependent quantities within the system’s domain according to a specific

set of rules. General dynamical systems are often studied from theLagrangianpoint-

of-view, i.e., in terms of particle trajectories traced in phase space [188]. Here, the

system’s evolution is often governed by partial differential equations.

The Lagrangian concept can also be applied in the study of fluid flows. In this

specific case the system’s evolution is governed by the ordinary differential equation

of the particle tracing paradigm, and the Lagrangian perspective is generally used to

observe large scale transport behavior and to reveal the global flow geometry.

2.5.1 Dynamical Systems

Let us first introduce a dynamical systems in its most generalform. Note that the

notations and descriptions used in this section are closelyrelated to the tutorial by

Shadden [152], as they are commonly used to introduce the following topics:

ẋ(t, t0,x0) = v(x(t, t0,x0), t),

x(t0, t0,x0) = x0.

}

(2.22)

Analogue to Eq. (2.1),t ∈Π represents time andx(t, t0,x0) ∈Ω is the dependent vari-

able representing the state of the system. WhileΩ may be more general thanR3, in

terms of fluid flows we can assume thatΩ is a subset ofR3.

With advancing time, solutions of (2.22) trace out curves inspace, or in dynamical

systems terminology they flow along their trajectory. Givena particle initialized at

point (x0, t0) in the spatio-temporal flow domain and assumingt is a final time, we can

rewrite equation (2.2) as theflow map, i.e., a map which takes a point in the domain at

time t0 to its location at timet:

φ t
t0 : Ω→Ω : x0 7→ φ t

t0(x0) = x(t, t0,x0). (2.23)

According to the standard theorems on local existence and uniqueness of solutions of

Eq. (2.22) the flow map satisfies the following properties [61] :

34 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

φ t0
t0 (x) = x,

φ t+s
t0 (x) = φ t+s

s (φs
t0(x)) = φ t+s

t (φ t
t0(x)).

}

(2.24)

While the exact solution of Eq. (2.22) would be ideal, unlessv is a linear function of

the statex and independent of timet, there is no general way to determine a closed-

form analytic solution of this equation. Numerical approximations of the solution yield

particle trajectories, or more precisely path lines for unsteady flows and stream lines

for instantaneous flow fields.

2.5.2 Invariant Manifolds and Coherent Structures

The behavior oftime-independent dynamical systems(with a static definition over an

infinite period of time) is often studied by an observation ofinvariant manifoldsof

fixed points in the system. A fixed point is a point in the domainwherev(x) = 0. Sta-

ble manifoldsof a fixed point are all trajectories which asymptote to it when time goes

to infinity andunstable manifoldsare those trajectories which asymptote to fixed points

in inverse time. Thus, such manifolds (commonly calledseparatrices) attract or repel

particles respectively, thereby dividing the domain into regions of fundamentally differ-

ent dynamics (see Figure 2.9 (a)). TheLyapunov exponents[103] are often employed

to detect such manifolds in this class of systems by quantifying the rate of separation

of trajectories starting in an infinitesimally vicinity of apoint in the domain. The rate

of separation can vary for different combinations of such trajectories, thus, there exists

a whole spectrum of Lyapunov exponents. One is often only interested in the largest

rate of separation, i.e. the maximal Lyapunov exponent (MLE), as it determines the

predictability of a dynamical system. Due to its asymptoticnature, the MLE can only

be employed in the study of time-independent systems. For readers interested in this

subject we refer to the comprehensive manuscript by Barreira et al. [94].

The transport behavior in unsteady flows is typically governed by prominent fea-

tures, such as chaotic emerging and disappearing vortices or eddies in the flow around

obstacles. The global flow geometry in the study of intermixing processes is generally

given by the respective material surfaces separating fluidsof different physical proper-

ties. In general, large-scale regions of coherent flow behavior exhibit strong correlations

and are of special interest when analyzing unsteady flows. Large scale phenomena of

different dynamics are confined bycoherent structures, which are often analogous to

stable and unstable manifolds in time-independent systems. The behavior of (aperi-

odic) time-dependent dynamical systems, however, is only known over a limited period

2.5. LAGRANGIAN COHERENT STRUCTURES 35

of time. Thus, a finite version of the Lyapunov exponent has tobe used for a general

analysis of such systems. The (maximum)finite-time Lyapunov exponentrepresents

a quantity which allows the detection of coherent structures in unsteady flows, thus,

giving rise to the possibility to unveil the global flow geometry.

x(t0+∆t)

x(t0)

y(t0)

y(t0+∆t)(a)

t0

t0+∆t

separatrix
δ

δ
x

small FTLE

large FTLE

(b)

 saddle point

Figure 2.9: Illustrations of separatrices and FTLE: In image (a), two particle trajectories on
either side of a stable manifold are shown. Image (b) depictsthe correspondence between the
initial perturbationδ and the finite-time Lyapunov exponent.

2.5.3 Finite-Time Lyapunov Exponent

The (maximum) finite-time Lyapunov exponent (FTLE) is a scalar quantity that char-

acterizes the amount of stretching about the trajectory of particles over a finite time

interval [t, t +∆t]. This notion stands for the amount of separation of integrated par-

ticles that have been released at the same time infinitesimally close to each other in

space (see Figure 2.9 (b) for an illustration of the FTLE). Following the terminology of

Haller [56], it can be deduced from particle tracing as follows:

Bex∈R3 an arbitrary point in the spatial flow domain. If we release a particle from

this position at timet0 and advect it for a finite time interval∆t, it arrives at the point

φ t0+∆t
t0 (x). Since fluid flow generally has a continuous dependence on initial conditions,

we know that a particle released at the same time in the (close) vicinity of x will behave

similar when advected in the flow (at least for a short period of time). However, as time

goes by, the distance between these particles will almost certainly change. Beδx(t) an

arbitrarily oriented infinitesimal distortion. With it we can express the initial position of

a second particle asy= x+δx(t0). After ∆t time has passed, this perturbation becomes:

δx(t0+∆t) = φ t0+∆t
t0 (y)−φ t0+∆t

t0 (x) . (2.25)

36 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

If we consider the taylor series expansion of the flow about point x up to the first order

derivative, the perturbation can be described more generally as:

δx(t0+∆t) =
dφ t0+∆t

t0 (x)

dx
δx(t0)+O(‖δx(t0)‖2). (2.26)

Since our initial assumption was thatδx(t0) is infinitesimal, the remainder term can be

neglected. The flow map gradient

∇φ t0+∆t
t0 (x) =

dφ t0+∆t
t0 (x)

dx
(2.27)

describes the deviation of trajectories started at the sametime t0 in an infinitesimally

spatial vicinity of pointx0. The tensor

Ct0+∆t
t0 (x) = (∇φ t+∆t

t0 (x))T ∇φ t+∆t
t0 (x) (2.28)

known as the (finite-time) right Cauchy-Green deformation tensor, expresses the de-

formation of the neighborhood ofx under the flow map. More precisely, this positive

definite symmetric 3×3 matrix yields the square of local change in distances due to

deformation (by exclusion of the rotation). Let us note thateven though∇φ andC are

functions oft0, ∆t andx, we will occasionally omit these variables in the followingfor

the sake of notational simplicity.

Using standardL2-norm for vectors, the magnitude of the perturbation is thengiven as:

‖δx(t0+∆t)‖=
√

〈

∇φδx(t0),∇φδx(t0)
〉

=

√

〈

δx(t0),Cδx(t0)
〉

. (2.29)

Let us assume we are interested in the maximum stretching occurring between pointsx
andy. This will occur if we align the perturbation with the eigenvector corresponding to

the maximum eigenvalueλmax of the deformation tensorC. Hence, if we treatλmax(C)
as an operator and denote the perturbation aligned with the maximum eigenvalue by

δx(t0), the condition of maximum stretching can be expressed as:

max
δx(t0)

‖δx(t0+∆t)‖=
√

〈δx(t0),λmax(C)δx(t0)〉=
√

λmax(C) ‖δx(t0)‖. (2.30)

Even though
√

λmax(C) is the factor by which a perturbation is maximally stretched,

perturbations often grow exponentially in time near (Lagrangian) coherent structures

2.5. LAGRANGIAN COHERENT STRUCTURES 37

and, thus, introducing a scaling is typically better suitedfor locating such structures on

the basis of the FTLE. Especially for large time intervals∆t and a large spatial flow field

domain,
√

λmax(C) can become numerically unstable. If we define the FTLE, denoted

by σ ∆t
t0 , for a pointx in the spatial flow domain at timet0 and finite integration time∆t

with such a scaling in mind, it can be defined as:

σ ∆t
t0 (x) =

1
|∆t| ln

√

λmax(C) . (2.31)

Then equation (2.30) can be rewritten as:

max
δx(t0)

‖δx(t0+∆t)‖= eσ∆t
t0
(x)|∆t| ‖δx(t0)‖ . (2.32)

Note that using the absolute value|∆t| makes it possible to compute the FTLE in for-

ward and backward time. This fact gives rise to the possibility to detect coherent struc-

tures akin to stable and unstable manifold. Furthermore, itis also suited to identify

hyperbolic trajectories by an intersection of coherent structures extracted from the re-

spective (forward- and backward-time) FTLE fields [140].

Intuitively, the FTLE can be seen as a value derived from the spectral norm (i.e.,

matrix L2-norm) of the flow map gradient, due to the fact that (in the reasoning above)

we assumed the perturbation is aligned with the eigenvectorcorresponding to the largest

eigenvalue of the deformation tensor.

Several modifications for the FTLE have been proposed in the literature. For the

numerical computation of the FTLE, one has to estimate the flow map gradient by using

a discrete set of trajectories initialized very close to thereference trajectory starting

at pointx. Since trajectories tend to separate at an exponential ratefrom the central

trajectory, Benettin et al. [9] propose a frequent renormalization for them. This can be

achieved by subdividing the finite time interval into separate pieces and computing the

flow map gradient as the product of the piece-wise obtained gradients.

The FTLE can exhibit finely detailed structures with a spatial variation exceeding

the one of the underlying velocity field by far. Therefore, the FTLE is often not ac-

curately computed at an arbitrary point in the domain, but rather sampled as spatial

average at a resolution defined by a discretization grid. E.g., for flow fields given on a

cartesian grid, a discrete version of the FTLE is commonly approximated by a scalar

field exhibiting the same alignment and resolution of the underlying data set. Here, the

flow map is sampled at the nodes of the grid and gradients are then estimated by finite

differences [56]. The maximum separation is then given by the largest eigenvalue of

38 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

the deformation tensor, which can be found using, e.g., the method presented in sec-

tion 2.3.5. Let us note that, in this setup, the initial perturbation is generally not aligned

with the eigenvector associated with the largest eigenvalue of the deformation tensor,

but rather axis aligned with respect to the flow field grid. However, the perturbation

will typically align very quickly with this direction. The reason for this is that if an axis

aligned perturbation has a component in the respective eigenvector direction, then this

component will quickly dominate because it is aligned with the most unstable direction.

t0

x δ Φn

t0+n∆t

Φ2Φ1

t0+2∆tt0+1∆t

FTLEM(t0,∆t,x,n) = maxk=1,...n
1
|k∆t| ln(Φk/δ)

t0

x δ Φn

t0+n∆t

Φ2Φ1

t0+2∆tt0+1∆tt0

x δ sδ

t0+ts

FSLE(t0, ts,x) = 1
|ts| ln(s)

Figure 2.10: Modifications to and variants of the FTLE. Left: The FTLEM evaluates the dis-
tortion multiple times along a trajectory. Right: The finite-size Lyapunov exponent yields the
shortest necessary time it takes for two particles to separate by a given factors.

Sadlo et al. [137] introduced the finite-time Lyapunov exponent maximum (FTLEM),

which is more suitable to detect the maximum separation along particle trajectories.

They evaluate the finite time interval at ever increasing length, i.e., the flow map con-

struction and FTLE evaluation are performed incrementally(see Figure 2.10 (left)). By

taking the maximum of all FTLE values sampled at discrete samples in the time in-

terval, this approach is able to capture high expansions along the trajectory instead of

only analyzing the final flow map. This approach makes the FTLE’s significance less

dependent on an appropriate parameter choice for the lengthof the finite time interval.

Kasten et al. [73] proposed a redefinition of the FTLE to localcriteria on the center

trajectory, i.e., they estimate the perturbation about a trajectory by evaluating the Ja-

cobian of the velocity vector field at discrete sample locations along the characteristic

curve. This variant is known as localized FTLE (or short L-FTLE).

Aurell et al. [7] proposed the finite-size Lyapunov exponent(FSLE) as an alternative

to the FTLE (see Figure 2.10 (right)). This measure yields the shortest necessary time

it takes for two infinitesimally close particles to separateto a given distance. The mo-

tivation was to make the measure independent of the advection time because different

regions of a system often require different parameter choices.

2.5. LAGRANGIAN COHERENT STRUCTURES 39

2.5.4 Coherent Structure Detection

If the FTLE is computed at each sample point in the flow domain,it is technically an

Eulerian scalar field. In unsteady flow fields, the FTLE itselfvaries as a scalar function

of space and time. However, since it is derived from particletrajectories, it is generally

thought of as a Lagrangian quantity. Consequently, coherent structures detected on the

basis of the FTLE are commonly calledLagrangian coherent structures(LCS).

To understand how the FTLE can be used for LCS detection, let us reiterate the

meaning of stretching about the trajectory of pointx. In the left image of Figure 2.9,

point x and its perturbed pointy resides on either side of an unstable manifold. If we

integrate these points forward in time, they will most likely diverge from each other.

Likewise, if the points are situated around a stable manifold, the distance between them

will grow if we integrate backwards in time. Thus, both typesof manifolds act as

separatrices, i.e., they separate the flow into regions of different dynamics. The FTLE

at points in the domain close to a separatrix is most likely much higher than for points

residing within a region of coherent motion.

t0

0.00

1.36

2.71

4.07

5.43

6.79

8.14

9.50

Figure 2.11: FTLE in a stationary 2D flow field of two counter rotating vortices. Left: Stream-
lines in the flow domain as well as the trajectories of three points advected for the same amount
of time are shown. Right: The corresponding color coded FTLEscalar field. (images courtesy
of S. Shadden [152])

Let us further imagine a simple (instantaneous) 2D flow field.The left image in

Figure 2.11 depicts stream lines in the analyticdouble gyreflow field [153]. Here, at

the center of the horizontal axis a separatrix divides the flow along the vertical axis into

two regions of different dynamics, i.e. two counter rotating vortices. In the left image

trajectories of three particles initialized in close vicinity are shown. As can be seen,

after a fixed integration time, the distance between particles starting on either side of

the axis of symmetry differs the most. If we calculate the FTLE at each point in the

flow domain, respective values will be largest along this axis.

This example also emphasizes the advantages of the FTLEM approach, which in-

terleaves flow map computation and FTLE evaluation. The standard FTLE might yield

40 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

spuriously small values even for trajectories initializedon either side of the separatrix

if an inappropriate advection time is chosen (e.g. particles traveling around either of

the vortices once, therefore ending up at their initial positions close to each other).

LCS classification

Boundaries of regions of coherent motion will be situated inregions of high FTLE, or

more precisely correspond to the local maxima of the scalar FTLE field. The notion of

a local maximum of a scalar fields : Rn→ R is unambiguously defined by a vanishing

gradient and negative second derivatives in all possible directions. In the literature, a

variety of approaches to relax this definition in order to obtaind-dimensional maxima or

minima have been proposed.Height ridges[60, 37, 104] are a well accepted approach

to classify LCS in FTLE fields and will be discussed briefly in the following.

Height ridges are lower-dimensional (elongated) regions of relatively high values.

They reside at locations where the scalar fields exhibits a maximum in at least one

direction. Such ridges ared-dimensional manifolds inn-dimensional space (n> d≥ 0)

and they can be identified by an analysis of the Hessian matrixH(x) of sat pointx. If vi

(i = 1, . . . ,n) are the unit eigenvectors ofH ordered by the corresponding eigenvalues

λ1≤ ·· · ≤ λn, thenx resides on ad-dimensional height ridge if:

λn−d < 0 ∧ ∀ j = 1, . . . ,n−d : v j ·∇s(x) = 0 .

Sadlo et al. [137] propose to combine this ridge detection criterion with a height thresh-

old (s(x)> smin) to exclude regions of small FTLE and an additional curvaturethresh-

old c for the second derivativeλn < c to suppress flat regions in the data set.

Multiple further ridge extraction approaches exists, however a detailed description

is beyond the scope of this section. Let us mention topological approaches [141], tech-

niques based on watershed segmentation [178, 116] and particle based approaches [77].

Techniques discussed in [151, 126] focus on the extraction of 2D ridges in 3-space.

Continuous Spatial LCS Representation

Since the FTLE field is commonly sampled on a discrete lattice, additional measure

have to be taken into account to determine a continuous LCS representation within the

cells (i.e. between the grid nodes) of the respective lattice. Commonly methods from

the family ofMarching cubes[108] algorithms are employed to obtain a linear approx-

imation of ridges between the grid nodes. These techniques generate line segments (1D

LCS) or triangles (2D LCS) to approximate LCS within the gridcells. Here, primitive

2.5. LAGRANGIAN COHERENT STRUCTURES 41

edges intersect the edges between grid nodes where the desired value is located. These

techniques result in a continuous iso-contour or iso-surface, respectively.

Furthermore, since eigenvectors (of the Hessian) lack an orientation, directional

derivatives at adjacent grid nodes do not exhibit a consistent orientation. This makes it

impossible to determine iso-surfaces without further ado.Methods to solve this prob-

lem apply aprincipal component analysis(PCA) to make the eigenvectors of a cell

consistent. For readers interested in these approaches we refer to theMarching ridges

technique by Furst [68] and the work by Sadlo et al. [137]. Forthe extraction of ridges

in 1D, we refer to the parallel vectors approach by Peikert [125]. The application of

feature flow fields for ridge extraction is discussed in [69].

A final issue for visualization is the orientation of respective iso-surfaces. Kindl-

mann et al. propose to employs an additional post-processing pass after surface ex-

traction to ensure a consistent surface orientation [78]. For non-orientable manifolds

this problem can be avoided by using two-sided normals in thefinal rendering of the

extracted surface.

Temporal Coherence

The original Lyapunov exponent (MLE) is constant along a trajectory. This property

holds approximately for the FTLE if the integration time is chosen to be sufficiently

long. Therefore, LCS extracted from this quantity are approximately material surfaces

and are essentially advected with the flow. This makes LCS of special interest in the

study of transport and mixing processes in unsteady flows.

However, this raises the issue commonly adherent to featurebased flow visualiza-

tion, namely the tracking of features over time (see Section2.2.3). Techniques proposed

in [139, 105] exploit the temporal coherence of LCS to efficiently compute time series

of FTLE ridges by interleaving the advection of a 2D samplinggrid and incremental

tracking of 1D ridges on the respective grid.

To conclude this section, let us note that, in general, the techniques presented above

(namely FTLE computation and LCS extraction through ridge classification and iso-

surface reconstruction) are by far not suited for a real timeexploration of 2D LCS in

3D unsteady flow, as they require time-consuming numerical operations. However, in

Chapter 7, we will propose a technique, which—for the first time—makes an interactive

exploration of unsteady flow based on the concepts of LCS concepts possible. This is

achieved (on the assumption of the temporal coherence of LCS) by combining aspects

from feature based flow visualization (namely FTLE computation and ridge extraction)

with geometry based visualization approaches (i.e., streak surface extraction).

42 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

Chapter 3

Programmable Graphics Hardware

GPUs have rather recently been introduced into the mainstream market, but have be-

come an inherent part of today’s desktop computers. Concepts for the first PC add-on

graphics accelerator cards originate from dedicated graphics workstations such as SGI’s

RealityEngine [6], which implemented the 3D rendering pipeline with a SIMD1 pro-

cessing paradigm in parallel vertex and pixel engines. Early GPU generations were

mainly designed as accelerators for 3D computer games and provided a fixed-function

pipeline for the effective rasterization of a large number of triangles. Due to the cus-

tomers’ growing demand for realistic computer game graphics as well as the program-

mers demand for higher flexibility and high level programming models, GPUs have

evolved into full-fledged, almost freely programmable processors.

In this chapter, we will introduce the rendering pipeline ofmodern GPUs, show

how the GPU hardware performance has evolved over the last decade and introduce

concepts of the DirectX graphics API, which was employed in the course of this thesis

to validate the proposed approaches. Readers unfamiliar with the concepts of GPUs

will be given a compact overview of the programmability and inherent restriction of

this platform, which in turn will help to understand certainalgorithmic choices we

made while developing the algorithms presented in this thesis.

3.1 The Rendering Pipeline

Todays GPUs are massively parallel SIMD processors following the stream program-

ming model [72]. In this model, all the data is represented asan ordered set of data of

the same type (commonly called astream). The data type can be an arbitrarily com-

1SIMD = Single Instruction Multiple Data

43

44 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

plex combination of fundamental data types. A data stream can be of any length but

operations on streams are most efficient if they are long, i.e. comprising thousands of

elements. Computational operations on streams are performed with akernel. A ker-

nel takes one or more streams as input and produces one or several streams as output.

Kernel output relies only on the kernel input, and within a kernel, computations on one

stream element never depend on computations performed on another element inside the

stream. Thus, during kernel compilation the data required for kernel executions is com-

pletely known. If an interdependence of computations on individual stream elements

within a single kernel is assured, serial kernel calculations can be effectively mapped

onto data-parallel hardware (i.e., the stream elements areprocessed in parallel). Ap-

plications following the stream programming model are designed by chaining multiple

kernels together.

The rendering pipeline has been developed with respect to the stream programming

paradigm and it is structured into computational stages connected by data flow between

these stages. Early GPU generations provided only fixed-function kernels, allowing the

programmer to change kernel behavior by a certain amount through a set of predefined

state objects before processing an entire stream, but they omitted the possibility to

define or change the instruction set of a kernel directly. Over the last decade, GPUs

introduced the possibility to freely program certain kernels in the graphics pipeline.

Figure 3.1 depicts an abstract view on the rendering pipeline, and the following list

gives a rough overview with short descriptions of all stagesbefore we will describe in

detail how graphics APIs map this concept to graphics hardware.

• Input Assembly: This stage defines the geometric topology of the input data as

well as how data given in the form of one or several input streams should be

combined and scheduled into the geometry processing stage.The input assembly

defines in which input stream and at which location in the datablock of one stream

element a distinct vertex attribute (e.g. its position in object space) is located.

• Vertex Shader: This kernel performs calculations on a per vertex basis. Ittakes

all attributes issued per vertex as input and performs transformations from one

reference system into another as well as additional operations such as lighting

calculations.

• Rasterizer: The rasterizer stage computes the screen coverage of everyinput

primitive and converts its continuous representation intoa discrete set of frag-

ments. For each pixel in the frame buffer covered by the processed primitive

interpolated vertex attributes are issued to the output fragment stream.

3.1. THE RENDERING PIPELINE 45

• Pixel Shader: A pixel shader kernel is invoked for every fragment output by

the rasterizer. It receives a set of interpolated vertex attributes per input element

and computes the output value(s) written to the corresponding pixels in the target

texture buffer(s), e.g., the color value in the frame bufferor the distance to a

reference image plane (z-Buffer).

• Output Merger Stage: This final stage of the rendering pipeline controls how the

values in the target buffers should be changed according to the processed fragment

attributes and externally set states. It may discard fragments if they fail depth or

stencil operations and, thus, performs visibility test on aper fragment basis. It also

renders it possible to manipulate the color in the frame buffer according to alpha-

blending instead of replacing the value in the target pixel and, thus, facilitates the

display of semi-transparent objects.

Input Assembler RasterizerVertex Shader

Pixel Shader
Ouput

Merger

User / Driver

Geometry Processing Stage

Fragment Processing Stage

Figure 3.1: Data flow of the rendering pipeline: A scene is decomposed into a stream of triangles and
sent to the GPU. The input assembler schedules triangle vertices into the vertex shading units. A kernel
transforms each vertex into screen space and calculates additional attributes, e.g. per vertex lighting.
The output stream is passed to the rasterizer, which reassembles triangles based on information provided
by the input assembler. The rasterizer converts the continuous representation into a set of fragments
by scan-line conversion and passes the fragment stream to the subsequent pixel shader stage. For each
fragment, carrying linear interpolated vertex attributes, a pixel shader is executed. This kernel calculates
per fragment operations such as texturing and directs the resulting stream to the output merger stage.
Within this stage, additional per fragment operations are performed to determine whether (visibility
z-test) and how (alpha blending) the corresponding pixel inthe frame buffer should be altered.

46 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

3.2 Evolution of GPUs

This sections is intended to give a short overview on the development of GPU perfor-

mance. For a thorough view on GPU history we refer the reader to [88]. Over three

decades ago, Intel co-founder Gordon Moore observed that the amount of transistors on

a single die doubled on a biannual basis [117]. Even today, this statement holds true and

has led to an exponential growth in raw compute performance.In the context of GPU

development, the magnitude of hardware evolution is usually quoted as Moore’s law

cubed. Even though performance gains do not scale linearly with increasing transistor

count, enormous performance improvements from one GPU generation to its successor

can be observed. The highly competitive GPU market with its rapid changes in hard-

ware development has led to a decreasing number of competingmanufacturers. Since

the beginning of the 21st century, graphics hardware development is mainly governed

by two major competitors, namely NVIDIA and AMD/ATI. The following tables list

the most important GPU chips featuring programmable components, sorted chrono-

logically by release year. Table 3.1 shows all important GPUs released by NVDIA,

table 3.2 all relevant hardware generations released by ATI, respectively. ColumnGPU

modellists the name of the respective consumer-class (flagship) GPU released in the

respective year, columnMemorythe maximum amount of memory (in MB) available

for each card and columnShader unitsthe number of programmable shader cores. Val-

ues in brackets correspond to the amount of shading units dedicated to different stages

in the pipeline, namely Vertex (v) and Pixel Shading units (p). Since the introduction

of unified shading hardware in 2007, programmable shading units adhere a unified pro-

gramming specification, thus, provide a single computational pool of programmable

resources for the programmable pipeline stages. ColumnsCore clockand Memory

clock list the reference clock frequencies (in MHz) specified by the manufacturer, and

the last column shows theFill rate in million textured pixels per second (MT/s).

GPU model Year Memory (MB) Shader units (v:p) Core clock Memory clock Fill rate
GeForce 256 1999 64 4 (0: 4) 120 166 480
GeForce 2 Ultra 2000 64 4 (0: 4) 250 460 2000
GeForce 3 Ti 500 2001 128 5 (1: 4) 240 500 1920
GeForce 4 Ti 4600 2002 128 6 (2: 4) 300 650 2400
GeForce FX 5900 2003 256 7 (3: 4) 450 850 3600
GeForce 6800 Ultra 2004 512 22 (6:16) 400 1100 6400
GeForce 7800 GTX 2005 512 32 (8:24) 430 1200 15600
GeForce 8800 Ultra 2007 768 128 612 2160 39168
GeForce 9800 GTX 2008 1024 128 675 2200 43200
GeForce GTX 285 2009 2048 240 648 2484 51850
GeForce GTX 480 2010 1536 480 700 3696 42000

Table 3.1: NVIDIA GPU revisions sorted by release year. Information istaken from [2].

3.3. GRAPHICS APIS 47

GPU model Year Memory (MB) Shader Units Core Clock Memory Clock Fill Rate
Rage 128 1999 32 2 (0:2) 125 143 250
Radeon 7200 2000 64 2 (0:2) 183 183 1098
Radeon 8500 2001 64 6 (2:4) 275 275 2200
Radeon 9700 PRO 2002 128 12 (4:8) 325 310 2600
Radeon 9800 XT 2003 256 12 (4:8) 412 365 3296
Radeon X800 XT PE 2004 256 22 (6:16) 520 560 8320
Radeon X1900 XTX 2006 512 66 (8:48) 650 775 10400
Radeon HD 2900 XT 2007 512 320 743 1000 11900
Radeon HD 4670 2008 1024 320 750 1100 34000
Radeon HD 5770 2009 1024 800 850 1200 10400
Radeon HD 5970 2010 2048 1600 725 1000 46400

Table 3.2: ATI GPU revisions sorted by release year. Information is taken from [1].

3.3 Graphics APIs

To facilitate a more production friendly environment, standardized graphics APIs such

as OpenGL [4] or DirectX [3] abstract from the rapidly changing hardware implemen-

tation and are nowadays commonly used to communicate with a GPU. They allow

programmers to write portable code that can be executed in all hardware environments

fulfilling API specific standards. The first OpenGL specification was released by SGI2

in 1992. Microsoft introduced their DirectX graphics API about three years later as

a component of theWindows 95operating system. More than a decade later, both

APIs still coexists and expose comparable concepts to communicate with the under-

lying hardware layer. As both APIs map to the same hardware, there usually exists

a one to one mapping from one APIs functionality to the other one’s. While OpenGL

implementations are available for various operating systems, the application of DirectX

is still restricted to Microsoft’s proprietary operating systems. Thus, selecting the right

API for a graphics application rather depends on the programmers preferences and the

operational environment than any API related constraints.

Both APIs, however, approach different ways to add new functionality to the ex-

isting standard. New OpenGL major revisions are carefully maintained by a group of

specialists from different fields of interest. The so calledarchitecture review board

(ARB) contains members from a large variety of companies. Since 2006 the Khronos

group—an industrial consortium consisting of more than 100members from different

companies, e.g. AMD, Intel, NVIDIA, SGI, Google or Sun Microsystems—has taken

over the supervision of further development of the OpenGL API. New functionality is

added in a process consisting of multiple stages, followingthe concept of extensions.

2SGI = Silicon Graphics Incorporated

48 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

GPU manufacturers have the possibility to expose a new hardware feature immediately

by releasing an extension tailored to specific hardware revisions. Functions and con-

stants belonging to such an extensions can be identified through a manufacturer specific

postfix. If multiple manufacturer decide to expose identical functionality, components

are marked with the EXT postfix. If the ARB decides to assimilate an extension, its

postfix is changed to ARB, and there is a high probability thatthe extension will be-

come an integrated component in an upcoming major revision of the OpenGL speci-

fication. This standardization model provides instant access to new (or experimental)

hardware functionality, but it makes application code vendor-dependent and there exists

the risk of ceased support for (experimental) extensions.

DirectX in contrast is under close supervision of Microsoftand up-to-date versions

usually require a feature set that will become available with future hardware genera-

tions. New specifications are released only after the requested feature set is met. Even

though new API specifications are developed in close collaboration with GPU manu-

facturers, this approach enforces GPU developers to designhardware with the inflicted

specifications in mind. DirectX programmers, however, havethe advantage to develop

applications that will (most likely) run on all upcoming GPUs.

Even though one would assume that the OpenGL specification model would de-

liver new features faster, the development of both APIs overthe last years has taken

another direction. Major DirectX API revisions, namely versions 9.0c and 10, success-

fully introduced well-defined sets of new GPU features faster than the rivaling OpenGL

standard. Due to this reason we decided to use the DirectX APIfor the validation of

our proposed approaches. While this restricts the application to Microsoft’s proprietary

family of operating systems, it ensures that the software isapplicable in a wide range

of heterogenous hardware environments. In the following wewill take a closer look at

two major API versions employed in the course of this thesis.

3.3.1 DirectX 9.0 and the Shader Model 3.0

As introduced before, the rendering pipeline comprises a set of kernel stages connected

by fixed data paths (see Figure 3.1). The DirectX 9.0 standardwas released in 2002 and

supports two programmable stages in the rendering pipeline, namelyvertexandpixel

shaders. Together with this API version two Shader model (SM) standards have been

introduced, laying the groundwork for scientific computingon the GPU.

Shader Model standards define all capabilities a chip of graphics hardware has to

support to call itself compliant to the standard. Basicallyit defines the data structures,

the execution processes (the pipeline) and all states and buffers.

3.3. GRAPHICS APIS 49

With the SM 2.0 standard, floating point data structures and arithmetic were in-

troduced. The Shader Model 3.0 demands access to texture resources in the vertex

shader stage, thus, for the first time giving rise to the possibility to change geome-

try dynamically on the GPU. Outsourcing vertex attributes into texture resources (e.g.

spatial coordinates) and updating the content of these textures through a separate exe-

cution of the rendering pipeline—by rasterizing into the respective textures—allows to

manipulate geometry on the GPU without the need to down-/upload data to the CPU.

This feature is the fundamental basis for an interactive GPU-based particle engine [90].

With the SM 3.0 standard, Microsoft also introduced the HLSLprogramming language

(high level shading language), which allows programmers towrite shader kernels with

a syntax similar to the C programming language.

Data Types and Structures

Table 3.3 lists all fundamental scalar data types supportedby the Shader Model 3.0 stan-

dard in all programmable shader stages of the rendering pipeline. These fundamental

data types can be grouped into vectors of up to 4 components orsquare matrices up to

an order of 4. Most intrinsic functions support 4-tuple parameters and are executed in

parallel on all components.

Data Type Representable Value
bool true or false
int 32-bit signed integer
half 16-bit floating point value
float 32-bit floating point value
double 64-bit floating point value

Table 3.3: Fundamental data types in the Shader Model 3.0 standard

Data structures on the GPU reside in local video memory, which we will refer to as

GPU memory from now on. Only a limited number of data structures is available on

the GPU, and can be categorized as follows:

1. Vertex Buffers are intended to store data associated with the vertices of a ge-

ometric object. Common attributes are coordinates in 4D homogeneous space,

normals or texture coordinates. Each attribute can containup to four scalar data

types of type int or float.

2. Index Buffers are used in conjunction with vertex buffers and enable programs to

benefit from GPU mechanisms to cache intermediate results. An index is a pointer

50 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

to a vertex residing in a separate buffer. Vertices are oftenshared among multiple

primitives—e.g adjacent triangles—describing one geometric object. With index

buffers, multiple copies of the same vertex data can be avoided, thus, reducing the

size of the pipeline input stream. Vertex shaders cache intermediate results and

if an index points to a vertex that has already been processedand still resides in

cache, these values are reused instead of invoking the vertex shader instruction set

again. The application of index buffers can drastically reduce the processing time

of the vertex shader stage if the vertex data is stored in a cache coherent manner.

Each index buffer element consists of an unsigned integer ofeither 16 or 32-bit

precision.

3. Texture Resourcesare 1D, 2D or 3D arrays of data, whereas each array-element

can be a tuple of up to four 32-bit values. Array elements are usually referred to as

texels(1D and 2D) orvoxelsin the case of 3D textures. Dependent on parameters

specified at resource creation, textures can support read/write access to the CPU

and GPU. Though all four features are never supported at once. E.g., a GPU

writable texture is never CPU readable and writable.

The Shader Model 3.0 Rendering Pipeline

The Shader Model 3.0 standard realizes the rendering pipeline as a set of fixed and

programmable stages connected by fixed data paths as depicted in Figure 3.2. The role

and limits of each kernel stage according to the DirectX 9 standard are listed in the

following:

1. Input Assembly stage: The input assembler stage contains setting groups to de-

fine how input streams, representing a geometric object based on a set of vertices

and relations between them, are interpreted by the GPU.

(a) Vertex Layout setupThe vertex layout consists of an array of element de-

scriptors defining how the data of one vertex element has to beinterpreted

and how it is assembled from a set of input streams. Each element descriptor

entry contains following declarations: Thestream ididentifies the stream a

vertex attribute resides in. Theoffsetdescriptor contains the byte offset from

the beginning of the vertex data to the data associated with the particular

vertex attribute. Thedata typedescriptor as one of several predefined types

is used to determine the data size of a vertex attribute. Ausageenumerator

defines what the data will be used for, e.g., if the attribute contains position

3.3. GRAPHICS APIS 51

or texture coordinates. A single vertex can carry up to 64 scalar attributes or

more precise 256 bytes per-vertex data.

(b) Vertex buffer setup: One or more vertex buffers can be bound to the pipeline

prior to the execution of the rendering pipeline. This settings group is used to

define the ordered set of currently active vertex buffers. Each vertex buffer

consists of an array of vertices, whereas each array elementcontains the

same amount of vertex attributes defined in the vertex layoutand associated

with the corresponding input buffer.

(c) Index buffer setup: Indices point to vertices in the input vertex stream. A set

of indices is called an index buffer and can be used to addressvertices that

are shared among multiple primitives instead of defining thevertex multiple

times explicitly in the vertex stream.

(d) Primitive Topology: The vertex topology defines how the input vertex and

index streams are interpreted to form a certain type of primitive. Supported

types are points, lines and triangles. Also, buffers can be interpreted as either

lists, strips or fans. While the list type describes each primitive individually,

strips and fans reuse one or more previously indexed vertices in order to save

processing time with the help of vertex caching.

The input assembler can additionally be employed to create (system generated)

values. These values are generated at various pipeline stages (either given on a per

vertex or per fragment basis) and can be accessed by shader kernels in successive

pipeline stages. Exemplary system values are vertex ids, a value mapping to

the z-buffer depth value or culling information regarding the orientation of one

primitive.

2. Vertex Shader stage: A programmablevertex shader kernel is executed for each

vertex element sent into the rendering pipeline. It is intended to transform co-

ordinates between reference systems and to perform generaloperations on a per

vertex basis. The Shader Model 3.0 demands that up to 16 textures can be bound

and sampled at this stage. As texture content can be modified on the GPU, but

no modifications on arbitrary (vertex) buffers are possible, this gives rise to the

possibility to change geometry on the GPU dynamically. Thus, the so called

vertex texture fetch is a fundamental pipeline feature for the development of an

interactive particle engine.

52 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

3. Rasterizer stage: After projection and transformation into window coordinates,

all vertices are equipped with a 2D position on the target raster and a depth value.

The rasterizer processes the edges of one primitive in a scan-line fashion and gen-

erates one fragment for each pixel covered by the primitive.An interpolation unit

interpolates all vertex attributes demanded by the successive pixel shader stage ac-

cording to the desired one of several interpolation schemes. The rasterizer stage

is configured through a set of rasterizer states. With these states, a programmer

can specify the rasterization scheme, i.e if only pixels covered by the edges of a

primitive should be filled (wireframemode) or fragments for all pixels covered

by the primitive should be generated (solid fillmode). A primitive cull mode can

be activated and used to discard all primitives facing either towards or away from

the camera, thus excluding them from rasterization. Depth/stencil operations al-

low to discard primitive samples on a per fragment basis in the output merger

stage. However, the Shader Model 3.0 introduced a mechanismcalledearly-z

test, which allows to perform the depth test for a fragment inthe rasterizer stage

if its depth value will not be modified in the pixel shader stage and stencil opera-

tions are disabled. The depth test incorporates a depth/stencil or z-buffer, which

stores distances to a reference image plane for all pixels inthe frame buffer. If

one fragment passes the depth test the corresponding z-buffer pixel value is re-

placed by the fragment’s depth value. Fragments failing thedepth test will never

contribute to the final result, thus the early-z test allows to efficiently discard frag-

ments before they are sent into the pixel shader stage, whichin turn can drastically

reduce the load on the pixel shader stage.

4. Pixel Shader stage: A programmablepixel shader kernel is executed for each

fragment generated by the rasterizer. It has access to all interpolated vertex at-

tributes and can read data from external texture resources residing in GPU mem-

ory. The Shader Model 3.0 allows to bind up to eight parallel render targets to

the pipeline, whereas each texture element can contain up to4 32-bit scalar val-

ues. Thus, within one single rendering pass a pixelshader can output up to 128

bytes of data with each fragment. Furthermore a pixel shadercan also modify a

fragment’s depth value.

5. Output Merger stage: This final pipeline stage is responsible to route data into

multiple output buffers. Up to eight render targets can be activated at the same

time. Geometry rendered into multiple render targets is projected only once and

rasterized at the same position in each target. Depending onthe output merger’s

3.3. GRAPHICS APIS 53

decision, fragment attributes are either written at the same position into all cur-

rently bound output buffers or discarded entirely.

Programmers can configure depth/stencil operations as wellas blending function-

ality through various state objects. While depth/stencil operations allow to discard

data on a per fragment basis, the blend state allows to manipulate how pixel val-

ues in the target buffer are updated according to the opacity/alpha attribute of a

fragment. Blending operations are usually employed to render semi-transparent

objects, updating the target color according to a opacity value of a fragment in-

stead of simply overwriting the target value. The output merger is certainly one

candidate for another programmable component in the rendering pipeline.

Input Assembler

Stage (IA)

Vertex Shader

Stage (VS)

Rasterizer Stage

(RS)

Pixel Shader

Stage (PS)

Output Merger

Stage (OM)

Input Data

Output Data

GPU Memory

Bu!ers

Textures

Constants

Bu!ers

State

Textures, Constants

Textures, Constants

State

Textures

Figure 3.2: The DirectX 9.0 / SM 3.0 rendering pipeline. Programmable kernel stages are
shown as yellow boxes. One important feature introduced by the SM 3.0 standard (highlighted
in red) is the possibility to access texture buffers in the vertex shader stage, a fundamental
building block to realize interactive particle tracing on the GPU.

54 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

3.3.2 DirectX 10 and the Shader Model 4.0

The DirectX 10 API with its Shader Model 4.0 standard was released in 2007 and is

closely coupled to low level system layers of the Windows Vista operating system. For

a thorough overview of the complete specification we refer the reader to [11]. Fig-

ure 3.3 depicts the DirectX 10 rendering pipeline, important additions are highlighted

in red. The most important changes to the DirectX 9.0/SM 3.0 standard are listed in the

following:

Data Types and Structures

The SM 4.0 standard loosens restrictions regarding data types that can be represented

in vertex and texture buffers. Vertex attribute and texturedata layouts now support

up to to four components per element, whereas the componentscan be of type char,

short, (unsigned) integer or float. Also 8-, 16- and 32-bit typeless data has been in-

troduced as well as the possibility to reinterpret buffer and data types throughout the

rendering pipeline. Furthermore, buffer resources can be grouped into arrays (e.g., a

Texture2DArraycontains multiple 2D texture slices of equal size and format). Bit arith-

metic on (unsigned) integer data types throughout the wholeprogrammable pipeline is

also one new addition of the SM 4.0 standard.

The SM 3.0 standard featured (global) shader constants which can be scalars, vec-

tors or matrices of fundamental data types. Prior to the execution of the rendering

pipeline these global shader variables can be set individually through respective API

calls within the application. In the SM 4.0 standard a new type of buffer, so called

constant buffers, was introduced. Constant buffers are optimized for constant-variable

usage, which is characterized by lower-latency access and frequent CPU updates. In

HLSL code, these buffers are defined similar to structures inthe C programming lan-

guage. Grouping global shader constants according to their“update frequency“ reduces

the bandwidth required to update shader constants as updates are committed at the same

time rather than making individual calls to commit each constant separately.

The Shader Model 4.0 Rendering Pipeline

One important feature of the SM 4.0 standard is its demand forread access to buffers

in all programmable pipeline stages. Vertex buffers can be bound as one or four com-

ponent float buffers and (unfiltered) data can be read within the shader kernels. In con-

junction with the newstream output stage, this gives rise to the possibility to directly

manipulate buffer content on the GPU. Further additions to the rendering pipeline as

3.3. GRAPHICS APIS 55

well as changes to existing kernel stages are listed in the following, the complete SM

4.0 rendering pipeline is depicted in Figure 3.3:

1. Input Assembly stage: New system generated values were added to the input

assembly stage. E.g., aprimitive idcan now be issued to uniquely identify whole

primitives throughout the geometry shader and pixel shaderstages. Primitive

fans have been removed from the pipeline. Now points, lines and triangles must

be either specified as lists or strips. For line and triangle primitives new topology

types where introduced in the form of lists or strips with adjacency information.

This adjacency information can be used in the geometry shader stage to access

attributes of vertices residing on adjacent primitives.

2. Geometry shader stage: With the SM 4.0 standard, a new programmable stage

was added to the rendering pipeline, namely thegeometry shaderstage. The ge-

ometry shader is situated between the vertex shading and pixel shading stages and

operates on the primitive level. This stage receives whole primitives, e.g. a line

segment or a triangle with adjacency information, and operates on the primitive

level with access to the data structures of all primitive vertices. It allows arbitrary

operations on each individual vertex data structure but itsintended purpose is to

amplify or reduce the incoming stream by adding or removing whole primitives.

A geometry shader can output up to 1024 32-bit values in the form of vertices,

whereas each individual vertex can carry up to 256 bytes of attribute data. Next

to amplifying or reducing an input stream, the geometry shader can also change

the primitive type itself. For example, textured sprites (glyphs) can be realized

efficiently by sending a stream of point primitives into the pipeline and letting

the geometry shader issue one quadrilateral in the form of two triangles to the

successive rasterizer stage.

The geometry shader also introduces the possibility to direct its output into spe-

cific slices in texture arrays or 3D textures. For each slice targeted by the geom-

etry shader stage, separate rasterizer and output merger stages are invoked, i.e.

even the projection and, thus, the area covered by an output primitive can vary.

3. Stream Output Stage: The stream output stage renders it possible to stream data

directly into buffers residing in GPU memory. It can be activated solely or par-

allel to the rasterization stage and, thus, allows to updategeometry data residing

in vertex buffers directly while (optionally) rasterizingfurther information into

texture render targets. As the currently bound input streambuffer(s) cannot be

56 CHAPTER 3. PROGRAMMABLE GRAPHICS HARDWARE

bound as stream out target(s) to the pipeline, a ping-pong approach using two sets

of buffers has to be applied to update geometry data directlyon the GPU.

4. Output Merger stage: Within the SM 4.0 standard, it is possible to activate

blending functionality separately as well as to define individual write masks for

each active texture target. 32-bit floating point precisionis introduced to the

blending stage, thus, offering full float support throughout the whole rendering

pipeline.

Input Assembler

Stage (IA)

Vertex Shader

Stage (VS)

Rasterizer Stage

(RS)

Pixel Shader

Stage (PS)

Output Merger

Stage (OM)

Input Data

Output Data

GPU Memory

Bu!ers

Textures

Constant Bu!ers

Bu!ers

State

State

Textures

Geometry Shader

Stage (GS)
Textures, Bu!ers

Constant Bu!ers

Textures, Bu!ers

Constant Bu!ers

Textures, Bu!ers

Constant Bu!ers

Stream Output

Stage (SO)
Bu!ers

Figure 3.3: The DirectX 10 / SM 4.0 rendering pipeline. Yellow boxes denote the three pro-
grammable kernel stages. The new stream output stage allowsto manipulate vertex buffer
content directly. Important new features addded to the rendering pipeline are highlighted in red.

Chapter 4

Interactive Visual Exploration of 3D

Unsteady Flows

4.1 Introduction

Interactive visual exploration of 3D unsteady flows is stillone of the grand challenges

in many areas of science and engineering. Popular applications where such fields arise

include computational fluid dynamics and mechanics, as wellas medical imaging tech-

niques like functional CT. In the unsteady case the expert gains insight into the underly-

ing physical phenomena especially from the dynamics of the flow. Consequently there

is a dire need for real-time techniques that provide rapid visual feedback. These tech-

niques, however, have to be supported by interactive and intuitive metaphors to enable

the user to focus on relevant details and to flexibly select the most appropriate visual-

ization option. Only then, the massive amount of 3D information provided to the user

can be filtered adequately.

Despite the advances in CPU and graphics hardware technology, existing visual-

ization techniques for reasonably sized 3D unsteady flow fields still cannot run at ac-

ceptable rates. As numerical and rendering capabilities continue to increase, so does

the size of the data sets to be visualized. Today, time-resolved numerical simulations

comprised of billions of grid points are available, making the visualization difficult due

to memory constraints. Figure 4.1 shows such a gigantic fieldthat consists of 227 time

steps at resolution 512×256×64 and requires over 20GB to store velocity information.

As these requirements will continuously increase in the future, there is a dire need for

flow visualization techniques that comprehensively address these issues.

57

58 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

In this chapter, we present a novel visualization techniquefor 3D unsteady flow fields

that addresses the aforementioned requirements. As the size of such data sets usu-

ally exceeds the memory capacities of GPUs, additional measures have to be taken to

manage the data needed during the interactive flow exploration session. We propose

a novel multi-core approach to asynchronously stream such fields from the CPU. By

decoupling visualization from data handling this approachresults in interactive frame

rates.

Figure 4.1: Visualization of the time-resolved Terashake 2.1 simulation data. On a PC equipped
with a dual-core CPU and a single GPU, particle-based visualization using 256K primitives in
combination with volume rendering runs at over 40 fps.

4.2 Contribution

The techniques presented in this chapter are based on a streaming approach for time-

resolved sequences. In contrast to previous visualizationtechniques for such fields,

both the mapping of visualization data onto renderable primitives and the rendering

of these primitives is performed entirely on the GPU. Our approach has the following

properties:

4.3. RELATED WORK 59

• Memory efficiency: Asynchronous streaming of the data allows the visualization

of an unlimited amount of time steps. Recent advances of multi-core architectures

are exploited to abstract from the limited size of the local GPU memory.

• Exploration efficiency: Since the reconstruction of local flow features—e.g.

stream, streak and path lines, as well as derived scalar quantities—is integrated

into the rendering process on the GPU, our system provides instantaneous visual

feedback to the user. This accommodates a more efficient and better understand-

ing of even very complex flow phenomena.

• Visualization efficiency: Particle tracing and the computation of characteristic

lines is performed on the GPU to visualize the dynamics of unsteady flows. This

results in a significant performance gain compared to previous approaches.

• Cost efficiency: The visualization techniques presented in this work are espe-

cially designed for off-the-shelf PC hardware.

The remainder of this chapter is organized as follows: In thenext section we dis-

cuss related work. In Section 4.4 we show how 3D unsteady flow fields can be stored

on the GPU to allow efficient particle tracing and we address data handling and transfer

issues inherent to visualization techniques for large datasets. Section 4.5 is dedicated

to GPU-based particle tracing, and Section 4.6 discusses a variety of rendering modal-

ities for individual particles. Section 4.7 presents GPU-based integration techniques

to extract characteristic lines in unsteady flow fields and Section 4.8 discusses various

visualization modalities for particle trajectories. Section 4.9 introduces focus+context

techniques for polygonal meshes which facilitate the integration of static boundary re-

gions as context information into the obtained visual flow representation. Finally, we

conclude this chapter with a discussion of the main contributions.

4.3 Related Work

In contrast to 3D steady and 2D unsteady flow, the literature on interactive techniques

for 3D unsteady flow is amazingly sparse. In this section, we review existing ap-

proaches and motivate how our system can fill this gap. As introduced in Section 2.2,

the field of flow visualization techniques can be classified coarsely intodenseand

sparse methods:

Dense visualization methods [97] seek to reconstruct a single representation for the

whole flow domain. To overcome occlusion effects, the process is usually restricted

60 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

to regions of interest, such as vortex regions [184] or stream surfaces [160]. The re-

striction to regions of interest culminates in image-basedtechniques [171, 98], which

trade highly interactive frame rates versus artifacts due to the screen-aligned nature of

the regions. Traditionally, unsteady fields are problematic, since it is not a priori clear

how non-instantaneous characteristics such as streak or path lines can be integrated into

dense methods [43, 156].

In contrast, sparse methods reconstruct characteristic flow features only at specific

locations. Particle tracing [136, 21] and the reconstruction of stream, streak, and path

lines [95] fall into this category. Also, methods seeking toextract topological structures

[64, 163] or features in general [130] can be considered sparse methods. Both classes

are appealing in their own right, depending on which aspectsof the data should be em-

phasized; however, Figure 4.2 clearly demonstrates that for large amounts of primitives

geometry-based methods naturally converge towards dense methods.

Most sparse methods pay particular attention to proper seeding strategies [167,

123]. However, recent work by Wiebel et al. [186] indicates—maybe opposing com-

mon belief—that there is a need for a simple, controllable, and very localized prob-

ing metaphor. Mimicking the dye- and smoke-injection of real-life windtunnel experi-

ments, such a metaphor elegantly circumvents problems naturally arising when seeding

in unsteady flow fields. Krüger et al. [90] show that a probingmetaphor combined with

rapid visual feedback is a convenient and highly effective method to explore the com-

plex dynamic structures present in many flow fields. Probing the flow is a very intuitive

and valuable tool that gives engineers full control of the visualization process, rather

than forcing them to rely on an automatic seeding algorithm.

The first version of the particle engine, constituting the foundation for the work

presented in this thesis, was developed at our chair in 2004 by Krüger et al. [90].

The introduction of the vertex texture fetch to the DirectX graphics pipeline (see Sec-

tion 3.3.1) inspired the development of the GPU particle engine. Before this framework

was published, interactive techniques employed pre-computed particle trajectories and

uploaded them to the GPU for rendering to enable interactionwith the data [20]. Alter-

native approaches required sophisticated caching strategies [33] or expensive parallel

hardware architectures [21] to achieve interactivity. TheGPU-based particle engine al-

lowed to trace a huge number of particles in parallel at two orders of magnitude faster

than on state-of-the art CPUs available at the time. Since nodata communication be-

tween the CPU and GPU was required they could also be displayed at interactive frame

rates. Thus, virtual exploration of 3D stationary flow fieldsin a way similar to real-

world experiments became possible even on commodity PC hardware.

4.4. 3D UNSTEADY FLOW FIELD DATA 61

Figure 4.2: Visualization of a large eddy simulation of the flow around a cylinder. Dense
particle sets are visualized using oriented rendering primitives to achieve a “LIC-like” look.

4.4 3D Unsteady Flow Field Data

Particle tracing on the GPU can be realized most efficiently if the 3D unsteady flow field

is given as a time-resolved sequence of velocity vector fields sampled on a cartesian or

uniform grid. Velocity data over the whole spatial flow domain can then be stored—for

each time step individually—in theRGBcomponents of 3D texture resources residing

in GPU memory. Consecutive time steps are stored in separatetexture resources. This

setup is especially suited for GPUs for the following reasons:

Firstly, since the data resides on a structured grid, locating the velocity information

for a point in the flow domain requires only a per-component scaling of its position

coordinates to transform them from object-space to texture-space.

Secondly, 3D textures allow the fastest and, thus, most efficient way to sample val-

ues at arbitrary locations in the flow domain, as GPUs supportautomatic trilinear inter-

polation in hardware. A linear approximationv(x, t) of the velocity data at an arbitrary

location in spacex and timet can then be obtained by sampling the two 3D textures

containing adjacent time-steps (ti ≤ t ≤ ti+1) and one additional linear interpolation

manually calculated in a shader kernel as described in equation (2.7).

Thirdly, if a fixed integration step size is used, the same amount of work is imposed

onto all shader kernels executing the advection of an input particle stream in parallel.

Throughout this work we employ such data structures and all timings presented in

62 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

the following adhere to this concept. However, let us note that particle tracing on GPUs

is not restricted to such data sets and unstructured time-resolved 3D unsteady flows can

also be employed at additional costs with respect to the location of a sample position

and varying amounts of integration steps. For an efficient implementation of particle

tracing in unstructured grids on the GPU, we refer the readerto [148].

4.4.1 Data Handling

As the size of 3D unsteady flow field data sets usually exceeds GPU memory capac-

ities, an additional abstraction layer is needed to manage the data needed during the

interactive flow exploration session. We propose a novel multi-core approach to asyn-

chronously stream such fields from the CPU. This approach decouples visualization

from data handling, resulting in interactive frame rates. We employ multi-threading

by assigning one thread to consecutively stream one time step after another from disk

to the GPU, and another thread to manage integration and visualization specific GPU

calls. Since these threads are concurrent per se, the visualization process is entirely de-

coupled and mostly unaware of the streaming data upload. Consequently, data transfer

does not block the visualization thread.

To advect particles seamlessly in an unsteady fieldv represented by a discrete set

of vector fields{vi, i ∈ [1,n]} at time stepsti, we need to store at least three fields in

GPU memory. For example, Euler integration requires read access to two fields at times

ti, ti+1, and a third fieldti+2 has to be available once time integration proceeds beyond

ti+1. By implementing a ring buffer, we can dynamically choose how many time steps

to keep on the GPU, depending on the order of the time-integration scheme and the

global integration step size. As soon as the time indext of the visualization enters the

interval[ti+1, ti+2], the memory manager is notified. The manager then advances inthe

sequence by overwriting the GPU container storing time stepti with the next time step

ti+3 (see Figure 4.3). This leads to a very smooth transition in time, and, if the time

needed to stream the next time step is smaller than the physical time associated with

one interval, the whole sequence can even be explored in realtime.

Since graphics cards lack the ability to fetch data directlyfrom disk, the memory

manager pre-fetches as many time steps as possible from diskand stores them in CPU

system memory. If the entire sequence fits into RAM, it is buffered at application

startup and can then be streamed without any further disk access. Otherwise, the man-

ager uses an additional ring buffer which provides containers for a system-specific or

user-defined number of data sets. This is illustrated on the right of Figure 4.3.

4.4. 3D UNSTEADY FLOW FIELD DATA 63

If only one thread is used to implement visualization and data handling, both disk

transfer and the upload of data to the GPU will block the entire application. This is

because both operations are issued via blocking system calls. Decoupling the data man-

agement and particle tracing tasks into separate threads enables the particle engine to

issue rendering calls even while new data is streamed to the GPU. Multi-core architec-

tures benefit most from this implementation; yet even for single core CPUs we observe

a significant gain in visualization performance. This is dueto the fact that the operating

system scheduler switches between the two threads, enabling parallel execution of data

upload and issuing rendering calls.

Particle Tracing [t0,t1]

RAM GPU Field (t2)

Particle Tracing [t1,t2] Particle Tracing

RAM GPU Field (t3) RAM GPU Field

HD RAM Field (t5) HD RAM Field (t6) HD RAM Field

t2

t3

t4

t5

t3

t4

t5

t6

t0 t1

t2

t1 t2

t3

1

2

3

Figure 4.3: In the left and middle images one cycle performed by the data handler when ad-
vancing in the sequence is depicted. The rightmost image illustrates the separation of the asyn-
chronous stream manager into distinct threads.

Currently, the GPU visualization module and the two memory managers are running

in two separate threads (see Figure 4.3 (left)). Once the visualization thread enters

the next time interval, it requests the next time step of the sequence that is not yet

resident via standard thread communication mechanisms. The memory manager either

acknowledges that this time step has already been successfully uploaded to the GPU,

or the requested time step is streamed to the GPU. Afterwards, the system memory is

updated, overwriting the block containing the now obsoletetime step.

64 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

Table 4.1 compares the raw data throughput that is achieved for streaming two dif-

ferent data sequences on different architectures. Note that this throughput has been

measured with the visualization thread not imposing any additional load. If visualiza-

tion is enabled, including rasterization and shader operations on the GPU, our experi-

ments have shown a loss in throughput of about 15%. Both test machines are equipped

with 3GB RAM, two WD Raptor 74GB hard disks in a RAID0, and an NVIDIA

GeForce 7900GTX with 512MB video memory. The single-core CPU is a P4 3.2GHZ,

while the dual-core CPU is a Core2 Duo 6600. As can be seen, on the dual-core archi-

tecture using the same disk and memory system the multi-threading approach already

yields a noticeable gain in throughput.

LES Cylinder Flow (32 MB/Field) Terashake 2.1 (96 MB/Field)
HD→ CPU CPU→ GPU HD→ CPU CPU→ GPU

1-Core 90 MB/s 1130 MB/s 95 MB/s 1317 MB/s
2-Core 94 MB/s 1240 MB/s 100 MB/s 1590 MB/s

Table 4.1: Performance measurements of the stream manager under various configurations.

On quad-/multi-core architectures the memory management can be split further into

separate threads to decouple streaming from disk to CPU and from CPU to GPU. Still,

for off-the-shelf PCs, loading from disk is clearly the bottleneck of the system. To alle-

viate this problem it has proven worthwhile to pre-fetch as many time steps as possible

into CPU system memory when the user restarts or pauses the application. A further

increase in performance can be gained if more efficient RAID systems are employed.

4.5 GPU-based Particle Tracing

On Shader Model 4.0 compliant graphics hardware, particle tracing can be approached

in different ways. Texture-based particle integration employs texture resources to store

per-particle attributes and integration is performed in the pixel shader stage by rasteriz-

ing into respective texture targets (this technique is alsoavailable on SM 3.0 hardware).

Buffer-based particle advection employs the geometry shader stage to update particle

attributes and exploits the stream-output stage to send updated particles into vertex

buffers residing in GPU memory. In the following we will present both approaches in

detail and list their pros and cons in terms of performance and flexibility.

4.5. GPU-BASED PARTICLE TRACING 65

4.5.1 Texture-based Particle Tracing

Texture-based particle integration employs a technique commonly referred to as GPGPU1

programming. In this model, data structures are stored in (the texels of) texture re-

sources. To circumvent hardware limitations regarding thesize of 1D textures, we

store the attributes of a particlepi, j at the texel position[i, j](i < m, j < n) in 2D tex-

tures of sizem×n. Each texture resource can contain up to 4 32-bit sized values per

component. Multiple attributes can be distributed to several texture resources, and up

to 8 textures can be simultaneously bound as output targets to the rendering pipeline

(this is commonly referred to asmultiple render targetsor shortMRT). Thus, up to 128

bytes of particle attribute data can be updated at once through a single invocation of the

rendering pipeline.

Updates are performed in the pixel shader stage and are invoked by sending a single

quadrilateral covering the whole viewport into the pipeline. In general, DirectX does

not allow simultaneous read/write access to texture resources. Thus, whenever the

update of an attribute relies on results calculated in a previous step (e.g., the particle

position), we employ aping-pongmechanism to access this information. Figure 4.4

shows a flowchart of the texture-based particle integrationtechnique.

GPU-based particle tracing comprises following three major components:

• Particle Setup: Each particle is initialized with astarting positionand alife time

value before the particle advection loop starts. An initialstarting location for

all particles is pre-computed on the CPU with respect to a user-selected spatial

distribution function, e.g., a uniform or random distribution over the unit cube.

The flow exploration is coupled with a probing metaphor, allowing the user to

interactively change the size and location of a rectangularseeding probe. Manip-

ulating the probe results in a transformation matrix which is applied to the start

position whenever a particle is released into the flow domain.

Additionally, each particle gets assigned a random life time valuel in the range

[1−var,1+var], wherevar is a user-specified variance value.l is scaled during

particle incarnation by a user-defined global value to equipeach particle with an

individual life time. Higher variance values result in a homogenous particle dis-

tribution over time as particles will disappear and be reincarnated at their starting

locations in a random manner.

1GPGPU = General Purpose computation on GPUs

66 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

The starting location and life time values are copied into a four-component float-

ing point texture (StartTex) and are stored as an additional resource in GPU mem-

ory. With this setup a user can change the probe location and global life time

interactively without the need to re-calculate the initialvalues and to send the tex-

ture resource to the GPU (which would stall the exploration progress). Only if

the number of particles or the life time variance are changedan update involving

the CPU becomes necessary.

• Particle (Re)Incarnation: Whenever the particle setup stage has ended, a simple

pixel shader is invoked to initialize particle attributes prior to particle integration.

The following operations are performed by this pixel shader: First, a particle’s

starting location and life time value are read from theStartTexresource. Then,

the starting positions are shifted from the unit cube to the flow domain object-

space according to the probe transformation matrix. Particle life time values are

scaled according to the global life time. The probe transformation matrix and

the global life time are accessible as global shader constants (residing in GPU

memory). The pixel shader writes the updated particle attributes into one of two

ping-pong attribute textures used during particle advection.

During the successive particle advection stage, whenever aparticle leaves the flow

domain or its life time expires, the same operations are alsoexecuted.

• Particle Advection: Particle advection is performed in a pixel shader (as depicted

in Figure 4.4) and requires access to following resources: TheStartTextexture is

required in case a particle has to be reincarnated. If attributes depend on results

from the last advection step, the respective textures also need to be available (e.g.,

the position of a particle or its life time). Furthermore, the set of consecutive

velocity vector fields holding the flow field data confining thecurrent position in

time must be provided to the pixel shader for particle integration.

In every update pass a set ofm×n fragments is generated and processed in parallel

by a shader kernel. Each shading unit executing the respective kernel performs

the following operations: Current position and life time values are read from

the attribute textures filled during the last invocation of the advection pass. The

respective read locations are available as system generated values, namely the

target texel indices in the output target. Then, the pixel shader checks if the

life time of a particle has expired or whether it has left the flow domain. In

both cases the particle is reincarnated as described above.Otherwise particles

are advected using either the Euler (Eq. 2.3) or the fourth order Runge-Kutta

4.5. GPU-BASED PARTICLE TRACING 67

integrator (Eq. 2.4), which require multiple read operations from the flow field

textures and interpolation operations (Eq. 2.7) to computethe necessary velocity

field values. Updated position and life time values are written to a render target,

which will become the input in the next advection step. Additional attributes, e.g.

the velocity at the current particle position, can be written to additional render

targets and can be used to determine the appearance of a particle during rendering.

Static

Quadrilateral

Vertex Shader
m

n

Rasterizer

Fragments

Pixel Shader

Attribute Textures

Pass through Interpolation / Integration

Time-resolved

Vector!elds

Last Pass

Attributes

Ping-Pong Toggle

Setup

Figure 4.4: Flowchart for the particle attribute update: A quadrilateral covering the whole target
texture is sent into the vertex shader stage and passed through to the rasterizer to generate one
fragment for each covered texel. The pixel shader stage accesses the flow field data as well as
results from the last iteration and performs the attribute updates in parallel. Textures storing
particle attributes that rely on previous results are toggled between successive update iterations.

4.5.2 Buffer-based Particle Tracing

With the SM 4.0 standard, Microsoft introduced thestream output stageto the rendering

pipeline. This stage allows to stream intermediate resultsinto (multiple) vertex buffers

directly (see Figure 3.3). As the geometry shader allows to output a varying number

of primitives for each processed element, this advection technique is especially useful

if the amount of particles needs to be changed flexibly over time (e.g., for an adaptive

refinement or coarsening of the particle set). Furthermore,it is even possible to stream

results into buffers residing in GPU memory and sending the elements to the rasterizer

stage in parallel. Thus, particle advection and successiverendering can be performed

in a single invocation of the rendering pipeline (see Figure4.6). This is especially

suited if particles are rendered as single point primitives. More importantly, the parallel

rasterization can be exploited to store additional information about the buffer content in

additional texture resources. For example, if an interdependence adheres to particles in

disjunct parts of the linear vertex array, they can store further information by rasterizing

68 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

a point primitive into corresponding (disjunct) regions ofadditional texture targets (see

Figure 4.5). By application of different alpha blending operations, information such

as the amount of particles or the vertex buffer index of the first/last primitive in the

respective bin can be captured. Alternatively, the pixel shader stage can be disabled.

Then, the rendering pipeline is only executed up to the stream output stage and further

stages of the rendering pipeline are omitted.

Buffer-based particle tracing can be realized with two different approaches. The

first approach is more flexible as is provides the possibilityto store a larger amount of

data per buffer element. The second approach, on the other hand, can only cope with

up to sixteen scalar components per particle in one steam output invocation but results

in a minimal memory footprint. Both approaches rely on the ping-pong mechanism as

described above to access results from the last update pass.

The first technique stores all attributes of one particle within one vertex-element of

a single buffer. In this configuration, up to 64 scalar components of per-vertex data (256

bytes or less) can be captured by the output buffer for each processed vertex element.

In this setup, the content of a single vertex buffer is sent into the rendering pipeline and

updated particle attributes are written into a second buffer bound to the stream output

stage. A flowchart for the single-buffer technique is given in Figure 4.5.

Vertex Shader Geometry Shader

Pass through Interpolation / Integration

Vector!elds

vertex 1

�oat3 position

�oat lifetime

Vertex Bu"er

Per-vertex

 Attributes

vertex 2

Steam Output

vertex 1

Ouput Bu"er

vertex 2

Ping-Pong Switch

Setup

Rasterizer Pixel Shader

Output Merger

AttrTexi

n
-t

h
 P

a
rt

ic
le

 B
in

AttrTexi-1AttrTex

Figure 4.5: Single-buffer particle update: Per-particle attributes are stored on a per-vertex basis
in a single buffer. The particle updates are performed in thegeometry shader stage. Buffer
Setupcontains data required for particle reincarnation. Optionally, the rasterizer and successive
stages can be activated and exploited to store further particle (interdependence) information in
additional texture resources . For example, here the first two particles in the output buffer are
interdependent and share information inside a common texelin theAttrTexoutput texture.

Alternatively, attributes can be separated into those who need access to results from

the last pass and those who are independent of previous calculations. By storing up

to four scalar components per vertex in separate buffers andkeeping only two copies

4.5. GPU-BASED PARTICLE TRACING 69

of those buffers that require access to intermediate results during the advection stage,

a minimal memory footprint can be achieved. However, streaming data from multiple

input buffers to multiple output buffers restricts the total amount of per-vertex attributes

to 16 scalar components as only 4 simultaneous output streams can be bound to the

rendering pipeline and each output target can only capture asingle element (with up

to 4 components) of per-vertex data. Let us note that whenever a geometry shader

appends an element to the output stream, attributes are written into all buffers bound to

the output stage. Thus, it is not possible to distribute an input stream to several output

buffers with the help of the stream output stage. Figure 4.6 depicts the flowchart for the

multi-buffer particle update technique.

Vertex Shader Geometry Shader

Pass through Interpolation / Integration

Vector!elds

v1_a1

Vertex Bu"ers

v2_a1

Steam Output

Ouput Bu"ers

Ping-Pong Switch

v1_a2

v2_a2

v1_a1

v2_a2

v1_a2

v2_a2

Setup

Rasterizer Pixel Shader

Output Merger

Framebu"er

Figure 4.6: Multi-buffer particle update: Per-particle attributes are grouped depending on
whether they need to be reused or not. Up to 4 scalar quantities are stored in one vertex buffer el-
ement. Multiple input streams—holding different particleattributes—are sent into the pipeline
in parallel. After the attribute update in the geometry shader stage, results are distributed into
several output buffers by the stream output stage. Only attributes that rely on previous results
need two buffer copies, thus the memory footprint on the GPU can be reduced. Again, the
rasterizer and successive stages can be activated optionally to store further information in ad-
ditional textures (shown in Figure 4.5) or to render the resulting particle set. This illustration
demonstrates how particles might be updated and rendered ina single invocation of the render-
ing pipeline.

The texture-based particle update approach is the fastest method to perform particle

integration as it imposes the least load onto the GPU. Only four vertices (spanning the

texture-filling quadrilateral) are processed in the geometry stage. The rasterizer then

generates all necessary fragments to invoke a pixel shader kernel per particle. The

output merger finally stores the results in the respective texels of the output target(s).

The texture-based approach has proven most suitable if a static number of particles is

used for visualization, and timings presented in the rest ofthis chapter correspond to

this technique.

70 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

The buffer-based technique, on the other hand, requires theexecution of (at least)

two shader kernels per particle as attributes have to be passed through the vertex shader

stage before a geometry shader can send the updated values tothe stream output stage.

Furthermore, while primitives are processed in parallel inthe geometry shader stage,

the stream output stage has to maintain the order of the inputstream in the output buffer.

The buffer-based approach will be employed in Chapters 6 and7, where an adaptive

refinement and coarsening is applied to the particle set to ensure a uniform sampling of

integral surfaces.

4.6 Particle Visualization

The simplest way to visualize a particle set is by rendering every particle as a single

point primitive covering one pixel in the frame buffer. If the texture-based particle

update technique is employed, the particle data cannot be rendered outright. Particle

attributes residing in texture resources need to be mapped onto renderable primitives.

With the SM 3.0 standard the so-called vertex texture fetch ability was introduced,

opening up the possibility to access texture data in the vertex shader stage and, thus, to

displace vertices according to position information stored in texture resources. Instead

of explicitly storing a static vertex buffer in GPU memory, one can exploit features of

the input assembly stage to generate the needed renderable primitives on-the-fly. The

input assembly provides optional system generated values to the rendering pipeline,

which can be demanded in one of the programmable shader stages. E.g., aVertexIdcan

be requested by the vertex shader stage or aPrimitiveId can be issued to the geometry

shader stage. Binding no input buffer to the rendering pipeline but issuing a draw call

from within the application leads the input assembly stage to generate a vertex stream

with increasing vertex ids. This vertex stream is sent to thevertex shader stage and

texture coordinates to access particle attributes can be calculated through modulo and

division operations on theVertexId. Particle attributes are then gathered within the

vertex shader kernel through the vertex texture fetch ability and additional arithmetic

operations are executed to determine the particle’s appearance and position in screen

space. Then, the results are issued to the rasterizer.

On SM 4.0 capable hardware the vertex texture fetch can be circumvented by rein-

terpreting the texture data as vertex buffers and, thus, to directly bind the separate at-

tribute textures as input buffers to the rendering pipeline.

If the buffer-based advection technique is used, all the necessary information is

already inherently present in the attribute list of each vertex. Thus, by sending this

4.6. PARTICLE VISUALIZATION 71

stream into the pipeline a vertex shader can compute all necessary output values directly

on the basis of the input element data without the need to perform read operations on

attribute textures residing in GPU memory. If particles arerendered as single points,

the buffer-based advection can efficiently be combined withthe successive rendering by

sending vertices not only to the stream output stage but passing them to the rasterizer

in parallel. However, as positions projected into screen space are required to render

particles into the frame buffer, the geometry shader must provide these coordinates to

the rasterizer stage.

The rendering of point primitives does not necessarily require any special opera-

tions in the pixel shader stage, and in particular no texturefetch has to be performed.

Using this modality allows for the integration and rendering of millions of particles

at interactive rates. Even if each particle is represented by a single pixel, the sheer

amount of tiny primitives enables to mimic real-world tracer substances like smoke or

dye injected into the flow domain effectively (see Figure 4.7).

Figure 4.7: Particle tracers rendered as single point primitives.

4.6.1 (Oriented) Point Sprites

Rendering complex geometric objects instead of simple points primitives makes it pos-

sible to incorporate additional flow properties into the visual representation. However,

representing each individual particle primitive by a mesh comprising multiple vertices

on its own can drastically decrease the rendering performance due to the increased ver-

72 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

tex load. Mimicking volumetric objects bypoint spritesrepresents an efficient alterna-

tive. Here, objects are approximated by screen-aligned, textured quadrilaterals centered

at the position of a particle in the frame buffer. Rotationally invariant 3D objects can

be simply represented by attaching a photograph of an objectto a point sprite.

Complex shapes can be approximated in the form ofvirtual geometry. This ap-

proach takes a discrete set of views (under different angles) on a real three dimensional

object and projects them into disjunct regions of a 2D texture. Such a texture is com-

monly referred to assprite texture atlas[55, 90] and, following the parametrization

proposed in [90], can be constructed as follows.

To convey directional information we need only two degrees of freedom to align a

3D object with the respective vector direction. If we do not want to encode information

into the object’s rotation about the direction vector, we can use a shape that is symmetric

along one direction—e.g., the x-axis—to reduce the amount of information that has to

be stored in the texture atlas. Furthermore, as a point sprite is aligned with the x- and

y-axes of the view-space, the rotation of the object around the z-axis takes place in

the screen plane and can, thus, be obtained by rotating the texture coordinates of the

quadrilateral. Therefore, we only need to parameterize views on the object with respect

to the rotational angle about the y-axis in the range[0,π] and store discrete snapshots

in disjunct columns along one dimension (u-direction) in the 2D sprite texture atlas. To

get all rotations from 0 to 2π we access the atlas with the texture wrap modemirror.

Virtual geometry usually has an elongated shape in order to emphasize the velocity

direction. By scaling an object along its major axis and encoding (view-dependent)

“longitudinal deformations” in the rows of a texture atlas (v-direction), it can be em-

ployed to depict directional information as well as the local velocity magnitude. Here,

the scaling parameter domain ranges from 0 to 1. An exemplarytexture atlas storing

virtual geometry of different lengths is shown in Figure 4.8.

Figure 4.8: Views on a geometric object under different angles are stored in the columns of a
sprite texture atlas (red). Geometries of different lengthare stored in separate rows (green). The
yellow square depicts an exemplary layout for the texture coordinates of a point sprite.

4.6. PARTICLE VISUALIZATION 73

To render a point sprite, an appropriate subregion from the whole sprite texture atlas

has to be selected. This selection is performed on a per-particle basis via a transforma-

tion of the uniform texture coordinates at the quadrilateral’s vertices. Bev̂ = (x̂, ŷ, ẑ)T

the normalized local velocity vector transformed into view-space. To select the correct

sub-image the magnitude of the local velocity vector is usedas v-offset and the arc

sine ofẑ is used asu-offset. The rotation of the virtual geometry around the z-axis is

taken into account by a 2D rotation of the texture coordinates about the center of the

quadrilateral. The rotation matrix

M rot =

(

x̂
n

ŷ
n

−̂y
n

x̂
n

)

where n=
√

x̂2+ ŷ2,

is thereby given by the angle between the x-axis and the normalized projection of̂v into

the xy-plane of the view-space. We employ the geometry shader stage to construct a

screen-aligned quadrilateral patch. For every particle the kernel receives a single point

primitive with corresponding particle attributes as inputand computes the four screen-

aligned vertices spanning the quadrilateral patch. A global shader constant determines

the size of all point sprites, however, to achieve the impression of perspective foreshort-

ening the geometry shader adjusts the area covered by a pointsprite according to the

z-component of the particle position projected into screen-space. The quadrilateral is

then tesselated into a triangles strip of two primitives andissued to the rasterizer stage.

The pixel shader finally fetches the virtual geometry from the sprite texture atlas. Fig-

ure 4.9 compares two results obtained with the (oriented) sprite rendering technique.

Figure 4.9: (Oriented) Point Sprites: Two probes are positioned in the flow in front of the
cylinder. Particles released from the blue probe are rendered as rotationally invariant point
sprites whereas particles released from the red probe are rendered as oriented point sprites.

74 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

4.6.2 Clip Planes

Rendering reams of moving particles often results in an obstruction of features of in-

terest within the flow. For this reason, we have integrated functionality to specify arbi-

trarily oriented clip planes in the flow domain and to restrict the display of particles to

respective regions. This metaphor allows to reduce the massive amount of 3D informa-

tion and eases the problem of occlusions typically inherentto 3D flow visualization.

For each clip plane, the four coefficients of the general plane equation are stored

in one element of a shader constant array residing in GPU memory. Furthermore, we

equip the particle set with an additional attribute indicating whether a particle primitive

should be displayed or not.

During the advection pass, we compute for each particle the minimum of the short-

est distances to all clip planes. If this distance falls below a user defined threshold, we

project the particle onto the corresponding plane and, thus, start the integration from

the respective location in the next advection iteration. Furthermore we mark the parti-

cle as valid for display. All other particles move along the flow as usual (until they are

captured by a clip plane) and are flagged invalid for rendering.

In the successive rendering stage, we position all particles with an invalid render flag

outside the view frustum. By doing so, they are excluded fromsuccessive rasterization

and, thus, do not contribute to the final image.

As can be seen in Figures 4.2 and 4.10, internal flow structures can be revealed

effectively with the presented clip plane approach.

Figure 4.10: The application of clip planes in two 3D unsteady flow fields isshown. In the
right image the presented approach is able to reveal shock waves in the TeraShake data set.

4.7. CHARACTERISTIC LINE EXTRACTION 75

4.7 Characteristic Line Extraction

To offer additional visualization modes for unsteady flow fields we have developed

GPU-based techniques for the construction of stream, path,and streak lines. Figure

4.11 shows such lines in an unsteady flow around a cylinder. For the construction of

characteristic lines, particles are released from a user-defined probe and tracked over

time. The construction of stream and path lines essentiallyuses the texture-based par-

ticle advection as described before. For the construction of streak lines, however, we

perform a slightly different strategy. Throughout the following discussion we will as-

sume that characteristic lines starting atm×n sample positions are to be computed.

Each characteristic line is represented through a discreteset of len control points. To

store the control points for all lines—next to the particle attribute textures—an addi-

tional texture atlas, large enough to storelen blocks ofm×n entries, is needed.

Figure 4.11: Comparison between stream (white), path (red) and streak lines (green).

4.7.1 Stream Lines

A stream line describes an instantaneous particle path, which is the path of a particle

in an unsteady flow frozen at timet. To construct stream lines, the trajectories of all

particles traveling through an instantaneous snap-shot ofthe flow field are computed

in len advection iterations whenever the time-sequence advances(i.e., ineveryframe).

Particle advection is performed as described in Section 4.5.1 with respect to numeri-

cal stream line integration (Eq. 2.6). However, after each advection step the content

of the output (particle position) texture is copied into therespective sub-region of the

atlas texture, determined by the current advection step andthe sizem×n of the par-

ticle texture. We do not transfer the resources manually in apixel shader, but use an

API-supported copy operation. If the size of the texture atlas exceeds the maximum

hardware supported texture size, multiple atlases might have to be stored.

76 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

4.7.2 Path Lines

A path line describes a particle trajectory over time in an unsteady flow (Eq. 2.5). GPU

construction of path lines differs from the construction ofstream lines as only one ad-

vection step per frame is computed in the time-varying field.If the number of positions

along the path line exceedslen, the texture atlas is accessed in a ring-like manner. This

means that in each frame the oldest of all stored positions ofa particle is overwritten

by the current position. Since in this way the start vertex ofthe lines to be rendered is

shifted, texture coordinates have to be adapted in the vertex shader according to a con-

stant shader variable indexing the start block location in the texture atlas. As a result,

line primitives of growing length are constructed and displayed. As soon as the amount

of traced positions (frames) exceedslen, the traces start to move with the flow.

Whenever the “advancing” particle of a path line trajectoryleaves the flow domain

we begin the calculation of a new trajectory at the respective start position in the probe.

However, if a particle dies it cannot simply be reincarnated, as this will create an in-

correct line segment (from the last position before the reincarnation to the new seed

position) in the successive rendering stage. Instead, invisible line segments are gener-

ated in this case as follows. The fragment shader copies the old position but marks the

particle by setting itsα-component to 0. Then the next advection step determines that

the particle dies, but also that it has been marked during thelast pass. In this case the

initial seed position is read and theα-component is left at 0. In the next step, the shader

recognizes that the particle has been properly reincarnated during the last pass, and sets

theα-channel of the respective entry back to 1. The particular line segments can finally

be masked out in the rendering stage by usingα-blending.

4.7.3 Streak Lines

Streak lines do not depict the history of particles moving inan unsteady flow, but rather

describe the paths traced by dye continuously injected intothe flow at a fixed position.

In this case, all the positional information stored in the texture atlas has to be updated

every frame. Thus, instead of using two ping-pong particle advection textures of size

m×n—as in the construction of stream and path lines—these two buffers now have to

be as large as the entire texture atlas.

In each time step, a pixel shader copies a block ofm× n start locations from the

setup texture into a sub-region of the texture atlas, thus, releasing a new set of particles

into the flow. Then, an update is performed on the whole texture atlas to advect all

len×m×n particles in a single rendering pass. Again, the texture atlas is employed

4.8. CHARACTERISTIC LINE VISUALIZATION 77

in a ring-like manner and, during the rendering stage, modulo arithmetic on system

generated values is used to address the starting location ofa line in the texture atlas.

4.7.4 Performance

The computation of stream lines in unsteady flow fields comes at the expense of recal-

culating the whole texture atlas, i.e., the entire set of lines within the frozen time step.

Path lines, on the other hand, only cause a slightly higher computational load than par-

ticle tracing, because copying per-frame results into the atlas can be realized without

noticeable performance loss. For streak lines, numerical integration in the 4D field has

to be performed for each position stored in the atlas in everyframe. We have mea-

sured the performance of the proposed characteristic line extraction techniques on an

NVIDIA Geforce 8800 GTX equipped with 768 MB local video memory. A compar-

ative performance analysis between stream, streak, and path lines using the 4th order

Runge-Kutta integrator (Eq. 2.4) is given in Table 4.2. The timings were obtained

with a disabled rendering stage to minimize additional loadon the GPU. Thus, only

the asynchronous streaming of flow field data and the extraction of characteristic lines

were performed during the measurements.

Lines L=100 L=500 L=1000
128 133 / 872 / 870 30 / 835 / 330 15 / 388 / 175
512 125 / 586 / 400 29 / 238 / 88 15 / 125 / 47
1024 98 / 252 / 208 27 / 114 / 45 15 / 60 / 24

Table 4.2: Performance measurements (in fps) for stream/path/streaklines of varying lengthL.

4.8 Characteristic Line Visualization

Once all particle trajectories have been computed, we employ the Direct3D instanced

drawing API to render the characteristic lines. Similar to the particle rendering tech-

nique, a dummy vertex buffer containinglen primitives is sent to the pipeline and ren-

deredm× n times employing an instanced draw call. A vertex shader fetches corre-

sponding control point positions from the texture atlas based on modulo div operations

on the system generated valuesInstanceId(addressing the respective line primitive)

andVertexId(addressing the current position on the line). The application takes care of

setting appropriate values as uniform shader constants to correctly access the atlas (this

includes the valuesm, n, len, the resolution of the texture atlas and one shader constant

indexing the line start location in the texture atlas).

78 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

4.8.1 Control Points

If a small global step size is used during line integration, the impression of line primi-

tives can be obtained even without connecting adjacent control points residing on one

line explicitly. By binding the dummy vertex buffer with a point list topology in the

input assembly stage and rendering it with one of the previously mentioned particle

visualization techniques, intuitive representations canbe obtained. By rendering indi-

vidual control points as textured point sprites and scalingthe sprite size according to

a scalar flow quantity, further information can be communicated. For example in Fig-

ure 4.12 (left) the velocity magnitude was used to adjust thesize of ball-shaped point

sprites residing on stream line trajectories. In Figure 4.12 (right) streak lines were

visualized by rendering their control vertices as (unshaded) oriented ellipsoids. Addi-

tive alpha blending was employed to blend overlapping primitives, thus, mimicking the

appearance of dye injected into the flow domain.

Figure 4.12: Particle visualization techniques applied to the control points of characteristic
lines. Left: Ball shaped, textured point sprites residing on stream line trajectories are scaled
according to the local velocity magnitude. Right: Control points of streak lines are rendered as
(unshaded) oriented ellipsoids, thereby mimicking the appearance of dye injected into the flow.

4.8.2 Continuous Line Segments

To render the lines as a strip of linear line segments connecting adjacent trajectory po-

sitions we bind the vertex buffer with a line strip primitivetopology to the rendering

pipeline. After the position displacement in the vertex shader stage, the rasterizer gen-

erates fragments for each pixel covered by the line segment spanned by two consecutive

control points and sends them to the pixel shader stage. If the line primitives are ren-

dered with a low opacity value, converging flow regions can bedepicted intuitively by

4.8. CHARACTERISTIC LINE VISUALIZATION 79

disabling the z-test and accumulating color through alpha blending in the output merger

stage (see Figure 4.13).

Figure 4.13: Continuous characteristic lines. Left: Semi-transparentstream lines in a GPU-
based DNS simulation of a cavity driven flow. Right: Path linetrajectories are employed to
visualize an interactive GPU-based fluid simulation based on the Lattice-Boltzmann method.

4.8.3 Shaded Lines

To improve the depth perception of characteristic lines, Z¨ockler et al. [192] propose the

application of a local illumination model during rendering. As lines have codimension

2 inR
3, no unique normal vector is defined. Thus, they introduce a generalization of the

Phong reflection model [127] by choosing a normal vector coplanar to the incident light

direction and the tangent at a point on the characteristic line. The Phong lighting model

breaks illumination down into three components, namely a global (constant)ambient, a

diffusereflection and aspecularreflection term. Bel the incident light direction,v the

viewing direction andr the reflection vector. Then according to the Phong model, the

light intensityI at a point on the characteristic line is given by

I = Iambient+ Idiffuse+ Ispecular= ka+kd(l ·n)+ks(v · r)s (4.1)

Here, the diffuse term—approximating a rough surface structure—obeys Lambert’s

diffuse reflection law (i.e., this term is equal from all viewdirections). The specu-

lar term—approximating a smooth surface texture—, however, is centered around the

light’s reflection direction and decreases with increasingangle betweenr andv. The

extent of the highlight is controlled by the shininess parameter (exponents). The three

constantska,kd,ks∈ [0, . . .1], ka+kd+ks≤ 1 are used to weight the terms according to

material-specific properties. If we choose from all possible normal and reflection vec-

80 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

tors those that are coplanar tol and the tangentt, then according to [192], the diffuse

and specular terms are given as

Idiffuse= kd

√

1− (l · t)2, Ispecular= ks

√

1− (l · t)2
√

1− (v · t)2

By extending the line segment render technique with a geometry shader, the tangent is

implicitly given by the control vertices of the line segmentstream. The local illumi-

nation model is then evaluated on interpolated vertex attributes through Phong shading

in the pixel shader stage. If a directional light is used, then most parts of the lighting

model can also be evaluated by the geometry shader and only those components that

are dependent on the position of a point along the line segment (i.e., the view direction

and parts of the specular intensity term) have to be calculated on a per-fragment basis

in the pixel shader stage. By doing so, the arithmetic load imposed onto the shading

units of the GPU can be minimized. An exemplary result obtained with this technique

is shown in Figure 4.14.

Figure 4.14: Shaded lines: Two probes with varying sample distributionsare placed in front of
the cylinder. Illuminating the characteristic lines greatly enhances the depth perception.

4.8.4 Ribbons

By extruding the line segments into two- or three-dimensional geometry, additional

flow quantities can be incorporated into the visual representation of characteristic lines.

2D representations are especially suited to depict the rotation about the flow axis by

twisting a ribbon-shaped primitive [169]. To construct ribbon-shaped characteristic

lines we employ an additional one-component texture atlas storing incremental rota-

tion angles for a random extrusion directionb defined per probe start position (and

initialized perpendicular to the local velocity direction). During line integration the in-

4.8. CHARACTERISTIC LINE VISUALIZATION 81

cremental rotation angle for this vector at subsequent control points—according to the

rotation about the flow direction—is calculated as

θi+1 = θi ·
1
2
(ω · v̂) ,

whereω is the curl of the vector field (see Eq. 2.19) andv̂ = v
‖v‖ is the normalized flow

velocity direction. To construct the ribbon geometry in therendering stage we employ a

geometry shader. By sending an instanced dummy vertex buffer containinglen control

vertices with a line list topology into the pipeline, we proceed as follows. First, a

vertex shader fetches the corresponding position and rotation values from the texture

atlas and calculates two new vertex coordinates by displacing the control point residing

on the line alongb (rotated about the corresponding rotation angleθ) and its inverse,

respectively. These positions are then passed to the geometry shader stage as attributes

on a per-vertex basis. The geometry shader, receiving a linesegment as input, then

calculates a normal for each control vertex based on the plane spanned by the vectors

to adjacent vertices of the quadrilateral ribbon patch. Each ribbon patch connecting

two successive points on the line is then sent to the rasterizer stage in the form of

two triangles. As most calculation are performed in the vertex shader, vertex caching is

exploited to avoid redundant operations on a per-control point basis. Local illumination

according to the classic Phong illumination model (Eq. 4.1)is then performed on a per-

fragment basis in the pixel shader stage.

Figure 4.15: Ribbon shaped characteristic lines are shown. Left: Path lines in a 3D unsteady
flow field. Right: Stream lines in an instantaneous flow.

On graphics hardware without geometry shader support, ribbons can be realized by

storing the triangle strip vertex buffer explicitly. For a detailed implementation, we refer

the reader to [90]. In Figure 4.15, stream ribbons extractedfrom 3D flow are shown.

82 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

4.8.5 Tubes

Extruding line segments into 3D geometry is a common technique employed to em-

phasize the speed of flow along stream and path lines. Ueng et al. [169] propose using

generalized cylinders to visualize stream lines as tube-shaped objects and encoding the

velocity magnitude into the visual representation by adapting the stream tube diameter

accordingly.

Various rendering approaches for generalized cylinders have been introduced in the

literature. Fuhrmann and Gröller [46] use a simple tessellation scheme with a fixed

amount of subdivisions along the cylinder. Such an approachcan efficiently be mapped

onto Shader Model 4.0 capable hardware by application of a geometry shader to per-

form the cylinder tessellation. Alternative approaches render proxy geometry enclosing

the characteristic line and employ ray-casting to determine a per-pixel precise intersec-

tion with the generalized cylinder [162]. While these approaches benefit from a reduced

load on the GPU triangle setup stage, they introduce an increased load onto the pixel

shader stage and are, thus, less preferable in an interactive environment due to the fol-

lowing reason: Characteristic lines are generally rendered order-independent to avoid

time-consuming sort operations. Thus, the superfluous pixel shader load introduced

due to ray-casting of proxy geometry—that will be occluded by successively rendered

primitives—generally outweighs the geometry load of tesselated generalized cylinders.

For that reason we have integrated a tessellation approach as described in the following.

x

a
b

n

Figure 4.16: Tube Construction: Left: A twisting reference frame can lead to a highly distorted
cylinder tessellation. Right: During particle integration, a frenet frame is propagated along the
trajectory to construct an undistorted polygonal representation of the generalized cylinder.

To construct an undistorted polygonal representation of a generalized cylinder, the

cross-section of each control vertex on the line must be properly aligned with its neigh-

bors so that the structure does not twist. Such an alignment is usually provided in the

form of a frenet reference frame, consisting of a tangent vector ai, a principal normal

ni and a binormalbi specified per control pointxi . We ensure the correct alignment by

propagating the binormal along the line and adjust it iteratively during particle advec-

tion according to the change in curvature as proposed by Sloan [10]. The tangent for a

start pointx0 along every trajectory is set to the normalized velocity direction. We de-

4.8. CHARACTERISTIC LINE VISUALIZATION 83

termine the initial binormal through the cross-product ofa0 and a vector perpendicular

to the plane spanned by the two largest components of the tangent vector. The tangent

at successive control pointsxi+1 along the line get assigned the averaged velocity at the

previous and current position on the line. The frame is then given as [10]

ni+1 = bi ×ai+1,

bi+1 = ai+1×ni+1.

For subsequent rendering, we store the tangent, binormal and one scalar flow quantity

used to determine the local diameter of the generalized cylinder (e.g., the local velocity

magnitude) in additional texture atlas resources.

During rendering, we generate the tessellated cylinder with the help of the geome-

try shader stage. To exploit vertex caching, a vertex shaderfirst fetches all necessary

attributes (i.e., position coordinates, reference vectors and velocity magnitude) from

the texture atlas and reconstructs the local frenet frame. Furthermore, to polygonize a

generalized cylinder segment intos subdivisions, it extrudes the control vertexs times

along the corresponding cross section. These position values are calculated by access-

ing a constant buffer (holdings position values radially aligned around the origin of an

extrusion axis), rotating these positions with respect to the reference frame and scal-

ing them accordingly. The set of control vertices is then sent to the geometry shader

stage as attributes on a per-vertex basis. The geometry shader stage then performs the

tessellation of the cylinder on a per line segment basis and issues a triangle strip con-

sisting of 2s+2 vertices to the rasterizer stage. Here, normals are computed based on

the vector spanned by the central position on the trajectoryand the extruded position s,

respectively. Some exemplary results are shown in Figure 4.17.

Figure 4.17: Stream tubes in an unsteady flow around a cylinder are shown. According to the
local velocity, the appearance of a generalized cylinder smoothly changes along its trajectory
from thick/green (slow velocity) to thin/red (high velocity).

84 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

4.9 Focus+Context Boundary Visualization

Our system supports the visualization of polygonal models to better reveal the spatial

relationships between flow structures and boundaries of theflow domain. The study

of flow behavior close to solid boundary regions plays an important role in various

scientific areas. E.g., in aerodynamics one wants to minimize the drag of and turbu-

lence behind obstacles placed within the fluid flow. In medicine, the behavior of fluids

in vessels or the transport characteristics of neuro transmitters within the brain are of

special interest. Seismology studies the propagation of shock waves with respect to

transport media at varying density. Hence, in scenarios of practical relevance, static

boundary regions often partially obstruct or totally enclose the flow. For that reason,

advanced rendering techniques have to be employed to compose a single visual repre-

sentation from images obtained through flow visualization techniques and renderings

of the boundary geometry (Figure 4.18 depicts such a scenario).

Figure 4.18: Focus+context boundary visualization based on theClearView paradigm. A
particle-based flow visualization in the radially symmetric focus region is shown. Additionally,
parts of the boundary mesh are rendered fully opaque to reveal the relation between the shock
wave propagation behavior and high-density regions of the transport medium. Within the focus
region, important features of the terrain are emphasized toreveal the spatial correspondence.

Focus+context techniques address this issue by combining aview on a region of

interest (the focus) with an abstract view on its surrounding (the context). Especially

theClearView[91] metaphor has proven suitable to be integrated in our interactive flow

exploration environment. With respect to this application, the ClearView technique

consists of the following building blocks to deduce a focus+context visualization.

The focusregion contains information obtained by a flow visualization technique.

Optionally, pre-selected parts of the polygonal boundary model (which should always

stay fully opaque) are included in the focus information.

4.9. FOCUS+CONTEXT BOUNDARY VISUALIZATION 85

One or multiplecontextlayers contain semi-transparent information extracted from

the boundary mesh. We adapt the transparency of the boundarywith respect to two

criteria. Firstly, the user can specify a point of interestc and a radiusr to determine

a spherical focus region. With decreasing distance to the center of interest we linearly

fade out pointsp on the boundary region. Secondly, important features on theboundary

mesh (within the focus sphere) are emphasized on the basis ofa curvature measure

to convey the global shape of the object. Becurv a function that evaluates the local

curvature at a given point on the boundary andsaturatean operator that clamps its

parameter to the range[0. . .1], then the transparency is given as

trans= 1−saturate

(

max

(‖c−p‖
r

,curv(p)
))

.

The final image is composed in a multi-pass rendering approach as follows:

First, we render the geometry-based flow visualization intothe back buffer as well

as parts of the boundary that have been classified as boundaryfocus regions and, thus,

should always stay fully opaque.

Before a context layer is added on top of the final image, we have to extract all

surface attributes needed to evaluate the curvature at a given point on the boundary

surface. For this, we employ deferred rendering, i.e., we render the mesh from the

current view into a three-component floating point texture—at a resolution equal to

the back buffer—and store the normals of the context boundary surface. In a second

render pass, we draw the boundary mesh into the back buffer (with z-test and alpha-

compositing enabled) and determine the transparency on a per-fragment basis in the

pixel shader stage. The curvature importance feature is thereby computed with respect

to an image-based umbrella operator [83], i.e., for each fragment a pixel shader fetches

attribute values from the corresponding as well as four adjacent pixels in the deferred

render target. The summed distance from the center normal tothe adjacent normals is

then used as a curvature criterion (see Figure 4.19). This results in low values in planar

regions on the boundary and large values otherwise. The spherical distance criterion of

the transparency equation is evaluated on the basis of an interpolated vertex attribute,

i.e., the world-space position.

To generate multiple context layers, we repeat the two passes generating the context

information several times and employ depth peeling [40] fora slice-by-slice extraction

of the boundary mesh in back-to-front order.

86 CHAPTER 4. INTERACTIVE VISUAL EXPLORATION OF 3D UNSTEADY FLOWS

a
b c

d

curv = |a|+|b|+|c|+|d|

Figure 4.19: The transparency of boundary meshes in the context region isdetermined on
the basis of a curvature importance measure. Left: The normal at a surface pixel and its four
neighbors is illustrated. Middle: The sum of the distances from the center normal to its adjacent
normals is used to estimate the local curvature. Right: The presented measure reveals the global
shape of the overlying terrain, enabling the user to intuitively establish a connection between
the propagation behavior of earthquake shock waves and the surrounding transport medium.

4.10 Summary

In this chapter, we have presented interactive techniques for the visualization of large

unsteady 3D flows. We introduced a new multi-core streaming approach for time-

resolved flow fields that allows the exploration of high-resolution data sets interactively.

We discussed how particle tracing and the extraction of characteristic lines can be per-

formed in real-time, presented a multitude of rendering modalities for such geometric

flow representations and discussed efficient implementation strategies for recent GPUs.

The presented techniques allow tracing millions of particles and extracting thousands

of characteristic lines interactively and, thus, enable the virtual exploration of high res-

olution fields in a way similar to real-world experiments.

At the time the underlying research paper was published, thepresented techniques

allowed for the first time an interactive visualization of unsteady 3D flows on consumer

class PCs. The effectiveness of these techniques for the purpose of visual data analysis

has been acknowledged by researchers from various field and even been thoroughly

validated in a benchmark of the visualization community [5].

The presented interactive flow exploration environment allows scientists to obtain

rapid visual feedback even while the data to be visualized isgenerated in parallel. This

allows not only to intuitively grasp the flow phenomena underinvestigation but also

to immediately use obtained findings to (computationally) steer the data generating

process.

Chapter 5

Importance-Driven Particle

Techniques for Flow Visualization

Particle tracing has been established as a powerful visualization technique to show the

dynamics of 3D (unsteady) flows. Particle tracing in 3D, however, can quickly overex-

tend the viewer due to the massive amount of visual information that is typically pro-

duced by this technique. In this chapter, we address this problem by presenting various

strategies which reduce the amount of information while preserving important struc-

tures in the flow.

As an importance measure for stationary 3D flow, we introducea simple, yet effective

clustering approach for vector fields. For the visualization of unsteady flow fields, we

use scalar flow quantities at different scales in combination with user-defined regions of

interest. These measures are used to control the shape, the appearance, and the density

of particles in such a way that the user can focus on the dynamics in important regions

while at the same time context information is preserved. Furthermore, we introduce a

new focus for particle tracing, so calledanchor lines. Anchor lines are used to analyze

local flow features by visualizing how much particles separate over time and how long

it takes until they have separated to a fixed distance. It is ofparticular interest if the

finite-time Lyapunov exponent (FTLE) is used to guide the placement of anchor lines.

The effectiveness of our approaches for the visualization of 3D flow fields is validated

using synthetic fields as well as real simulation data.

87

88 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

5.1 Introduction and Related Work

In principle, geometric flow visualization techniques suffer from similar problems as

texture-based methods in that rendered primitives overlapand occlude each other. If

large sets of primitives are seeded, the same perceptual problems inherent to dense

global techniques arise and important information might beobscured. These limita-

tions can be partially overcome by real-time techniques, i.e., by enabling the user to

interactively control the number of seeded particles and their starting positions. Other

approaches restrict the visualization to particles movingon or close to specific surfaces

in the flow [173, 113]. These techniques effectively restrict the visualization to a focus

region, or in this particular case to a focus surface, but by doing so important context

information as well as relevant structures outside this region might be lost.

Most inspirational for our work was previous work on focus+context techniques for

scientific visualization as well as feature-based flow visualization methods. For flow vi-

sualization, Fuhrmann and Gröller [46] proposed the combination of a user-controlled

focus region and a uniform stream line placement strategy. Within the focus region

the flow field is visualized at the highest resolution level, and contextual information

is preserved by visualizing a sparse set of primitives outside this region. Löffelmann

and Gröller [107] presented a feature-based focus for 3D dynamic systems. By visu-

alizing short stream lines, so-called streamlets, only close to a base trajectory in a 3D

vector field, occlusion problems could be avoided, thus, providing a detailed view of

particular regions in the field. For 2D flow visualization, Kirby et al. [80] defined a fo-

cus by combining visual elements of different size, shape and texture into a multi-layer

representation. Doleisch and Hauser [36] presented non-discrete 3D regions of inter-

est including techniques to blend between differently shaped primitives. Mattausch et

al. [112] introduced more flexible and interactive focusingstrategies as well as multi-

ple options to adaptively modulate the density and appearance of stream lines in 3D

flow fields.

5.2 Contribution

In this chapter, we propose a number of improvements for particle-based 3D flow visu-

alization. Common to all techniques we present is a significant reduction of the amount

of visual information presented to the user. Consequently,these techniques are less

prone to perceptual artifacts like occlusions, and they canavoid visual clutter intro-

duced by frequent positional changes of large amounts of particles. Relevant structures

5.2. CONTRIBUTION 89

in the flow are emphasized by integrating user-controlled and feature-based importance

measures. The suggested techniques extend previous approaches for particle-based vi-

sualization of 3D flows as follows (see Figure 5.1 for a graphical illustration):

• We present techniques to automatically adapt the shape, the appearance, and the

density of particle primitives with respect to user-definedand feature-based re-

gions of interest. We also provide means for smooth blends between differently

shaped primitives. Thus, the proposed techniques can effectively be used in com-

bination with continuous focus+context and importance measures. Figure 5.1 (c)

demonstrates the possibilities these techniques offer.

• We propose a clustering approach to determine regions of coherent motion in an

instantaneous snapshot of the flow, and we use a sparse set of static cluster arrows

to emphasize these regions. Figure 5.1 (a) shows such arrowsin combination

with an importance-driven rendering of primitives in the focus region. As can

be seen, occlusion problems in the visualization of contextual information can be

avoided, thus enabling a flexible integration of detail information into selected

focus regions.

• In addition to scalar flow quantities derived locally from the velocity vector field,

we consider the finite-time Lyapunov exponent (FTLE) as an importance mea-

sure. In particular, we employ this measure for the selection of characteristic tra-

jectories in the flow. We call these trajectories anchor lines, and we seed particles

close to the starting points of these lines. By only visualizing those particles that

leave the anchor, the amount of visual information can be reduced significantly

(see Figure 5.1 (b)). Furthermore, we use this approach to allow quantitative

statements about the particle movement over time and space.

• All visualization techniques have been integrated into the GPU-based particle

engine. This enables the user to interactively select visualization parameters and

rendering modes, thus allowing an effective visual analysis of 3D flow structures.

The remainder of this Chapter is organized as follows. In thenext Section we discuss

the focus+context metaphor underlying our approach, and wepresent implementation

specific details. We then introduce our clustering approachand detail how it can be

integrated into the importance-driven visualization approach. Next, we describe the

meaning of anchor lines as well as the used particle seeding and rendering strategy. An

analysis of the performance of the proposed techniques is given in Section 5.6. We

90 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

conclude this chapter with an outline of future research in the field of particle-based

flow visualization.

Figure 5.1: Importance-driven particle techniques are used to visualize 3D flow. (a) Cluster
arrows show regions of coherent motion. (b) Particles seeded in the vicinity of anchor lines
show the extent and speed at which particles separate over time. (c) Focus+context visualization
using an importance measure based on helicity and a user-defined region of interest.

5.3 Importance-based Particle Visualization

One important goal in particle-based flow visualization is to reduce the amount of visual

information presented to the viewer. This is due to the following observations: Firstly,

many interesting flow structures are typically occluded by the primitives rendered in

non-interesting regions of the flow. Secondly, a large amount of moving particles, often

performing rapid directional changes, produces visual clutter that quickly overloads the

human perceptual system.

5.3. IMPORTANCE-BASED PARTICLE VISUALIZATION 91

While it is easy in general to simply restrict the visualization of particles to user-

defined focus regions, this approach typically results in the loss of contextual infor-

mation necessary to understand the global relationships between flow structures. The

focus+context paradigm seeks to combine both aspects into asingle visual event by

presenting a detailed region in combination with a surrounding context. The visual

information used to represent the context region must not occlude details in the focus

regions, but at the same time it should indicate characteristic structures in the data. For

an overview of focus+context techniques in scientific visualization we refer the reader

to the tutorial by Viola et al. [179].

To use focus+context techniques in particle-based flow visualization, two different

strategies have to be pursued: Firstly, the spatial densityof visualized particles should

be adapted according to the importance classification. Secondly, the appearance of ren-

dered particle primitives should reflect the importance of the region they are traveling

through. In the following, we will first describe how to flexibly adjust the density, the

shape and the appearance of rendered particle primitives based on their importance.

5.3.1 Scale-space Particles

In the following, we assume that an importance mapping can beevaluated at every point

in spacex and timet within the flow domain to yield the local importance of the vector

field at this point, i.e. a function

Imp(x, t) = ImpPos(x,x f)⊕ ImpVol(x, t), Imp(x, t) 7→ [0,1] (5.1)

Such a function can either be a (radially symmetric) attenuation functionImpPos(x,x f)

defining the decrease in importance with respect to a user-defined focus pointx f , or an

importance volumeImpVol(x, t)—storing pre-computed importance values based on

physical flow properties—that can be sampled at the respective location. The larger the

value ofImp is, the higher is the importance given to this point. Some possible impor-

tance measures directly derived from the flow velocity vector field, and their evaluation

at varying levels in scale space, will be discussed in section 5.3.2. Furthermore, both

measures can be combined (operator⊕ in Eq. 5.1) to achieve more flexibility in the

focus+context configuration.

Once an importance mapping is given, the reduction of the amount of information

displayed can be achieved by adaptively reducing the numberof rendered particle prim-

itives based on the local importance. Therefore, we employ asimilar approach as used

in [191] for the selection of hatches in illustrative volumerendering. Every particle

92 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

seeded into the flow is assigned a random value in the range of[0,1], and a particle

contributes only to the rendered image if the importance at its current position is higher

than this random value. By this approach, more and more particles are removed with

decreasing importance. Figure 5.2 (b) shows this effect fora user-controlled focus re-

gion positioned right behind the cylinder in the flow and in Figure 5.2 (c) the density

was adjusted according to an importance volume. As can be perceived, this approach

neither emphasizes characteristic structures in the context region nor does it allow a

clear distinction between what is in focus and what is not.

To overcome this problem we increase the particle size by a factor inversely pro-

portional to importance. In Figure 5.2 (c), where the vorticity magnitude was used as

an importance measure, the resulting visual effect is shown. Although we now obtain

a better understanding of the context information, focus and context can still not be

clearly distinguished because of the same shape and appearance of the particles being

rendered. We thus transform the primitives continuously from a particular shape used

to depict the focus region into a shape that indicates the context. In the current example

we transform an arrow glyph into an ellipsoid as shown in Figure 5.2 (d). Shape morph-

ing allows us to quickly obtain an image of both the focus and the context information,

but the visualization still suffers from occlusions due to afew large context particles

overlaying the focus region. This problem is finally alleviated by using transparency

to fade out particles in the context regions. As can be seen inFigure 5.2 (e), we do

not remove particles entirely, but we make them highly transparent. Furthermore, we

change the particle color from a light shade of grey in the context to saturated red in

the focus.

Overall, the following transfer functions are used to adjust the visual attributes of

the ith particle:

showi = (randi > Imp(xi , t)) ← visibility

sizei = s+(1− Imp(xi, t)) ·Cs ← size

opaci = Imp(xi , t) ·Co ← opacity

colori = LUT(opaci) ← color

Here,showi andsizei correspond to the visibility and size of theith particle. Parameter

sspecifies the base size for all particles.randi stores a random value in the range [0,1].

opaci determines the particle opacity. User-defined constantsCs andCo specify how

fast particles are fading out according to decreasing importance. The color of every

particle can be modulated by means of a user-defined color transfer functionLUT.

5.3. IMPORTANCE-BASED PARTICLE VISUALIZATION 93

By means of the proposed transfer functions the amount of information that is dis-

played can effectively be reduced. In addition, with increasing size and transparency of

the particles being shown, their spatial movements appear increasingly smooth. Thus,

visual clutter as it is typically observed when rendering small and opaque moving prim-

itives can mostly be avoided.

Figure 5.2: Different approaches for 3D flow visualization using particles are shown. (a) Un-
steady flow around a cylinder, visualized by a large amount ofparticles. (b) A region of interest
has been selected, and with increasing distance to the center of this region the particle density
is decreased. (c) Importance-driven density adjustment (the vorticity magnitude was used as
importance measure in this example). Particles out of focusregions are removed. (d) The size
and shape of particles is adjusted according to the importance of the region they are traveling
through. In this example, the shape is morphed from a small arrow (high importance) to a large
ellipsoid (low importance). (e) In addition to the shape transformation the transparency and
color of the particles are transformed. (f) Transparent stream lines were integrated to sketch the
flow structure in less important regions.

94 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

5.3.2 Feature-based Importance Measures

To enable the visualization of characteristic structures in the flow we have integrated

a number of different importance measures based on scalar physical properties of the

flow. In addition to the velocity and vorticity magnitude, weemployed the helicity, the

λ2-criterion as well as the maximum finite-time Lyapunov exponent (FTLE) to test the

suitability of our importance-driven particle visualization technique. The meaning of

each quantity and mathematical definitions were presented in Section 2.4.

These quantities are pre-computed and stored in a separate scalar volume for each

time step of the unsteady flow field. During an interactive flowexploration session, the

data is streamed in conjunction with the velocity vector fields onto the GPU. Next to

the scalar quantities given at the spatial sample resolution of the flow velocity field, we

encode additional information hierarchically in a pyramidal data structure (i.e. a mip-

mapped 3D texture resource). We use amin-maxand anaveragepyramid of volumes

where the first level is the original scalar field and each successive volume is reduced

about a factor of two in each dimension. Thus, only a small memory overhead is intro-

duced. Each sample in thenth level of the pyramid stores the minimum/maximum or

average importance of its eight children in the(n−1)st level of the pyramid. Thus, the

pyramid maintains the minimum/maximum or average importance in ever increasing

regions of the domain. The kind of pyramid and the level that should be considered as

importance measure can be specified by the user.

By using a feature hierarchy and trilinear interpolation toreconstruct values form

this hierarchy, three different effects can be achieved: First, spurious features can be

suppressed by letting the importance be sampled from coarser levels in the pyramid.

This is especially useful in the context region to avoid frequent changes of the particle

appearance. Second, there is a smooth transition between regions of different impor-

tance. Third, continuous regions of interest are supportedby smoothly interpolating

between different levels in the hierarchy. To show these effects we have conducted ex-

periments with different importance measures encoded in a multi-resolution hierarchy.

Figure 5.3 shows some results indicating the suitability offeature-based importance

measures in combination with a user-defined (scale-space) focus region. In particu-

lar, it can be seen that even in context regions important features are still emphasized,

effectively guiding the visual exploration process.

5.3. IMPORTANCE-BASED PARTICLE VISUALIZATION 95

Figure 5.3: The velocity magnitude at different scales is used as an importance measures (in-
creasing scale space levels from top to bottom). The focus was set to low velocity regions
(small, opaque and red primitives). With increasing velocity the particle density decreases and
primitives smoothly transition into the context region (large, transparent and grey).

5.3.3 Cluster Arrows

To further assist the user in the visual analysis of stationary 3D flows we proposeclus-

ter arrowsas a sparse and static visualization metaphor. Cluster arrows are geometric

primitives that represent regions of constant motion in theflow. The positions at which

these primitives are placed are computed in a preprocess using a region growing ap-

proach. To find a cluster, i.e. a region in which the velocity directions do not differ by

more than a given angle, we randomly select a grid point that has not yet been pro-

cessed, and we inspect the velocities of all of its 26 neighbors in the grid. If none of the

96 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

velocities in the subtended region diverges more than a given angle from the average of

all velocities in that region, we continue to grow the cluster until no further expansion is

possible. The average velocity of all grid points in a cluster is stored as a representative

for the entire region. This process is continued until the entire domain is partitioned

into clusters.

Figure 5.4: Top: Cluster arrows and transparent lines are used to indicate coherent and less
coherent motion in the flow, respectively. The size of the arrows corresponds to the size of the
cluster they represent. In the bottom image (right), the same visualization technique is used. It
is compared to a visualization of the same double-vortex flowusing particle tracing (left).

For every cluster, the average velocity, the cluster centerposition and its size are

stored in a single element of a vertex buffer. During rendering, this buffer is then used

to draw an oriented geometric primitive for each cluster. Our system also allows the

user to select a minimum and maximum size of the clusters to bevisualized. This makes

it possible to hide large arrows that would otherwise occlude relevant information, as

well as small clusters that would clutter into focus regionsin which dynamic particles

are shown. The cluster information is also used as an additional importance metric

for the rendered particle primitives. Therefore, for everysample point in the grid we

store the size of the corresponding cluster in an importancevolume, and we fade out

5.4. ANCHOR LINES 97

primitives passing through regions of coherent motion withincreasing cluster size as

demonstrated in Figure 5.4.

5.4 Anchor Lines

As can be seen in the images presented so far, importance-driven visualization tech-

niques for 3D flows using scale-space particles can effectively be employed to focus

on particular regions and features while at the same time maintaining context informa-

tion. On the other hand, these techniques are problematic, because in the focus region

and in regions of high importance the amount of visual information is still high. To

overcome this problem we proposeanchor lines, a new focus for particle tracing that

enables the user to emphasize characteristic information about particle divergence and

convergence.

The idea behind anchor lines stems from the observation thatone is often not in-

terested in a detailed visualization of flow regions in whichthe trajectories of particles

do not diverge. Instead, such regions should only be outlined by a few representative

primitives. It is of interest, however, to emphasize regions in which trajectories diverge,

for instance at saddles, sources or separatrices.

A scalar quantity that can be used to give evidence for the rate of divergence or

convergence of neighboring trajectories in a flow is the finite-time Lyapunov exponent

(FTLE). As already discussed in detail in Section 2.5.3, theFTLE is a measure for the

amount of stretching of a fluid element over a fixed time. It allows to locate transport

barriers and it has been studied for the analysis of transport and mixing characteristics

in multi-dimensional flows.

In the following, we will introduce anchor lines as a means tolocally analyze the

FTLE measure. In particular, anchor lines can be used to interactively visualize how

much particles separate over time and how long it takes untilthey have separated to

a fixed distance. We extend the idea proposed in [107], where short stream lines are

placed in the vicinity of characteristic trajectories to show the local flow behavior along

these trajectories. To do so, we first define a set of path linesin the vector field—

the anchor line center trajectories. The user can select these lines by placing their

starting points in the domain. Then, additional particles are seeded in close vicinity

of these starting points, with the amount of scatter around these points being selected

by the user. The particles’ transparency is set according totheir deviation from the

corresponding anchor line, i.e. particles close to the lineare faded out while they are

rendered more and more opaque once they start to diverge.

98 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

Figure 5.5: Anchor lines (path lines) and particles seeded close to their starting points are
shown. Left: While particles exactly follow some of the lines (red, yellow), along other lines the
particles diverge from their anchor lines at different speed (green, purple). To improve the visual
perception of the correspondence between anchor lines and particles, every anchor line gets
assigned a unique color that is inherited by the particles seeded close to it. Particle transparency
is inversely proportional to the separation distance from the anchor line. Right: Anchor line
center trajectories are rendered as ribbon shaped geometryas described in Section 4.8.4.

Technically speaking, anchor lines are always traced in parallel, and in every in-

tegration step the Euclidean distance between a particle and the corresponding point

on the (central) anchor line trajectory is used as a measure for the deviation. Since a

particle trajectory and an anchor line can deviate from eachother and again approach

each other, it makes sense to consider the maximum deviationof a particle along its

path. This means that once the particle deviates more than a specified threshold from

the corresponding anchor line it is rendered opaque along the remaining path.

Since high transparency is given to particles that remain close to the anchor line,

particles are automatically faded out in regions where there is a high similarity between

neighboring vector field values. In such regions only the respective anchor line center

trajectory is shown. Particles in highly heterogeneous regions where the separation is

high are emphasized (see Figure 5.5). From the transparencyof a particle it can directly

be derived how much this particle separates from the anchor line over time. The time a

particle has traveled until it deviates to a fixed distance from the anchor is not directly

encoded as a visual attribute, but it can be determined from the animation of particles

over time and could also be encoded as an additional attribute like color or size.

In addition to the user-controlled placement of anchor lines, we propose to select

the starting points of these lines automatically. In particular, we let points be positioned

in the interior of a user-defined probe, but we only accept a point as a starting point

if the FTLE at its position is above a certain threshold. Otherwise we randomly select

5.4. ANCHOR LINES 99

Figure 5.6: An anchor line placed in regions of high FTLE can effectivelydescribe why a
separatrix in the dual vortex flow has been detected.

another start location within the probe. It is worth noting here that the FTLE is pre-

computed at every point of the given sampling grid and adequate starting locations

are also determined on the CPU on demand (and prior to GPU-based integration and

visualization). Furthermore, we set the displacement distance for particles positioned

around the center trajectory according to the grid spacing of the FTLE importance

volume. Then, the particles correspond to the initial perturbation used during FTLE

flow map computation.

The reason for restricting the placement of anchor lines to regions of high FTLE is

as follows. While the FTLE characterizes the rate of separation of particles, it does nei-

ther indicate into which direction particles separate nor does it tell where the particles

separate along a trajectory. Anchor lines placed in regionsof high FTLE, on the other

hand, are able to answer both questions and can, thus, be usedfor an improved analysis

of the flow. Figure 5.6 demonstrates this property.

The deviation of particles from their anchor lines, and thustheir transparency, is

computed as follows. The anchor (path) lines are traced as described in Section 4.7.

The particles scatted around all anchor lines are stored in aseparate pair of 2D textures,

which are alternatively updated in every advection step (asdescribed in Section 4.5.1).

These particles get assigned an additional indexi that is used to reference the corre-

sponding anchor line. In thejth advection step every particle looks up the respective

position along theith line and computes the distance between this position and its own

position. This value is then used to determine the transparency of a particle.

100 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

5.5 Rendering Aspects

In this section we describe the necessary extensions of the GPU particle engine to al-

low for importance driven particle rendering. Furthermore, we will discuss rendering-

specific performance aspects with respect toα-blending of the particle set.

5.5.1 Particle Morphing

The rendering of oriented point sprites of different size, shape and appearance is ac-

complished by extending the concept of the 2D sprite textureatlas as described in

Section 4.6.1. Such an atlas contains a 2D array of differentviews of a 3D particle

primitive. Views are parameterized with respect to scalingand rotation around an axis

orthogonal to the viewing axis. To support differently shaped primitives, we build

multiple of these atlases, each of which contains pre-computed images of a particular

primitive. Each atlas is stored in a single slice of a 3D texture.

To continuously morph from one primitive into another one, we interpolate be-

tween the respective views of both primitives using 3D texture interpolation. Such an

image-based blending between the same view of two differentprimitives is shown in

Figure 5.7. The color and transparency of the interpolated views can be further mod-

ulated using the transfer functions described in Section 5.3.1. It should be mentioned

here that the proposed technique can only be used if the viewsof two primitives that

are morphed into each other are stored in successive 3D texture slices, as we employ

hardware-supported trilinear filtering to achieve a smoothtransition between shapes.

Figure 5.7: Image-based morphing from an arrow into an ellipsoid.

Although it is obvious that the proposed technique yields different results compared

to geometry-based shape morphing and the construction of anatlas using the trans-

formed geometry, our approach does not result in any noticeable artifacts. The reason

for this is that particles are usually rendered as oriented primitives which show a very

similar basic shape. The problem is further alleviated because we first blend between

two views and then perform the scaling of the result to the adequate size of the primi-

tives. It is clear, on the other hand, that we can easily buildseparate atlases for arbitrary

primitives in-between the given basic shapes and store themin a 3D texture. This will

result in even more flexibility to select particular shapes and their appearance in regions

that can not clearly be classified in terms of importance and unimportance.

5.5. RENDERING ASPECTS 101

5.5.2 Blending

A critical aspect in the presented particle-based techniques is the use of transparency

to visualize individual primitives. If particles are rendered as transparent sprites the

order of their rendering becomes important. To guarantee a correct back-to-front or

front-to-back order with respect to the viewer we use a GPU-based bitonic merge sort

algorithm as proposed in [90]. The sorting algorithm essentially re-organizes the set of

particles in such a way that they can be rendered in the order they are stored in local

GPU memory.

As for a reasonable number of primitives sorting can quicklybecome the perfor-

mance bottleneck, we also provide an additional rendering mode that entirely avoids

sorting. This mode is inspired by the observation that in a typical interactive explo-

ration session the majority of particles is assigned very high or very low transparency,

either manually by focusing on a particular region or automatically by the proposed

feature-based criterion.

The approach is similar to the standard approach used to render opaque and trans-

parent objects in that first all the opaque particles are rendered, and in a second pass the

remaining transparent particles are blended into the colorbuffer.

Figure 5.8: α-Compositing of unsorted transparent particle primitives.

102 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

In the first pass, the depth test is enabled and the depth valueof a fragment sur-

viving the depth test is written into the depth buffer. All particles are sent into the

rendering pipeline, however, within the geometry shader—inflating the particles into

point sprites—we remove all particles that are not fully opaque from the stream. In

the second pass, writing to the depth buffer is disabled, andtransparent particles are

rendered in the order they are stored in GPU memory. To avoid brightness saturation as

it is typically observed when accumulative blending is used, fragments are blended into

the color buffer using alpha-compositing. Figure 5.8 demonstrates that the proposed

rendering of opaque and transparent particles does not produce any noticeable artifacts,

even though the visibility is not resolved correctly.

5.6 Results and Performance Analysis

We have used the proposed GPU techniques for the visualization of a number of real-

world and synthetic 3D flow fields on uniform grids:

• Flow around a box: Result of a 3D time-dependent simulation of an incompress-

ible turbulent flow around a square cylinder at Re= 22,000. The simulation was

performed using a spectro-consistent discretization of the Navier-Stokes equa-

tions [176] and it was carried out on a rectilinear grid of size 256×448×64.

• Flow around a cylinder: Large eddy simulation of an incompressible unsteady

turbulent flow around a wall-mounted finite cylinder at Re= 200,000 [44]. 22

time steps were simulated. The size of the data grid is 256×128×128.

• Kármán vortex street: Result of a 3D simulation of an incompressible unsteady

flow over an immersed thin cuboid obstacle at Re= 100. The simulation was

performed via numerical solution of the Navier-Stokes equations according to

[54]. The data set contains 30 time steps, each of which is of size 256×64×64.

• Double-vortex flow: A steady axisymmetric flow with two counter-rotating vor-

tices, which was computed using the following analytical expression for velocity:

F(x,y,z) = ((−y+0.5)+(0.5−2x)/10, (2x−0.5)+(0.5−y)/10, −z/10).

The computed velocity field corresponds to a spiral-like flowalong the z-axis

with the velocity magnitude decreasing towards the main axis of the spiral. The

velocity field was mirrored to obtain the two symmetric vortices.

5.7. SUMMARY 103

To validate the effectiveness of the proposed techniques, in Figure 5.9 we show

additional visualizations of the described data sets usingdifferent importance-based

visualization methods. With respect to the generated images, we should note here that

the benefits of particle-based flow visualization can best beperceived in an animation.

In a still image, oriented particles can show the direction of the flow quite clearly, but

in contrast to LIC, for example, coherent particle trajectories can hardly be observed.

All of our tests were run on a dual core Core2 Duo 6600 equippedwith a NVIDIA

Geforce 8800 GTX graphics card with 786 MB local video memory. In terms of perfor-

mance it can be observed that on recent GPUs the particle advection step only consumes

a negligible fraction of the overall time. For instance, in asteady field about 100 million

particles can be integrated per second on our target architecture.

The performance of the technique, thus, strongly depends onthe number and the

size of the rendered particles. In particular, as soon as many large particles are ren-

dered the application quickly becomes rasterization boundand the overall performance

can decrease considerably. On the other hand, as the proposed importance-driven ap-

proaches can effectively reduce the amount of rendered particles, in none of our exper-

iments did the performance drop below 100 frames per second.

5.7 Summary

In this chapter, we have presented importance-driven particle techniques for 3D flow

visualization. These techniques incorporate a number of importance measures to enable

an improved visual analysis of the flow. The user controls theappearance of the visual-

ization by a few parameters such as the size and location of a focus region, weights for

the context region, and the size, shape and transparency of particles traced through the

flow. In addition, feature measures that are directly derived from the flow are consid-

ered to adaptively modify the visual attributes of the particles. In this way, a better and

faster understanding of complex flow structures is supported. As the proposed tech-

niques run at interactive rates they can provide rapid visual feedback and, thus, allow

for an effective visual exploration of the flow.

Finally let us mention that the proposed techniques can effectively be used for un-

certainty visualization. By simply replacing focus by certainty and context by uncer-

tainty the proposed techniques can be used to distinguish between regions containing

reliable and non-reliable information. In the future we will investigate in more detail

the application of the techniques proposed in this chapter for uncertainty visualization.

104 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

Figure 5.9: Importance-driven particle visualization results: Image(a) depicts an iso-surface
of the FTLE in the Ḱarmán vortex street. The visualization of this data set using anchor lines
is shown in image (b). Two anchor lines have been placed in theregion of high FTLE. From
the particle distribution one can see where particles startto separate from their anchor, and the
transparency coding shows how fast they separate. Image (c)shows two anchor lines seeded in
the region of high FTLE in the flow around a box. The distribution of the Lyapunov exponent
is visualized using volume rendering. Images (d+e) depict two views on an unsteady flow
in the large eddy data set. Here, a radially symmetric focus region was used to apply different
visualization modalities. The particle appearance insidethe focus region was adapted according
to an importance volume based on helicity.

Chapter 6

Interactive Streak Surface

Visualization

In this chapter we present techniques for the visualizationof unsteady flows using streak

surfaces, which allow for the first time an adaptive integration and rendering of such

surfaces in real-time. The techniques consist of two main components, which are both

realized on the GPU to exploit computational and bandwidth capacities for numerical

particle integration and to minimize bandwidth requirements in the rendering of the sur-

face. In the construction stage, an adaptive surface representation is generated. Surface

refinement and coarsening strategies are based on local surface properties like distor-

tion and curvature. We compare two different methods to generate a streak surface:

a) by computing a patch-based surface representation that avoids any interdependence

between patches, and b) by computing a particle-based surface representation including

particle connectivity, and by updating this connectivity during particle refinement and

coarsening. In the rendering stage, the surface is either rendered as a set of quadrilateral

surface patches using high-quality point-based approaches, or a surface triangulation is

built in turn from the given particle connectivity and the resulting triangle mesh is ren-

dered. We perform a comparative study of the proposed techniques with respect to

surface quality, visual quality and performance by visualizing streak surfaces in real

flows using different rendering options.

6.1 Introduction and Related Work

In geometry-based flow visualization, the integration and visualization of stream lines

has been a standard tool from its very beginning. With the consideration of time-

105

106 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

dependent flows, path lines and streak lines have moved into the focus of research

because they reflect important properties of the flow.

The visualization of integral surfaces has been proven to becommon and useful

in visual flow exploration. In the case of stream and path surfaces, their extraction is

well-understood. The main idea is to integrate the front line of the surface and apply

if necessary an adaptive refinement/coarsening to it. Afterthe front has passed, the

generated surface remains unchanged.

Streak surfaces have a strong relation to experimental flow visualization where ex-

ternal materials such as dye, hydrogen bubbles or heat energy are injected into the flow.

The advection of these external materials creates streak lines and shows the flow pat-

terns. Due to this reason, analogues to these experimental techniques have been adopted

by researchers in computer-aided scientific visualizationfor flow exploration. However,

up to now streak surfaces are rarely applied because of the computational complexity

of streak surface generation. Since streak surfaces may change their shape everywhere

and at any time of the integration, every part of the surface has to be monitored at any

time of the integration for adaptive refinement/coarsening. Due to this fundamental

difference to stream and path surfaces, the consideration of streak surfaces makes only

sense if their evolution over time is shown, e.g., in a pre-computed video sequence or

in interactive applications with a real-time performance.However, due to the computa-

tional complexity of streak line integration and adaptive integral surface construction,

streak surfaces have only rarely been used in practice.

Hultquist [65] presented the first adaptive stream surface integration approach which

was later extended in different ways: The approach by Stalling [160] uses local topo-

logical information to increase accuracy. Scheuermann et al. [147] compute exact solu-

tions of stream surfaces inside piecewise linear vector fields. In the work by van Wijk

[174] a global implicit approach for certain stream surfaces is given. Recently, a con-

struction method for stream surfaces of high polynomial precision has been introduced

by Schneider et al. [150]. Garth et al. [50] discussed a number of enhancements in the

context of vortex extraction. In another work by Garth et al.[48], improved integral

surface accuracy was achieved by separating characteristic line integration and integral

surface triangulation. A particle-based approach for the generation and rendering of

stream surfaces was proposed by Schafhitzel in [145].

The methods proposed by Schafhitzel [145] and Garth et al. [48] are also the only

approaches describing the surface extraction in a time-dependent context for path sur-

faces. The generalization from stream surfaces to path surfaces is rather straightforward

because only the kind of integration at the advancing surface front has to be replaced.

6.2. CONTRIBUTION 107

The only approach so far to address the real-time requirement was proposed by

Funck et al. [181]. It combines the streak surface integration with a smoke metaphor,

leading to cancelation effects of problematic surface parts: parts of the streak surface

where an adaptive refinement is necessary are rendered less opaquely. In this way,

smoke like structures are obtained by a streak surface integration without any adaptive

refinement. On the other hand, the value of this approach for visual flow exploration is

limited because it cannot guarantee to find all relevant flow structures, as fine structures

can only be revealed if the initial tessellation of the mesh already respects these sub-

tleties. Thus, while this approach gives interesting smoke-like structures, it is unable to

produce fully adaptive, opaque streak surfaces.

Figure 6.1: Our method generates adaptively refined integral surfaces in 3D flows on the GPU.
The shown surfaces were generated and rendered in less than 50ms. Figures (a-c) show streak
surfaces in unsteady flows. Figure d) shows a stream surface.

6.2 Contribution

In this chapter, we present the first real-time approach for adaptive streak surface inte-

gration and high-quality rendering. We achieve this by using particle-based approaches

in which either the surface is represented as a set of surfacepatches that can be han-

dled independent of each other (see Figure 6.1 (a)), or a closed surface triangulation is

108 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

computed from the given particle set (Figure 6.1 (b-d)). Forboth approaches we have

developed methods for interactive surface refinement and coarsening based on local

surface properties.

While the former approach is elegant in its simplicity, it requires redundant particle

computations and lacks flexibility in the rendering process. Even though we use an

advanced rendering method similar to high-quality point-splatting [15], rendering arti-

facts at patch boundaries can not be avoided entirely. The second approach, on the other

hand, yields a closed surface representation providing a variety of rendering options,

but it can result in deformed triangulations and rendering artifacts thereof.

This chapter contains the following specific contributions:

• A patch-based scheme for the adaptive generation of streaksurfaces and a high-

quality patch-based surface rendering technique.

• A particle-based adaptive refinement/coarsening scheme for streak surface gener-

ation and a novel method to construct a closed triangular streak surface from a set

of particles.

The remainder of this chapter is organized as follows. An introduction to streak surfaces

is given in Section 6.3. Section 6.4 presents a novel technique to construct and render

a patch-based streak surface representation. In Section 6.5 we describe the particle-

based technique for streak surface generation in which local connectivity information

is used to assure a uniform sample density along the surface and to build a surface

triangulation. In Section 6.6 we evaluate the performance of our approaches, and we

discuss their advantages and limitations. We conclude thischapter with an outline of

future research in the field.

6.3 Streak Surfaces

Streak surfaces are defined by repeatedly setting out particles on a line-shaped seeding

structure over a certain time interval. The collection of all these particles at a certain

time denotes the streak surface. Technically, a streak surface can be obtained in the

following way for a 3D time-dependent flow fieldv(x, t): the seeding structure is con-

sidered to be a polyline consisting of the pointss0, ...,sn. At the timeti = t0+ i ∆t we

start a path line integration of the particlexi, j from the seeding pointsj and observe its

behavior overt:

xi, j(t) = xi, j(ti)+
∫ t

ti
v(xi, j(s),s) ds (6.1)

6.4. PATCH-BASED STREAK SURFACE GENERATION 109

with xi, j(ti) = sj , i = 0, ...,mand j = 0, ...,n. For t ≥ tm = t0+m∆t, the streak surface

can be considered as a rectangular vertex array(xi, j(t)). We call a column(xi,0, ...,xi,n)

a time line, while a row(x0, j , ...,xm, j) is a streak line. The vertices are the surface

points from which a closed surface representation has to be built.

During the integration, the distance between both adjacenttime lines and streak

lines may vary at any location of the surface. Thus, after every integration step the sur-

face has to be checked everywhere for adaptive refinement or coarsening. This means

that, based on an appropriate refinement/coarsening criterion, new particles have to be

seeded between adjacent points along a particular time or streak line, or adjacent points

have to be merged. This process is computationally very complex because streak sur-

faces appear to have a rather large distortion after their seeding. An increase of the

surface area by a factor of 100 or more is not unusual, leadingto a high number of

refinement steps. It is worth noting that in an interactive application, the adaptive re-

finement/coarsening has to be monitored and carried out at any time simultaneously

with real-time performance.

6.4 Patch-based Streak Surface Generation

By using a patch-based approach, the streak surface generation and rendering process

is split into a set of independent operations on each patch. These operations can then

be executed in parallel, and all the patches can be rendered independent of each other.

The computation of adjacency information between surface points, as it is required for

the computation of a surface triangulation, can be avoided.

6.4.1 Patch Generation and Refinement

As described in Section 6.3, a streak surface can be constructed by repeatedly releasing

particles from a line-shaped seeding structure over a certain time interval and by con-

necting these particles to form a closed surface. All particles (xi,0, ...,xi,n) released at

time ti = t0+ i ∆t reside on one advancing front. We call this front the time line tl i.

A new advancing front (tl i) is released in the form ofn quadrilateral patchespi,v,

with v= 0, ...,n−1. Each patch consists of four vertices(sv,sv+1,xi,v,xi,v+1), which are

duplicated and stored separately for each patch. The patch vertices are then advected

through the flow as described before, and the shape changes a patch undergoes due to

the particles’ movement are used to steer the refinement process.

The refinement of surface patches is performed for each patchseparately with re-

spect to an area-based criterion. Specifically, we set a threshold toΞ2, whereΞ is the

110 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

distance between two adjacent points uniformly distributed along the seeding structure.

If, at any time, the area of a patch is greater thanαΞ2, whereα is a real number larger

than 1 controlling the subdivision strength, the patch is subdivided into two quadri-

laterals. This is performed by splitting the patch along itslongest edge and the edge

opposite to it. The two new patches and their vertices are stored separately, and the

refined patch is removed (see Figure 6.2).

s 1

s 2

s 3

x0,0

x0,1

x0,2

x0,3

p0,0

p0,1

p0,2

s 0

s 3

x0,0

x0,3

p0,0

p0,1

p0,2

s 0 s 0

s 3

x0,0

x0,3

p1,0

p1,2

x1,0

x1,3

p0,0

p0,2

(a) (b) (c)

p1,1

Figure 6.2: (a) A patch-based streak surface representation after the first time line has been
released. (b) Left: Patchp0,1 meets the refinement criterion and is split into two patches.Right:
The surface patches after the second integration step. The generation of new surface points due
to the splitting operation has lead to a hole in the surface representation. (c) The corresponding
layout of the linear memory segments storing the surface patches in each time step.

6.4.2 GPU Implementation

Shader model 4.0 compliant GPUs provide possibilities to efficiently perform the patch-

based streak surface generation: we employ a geometry shader to manipulate a primi-

tive stream by appending or removing primitives, and the stream output stage is used

to direct the resulting stream to intermediate buffers in GPU memory. Since buffer

resources cannot be bound as pipeline input and stream output target simultaneously, we

use two instances and toggle between them in a ping-pong fashion (see Section 4.5.2).

Each surface patch is represented by its four vertices, a scalar value counting the

number of integration steps, and a counter indicating its refinement depth. On the

GPU, for every patch this information is stored as one vertex(i.e., contiguous data

block) in a vertex buffer. Since current GPUs cannot change the size of a resource

residing in GPU memory dynamically, two buffers that are large enough to store the

entire adaptively refined streak surface have to be allocated before the surface con-

struction begins. By letting the user select the numbern of patches that are released

in each time step, a maximum refinement depthd and the maximum number of inte-

6.4. PATCH-BASED STREAK SURFACE GENERATION 111

gration stepsm a patch performs until it is removed, each buffer must be ableto store

n×2d× (m−d+1) patches.

The streak surface construction starts by storingn zero area patch primitivesp0
j ,

with j = 0, ...,n−1, at the beginning of the vertex buffer employed in the first advection

pass. In the following we assumen to be an even number. These elements are used in

every time step to repeatedly release a new patch front into the flow. The respective

vertices of patchp0
j are(sj ,sj+1,sj ,sj+1). In each integration step, all buffer elements

are passed to the geometry shader and processed as follows: For each of the firstn/2

elementsp0
j with j = 0, ...,n/2− 1 the shader writes the two zero area patchesp0

2× j

andp0
(2× j)+1 to the output buffer. Access to the vertices of these patchesis achieved

by binding the input stream buffer as shader resource. Sincethesen patches are always

written first, they remain at the beginning of the buffer. Foreach of the remaining

n/2 elements the shader appends two patch elements to the buffer, which represent the

currently released patch front. Each of these patches is then expanded by integrating its

last two vertices to new positions.

For the remaining buffer elements, which contain patches that were released into

the flow at previous time steps, the refinement criterion is evaluated before the integra-

tion is performed. If no refinement is necessary, the geometry shader advects the patch

vertices, increments the integration step counter and appends the patch element to the

output stream. Otherwise, the geometry shader splits the element as described, advects

the four original as well as the two new vertices, and appendsthe two new patch prim-

itives to the output stream. The refinement counters of the new primitives are set to

the counters of the refined patch and incremented by one. Figure 6.2 (c) illustrates the

growth of the vertex array buffer due to the seeding and refinement of surface patches.

6.4.3 Patch-based Streak Surface Rendering

The patch-based surface representation can be rendered directly by sending the ver-

tex array buffer through the graphics pipeline and rasterizing the patches separately.

However, since T-vertices are introduced by the particularrefinement strategy, holes

in the surface representation can occur. To cover these holes, we adopt a rendering

technique that was introduced by Botsch and co-workers in the context of point splat-

ting [15]. Figure 6.4 shows an adaptively refined patch-based streak surface (α = 1.2),

which was rendered using simple point rendering of the patchcentroids (left) and the

patch-based splatting approach (right).

A two pass rendering approach is performed before deferred per-pixel surface light-

ing is computed. Therefore, all patches in the vertex bufferare rendered twice. In each

112 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

c

Figure 6.3: Left: Separate triangulation and rendering of each patch leads to holes in the streak
surface. Middle: Holes are covered by rendering enlarged patches. Right: Rendering enlarged
patches in a way similar to high-quality point splatting yields a closed and smooth surface.

pass a geometry shader enlarges every patch by changing its verticespxk (k= 0, ...,3)

to pxk+β ||pxk−c||. Here,c is the patch centroid andβ is a user defined scaling factor.

As shown in Figure 6.3, patches are then split into the four triangles spanned by their

centroid and the patch vertices before they are rendered.

In the first rendering pass, commonly referred to asvisibility pass, a depth imprint of

the enlarged surface patches closest to the viewer is generated. In the second pass, also

known asattribute pass, the patch-based surface representation is rendered againusing

a biased depth test on the generated depth imprint. In this way, only patch samples

close to the first rendered surface survive. In a pixel shader, the patch attributes like

color and normal are weighted by a Gaussian kernel centered at the patch centroid, and

these contributions are finally accumulated via additive blending and normalization. In

this way, a smooth transition of patch attributes is obtained in regions where multiple

enlarged patches overlap.

Due to the bending of streak surfaces, it can happen that surface samples having

a large geodesic distance from each other become close to each other and fall into

the same pixel. In this case, the biased depth test might let both samples pass and

accumulate in the pixel buffer. To avoid this, we assign two additional parameter values

to each patch. The first value indicates the position of a patch in the ordered set of all

possible patches along the seeding structure. Starting with the initial patchespi,v, which

are assigned the positionsv×2d, in every refinement step the first new patch keeps the

position of the refined patch and the second patch adds 2d−k to this position. Here,

k is the current refinement level. The indexi of each patch is assigned as the second

parameter value. In the visibility pass, these values are rendered into a separate render

target, and they are then used in the attribute pass to discard those fragments that are

close to the rendered surface samples but have parameter values that differ more than a

given threshold.

6.5. MESH-BASED STREAK SURFACE GENERATION 113

Figure 6.4: Left: Rendering of the patch centroids of a patch-based streak surface. Right: The
same streak surface rendered via quad-splatting.

6.5 Mesh-based Streak Surface Generation

Patch-based streak surface generation entirely avoids to store and update any connec-

tivity between the patches. On the other hand, because everypatch stores its own set

of vertices even though they might be shared between patches, a considerable amount

of memory is wasted and numerical integration of the same vertex is performed up to

four times. To overcome this overhead we propose a novel GPU approach to construct

an adaptive triangular streak surface representation fromthe set of seeded particles.

Similar to the data layout that was used in the patch-based approach, all particles

seeded into the flow are stored in a linear vertex array. Each particle xi, j released

from the seeding structure is assigned an indexidi, j = j×2d, whered is the maximum

refinement depth. The particle set belonging to a particulartime line tl i is stored in a

contiguous blockbi in this buffer. The blocks are ordered such that blockbi−1 follows

blockbi , with blockb0 being the last in the buffer.

In every advection step the particles are processed in the order of their occurrence

in the buffer, and they are written to the output buffer in thesame order. If a new

particle is generated due to the splitting of an existing particle, it is placed directly

behind this particle in the output buffer. If a particle is removed, it is simply not written

into this buffer. On the GPU this is realized by executing a geometry shader with a

variable primitive output of 0-2 elements for each incomingprimitive. In the same

way as described in the previous section, the maximum buffersize has to be computed

up front depending on the number of particles per time line, the maximum refinement

114 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

depth, and the maximum number of integration steps. Then, two ping-pong buffers of

this size have to be allocated.

Analogous to the patch-based approach, a streak surface is constructed by repeat-

edly releasing time lines at a fixed frequency into the flow. And whenever a new

time line is released from the seeding structure, we do not perform adaptive refine-

ment/coarsening in the first advection step, but use the second possible geometry shader

output to preserve the seed particles at the start of the vertex buffer.

6.5.1 Particle Refinement

Our method for generating an adaptive streak surface triangulation from a given set of

subsequently released time lines can be separated into three passes:

• Time line refinement: Every time line is refined/coarsened based on local crite-

ria like stretching, compression, and line curvature, as well as a global criterion

taking into account the change in surface area.

• Connectivity update: The connectivity between particles on adjacent time linesis

established.

• Streak line refinement: The connectivity information is used to compute local

streak line properties, which are considered to steer the refinement of streak lines.

Time line refinement

Time line refinement adapts the particle density along each time line prior to the par-

ticle integration. The refinement/coarsening criteria we apply have been adopted from

previous work in the field. The first criterion considers the flow divergence at a particle

position as introduced in [65]. LetΦ(a,b) be the distance between particlesa andb,

andΞ the initial distance between two adjacent seed points, thenthe particlexi, j spawns

a new particle betweenxi, j andxi, j+1—we call this operation particle splitting—if

Φ(xi, j ,xi, j+1)> α Ξ. (6.2)

Similar to [50], the second criterion considers the approximate local curvature along a

time line. LetΘ(u,v,w) be defined as

Θ(u,v,w) =

(

u−v
||u−v|| ·

w−v
||w−v||

)

+1

2
, (6.3)

6.5. MESH-BASED STREAK SURFACE GENERATION 115

whereu,v,w are the positions of three particles. A particlexi, j is split if

Θ(xi, j−1,xi, j ,xi, j+1)+Θ(xi, j+2,xi, j+1,xi, j)> β . (6.4)

In this way, the deviation of the time line from a straight line is approximated and

used to steer the local time line refinement. Figure 6.5 sketches the first pass of the

mesh-based streak surface construction approach.

4

8

12

16

4

8

12

16

sj-1

sj

sj+1

sj+2

xi,j-1

xi,j+1

xi,j+2

xi,j xi,j

4

8

12

16

4

8

12

16

10

xi,j

(a) (b)

xi,jxi,j

4 4

8
8

12
12

16 16

xi,j-1

xi,j+1

xi,j+2

xi,j+3

10 10

(d)(c)

Figure 6.5: (a) In each time step a new time line is released from the seeding line. Node values
show particle ids. (b) Prior to integration, each particlexi, j evaluates refinement criteria based
on its local neighborhood (red). (c)xi, j satisfies a refinement criterion and performs a particle
split. (d) The resulting time line before (left) and after (right) the subsequent integration step.

Particle splitting is performed by fitting a cubic polynomial p(t) throughxi, j−1, xi, j ,

xi, j+1 andxi, j+2, and by evaluatingp(t) at t = 1
2:

p(1/2) =− 1
16

(xi, j−1+xi, j+1)+
9
16

(xi, j +xi, j+2). (6.5)

Based on the indicesidi, j of the initially seeded particlesxi, j , every new particle on a

time line gets assigned its index in the ordered set of all possible particles along this

line as described in the previous section for surfaces patches. We will subsequently call

these indices the particle ids. Figure 6.6 illustrates the changes in the particle layout on

a time line due to refinement and coarsening events over threeintegration steps.

To prevent the streak surface from unlimited stretching, weadapt a criterion that

was proposed for stream surfaces in [65]. We compare the current distance between

two particles to their distance in the last time step in relation to the distance a particle

has moved due to the integration. LetΨ(a,b, t) be the distance between particlesa and

b at timet, andpi, j ,t the position of particlexi, j at timet. We mark an edge as invalid,

meaning that it will not be refined any further, if the following expression evaluates to

true:

Ψ(xi, j ,xi, j+1, t)−Ψ(xi, j,xi, j+1, t−1)> γ Φ(pi, j ,t,pi, j ,t−1) (6.6)

116 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

0

4

8

6

4

2

0

8

6

4

2

0

8

6

4

2

0

5

7

1

ti+1 ti+2 ti+3 ti+4

xi,0

xi,1

xi,2

0 1 1 2

1 1 1

0 1 2 1

2

1 2 2

2 2

0 0 0 0

2

7

xi,0 xi,1 xi,2

xi,0 xi,2 xi,4

xi,0 xi,2

xi,0 xi,3 xi,6

xi,6

8

(a) (b)

Figure 6.6: (a) Evolution of a time line over three integration steps. Green nodes indicate
refinement and red nodes coarsening events. Numbers next to the nodes indicate the refinement
level. (b) Changes in the linear memory segmentbi due to vertex refinement/coarsening.

If an edge has been classified as invalid or cannot be refined any further, it is not consid-

ered in the triangulation of the streak surface described below. In this way, the surface

is cut in regions where it stretches too much, e.g., if it evolves around obstacles in the

flow as demonstrated in Figure 6.7.

Finally, in addition to inserting new particles we remove a particlexi, j if:

(Φ(xi, j ,xi, j−1)+Φ(xi, j ,xi, j+1)< δΞ) ∧
(Θ(xi, j−1,xi, j ,xi, j+1)+Θ(xi, j ,xi, j+1,xi, j+2)< ζ). (6.7)

Due to this coarsening we avoid vertex clustering in regionsof high convergence, and

we prevent the generated triangles from becoming too small.

Figure 6.7: Application of criterion(6.6) prevents a streak surface from unlimited stretching
by cutting edges if no additional refinement can be performed.

6.5. MESH-BASED STREAK SURFACE GENERATION 117

Connectivity update

Due to time line refinement and coarsening the connectivity between particles on adja-

cent time lines has to be computed in each integration step. Therefore, every particle

on time linetl i searches for the particle ontl i+1 and the one ontl i−1 having the id

closest to its own one on the respective time line. We will call these two particles the

predecessor and the successor of a particle. In particular,for a particlexi, j we select the

successorxi+1,succ with the closest id≤ the particle’s id and the predecessorxi−1,pred

with the closest id≥ the particle’s id (see Figure 6.8 (a)). Once the predecessorand the

successor have been determined, references to them are stored as offsets to the absolute

position of the particle in the vertex buffer, and they are used as described below to

build a closed surface representation.

Finding the two particular neighbors requires every particle to search the vertex

buffer to the left and to the right of it, with the search radius depending on the number

of particles on time linestl i−1, tl i andtl i+1. We will describe in Section 6.5.3 how to

determine these numbers in a very efficient way on the GPU.

Streak line refinement

In this pass, a complete time line is added to or removed from the streak surface. The

criterion to steer the refinement/coarsening is based on themaximum Euclidean dis-

tance between neighboring time lines.

A new time line is inserted betweentl i and tl i+1 if the maximum of the shortest

distances between particles ontl i and the time linetl i+1 exceeds a user defined thresh-

old. An existing time line is removed if the maximum of the shortest distances to both

adjacent time lines falls below a given threshold. Unfortunately, since we do not know

the exact time line between the given vertices, computing the shortest distance from a

particle to this line is not possible in general. Therefore,we proceed as follows: Since

xi+1,succ is the closest existing control point ontl i+1 with idi+1,succ≤ idi, j and its ad-

jacent particlexi+1,succ+1 has a larger particle id, we first interpolate an intermediate

positionz on the line segment spanned byxi+1,succandxi+1,succ+1 as follows:

z= xi+1,succ+a(xi+1,succ+1−xi+1,succ), a=
idi, j − idi+1,succ

idi+1,succ+1− idi+1,succ
. (6.8)

We then compute the Euclidian distance betweenxi, j andz, and we use this distance

as the shortest distance ofxi, j to the time linetl i+1. The distance to the preceding time

line tl i−1 is determined analogously (see Figure 6.8 (b)).

118 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

8

12

16

4 4

8

12

16

8

10

14

6

8

12

8

12

1010

10

xi,j

xi-1,pred

xi+1,succ

xi+1,succ+1

xi-1,pred-1

z dist

tli+1 tli tli-1tli+1 tli tli-1

xi,j

(a) (b)

Figure 6.8: (a) Each particle on time linetl i selects its successor (red arrows) and predecessor
(green arrows) on adjacent time lines based on the closest matching particle id. (b) The distance
estimate of a particlexi, j to its adjacent time linetl i+1 is based on an intermediate particlez,
exhibiting the same particle id.

A new particle front that is added due to streak line refinement contains the same num-

ber of particles as the time line triggering the refinement event. As shown in Figure 6.9,

the new front is stored as a contiguous block in the vertex buffer right before this time

line. Particle positions and normal values are linearly interpolated betweenxi, j and

intermediate values ontl i+1 as described in Equation (6.8).

tl2 tlr tl1 tl0

(a) (b)

tl2 tl1 tl0

tl2 tlr tl1 tl0

Figure 6.9: Streak line refinement: (a) The time linetl1 satisfies the refinement criterion and
spawns the new time linetlr . (b) illustrates the corresponding changes in the vertex array buffer.

6.5.2 Streak Surface Triangulation and Rendering

To render the surface as a watertight triangle mesh a final pass is executed. Prior to tri-

angulation, a geometry shader validates the connectivity and updates the neighborhood

for all particles residing on time lines whose adjacent timelines have been removed

due to streak line refinement.

6.5. MESH-BASED STREAK SURFACE GENERATION 119

tli-1tlitli+1

xi,j

xi,j-1

xi,j+1

xi-1,predxi+1,succ

(a)

(b) (c)

Figure 6.10: Streak surface triangulation: (a) Vertex connectivity andrefinement events: Green
edges indicate vertex splitting, blue edges indicate vertex merging, and red edges indicate streak
line refinement. The resulting triangulation is shown in (b). In (c) the two triangles generated
by the vertexxi, j are colored blue. Yellow triangles are generated by vertexxi, j+1.

A closed surface representation is generated by using the particle connectivity to

compute a triangulation of adjacent time lines. For each particle that is sent to the

rendering pipeline the geometry shader creates two triangles and appends them to the

output stream. The first triangle is spanned by the vertexxi, j , its local right neighbor

xi, j+1, and its successor on the time linetl i+1. The second triangle consists of the vertex

xi, j , its local left neighborxi, j−1, and its predecessor on the time linetl i−1. Since this

process is performed for every vertex, a watertight surfaceis generated. Figure 6.10

illustrates this triangulation process.

Triangles containing an edge that was marked invalid due to the criterion in Equa-

tion 6.6 are excluded from the output stream. Note that particles on the surface border

(i = 0∨ i = n∨ j = 0∨ j = m) contain at least one invalid neighbor, such that the corre-

sponding triangle is also excluded from the stream output.

Once the triangulation has been generated it can be rendereddirectly using various

rendering styles. Since the tuples(i, idi, j) that are stored for each particle correspond

to a surface parametrization, they can be used to texture thestreak surface. In Fig-

ure 6.11(a,c,e) this parametrization was used to color the surface with streak lines. Im-

age (b) additionally emphasizes time lines. In images (d) and (f) depth peeling [40] was

applied to create a semi transparent visualization of the streak surface (in combination

with image based edge detection to amplify sharp features onthe streak surface).

120 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

Figure 6.11: Mesh-based streak surface visualization: Images (a–d) show streak surfaces in
the square cylinder data set. Images (e–f) depict streak surfaces in the large eddy data set. The
surface parametrization, consisting of time line and particle ids, is used to color the surfaces with
stream lines (a,c,e). Image (b) additionally emphasizes time lines. Images (d) and (f) depict
semi transparent streak surfaces. Here, depth peeling was employed to extract multiple self-
occluding layers and image-based edge detection was used toamplify sharp surface features.

6.5. MESH-BASED STREAK SURFACE GENERATION 121

6.5.3 GPU Implementation

During mesh-based streak surface generation, analogouslyto the particles, each time

line gets assigned a unique id and a counter indicating its refinement depth. For a time

line released at timeti = t0+ i ∆t the id is set to 0 and incremented by 2d in each time

step. New time lines that are added due to a refinement event adapt this key in the same

way as it was described for particles before. This key is thenused by the particles on

each time line to index into a 1D array that stores time line specific information. This

array has as many entries as there can be time lines, and it is realized as 2D texture on

the GPU to avoid texture resolution limits. Figure 6.12 shows the content of this array

for a set of time lines before (a) and after one integration step (b).

tli-2tli-1tli

34 3

tli-1tli

4 33

tli+1 tli-1tli

4 33

tli+1

3

tlr

(a) (b) (c)

Figure 6.12: Three time lines of nine possible time lines exist. The number of vertices on each
time line is stored in corresponding entries in a 1D array. Red/green arrows indicate the offsets
every time line stores to its neighbors in the array. (a) Array indices before and (b) after one
integration step. (c) Offsets to adjacent time lines changedue to streak line refinement.

Furthermore, each particle carries two additional offsets, which are used in com-

bination with the time line id to determine the id of adjacenttime lines. These off-

sets are initialized with 2d and changed accordingly whenever streak line refinement

adds/removes an adjacent time line. Figure 6.12 (c) depictsthe change of offsets due to

the refinement of time linetl i−1.

Parallel to the stream output buffer update during time linerefinement (as described

in Section 6.5.1), we bind a texture target to the rendering pipeline and rasterize each

particle as a point primitive into the texel indexed by the respective time line id (this

concept was introduced in Section 4.5.2). By using additiveblending, the number of

particles residing on each time line is obtained and can be accessed by the particles

during the connectivity update and streak line refinement passes.

In the connectivity update pass, every particle writes to a second array its absolute

position in the vertex array buffer in the same way. By using amaximum blend operator,

the second array contains for each time line the absolute vertex buffer position of the

last particle on the respective time line. These values are needed in the streak line

122 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

refinement pass to append all particles on a new time line as contiguous block to the

vertex array buffer. Additionally, for each particle its distance to neighboring time lines

is computed during the connectivity update, and the maximumdistance to each adjacent

time line is stored separately in an additional texture target. These values are then used

during streak line refinement to evaluate the refinement criterion.

To find successors for particles ontl i, the connectivity pass has to search in an

interval containing as much elements as there are ontl i andtl i+1 because the absolute

position of a particle in its respective memory blockbi is not yet known. The tuple

of time line and particle ids forms a strictly monotonic increasing key over the whole

vertex array buffer that is used in a binary search in the interval to the left of a particle

to find its successor. The predecessor is determined analogously.

In the streak line refinement pass, new time lines are appended as contiguous blocks

to the vertex array buffer. Each particle on a time linetl i that triggered a streak line

refinement decides on the basis of its absolute position in the memory blockbi whether

it should contribute two particles to the new time line or account for two particles oftl i.

During both refinement passes, we do not remove neighboring particles/time lines

at once. If multiple adjacent particles satisfy the coarsening criterion in the time line re-

finement pass, we remove only every second particle. The decision which particle will

be removed is based on a modulo criterion applied to the tupleof particle id and depth

counter. Analogously we do not remove adjacent time lines atonce during the streak

line refinement pass. Since the time line refinement technique is akin to the construc-

tion of a binary tree for each initially seeded particle and streak line refinement akin

to spanning a binary tree of time lines between successivelyreleased particle fronts,

this coarsening constraint corresponds to a decompositionof respective trees in reverse

construction order. Initially released particles (and therefore time lines) are excluded

from coarsening events to keep a minimum candidate set for future refinement (as both

refinement strategies are restricted by the maximum refinement depth).

6.6 Results and Discussion

Performance tests were carried out on a 2.66 GHz Core 2 Duo processor, equipped with

a NVIDIA GTX280 graphics card with 1024 MB local video memory. Results were

rendered to a 2560×1600 viewport. In all of our experiments an explicit fourth-order

Runge-Kutta scheme at single floating point precision was used for numerical particle

integration. Detailed timings for interactive streak surface construction and rendering

are given in the following.

6.6. RESULTS AND DISCUSSION 123

6.6.1 Performance

Representative timings in milliseconds (ms) for integration, adaptive refinement and

rendering using the patch-based approach are listed in Table 6.1. Values in the first

three columns show the number of patchesn, the maximum particle lifetimem, and

the refinement depthd. The values in column labeledPts show the average number

of surface patches. ColumnInt contains timings for integration and refinement,Vis

for the rendering of the resulting surface, and columnTtl the total amount of time

required for the construction of the adaptively refined streak surface and subsequent

rendering. Let us note that some of the presented settings require buffers larger than the

available GPU memory. In these cases, we used static buffer sizes independent of the

chosen parameters and list only timings in our performance measures, where no buffer

overflow occurred.
n m d Pts Int Vis Ttl
50 500 4 40k 1.3 5.0 7.5
50 500 8 55k 1.8 6.6 9.9
100 1000 4 128k 3.6 5.4 10.5
100 1000 8 167k 4.7 7.0 13.5
200 1000 4 365k 9.4 9.9 20.6
200 1000 8 545k 13.9 14.6 29.9
400 1000 4 1.28M 28.5 30.0 59.7
400 1000 8 2.08M 48.8 49.8 99.8

Table 6.1: Performance statistics for the patch-based streak surfacegeneration and rendering.
Timing statistics in milliseconds are listed in columns 5-7. Even for more than one million
surface patches the streak surface construction and rendering took less than 60 milliseconds.

Timing statistics for the mesh-based streak surface generation and rendering are

given in Table 6.2. The maximum depth for both refinement strategies were equally set

to d. Values in the column labeledPtscontain the number of surface particles, column

Int andCon show the times that were required for particle integration including time

line refinement and the connectivity update, respectively.ColumnSlr gives timings for

streak line refinement and columnVis gives the time required for surface triangulation

and rendering. Finally, columnTtl shows the total time required for the construction

and rendering of the adaptively refined triangular mesh.

6.6.2 Quality Comparison

To compare the visual quality, we have used both approaches to generate the same

streak surfaces at comparable sample densities. As shown inFigure 6.13, the patch-

based approach suffers from artifacts that are common to point-splatting approaches.

124 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

n m d Pts Int Con Slr Vis Ttl
30 500 4 49k 2.4 1.1 0.9 2.2 8.1
30 500 8 64k 3.1 1.4 1.0 2.8 9.5
50 500 4 116k 5.2 2.3 1.8 4.6 14.8
50 500 8 188k 8.0 3.8 2.5 7.3 22.3
100 1000 4 295k 12.0 5.8 3.8 11.2 34.2
100 1000 8 351k 14.1 7.1 4.4 13.3 39.8
200 1000 4 952k 36.7 20.3 11.3 35.5 105.0
200 1000 8 1.18M 46.0 25.7 14.1 44.7 132.2

Table 6.2: Performance statistics for the mesh-based streak surface generation and rendering.
Columns 5-9 present timings in milliseconds. The construction and rendering of a mesh-based
streak surface consisting of more than 350K particles took less than 40 milliseconds.

In particular, the patch alignment in regions of high curvature tends to produce

rather rough surface structures. While increasing the patch areas can cure those arti-

facts, it tampers with the actual extracted streak surface and requires to increase the

bias of the attribute pass. This, however, in turn leads to the accumulation of incohe-

rent surface parts. In addition, blending of overlapping patch attributes tends to blur

high frequent surface features. The mesh based approach, onthe other hand, avoids all

these problems and delivers a closed surface representation that can be rendered using

standard polygon rasterization. Sharp features and high frequent geometric details are

preserved and the interpolation of vertex normals results in a smooth illumination.

To achieve comparable quality, the patch-based approach requires a significantly

Figure 6.13: This image shows the same streak surface that was generated using the patch-based
(left) and the mesh-based (right) approaches at comparablesample density. While patch-based
splatting results in artifacts and blurring at fine surface details and silhouettes, the mesh-based
approach yields a high-quality surface representation.

6.7. SUMMARY 125

higher sampling density. The following plot shows the sample density of both ap-

proaches, extracting streak surfaces at comparable visualquality.

0K

50K

100K

150K

 0 200 400 600 800 1000 1200 1400

#
 P

ri
m

it
iv

e
s

Integration steps

Patch-based
Mesh-based

0K

100K

200K

300K

400K

 0 100 200 300 400 500 600 700 800 900

#
 P

ri
m

it
iv

e
s

Integration steps

Patch-based
Mesh-based

Figure 6.14: The plots show the sample density of both approaches during streak surfaces
generation at comparable visual quality. Top: Statistics for the square cylinder data set. Bottom:
Statistics for the large eddy simulation (round cylinder) data set.

6.7 Summary

In this chapter, we have presented two real-time techniquesfor constructing and render-

ing adaptively refined streak surfaces on the GPU. The patch-based approach performs

particle integration and adaptive refinement in one step. Inthe proposed setup we tried

to minimize additional complexity regarding the refinementcriterion, integration ex-

pense and the maximum output performed by the geometry shader, resulting in real

time performance even for huge amounts of patches traced in parallel. We also pre-

sented visualization methods for this representation by adapting point-splatting tech-

niques to render the loose patch set as closed surface.

The mesh-based approach addresses the increased integration expense by introduc-

ing connectivity information between the surface samples.This does not only remove

redundant particle integration but also allows the application of more sophisticated

adaption criteria as well as coarsening the particle set during surface construction. On

that account, the mesh-based approach delivers visually comparable streak surfaces to

126 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

the patch-based approach with a much smaller set of surface samples. Furthermore,

the closed surface representation can be rendered outrightand a multitude of rendering

styles can be applied efficiently.

We are aware of the fact that the current triangulation can lead to distorted triangles

in highly diverging flow regions or areas of high shear strainbetween adjacent time

lines. Thus, we will investigate alternative triangulation methods in the near future.

Chapter 7

Interactive Separating Streak Surfaces

Streak surfaces are among the most important features to support 3D unsteady flow

exploration, but they are also among the computationally most demanding. Further-

more, to enable a feature driven analysis of the flow, one is mainly interested in streak

surfaces that show separation profiles and, thus, detect unstable manifolds in the flow.

The computation of such separation surfaces requires to place seeding structures at the

separation locations and to let the structures move correspondingly to these locations

in the unsteady flow. Since only little knowledge exists about the time evolution of

separating streak surfaces, at this time, an automated exploration of 3D unsteady flows

using such surfaces is not feasible. Therefore, in this chapter we present an interactive

approach for the visual analysis of separating streak surfaces. Our method draws upon

recent work on the extraction of Lagrangian coherent structures (LCS) and the real-

time visualization of streak surfaces on the GPU. We proposean interactive technique

for computing ridges in the finite-time Lyapunov exponent (FTLE) field at each time

step, and we use these ridges as seeding structures to track streak surfaces in the time-

varying flow. By showing separation surfaces in combinationwith particle trajectories,

and by letting the user interactively change seeding parameters such as particle density

and position, visually guided exploration of separation profiles in 3D is provided. To

the best of our knowledge, this is the first time that the reconstruction and display of

semantic separable surfaces in 3D unsteady flows can be performed at interactive rates,

giving rise to new possibilities for gaining insight into complex 3D flow phenomena.

7.1 Introduction

For the visual analysis of flow data, feature extraction methods are a well-established

class of techniques because the extraction of features offers insight into different flow

127

128 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

phenomena while reducing the amount of data to be processed.Another important and

well-established class of visualization algorithms are real-time interactive exploration

approaches, such as interactively seeding and tracking particles, characteristic lines, or

integral surfaces. The increasing amount and complexity offlow data brings limita-

tions to both classes of techniques: the features themselves may become so complex

that their visual representation becomes challenging. On the other hand, interactive

exploration techniques suffer from the danger that important phenomena are missed

because certain areas are not explored. A solution for this is a combination of feature

extraction and interactive exploration: either the complex features are extracted and

visualized by appropriate real-time flow exploration tools, or the seeding in interactive

flow exploration is controlled by a feature extraction approach. In this chapter, we pro-

pose such a combination for particular features (LCS, i.e. ridges of FTLE fields) and

interactive exploration tools (generalized streak surfaces).

Ridges of finite-time Lyapunov exponent fields are well-established features for

computing separating structures in time-dependent flows (see Section 2.5 for a thorough

introduction to this subject). While their definition is well-understood, for 3D time-

dependent flows their visualization is complicated becausethe ridges of interest are

3D hypervolumes in the 4D space-time domain, i.e., surface structures changing their

shapes and appearance over time. Because of this, existing algorithms in 3D carefully

focus on particular times and locations to show ridge surfaces, making a systematic

exploration of all FTLE ridges in 3D time-dependent flows a time-consuming process.

Streak surface extraction is a prominent tool for interactive flow exploration. Since

for every location in the space-time domain there is a one-parametric family of streak

lines passing through, the sheer amount of existing streak lines (and therefore streak

surfaces as well) leave the chance of missing interesting and important streak surfaces.

The approach presented in the following aims to overcome thedrawbacks of both

FTLE ridges and interactive streak surface exploration. Itis justified by the follow-

ing observation: FTLE ridges are approximately material structures [56, 153] and can

therefore be interpreted as generalized streak surfaces.

We use this for the following algorithm: given a 3D unsteady flow field, we inter-

actively place and move a planar seeding structures (usually a rectangle) in the flow

domain at a certain timet. Note that moving the seeding structures is possible both

in space and time. We consider the restriction of the FTLE field ons (i.e., a 2D field),

either by computing the FTLE values ons in-turn or by computing the entire FTLE

field (i.e., a 4D scalar field) in a preprocess and resampling the values ontos via in-

terpolation. We then extract ridge structures in the FTLE field on s in real-time, and

7.2. CONTRIBUTION 129

employ them as seeding structures for a streak surface integration. Since the ridges on

s change their shape by movings in space and/or time, the surfaces generated this way

are generalized streak surfaces (an extension of the concept of generalized streak lines

[187]). The streak surfaces are shown only for the integration time which was used for

computing the FTLE, since only for this integration time a separation was detected. As

our choice of seeding locations for streak surface integration aims to uncover separation

structures, we will refer to them as separating streak surfaces in the following.

Our method exploits the fact that 2D FTLE ridges (LCS) in 3-space are advected in

a similar way to streak surfaces seeded at 1D FTLE ridges on a 2D manifold in 3-space.

This statement is based on two facts: firstly, the 1D FTLE ridges on the seeding plane

are approximately on 2D ridges in 3-space as long as the seeding plane is approximately

perpendicular to the flow (this was exploited in [47], where ridges on cutting planes are

considered instead of 2D ridges). Secondly, FTLE ridges areapproximately material

structures and do in fact converge to exact material structures if the integration time

goes to infinity [153].

In [139] and [105] this temporal coherence of LCS was exploited to efficiently com-

pute time series of FTLE ridges via simultaneous advection of a sampling grid and in-

cremental 1D ridge tracking, respectively. Since a finite integration time is used in our

work, the generalized streak surfaces we extract do not coincide with 2D FTLE ridges

in general. However, we will demonstrate in this work that these surfaces resemble

the 2D ridges at high fidelity and can be computed very efficiently. Furthermore, since

generalized streak surfaces move according to the flow they provide a more intuitive

flow exploration metaphor than 2D FTLE ridges. Notably, no visual information will

be generated in regions where many 2D ridges exist but for none of them an approxi-

mating streak surface has its origin on the selected seedingstructure. This allows using

our approach as an effective technique to focus on particular flow structures in space

and time.

7.2 Contribution

In this chapter, we present the first approach to construct separating streak surfaces in

3D unsteady flows at interactive rates. This enables visually guided 3D flow exploration

based on the concept of LCS. Our approach distinguishes fromprevious approaches in

that it avoids computing LCS in 3D. Instead, the computationis restricted to a 2D man-

ifold and streak surfaces are constructed at significantly less computational effort. All

processing stages of the proposed algorithm are realized onthe GPU, including FTLE

130 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

computation, ridge extraction, streak surface reconstruction, and surface rendering. The

specific contributions of our work are:

• A navigation tool that allows placing a 2D sampling grid in space-time and com-

puting FTLE values on it in an interactive way.

• A new ridge extraction method that is specifically tailoredto the GPU and pro-

duces ridges well-suited as seeding structures.

• An extension to the patch based streak surface technique presented in Chapter 6

to reconstruct generalized streak surfaces emanating from1D FTLE ridges.

The remainder of this chapter is organized as follows: Afterreviewing previous work

that is related to ours, Section 7.4 is dedicated to the spatial selection of separating

streak surfaces based on the FTLE. In Section 7.5 we introduce our new ridge extraction

algorithm. The reconstruction of streak surfaces from extracted 1D FTLE ridges is

described in Section 7.6. Section 7.7 presents a detailed analysis of our approach with

respect to performance and quality. We conclude this chapter with a brief summary and

an outline of future research in the field.

7.3 Related Work

Our approach is based on a number of established techniques in visualization, namely

FTLE extraction, ridge extraction, streak surface integration, and interactive flow ex-

ploration. A thorough overview of feature extraction techniques in flow visualization

and geometric flow visualization techniques can be found in [130] and [115], respec-

tively.

FTLE / LCS

Lagrangian coherent structures (LCS) as ridges of FTLE fields were introduced by

Haller [56, 58] and experienced an intensive research sincethen [100, 57, 154, 185].

Shadden [153] has shown that ridges of FTLE are approximate material structures, i.e.,

they converge to material structures for increasing integration times. This fact was used

in [140] to extract topology-like structures and in [105] and [137, 47] to accelerate the

FTLE computation in 2D and 3D flows.

In the visualization community, different approaches havebeen proposed to increase

performance, accuracy and usefulness of FTLE as a visualization tool. For example,

volume rendering and slicing techniques were used for a visual analysis of 3D FTLE

7.4. FTLE 131

fields in [49, 47], [138] proposed to extract LCS as filtered height ridges and compared

LCS- and topology-based flow visualizations. LCS extraction in 2D FTLE fields was

discussed in [137], and [24, 47] considered the FTLE to control the visualization of

particles to show divergent regions in 3D flows. However, none of them is designed for

a real-time exploration of the separating structures in 3D space and time.

Ridge Extraction

To extract ridge structures, a variety of different approaches has been proposed in the

literature. We mention local conditions by relaxing conditions of extremal structures

[37, 104], topological/watershed approaches [141], definitions based on extremal cur-

vature structures, adaptive methods [137], or particle based methods [77]. [126, 151]

focus on the extraction of ridge surfaces in 3D fields. To the best of our knowledge,

none of these approaches aims at a real-time extraction of ridge structures in time-

varying fields.

7.4 FTLE

Our approach for visualizing separating streak surfaces isbased on seeding particles

along Lagrangian coherent structures in a 3D unsteady flow field. Since LCS are formed

by ridges in the finite-time Lyapunov exponent field, the FTLEfirst has to be computed

before meaningful seeding structures can be found. The FTLEis a scalar quantity

that measures the stretching induced by the flow. Letφ t0+∆t
t0 (x) denote the flow map

that defines the mapping of particles at positionx in space andt0 in time via path line

integration over the time intervalt0+∆t. According to [56] the FTLE is then defined

as

σ ∆t
t0 (x) =

1
|∆t| ln

√

λmax

(

(∇φ t0+∆t
t0 (x))T ∇φ t0+∆t

t0 (x)
)

,

whereλmax is the largest eigenvalue of the right Cauchy-Green deformation tensor

(∇φ t0+∆t
t0 (x))T ∇φ t0+∆t

t0 (x) of the flow map. For a thorough introduction to the con-

cepts of the FTLE and a mathematical derivation, we refer thereader to Section 2.5.3.

In the following, we will assume that the flow map—and the FTLEderived thereof—

is computed by sampling particles on a planar seeding structures, which is discretized

by a uniform 2D sampling grid. For estimating the flow deformation in the vicinity of

one of these particles, however, we consider additional particles that are seeded within

anε-region around it. The value this variable takes can be adjusted by the user, mak-

132 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

ing the FTLE computation independent of the chosen grid spacing. However, follow-

ing [73], we have chosenε according to the grid spacing on the planar sampling grid in

all of our examples.

The FTLE computation, and thus the following ridge extraction, is restricted to a

sub-domain of the 3D flow domain. The user is provided a navigation tool to places
in the 3D field. Both the size and the resolution of the sampling grid can be set by the

user. At the center of each grid cell the FTLE value is computed as described above.

Specifically, if a center is at position(x,y,z), the trajectories of 6 particles seeded at

positions(x±ε,y±ε,z±ε) are traced and the deformation gradient is computed from

the particle destinations. Particle tracing and FTLE computation is entirely performed

on the GPU, and the resulting values are written into a 2D texture.

It should be noted that the FTLE computation we perform can generate less reli-

able results, since the particles can separate significantly during path line integration.

Even though there exist approaches to overcome this problem, e.g. by a FTLE redef-

inition to local criteria on the center trajectory [73] or renormalization of the particle

neighborhood [9], we have not yet integrated these approaches into our method.

Figure 7.1 shows two snapshots of an exploration session in which FTLE values

have been computed on different sampling grids. In both cases the computation was

performed at a grid size of 256×256 with an integration time of 0.15 s (100 Runge-

Kutta 4th order integration steps, requiring 20 time steps of the unsteady flow field).

Since the computation is performed on the GPU, interactive update rates of less than

150 ms are achieved as long as all time steps necessary to calculate the FTLE at a given

point in time can be stored in the GPU memory.

This indicates that often it is not necessary to pre-computea time-resolved 3D FTLE

field sequence prior to the flow exploration. The values can beupdated in-turn once

the user movess or changes any of the parameters the FTLE depends upon, like the

start timet0, the integration time∆t, the spatial sampling distanceε, or the size and

resolution of the sampling grid. However, in scenarios where the time-resolved flow

field sequence does not fit into GPU memory (i.e. all time-steps needed to calculate

the FTLE at a given point in time), pre-computing the time-dependent FTLE should be

preferred. In this case the pre-computed FTLE values can simply be interpolated at the

grid cell centers. Note that in this case the FTLE parametersare fixed and, therefore,ε
might significantly differ from the grid spacing ons.

7.5. FTLE RIDGE EXTRACTION 133

Figure 7.1: Two FTLE fields on a planar probe at grid size256×256. The parallelized FTLE
computation on the GPU yields interactive update rates (less than150 ms for the given probe
texture resolution).

7.5 FTLE Ridge Extraction

In the following we describe our novel extraction techniquefor 1D ridges in 2D FTLE

fields. Ridge extraction techniques—also in the context of LCS extraction—have been

studied extensively over the last years. For an introduction to this field and more infor-

mation on related work, we refer the reader to Section 2.5.

Our ridge extraction technique builds upon the concepts ofheight ridgesandwater-

sheds. The definition of height ridges involves point-wise evaluations of algebraic equa-

tions based on geometric ridge properties, which are expressed via first-order deriva-

tives and derivatives into the main curvature directions, i.e., the (transversal) ridge di-

rections [37]. Letf (p) denote the FTLE value at a pointp ons, and letH andg denote

the Hessian matrix and the gradient off , respectively. According to [126] the height

ridges are a subset of the zero-contour of det(Hg,g) = 0, which can be extracted in 2D

using the marching squares algorithm.

In general,unfilteredheight ridges do not provide suitable seeding regions for streak

surfaces. Even though height ridges cannot really branch asshown in [151], they tend to

appear as branched structures at larger scales. Highly branched and fragmented struc-

tures, however, result in many separate and even non-manifold surface parts. From a

visualization point of view the streak surfaces constructed from such ridges do not al-

low any intuitive interpretation due to their complex topology and visual clutter thereof.

Figure 7.2 shows a set of unfiltered FTLE height ridges (left)and compares them to the

134 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

ridges we are interested in (right). Even though height ridges can be post-processed to

eliminate undesirable ridge parts, and thus to yield simpler seeding structures [137], it

seems to be difficult to implement this process efficiently onthe GPU.

Figure 7.2: Left: unfiltered height ridges; Right: ridges extracted by our approach. Grey scale
values in the background correspond to FTLE values extracted at the sampling grid resolution.
Let us note, that ridge extraction was performed at a larger scale space level.

Watersheds [134] are another popular approach for ridge extraction in 2D. It is based

on the topology of the underlying 2D scalar field and aims at extracting slopelines sep-

arating hills and basins. In this definition a ridge is considered as a slopeline going

from one maximum to another maximum through a single saddle point. Even though

the topology of watershed ridges is often much simpler than that of height ridges, they

nevertheless fail to focus on the main axis of hills of the height field. Using a gen-

eral watershed approach can also lead to rather cumbersome special cases in which

significant ridges are missed because they do not separate different minima correctly.

To overcome the limitations of height ridges and watershedswe introduce a novel

ridge extraction algorithm. Generally speaking, a ridge isa graphG= (V,E) consisting

of a setV of vertices and a setE of edges. Verticesv∈V can be end points (deg(v)= 1),

line points (deg(v) = 2) or crossings (deg(v) > 2). With respect to this definition, for

our purpose the specific goals are a) to minimize the number ofcrossings per ridge, and

thus to avoid non-manifold surfaces, and b) to maximize the ridge length, i.e. to connect

as many vertices as possible, and thus to prevent the streak surfaces from falling into

many parts.

The basic idea underlying our algorithm is to separate the extraction of the ridge

topology from the computation of the exact ridge locations,similar to the concept pro-

posed in [146]. Starting with the FTLE field in a 2D texture in GPU memory, the texture

is first filtered via a gaussian kernel of size 5×5 to smooth high-frequency FTLE re-

gions. The amount of smoothing operations depend on a user selected scale space level

(typically, 5−10 smoothing iterations are performed). Then, the texture is processed

7.5. FTLE RIDGE EXTRACTION 135

to classify the FTLE values and build threshold regions. These regions are successively

thinned to compute a pixel-accurate ridge skeleton, from which ridge line segments are

extracted at sub-pixel accuracy. The different steps of this algorithm are illustrated in

Figure 7.3.

The result of our technique are continuous ridges with a simple topology. They

consist of points that are local maxima into the direction ofthe local ridge normals,

similar to the concept of watersheds. These ridges are returned as a common graph

structureG with uniform vertex spacing.

Figure 7.3: Steps of the ridge extraction algorithm. (a) A planar probe positioned in the flow
domain, and the corresponding color coded FTLE scalar field.Image (b) shows a cutout of the
FTLE on the planar probe. (c) Threshold regions. (d) Thinning yields the pixel-accurate ridge
skeleton. (e) Extracted ridge line segments at sub-pixel accuracy.

7.5.1 Ridge Topology

The extraction of the ridge topology is performed by first classifying the discrete set

of FTLE values on the sampling grid based on the height and thelocal curvature of

this field, and then by shrinking the resulting regions towards the ridge skeletons. If a

sufficient symmetry of the hills in the height field along their main axis can be assumed,

the skeleton will roughly coincide with valid ridge locations.

136 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

Classification

Performing the classification of FTLE values based on a height threshold is not suffi-

cient in general, since ridges can be of different heights. This classification also fails to

segment regions of nearby ridges that are separated by valleys of insufficient depth. To

solve this problem, we introduce an additional threshold that is used to separate convex

and non-convex FTLE regions.

Let fww be the second order directional derivative of the gradientf (p) into direction

w at a fixed positionp. Moreover letλ1,λ2 (with λ1 ≤ λ2) be the eigenvalues ofH at

p. The pointp is a convex point if every second order directional derivative is non-

positive:∀w 6= 0 : fww ≤ 0. Sinceλ1 ≤ fww ≤ λ2 holds for any arbitrary|w|= 1, p is

convex if and only ifH is negative semi-definite. This results in the following condition

to be fulfilled by every ridge point:

λ2≤ 0

Applying this criterion in a pixel shader to every sample on the seeding structure

s gives the desired classification into points belonging to convex regions and points

belonging to non-convex regions. For this we calculate the Hessian pixel-wise using

discrete filters on the smoothed FTLE fieldf on s and store the classification in an

additional 2D texture at the sampling resolution ons.

The used criterion, on the other hand, is rather sensitive against small but random

fluctuations and, thus, leads to a rather noisy classification in approximately planar

regions. This misclassification, which results in unfeasible skeletons, is resolved by

allowing small positive values ofλ2, i.e., a curvature thresholdκ > 0. Combined with

a height thresholdh to exclude ridges at locations where the FTLE value is too lowwe

arrive at the condition

λ2≤ κ ∧ f (p)≥ h . (7.1)

We are aware that in the context of height ridges thresholding λ1 would have been

a more natural choice, since their definition does not restrict λ2 which corresponds to

the actual ridge direction. Practice however has shown, that in contrast to aλ1-test the

application of the more restrictiveλ2-test reasonably reduces branching and therefore

ridge complexity.

Figure 7.4 shows FTLE classifications using the different criteria with varying thresh-

old values. As can be seen, vastly different results are obtained, ranging from rather

fuzzy to well-defined and smooth threshold regions. According to our experience,

choosingκ one or two orders smaller than the largest occurring curvatures ons pro-

7.5. FTLE RIDGE EXTRACTION 137

vides the best results, i.e.κ ∈ [0.01;0.1] ·maxs{|λ1|, |λ2|}. For the minimal ridge

heighth, reasonable values are between 50% and 80% of the maximum FTLE value.

Figure 7.4: FTLE classification into convex (red) and non-convex (blue)regions, using height
threshold (left) , height and curvature threshold withκ = 0 (middle) and withκ = 10−3 (right).

Skeletonization via Curve-Thinning

Applying the convexity test (7.1) to the FTLE field results ina binary threshold image.

We assume that pixels labeled 1 passed the test, while all others are labeled 0. We

are now seeking for the topological skeletons of those regions consisting of pixels that

passed the test, i.e., the skeletons of the convex regions.

To compute these skeletons efficiently on the GPU we employ a 2D version of the

region thinning algorithm proposed by [122]. The algorithmis very robust against noise

at the region boundaries, and since it performs purely localcomputations at every pixel

it can be parallelized effectively. Furthermore, it directly generates the inner skeleton

of a region, meaning that the algorithm avoids branches touching the region contour.

At every pixel the algorithm considers the 4-neighborhood to classify this pixel, i.e., a

pixel is classified as N- (or W-, E-, S-) border-pixel if it hasvalue 1 and its neighbor in

the respective direction has value 0:

N

W • E

S

In every iteration, at every pixel four sub-iterations are performed to remove certain

border pixels. The first sub-iteration NW removes N- and W- border-pixels that match

at least one of the following three adjacency templates:

138 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

0 0 0

x 1 x

x 1 x

∨
0 x x

0 1 1

0 x x

∨
0 0 ·
0 1 1

· 1 ·

Here ’0’ and ’1’ mark pixels that have to be exactly matched. Of the neighbors

marked ’x’, per template at least one has to be ’1’ while those marked with ’·’ are ir-

relevant for the evaluation of the respective template. Upon finishing this sub-iteration,

the algorithm proceeds with sub-iterations SE, NE, and SW inexactly this order. The

templates for these sub-iterations are derived by rotatingthe templates used in the first

sub-iteration accordingly. The thinning process is performed in as many iterations as

are required until no more pixels are removed from the input image (typically a maxi-

mum of 20 iterations is sufficient).

7.5.2 Sub-pixel Ridge Refinement

Given the set of skeleton pixels that is output by the thinning algorithm, we construct

a graph representation of the skeletons by connecting neighboring pixels. For every

skeleton pixel with at least one neighbor a vertex at its center is created. Two vertices

are connected via an edge if they belong to horizontally or vertically adjacent pixels

(N,W,S, or E template positions) or if they belong to diagonally adjacent pixels which

do not share a common neighbor. Let us note that this impliesdeg(v)≤ 4 for all ridge

verticesv.

The graph is stored on the GPU as a linear array of vertex primitives, each carrying a

pixel coordinatepv in the sampling gridsand an adjacency listUv⊂V with 1≤ |Uv| ≤4

implemented as pointers (indices) to up to 4 neighbors. The array is created by invoking

a geometry shader for every texel in the 2D texture storing the skeleton classification.

Using the stream output functionality of current GPUs, we can generate primitives

solely for the pixels who are part of the skeleton. To establish the connectivity between

these vertex primitives, in a second rendering pass, we scatter their array indices back

into an index texture of the same dimensions as the initial texture. In a third pass every

vertex finally determines the connectivity informationU by a lookup into the index

texture.

The ridge graph is then refined iteratively at sub-pixel precision. Underlying the

refinement process is the condition that every ridge vertexv should be lying on a max-

imum of the image functionf into the direction of the local ridge normalnv. Conse-

quently, the ridge vertices have to be moved upwards the FTLEfield until they reach

7.5. FTLE RIDGE EXTRACTION 139

such a maximum. Since moving vertices along the image gradient g would cause the

ridge graphG to be heavily distorted or even collapse at the absolute maxima of f , we

restrict the movement to thenv-direction by projectingg onto nv. This also ensures

the convergence of the refinement process under the assumption of a reasonable initial

guess produced by the skeletonization. To avoid degeneratecases and to additionally

obtain evenly spaced vertices, we incorporate some smoothing into each refinement

step by interpolating vertex positions along ridge lines. Specifically, the positionpv of

a vertexv is updated according to

pv
′ =











pv +δ rv , if |Uv|= 1

(1−σ) pv +
σ
|Uv|

(

∑
u∈Uv

pu

)

+δ rv , else
(7.2)

with

rv =







〈(pu1−pu2)
⊥,g〉 · (pu1−pu2)

⊥ , if Uv = {u1,u2}
∑

u∈Uv

〈(pu−pv)
⊥,g〉 · (pu−pv)

⊥ , else

Here,δ is the step-size along the gradient,σ is the amount of line smoothing, andw⊥

denotes a unit-length vector perpendicular tow. In order to allow for the procedure

to converge, we choose the largestδ for which the step size|δ rv| is smaller than one

pixel. σ was set to 0.25 during all our experiments.

We perform a fixed number of iteration steps (typically 50), which are computed for

every vertex in parallel on the GPU. In a final post-process the graphG is modified by

removing vertices that have moved more than a user-specifieddistance thresholddmax

during the refinement (by default we setdmax to the length of 5 pixels). In this way, we

eliminate skeletons that were too far from ridges after the initial skeletonization. There-

fore, each vertexv gets assigned an additional attributedv, which stores the distance

a vertex has been moved. Similar topv, dv is smoothed along ridge lines to prevent

oscillation artifacts caused by thresholding:

d′v =







(1−ω) dv+
ω
|Uv|(∑

u∈Uv

du)+ |pv
′−pv| , if |Uv| ≤ 2

dv+ |pv
′−pv| , else

(7.3)

Compared toσ , ω should be chosen significantly smaller. For instance,ω = 0.05 was

used throughout all of our experiments. Vertices withdv > dmax are marked invalid.

Finally this mark is propagated throughG in kcut iterations, marking all vertices invalid

from which an invalid vertex can be reached inkcut steps.kcut was set to 5 throughout all

140 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

experiments. In Figure 7.5 extracted ridges before (left) and after (right) the sub-pixel

refinement stage are shown.

The result of the ridge extraction stage is the array of ridgevertices containing both

the invalid and the valid ridge verticesV+ ⊆ V. From these vertices the set of valid

edgesE+ ⊆V+×V+ is derived.

Figure 7.5: Ridges extracted with our approach. Left: Ridges obtained by connecting adjacent
vertices. Right: Sub-pixel precise ridges after the refinement and post-processing stage.

7.6 Separating Streak-Surface Visualization

Our ridge extraction technique yields a set of ridge structures for a given point in time.

These structures are then used as seeding curves for streak surfaces. Since the seeding

structures change over time, the surfaces generated this way are generalized streak

surfaces.

The ridges are provided as a set of uniformly distributed line segmentsE+ con-

sisting of a discrete set of control verticesV+. To construct separation surfaces, we

repeatedly release particles from the set of seed pointsV+ into the flow and compute

their trajectories in the 3D unsteady flow. All particles released at a given point in time

are then integrated and rendered. Since the FTLE values havebeen computed by inte-

grating particles over a specific time interval, the life time of the particles seeded at the

FTLE ridges is restricted to the same interval.

Figures 7.6 and 7.11 (b) show separating streak surfaces that were visualized by

rendering the set of particles as individual spherical point sprites. As proposed by Sigg

et al. [157], an analytic ray/sphere intersection is performed in the pixel shader stage to

determine correct depth values on a per fragment basis. Numerical particle integration

on the GPU is performed as described in Section 4.5.2.

7.6. SEPARATING STREAK-SURFACE VISUALIZATION 141

Figure 7.6: Particle based surface visualization. Red particles correspond to points on the
separating surface. Green particles serve as context information. They represent points on time
surfaces, which are released from the planar probe at a fixed frequency.

Red particles in these images correspond to control points residing on a separating

streak surface. Green particles represent control points of time surfaces. Those time

surfaces are aligned parallel to the planar probe and released into the flow at a fixed fre-

quency to serve as additional context information, emphasizing the separating nature

of the extracted streak surfaces. Approximating the surface through a set of individual

samples allows us to use large sets of particles at real-timeperformance. However, as

particles start to diverge, missing connectivity between surface samples and the omis-

sion of an adaptive refinement make it difficult to identify the separating surface.

In Chapter 6 we presented two different approaches for the visualization of closed

streak surfaces with the focus on the efficient constructionof such surfaces on the GPU.

The first approach represents the surface as a set of separatequad-patches, which de-

form under the influence of the flow. Each patch is traced separately through the flow,

and it is adaptively refined into a set of sub-patches if the stretching becomes too severe.

The refinement process introduces new vertices that are not shared by adjacent patches,

and, thus, successive integration can lead to holes in the surface representation. The

second approach generates a closed surface by repeatedly releasing time lines from a

single static seeding structure and triangulating adjacent (adaptively refined) time lines.

Unfortunately, the mesh-based approach can not easily be applied in the current

scenario since the seeding curve changes permanently. Thismakes it difficult to estab-

lish particle connectivity and to construct a consistent surface triangulation. Especially

142 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

since the topology of the seeding curves changes from time step to time step, we would

first have to determine matching curve segments in successive time steps to build a

triangulation. Finding these matchings is a rather time consuming task and can not ef-

ficiently be mapped to the GPU. For this reason we adopt a variant of the patch-based

approach presented in Section 6.4.

Interactive unsteady flow exploration using the planar probe metaphor is usually

initiated by placing the seeding structures at a fixed location in space, but letting it

move in time to depict the development of separating surfaces in the evolving flow

domain. As the seeding ridge structures change while movingthe planar probe in time,

we extend the patch based technique in the following way: In each time stepti and for

every edgee∈E+ we construct a zero area quad, and we release two control vertices of

each patch into the flow. Before releasing the remaining two vertices in time stepti+1,

the ridge line segmentsE+ extracted inti are traced along the gradient of the 2D FTLE

field atti+1 as described in section 7.5.2. Thus, the vertices are moved according to the

movement of the ridge structure from one time step to the next. In this way we employ

the temporal coherence of FTLE ridges to find for each ridge vertex a corresponding

vertex in the next time step. The remaining two patch vertices are then released into the

flow from the new positions on the seeding plane. Figure 7.7 sketches the construction

of surface patches for a seeding structure that moves over time.

ti ti ti+1

Advect Refine

Figure 7.7: Patch-based surface construction. Before releasing the second pair of vertices at
time ti+1, the line segment of the corresponding ridge structure extracted at timeti is traced
along the FTLE gradient fieldgi+1. The four white vertices (right) depict the control points of
the resulting quadrilateral.

As the adjusted edgesE+
i (extracted atti) do not exactly match the edgesE+

i+1,

subsequent integration can lead to holes in the surface representation. This is fixed

to a certain degree by the proposed point splatting approach, which renders a slightly

enlarged footprint to smear out holes between adjacent patches. Adaptive patch re-

7.7. RESULTS AND DISCUSSION 143

finement is performed as described in Section 6.4. Figures 7.8 (a), 7.9, and 7.11 (a)

show separating streak surfaces that have been constructedand visualized using our

approach. In Figures 7.8 (b, c) and 7.10 depth peeling was applied to create a semi

transparent visualization of the separating streak surfaces.

7.7 Results and Discussion

To validate the effectiveness of the proposed techniques, we have conducted a number

of experiments on different data sets given on cartesian 3D grids. Performance statistics

were measured on a 2.83 GHz Core 2 Quad processor, equipped with a NVIDIA Quadro

FX5800 with 4 GB local video memory. Results were rendered into a viewport at

FullHD resolution (1920×1080). The following data sets were used:

• 3D double gyre:A 3D extension of the synthetic, periodic 2D double gyre [153],

sampled at a spatial resolution of 256×128×256 and a temporal resolution of

10 for one period:

gyre(x,y,z, t) = (−πA ·sin(π f (x, t+5z)) ·cos(πy),

πA ·cos(π f (x, t +5z)) ·sin(πy) · d f
dx

, 0) with

f (x, t) = a(t)x2+b(t) x, a(t) = εsin(ωt), b(t) = 1−2εsin(ωt),

A= 0.1, ε = 0.25, ω = 2π
10 and(x,y,z, t) ∈ [0;2]× [0;1]× [0;2]× [0;10)

• Square cylinder:A 3D DNS simulation of the flow around a square cylinder

between parallel walls [143]. The vector field was resampledonto a uniform grid

at resolution 192×64×48. 102 time-steps were used. The scalar FTLE fields

were pre-computed at fourfold the spatial and eightfold thetemporal resolution.

• Flow around a cylinder: A large eddy simulation of an incompressible unsteady

turbulent flow around a wall-mounted cylinder [44]. 22 time-steps were simu-

lated. The size of the data grid is 256×128×128. Pre-computed FTLE fields

were generated at twice the spatial, and fourfold the temporal resolution.

• LBM Flow: A GPU-based Lattice-Boltzmann simulation of the flow arounda

donut-shaped obstacle. The spatial resolution of the simulation domain is 128×
64× 64. The FTLE fields on the 2D sampling grid were computed on thefly

during flow exploration. In every time step, 10 vector fields were used to compute

the FTLE values. The interactive simulation created these data sets in advance.

144 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

7.7.1 Visual Exploration

3D double gyre: Placing the seeding plane parallel to the(x,y) plane essentially means

to compute the FTLE ridges on the classical 2D double gyre. Our extraction shows

that the obtained ridges agree with expected ridges known from the literature, with the

main difference that our extraction works in real-time. Seeding streak surfaces from

the ridges confirms that the ridges are approximate materialstructures: the generalized

streak surfaces and the ridges show a good coincidence as depicted in Figure 7.8 (c).

Placing the seeding plane parallel to the(x,z) plane reveals approximate sine shaped

ridge structures (see Figure 7.8 (a)). Note that this curve does not coincide with moving

saddles of the vector field which is a well-known characteristic of the data set [153].

Figure 7.8: Separating streak surfaces in the double gyre data set. Green arrows show the ve-
locity direction on time surfaces that are additionally released from the planar probe. In image
(b), individual surface layers are extracted via depth peeling. Image (c) depicts the correspon-
dence between separating streak surfaces and FTLE ridges. Besides the seeding plane, a second
plane is placed such that it intersects the surface and FTLE values are visualized on it. Here,
the separating surface stays on the 2D FTLE ridges.

7.7. RESULTS AND DISCUSSION 145

Square cylinder: Seeding from a plane in front of the cylinder with a distanceaccord-

ing to the integration time to compute the FTLE field reveals one distinct streak surface

separating the flow passing above and below the cylinder (seeFigure 7.9 (b)). Placing

the seeding plane behind the cylinder perpendicular to the main flow direction shows

periodically appearing and disappearing streak surfaces which alternate in moving up-

ward and downward. This confirms the appearance of the well-known von Karman

vortex street behind the cylinder. In order to show that the streak surfaces are indeed

separating structures, we release time surfaces from the seeding plane at times when

streak surfaces are released. The time surfaces get advected and clearly get distorted

mostly around the intersections with the streak surfaces. As can be seen in Figures 7.6

and 7.9 (a), this shows the separating structure of our streak surfaces.

Figure 7.9: Separating streak surfaces in the square cylinder data set,visualized using the
patch-based approach. Separating surfaces in (a) reveal the well-known von Karman vortex
street behind the cylinder. Image (b) depicts a single surface separating the flow passing above
and below the cylinder. The correspondence between separating streak surfaces and FTLE
ridges is shown in (c). In general, as the integration time used to compute the FTLE is finite,
surfaces keep staying in regions of high FTLE but do not stay on the 2D FTLE ridges any more.

146 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

LBM Flow : A tube shaped generalized streak surface is revealed by placing the seeding

plane in front of the torus, separating the flow passing through the hole and around the

toroidal obstacle. Movings closer towards the obstacle creates two surfaces parallel to

the first one, indicating the occurrence of a separation behind the torus.

Figure 7.10: Separating streak surfaces in the flow around a torus. Depth peeling was applied
to extract multiple surface layers.

Flow around a cylinder: Two streak surfaces enclosing the cylindrical obstacle are

revealed by placing the seeding probe perpendicular to the inflow in front of the object.

The extracted surfaces emanating from 1D FTLE ridges on the planar probe closely

resemble the 2D FTLE ridges obtained by incremental ridge tracking in a similar data

set [139].

Figure 7.11: Placing the planar probe perpendicular to the inflow in frontof the cylinder reveals
two separating surfaces enclosing the object. In (a), surfaces are visualized with the patch-based
approach. In (b), the particle-based approach was employed.

7.7. RESULTS AND DISCUSSION 147

7.7.2 Performance

We applied an explicit fourth-order Runge-Kutta scheme at single floating point pre-

cision for numerical particle integration during FTLE (pre-)computation as well as for

the integration of streak surfaces. Performance measures for FTLE pre-computation are

presented in Table 7.1. Representative timings in hours (h)are given in columnTime

for varying temporal (Timesteps) and spatial (SpatialRes) FTLE resolutions. Column

Integrationcontains the integration time∆t and the amount of integration steps.

Timesteps SpatialRes Integration Time
80 256× 256× 128 8s in 50 steps 0.8h
576 384× 128× 96 10s in 100 steps 5.0h
576 768× 256× 192 10s in 100 steps 43h

Table 7.1: Performance statistics for GPU-based FTLE computation.

Timings for the ridge extraction on the planar probe as well as for the streak surface gen-

eration and visualization are given in Table 7.2. We extractseeding structures (FTLE

calculations and ridge extraction) at a fixed temporal frequency (Seed Interval) on the

planar probes with varying texture resolutions (Sampling texture resolution). In cases

where the FTLE was calculated interactively, columnsFTLE Setupand FTLE Time

show the used parameters and the respective calculation time, whereas resampling the

precalculated FTLE using trilinear interpolation comes atnegligible cost. Timings for

FTLE thresholding, curve thinning and ridge refinement are summarized in column

Ridge extraction. Column#Quads+Particlesshows the average amount of primitives

employed to visualize the separating streak surfaces and additional context informa-

tion, columnAdv+Vis the time spent for respective particle integration and rendering.

ColumnFPScontains the average achieved frame rate during the interactive flow ex-

ploration sessions.

Seed Sampling texture FTLE FTLE Ridge # Quads + Adv + Vis
Interval resolution Setup Time extraction Particles per Frame FPS
25ms 250× 250 - - 6.9ms 108k 13.2ms• 32.0
50ms 500× 500 - - 15.2ms 639k 80.0ms� 7.3
50ms 400× 800 - - 25.7ms 100k 10.7ms• 24.4
100ms 250× 250 10s in 50 steps 58.6ms 10.5ms 57k 6.7ms• 18.1
100ms 250× 250 15s in 100 steps 120ms 9.2ms 42k 11ms� 3.3
100ms 400× 800 10s in 50 steps 277ms 23.0ms 200k 16.7ms• 1.6

Table 7.2: Performance statistics for the extraction and visualization of separating streak sur-
faces. The surfaces were visualized using either the particle based approach (entries marked•),
or the patch-based approach (marked�) including adaptive surface refinement.

148 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

7.7.3 Limitations

For the visual exploration of turbulent flows the proposed technique seems problem-

atic. As can be seen in Figure 7.12, when placings in turbulent flow regions the FTLE

exhibits rather fuzzy ridge structures undergoing frequent topology changes. Hence,

many small, disconnected, and strongly moving surface parts will be generated, lead-

ing to visual clutter. Reducing the FTLE integration time∆t as proposed by [140] to

simplify the “Lagrangian skeleton“ can only be done to a certain extent, as the surface

integration time is restricted to∆t.

Figure 7.12: Placing the seeding probe in turbulent regions. Frequent movements and topology
changes of ridges result in highly fragmented surface partsand visual clutter thereof.

The application of the curvature criterion (see Eq. 7.1) followed by skeletonization

especially aims to simplify the extracted ridges. It is clear, on the other hand, that this

can change the ridge topology, e.g. by removing non-shallowsaddles, or lead to slightly

misplaced ridges at crossings. Therefore, care has to be taken to not “misinterpret“ the

resulting ridges.

7.8 Summary

In this chapter we have presented a real-time technique for the extraction of 1D FTLE

ridges on a 2D planar seeding structure in 3D unsteady flows. Since we employ ridges

as seeding structures for a generalized streak surface integration, we focused on the

extraction of a subset of all valid ridges. Whereas we aimed to a) obtain predominant

features, i.e., long continuous ridge lines and b) to removeunwanted ridges such as

discontinuous structures and crossings to avoid visual clutter while rendering the sepa-

rating streak surface.

7.8. SUMMARY 149

The GPU-based framework allows users to experience a visually guided exploration

of semantic separating surfaces by moving the probe in spaceand/or time and changing

parameters steering the ridge extraction and streak surface construction process inter-

actively. To the best of our knowledge, this is the first time that the reconstruction and

display of semantic separable surfaces in 3D unsteady flows can be performed at inter-

active rates, giving rise to new possibilities for gaining insight into complex 3D flow

phenomena.

In fact, the interactive treatment of LCS allows insight notonly into the locations

of the separating structures but also into their temporal evolution including changing

shapes, appearance and disappearance. Moreover, regions of interest can be determined

interactively by moving around the seeding plane. This way,a fast visual impression

of the ”big picture” of the flow as well an in-depth analysis ofrelevant parts (both in

space and time) becomes possible.

In the future, we will pursue research into the following twodirections: Firstly, we

will perform a detailed analysis of the similarities and differences between separating

streak surfaces and 2D LCS in 3D flows. This includes the variation of parameters such

as the integration time for computing the FTLE field and the comparison of unstable

manifolds in both scenarios. Secondly, adaptive meshing techniques for constructing

high-quality polygonal generalized streak surfaces will be examined. In this respect

it will be worthwhile to investigate ridge extraction techniques that are specifically tai-

lored to the intended application and can monitor topological changes and degeneracies.

150 CHAPTER 7. INTERACTIVE SEPARATING STREAK SURFACES

Chapter 8

Flow On Surfaces

In this chapter, we present new approaches to realize interactive geometry- and texture-

based visualization techniques for surface flow. Such flow fields either live on a sur-

face or can be re-sampled onto it from a surrounding 3D lattice. To achieve real-time

performance, we introduce theOrthogonal Fragment Buffer(OFB), a sample-based

surface representation which is independent of the original surface resolution and re-

presentation. We will discuss how previously introduced visualization techniques (see

Chapter 4) can be adapted to this GPU-friendly data structure to effectively reveal sur-

face flow. Furthermore, we will use the OFB to store additional surface attributes and

employ them to create a view-independent dense flow representation on the basis of line

integral convolution (LIC). Additionally, we will show howartistic approaches such as

surface coloring can be applied to visualize surface flow viacolor advection along parti-

cle trajectories on the object. The quality and performanceof the presented approaches

is validated using real simulation data projected onto arbitrary clip geometry positioned

in 3D unsteady flow, curvature fields on surfaces, and synthetic vector fields designed

on surfaces.

8.1 Introduction and Related Work

To utilize particle-based GPU techniques in a broader rangeof practical applications,

there is a dire need to extend these techniques towards the visualization of unstructured

grids. In principle, it is clear how to perform particle tracing in unstructured grids

composed ofn-simplices like triangles and tetrahedra [75, 161, 120, 79,148]. However,

GPU-based particle tracing in such data sets performs at least an order of magnitude

slower—in comparison to structured grids—due to the following reasons: Additional

arithmetic and memory access operations occur for cell search and exact point location.

151

152 CHAPTER 8. FLOW ON SURFACES

Pointer indirection is not directly available on the GPU, soadditional index structures

have to be stored. The traversal of such data sets leads to dependent fetches (introducing

memory latencies) and highly incoherent memory access (in turn failing to employ local

caching mechanisms). Furthermore and most importantly, particle integration in such

data sets imposes an unbalanced load onto the parallel execution units on the the GPU.

Shader units on GPUs are organized as multiple SIMD groups. Within one SIMD group

(or warp), all the processing elements run in lockstep. While dynamic branching within

a set of elements (executing the same shader kernel on different input data) is allowed,

kernel execution on all elements is not terminated till all elements in the warp exit the

code fragment. Thus, while some units might have to integrate over many elements in

one particle advection step, others only have to consider a single element but are stalled

until the whole warp terminates.

In this chapter, we will alleviate above problems for flow on arbitrary (unstructured)

surfaces. We introduce the OFB as a new data structure that stores surface samples at

a nearly uniform distribution over the surface, and is specifically designed to support

efficient random read/write access to these samples. The data access operations have a

complexity that is logarithmic in the depth complexity of the surface. Thus, compared

to data access operations in unstructured grids (such as triangle meshes) or tree data

structures like octrees, data-dependent memory access patterns are greatly reduced.

Furthermore, the data layout of our surface representationmaintains spatial sample co-

herence and, thus, exhibits very good spatial access locality. In addition, since the OFB

adheres to a uniform resampling of the original surface, particle tracing can be written

as a balanced stream program that effectively exploits computational and bandwidth

capacities of recent GPUs. Due to these reasons, OFB-based particle tracing allows us

to track millions of particles along velocity fields on surfaces interactively. Because of

the intermediate surface representation we choose, our method can not only be used for

the visualization of flow on polygonal surfaces but also for any arbitrary type of surface

that can be sampled.

Next to geometry-based flow visualization techniques, texture-based approaches

such as line integral convolution [28, 161] (LIC) are a well known class of algorithms

to reveal directional information in velocity fields. Sincethese techniques generate

a single, dense representation for the whole flow field, in 3D (unsteady) flows, they

are often restricted to arbitrary clip geometry positionedin the flow domain. While a

LIC representation can be pre-computed over the whole flow domain and resampled

on the respective surface during visualization, this approach is hardly suitable for an

interactive exploration of unsteady flow due to intense mermory access and numerical

8.2. CONTRIBUTION 153

operations during data generation. Image-based techniques [175, 98, 183] achieve inter-

activity by restricting the computation to the visible partof the surface. However, these

approaches tend to be prone to deliver artifacts for flow fields living on a surface due

to the following fact. Typically, line integral convolution works by smearing a random

intensity (or color) distribution along particle trajectories, resulting in a high correla-

tion among points on the surface residing on one characteristic trajectory. Image-based

approaches perform the line integration on the surface projected into screen space and,

thus, trajectories cannot be calculated correctly at silhouette boundaries or along edges

obstructing parts of the surface under the current view. By using our view-independent

data structure for particle tracing during LIC calculationthis problem can be solved.

Furthermore, by calculating LIC for every sample in the OFB and encoding it directly

in the data structure, a view-independent flow representation can be obtained interac-

tively.

8.2 Contribution

The primary focus of this chapter is the development of an efficient method for parti-

cle tracing on arbitrary (unstructured) surfaces. To achieve this, we introduce a spatial

data structure that stores a resampled version of the surface—the Orthogonal Fragment

Buffer (OFB). The OFB is conceptually similar to the LayeredDepth Cube (LDC)

introduced by Lischinski and Rappoport [106], which itselfbuilds on Layered Depth

Images (LDI) [155]. While an LDI captures all depth layers ofan object in the order

they are seen from one particular direction, an LDC capturesthese layers from three

mutually orthogonal directions, thus representing a surface point up to three times in

the data structure. In our approach, the sampling is also performed along sets of par-

allel rays emanating from mutually orthogonal uniform 2D grids. Along these rays,

however, only surface points with an angle less or equal to 45degrees between the sur-

face normal at this point and the ray direction are considered. In this way, redundant

sampling of the same point is avoided, and a quasi-uniform sampling with a maximum

distance foreshortening of1√
3

is generated. Hence, our data structure can be seen as a

redundance-free LDC.

Since the sampling can be performed by coordinate projections into uniform 2D

grids, the OFB can be seen as a hashing of surface points usingthe projections as hash

functions. Due to the underlying regular grid structure, this hashing maintains sample

coherence so that the OFB exhibits very good spatial access locality. However, since

the hashing maps multiple samples onto the same grid cell, itis not perfect. Specif-

154 CHAPTER 8. FLOW ON SURFACES

ically, it produces up tod collisions per sample, withd being the depth complexity

of the surface. Since the samples falling into the same cell can be sorted with respect

to their distance to the sampling grid, the computational complexity of finding an en-

try in the hash table isO(log2(d)). On the other hand, if the samples falling into the

same cell are not sorted, data-dependent memory access patterns—and memory laten-

cies thereof—can be avoided entirely. Therefore, depending on the efficiency of data

dependent memory access operations on the underlying hardware architecture, either a

sorted or an unsorted OFB can be chosen flexibly.

Next to the OFB’s advantages for GPU-based particle tracingdiscussed above, it is

also especially suited for graphics hardware due to the following reasons: If the under-

lying surface is given as a triangular mesh, OFB contructioncan exploit advanced fea-

tures of current GPUs—in combination with their rasterization capabilities—to create

even high-resolution surface representation for objects of reasonable depth complex-

ity within the fraction of a second. Furthermore, the OFB data interface exhibits not

only fast read but also efficient write access. Hence, it can be employed to access and

update surface attributes in real-time. This makes it not only possible to resample a

3D unsteady flow field onto arbitrary clip geometry interactively, but also to enrich the

appearance of an object during rendering by encoding the extracted flow representation

directly in the OFB data structure. We will exploit this factnot only to store a texture-

based flow visualization in the OFB, but also to improve the display of results extracted

with geometry-based techniques. Rendering geometric primitives on top of an object

often results in their (partial) obstruction by the underlying surface. E.g., unless the sur-

face is flat and oriented perpendicular to the view direction, virtual geometry [55, 90]

will intersect the object due to the screen-aligned nature of point sprites. Characteris-

tic lines, approximated by a discrete set of linear line segments, also suffer from this

problem. To solve these issues, we will present techniques that directly encode the ex-

tracted geometric flow representation in the OFB surface representation. Furthermore,

we will present an approach for particle-based color advection along the surface and

will exploit it to create various (artistic) flow representations.

Finally, let us note that surfaces do not need a parametrization (which is typical,

e.g., for surface attributes stored in 2D textures) to access information stored in an

OFB. This makes it even possible to employ our data structureto visualize flow on

dynamic surfaces changing their shape over time.

However, we should point out that our method is subject to typical limitations of

resampling approaches, such as the loss of detail caused by an under-sampling of the

surface or the blurring of sharp features like edges due to the regular sampling pattern.

8.3. THE ORTHOGONAL FRAGMENT BUFFER (OFB) 155

The rest of this chapter is organized as follows. In the next Section, we introduce

the OFB, describe its internal structure and show how GPU hardware can be exploited

to construct it interactively. Section 8.4 discusses particle tracing on the sample-based

data structure. Section 8.5 describes how the rendering quality of geometry-based flow

visualization techniques can be improved by encoding the extracted representations

in the OFB. In Section 8.5.1, we demonstrate how particle tracing can be employed

to construct surface-aligned (oriented) sprite patches. Section 8.6 introduces a view-

independent texture-based flow representation on the basisof the OFB. Finally, we

conclude this chapter with a summary of and discussion aboutlimitations of our work.

8.3 The Orthogonal Fragment Buffer

In an OFB, a surface is stored as a set of sampled surface points. Sampling is per-

formed along three mutually orthogonalsampling directionsby projecting the surface

orthographically along these directions into correspondingly alignedsampling planes.

Every plane is discretized by a sampling grid, and each grid cell stores the distance

to the sampling plane of the closest surface point projecting onto the cell center. In

addition to this distance, a vector field is stored. The vector field is either constructed

by sampling the velocity field of a surrounding 3D (unsteady)flow during OFB con-

struction, or it is given by a (normalized) vector field defined at the surface vertices.

While resampling a vector field into an OFB, we project it intothe local surface tangent

plane (as we want to visualize flow along the surface). The tangent plane is computed

from the interpolated surface normal, resulting in a smoothvariation of the plane across

the surface. Optionally, further space for additional attributes is reserved in the OFB,

which can be filled by a flow visualization technique.

Since along one sampling direction up tod surface points can fall into the same cell

(whered is the depth complexity of the surface), up tod distances might have to be

stored for each direction. Distances are sorted such that the ith distance is the distance

of the ith closest point to the sampling plane. Every surface point is projected only

once into the sampling plane with the smallest angle betweenthe surface normal at that

point and the sampling direction of the respective grid. In this way, redundant sampling

of the same point into multiple grids is avoided, and a nearlyuniform sampling with a

minimum and maximum sampling frequency of 1/(
√

3·s) and 1/s, respectively, across

the surface is generated (wheres is the size of an OFB cell). Figure 8.1 illustrates the

sampling strategy used to generate an OFB.

156 CHAPTER 8. FLOW ON SURFACES

Rasterizer Stage (RS)

Pixel Shader (PS)

Output Merger (OM)

Render

Target 0

Render

Target n

RS

PS

OM

RT

0

RT

n

RS

PS

OM

RT

0

RT

n

Geometry Shader (GS)

dx

dy

dz

(a) (b) (c)

Figure 8.1: OFB construction: (a) Surface points are projected along one of three mutually
orthogonal sampling directions. Surface points falling into the same grid cell are stored in
multiple sampling grids. (b) An OFB stores all sampling grids of the three sampling directions
in a single texture resource. (c) GPU pipeline setup: The geometry shader selects the target
sampling grid stack on a per-triangle basis and then rasterizes a triangle into all corresponding
slices. Stencil testing routes the surface sample into the next unoccupied sub-sample. Multiple
OFBs can be bound to the output merger stage to capture all surface attributes at once.

8.3.1 OFB Construction

Sampling the surface along a particular direction can be performed in many different

ways, e.g. by using ray-casting or rasterization. In this section, we demonstrate how

the sampling can be performed by rasterization on the GPU. Inparticular, we employ

stencil routing [132, 118] in combination with a novel geometry shader algorithm to

direct sampled surface points into the respective samplinggrids.

For single pass OFB construction on the GPU our method utilizes the geometry

shader and thek-buffer introduced by Myers and Bavoil [118]. Ak-buffer is a ren-

der target, i.e., a texture map that can keep the contributions of up tok fragments per

pixel instead of just one as in single-sample rendering. When rendering to a so-called

multisampled texture target with multisampled antialiasing being disabled, an incom-

ing fragment is spread to allk multisamples of the respective destination pixel in the

k-buffer. Since for each multisample a separate stencil maskis tested, stencil routing

as proposed by Purcell et al. [132] can be used to direct an incoming fragment to a

specific multisample. Stencil routing works by initializing the stencil mask of thei-th

multisample withi+1 (value 1 is used to detect an overflow), and by letting a fragment

pass the stencil test if the stencil mask is equal to 2. The stencil fail and pass operations

are set to “decrementing”, such that a stencil mask of 2 is consecutively obtained at all

multisamples.

8.3. THE ORTHOGONAL FRAGMENT BUFFER (OFB) 157

Via stencil routing up tok (=8 on our target graphics hardware) surface points seen

under a pixel can be rendered simultaneously into one texel of a multisampled render

target. Since multiple render targets can be used and because an 8 bit stencil buffer is

supported, surfaces with a depth complexity of up to 254 can be sampled in a single

rendering pass. An OFB finally consists of oneTexture2DArraycontaining three stacks

of multisampled texture slices, where each slice stores distances of surface samples to

the respective sampling planes. By using this approach, an OFB can be built at extreme

resolution within a fraction of a second for surfaces of reasonable depth complexity.

To efficiently sample the surface along three mutually orthogonal directions, we

exploit the capability of the geometry shader to direct its output to multiple render

pipelines, each having its own depth, stencil and multiple color buffers. Every surface

triangle is projected and rasterized only into the most appropriate sampling grid de-

pending on its normal. Assuming the surface being represented as a triangle mesh with

depth complexitiesdx,dy,dz along thex,y,z-coordinate axes, the following GPU setup

is used to construct the OFB:

• Pipeline Setup:T = ⌈dx
k ⌉+ ⌈

dy
k ⌉+ ⌈

dz
k ⌉ render pipelines are bound to the output

merger stage. To each of these pipelinesk-times multisampled render targets are

attached. Contiguous sets of⌈dx
k ⌉, ⌈

dy
k ⌉, and⌈dz

k ⌉ pipelines are used to perform

the sampling along thex-, y-, andz-direction, respectively. In each set, all sub-

samples in the⌈di
k ⌉ (i = x∨y∨z) multisampled 2D texture slices residing on the

same pixel raster position get assigned a unique (increasing) stencil value> 1.

• Geometry Shader Setup:For every triangle, its face normal is computed and the

triangle is directed into those pipelines that belong to thesampling direction with

the smallest angle to the normal. Before triangles are sent to a pipeline, they are

transformed according to the respective sampling direction, i.e. they are projected

into a 2D sampling plane aligned perpendicular to this direction.

• Pixel Shader Setup: The pixel shader outputs the fragments’ depth as well as

additionally queried attributes (e.g. the velocity field) into the multisampled ren-

der targets. With stencil testing activated and configured as described above, the

output merger then stores the attributes in the next unoccupied sub-sample of the

output buffers and decrements the stencil bits of all sub-samples in the respective

pixel.

To store surface point positions and corresponding attributes (e.g. vector field sam-

ples), multiple OFBs are used. In DirectX 10, up to 8 buffers—each with 4 32bit chan-

158 CHAPTER 8. FLOW ON SURFACES

nels at most—can be bound as output targets to a pixel shader,enabling to capture up

to 128 bytes of surface attribute data at once. Each OFB is initialized at startup or when

the surface geometry is changed. The position OFB stores forevery sample its distance

to the corresponding sampling plane. It should finally be noted that the OFB samples

can be sorted with respect to their distance to the sampling plane [118]. Especially for

objects having large depth complexity this can significantly improve the complexity of

the OFB read-operation, from linear to logarithmic in the surface’s depth complexity.

8.3.2 OFB Point Location

The OFB interface provides the following method for locating a surface point in the

data structure. The method takes as input a 3D position(x,y,z) in normalized object

coordinates and tests whether a corresponding sample is stored in the OFB. To find

this sample, the point coordinate is projected into the three OFB sampling planes. This

generates for the respective sampling grids a 2D integer coordinate(u,v) and a distance

d of the point to the sampling plane. If the sampling directions are aligned with the

three coordinate axes the projection reduces to a componentselection, i.e., in the z-

direction(u,v) = (⌊x·S⌋,⌊y·S⌋) andd = z, whereS is the OFB grid size. The distance

d is now compared to all distances stored at index(u,v), and of all these values the

indexg of the slice containing the distance closest tod within the interval[d−s,d+s]

is kept (withsbeing the cell size in the sampling grid). If the point is associated with a

surface normal the search can be restricted to the sampling grid whose sampling plane

is most perpendicular to the respective normal. The method finally returns the index

tuple I = (u,v,g), which can then be used to read a velocity field vector from theOFB

or to write an attribute into it.

8.3.3 OFB Rendering

Enhancing a surface with attributes (like color) stored in an OFB during rendering

means to interpret the OFB as a texture consisting of severallayers and fetching for

every rendered surface point the color from this texture. This is realized by executing

for every rendered surface point an OFB query as described above. The color at this

sample is then read and used to modulate the point’s appearance. To support smooth

color variations, the OFB interface provides distance-weighted color interpolation. If

a surface is rendered at a resolution that is higher than the resolution of the OFB, for

every surface point an OFB query is issued. In contrast to finding the closest sample,

however, all samples within a radius of
√

3 times the size of a cell in the OFB grid are

8.4. PARTICLE TRACING ON SURFACES 159

determined under all three projections. In each projectionwe also inspect the distance

values in all grid cells adjacent to the cell(u,v). The color of a surface point is then

computed from these samples by means of inverse distance weighting.

By using this interpolation scheme we can also generate an OFB mipmap hierarchy

to resolve minification issues. Therefore, multiple OFBs atever decreasing resolution

are constructed by subsequently reducing the resolution ofthe sampling grids about a

factor of 2 in every dimension. Starting with the initial OFBat the finest resolution, the

color of a sample at subsequent levels is computed by distance-based interpolation, with

the color samples being fetched from the next finer level. In this way a stack of OFBs

is generated, from which the appropriate resolution can be chosen during rendering.

8.4 Particle Tracing on Surfaces

To trace a particle on the surface, we compute its trajectoryaccording to the ordinary

differential equation given in (2.1). In principle, it is clear how to perform particle

tracing on polygonal surfaces consisting of triangles [75,161, 120, 79]. Particles are

traced from edge to edge by projecting the vector field onto the triangle plane and

performing the particle integration in this plane. Although this approach can be realized

in a straightforward way on the CPU, it imposes severe limitations on the number of

particles that can be moved at interactive rates. Specifically, our tests have shown that

not more than 10K particles per second can be integrated in one step on a triangle

surface of reasonable resolution. In contrast, as we will show in the remainder of this

chapter, the proposed particle tracing algorithm can tracemillions of particles in high-

resolution OFBs.

The GPU implementation of particle tracing on a triangle mesh, on the other hand,

yields a highly non-uniform load in the parallel shader units performing the particle

integration. While for a given (global) integration step size some units have to integrate

over many triangles in one integration step, only one triangle might be considered by

other units. On recent GPUs, this results in execution stalls and, thus, in a significant

loss of performance. This limitation can be avoided by tracing particles on the sample-

based surface representation stored in an OFB. Since the OFBrepresents the surface at

a nearly uniform resolution on a regular sampling grid, every unit performs a similar

amount of memory accesses and numerical operations.

Particle trajectories along the OFB surface representation are calculated on the basis

of the classical Euler integration scheme with a fixed step size ∆s. In each advection

step, the OFB sample closest to the current particle position is located as described in

160 CHAPTER 8. FLOW ON SURFACES

Section 8.3.2. To prevent a particle from leaving the sampled surface representation, its

position is set to the position of this sample. The index of this sample is used to read

the respective vector field sample, along which the particleis then moved to its new

position. A step along the surface is performed by first projecting the current vector

sample into the three sampling planes. This gives for each plane a 2D vector(tu, tv)

in this plane. By using these vectors and the projections of the particle position into

the respective grids, we can now determine the grid cells in each grid into which the

particle might be entering when making a step that is equal tothe cell size. In all of

these cells we determine the sample closest to the new particle position, and we set the

new particle position to the position of this sample. Overall, given the index tupleI of

a particlex in the OFB, in every iteration the following steps are performed:

• Vector lookup: The vector samplev is read from the indexI in the OFB.

• Projection: v is projected into the three sampling grids.

• Integration : Discrete cell traversal in the sampling grids along the projected vec-

tor sample and closest point location in the traversed cellsyields the indexI ′ of

the OFB sample closest tox.

• Update: I is set toI ′ and the new particle position is determined by an inverse

transformation of (the grid coordinates of and the distancevalue stored at)I ′ into

object-space coordinates.

Let us note that it is clear that the accuracy of the proposed particle tracing method

is limited due to the sample-based surface representation that is used. Since the particle

positions are restricted to the OFB samples, they will in general not accurately follow

the characteristic lines in a given vector field. However, due to the extreme OFB res-

olution that can be used interactively, the trajectories reconstructed by means of our

method match those extracted with a triangle-based approach at high fidelity. Further-

more, the described setup assumed a normalized velocity field on the surface and, thus,

performed only one (uniform) integration step per advection update. If no normalized

velocity field is used, different particles require varyingamounts of integration steps

(as the step size is restricted to the size of the OFB samplinggrid cell s). However due

to the uniform sampling approach, the point location requires less effort and exhibits

very good spatial access locality. Furthermore, the difference in performed integration

steps varies by far less than compared to unstructured grids.

8.5. GEOMETRY-BASED SURFACE FLOW VISUALIZATION 161

8.5 Geometry-based Surface Flow Visualization

By adapting the particle tracing techniques introduced in Chapter 4 accordingly, a mul-

titude of different rendering modalities can be applied to visualize flow on surfaces.

Some exemplary results are shown in Figure 8.2.

Figure 8.2: Geometry-based surface flow visualization: Image (a) depicts different rendering
modalities for particle trajectories. From top to bottom: Streamlines, single points, sprites,
oriented sprites. In (b) a surface curvature field is visualized by uniformly distributed, oriented
particle sprites. Image (c) depicts surface flow in a synthetic velocity vector field.

8.5.1 OFB Surface Coloring

Next to the OFBs storing the resampled surface position, arbitrary surface attributes

(besides the velocity vector field) can be stored in the data structure. By introducing

an additional color OFB, we can encode the geometry-based flow visualization directly

in the OFB. While particles travel along the surface, they can write attributes back into

the OFB, and we exploit this fact to realize advanced (or moreartistic) visualization

modalities, as well as to solve problems inherent to surfaceflow visualization on the

basis of (discretized) geometric primitives.

162 CHAPTER 8. FLOW ON SURFACES

Spherical Particles

Instead of writing a single value into (one pixel at) the respective OFB position at index

I , it has proven worthwhile to transfer color through footprints of enlarged extent. In

the most simple case, a spherical volume centered at a particle’s position is used to

transfer color to the OFB. In this case, OFB samples closer tothe particle positionx
than a selected sphere radiusr get inked by a colorcx (specified on a per-particle basis).

The color of a sample at positionp is updated according to

cp = lerp(cp,cx,g), (8.1)

where the spherical brush shapeg evaluates to

g=







0, if ‖x−p‖ > r

f (‖x−p‖) , else.
(8.2)

Here f is a user-defined falloff function which is used to simulate smooth color fading

with increasing distance to the center point.

It is clear that when a particle uses a volumetric brush to transfer color to the OFB,

not every sample in the data structure should be tested for inclusion in the brush volume.

Thus, a method for reducing the number of potential candidates to be tested is required.

Therefore, we exploit the fact that the OFB structure was built by sampling the surface

along three mutually orthogonal directions. As a consequence, of all samples only those

have to be tested whose projections along these directions fall into the regions covered

by the projected bounding box of the spherical brush volume.We use a geometry

shader to efficiently determine all potential candidates per particle, and then perform

the candidate tests in parallel in a pixel shader kernel.

Each particle is sent as single vertex to the GPU and passed tothe geometry shader.

The geometry shader spawns three quadrilaterals from this vertex, each of which is

aligned to one of the three sampling directions and renderedinto all slices of the cor-

responding OFB sampling grids. The size of these quadrilateral is chosen according to

the current extent of the spherical color footprint. For every generated fragment, a pixel

shader queries the corresponding sample in the OFB samplinggrid slice and computes

the distance of this sample to the brush center. Whenever a sample is closer to the

center than the brush extent, the shader evaluates equation8.1 and writes the color into

the OFB. This allows us to apply advanced rendering techniques even while thousands

of particles move along the surface in parallel and transfercolor to the OFB surface

representation.

8.5. GEOMETRY-BASED SURFACE FLOW VISUALIZATION 163

By resetting the color OFB in every frame, the obtained results correspond to spher-

ical particle sprites without the problem of an obstructionof a sprite’s quadrilateral by

the surface geometry. This issue can otherwise only be solved by aligning sprite geome-

try along the underlying surface. By chaining multiple particles together we can realize

advanced shapes which would be difficult to realize otherwise. E.g., in Figure 8.3 (a) at

randomly selected sample points along the surface a sequence of particles was seeded

consecutively. The later a particle was released, the smaller is the assigned extent of its

color footprint. By moving all particles along the vector field direction, the impression

of moving particles with a tail is simulated.

Figure 8.3: Attribute advection in the OFB. Image (a) depicts advanced particle shapes real-
ized by chains of particles released consecutively from random sample positions. In (b) particles
travel along the surface and transfer color at a fixed temporal frequency into the OFB. In im-
age (c) surface normals are modulated along stream line trajectories. In (d), surface flow is
visualized by color advection along the velocity vector field on a transparent object.

By retaining the change in OFB color over time, characteristic trajectories can be

visualized efficiently through color advection along the surface. Stream lines in a vector

field designed on a polygonal surface are shown in Figure 8.3(b). In this example, 10K

particles were simultaneously traced on the surface, each of them spreading a spherical

color footprint to the surface. Despite the large amount of particles used, particle advec-

tion and coloring was performed at 80 fps on an NVIDIA 8800GTXGPU. Let us note

that the storage of intermediate positions along the trajectory in additional resources—

as described in Section 4.7—becomes superfluous, as the characteristic lines are di-

rectly encoded in the color OFB. Extending color transfer byopacity or adding addi-

tional surface attributes (such as normal perturbations) makes it possible to realize even

164 CHAPTER 8. FLOW ON SURFACES

more artistic flow visualization. E.g., in Figure 8.3 (d) thesurface flow was visualized

by revealing an initially transparent surface through color advection along the velocity

vector field, and in 8.3 (c) surface normals were perturbed along trajectories in a surface

flow field. Let us note that these examples do not contribute toa better understanding

of the underlying flow phenomena. These techniques were developed in the course of

this dissertation with respect to particle-based creationof artistic content, and published

in [26].

Surface-aligned Point Sprites

As a spherical volume brush model considers the Euclidean distance to the particle

position, surface points having a geodesic distance to the center that is larger thanr may

also be colored. Furthermore, shapes of more complex particle glyphs (such as oriented

virtual geometry like arrows) can hardly be realized by spherical particle brushes. To

overcome these limitations, we will introduce an alternative approach in the following.

For flow on surfaces, the proxy geometry of an (oriented) point sprite should ide-

ally be modeled as a deformable sheet that wraps around the surface. We call this

approach a surface sprite, and we model it by a polygonal meshconsisting of surface

samples connected via edges. Such a mesh is constructed withthe help of particle trac-

ing along the surface. To avoid confusion, in the following we will call particles that

are advected along the surface flow as part of a geometry-based flow representation

flow-particles, while particles used to construct the surface aligned meshwill be de-

notedmesh-particles. Mapping the mesh onto a surface is done by tracing out a set of

mesh-particlesfrom aflow-particleposition, which essentially corresponds to finding

a local parametrization of the surface area surrounding this point.

Our method is similar in spirit to the patchinos and the exponential maps, which

were introduced for decal painting by Pedersen [124] and Schmidt et al. [149], respec-

tively. The patchinos, however, require a global parametrization of the base mesh. In

contrast to exponential maps, on the other hand, we trace geodesics on the surface—or

more precisely on a sampled version of the surface—instead of developing the surface

to the tangent plane around a center point. Thus, the local parametrization we construct

is completely independent of the underlying mesh resolution.

To align a point sprite on the surface, we first construct a local coordinate frame on

the basis of the flow field. It is built from the velocity vectorat the respective flow-

particle position (the tangentv), the surface normaln, and the vector perpendicular

to both (the bi-normalb = v×n). Constructing a local parametrization now starts by

seeding two mesh-particles at the flow-particle position and tracing them along the

8.5. GEOMETRY-BASED SURFACE FLOW VISUALIZATION 165

surface. One of them is traced in the direction of the tangentvector and the other one is

traced in the opposite direction. Since along these traces the tangent varies according

to the change in the surface normal (see Figure 8.4), it is corrected in every stepi as

vi = ‖ni− (ni ·bi−1)bi−1‖×bi−1.

In this way the trace wraps around the surface even in regionswith high curvature.

ni-1

vi-1

vi-1

vi

ni

α
α

Figure 8.4: Left: The direction vectorv is rotated byα degrees about the bi-normal, whereα is
the angle between the current normalni and the normalni−1 at the previous mesh-particle po-
sition in the plane perpendicular to the bi-normal. Middle:Surface-aligned point sprite meshes
rendered as wire-frame. Here, rather large sprites were used to demonstrate the folding of the
brush meshes along the surface. Right: The advantages of surface-aligned sprites (green) to
screen-aligned oriented point sprites (red) are shown. As can be seen, the (partial) obstruction
of point sprites due to surface intersection can be solved.

After n steps, a polyline consisting of(2 ·n) line segments is generated. From ev-

ery mesh-particle on this line two new traces are started; one into the direction of the

bi-normal and another one into the opposite direction. After m traces a 2D grid con-

sisting of(2 · n+1) · (2 ·m+1) particles has been laid out on the surface around the

center point. We employ the geometry shader in combination with the stream output

stage to construct the surface sprite meshes. During rendering, adjacent particles in the

grid are finally connected with the help of one static index buffer (used by all surface

sprites) to form a triangle mesh, yielding the local parametrization used to map colors

of a surface sprite to the object. The triangle mesh can be texture mapped by specifying

texture coordinates at the mesh-particles used to construct the mesh. The texture color

can be transferred to the OFB by rendering every mesh triangle into the sampling grid

slices corresponding to the sampling plane with the smallest area foreshortening, and

writing the color of every fragment into the OFB as describedin Section 8.3.2. Alter-

natively, the surfaces-aligned sprites can be rendered directly into the frame buffer. In

Figure 8.4 (right), the advantage of surface-aligned sprites in contrast to screen aligned

point sprites is shown.

166 CHAPTER 8. FLOW ON SURFACES

8.6 Texture-based Surface Flow Visualization

Line integral convolution [28, 161] is the most popular texture-based flow visualiza-

tion technique used to create a dense representation conveying directional information

about the underlying velocity vector field. This technique is based on particle trajecto-

ries (namely path lines), yet, instead of extracting separate trajectories and visualizing

them through geometric primitives, LIC works by smearing a random noise intensity

distribution along the characteristic lines. This resultsin a high intensity correlation

along characteristic lines and high noise frequencies perpendicular to each characteris-

tic line. LIC has been used in a number of approaches to interactively visualize vector

fields given on a surface [175, 98, 183]. These approaches, however, differ signifi-

cantly from ours in that they operate on the visible surface points in image-space. If

these techniques are used to visualize flow fields living on a surface, they result in arti-

facts as they cannot determine the points along a trajectorythat are not visible under the

current view. If, on the other hand, particle tracing on the view-independent OFB sur-

face representation is performed, this problem can be solved and, thus, frame-to-frame

coherence in animated visualizations is assured.

Imagine a random noise intensity distribution over the whole flow domain, i.e. at

each point on a given object for surface flow or at each sample position in the flow do-

main for clip surfaces in 3D flow. LIC now determines the intensity at a every sample

x0 in space and timet0 by stepping along the characteristic line—in both directions—

passing through that point and accumulating intensity values weighted by a filter kernel.

Mathematically, this can be posed as the convolution of a color functionC and a con-

volution kernelk along the characteristic lines:

Color=

∫ L
−LC(x(t, t0,x0)) ·k(t)dt

∫ L
−L k(t)dt

, (8.3)

where[−L,L] defines the support of the convolution kernel, andk(t) is the filter ker-

nel. Generally, a symmetric filter, e.g. box or tent function, is used. In our setting, a

line integral convolution is computed at every OFB sample and the output values are

written back into the OFB. LIC calculation is performed in the pixel shader stage, and

the necessary samples are created by rendering the surface mesh in the same way as for

OFB construction (see Section 8.3.1). The convolution is then realized by spawning at

every sample two particles, of which one is moved for some distance along its trajec-

tory and the other one moves the same distance in reversed time. While moving along

the surface, the particles read values from the random intensity/color distribution at the

8.6. TEXTURE-BASED SURFACE FLOW VISUALIZATION 167

current position and weight this color with the kernel function. Combining the accu-

mulated color values from both particles yields the output value. Let us note that if LIC

is extracted in 3D and only its computation and subsequent visualization is restricted

to a clip surface, then particle tracing is performed in the 3D unsteady flow field (and

therefore no velocity vector field OFB is needed). In Figure 8.5 (a–c) LIC for synthetic

velocity fields living on a surface is shown, and Figure 8.5 (d) depicts LIC in a 3D flow

field restricted to clip geometry.

Figure 8.5: Images (a–c) depict LIC extracted from synthetic velocity fields defined on a sur-
face. In (a) a comparison between the application of a randomintensity distribution (left) to a
color distribution (right) during LIC extraction is shown.(b) Surface sprites reveal additional in-
formation about the velocity direction and magnitude. In (c) oriented point sprites of elongated
cylindrical shape were rendered on top of the surface. Image(e) depicts 3D LIC in unsteady
flow restricted to a 2D clip surface.

168 CHAPTER 8. FLOW ON SURFACES

To create the texture based flow representation in Figure 8.5(a) an OFB with a

sampling grid resolution of 1K×1K, containing more than three million surface sam-

ples was employed. During LIC computation, at each sample 20integration steps were

performed to collect intensity values along the trajectory, whereas the whole visual-

ization took less than 270 ms including LIC extraction, color transfer to the OFB and

subsequent rendering. Thus, the performance even allows toanimate surface LIC by

computing the convolution in every frame along stream linesin unsteady flow.

8.7 Summary

In this chapter we have presented particle-based techniques for the visualization of flow

on surfaces. These techniques employ a new sample-based data structure to trace even

millions of particles along arbitrary surfaces at interactive rates. We have shown how

previously introduced geometry-based approaches can directly be employed by adapt-

ing the underlying particle integration algorithm to the sample-based data structure.

Furthermore, we have shown how the OFB can be employed to solve common render-

ing issues inherent to geometry-based surface flow visualization techniques. Moreover,

we have used the OFB to interactively extract a view-independent, texture-based flow

representation on the basis of line integral convolution.

Let us note that the proposed methods may deliver erroneous results because of the

sample-based nature of our data structure. However, due to the extreme OFB resam-

pling resolution that can be used, we could not assess any difference in the resulting

renderings in comparison to results obtained by particle tracing on a triangular surface

representation. Yet, the proposed techniques run at interactive rates and can provide

rapid visual feedback. Thus, they allow for an effective visual exploration of surface

flow or to restrict the visualization of 3D unsteady flow to arbitrarily shaped clip sur-

faces.

Finally, let us note that the approaches presented in this chapter were developed

as part of a new surface coloring technique and, thus, not alltopics of the publication

were covered. For interested readers, we refer to [26], where even more surface color-

ing techniques are presented and a detailed description of various filtering approaches

improving the quality of renderings obtained from the OFB isgiven.

Chapter 9

Particle-based Volume Editing

So far, we have discussed GPU-based particle techniques in the context of interactive

flow visualization. In addition, particle-based techniques often play a fundamental role

in other scientific visualization or computer graphics related areas. In the following we

will present an example how GPU accelerated particle tracing—or the massive parallel

processing power of recent GPUs in general—can be employed in the field of scien-

tific volume rendering to augment data sets in real-time. In (human) medicine, volume

rendering has become an integral technique for diagnostics, fundamental research or

even the education of prospective physicians. Especially in peer group consultation or

round table discussions, there is a dire need for intuitive metaphors to communicate

insight gained from such data sets. In this chapter, we address this issue by introducing

basic methodology for interactive GPU-based volume editing and enhancement. Here,

we aim at developing a framework exhibiting similar functionality to current image

processing tools to support scientists to communicate findings and to ease process-

ing work inherent to such data (like classification and segmentation). We present fast

techniques to modify the appearance and structure of volumetric scalar fields given on

cartesian grids. Similar to 2D circular brushes as used in surface painting we present 3D

spherical brushes for intuitive coloring of particular structures in such fields. This paint

metaphor is extended to allow the user to change the data itself, and the use of this func-

tionality for interactive structure isolation, hole filling, and artefact removal is demon-

strated. Building on previous work in the field, we introducehigh-resolution selection

volumes—which can be seen as a resolution-based focus+context metaphor—and we

utilize such volumes for interactive volume editing at sub-voxel accuracy. We intro-

duce an approach based on particle tracing to place internalannotations on extracted

iso-surfaces, and we extend this techniques to realize surface aligned cutaway-views

that can effectively reveal internal surface structures.

169

170 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

9.1 Introduction and Related Work

Interactive visual exploration of volumetric scalar fieldsis required in many different

areas ranging from medicine and engineering to physics and biology. To support the

exploration task, volume rendering techniques have been developed to a high degree of

sophistication over the last decade. Today, direct volume rendering of data sets as large

as 5123 and beyond is possible at fully interactive rates on commodity desktop systems,

and especially due to the rapid advancements in graphics hardware technology, these

capabilities are continually increasing.

Volume rendering is a powerful means for visualizing 3D scalar fields, and espe-

cially if used in combination with semi-automatic transferfunctions and different ren-

dering styles does it allow for an effective visual communication of complex structures

in such fields and relationships between them. To improve theanalysis process in prac-

tical applications, however, it is often desired to not onlyrender the data but also to

interactively edit this data. Examples thereof include themanual classification and seg-

mentation of structures, the removal of structures to uncover regions of interest and,

thus, to isolate important parts of the data, or the coloringof parts to emphasize rele-

vant structures and to give extra information about them. Such mechanisms can help to

effectively reveal and communicate the relevant information in 3D scalar fields and to

create images that are easy to understand even by an unexperienced user.

Today, the core functionality that is required to support the aforementioned mech-

anisms is available on recent GPUs. Specifically, it is now possible to directly write

into 3D textures on the GPU, and to efficiently apply local operations on the data stored

in these textures, such as filtering or gradient computation. Thus, the time is ripe for

opening a new area in volume visualization, which is concerned with the development

of techniques for interactive volume editing. One of the research challenges here is to

develop novel algorithms that are tailored to the specific GPU functionality, and which

can directly be incorporated into interactive volume rendering tools to enable immedi-

ate visual feedback.

The approaches presented in the following were motivated bya number of differ-

entvolume illustration techniquesthat have been proposed over the last decade. Many

of these techniques have been integrated into GPU-based volume rendering systems

to achieve interactive user-control. Interrante et al. [67, 66] used curvature-directed

strokes and dense sets of integral curves to convey surface shape. A general volume il-

lustration rendering pipeline to enhance important features and regions was proposed by

Ebert and Rheingans [38]. Viola et al. [180] suggested importance driven volume ren-

9.2. CONTRIBUTION 171

dering to highlight interesting structures in volume data based on user-selected object

importance. Different rendering styles including point stippling [109, 93], temporal do-

main enhancement [110], 2D texture synthesis on cross-sections of a volumetric model

[121], and volumetric halos to improve depth perception of 3D structures [18] have

been used to enhance the expressiveness of volume visualizations. A new approach

that uses the shape of the object to be illustrated to controlits rendering styles, and

which also allows to adapt the objects shape to a given curve skeleton, was presented

in [30].

Especially if used in combination with focus+context techniques to combine mul-

tiple aspects of the data into a single visual event [179, 63,16, 91, 17], illustrative

volume rendering has been shown to be very effective in communicating the essential

information in complex volumetric data sets. An interactive system providing a tool-

box of automatic illustration methods as well as focus+context mechanisms to enable

selective exploration of volume data was presented by Bruckner et al. [19]. In particu-

lar, they introduced external, screen-space aligned annotations to add extra information

about particular structures and selection volumes to locally modulate the appearance

of a volume. Our work builds on these mechanisms and extends them towards a more

general use for volume illustration.

Figure 9.1: A volume editing session. From left to right: an iso-surfacein the initial data set,
structures are removed, surface color is applied, annotations are added. The rightmost image is
taken from the classical anatomy book “Gray’s Anatomy” by Henry Gray [53] for comparison.

9.2 Contribution

The primary focus of this chapter is the development of fast and flexible methods for

user-guided volume editing, such as coloring, erasing, pasting, segmentation, and an-

notation. Our goal is to realize a volume processing tool exhibiting similar function-

ality to current image processing tools, which allow the user to interactively perform

172 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

a multitude of image adjustments and enhancements. To achieve interactivity, all of

the algorithms proposed in the following run entirely on theGPU, and they have been

integrated into a GPU-based volume ray-caster to provide immediate visual feedback.

We introduce some novel ways to leverage advanced GPU functionality like geome-

try shaders and the possibility to directly render into 3D textures, and we effectively

exploit computational and bandwidth capacities on recent GPUs. Therefore, all of the

editing operations demonstrated throughout this chapter were executed at frame rates

of 50 fps and higher. Thus, a framework for visibility-guided interactive volume editing

is presented.

Some of the editing techniques we introduce can effectivelybe used for volume

illustration, where the basic goal is to enhance the perception of structures in the data

and the relationships between them by emphasizing important features. In particular,

we extend the work on direct volume illustration by Brucknerand Gröller [19], in

that we provide a technique based on particle-tracing in a gradient field to annotate

structures in a volume data set.

We make the following specific contributions:

• We present an efficient GPU realization of the volume painting method proposed

by Bruckner and Gröller [19], and we demonstrate the use of this method for

interactive volume coloring as well as structure elimination and enhancement.

This method was used in Figures 9.1 to color an iso-surface, to erase parts of it

and to add additional structures to it.

• We extend the idea of selection volumes and present a volumeediting technique

that is independent of the volume resolution. It edits on a high-resolution selection

volume and can, therefore, be used to apply editing effects at sub-voxel accuracy.

Figure 9.4 (c) demonstrates editing effects on an iso-surface in the initial volume

and a high-resolution selection volume.

• We introducesurface particlesto compute a local iso-surface parametrization.

By using such particles, 2D textures can be mapped onto an iso-surface. This

allows to generate internal annotations that are aligned with an iso-surface, and

which can effectively be used to give additional information about areal structures

visible in the current view. Figure 9.7 depicts two classified iso-surfaces which

are enhanced by surface-aligned annotations.

• Building on the concept of surface particles, we present surface-aligned “see-

through” textures to generate windowed cutaways on iso-surfaces in 3D scalar

9.3. VOLUME EDITING 173

fields. By using such textures, occlusions can effectively be reduced and impor-

tant internal parts of a volume can be exposed. This method was used in Figure 9.8

to interactively generate cutaway views in the respective data sets.

The remainder of this chapter is organized as follows. Our proposed volume editing

technique and its efficient realization on recent GPUs is presented in Section 9.3. In

Section 9.4 we present high-resolution selection volumes and demonstrate their use for

sub-voxel accurate volume editing. Section 9.5 introducesparticle tracing along iso-

surfaces with respect to a user defined force and the gradientfield of the underlying

scalar volume to create structure-aligned textures for volume augmentation and anno-

tation. We conclude this chapter with a discussion of the advantages and limitations of

our work.

9.3 Volume Editing

The specification of appearance properties of volume data istypically performed via

color transfer functions. Based on the seminal work by Kindlemann and Durkin [76]

on the design of feature-specific transfer functions that can be derived automatically

from a data classification using first- and higher-order statistics, such approaches have

now been developed to a high degree of sophistication. Nevertheless, automated clas-

sification of volumes remains a challenging task, and semi-automatic techniques which

allow the user to interactively guide the classification process often result in a more ac-

curate assignment of appearance properties. Examples thereof include the user-guided

selection of seed voxels to initialize automated region-growing [87] or more sophisti-

cated segmentation algorithms like the random walker [52],the dual-domain approach

of Kniss et al. [82, 81], or the machine-learning approach byTzeng et al. [168], where

a transfer function is iteratively refined from user-definedsegmentations in 2D volume

slices.

To support semi-automatic classification and segmentationof 3D volume data we

now describe an interactive technique for voxel coloring. This technique works in the

3D domain, and it thus allows the user to consider the 3D shapeof the structures to be

colored as well as the spatial relationships between them. Figure 9.2 (c) demonstrates

the application of this approach for the classification of a human skull. The proposed

technique has been integrated into a GPU-based volume ray-caster, enabling the user to

obtain immediate visual feedback about the result of the issued operations. Later in the

text we show how to overcome the restriction of volume coloring to the initial volume

resolution by exploiting selection volumes for coloring atsub-voxel accuracy.

174 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

9.3.1 3D Texture Painting

Initially, a 3D scalar field of sizeTx,Ty,Tz is loaded into a 3D texture—the source

texture—on the GPU. Scalar values are mapped to color and opacity via a selected

transfer function. If the user only wants to paint on an iso-surface in the scalar field, a

one component 3D texture is used instead of a RGBA texture. Coloring always works

on an additional 3D texture—the color texture—on the GPU, into which the user paints

with the selected color. In iso-surface coloring this texture is initialized with a constant

material color, otherwise it is initialized with the sourcecolor values. Working on such

a copy allows for a special paint mode in which the paint operation resets the color by

copying respective values from the source texture. In iso-surface painting, colors are

reset by zeroing.

The 3D color texture is rendered using texture-based volumeray-casting [92], i.e.,

by sampling the texture along the rays of sight and by blending color and opacity con-

tributions according to the selected blend equation. In iso-surface rendering, sampling

is performed in the scalar source texture. Once the iso-surface is hit along a ray, the

surface normal at this position is fetched from a pre-computed gradient volume and a

local lighting model is evaluated. In this model, the color at the sample position in the

color texture is used as material color.

Upon initialization, the user starts painting the volume with a virtual brush. To

position the brush in 3D space we either use a simple mouse-based interface or a six

degree-of-freedom input device, i.e., a PHANToM Desktop Device Premium 1 from

Sensable Technologies. This also allows us to give haptic feedback to the user, e.g.,

while painting on an iso-surface we use the force feedback toindicate whether the brush

touches the surface. To detect a contact between a surface and the brush we simply test

the brush center point for being in close proximity to the surface, i.e., by sampling the

volume at this point and testing whether the value is closer to the iso-value than a given

tolerance. If this is the case, force feedback along the inverse gradient direction at this

point is issued.

In our work we use a spherical volume brush for painting, which means that voxels

closer to the brush center point than the selected sphere radius are painted with the

current paint color. To manipulate the color of a voxel at position q, indicated by

Colorq, we use the paint equation proposed in [159, 59]:

Colorq = lerp(Colorb OP Colorq,Colorq,g), (9.1)

The brush shapeg is set such that a spherical color falloff with increasing distance

9.3. VOLUME EDITING 175

to the brush center point is simulated:

g=







0, if |q−p| > r

f (|q−p|) else.
(9.2)

Here,OP is one of a number of operations like REPLACE, ADD, or BLEND, which

can be selected to modulate the initial volume color,p is the position of the center point,

Colorb is the brush color, andr is the support of a user-defined falloff functionf , which

is used to simulate smooth color fading.

When using a volume brush to color a volume data set, the colorof every voxel

contained in the brush volume has to be updated according to the selected color modu-

lation function. In principle, the color update can be performed on the CPU, requiring

the modulated texture to be reloaded onto the GPU. Even if it is possible to only re-

place those parts of the GPU texture that were affected by thecoloring operation, this

strategy still results in significant bandwidth requirements due to frequent data uploads

to the GPU in the course of painting. To overcome this limitation, we propose a novel

technique—similar to the approach presented in Section 8.5.1—that runs entirely on

the GPU and minimizes CPU-GPU data transfer.

y0

y1

x0 x1nx

ny

nz

zs

GPU

IA

VS

GS

zs zs+1 zs+nz-1

PS

zs

zs+nz-1

(c)(a) (b)

Figure 9.2: Volume editing with a spherical volume brush. Image (a) depicts a spherical brush
(red) positioned in the volume domain, and (b) illustrates the pipeline setup for painting into a
3D texture on the GPU. A single vertex is issued by the application program, and it is duplicated
by the input assembler. In the geometry shader, every point is amplified to one quadrilateral,
which in turn is sent to the rasterizer. The rasterizer uses slice IDs to route generated fragments
into corresponding 3D texture slices. In the pixel shader the fragments are colored with respect
to the selected modulation function. In (c) an iso-surface classified with our method is shown.

176 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

9.3.2 GPU Implementation

To efficiently update 3D texture elements that are affected by a coloring operation, we

exploit novel features of current Direct3D 10 class graphics hardware. Specifically, we

use the geometry shader to create geometry on the GPU, we employ new functionality

to update slices of a 3D texture directly on the GPU, and we utilize instanced render

calls to reduce the number of calls that have to be issued fromthe application program.

In Figure 9.2 an overview of the pipeline setup for renderinginto a 3D texture is shown.

Before the painting process is started, the user selects thespecific brush parameters

including the cutoff radiusr used in Equation 9.2. From this radius the extend of the

brush bounding box in local texture coordinate space is computed, yielding the size

nx×ny×nz of the sub-volume that is affected by the coloring operation. These values

are computed on the CPU and sent to the GPU as constant shader variables. To compute

the position of the brush center pointpc in local texture coordinates in the range [0,1],

we either use the coordinate returned by the 3D input device,or, in iso-surface painting,

it can also be determined from the z-buffer depth value in thepixel under the mouse

cursor.

The application program then renders into a viewport of sizeTx,Ty. A single vertex—

with a coordinate equal topc scaled byTx,Ty,Tz—is sent to the GPU, where it is ren-

dered as instanced geometry with instance countnz. This causes the GPU to generate a

stream ofnz vertices, all of which carry the positionp and aninstance IDin the range

[0,nz−1]. These vertices are passed through the vertex shader to the geometry shader,

which, for each incoming vertex, spawns a quadrilateral centered atpx,py and cover-

ing nx×ny pixels. The ID of the 3D texture slice into which this quadrilateral is to be

rendered is computed as

SID= pz−
nz

2
+ IID , (9.3)

whereIID is the instance ID of every vertex. This slice ID is used by therasterizer to

direct the fragment into the corresponding z-slice of the 3Dtexture. In the pixel shader,

for every fragment its distance to the brush center is computed and Equations 9.1 and

9.2 are evaluated. Updated color values are then written into the respective position

of the 3D color texture slice, and the updated texture can immediately be used in the

rendering pass.

9.3.3 Structure Removal and Enhancement

The method proposed in the previous section can efficiently be used to paint color

into a volume. Moreover, it provides a means to interactively erase parts from the

9.3. VOLUME EDITING 177

volume and to add new structures to it. Erasing is performed by painting voxels with

zero opacity, thus making structures completely transparent. Even though the erasing

operation is conceptually simple, it does provide a very powerful means to interactively

create cutaway views. In particular it can be used when traditional volume cutaway

techniques have difficulties, e.g., when occluded and occluding structures are close

together and have similar material properties. Figure 9.3 (d) shows such a case and a

cutaway view that was generated by our method. Without usinga data segmentation or

a highly detailed clip geometry that can accurately separate structures from each other,

in such scenarios the automated generation of a cutaway viewremains a challenging

task.

Modification of structure is realized by a slight change of the color modulation

function. Instead of replacing or modulating the colors stored in the 3D color texture,

a density offset is painted into the scalar source volume. Byadding (or subtracting)

offsets of different strength, size and shape, a number of editing effects can be achieved

(see Figures 9.3 (a–c)).

When erasing or changing density values, surface normals have to be updated if iso-

surface are rendered. This is accomplished by a) finding all voxels in the pre-computed

normal map that are contained in the brush volume, b) re-computing the normals using

central differences in the source volume, and c) writing updated normals into the normal

map. Steps a) and c) are performed in exactly the same way as described for volume

coloring, with the only difference that the brush volume hasto be enlarged by one voxel

in each dimension to capture all affected voxels.

(a) (b) (c) (d)

Figure 9.3: Structural editing. Images (a–c) show (from left to right) the original data set,
interior regions excavated by density reduction, the filledhole by adding structure. In (d) parts
of a bone iso-surface in a MRI data set were erased manually toreveal interior brain structures.

178 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

9.4 Selection Volumes

The volume coloring method as described so far restricts theaccuracy of the coloring

process to the resolution of the given volume data set. This allows one to assign voxel

properties on a per-voxel basis, but the method is not capable of assigning such prop-

erties at sub-voxel accuracy. On the other hand, in particular if color painting is used

to manually segment objects in the data, sub-voxel accuracyis required to determine

correct segment boundaries. Similar to surface-based segmentation methods, where the

mesh is not constrained to lie on voxel boundaries, our goal is to provide a much higher

spatial resolution in regions where the user expects voxel-based classification to fail.

For this purpose we use selection volumes as introduced by Gröller [19], who stated

that “A selection volume specifies a particular structure ofinterest in a corresponding

data volume. It stores real values in the range [0,1] where zero means not selected and

one means fully selected”. A selection volume has the same spatial resolution as the

original volume and its voxel values are used to modulate theinitial data values. To

make selection volumes applicable for data segmentation, we extend them in several

ways: Firstly, in addition to extent and position the user can select the resolution of the

selection volume. Secondly, the selection volume is “filled” with data values by resam-

pling the source texture. It can thus be seen as an upsampled version of a sub-volume,

and it is accompanied by a color volume of equal resolution tosupport voxel editing.

Thirdly, the GPU volume ray-caster, which is used to render the original volume and

the selection volume in combination, is adapted appropriately. This means, that the

ray-caster not only finds the intersection points between the rays and the selection vol-

ume but also adapts the step size within this volume to its resolution. In iso-surface

rendering, a uniform step size is used to avoid cracks at selection volume boundaries.

In Figure 9.4, we illustrate the use of selection volumes forsub-voxel classification,

segmentation, and modeling. The leftmost image shows two voxel-sized structures that

have been segmented manually in a selection volume. Due to the increased resolution

of this volume, object boundaries can be resolved at very high accuracy. In the mid-

dle images, structures in the interior of a volume were classified by using a particular

color transfer function. In the right image a high-resolution selection volume was used

to obtain smooth structure boundaries. The rightmost imageshows the effect of iso-

surface enhancement in a high-resolution selection volumeand the low-resolution base

volume. Text was painted onto an iso-surface by manually adding density offsets into

the respective source textures.

9.4. SELECTION VOLUMES 179

(a) (b) (c)

Figure 9.4: The use of selection volumes is demonstrated: (a) Two small features are segmented
at sub-voxel accuracy. (b) A sub-volume at the initial (left) and a much higher resolution (right)
is rendered with a different transfer function (center region) than the initial volume. (c) Editing
effects on an iso-surface in the initial volume and a high-resolution selection volume.

9.4.1 Upsampling

To build a selection volume two different strategies are pursued. For direct volume

rendering, voxel colors are trilinearly interpolated in the initial color texture. For iso-

surface rendering, a piecewise quadratic tensor product spline is used for resampling

the source texture (see Figure 9.5 (a)). This results in aC1-continuous quasi-interpolant

exhibiting a smooth gradient field.

Denoting initial samples withvi in voxel coordinates (i.e., ranging from 0 toN−1

for N voxels), additional samples at positionsx∈ [i−0.5, i +0.5[are computed in two

steps. First, intermediate valuesA := 0.5(vi−1,vi) andB := 0.5(vi ,vi+1) are computed.

Then, a quadratic Bézier-spline with the control polygonA,vi ,B is constructed using

the DeCasteljau algorithm. Thus, atx the associated indexi has to be computed first by

rounding to the next integer, i.e.,i := ⌊x+0.5⌋. The parameterpi at which to evaluate

the spline is then given aspi(x) := 0.5+x− i. Observing that the interpolation to com-

puteA is collinear with the interpolation betweenA andvi (and analogously forB and

vi+1), only two linearly interpolated fetches are necessary. These fetches can be per-

formed by the GPU asA′ := lerp(vi−1,vi,0.5+0.5 · p) andB′ := lerp(vi ,vi+1,0.5 · p),
where lerp(a,b,c) := a+c· (b−a). Finally, the second stage of the DeCasteljau algo-

rithm to yield the final valuevres := lerp(A′,B′, p) is computed in a pixel shader.

Since the interpolated nodes lie halfway between the samples of the initial volume,

we introduce a transition region that is half a voxel wide (with respect to the initial grid).

In this region, trilinear interpolation in the source texture is performed to guarantee

C0 continuity between the selection volume and the source volume. In the interior,

the selection volume is built by tri-quadratic quasi-interpolation in the source texture,

180 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

i-2

i
i+2

i+1

p=0 p=1

i-1 0.5 voxel

transition
Selection Volume

(b) Original

Data Set

(c) Tri-linear

upsampling

(d) Piecewise quadratic

 upsampling(a)

Figure 9.5: Illustration (a) depicts the piecewise quadratic spline used for upsampling. Im-
ages (b–d) show different resampling results. In (b) the original (high-frequency) Marschner-
Lobb [111] data set is shown. Ideally, concentric waves should be visible. However, due to
filtering errors, these waves are distorted to a certain extent. Image (c) depicts a selection vol-
ume resampled with a trilinear filter kernel and (d) our method, respectively.

and a smooth normal map is computed on-the-fly from this volume. Figure 9.4 (d)

demonstrates the fine editing details that can be achieved byapplying the operations

described so far on a high-resolution selection volume.

In general, selection volumes can be used to add fine structures or color details to a

3D volume or an iso-surface in it. Selection volumes can thusbe used to directly paint

additional text on a surface, which provides a general meansfor adding surface-aligned

annotations. However, as writing text on a curved surface in3D is rather cumbersome,

we propose an alternative GPU method to automatically align2D textures containing

text or other annotations on an iso-surface. For a good description of the process to be

used to automatically place screen-space annotations we refer the reader to [19].

9.5 Surface Particles

We start our description by introducing GPU surface particles, which are used to map a

2D grid consisting of vertices and edges between them onto aniso-surface, i.e., to find

a local surface parametrization. Our approach is similar inspirit to the one proposed by

Ropinski et al. [135], but, in contrast, it is performed directly in 3D object space, and

it operates entirely on the GPU. The 2D grid is rendered on topof the iso-surface as a

textured polygon mesh. The texture contains the annotationto be used, for instance, a

bit-mapped text or a pattern indicating a particular property.

A surface-particle can be thought of as a particle moving on the surface along reg-

ular patterns to approximate a local surface paramerization. The direction of the move-

ment is given by an external direction field that is defined by the user when placing the

annotation. In any case, to move a particlex on the surface we compute its trajectory

9.5. SURFACE PARTICLES 181

in a vector fieldv, starting at an initial positionx0 on the surface. This requires to solve

the ordinary differential equation given in (2.1). It is clear, that in general the numer-

ical integration brings away the particle from the surface.Even if the vector field is

everywhere defined in the local surface tangent plane, a particle is moving away from

the surface in non-planar regions. To avoid this behavior, after every integration step

we trace the particle back onto the surface, resulting in thefollowing steps that have to

be performed:

• Integration From the previous particle position,x, and the velocity at this po-

sition, v, the new positionx′ is computed on the basis of Euler integration (see

Eq. 2.3). In the very first iterationv is set to zero.

• Backtracing x′ is corrected by tracing the particle back onto the selected iso-

surface.

• Vector lookup The velocity vectorv at positionx′ is determined. This can be

as simple as a texture lookup into a 3D vector field, or a 2D vector field if a

surface parametrization exists, or it can be a more complex computation such as

a curvature estimation.

While it is clear how to perform particle integration and vector lookup, the method

to trace particles back to the surface requires some furtherexplanation. In principle,

moving it back onto the surface would require to bend the linesegment connecting the

current and the fixed previous particle position around the surface, thereby constrain-

ing the bending to the plane defined by this line segment and the surface normal at the

previous position. Since this approach requires some exhaustive computations, we ap-

proximate it by iteratively correcting the current position towards the surface, thereby

assuming the surface to be locally flat. Figure 9.6 (a) illustrates this approximation for

a particle that has left the surface after integration.

Back-tracing is performed by using the surface normal at theprevious position,

i.e., the gradient of the scalar field at this position, scaled by the difference between

the scalar values at the previous and the current position. The direction of this vector

determines whether the current position is inside the surface or outside. Note that using

the normal at the current position is not feasible in general, since this point is not on the

surface and the normal at this point may be affected by noise.Given this direction, the

current particle is traced from the current position into this direction until the difference

between the scalar values at the corrected position and the selected iso-value drops

below a user-given tolerance. In this case we have reached the surface and terminate

182 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

the correction. If the particle crosses the iso-surface, which is indicated by increasing

difference between the scalar value at the particle position and the iso-value, the step

size is halved and the trace is restarted at the last position.

The accuracy of the proposed method depends on the local curvature of the iso-

surface. The less planar the surface is, the higher can be thelength distortion of a

line segment connecting the previous and the current point.The reason therefore is,

that we only consider the normal at the previous point to determine the direction into

which the particle is corrected. This problem could be alleviated by also considering

the curvature direction in the plane spanned by the previoussurface normal and the

advection direction, but as the step size we use for particleintegration is typically small,

i.e., in the order of the voxel size, in our experiments length distortions did not result in

any noticeable artifacts.

Normal

Force

Backtrace
(a) (b) (c)

Figure 9.6: In (a) one particle advection step is illustrated: Firstly,the particle is moved into the
direction of the vector field (red) to an intermediate position (green). In the next step it is traced
into the direction of the previous normal vector until it reaches the surface. Images (b) and (c)
show surfaces aligned annotation in wireframe and texturedwith a bit-map image, respectively.

9.5.1 Volume Annotations

Volume annotations in the form of arrows and labels have a long history in hand-made

technical and medical illustrations. Textual annotationsare typically used in two dif-

ferent ways. They are either placed directly on the surface of a structure—aligning

their shape to the surface shape—or they are placed in screen-space close to the im-

age of a structure, and they are then connected to the structure with a line. In general,

the former method has the advantage that annotations remainfixed to a structure when

the user interacts with the volume, while free-floating labels have to be rearranged in

screen-space to avoid overlapping annotations, crossing of connecting lines, or place-

ments too far away from the structure. Free-floating annotation, on the other hand,

are advantageous for pointing to small structures which do not cover enough space on

screen to allow the user to read the annotation on it. Therefore, our system supports

both approaches to annotate volumes, and it thus allows the user to flexibly select the

appropriate choice.

9.5. SURFACE PARTICLES 183

By using surface particles we can now construct a regular grid, which is aligned

with an iso-surface and can be textured with an arbitrary annotation. As the process is

performed entirely on the GPU, the user can interactively place high-resolution anno-

tations in the volume. To start the process, the user first selects a texture, the annotation

texture, which is to be used as annotation. Then, some additional information has to be

specified:

• The position on the iso-surface where the annotation is to be centered.

• The orientation of the annotation.

To specify the annotation center point the user picks a pointon the iso-surface.

The orientation of the annotation texture is specified by picking a second point and

by interpreting the vector from the first to the second point as the u-axis of the local

(u,v) surface parametrization. In the following, we will call this vector the orientation

vector. Given this information, a set of surface particles is traced to generate a grid that

is aligned with the surface.

At first, two surface particles are spawned at the annotationcenter point. One of

them is traced along the orientation vector, and the other one is traced into the inverse

direction. Both particles are traced for a number of equidistant steps and with the

help of a geometry shader and the stream output stage, their intermediate positions are

streamed into a buffer residing in GPU memory. Both the number of steps and the step

size in voxel units can be selected by the user.

At every particle position the direction vector moving the particle along the sur-

face is computed from the direction vector at the previous position. Starting with the

normalized projection of the orientation vector into the tangent plane at the annota-

tion center point, at every upcoming position the same procedure is performed with the

previous direction vector. That is, for a particle at position xu we compute a tangent

frame consisting of three mutually orthonormal vectors:n, the surface normal,v the

direction vector in the local tangent plane, and the binormal b = n×v. During particle

integration,vu is updated as follows:

vu =
vu−1× (nu×vu−1)

‖vu−1× (nu×vu−1)‖
(9.4)

I.e., the force vector is updated by projecting it into the surface tangent plane at the

new position. Surface normals are computed by trilinear interpolation of the gradients

at adjacent voxel centers. Finally, the particle is advected usingv and it is then traced

back to the surface as described in the previous paragraph.

184 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

After the two surface particles that were released at the annotation center point have

been traced fori steps, a number of 2i +1 surface points are stored in a GPU render

target. If these points are connected, they form a line on thesurface, which is centered

at the annotation center point and oriented along the annotation direction. To expand

this “line” to a full 2D grid, at every point we trace two additional surface particles

into directionb and into the inverse direction. Tracing these particles forj steps results

in a set of(2i +1) · (2 j +1) points, from which a regular triangular annotation grid is

built (see Figures 9.6 (b, c)). All grid points are rendered into a vertex buffer, which is

then used to render the grid using an appropriate index buffer residing in GPU memory.

The grid is textured with the selected annotation texture, and it is rendered before ray-

casting the volume to initialize the depth buffer. To avoid depth fighting between the

iso-surface and the annotation grid, the grid is slightly shifted towards the viewer.

Figure 9.7: Two annotated data sets are shown. Left: A focus+context visualization of the
visible human head, colorized and annotated with the presented techniques is shown. Right: An
annotated human hand. Here, next to internal surface aligned decals, external labels were used
to annotate the data set.

9.5.2 Windowed Cutaway Views

In this section, we show how to efficiently create a shape-aligned windowed cutaway

on an iso-surface by exploiting an annotation grid as introduced before. In technical

illustrations, cutaways are often used to reduce occlusions and expose important inter-

nal parts. There is a vast body of literature related to this issue that we will not attempt

9.6. PERFORMANCE ANALYSIS 185

to overview here, however, Diepstraten et al. [35] and Li et al. [102] discuss some

of the mechanisms to automatically generate cutaway views and provide many useful

references on this subject.

Starting with such a surface-aligned grid, we proceed in twostages. Firstly, we du-

plicate the mesh and displace the vertices of the copy along the inverse surface normal

direction at the center vertex. The length of the displacement can be selected by the

user to generate thin or thick cutaway sections. Secondly, both meshes are connected

along their borders to build a closed mesh. This mesh is then used as a clip geometry as

proposed by Weiskopf et al. [182], and it is directly incorporated into the texture-based

volume ray-caster.

Prior to ray-casting, we render a layered depth-buffer of the mesh from the current

view. During volume rendering, every ray first samples thesebuffers and then tests all

samples along the ray for being inside or outside the mesh, i.e. by testing whether a

sample is in-between a front and a back face of the cutaway mesh. Samples inside the

mesh do not contribute to the final ray color, thus cutting away the volume contained in

it. Figure 9.8 demonstrates the use of shape-aligned cutaways to expose internal parts

of a volume.

Figure 9.8: Several windowed cutaway views are shown. Right: By integrating this metaphor
into the paint environment, classification based on iso-surface coloring becomes possible even
without erasing information in the underlying data set.

9.6 Performance Analysis

Throughout this chapter we have shown a number of different effects that were gener-

ated by the proposed volume editing techniques. A typical use of these techniques is

demonstrated in Figure 9.1, where a human skull data set was interactively processed

and augmented to obtain an illustrative image as shown in “Gray’s Anatomy” [53]. In

186 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

the following, we investigate the performance of these techniques in more detail. Tim-

ings were performed on a 2.4 GHz Core 2 Duo processor and an NVIDIA 8800GTX

graphics card with 768 MB local video memory. Image generation was done at 1280×
1024 resolution. Regardless of this extreme resolution, for all models shown we achieve

real-time performance with update rates of 50 fps and higher, including editing and ren-

dering.

All brush-based editing effects like coloring, erasing, and adding, as well as result-

ing normal map updates, were executed in less than 3 ms up to a brush extend of 643

voxels. The times it takes to build a selection volume at different resolutions, i.e., from

(3×2)3 to (64×8)3, is given in Table 9.1. As can be seen, even at a resolution as high

as 1283, GPU-based resampling is still capable of achieving interactive rates.

Covered voxels
Scaling 33 113 193 323 643

2 0.14 0.19 0.24 0.51 2.7
4 0.16 0.31 0.76 2.5 17.9
8 0.2 1.0 4.29 17.1 134.6

Table 9.1: Timing statistics for tri-quadratic iso-surface and trilinear color resampling. All
times are given in milliseconds.

Finally, we measured the time it takes to construct a surface-aligned annotation grid

by means of the method described in Section 9.5. Table 9.2 shows respective times for

varying grid sizes. From these timings it can be concluded that the proposed method is

fast enough to allow for interactive placements of annotation textures on high-resolution

surface structures. In particular, since the rendering of these textures only consumes an

insignificant amount of time, many of them can be used simultaneously on a single

object.

Gridsize 112 212 412 812

Time (in ms) 1.6 2.0 3.6 14.7

Table 9.2: Timings for the construction of surface-aligned annotation grids.

9.7 Summary

In this chapter, we have presented a number of GPU-based techniques for interactive

volume editing. By efficiently using novel functionality onrecent GPUs, we have de-

veloped a technique for interactive volume painting. We have further shown that this

9.7. SUMMARY 187

technique provides a powerful means to erase structures in avolume and, thus, to iso-

late features in it. In combination with high-resolution selection volumes these tech-

niques can effectively be used for manual volume segmentation at sub-voxel accuracy.

We have also introduced structure-aligned annotations on the basis of particle-tracing

along iso-surfaces—with respect to the underlying scalar volume’s gradient field—to

supplement classical free-floating annotations that are placed in screen-space, and we

have demonstrated how to utilize this approach to interactively create windowed cut-

away views. In particular, as all of these operations are performed in the 3D domain,

with immediate visual feedback provided, they are very intuitive to use and allow the

user to quickly observe the relationships between relevantfeatures in the data.

In the future we will further extend some of the proposed techniques: Firstly, we

will develop semi-automatic volume segmentation techniques by combining manual

segmentation as proposed with automatic techniques on the GPU (such as the random

walker approach). We believe that such a combination can considerably improve the

segmentation process, both with respect to accuracy and speed.

188 CHAPTER 9. PARTICLE-BASED VOLUME EDITING

Chapter 10

Conclusion

This thesis presented techniques for the interactive visual exploration of time-resolved

3D unsteady flow velocity fields. Feedback from scientists invarious fields has con-

firmed that the developed real-time exploration techniquesare well-suited to gain in-

sight into complex flow phenomena. An interactive exploration environment enables

experts to incorporate their experience into the visual data analysis process and to ex-

ploit their perceptual and cognitive abilities to detect relevant features in the flow.

All approaches discussed in this work can be employed on consumer class hard-

ware and are, thus, available to a wide range of users. As the size of 3D unsteady flow

data sets usually exceeds the memory capacities of standardPCs, we have developed a

multi-core approach to asynchronously manage the time steps needed during an inter-

active flow exploration session. By decoupling visualization from data handling, this

concept does not only result in interactive frame rates but also allows the visualization

of an unlimited amount of time steps. Since flow visualization techniques generally

require the application of numerical operations to a large amount of individual samples

in the data, we have presented parallelization strategies that effectively exploit the com-

putational processing power of recent graphics processingunits to achieve the feature

extraction and subsequent visualization in real time.

We have shown how Lagrangian particle tracing can effectively be mapped onto the

GPU to allow for the integration of a huge number of particlesin parallel. We have

presented various rendering modalities to encode additional flow quantities into the vi-

sual representation of each particle and have developed mechanisms to automatically

restrict their display to important regions in the flow. Thisallows to reveal phenomena

of interest, while at the same time preserving context information. Furthermore, we

have employed the particle tracing paradigm to extract geometric flow representation

189

190 CHAPTER 10. CONCLUSION

such as characteristic trajectories and adaptive integralsurfaces interactively, and have

presented a variety of rendering modalities including focus+context approaches to re-

duce the presented visual information to relevant featuresin the flow. We have extended

the particle tracing paradigm to flow on arbitrary surfaces and have developed a variety

of geometry- and texture-based visualization techniques for such flow fields.

Feature-based visualization techniques are well-suited to reduce the flow data to

physically meaningful patterns. However, due to the intense pre-processing required by

these techniques to achieve the data reduction, such approaches are generally not suited

for an interactive exploration environment. Yet, we have shown how certain concepts

from this class can efficiently be combined with geometry-based flow visualization

techniques to effectively study large-scale transport behavior.

Moreover, we have discussed how the massive parallel processing power of modern

GPUs can not only be exploited to explore large 3D data sets, but also to manipulate

them interactively. This allows scientists to encode findings directly into the data set or

a visual representation of it and, thus, to communicate the obtained insight intuitively.

10.1 Future Work

None of the presented techniques are inherently restrictedto flow fields sampled onto

uniform grids, however, we have only validated them in such data. We aim at extending

our system to support unstructured time-resolved 3D unsteady flow fields, as such data

sets are of practical importance. While the extension seemsstraightforward, as only

the underlying data structure has to be exchanged and even GPU-based concepts for

particle tracing in unstructured grids are available, all existing methods adhere to rather

outdated graphics API standards and lack in performance. However, GPU manufacturer

have noticed an increasing interest in the scientific community for their platform, and

the capabilities of recent graphics hardware and related graphics APIs are evolving

towards more generalized computing architectures. Thus, it is of interest to investigate

how new GPU capabilities can be exploited to develop more efficient data structures

and algorithms that allow for fast point location and interpolation in unstructured grids.

The current framework achieves interactivity due to the fact that all time steps

needed by the visualization system at a given point in time reside in local video mem-

ory. As numerical capabilities continue to increase, so does the size of the data sets to

be visualized. However, the typical amount of memory generally does not scale with

the growth in processing power and, thus, it will be a challenging task to develop in-

10.1. FUTURE WORK 191

teractive (distributed) visualization strategies that can cope with flow fields that exceed

the locally available memory.

As the numerical processing power of GPUs still grows exponentially, it will also

be of interest to adopt even more concepts from the class of feature-based visualization

into interactive visualization techniques. As we have shown, such a combination is

well-suited to support the user in finding relevant featuresin the flow.

192 CHAPTER 10. CONCLUSION

Bibliography

[1] Comparison of ATI graphics processing units. Wikipedia:

http://en.wikipedia.org/wiki/Comparisonof AMD graphicsprocessingunits/.

[2] Comparison of Nvidia graphics processing units. Wikipedia:

http://en.wikipedia.org/wiki/Comparisonof Nvidia graphicsprocessingunits/.

[3] Microsoft DirectX Developer Center. Microsoft DirectX Developer Center:

http://msdn.microsoft.com/de-de/directx/default(en-us).aspx.

[4] OpenGL Sprecification & Documentation. OpenGL: http://www.opengl.org/documentation/.

[5] 2006 IEEE Visualization Design Contest: See What’s Shaking, August 2006.

http://viscontest.sdsc.edu/2006/.

[6] K. Akeley. Reality engine graphics. InSIGGRAPH ’93: Proceedings of the 20th annual con-

ference on Computer graphics and interactive techniques, pages 109–116, New York, NY, USA,

1993. ACM.

[7] E. Aurell, G. Boffetta, A. Crisanti, G. Paladin, and A. Vulpiani. Predictability in the large: an

extension of the concept of Lyapunov exponent. Technical Report chao-dyn/9606014. TNT-96-

SHPRE-5-PAP-V-4, Jun 1996.

[8] P. J. Basser. New histological and physiological stainsderived from diffusion-tensor MR images.

Ann. N.Y. Acad. Sci. 820, page 123138, 1997.

[9] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn. Lyapunov characteristic exponent for

smooth dynamical systems and hamiltonian systems; a methodfor computing all of them.Me-

chanica, 15(1):9–20, 1980.

[10] J. Bloomenthal. Calculation of reference frames alonga space curve. pages 567–571, 1990.

[11] D. Blythe. The Direct3D 10 system. InSIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages

724–734, New York, NY, USA, 2006. ACM Press.

[12] P. Bogacki and L. F. Shampine. A 3(2) pair of runge-kuttaformulas.Appl. Math. Lett., 2:331–325,

1989.

[13] E. Boring and A. Pang. Directional Flow Visualization of Vector Fields. Proceedings of IEEE

Transactions on Visualization and Computer Graphics 1996, pages 389–392, 1996.

193

194 BIBLIOGRAPHY

[14] A. I. Borisenko and I. E. Tarapov. Vector and tensor analysis with applications.Dover, pages

121–122, 1968.

[15] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality surface splatting on today’s

GPUs. Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 0:17–141,

2005.

[16] S. Bruckner, S. Grimm, A. Kanitsar, and E. Gröller. Illustrative Context-Preserving Volume Ren-

dering. InEuroVis, pages 69–76, 2005.

[17] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller. Illustrative Context-Preserving Explo-

ration of Volume Data.IEEE Transactions on Visualization and Computer Graphics, 12(6):1559–

1569, 2006.

[18] S. Bruckner and E. Gröller. Enhancing Depth-Perception with Flexible Volumetric Halos.IEEE

Transactions on Visualization and Computer Graphics, 13(6), 2007.

[19] S. Bruckner and M. E. Gröller. VolumeShop: An Interactive System for Direct Volume Illustra-

tion. In Proceedings of IEEE Visualization 2005, pages 671–678, oct 2005.

[20] R. W. Bruckschen, F. Kuester, B. Hamann, and K. I. Joy. Real-Time Out-of-Core Visualization of

Particle Traces. InIEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics

(PVG2001), pages 45–50, 2001.

[21] S. Bryson and C. Levit. The Virtual Windtunnel: An Environment for the Exploration of Three-

dimensional Unsteady Flows. InProc. IEEE Vis, pages 17–24, 1991.

[22] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. Interactive Streak Surface Visualization on

the GPU.IEEE Transactions on Visualization and Computer Graphics, 15:1259–1266, 2009.

[23] K. Bürger, S. Hertel, J. Krüger, and R. Westermann. GPU Rendering of Secondary Effects. In

Vision, Modeling and Visualization 2007, 2007.

[24] K. Bürger, P. Kondratieva, J. Krüger, and R. Westermann. Importance-Driven Particle Techniques

for Flow Visualization. InProceedings of IEEE VGTC Pacific Visualization Symposium 2008,

2008.

[25] K. Bürger, J. Krüger, and R. Westermann. Direct Volume Editing. IEEE Transactions on Visu-

alization and Computer Graphics (Proceedings Visualization / Information Visualization 2008),

14(6):1388–1395, November-December 2008.

[26] K. Bürger, J. Krüger, and R. Westermann. Sample-Based Surface Coloring.IEEE Transactions

on Visualization and Computer Graphics, 99(PrePrints), 2009.

[27] K. Bürger, J. Schneider, P. Kondratieva, J. Krüger, and R. Westermann. Interactive Visual Explo-

ration of Unsteady 3D-Flows. InEurographics/IEEE VGTC Symposium on Visualization (Euro-

Vis), 2007.

[28] B. Cabral and L. Leedom. Imaging Vector Fields Using Line Integral Convolution. pages 263–

270, 1993.

BIBLIOGRAPHY 195

[29] N. L. R. Center. Image: Wake vortex study at wallops island, May.

[30] W. Chen, A. Lu, and D. S. Ebert. Shape-aware Volume Illustration. Computer Graphics Forum

(Proceedings of Eurographics 2007), 26(7):705–714, 2007.

[31] J. Clyne and J. Dennis. Interactive Direct Volume Rendering of Time-Varying Data.In Proceed-

ings of Data Visualization 99, pages 109–120, 1999.

[32] S. D. Conte and C. de Boor.Elementary Numerical Analysis. McGraw-Hill, New York, NY, USA,

1980.

[33] M. Cox and D. Ellsworth. Application-controlled Demand Paging for Out-Of-Core Visualization.

In Proc. IEEE Vis, pages 235–244, 1997.

[34] R. Crawfis, N. Max, B. Becker, and B. Cabral. Volume rendering of 3d scalar and vector fields

at llnl. In Supercomputing 93: Proceedings of the annual conference onSupercomputing, pages

570–576, 1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, November 1993. IEEE

Computer Society.

[35] J. Diepstraten, D. Weiskopf, and T. Ertl. Interactive Cutaway Illustrations.Computer Graphics

Forum (Proceedings of Eurographics 2003), 22(3):523–532, 2003.

[36] H. Doleisch and H. Hauser. Smooth Brushing for Focus+Context Visualization of Simulation

Data in 3D.

[37] D. Eberly, R. Gardner, B. Morse, S. Pizer, and C. Scharlach. Ridges for image analysis.J. Math.

Imaging Vis., 4(4):353–373, 1994.

[38] D. Ebert and P. Rheingans. Volume Illustration: Non-photorealistic rendering of volume models.

In IEEE Visualization 2000 (Conference Proceedings), pages 195–202, 2000.

[39] D. S. Ebert and P. Rheingans. Volume Illustration: Nonphotorealistic Rendering of Volume Mod-

els.Proceedings of IEEE Transactions on Visualization and Computer Graphics 2001, 7:253–264,

2001.

[40] C. Everitt. Interactive order-independent transparency. Technical report, NVIDIA Corporation,

2001.

[41] C. L. Feffermann. Existence and smoothness of the Navier-Stokes equation., 2000.

http://www.claymath.org/millennium/Navier-StokesEquations/navierstokes.pdf.

[42] F. Ferstl, K. Bürger, H. Theisel, and R. Westermann. Interactive Separating Streak Surfaces.IEEE

Transactions on Visualization and Computer Graphics (Proceedings Visualization / Information

Visualization 2010), 16(6):to appear, November-December 2010.

[43] L. Forssell and S. Cohen. Using Line Integral Convolution for Flow Visualization: Curvilinear

Grids, Variable-Speed Animation, and Unsteady Flows.IEEE TVCG, 1(2):133–141, 1995.

[44] O. Frederich, E. Wassen, and F. Thiele. Flow Simulationaround a Finite Cylinder on Massively

Parallel Computer Architecture. InInternational Conference on Parallel Computational Fluid

Dynamics, pages 85–93, 2005.

196 BIBLIOGRAPHY

[45] T. Frühauf. Raycasting vector fields.Proceedings of IEEE Transactions on Visualization and

Computer Graphics 1996, pages 115–120, 1996.

[46] A. L. Fuhrmann and E. Gröller. Real-Time Techniques for 3D Flow Visualization. In D. Ebert,

H. Hagen, and H. Rushmeier, editors,VIS ’98: Proceedings of the conference on Visualization

’98, pages 305–312, 1998.

[47] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient Computation and Visualization of Co-

herent Structures in Fluid Flow Applications.IEEE Transactions on Visualization and Computer

Graphics, 13:1464–1471, 2007.

[48] C. Garth, H. Krishnan, X. Tricoche, T. Bobach, and K. I. Joy. Generation of Accurate Integral

Surfaces in Time-Dependent Vector Fields.IEEE Transactions on Visualization and Computer

Graphics, 14(6):1404–1411, 2008.

[49] C. Garth, G. Li, X. Tricoche, C. Hansen, and H. Hagen. Visualization of Coherent Structures in

Transient 2D Flows. InTopology-Based Methods in Visualization II (Proceedings of TopoInVis

2007), pages 1–14, March 2009.

[50] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann. Surface Techniques for

Vortex Visualization. InProceedings of Joint Eurographics - IEEE TCVG Symposium on Visual-

ization, pages 155–164, 2004.

[51] T. Glau. Exploring instationary fluid flows by interactive volume movies.In Proceedings of Data

Visualization 99, pages 277–283, 1999.

[52] L. Grady, T. Schiwietz, S. Aharon, and R. Westermann. Random Walks for Interactive Organ

Segmentation in Two and Three Dimensions: Implementation and Validation. InMICCAI, 2005.

[53] H. Gray.Gray’s anatomy. Running Press, 1901.

[54] M. Griebel, T. Donrseifer, and T. Neunhöfer.Numerical Simulation in Fluid Dynamics: A Prac-

tilca Introduction. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.

[55] S. Guthe, S. Gumhold, and W. Strasser. Interactive visualization of volumetric vector fields using

texture based particles. InProceedings of WSCG, volume 10, pages 33–41, 2002.

[56] G. Haller. Distinguished material surfaces and coherent structures in three-dimensional fluid

flows. Phys. D, 149(4):248–277, 2001.

[57] G. Haller. Lagrangian coherent structures from approximate velocity data.Physics of Fluids,

14(6):1851–1861, 2002.

[58] G. Haller and G. Yuan. Lagrangian coherent structures and mixing in two-dimensional turbulence.

Phys. D, 147(3-4):352–370, 2000.

[59] P. Hanrahan and P. Haeberli. Direct WYSIWYG painting and texturing on 3D shapes.Computer

Graphics (Proceedings of ACM SIGGRAPH 90), 24(4):215–223, 1990.

[60] R. M. Haralick. Ridges and valleys on digital images.Computer Vision, Graphics, and Image

Processing, 22(1):28–38, 1983.

BIBLIOGRAPHY 197

[61] P. Hartman.Ordinary Differential Equations. 1973.

[62] K. M. Hasan, P. J. Basser, D. L. Parker, and A. L. Alex. Analytical computation of the eigenvalues

and eigenvectors in dt-mri.J. Magn. Reson, pages 41–47, 2001.

[63] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Gröller. Two-Level Volume Rendering.IEEE Trans-

actions on Visualization and Computer Graphics, 7(3):242–252, 2001.

[64] J. Helman and L. Hesselink. Representation and Displayof Vector Field Topology in Fluid Flow

Data Sets.IEEE Computer, 22(8):27–36, 1989.

[65] J. P. M. Hultquist. Constructing stream surfaces in steady 3D vector fields. InIEEE Transactions

on Visualization and Computer Graphics, pages 171–178, 1992.

[66] V. Interrante. Illustrating surface shape in volume data via principal direction-driven 3D line

integral convolution. InACM SIGGRAPH, pages 109–116, 1997.

[67] V. Interrante, H. Fuchs, and S. Pizer. Illustrating transparent surfaces with curvature-directed

strokes. InIEEE Vis, pages 211–218, 1996.

[68] J. D. Furst and Stephen M. Pizer. Marching ridges. InIn 2001 IASTED International Conference

on Signal and Image Processing, 2001.

[69] Jan, T. Weinkauf, and H.-C. Hege. Galilean invariant extraction and iconic representation of

vortex core lines. InEuroVis, pages 151–160, 2005.

[70] J. Jeong and F. Hussain. On the identification of a vortex. Journal of Fluid Mechanics, 285:69–94,

1995.

[71] B. Jobard, G. Erlebacher, and M. Hussaini. Hardware-Accelerated Texture Advection For Un-

steady Flow Visualization. InProc. IEEE Vis, pages 155–162, 2001.

[72] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D. Owens. Pro-

grammable stream processors.IEEE Computer, pages 54–62.

[73] J. Kasten, C. Petz, I. Hotz, B. Noack, and H.-C. Hege. Localized finite-time lyapunov exponent

for unsteady flow analysis. In M. Magnor, B. Rosenhahn, and H.Theisel, editors,Vision Modeling

and Visualization, volume 1, pages 265–274. Universität Magdeburg, Inst. f.Simulation u. Graph.,

2009.

[74] R. M. Kelso, T. T. Lim, and A. E. Perry. An experimental study of round jets in cross-flow.Journal

of Fluid Mechanics, 306(-1):111–144, 1996.

[75] D. N. Kenwright and D. A. Lane. Optimization of Time-Dependent Particle Tracing Using Tetra-

hedral Decomposition. InVIS ’95: Proceedings of the 6th conference on Visualization’95, page

321, 1995.

[76] G. Kindlmann and J. W. Durkin. Semi-automatic generation of transfer functions for direct volume

rendering. InVVS ’98: Proceedings of the 1998 IEEE symposium on Volume visualization, pages

79–86, 1998.

198 BIBLIOGRAPHY

[77] G. L. Kindlmann, R. S. J. Estépar, S. M. Smith, and C.-F.Westin. Sampling and visualizing creases

with scale-space particles.IEEE Trans. Visualization and Computer Graphics, 15(6):1415–1424,

Nov/Dec 2009.

[78] G. L. Kindlmann, X. Tricoche, and C.-F. Westin. Anisotropy creases delineate white matter struc-

ture in diffusion tensor mri. InMICCAI (1), pages 126–133, 2006.

[79] P. Kipfer, F. Reck, and G. Greiner. Local exact particletracing on unstructured grids.Computer

Graphics Forum, 22(2):133–142, 2003.

[80] R. M. Kirby, H. Marmanis, and D. H. Laidlaw. VisualizingMultivalued Data from 2D Incompress-

ible Flows Using Concepts from Painting.Proceedings of IEEE Transactions on Visualization and

Computer Graphics 1999, pages 333–340, 1999.

[81] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional Transfer Functions for Interactive

Volume Rendering.IEEE Transactions on Visualization and Computer Graphics, 8(3):270–285,

2002.

[82] J. Kniss, P. McCormick, A. McPherson, J. Ahrens, J. Painter, A. Keahey, and C. Hansen. In-

teractive Texture-Based Volume Rendering for Large Data Sets. IEEE Computer Graphics and

Applications, 21(4):52–61, 2001.

[83] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution modeling on

arbitrary meshes. InSIGGRAPH ’98: Proceedings of the 25th annual conference on Computer

graphics and interactive techniques, pages 105–114, New York, NY, USA, 1998. ACM.

[84] P. Kondratieva.Real-Time Approaches for Model-Based Reconstruction and Visualization of Flow

Fields. PhD thesis, Technische Universität München, 2008.

[85] P. Kondratieva, K. Bürger, J. Georgii, and R. Westermann. Real-Time Approaches for Model-

Based PIV and Visual Fluid Analysis. 106/2009:257–267, 2009.

[86] M. Kraus and K. Bürger. Interpolating and Downsampling RGBA Volume Data. InProceedings

of Vision, Modeling, and Visualization 2008, 2008.

[87] K. Kreeger and A. Kaufman. Interactive volume segmentation with the PAVLOV architecture.

In PVGS ’99: Proceedings of the 1999 IEEE symposium on Parallelvisualization and graphics,

pages 61–68, 1999.

[88] J. Krüger.GI-Edition Lecture Notes in Informatics (LNI), chapter A GPU Framework for Interac-

tive Simulation and Rendering of Fluid Effects. GI, 2007.

[89] J. Krüger, K. Bürger, and R. Westermann. InteractiveScreen-Space Accurate Photon Tracing on

GPUs. InRendering Techniques (Eurographics Symposium on Rendering - EGSR), pages 319–

329, June 2006.

[90] J. Krüger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle system for interactive visual-

ization of 3D flows.IEEE TVCG, 11(5):744–756, 2005.

BIBLIOGRAPHY 199

[91] J. Krüger, J. Schneider, and R. Westermann. ClearView: An Interactive Context Preserving

Hotspot Visualization Technique.IEEE Transactions on Visualization and Computer Graphics

(Proceedings Visualization / Information Visualization 2006), 12(5), September-October 2006.

[92] J. Krüger and R. Westermann. Acceleration techniquesfor GPU-based volume rendering. In

Proceedings IEEE Visualization 2003, 2003.

[93] J. Krüger and R. Westermann. Efficient Stipple Rendering. In Proceedings of IADIS Computer

Graphics and Visualization, 2007.

[94] Y. P. L. Barreira.Lyapunov Exponents and Smooth Ergodic Theory. 2002.

[95] D. Lane. Visualizing Time-Varying Phenomena in Numerical Simulations of Unsteady Flows. In

34th Aerospace Science Meeting & Exhibit, 1996.

[96] R. Laramee, G. Erlebacher, D. Weiskopf, C. Garth, X. Tricoche, T. Weinkauf, H. Theisel, F. Post,

B. Vrolijk, H. Hauser, and H. Doleisch. Texture and Feature-Based Flow Visualization. InTutorial

#2, IEEE Vis. 2006.

[97] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post,and D. Weiskopf. The State of the

Art in Flow Visualization: Dense and Texture-Based Techniques. Computer Graphics Forum,

23(2):203–221, 2004.

[98] R. S. Laramee, B. Jobard, and H. Hauser. Image space based visualization of unsteady flow on

surfaces. InVIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), pages 131–138,

2003.

[99] Z. L. P. F. Laramee R., Hauser H. Topology-based flow visualization, the state of the art. In

H. H. Hauser H. and T. H., editors,In Topology-Based Methods in Visualization: Proc. of the 1st

TopoInVisWorkshop (TopoInVis 2005), pages 1–20, 2007.

[100] F. Lekien, C. Coulliette, A. J. Mariano, E. H. Ryan, L. K. Shay, G. Haller, and J. Marsden.

Pollution release tied to invariant manifolds: A case studyfor the coast of florida. Phys. D,

210(1), 2005.

[101] G.-S. Li, X. Tricoche, and C. Hansen. GPUFLIC: Interactive and Accurate Dense Visualization

of Unsteady Flows. InProc. EuroVis, pages 29–33, 2006.

[102] W. Li, L. Ritter, M. Agrawala, B. Curless, and D. Salesin. Interactive cutaway illustrations of

complex 3D models.ACM Trans. Graph., 26(3):31–40, 2007.

[103] A. Liapunov. Stability of Motion. 1966.

[104] T. Lindeberg. Edge detection and ridge detection withautomatic scale selection.Int. J. Comput.

Vision, 30(2):117–156, 1998.

[105] D. Lipinski and K. Mohseni. A ridge tracking algorithmand error estimate for efficient computa-

tion of lagrangian coherent structures.Chaos: An Interdisciplinary Journal of Nonlinear Science,

20(1):017504, 2010.

[106] D. Lischinski and A. Rappoport. Image-Based Rendering for Non-Diffuse Synthetic Scenes. In

Proceedings, Ninth Eurographics Workshop on Rendering, pages 301–314, 1998.

200 BIBLIOGRAPHY

[107] H. Löffelmann and M. E. Gröller. Enhancing the visualization of characteristic structures in dy-

namical systems. InProceedings of the 9th Eurographics Workshop on Visualization in Scientific

Computing, pages 35–46, 1998.

[108] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction

algorithm.SIGGRAPH Comput. Graph., 21(4):163–169, 1987.

[109] A. Lu, C. Morris, D. Ebert, P. Rheingans, and C. Hansen.Non-photorealistic volume rendering

using stippling techniques. InIEEE Vis, pages 211–218, 2002.

[110] E. Lum and K. Ma. Hardware-Accelerated Parallel Non-Photorealistic Volume Rendering. In

International Symposium on Non-photorealistic Renderingand Animation (NPAR), June 2002.

[111] S. R. Marschner and R. J. Lobb. An evaluation of reconstruction filters for volume rendering. In

VIS ’94: Proceedings of the conference on Visualization ’94, pages 100–107, Los Alamitos, CA,

USA, 1994. IEEE Computer Society Press.

[112] O. Mattausch, T. Theußl, H. Hauser, and M. E. Gröller.Strategies for Interactive Exploration of

3D Flow Using Evenly-Spaced Illuminated Streamlines. In K.Joy, editor,Proceedings of Spring

Conference on Computer Graphics, pages 213–222. SCCG, apr 2003.

[113] N. Max, R. Crawfis, and C. Grant. Visualizing 3D Velocity Fields Near Contour Surfaces. In

IEEE Visualization 94, pages 248–255, 1994.

[114] B. H. McCormick. Visualization in scientific computing. SIGBIO Newsl., 10(1):15–21, 1988.

[115] T. McLoughlin, R. Laramee, R. Peikert, F. Post, and M. Chen. Over Two Decades of Integration-

Based, Geometric Flow Visualization. InComputer Graphics Forum, (to appear), 2010.

[116] F. Meyer. Topographic distance and watershed lines.Signal Process., 38(1):113–125, 1994.

[117] G. E. Moore. Cramming more components onto integratedcircuits. pages 56–59, San Francisco,

CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[118] K. Myers and L. Bavoil. Stencil routed A-Buffer. InSIGGRAPH ’07: ACM SIGGRAPH 2007

sketches, page 21, 2007.

[119] R. W. D. Nickalls. A New Approach to Solving the Cubic: Cardan’s Solution Revealed.The

Mathematical Gazette, 77(480):354–359, 1993.

[120] G. M. Nielson and I.-H. Jung. Tools for Computing Tangent Curves for Linearly Varying Vector

Fields over Tetrahedral Domains.IEEE Transactions on Visualization and Computer Graphics,

5(4):360–372, 1999.

[121] S. Owada, F. Nielsen, M. Okabe, and T. Igarashi. Volumetric illustration: designing 3D models

with internal textures.ACM Trans. Graph., 23(3):322–328, 2004.

[122] K. Palgyi and A. Kuba. A parallel 3d 12-subiteration thinning algorithm.Graphical Models and

Image Processing, 61(4):199 – 221, 1999.

[123] S. Park, B. Budge, L. Linsen, B. Hamann, and K. Joy. Dense Geometric Flow Visualization. In

Proc. EuroVis, pages 21–28, 2005.

BIBLIOGRAPHY 201

[124] H. K. Pedersen. A framework for interactive texturingon curved surfaces. InSIGGRAPH ’96:

Proceedings of the 23rd annual conference on Computer graphics and interactive techniques,

pages 295–302, 1996.

[125] R. Peikert and M. Roth. The “parallel vectors” operator: a vector field visualization primitive. In

VIS ’99: Proceedings of the conference on Visualization ’99, pages 263–270, Los Alamitos, CA,

USA, 1999. IEEE Computer Society Press.

[126] R. Peikert and F. Sadlo. Height Ridge Computation and Filtering for Visualization. InProceedings

of IEEE VGTC Pacific Visualization Symposium 2008, pages 119–126, 2008.

[127] B. T. Phong. Illumination for computer generated pictures.Commun. ACM, 18(6):311–317, 1975.

[128] D. Pnueli and C. Gutfinger. Fluid mechanics. New York, USA, 1992. Cambridge University Press.

[129] F. Post, R. Laramee, B. Vrolijk, H. Hauser, and H. Doleisch. Feature Extraction and Visualization

of Flow Fields. InProc. Eurographics, pages 69–100, 2002.

[130] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state of the art in flow

visualisation: Feature extraction and tracking.Computer Graphics Forum, 22(4):775–792, 2003.

[131] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.Flannery.Numerical recipes: The art of

scientific computing, chapter Eigensystems. Cambridge University Press, 3 edition, 2007.

[132] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan. Photon Mapping on

Programmable Graphics Hardware. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS

Conference on Graphics Hardware, pages 41–50, 2003.

[133] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl. Interactive Exploration of Volume Line

Integral Convolution Based on 3D Texture Mapping. InProc. IEEE Visualization, 1999.

[134] M. Roerdink. The watershed transform: definitions, algorithms, and parallellization strategies.

Fundamenta Informaticae, 41(1):187–228, 2000.

[135] T. Ropinski, J.-S. Prani, J. Roters, and K. H. Hinrichs. Internal Labels as Shape Cues for Medical

Illustration. In Proceedings of the 12th International Fall Workshop on Vision, Modeling, and

Visualization (VMV07), pages 203–212, 2007.

[136] A. Sadarjoen, T. van Walsum, A. Hin, and F. Post. Particle Tracing Algorithms for 3D Curvilinear

Grids. In IEEE Scientific Visualization, Overviews, Methodologies,and Techniques, pages 311–

335, 1994.

[137] F. Sadlo and R. Peikert. Efficient visualization of lagrangian coherent structures by filtered amr

ridge extraction.IEEE Transactions on Visualization and Computer Graphics, 13(6):1456–1463,

2007.

[138] F. Sadlo and R. Peikert. Visualizing lagrangian coherent structures and comparison to vector field

topology. InTopology-Based Methods in Visualization II (Proceedings of TopoInVis 2007), pages

15–30, March 2009.

[139] F. Sadlo, A. Rigazzi, and R. Peikert. Time-Dependent Visualization of Lagrangian Coherent

Structures by Grid Advection. InProceedings of TopoInVis 2009 (to appear). Springer, 2009.

202 BIBLIOGRAPHY

[140] F. Sadlo and D. Weiskopf. Time-Dependent 2D Vector Field Topology: An Approach Inspired by

Lagrangian Coherent Structures.Computer Graphics Forum, 29(1):88–100, 2010.

[141] J. Sahner, T. Weinkauf, N. Teuber, and H.-C. Hege. Vortex and Strain Skeletons in Eulerian and

Lagrangian Frames.IEEE Transactions on Visualization and Computer Graphics, 13(5):980–990,

September - October 2007.

[142] W. T. S. G. Salzbrunn T., Jänicke H. The state of the artin flow visualization: Partition-based

techniques. In T. H. Hauser H., Straburger S., editor,In SimVis (2008), pages 75–92, 2008.

[143] S.Camarri, M. Salvetti, M. Buffoni, and A.Iollo. Simulation of the three-dimensional flow around

a square cylinder between parallel walls at moderate Reynolds numbers. InProceedings of XVII

Congresso di Meccanica Teorica ed Applicata, 2005.

[144] T. Schafhitzel. Image: 2D line integral convolution. http://www.vis.uni-

stuttgart.de/ger/research/proj/spp1147/lic/.

[145] T. Schafhitzel, E. Tejada, D. Weiskopf, and T. Ertl. Point-based Stream Surfaces and Path Sur-

faces. InProceedings of Graphics Interface 2007, pages 289–296, 2007.

[146] T. Schafhitzel, J. E. Vollrath, J. P. Gois, D. Weiskopf, A. Castelo, and T. Ertl. Topology-preserving

lambda2-based vortex core line detection for flow visualization.Computer Graphics Forum,

27(3):1023–1030, 2008.

[147] G. Scheuermann, T. Bobach, H. H. K. Mahrous, B. Hamann,K. Joy, and W. Kollmann. A

Tetrahedra-based Stream Surface Algorithm. pages 151–158, 2001.

[148] M. Schirski, C. Bischof, and T. Kuhlen. Interactive Particle Tracing on Tetrahedral Grids Using

the GPU. InProceedings of Vision, Modeling, and Visualization (VMV), pages 153–160, 2006.

[149] R. Schmidt, C. Grimm, and B. Wyvill. Interactive decalcompositing with discrete exponential

maps.ACM Transactions on Graphics, 25(3):605–613, 2006.

[150] D. Schneider, A. Wiebel, and G. Scheuermann. Smooth Stream Surfaces of Fourth Order Preci-

sion. InEurographics/IEEE VGTC Symposium on Visualization (EuroVis), pages 871–878, 2009.

[151] T. Schultz, H. Theisel, and H.-P. Seidel. Crease Surfaces: From Theory to Extraction and Ap-

plication to Diffusion Tensor MRI.IEEE Transactions on Visualization and Computer Graphics,

16:109–119, 2010.

[152] S. Shadden. Lagrangian Coherent Structures: Analysis of time-dependent synamical sys-

tems using finite-time Lyapunov exponents, 2005. http://www.cds.caltech.edu/ shawn/LCS-

tutorial/overview.html.

[153] S. C. Shadden, F. Lekien, and J. E. Marsden. Definition and properties of lagrangian coherent

structures from finite-time lyapunov exponents in two-dimensional aperiodic flows.Physica D:

Nonlinear Phenomena, 212(7):271–304, 2005.

[154] S. C. Shadden, F. Lekien, J. D. Paduan, F. P. Chavez, andJ. E. Marsden. The correlation between

surface drifters and coherent structures based on high-frequency radar data in monterey bay.Deep

Sea Research Part II: Topical Studies in Oceanography, 56(3-5):161 – 172, 2009. AOSN II: The

Science and Technology of an Autonomous Ocean Sampling Network.

BIBLIOGRAPHY 203

[155] J. Shade, S. Gortler, L. wei He, and R. Szeliski. Layered depth images. InProceedings of ACM

SIGGRAPH 98: Proceedings of the 25th annual conference on Computer graphics and interactive

techniques, pages 231–242, 1998.

[156] H.-W. Shen and D. Kao. UFLIC: A Line Integral Convolution Algorithm for Visualizing Unsteady

Flows. InProceedings IEEE Visualization 97, pages 317–323, 1997.

[157] C. Sigg, T. Weyrich, M. Botsch, and M. Gross. GPU-BasedRay Casting of Quadratic Surfaces. In

Proceedings of the Eurographics/IEEE VGTC Symposium on Point-Based Graphics, pages 59–65,

2006.

[158] J. Smagorinsky. General Circulation Experiments with the Primitive Equations.Monthly Weather

Review, 91:99–+, 1963.

[159] A. R. Smith. Paint. Technical Memo 7, Computer Graphics Lab, New York Institute of Technol-

ogy, July 1978.

[160] D. Stalling. Fast Texture-Based Algorithms for Vector Field Visualization. PhD thesis, Konrad-

Zuse-Zentrum für Informationstechnik Berlin, 1998.

[161] D. Stalling and H.-C. Hege. Fast and Resolution-Independent Line Integral Convolution. In

Proceedings of ACM SIGGRAPH 95: Proceedings of the 22th annual conference on Computer

graphics and interactive techniques, pages 249–256, aug 1995.

[162] C. Stoll, S. Gumhold, H. peter Seidel, and M. Planck. Visualization with stylized line primitives.

In In Proceedings of IEEE visualization 2005, pages 695–702, 2005.

[163] H. Theisel, J. Sahner, T. Weinkauf, H.-C. Hege, and H.-P. Seidel. Extraction of Parallel Vector

Surfaces in 3D Time-Dependent Fields and Applications to Vortex Core Line Tracking. InProc.

IEEE Vis, pages 631–638, 2005.

[164] H. Theisel and H.-P. Seidel. Feature flow fields. In H. Bonneau, Hahmann, editor,In Data

Visualization 2003: Proc. of the 5th Joint EUROGRAPHICS IEEE TCVG Symp. on Visualization

(VisSym), pages 141–148, 2003.

[165] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel.Saddle connectors - an approach to vi-

sualizing the topological skeleton of complex 3d vector fields. In G. Turk, J. J. van Wijk, and

R. Moorhead, editors,Proc. IEEE Visualization 2003, pages 225–232, Seattle, U.S.A., October

2003.

[166] H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seidel.Topological methods for 2D timedependent

vector fields based on stream lines and path lines. InIEEE Transactions on Visualization and

Computer Graphics, volume 11, pages 383–394, 2005.

[167] G. Turk and D. Banks. Image-Guided Streamline Placement. In Proc. Computer Graphics and

Interactive Techniques, pages 453–460, 1996.

[168] F.-Y. Tzeng, E. B. Lum, and K.-L. Ma. An intelligent system approach to higher-dimensional

classification of volume data.IEEE Transactions on Visualization and Computer Graphics,

11(3):273–284, 2005.

204 BIBLIOGRAPHY

[169] S. Ueng, K. Sikorski, and K. Ma. Efficient streamline, streamribbon, and streamtube constructions

on unstructured grids. InTransactions on Visualization and Computer Graphics, pages 2:100–

110, 1996.

[170] T. van Walsum.Selective Visualization on Curvilinear Grids. PhD thesis, Delft University of

Technology, The Netherlands, 1995.

[171] J. van Wijk. Image Based Flow Visualization for CurvedSurfaces. InIEEE Vis, pages 123–130,

2003.

[172] J. J. van Wijk. Spot noise-texture synthesis for data visualization. InComputer Graphics (Pro-

ceedings of SIGGRAPH 91), volume 25, pages 309–318, 1991.

[173] J. J. van Wijk. Flow visualization with surface particles. IEEE Computer Graphics and Applica-

tions, 13(4):18–24, jul 1993.

[174] J. J. van Wijk. Implicit Stream Surfaces. InIEEE Transactions on Visualization and Computer

Graphics, pages 245–252, 1993.

[175] J. J. van Wijk. Image based flow visualization. InProceedings of ACM SIGGRAPH 2002: Pro-

ceedings of the 29th annual conference on Computer graphicsand interactive techniques, pages

745–754, 2002.

[176] R. Verstappen and A. Veldman. Spectro-consistent discretization of Navier-Stokes: a challenge to

RANS and LES.Journal of Engineering Mathematics, 34(1):163–179, 1998.

[177] J. Villasenor and A. Vincent. An algorithm for space recognition and time tracking of vorticity

tubes in turbulence.CVGIP: Image Underst., 55(1):27–35, 1992.

[178] L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion

simulations.IEEE Transactions on Pattern Analysis and Machine Intelligence, 13:583–598, 1991.

[179] I. Viola, E. Gröller, K. Bühler, M. Hadwiger, B. Preim, D. Ebert, M. C. Sousa, and D. Stredney.

Illustrative Visualization. IEEE Visualization Tutorialon Illustrative Visualization, 2005.

[180] I. Viola, A. Kanitsar, and E. Gröller. Importance-driven Volume Rendering. InIEEE Visualization

2004 (Conference Proceedings), pages 139–145, 2004.

[181] W. von Funck, T. Weinkauf, H. Theisel, and H.-P. Seidel. Smoke Surfaces: An Interactive Flow

Visualization Technique Inspired by Real-World Flow Experiments.IEEE Transactions on Visu-

alization and Computer Graphics, 14(6):1396–1403, 2008.

[182] D. Weiskopf, K. Engel, and T. Ertl. Volume clipping viaper-fragment operations in texture-based

volume visualization. InIEEE Vis, pages 93–100, 2002.

[183] D. Weiskopf and T. Ertl. A Hybrid Physical/Device-Space Approach for Spatio-Temporally Co-

herent Interactive Texture Advection on Curved Surfaces. In GI ’04: Proceedings of the 2004

conference on Graphics interface, pages 263–270, 2004.

[184] D. Weiskopf, T. Schafhitzel, and T. Ertl. Real-Time Advection and Volumetric Illumination for

the Visualization of 3D Unsteady Flow. InProc. EuroVis, pages 13–20, 2005.

BIBLIOGRAPHY 205

[185] M. Weldon, T. Peacock, G. B. Jacobs, M. Helu, and G. Haller. Experimental and numerical

investigation of the kinematic theory of unsteady separation. Journal of Fluid Mechanics, 611:1–

11, 2008.

[186] A. Wiebel and G. Scheuermann. Eyelet Particle Tracing– Steady Visualization of Unsteady Flow.

In IEEE Vis, pages 607–614, 2005.

[187] A. Wiebel, D. Schneider, H. Jaenicke, X. Tricoche, andG. Scheuermann. Generalized Streak

Lines: Analysis and Visualization of Boundary Induced Vortices. IEEE Transactions on Visual-

ization and Computer Graphics, 13(6):1735–1742, 2007.

[188] S. Wiggins.Chaotic transport in dynamical systems. 1992.

[189] M. Wilczek. Image: Volume rendering of the absolute value of vorticity in fully devel-

oped turbulence. http://pauli.uni-muenster.de/tp/menu/forschen/ag-friedrich/mitarbeiter/wilczek-

michael/video-gallery.html.

[190] D. D. Y. Levy and A. Seginer. Graphical visualization of vortical flows by means of helicity.AIAA

Journal, 28(8), 1990.

[191] X. Yuan and B. Chen. Illustrating Surfaces in Volume. In Proceedings of VisSym’04, Joint

IEEE/EG Symposium on Visualization (Konstanz, Germany, May 19–21, 2004), pages 9–16, 337,

2004.

[192] M. Zöckler, D. Stalling, and H.-C. Hege. Interactivevisualization of 3d-vector fields using illu-

minated stream lines. InVIS ’96: Proceedings of the 7th conference on Visualization’96, pages

107–ff., Los Alamitos, CA, USA, 1996. IEEE Computer SocietyPress.

