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Abstract

Due to technological and algorithmic advances it is by nogsjiale to simulate com-
plicated 3D unsteady flows at a very high spatial resoluti@nfind relevant features
in such flows and, thus, to gain insight into the underlyingvffthenomena, effective
exploration mechanisms are needed. Especially intemeisual exploration environ-
ments are important, since they enable putting experts lagid ¢apabilities into the
center of the exploration process. This requires new piisigi to interactively guide
the exploration process by exploiting the humans’ perad@tnd cognitive abilities.

This thesis presents a framework for the visual exploradioBD unsteady flow fields
that addresses the aforementioned requirements. A vafiggdghniques for interactive
flow visualization has been developed, consisting of nowetepts as well as extensi-
ons of existing geometry-, texture- and feature-based fiswalization techniques.

We introduce techniques that allow to track huge particte ard to extract a lar-
ge number of characteristic lines as well as to generatetiadaptegral surfaces in
real time. We present a variety of advanced rendering moekthat allow to enco-
de additional flow properties into the extracted geometresentation and, thus, to
communicate even more information in a single visual event.

Particle tracing in 3D can quickly overextend the viewer thuthe massive amount
of visual information that is typically produced by this bedque. We alleviate this
problem by presenting importance-driven visualizatiachteques that automatically
reduce the amount of presented information to a detailew vie relevant features,
while at the same time preserving context information.

Streak surface extraction is a prominent tool for intexectiow exploration. How-
ever, to enable a feature-driven analysis of the flow, oneaisiyinterested in surfaces
that show separation profiles and, thus, detect unstabl&atdmin the flow. We in-
troduce a new method to interactively reveal such featuyesxiracting Lagrangian
coherent structures in a subregion of the flow domain and @&mg them as seeding



structures for the generation of generalized streak sesféicat reside on the boun-
dary layers of dynamically coherent regions. This concépwa to study large scale

transport behavior intuitively, as it reveals the evolntad the global flow geometry in

real time.

Furthermore, we introduce new techniques for interactiuéase flow visualiza-
tion, discuss a variety of geometry-based visualizatiehnejues for such fields and
present a view-independent, dense surface flow represemtat the basis of line inte-
gral convolution.

To achieve an interactive exploration environment for 3Btaady flows, we intro-
duce an asynchronous streaming strategy for a time-ratskguence of flow fields
and present parallelization strategies that effectiv&plat graphics processing units
as numerical co-processor. Feature extraction and thessige mapping to renderable
primitives are executed entirely on the GPU to facilitate tbal-time performance.

We conclude this manuscript with a brief digression intothaofield in scienti-
fic visualization, namely volume rendering. Here, we depedo interactive volume
editing framework. We present techniques to directly malaife or classify the under-
lying data and we employ patrticle tracing to compute a logalsurface parametrizati-
on, which in turn is used for advanced volume rendering dastiiation techniques.

As all approaches presented in this work rely on consumssdlardware, their ap-
plication is available to a wide range of users. The presketehniques allow scientists
to effectively explore scientific data sets interactivéhys giving rise to new possibili-
ties to gain insight in and communicate the findings of compleenomena.



Zusammenfassung

Dank technologischer und algorithmischer Fortschrittessheutzutage moglich, kom-
plizierte instationare 3D Stromungen in einer aussieosten raumlichen Auflésung
zu simulieren. Um relevante Strukturen in solchen Strogemzu entdecken und da-
mit Einsicht in die zugrunde liegenden Phanomene zu eelangerden effektive Ex-

plorationsmechanismen benotigt. Hierbei sind besondéssaktive visuelle Explora-

tionsumgebungen wichtig, da sie es erlauben, Experten Baert Auffassungsgabe
in den Mittelpunkt des Explorationsprozesses zu stellaes Derlangt jedoch nach
Moglichkeiten den Explorationsprozess interaktiv, duAzisnutzung der menschlichen
Wahrnehmungs- und kognitiven Fahigkeiten, zu steuern.

Diese Dissertation stellt ein Framework vor, das die irkiva visuelle Exploration
instationarer 3D Stromungsfelder ermoglicht und sambige Anforderungen erfllt.
Es wurde eine Vielfalt interaktiver Stromungsvisualigiggstechniken entwickelt, be-
stehend aus neuen Konzepten, sowie Erweiterungen bexeteerender Ansatze, in
den Bereichen der Geometrie-, Textur- und Feature-basi&tromungsvisualisierung.

Wir stellen Techniken vor, die es erlauben, grosse MengerPaotikeln interaktiv
zu verfolgen sowie charakteristische Teilchentrajektotnd adaptive Integralflachen
in Echtzeit zu extrahieren. Wir prasentieren eine Auswaltérschiedlicher Visualisie-
rungsmodalitaten, die zusatzliche quantitative Infation intuitiv vermitteln konnen.

Die Partikelverfolgung in 3D tendiert dazu, aufgrund ddmeen Flut erzeugter vi-
sueller Information, die menschliche Wahrnehmung zu lasegn. Wir lindern dieses
Problem durch die Einfuhrung neuecus+contexfechniken, welche automatisch die
Menge prasentierter visueller Information reduziereshe jedoch wichtige Zusam-
menhange erhalten konnen.

Streichflachen sind ein bedeutendes Werkzeug der inteeakBtromungsvisuali-
sierung. Um jedoch eine Feature-getriebene Analyse dem®ing zu ermoglichen,
sollten moglichst separierende Flachen extrahiert erdie instabile Mannigfaltig-



keiten aufdecken. Wir prasentieren ein neues Verfahras,ndait Hilfe der Lagrange-

schen Teilchendynamik—und Prinzipien der Morsetheoriehdkente Strukturen aus
einem Unterbereich des Stromungsfeldes extrahierthStdtektierte Strukturen wer-
den daraufhin als Partikel-Saatstrukturen zur Genergegemeralisierter Streichflachen
verwendet, die in den Grenzbereichen dynamisch kohar&egionen liegen und so-
mit besonders gut dazu geeignet sind das globale Trangplatten von instationaren
Stromungen in Echtzeit zu untersuchen.

Des weiteren wird eine neue Technik prasentiert, die eiteraktive Partikelver-
folgung in instationaren Oberflachenstromungen eldibgsowie darauf aufbauende
Geometrie- und Textur-basierte Visualisierungsanséirgestellt.

Um eine interaktive Explorationsumgebung fur instasie3D Stromungen zu ver-
wirklichen, wurde eine asynchrone Streaming-Technikz@itaufgeloste Sequenzen
von Stromungsfeldern enwickelt und die den Visualisiggtachniken zugrunde lie-
genden Algorithmen effizient, unter Einsatz von Grafikhaadky parallelisiert. Moder-
ne Grafikkarten bieten die Moglichkeit grosse Datenmenygassiv parallel zu verar-
beiten und sind somit besonders gut fur Partikelbasiertsafze geeignet. Weiterhin
hat der Einsatz von Grafikhardware zur Stromungsvisalisig den Vorteil, dass ex-
trahierte Stromungsmerkmale bereits im lokalen Speitibgen und somit direkt auf
darstellbare Primitive abgebildet werden konnen, ohretaliche Datenzugriffe auf
den Hauptspeicher des Systems zu benotigen.

Wir unternehmen am Ende dieser Arbeit einen kurzen Ausflgnnweiteres wis-
senschatftliches Visualisierungsgebiet, die Volumeralisierung. Hier stellen wir Tech-
niken vor, die eine benutzergestiutzte Klassifikation uagrentierung von volumetri-
schen Skalarfeldern ermoglichen, und wir zeigen, wie digilelverfolgung in solchen
Datensatzen eingesetzt werden kann, um eine lokale Paisiereing von Isoflachen
zu berechnen.

Alle Techniken, die in dieser Arbeit vorgestellt werdenpbtgen lediglich Stan-
dard-PC Hardware und stehen somit einer grossen Gruppe eoat&rn zur Verfu-
gung. Die prasentierten Techniken ermoglichen es Wedwsttlern effektiv und in-
teraktiv wissenschatftliche Datensatze zu explorierete(@nzureichern) und fuhren
somit zu neuen Moglichkeiten, Einsicht in komplexe volunsehe Erscheinungen zu
erlangen sowie gewonnenes Wissen untereinander zu korai@nam.
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Chapter 1

Introduction

Flow fields play an important role in a wide range of scientdiad industrial areas.
Just to give a few examples: in fluid dynamics, flow fields arepscial interest in the
study of gases and liquids in motion to understand the t@hg@havior around ob-
stacles or in intermixing processes. In medicine (or biplmggeneral), flow fields are
investigated to learn about basic processes appearirdgifiging organisms. Even in
fundamental research, the evolution of dynamical systerités studied by observing
the flow of interdependent parameters along trajectoripbase space.

Particle tracing is a standard tool employed in the studyughsfields, and the
history of its application ranges back to the first attempt8uid flow research itself.
Before the advent of non-intrusive flow measurement, coerpaitied reconstruction
and visualization techniques, real-world flow explorati@sed on the observation of
patterns revealed by the movement of tracer material iegeicito a flow was the only
way to shed light on internal phenomena. Even today, it isramon technique to
release nearly massless materials (such as dye, hydrogblebwr heat energy) into a
flow and to visually track their temporal evolution.

While the direct observation of real-world flow is still ofgmtical relevance, it can
only deliver a qualitative description of flow phenomenatdiled dynamics and pre-
cise mechanisms underlying the evolution of specific femtuemain rather unknown.
Furthermore, “global” flow phenomena are often governedieyimteraction of chaot-
ically appearing, interacting and disappearing featusash{ as vortices and eddies) at
a large range of scales. However, the human perceptionnsysteften overstrained
in detecting such features due to visual clutter introdumgdarge amounts of parti-
cles performing rapid directional changes. Yet, there isvag to slow down or halt a
real-world experiment under investigation and, thus, tolgtsuch features in detail.

1



2 CHAPTER 1. INTRODUCTION

Due to technological advances over the last decades, ng@aidas possible to
measure physical flow properties (such as velocity, densiyscosity) at a high spatio-
temporal resolution and, thus, to reconstruct a quantédtow evolution. In general,
flow field measurement techniques (such as particle imageveétry) also rely on
particle motion. They record the evolution of particles otimme and reconstruct a
discretized time-resolved velocity vector field by matghparticle sets in successively
obtained snap-shots.

Other scientific areas, such as computational fluid dyngrgeserate digital flow
data through numerical simulations. Here, physically pilale approximations of real
world flow are developed with the objective to verify fundante theoretical models.
Lagrangian models (such as smoothed particle hydrodyrs@again rely on a particle
metaphor to develop equations describing the fluid dynamics

Due to advances in flow reconstruction techniques and thariksreasing numeri-
cal capabilities, today, digitalized 3D unsteady flow fietdsprise billions of samples
and the sheer amount of information renders it impossiblgaia insight into com-
plex flow phenomena through statistical analysis of theltegudata. Thus, effective
techniques have to be developed to filter the informatioasgmting the observer an
intuitive insight on the data under investigation.

Scientific visualization is the field of research associatét the question of how
to map information represented in the form of numbers toalisepresentations:zlow
visualizationis the subarea of scientific visualization dedicated to tkeal investiga-
tion of flow phenomena. Over the last decades a variety ofifft flow visualization
classes has been developed. However, 3D unsteady flow fialgsrhoved only re-
cently into the focus of flow visualization and while for 2Dsteady and stationary 3D
flows many interactive techniques exist, here, this aspexblarely been tapped. Yet,
interactivity is of special interest in the unsteady case tduthe following reasons:

Firstly, preserving the time axis as an important featurthefdata set is advanta-
geous as the evolution of flow dynamics can be comprehendstintaitively if it is
visualized in a time-dependent context. Yet, to grasp the-{torrelation between flow
features, it is important to extract and display them in teaé. An animated visual-
ization clearly communicates the dynamics of extracted fiestures and the motion
parallax provides an excellent depth cue, thus, easingderstand the spatial correla-
tion between features interacting over time.

Secondly, occlusion is a problem inherent to the visualystfd3D phenomena.
Thus, it has been proven worthwhile to incorporate userangd into the steering of
the visual data analysis process. Occlusion problems caldweated by restricting the



visualization of phenomena to subregions of the flow doméen, to determine regions
of interest efficiently, features need to be extracted asglayed in real-time. Further-
more, if different views on the data set can be generatedilsapghe self-obstruction
of features in the focus region can be solved effectivelpugh camera interaction.
Moreover, the most suitable visualization modality for fieenomena under investiga
tion can be selected interactively.

Thirdly, interactive visualization techniques give scists the possibility to imme-
diately examine how changes to computational or experiatgratrameters affect the
flow phenomenon under investigation. This is a highly delsgeal according to the
observations made by McCormick [114].

This thesis focuses on the development of interactive Viesx@oration techniques
for 3D (unsteady) flow. The underlying velocity field and qtiges derived thereof
are of utmost importance in the study of flow as they revealytsamics. Hence, the
approaches presented in this manuscript adhere to themtasfoeector calculus.

The most fundamental building block of the algorithms pisgabin the following
is Lagrangian particle tracing. We employ this paradigmgpraximate line integrals
and, thus, to extract geometry- and texture-based flow septations. We will present
new concepts for these visualization classes as well as ppwaches for existing
methods that allow to obtain such representations inteedgteven in large 3D un-
steady flow fields.

We apply differential operators on the velocity vector fieddderive further flow
measures, and we incorporate these quantities into the fkwahzation process. We
encode such quantities not only into the visual represent& convey additional in-
formation, but we also employ them as importance measuieglteature extraction
to automatically reveal relevant flow features while at thims time preserving context
information.

Furthermore, we will combine differentiation and integpatto derive Lagrangian
flow quantities which are then used to extract feature-bfisedrepresentations. As
this class of methods is generally not suited for an intera@xploration environment
(due to the necessary intense pre-processing), we will sfmwaspects of feature-
based flow visualization techniques can be efficiently combiwith geometry-based
approaches to effectively reveal global flow phenomenaahtime.

To achieve an interactive flow exploration environmentpatyms underlying the
techniques presented in the following have been tailorepldmllel execution on graph-
ics processing units (GPU). GPUs have been introducedrregently to the main-
stream market and have developed rapidly from simple analdggital converters into
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full-fledged parallel stream processors that are almosfyfrprogrammable. Latest
models have a raw-performance of more than 1 terafloREE floating point single-
precision and, thus, outperform even state-of-the-artirnate CPU architectures by
far. Even though they are still dedicated graphic chipsttbatire programmers to fol-
low certain paradigms tailored to the needs of real-timefmater graphics and games,
they present a cost-efficient alternative—on average ks 500 $ for the current
high-end models—to supercomputers in terms of numericalgssing power.

Next to the raw computational power, which facilitates thal+time extraction of
flow features, executing visualization algorithms puraiytioe GPU yields another ad-
vantage. Data generated on a GPU resides in local video nyaandrcan be rendered
immediately without the need to communicate data betweerCfU and GPU, thus,
omitting potential bandwidth bottlenecks in the bus irdeef between the CPU, main
memory and graphics hardware.

Moreover, the techniques presented in the following carxbewged on commodity
PC hardware and can, thus, be integrated into the modemtistseworkflow at a rea-
sonable cost expenditure. The suitability of our proposethods has been approved
by experts from various research areas as well as in twaiatienal contests.

1.1 Contribution

We now give an overview of the following chapters. To achieveelf-contained
manuscript, we will start with two chapters providing balsiowledge to prepare the
reader unfamiliar with the research topics covered by tiesis.

First, we will introduce fundamental terminology with resp to flow fields and
fluid dynamics, motivate the field of scientific flow visualimen and present existing
classes therein. Furthermore, we introduce fundamergakétical concepts for flow
investigation and basic methods from mathematics usedghiut this thesis.

As the presented techniques exploit the numerical capabibf GPUs to attain an
interactive visual flow exploration environment, we willgmue with a broad overview
on the development of graphics hardware architectures apteh 3 and introduce the
rendering pipeline —i.e the underlying concepts to progoarsuch hardware— in close
relation to the graphics APl employed in the validation & groposed methods.

The remaining chapters discuss the academic contributieveloped in the course
of this dissertation and are closely related to work pulelisin a series of peer-reviewed
research papers:
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Chapter 4 describes how the patrticle tracing paradigm camdygped efficiently
onto the GPU's rendering pipeline and presents a streampimgpach for time-resolved
sequences of 3D unsteady flow fields. It exploits multi-coRtGrchitectures to de-
couple the visualization from data handling and, thus lifateés the real-time explo-
ration of such data sets. We discuss fundamental partasecrendering techniques
and present new strategies to extract and visualize tirperakent characteristic lines
interactively on the GPU. To emphasize the spatial relatign between flow struc-
tures and boundaries of the flow domain, we introduce foomstext visualization
techniques for polygonal models. Work presented in thiptdrahas been developed
in collaboration with Jens Schneider, Polina Kondratielens Kriger and Rudiger
Westermann and was published in [27]. Moreover, the predetdncepts have been
validated in the visual analysis of the Terashake 2.1 eadke simulation data in line
with the IEEE Visualization Contest 2006 [5].

Chapter 5 introduces importance driven particle techriédaeflow visualization.
Particle tracing in 3D quickly overextends the viewer dughe massive amount of
visual information produced by this technique. Thus, thiapter focuses on strate-
gies to automatically reduce the amount of information @nésd to the user while at
the same time revealing important structures in the flow. koduce an effective
clustering approach for vector fields which in turn is usedeoerate a sparse set of
static primitives depicting regions of constant motionhe flow. We employ scalar
flow quantities at different scales in combination with udefined regions of interest
to control the shape, appearance and density of particldsasthe user can focus on
the dynamics in important regions while at the same timegov@sg context informa-
tion. We introduce a new focus for particle tracing, so chl@chor lines. These lines
can be used to analyze local flow features by visualizing hawhrparticles separate
over time. This is of particular interest if the finite-timgdpunov exponent is used to
guide the placement of anchor lines. Work presented in tipter was published in
collaboration with Polina Kondratieva, Jens Kruger andiiger Westermann in [24].

In Chapter 6, we present techniques for the visualizationnsteady flows using
integral surfaces. We introduce new GPU-based algoritlorgeherate and display
adaptively refined streak surfaces. Two different appreadh generate such surfaces
are presented. The first approach computes a patch-badadestegpresentation that
avoids any interdependence between patches. Thus, tleswdnstruction stage can
be parallelized entirely but requires advanced rendegolriques to result in a closed
surface representation. The second approach computeti@deplased surface repre-
sentation with particle connectivity. To preserve pagticiterdependence during adap-
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tive refinement and coarsening, a multi-pass construaicmtique is employed which
results in a closed surface representation that can be neshadeitright as a triangle
mesh. Techniques presented in this chapter allowed for ii$idtifine the construction
and visualization of adaptive streak surfaces in real tineevaere published in collab-
oration with Florian Ferstl, Holger Theisel and Rudigerstéemann in [22].

Chapter 7 presents a novel approach that extracts segpsitgak surfaces in 3D
unsteady flow at interactive rates and, thus, facilitatessaally guided flow explo-
ration based on the concept of Lagrangian coherent steg{lwCS). Such structures
confine regions of coherent dynamics and are generally efast in the study of global
transport behavior. This approach avoids computing LCSini.&. 2D FTLE ridges.
Instead, LCS computations are restricted to a 2D manifolthenflow domain. We
present techniques to compute the FTLE on a planar probeatieely and introduce
a new 1D ridge extraction method that is specifically tadiaethe GPU. The extracted
ridges are then employed as seeding structures for a gexeerakreak surfaces inte-
gration to reveal separating structures in the flow. The vpodsented in this chapter
has been developed in collaboration with Florian FerstligeioTheisel and Rudiger
Westermann and was published in [42].

New techniques for the visualization of flow on surfaces bdlpresented in Chap-
ter 8. We introduce the Orthogonal Fragment Buffer (OFBpragle-based data struc-
ture used to represent arbitrary surfaces. We will show heangetry- and texture-
based flow visualization techniques can be applied to thig-@Rndly data struc-
ture to efficiently reveal surface flow phenomena. We preadwanced rendering ap-
proaches which employ the OFB to solve rendering issuesenhé geometry-based
surface flow visualization techniques. Moreover, we wikgent various new render-
ing modalities for geometric surface flow representatidwdditionally, we will use the
OFB to create a view-independent texture-based flow vizat@in on the basis of line
integral convolution. On the one hand, we employ LIC to vigaflow fields living
on a 2D manifold. On the other hand, we compute LIC in 3D (uahge flow but re-
strict the extraction and visualization to arbitrarily pled clip geometry positioned in
the flow domain. Work presented in this chapter has been olesdljointly with Jens
Kriuger and Rudiger Westermann and was published in [26].

In Chapter 9, we make an excursion into another field of sifiemisualization,
namely volume rendering. Here, we will show how the prese@BU-based concepts
can be applied to develop a framework for interactive volediing. We introduce
a volumetric paint metaphor that can be used for a user-dutiessification and seg-
mentation of 3D scalar fields, as well as interactive voluthestration. We employ
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particle tracing to place internal annotations on extiddse-surfaces and we extend
this technique to realize surface aligned cutaway-viewshShape-aligned windows
can be employed to effectively reveal internal surfacecstmes. All the techniques
underlying this framework have been developed in collaibmmavith Jens Kriiger and
Rudiger Westermann and were published in [25].

Finally, we summarize the topics covered by this thesis aveligteresting direc-
tions for future research work.

1.2 Research Publication Summary

This thesis does not cover all the research conducted inainese of my dissertation.
Several publications, containing mainly research on cderpyraphics related topics,
have been omitted. For the sake of completeness, this squtavides a list of all

academic research papers published during my work as a RdBrdgt My dissertation
is supported by the following peer reviewed publicatiorst€ld in chronological order):

1. Interactive Screen-Space Accurate Photon Tracing on GRldas Kruger, Kai
Burger, Rudiger Westermann; in Rendering Techniquesodtaphics Sympo-
sium on Rendering 2006 [89].

2. Interactive Visual Exploration of Instationary 3D-Flowsai Burger, Jens Schnei-
der, Polina Kondratieva, Jens Kriger, Rudiger Westermam Proceedings of
Eurographics/IEEE VGTC Symposium on Visualization 2007]]2

3. GPU Rendering of Secondary Effectsai Burger, Stefan Hertel, Jens Kriger,
Rudiger Westermann; in Proceedings of Vision, Modeling ¥isualization 2007
[23].

4. Importance-Driven Particle Techniques for Flow Visuatina: Kai Burger, Polina
Kondratieva, Jens Kruger, Rudiger Westermann; in Paiogs of IEEE VGTC
Pacific Visualization Symposium 2008 [24].

5. Direct Volume Editing Kai Burger, Jens Kriuger, and Rudiger Westermann; in
Proceedings of IEEE Transactions on Visualization and Gdaergsraphics 2008
[25].

6. Interpolating and Downsampling RGBA Volume Datartin Kraus, Kai Burger;
in Proceedings of Vision, Modeling, and Visualization 2(88].
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. Real-Time Approaches for Model-Based PIV and Visual Fluidlgsis Polina

Kondratieva, Kai Burger, Joachim Georgii, Rudiger Westann; in the book
Imaging Measurement Methods for Flow Analysis, Series:eNan Numerical
Fluid Mechanics and Multidisciplinary Design [85].

. Interactive Streak Surface Visualization on the GRai Burger, Florian Ferstl,

Holger Theisel, Rudiger Westermann; in Proceedings ofHHEansactions on
Visualization and Computer Graphics 2009 [22].

. Sample-based Surface Coloringai Burger, Jens Kruger, Rudiger Westermann;

IEEE Transactions on Visualization and Computer Grapluasijal 2009 [26].

Interactive separating streak surfacédorian Ferstl, Kai Burger, Holger Theisel,
Rudiger Westermann; in Proceedings of IEEE Transactiongisualization and
Computer Graphics 2010 [42].



Chapter 2

Flow Visualization Fundamentals

Instead of delving right into details of our developed taghes, we dedicate this chap-
ter to clarify terminology used throughout the work, intucé the basic building blocks
of the visualization pipeline and present a classificatimnvarious different visual
flow exploration approaches. We will finalize this chaptettvan introduction to basic
mathematical methods and a discussion of fundamentaldtiealrbuilding blocks em-
ployed throughout this work. The intention of this chapseta deliver a self-contained
manuscript. Readers unfamiliar with the field of visual floypleration will be given a
brief introduction to the most important areas—wrt. the kyaresented in this thesis.

2.1 Flow Field Terminology

As the termflow fieldis interpreted differently in various areas of science, wik w
first clarify the terminology used throughout this thesis.the majority of cases, the
termflowis related to the properties of a movifigid. In various technical sciences, all
gases, liquids and plasma are considered to be fluids andgpesent matter for which
even small externally applied forces cause a deformatigheoftinderlying molecular
structure Fluid flowscan be classified into different categories based on inhphssi-
cal properties. E.g., thdensity theviscosityand thevelocityare quantities of particular
interest in the study of fluid dynamics. Each of these quastitan be used to catego-
rize fluid flows into distinct classes as listed in the follogi

» Density: Based on the behavior of the fluid density, flows lsarclassified into
two categories, namelyompressibl@ndincompressibléow. If the fluid density
stays constant under all conditions, the flow is considenedmpressible. In
general, all liquids as well as gases moving at slow velegiéire presumed to be

9
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incompressible. However, if changes in pressure affectiémsity of a fluid, it is
considered to be compressible. Compressible fluid flows @menonly subject
to the study of phenomena at supersonic (or hypersonicties.

Viscosity: The viscosity of a fluid is the property abstragtfrictional forces
acting within the flow. It is a measure of the resistance ofid theing deformed
by shear stress or tensile stress. Thus, it describes asfhaisistance to “internal
flow”. If internal frictional forces are very strong, a fluid calledviscous Fluids
having no resistance to shear stress are known as an idehfldiare classified
asinviscid Gases are commonly regarded as inviscid fluids, whereaigdiguch
as oil or syrup are considered highly viscous.

Velocity: The flow velocity, or more precisely the ratio afteng inertial forces
to viscous forces, is generally used to categorize flows enée@ping laminar

or turbulentregimes. In fluid mechanics, the Reynolds numReiis a dimen-
sionless number measuring this ratio and it is generallyleyep to perform the
classification.

Creepingflow occurs at low Reynolds numbeRRg< 1) and it is dominated by
viscous and acting pressure forces. This regime takes pidtmv experiments
conducted at microscopic scales, e.g. the swimming of margamisms or in the
flow of viscous polymers in general.

Laminarflow occurs at increased velocities and is characterizedvigla range
of Reynolds numbers. Within this regime, a fluid flows in pleldayers (without
disruption between the layers) and it can continue to moes éurther due to
internal inertia forces although external forces ceaseitt.eCreeping flow can
be considered an extreme case of laminar flow where viscéestefare much
greater than inertial forces.

Turbulentflow occurs at even higher velocities and it is charactertaedhaotic
property changes, e.g., rapid variations of pressure dodityein space and time.
Turbulent flow is dominated by inertial forces and, consedlyefrictional forces
can be disregarded. Random and instable flow patterns areemito this regime,
unsteady eddies and vortices appear on many scales aracinteth each other.
The flow conditions in industrial equipment (such as pipeduats) correspond
to the turbulent flow regime. Additional examples for tudmtl flow are wind-
tunnel experiments (studying the external flow over all kih@bstacles such as
cars or airplanes) or the mixing of warm and cold atmospHhayiers.
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Figure 2.1 Left: A sketch by Leonardo Da Vinci based on flow observatifinsage under
the Wikimedia Commons licence). Middle: Dye in water viszeg a round jet in a cross flow
(Image courtesy of T.T. Lim, NUS [74]). Right: Smoke injextireveals a wake vortex behind
a starting airplane (image courtesy of NASA [29]).

In fluid mechanics the term flow field is commonly defined from Bulerian point-
of-view as the collection of all properties of a fluid definedenthe whole spatio-
temporal domain [128]. The collection of flow properties t@ons scalars (pressure,
density, viscosity), vectors (velocity and acceleratias)well as tensor values (stress
and strain).

Another common definition of the term flow stems from the eatlapproaches to
understand phenomena appearing within fluids under thesimfkl of external forces.
First scientific attempts to understand the internal stmat¢tbehavior of moving liquids
are based on the induction of substances—consisting of,smeally “massless” par-
ticles, so called tracers—into the liquid and the obseovadf their trajectories. The
advection of particles in currents within the flow shedstligh the local velocity mag-
nitude and direction of matter. Moreover, the observatiotheveloping patterns by the
deformation of tracer material can reveal transport beiraati different scales and is,
thus, well suited to gain insight into the global flow geomiekigure 2.1 depicts three
examples for flow phenomena revealed by the movement otfattacers. From this
perspective, the term flow denotes the motion appearingmatfiuid (or fluid dynam-
ics). The fluid motion in advection is described mathemégiaes a vector field, thus,
within the context of particle tracing the term flow field isnemonly related to the
underlyingvelocity vector field

Since this thesis focuses on the visualization of flow phesmaron the basis of the
particle tracing paradigm, we relate to the second defmi#toamely velocity vector
fields and eventually quantities derived thereof—whenexeewill refer to flow fields
in the following.
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2.2 The Visualization Pipeline

The visualization pipelinedescribes the whole process of creating visual representa-
tions for scientific data. As shown in Figure 2.2 it can be lerokown into four stages,
starting with the generation of data and ending with a visepresentation. In the
following we will describe its stages in strong relation twlvisualization.

e . o ; A\
Data Processing w ( Flow Visualization Techniques
Measurements, Raw Visualization Rendering Visualization
Simulations,.. Data Data Representation (image, video)

Data

Figure 2.2 The (Flow) Visualization Pipeline: Starting with infornia obtained through
experimental measurements or numeric simulations, ttee(daten) traverses four processing
stages (red) until results in the form of a visual representaare obtained.

N

The pipeline starts with théata acquisition With respect to the visualization of fluid
flow, data is either acquired through experimental flow messents or numerical flow
simulations. Theaw datais usually not appropriate for visualization. Only partshod
raw data might be of interest during the visual exploratimtpss or a distinct data for-
mat is required. Théltering stage prepares the data for visualization. It performsstask
like clipping, segmentation or resampling to bring the data the desired format, and
it usually reduces the amount of data being processed iressise stages. Common
operations in this stage employ smoothing and interpalagigorithms to determine
missing values or to correct erroneous samples and resihié wisualization data In
themappingstage the input data is mapped to renderable primitives, Eagticles are
advected in the velocity field and visualized as point priveg, or a differentiation on
the vector field is performed to detect certain featuresaratmapped to iconic shapes.
The renderingstage performs the last step in the visualization pipelyn@tojecting
the renderable primitives onto an image that is finally pnésgto the user.

2.2.1 Data Acquisition

In the context of flow visualization, the data is usually ertacquired through physical
flow measurements of real-world experiments or given asdbelt of numerical flow
simulations. Flow data sets comprise multifield data représg scalar quantities like
density, vector quantities like velocity or even tensouesllike stress and strain.
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Flow Measurement and Reconstruction

A common class of techniques to measure real-world flow ied&ulsed-Light Ve-
locimetry (PLV). Particle Image Velocimetryshort PIV) is subject to this class and
follows principles of photography to reconstruct a flow ety vector field. PIV is a
non-intrusive PLV technique that evaluates the displacgmgparticle tracers within
a certain time intervaht to construct an instantaneous velocity map of the whole flow
domain. The PIV technique requires a laser—illuminatingiple@s moving along the
flow—and a camera recording at least two images at succasswetepg andt + At.
These images are then divided into tiles of uniform flow mogatrand each tile will
result in one velocity vector representative for the whidéedtrea. Each tile, commonly
called interrogation window, contains a discretized fiorctin the form of per-pixel
intensity values of light scattered by particle tracershe flow. Cross-correlation is
then applied to find the matching function of an interrogatiendow in the successive
PIV image and the velocity vector is given by the shift thatésessary to translate a
function in the PIV image captured at tinheo its position in the image captured at
t +At. Two or multiple cameras and additional registration tamlesrequired to re-
construct 3D flow velocity fields. Besides cross-correlataptical flow techniques or
model-based approaches are commonly applied to recongtaucelocity field. For a
thorough overview on real-world flow measurement and reicocison techniques, we
refer the reader to [84].

Computational Fluid Dynamics

Over the last two centuries, scientists have developedgdiysplausible sets of equa-
tions describing the motion of fluids, e.g., the Euler andiBia$tokes equations. The
Navier-Stokes equations consist of a set of partial diffead equations (PDES) de-
scribing the motion of fluids based on the motivation thatngjes in momentum are
the product of changes in pressure and dissipative visaoasd acting within the fluid.
However, so far the existence of a closed form solution oiNbheier-Stokes equations
has not been discovered [41] and the only way to solve thesatiegs is by means of
numerical methods. Computational fluid dynamics solve thei®&t-Stokes equations
in numerical simulations. A detailed introduction to flownsilations is beyond the
scope of this chapter, as this thesis focuses on the vispération of existing data.
For a thorough overview on computational fluid dynamics, @ferrthe reader to [54].
Turbulent flow produces fluid interaction at a large rangeeofth scales. Different
solution methods exist, varying in the approach taken tératisturbulent motion at
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small scales. In the course of this thesis, various flow fielitained with the following
methods have been employed to validate the usefulness pfékented techniques:

 Direct Numerical Simulations (DNSh this technique the Navier-Stokes equa-

tions are resolved at all relevant scales of turbulent motsm no (turbulence)
model is needed for the smallest scales. This makes DNS atioi the com-
putational most expensive, both in terms of memory consiomaind arithmetic
operations. The simulation resolution depends on the RédgmumbeRe The
number of arithmetic operations required to complete thaukition is propor-
tional to the number of spatial samples and the number of staps, and in
conclusion, the number of operations growsRE8. For the average Reynolds
numbers encountered in industrial applications, the cdatjfmnal resources re-
quired by a DNS would even exceed the capacity of the larggsrscomputers.
Hence, DNS simulations are barely used in practice but demaiubject to fun-
damental research at small scales.

Reynolds-averaged Navier-Stokes Equations ((U)RANS3$ technique is pri-
marily used while dealing with turbulent flow, and it is basedtime-averaged
equations of motion for fluid flow. Through Reynolds decontas, flow vari-
ables (like velocity) are separated into a mean (time-gegfacomponent and a
fluctuating component. An ensemble version of the goverequations is solved,
which introduces new apparent stresses. The so called Risysteess is a nonlin-
ear stress term that requires additional modeling to closé&iANS equation for
solving. (Unsteady) RANS simulations employ turbulencedeis and resolve
only unsteady mean-flow structures.

Large Eddy Simulation (LES)his method requires less computational effort
than DNS but more effort than RANS methods. LES simulatiaisutate only
the large scale motions of a flow. Effects on sub-grid scatesn@odeled us-
ing a so called sub-grid scale (SGS) model. An SGS term, wikicommonly
defined by the Smagorinsky model [158], is added to filtereddtsStokes equa-
tions. Unresolved turbulence scales are compensated ladthigon of aneddy
viscosityinto the governing equations. The main advantage of LES cwerpu-
tationally cheaper RANS approaches is the increased Iédeltail it can deliver.
RANS simulations provide "averaged” results, whereas Lia&ikgtions are able
to predict instantaneous flow characteristics and resahpeitent flow structures.
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2.2.2 Filtering

The filtering stage is responsible to reassess the raw ddéztead in the acquisition
stage and to bring it into a format convenient for visualmat Especially measured
data is prone to contain erroneous samples, thus, averagisignoothing algorithms
are applied to remove outliers from—or determine missimgas in—the input data.
The flow domain is commonly reduced to a region of interesetrelase the amount of
data processed in successive stages of the visualizapehn@. User guided clipping
or segmentation algorithms can be used to determine theuddtx investigation.
Furthermore, resampling methods are subject to the fijestage to change the
underlying representation of a flow field as well as its resotu Discretization meth-
ods used to solve the Navier-Stokes equations result iardift flow data representa-
tions. Finite-difference methods (FDM) or the Lattice-Bahann-Method (LBM) de-
liver structured grids, whereas finite-element (FEM) orténiolume methods (FVM)
typically result in unstructured grids. On structured gritie connectivity between
samples is implicitly given, whereas unstructured gridstam an irregular topology.
In practice, the grid type a flow field is given on depends oretim@loyed simulation
or measurement technique applied to obtain the data. A \engety of grids is used in
practice, which are commonly variations of the basic grgktyshown in Figure 2.3.

(a) cartesian (b) uniform (c) rectilinear (d) curvilinear (e) unstructured

Figure 2.3 Basic grid types.

In cartesiangrids, distances between grid points are constant and egadldi-
mensions. Mapping grid locations to world-space is very, &sit requires an identical
scaling in all dimensionsUniform grids also feature constant distances between grid
points along one direction, however, the sampling distasecet equal in all dimen-
sions. Grid cells have a cuboid shape, and a mapping to woalckesis given by scaling
the coordinates of a sample point individually by the sanpoliet distances in the re-
spective directions.

These types of grids are the most appropriate choice foractiee flow visualiza-
tion, as (trilinear) interpolation enables fast accessatta ét arbitrary locations in the
flow. Due to fast point location and interpolation, the contapion of numerical deriva-
tives is also very fast. Both types of grids can be stored int&f@ures on graphics
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hardware and GPU-based operations on such data are extrefin@ent due to hard-
ware supported trilinear interpolation.

In rectilinear grids, even distances between sample points along ondidire@ary.

In fluid mechanics, rectilinear grids are often used to santipé flow domain adap-

tively, e.g., regions of interest like boundaries or vortetachment regions are simu-
lated/sampled at higher resolutions. Mapping a sample ttdvepace becomes more
complex as it requires a mapping function for each grid disiam

An adequate sampling of curved surfaces requires a largéutes) even for rec-
tilinear grids. In such cases it makes more sense to empbtoy\alinear grid that is
aligned to the curved shape. However, mapping a grid poimtaidd space becomes
even more complicated.

Due to the implicit connectivity between adjacent sammésictured grids can be
stored efficiently and a point location requires only fewesses to the structured data.
Unstructuredgrids can be employed to sample even complex shapes effjcanthey
allow the most flexible choice for the local sample densitypwdver, point location
becomes rather complex.

2.2.3 Flow Visualization Techniques

This section covers the last two steps in the visualizatipalme, namely thenapping
of the visualization data to renderable primitives andrémeleringinto the final image.
A large variety of techniques for the quantitative and visunlysis of flow phenomena
has been developed over the last decades and the field of fkwalmation is still
a vivid research area. According to [96] quantitative flowudlization approaches
can be broken down into four classes. In the following we widissify them even
further into two main categories, namealgnseand sparsevisualization techniques.
The classification is shown in Figure 2.4 and explained inexdatail in the following.

Dense Techniques

’I Direct Visualization |

,! Texture-based Visualization !

Sparse Techniques

Flow Field Data

.! Geometry Extraction |—>| Visualization |

Image Representation

r 1
,! Feature Extraction |—\ 4,!_ Geometry Extraction ;\_—:| Visualization !

Figure 2.4 Flow visualization classes: Dense methods (top) can bgaared into direct (red)
and texture-based (green) methods. The class of sparseaahps (bottom) can be broken
down into geometric (blue) and feature-based (yellow) flisualization techniques.
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Figure 2.5. Direct flow visualization examples: Left: Arrow shaped actield glyphs in
3D (image courtesy of Laramee et al. [97]). Middle: Combmatof arrow plots and color
coding in 2D (image courtesy of Kirby et al. [80]). Right: 3Dlar coding of vorticity in fully
developed turbulence (image courtesy of M. Wilczek et &9

Dense flow visualizatiotechniques deliver a single representation for the whoie flo
domain and can be classified into following two sub categorie

Direct Flow Visualization

Direct methods avoid extensive pre-processing and vizaidiie data directly. These
techniques are also callgtbbalapproaches, as they are commonly applied to the entire
flow domain or a large part of it. Arrow plots depicting velgoailirections or the color
coding of scalar flow quantities such as the velocity magiatiall into this category.
Direct visualization techniques can deliver intuitivenegentations for 2D flows fields.
E.g., the work by Kirby et al. [80] (see Figure 2.5 (middle®naonstrates the effec-
tiveness of direct visualization methods within the scop2flows, as they combine
arrow plots with color coded imagery to depict multiple flovoperties at once.

In 3D, however, global techniques struggle to deliver anitivie flow representa-
tion. The sheer amount of visual information contained in&8Bw plots generally
leads to self-obstruction and results in visual cluttercl@sion is an inherent problem
to the simultaneous portrayal of information at every samalint in the 3D spatial do-
main, thus, selective visualization strategies have toppdied. Boring and Pang [13]
introduced a filtering mechanism for 3D arrow plots, whenengiives pointing in a
user defined direction are highlighted. Clipping geomstaiee also commonly applied
to restrict direct methods to subregions of interest in tbw flomain.

Volume rendering in 3D is the natural extension to 2D colating. Yet, in contrast
to typical scientific areas in which volume rendering is &xp(such as medicine), flow
field data is often very smooth. Thus, the mapping of opa@tyomes much more dif-
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Figure 2.6. Texture-based flow visualization examples: Left: 2D LIC b tflow around a
cylinder (image courtesy of Schafhitzel et al. [144]). MetdLIC in 3D flow in combination
with a clipping plane (image courtesy of Rezk-Salama etl&3]). Right: LIC visualization of
a synthetic vector field on a surface (in combination witloarglyphs).

ficult as meaningful transfer functions cannot be specifeegily The first application
of volume rendering in the context of flow visualization hagb presented in the early
nineties [34]. Later, ray casting was applied to vector §efd[45]. Non-photorealistic
volume rendering techniques have been presented in [39¢ fif$t interactive ap-
proaches, exploiting GPU hardware to speed up the volundererg process, were
introduced in [31, 51].

Texture-based Flow Visualization

Texture-based techniques employ color convolution to ggae single flow field rep-
resentation revealing directional information. The gah&tea is to selectively blur a
reference image as a function of the vector field to be diggawhere the reference
image (in 2D) or volume (in 3D) usually consists of spatiallycorrelated data (e.g.,
a random noise distribution) defined over the whole flow dem&pot noise [172]
and line integral convolution (LIC) [28, 161] technique8 fato this category. While
providing a detailed view on flow features, texture-basethods tend to require time-
consuming calculations. Lately, several authors proptsegploit the GPU to achieve
significant speed-ups [71, 184, 101]. For a thorough intctida to texture-based flow
visualization techniques we refer the reader to [97].

As these techniques yield a single representation for th@enfow domain, they
suffer from self-obstruction in 3D. Thus, the process isaliguestricted to regions
of interest such as vortex regions [184] or stream surfat86][ The restriction to
regions of interest culminates in image-based technidLi&k, 8], which trade highly
interactive frame rates versus artifacts due to the scaéigned nature of the regions.
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Figure 2.7. Geometry-based flow visualization examples: Left: Stréads, Middle: Streak
surface, Right: A semitransparent path surface (imagdesyiof Garth et al. [48]).

Traditionally, unsteady fields are problematic, since iha@t a priori clear how non-
instantaneous characteristics such as streak or pathdamebe integrated into dense
methods [43, 156]. The problem of spatio-temporal coheréaanostly treated by
a recent publication [184], but at considerable effort. uFgg2.6 depicts exemplary
visualizations results obtained with the LIC technique.

Sparse flow visualizatiomethods extract characteristic flow features only at specifi
carefully selected locations within the flow. Following sldsses fall into this category:

Geometry-based Flow Visualization

Geometry-based methods rely on the particle tracing pgmatlh integrate discretized
subregions in the flow domain over time, which are then digaausing geometric
objects. A wide range of visualization techniques—empigysubregions of different
dimensionality—has been developed over the last decades.

Particle tracing [136, 21] and the visualization of momeyntaacer positions by
individual representatives fall into this category. Dagphg a huge amount of particles
as single point primitives interactively has proven a wettile approach to observe
dynamics in flow. Representing each particle through movamced shapes, e.g. ar-
rows depicting the local velocity direction, even improvegyrasp flow phenomena
intuitively. Next to the shape, the size, color or opacityagdrimitive can additionally
be used to display further scalar flow quantities.

The extraction and display of characteristic lines [95§ (estream, path or streak
lines) is also a prominent tool in geometry-based flow viga#ibn. Again, advanced
geometric shapes can be used to display additional flow cteaistics. E.g., ribbons
can be employed to show the rotation about the flow axis or shbped geometry can
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Figure 2.8 Feature-based flow visualization. Left: Volume renderifigroF TLE field (image
courtesy of Garth et al. [47]). Middle: Critical points, seation curves and saddle connectors
in the Benzene data set. Right: Critical points and saddfmectors in the flow behind a
circular cylinder (images courtesy of Theisel et al. [165])

be used to depict additional scalar flow quantities such es¢hocity magnitude by
adapting the tube thickness accordingly.

Thanks to increased computational resources, integrial@s—such as path, streak
or time surfaces—have moved into the focus of interactivangsric flow visualization.
E.qg., for stream and path surfaces, the main idea is to ategn advancing front in the
flow and apply if necessary an adaptive refinement or coargeaiit. For a thorough
overview on all kinds of integral objects, we refer the readd115].

Geometric flow visualization methods particularly depenguooper seeding strate-
gies [167, 123] prior to integration. Localized probing apgtors mimic the injection
of external material of real-life windtunnel experimentslaombined with interactive
visual feedback, they have been proven to be a conveniergféeadive method to ex-
plore complex dynamic flow structures [90]. Detailed ligsnof related work in the
field of geometric flow visualization methods are given in thepective sections of
Chapters 4-7. Exemplary geometric flow visualizations am in Figure 2.7.

Feature-based Flow Visualization

This class of techniques lifts the visualization to a higlesrel of abstraction by ex-
tracting physically meaningful patterns such as topolalgstructures and skeletons
from the data set. Features are phenomena that are of particterest for a certain
problem. In the context of fluid flows, exemplary importaratiges areortices shock
wavesrecirculation zoneshoundary layerandattachmenbr separation linesFor an
introduction to and a thorough overview on related work etfee-based visualization
techniques, we refer the reader to [99, 129, 142] (exampéesteown in Figure 2.8).
The first step in feature-based visualizatiofeigture extractione.g. on the basis of
image processing, the detection of characteristic phlypatéerns, selective visualiza-
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tion approaches [170] or the conceptveictor field topologyThe latter approach was
introduced by Helman and Hesselink [64] in 1989 and covezsctincepts of critical
points, separatrices and closed orbits. Since then, atodatiof related methods has
been developed for steady flow fields.

In unsteady flow fields difficulties known as tlwerrespondence problemrise.
Here, features are objects that evolve over time, thus,diregspondence between fea-
tures in successive time steps has to be determined. Marebeegoal of feature
tracking is to describe the evolution of features througtetias certain events can oc-
cur, such as the interaction of multiple features or sigaifichape changes of a single
feature. If features are extracted in separate time stepgendependence is generally
determined on the basis of region or attribute corresparelen

Lagrangian feature detectios another prominent approach. From the Lagrangian
point-of-view the fluid is described by the motion of parisl As these methods an-
alyze trajectories, they are inherently suited for unstdamvs. The finite-time Lya-
punov exponent (FTLE) is the most prominent Lagrangiarufeadletector and will be
thoroughly introduced in Section 2.5.3.

Space-time domain approachkandle the problem of detecting features in time
dependent data by lifting this problem into a higher dimensi.e., by interpreting the
time as an additional axis and thereby assuming the steadyagmin. This approach
allows a clear definition of path lines by means of streamsliliged to the higher-
dimensional case. For exampfeature flow field$164] are specially designed vector
fields in 4D space-time that capture parts of the topologidarmation (critical points,
periodic orbits, vortex axes) in its temporal evolution.adking features in unsteady
flows is one of their main application [165, 166, 163].

Let us mention further feature detection classes such abattic and multi-field
approaches or local methods. Local methods work on pois¢-wiformation, including
higher order derivatives. For example, ridge extractiomf~TLE data was proposed
in [153] and has become and established tool for the deteofibagrangian coherent
structures(LCS). The theory of and extraction methods for LCS will beadissed in
more detail in Section 2.5.

Feature extraction generally results in a binary dataseicating whether points in
the flow domain belong to a feature or not. This binary datzaetthen be visualized,
e.g., with iconic oriented geometric objects or by iso-acek of binary regions.

Feature-based flow visualization techniques can achiegega bata reduction (in
the order of three magnitudes), but generally require Begire-computations. Since
the reduction in data is generally content-based, impoiméormation does not get lost.
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2.3 Mathematical Basics

This section introduces basic methods from mathematics(yneector calculus) and
the relevant theory from flow visualization used throughibig thesis. We will start
with an introduction to Lagrangian particle tracing andcdss numerical integration
schemes used to approximate the solution of the ordinafgrdiftial equation under-
lying this method. We present trilinear interpolation tdab continuous values from
flow fields discretized by uniform grids, and finite differ@mgschemes to approximate
derivatives in such data sets. Furthermore, we mentionghsaimation of first- and
second-order derivatives as well as analytic solutionseé@tgenvalue problem of small
symmetric matrices. Let us note that this section is nonithéel to be a comprehensive
guide to the respective topics, but rather lists methodssuatied for the development
of an interactive flow exploration environment.

2.3.1 Particle Tracing

In the following we will assume that a 3D unsteady flow field rgeg in the form of
a velocity mapv of the fluid, which assigns a velocity vector to each pomt) in its
spatial Q) and temporallll) domains:

v(p,t):QxM—=R3 peQCR3 teNCR.

Tracking a (massless) particle through the flow field comesls to the solution of the
first-order differential equation with the independentahlet (representing time):

dX(t,to, Xo)

= V(X(t,to,Xg),t) . (2.1)

Here, the tangent to the particle trajectory is denoteﬂi‘—%“x—f’). The dependent vari-
able, i.e. the time-varying position of the particle inlizad at positiorxg in space and
time to, is represented by(t,tp,Xo). To avoid notational clutter, we will often omit
explicit references tty andxg in the following and simply write(t). In order to solve
this equation we can express it in integral form:

t
X(t,to,X0) = Xo+ V(X(T,t0,X0),T) dT . (2.2)

T=tp

In the study of dynamical systems, flow fields are often dbsdriin a closed form
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and equation (2.2) can be solved analytically. Reconstduas well as simulated flow
fields, however, are commonly represented by a discretef setnaples over the flow
domain. Thus, we have to rely on numerical integration s&ssto find an approxima-
tion to the solution. The fastest approximation is given ljeEs method:

X(t+At) = x(t) +v(x(t),t)At . (2.3)

Here, the position of a particle at tinhe- At is given by the sum of the previous posi-
tion x(t) and the velocity vector at the corresponding position infibv field scaled

by an incremental time steft. However, by regarding the taylor expansion (2.8) of
equation 2.3 arountl one can see that the Euler approximation introduces am erro
per step on the order aP(At?). Consequently small increments in time have to be
chosen. Higher order integration schemes yield smallergiwn a per step basis at
increased computational costs with respect to arithmeterations and memory ac-
cess [32]. With increasing computational numerical precgspower of GPUSs, it has
proven worthwhile to employ the explicit Runge-Kutta inmagr of fourth-order to ap-
proximate the solution of the ordinary differential eqoati Here, the error introduced
on a per integration step basis is in the orde®g\t®), and it is widely accepted as
optimal compromise between numerical accuracy and cortipngh performance. It

is given as:
At

X(t+At) = x(t) + s (k1 +2ko + 2k3+Kg) , (2.4)
where
ke =v(x(t),t),
ko = Vv(X(t) + &k, t+ 4,
k3 = V(X(t) + ko, t +2)
ks =v(X(t) + Atks, t +At) .

Another class of integrators, so called embedded schengg better results with
respect to accuracy and speed. Within this class, the lotegnation error is used to
adaptively change the integration step size. An exemplaggration scheme is the
RK3(2) integrator [12]. However, in interactive environm®, the distance a particle
moves during one advection step should be in accordancesttmt¢al velocity mag-
nitude. Therefore, adaptive schemes require a varying sumibintegration steps to
adhere to a fixed time interval. Due to this fact, embeddedmsels do not map well
to the parallel data processing paradigm of GPUs as theysemawarying load on the



24 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

parallel execution units. While one unit might calculatéyame integration operation,
others might have to perform multiple operations, thudlistagrouped units running
in a lock-step execution mode.

2.3.2 Characteristic Flow Lines

Three distinct types of characteristic lines are commonipleyed to depict flow phe-
nomena in unsteady 3D flow:

* Path lines A path linexpath represents the trace left by a particle induced into
the time-varying flow field and can be obtained by the follogvimtegration:

t

Xpath(t,to, Xo) = Xo + t V(Xpath(T,to, Xo), T) AT . (2.5)
T=lp

o Stream lines A stream lineXsiream describes an instantaneous particle path,
which is the trajectory of a particle in an unsteady flow frozd times. It is
obtained as follows:

t
Xstrean{t7t07 XO) - XO + V(Xstrean{Ta t07 XO>7 S) dT . (26)

T=tp

 Streak lines In contrast to path lines and stream lines, streak linesada@pict
the history of a single particle moving with the flow. This &ypf line originates
from real-world experiments where external materials arestantly induced into
the flow and the occurring patterns are observed. As streak tiescribe the path
traced by dye or smoke continuously released into the flaay, éine defined by the
current location of all particles that have passed throufikea spatial position
at a succession of previous timgsar, teng/- TO Obtain a streak line, particles at
successive time stepgart < tj <tengare released from the starting locatigyinto
the flow and their current position can be obtained with equa.5. Connecting
successively released particles forms the streak line.

In flow visualization, integral curves are commonly appnoated through numerical

integration, resulting in a discrete set of consecutiverabpoints. Geometry-based
techniques then use this set to construct a piecewise cantshgeometric representa-
tion and texture-based approaches use it to collect intevelues along a trajectory.
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2.3.3 Flow Field Interpolation

As already mentioned in Section 2.2.2, cartesian and unifprds are the most appro-
priate choices to represent flow fields in an interactive flisualization environment.

In contrast to unstructured grids where the cell contaiamarbitrary point in the flow

domain generally has to be searched (e.g., by traversinglaptiae data structure),
here, finding the indices of the corresponding grid cell nexpuonly a per component
scaling of coordinates. Furthermore to obtain continuaunstion values, i.e. flow field

guantities at arbitrary locations in the flow domain, anrptdation has to be applied.
In structured data sets, each cell is encircled by the sametof grid nodes and their
location is inherently encoded in the data structure.

The 3D unsteady flow field data sets used in this thesis aregsepted by a time-
resolved sequence of velocity data with spatial samplestbarecartesian or uniform
grids. Bex = (Xp,Yp,Zp)" an arbitrary point in the flow domain. To obtain the velocity
vectorv(x) from one of the discrete time-steps, we apply trilinearripdéation between
the eight adjacent samples € Xp < Xi11,¥i <VYp <Vi11,z < Zp < Zy1):

(1-y) v(X,Yi,2)
(1-y) V(Xit1,Yi,2)
(1-y) Vv(%,Vi+1,2)
(%i,Yi,Zi+1)
(

(

(

v(

—~~
[
|
Q
=3
=
|
=
<
<

(1-a)By Vv(X,Yi+1,Z+1)
a(l-B)y Vv(Xi+1,YiZ+1)
aB(l-y) v(Xi1,Yi+1,2)
Xi+1,Yi11,Z+1)

+ 4+ + + ++ 4

whereAx, Ay, Az are the uniform sampling distances along either dimensiaioa 8
andy denote the fractional parts é{ % and 2 A, respectively.

To calculate an approximationx,t) of the velocity vector field at an arbitrary
location in spaces and timet, we sample data from two adjacent time-steps in the
sequencet(<t <tj1) and perform one additional linear interpolation:

t—4

V<X7t>: (1—5)'V(X,ti>+5~V<X,ti+1), 0=
i1 —1

2.7)

As linear interpolation assumes that a function behaveatihetween sample points,
the data should be sampled at a reasonable rate to avoidimadces. While higher or-
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der schemes such as cubic or hermite interpolation deli@eraccurate results, we
employ only the linear scheme as it is directly supported B®YJ& and can, thus, be
performed in hardware at negligible costs. Let us furtheeribat spatial flow field
samples of one time-step are always stored in one GPU tendsio@irce corresponding
to a cartesian grid defined over the unit cube. Thereforeytpoiordinates need to be
scaled accordingly before accessing data from the field.

2.3.4 Numerical Differentiation

For 3D unsteady flow field data discretized by cartesian dioumi grids, we employ
finite differencing schemes to compute numerical deriegtivAccording to Taylor’s
theorem, the value of a functioharound a poink can be obtained by the series

2 (3 (n)
e, 1 <X>h3+...+fT(X)h”+Rn(x), (2.8)

Fix h) = )+ Xt !

1! 2! 3!

where the remainder teriR,(x) denotes the difference between the original function
and the Taylor polynomial of degree It can be proven that the absolute error in the
approximation is upper bounded by the next term of the expanghus, if the function

at pointx and in its vicinity is known, we can rearrange the Taylor exgpan (regarding
only the first two right hand terms) to obtain the forward §2®ackward (2.10) or
central (2.11) differences:

f/(x) = +0O(h), (2.9)

+0(h), (2.10)

f/(x) = —— 4+ 0(h?). (2.11)

For reasonable smali the error introduced by neglecting the remainder term is
commonly accepted. Higher order differences can be oldanalogously. E.g., if we
apply the central differencing scheme with spadgmmd then use above central differ-
ence formula for the derivativ€ atx, we obtain the central difference approximation
for the second order derivative of

(2.12)

Finite differences can be considered in more than one Variabme partial derivative
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approximations for a function of two variables are showrhiafollowing:

f(x+h,y)— f(x—h,y)

2 f(x+hy) —2f(x,y)+ f(x—h,y
By = cth) -2ty
52 f(Xx+hy+k)—f(x+hy—k)—f(x—hy+k)— f(x—h,y—k)

Throughout this work, we employ the central differencingesoe to calculate nu-
merical derivatives. Only at boundary regions of the flow domwhere no values are
available in either direction, we fall back to the forwardoackward approaches.

2.3.5 Matrix Eigenanalysis

The eigendecomposition of square matriées a standard tool employed in flow vi-
sualization. A non-zero vect@is an eigenvector if and only if it satisfies the linear
eigenvalue equatioAe = Ae, whereA is the eigenvalue correspondingeolf | is the
identity matrix, then we can rewrite the equation as:

Ae—Ale=(A—Al)e=0. (2.13)

If there exists an invers@ — A1)~ then both sides can be left multiplied by it to arrive
at the trivial solutiore= 0. Thus, we require to meet the condition that the deterntinan
equals zero, i.e. no inverse exists

P(A) =|A—Al|=0.

Finding the eigenvalues & amounts to finding the roots of the characteristic poly-
nomial p(A). According to Abel’'s impossibility theorem, for large palymials (of
order> 4), this problem cannot be solved by a finite sequence ofragtit operations
and radicals. Yet, to find the eigenvalues of large symmetatrices a variety of itera-
tive approaches exist (such as the power iteration, thebdawethod or the popular QR
algorithm [131]).

However, in the rest of this work we will only be interestedte eigenvalues of
real symmetric matrices of second order and positive-defsymmetric X3 matri-
ces. Here, solutions to the eigenvalue problem can be esques analytic form and,
thus, be solved interactively even for a huge number of iwedrin parallel. For a real
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symmetric Z 2 matrixA, the real eigenvalues, A» and their respective eigenvectr
(i=1v2)are given as

Aji—C

ab a+c)++/(a—c)2+4b? — 0
A= ], )\1,)\2:( ) ( ) , §= b? g\' ©)

b 2

b2—(Aj—c)?

Square matrices of third order

To find the roots of the characteristic polynomi#i ) of an arbitrary %3 matrix, a
cubic equation of the form® 4 ax? + bx+ ¢ = 0 has to be solved. Here, Cardano’s
method [131] can be applied which starts to find a solution bying the cubic’s point
of inflection to the origin. This substitution removes theadtatic term and gives a
so called depressed culit+ pt+ g = 0. This equation contains still a linear term,
thus, forp # 0 it cannot be solved by means of a single cubic root. The gssom
that a solutiort for the depressed cubic equation can be expressed by thefdwao o
cubic rootst = u+ v leads to further substitution and the final solution. Depeqgd
on the discriminand of the depressed cubic, the characteristic polynomial ithere
three distinct rootsd > 0), one real root and two complex conjugate roats<(0)
or a multiple root and and all its roots are real. A completevddon of Cardano’s
method is beyond the scope of this section. We recommencetuers interested in
the concepts of this approach the article by Nickalls [11#¥re, the standard method
for solving the cubic is greatly clarified by relating thewodn to the cubic’s geometry.
The corresponding eigenvector for an eigenvaluean be found by inserting it
in (2.13) and solving the system of linear equations wittp.,@n iterative Jacobi method.

Positive-definite symmetric 3<3 matrices

According to the spectral theorem, a real symmetsi@3natrix has three real eigen-
values); (i =1V 2V 3) and three linearly independent eigenvectors that are riytua
orthogonal. In Section 2.5.3 we will be interested in theesiglues of gositive-
definitesymmetric 3«3 matrixD. This allows us to employ a more specialized analytic
method to find a solution. We employ the method proposed byiasal. [62] which

is based onliffusion tensor invariantto find the eigenvalues and eigenvector®ofA

cartesian diffusion tensor
Dxx ny Dy

DZX DZy DZZ
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has three principal invariantsg, I, 13. They are related to the eigenvalues, and defined
by the characteristic equation

ID=Al=(A=A)A =22)(A =2A3) =A% =A%l 4+ Al — 13 =0,

wherel is the 3x3 identity matrix. According to [8, 14], from this equatiomet three
invariants are given as

lp = (Dxnyy+ DyxDzz+ Dnyzz) — (D)Z(y“f— D)Z(Z—f— D)2/2> = A1A2+A1A3+ A2A3,
I3 = |D| = DyDyyDzz+ 2DxyDxDyz— (DzDg, + DyyDZ, + DxxDF,) = A1A2A3.

The eigenvalues and eigenvectoratan now be found by an analytic diagonalization
of D that is specific to the positive-definite symmetric cartesensor. The following
rotational invariant variables are defined in terms; 0k, I3:

v=(11/3)2—12/3 and s=(I11/3)3—11l2/6+13/2.

Since for real eigenvalues it holds that 0 ands® < v3, we can define
acosﬁ\/%)
L T
The sorted eigenvaluéd; > A, > Az) can then be expressed as

A= %+2Wcos(go), Ay = %1 —Z\K/cos(ngqo), A3 = |§1 —Z\K/cos(g—go).

According to [62] the orthonormalized eigenvector for ttieeigenvalue can be com-
puted as follows. Define following variables

A =Dyx—Aj, Bi= Dyy_/\ia Ci =Dz A,

(nyDyz —B; DXZ) (DXZDyZ -G ny)
a f— (DXZDyZ - C| ny> (DXZDXy — A| Dyz)
(nyDyz - B DXZ) (DXZny —A Dyz)

The normalized eigenvecteéy for eigenvalue); is then given byHg—H. Note that due to
the sign ambiguity of equation 2.13,§ is also a solution to the eigenvalue problem.
Thus, the third normalized eigenvectarcan be obtained more efficiently by the cross
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product between the other orthonormal eigenve@pendé,.

2.3.6 First and Second Order Derivatives

In 3D, a scalar field has three partial derivatives with respect to the threesdsronal
cartesian coordinatesy,z. The gradient of a scalar field points into the direction of
the greatest rate of increase and is defined as the vecterpdritial derivatives:

5 2£(xy,2) fy
Of(xy,2) = | 4 | fxv = [ Kfxva | =| |- (2.14)
aiz aizf(x7y7z> fz

The gradient of a 3D vector fiekdx,y, z) = (u(x,y, 2), v(x,y,2),w(x,y,2))" is found
by application of the gradient operator to each of the coreptsof the vector field.
This results in a order 2 tensor field, i.e., the gradient atraitrary point in the vector
field is given by a %3 matrix of first order derivatives known as th&cobian

ox dy oz Ux Uy Uz
Jv dv Jdv
JXY,2)=0v=| g ay az| = | W™ w vz (2.15)
ow Jdw Jdw
ox dy oz W Wy Wz

In flow visualization the Jacobian is often used to computaralver of derived fields.
Furthermore, the vector field topology is determined by gyemanalysis of, as its
eigenvectors and eigenvalues indicate the direction @faancurves of the flow.

For a real-valued scalar function in Euclidean n-spdcg;(xo,--- ,Xn) : R" — R),
its Hessianmatrix is a square matrix of order n. Here, matrix entriestaimnsecond-
order partial derivatives df, i.e. the Hessian describes the local curvature of a functio
of many variables:

9%f 9%t 9%f
dx% 0X10%x, " 0X10%n f]_l f12 ce fln
02f 02f 9%f fo fop f,
35 Ao i e o Av e n
H(f)= | %% 9% LN I e (2.16)
d_zf d_zf ‘3_2f fnl 1:nl cee fnn
OXn0X1  0%n0% " ox2

If the mixed differentials of functiorf are contiguous the order of differentiation does
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not matter and, thus, its Hessian is symmetricf 1 a function fromR" — R™, then
the array of second order partial derivatives is not a squmateix of order n, but rather
a tensor of order 3 (i.e. an array of sizex n x n).

Non-degenerate critical point&l€ (xg, X2, -+ ,Xn) = O A|H(f(X1,%2,- -+ ,%n))| # 0)
are generally studied by an eigenanalysis of the (symnetiessian matrix to deter-
mine the topology of manifolds. Functidnattains a local maximum at such a point if
H is positive definite, and a minimum H is negative definite. IH has positive and
negative eigenvalues there is a saddle point at the regpdatation. Otherwise this
test is inconclusive. For all other points, however, sesgfirite Hessians can be used
to determine iff is locally concave (positive semi-definite) or convex (rnegasemi-
definite). Again eigenvalues of mixed sign indicate a sagdlat. We will employ this
test in Chapter 7 for the extraction of ridges from a scaldd fre2-space.

2.4 Derived Measures of Vector Fields

In Chapter 5, we will employ additional scalar quantities ifaportance driven flow
visualization. These measures indicate certain propeofiehe flow field and are ei-
ther directly derived from the velocity vector field (by thppdication of differential

operators from vector calculus) or from one of its derivegiv

+ Velocity magnitudeThe magnitude of the velocity vector field= (u,v,w)T is:

V|| = VUE+V2+w2 . (2.17)

 Divergence The divergence of a velocity field is the extent to which tleetor
field behaves like a source or sink at a given position. It messsthe extent to
which there is more exiting an infinitesimal region of spdwatentering it. If the
divergence is nonzero at some location then there must bereesor sink at that
position, otherwise the flow is called divergence-free slifithe common case in
fluid dynamics as most fluids are incompressible. The divergés defined as:

rl
ox u

g w

0z

* Vorticity magnitude Thecurl w of a velocity field is calledorticity. The vorticity
is a vector field that indicates the axis of rotation as weltreslocal angular
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rate of rotation. The vorticity is perpendicular to the @an which the locally
highest amount of circulation takes place and its magnispeeifies the strength
of rotation. If the vector field represents the flow velocttyen the vorticity is
also referred to as the circulation density of the fluid. Ateedield whose curl

is zero is called irrotational or curl-free. Vortex regionsthe flow may have

a highvorticity magnitudd|w||, thus, this quantity can be used to classify such
regions [177]. The vorticity is defined as:

a
w=|w|=0xv= a% x|v]={u—w|. (2.19)
w3 aiz W Vi — Uy

Helicity: The helicity is a scalar quantity indicating the extent taet corkscrew-
like motion occurs at a given location. If a moving parcel aidlrotates about
an axis parallel to the direction of motion, it has helicitijthe rotation is clock-
wise when viewed from ahead of the parcel, the helicity welldmsitive, if coun-
terclockwise, it will be negative. The helicity can be usedietect vortex re-
gions [190], and it is obtained by projecting the vorticityto the velocity:

W-V = (Wy —Vz)u+ (Uz — Wy)V+ (Vi — Uy)W. (2.20)

Streamwise vorticityThe streamwise vorticity is the component of vorticityttha
is parallel to an ambient (i.e., local mean) velocity veétor
w-V

Vi

(2.21)

Ao-criterion: The Ax-criterion [70] is the most widely used measure for vortex
detection. It is based on a decomposition of the velocityBelacobian ma-
trix J = 0Ov = S+ A. HereSis the symmetric part (or strain tensor) aAdhe
antisymmetric part (also called the vorticity tensor) af tlacobian:

1

1
T T
=3+ A=ZJ-J").
S=Z(J+J"), (3-30)

While the strain tenso6 holds information about the local stretching of the
fluid, A assesses rotational activity. Vortex regions are theniiteshby A, < 0,
whereas), is the second largest eigenvalue of the symmetric teB5erA2.
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2.5 Lagrangian Coherent Structures

The derived measures introduced so far adhere to the coate@wing a flow from
the Eulerianperspective, i.e. as a set of fixed points in the spatial domwéh corre-
sponding quantities (at varying instances in time for uadydlow). In fluid mechanics,
this is the standard approach for studying the velocityareields of fluid flow.

Fluid flows fall into the category alynamical systems.e., they describe the evo-
lution of interdependent quantities within the system’sndm according to a specific
set of rules. General dynamical systems are often studeed fheLagrangianpoint-
of-view, i.e., in terms of particle trajectories traced image space [188]. Here, the
system’s evolution is often governed by partial differahéiquations.

The Lagrangian concept can also be applied in the study af flaws. In this
specific case the system’s evolution is governed by the ardidifferential equation
of the particle tracing paradigm, and the Lagrangian petspeis generally used to
observe large scale transport behavior and to reveal tiallow geometry.

2.5.1 Dynamical Systems

Let us first introduce a dynamical systems in its most gerferah. Note that the
notations and descriptions used in this section are clasdfifed to the tutorial by
Shadden [152], as they are commonly used to introduce thewiolg topics:

X(t,to,x0) = V(X(t,to,X0), 1), } (2.22)

X(to,to,X0) = Xo.

Analogue to Eq. (2.1), € I represents time andt, to, Xg) € Q is the dependent vari-
able representing the state of the system. W&ilmay be more general thak?, in
terms of fluid flows we can assume tifais a subset oR3.

With advancing time, solutions of (2.22) trace out curvespace, or in dynamical
systems terminology they flow along their trajectory. Givgeparticle initialized at
point (Xo,tp) in the spatio-temporal flow domain and assuntinga final time, we can
rewrite equation (2.2) as th®w map i.e., a map which takes a point in the domain at
timetg to its location at time:

@1 Q— QX0 @ (Xo) = X(t,t0,X0). (2.23)

According to the standard theorems on local existence aigieness of solutions of
Eqg. (2.22) the flow map satisfies the following propertieq [61
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o) = x.
a5 () = (g 9) = (gl (). } 224

While the exact solution of Eq. (2.22) would be ideal, unkess a linear function of
the statex and independent of time there is no general way to determine a closed-
form analytic solution of this equation. Numerical approations of the solution yield
particle trajectories, or more precisely path lines fortaady flows and stream lines
for instantaneous flow fields.

2.5.2 Invariant Manifolds and Coherent Structures

The behavior otime-independent dynamical systefwsth a static definition over an
infinite period of time) is often studied by an observationirfariant manifoldsof
fixed points in the system. A fixed point is a point in the domalrerev(x) = 0. Sta-
ble manifoldof a fixed point are all trajectories which asymptote to it whiene goes
to infinity andunstable manifoldare those trajectories which asymptote to fixed points
in inverse time. Thus, such manifolds (commonly cakkegaratrice} attract or repel
particles respectively, thereby dividing the domain irggions of fundamentally differ-
ent dynamics (see Figure 2.9 (a)). Tigpunov exponenf{d 03] are often employed
to detect such manifolds in this class of systems by quangfthe rate of separation
of trajectories starting in an infinitesimally vicinity ofgoint in the domain. The rate
of separation can vary for different combinations of sueljettories, thus, there exists
a whole spectrum of Lyapunov exponents. One is often onbraésted in the largest
rate of separation, i.e. the maximal Lyapunov exponent (MIa8 it determines the
predictability of a dynamical system. Due to its asymptoature, the MLE can only
be employed in the study of time-independent systems. Falters interested in this
subject we refer to the comprehensive manuscript by Baregial. [94].

The transport behavior in unsteady flows is typically goeerby prominent fea-
tures, such as chaotic emerging and disappearing vorticasdies in the flow around
obstacles. The global flow geometry in the study of intermgxqprocesses is generally
given by the respective material surfaces separating fafidgferent physical proper-
ties. In general, large-scale regions of coherent flow hiehaxhibit strong correlations
and are of special interest when analyzing unsteady flowgyelscale phenomena of
different dynamics are confined lopherent structureswvhich are often analogous to
stable and unstable manifolds in time-independent systérhe behavior of (aperi-
odic) time-dependent dynamical systeimswever, is only known over a limited period
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of time. Thus, a finite version of the Lyapunov exponent haseased for a general
analysis of such systems. The (maximuim)te-time Lyapunov exponergpresents
a quantity which allows the detection of coherent structureunsteady flows, thus,
giving rise to the possibility to unveil the global flow geatmye

x(ttat) -

! - small FTLE
[ ”

X 1—6:: ————————— SERaratrix _ _ _ 4| large FTLE
t, T -
g -
L 3
(@) 7/ ylt+at) (b) ty+At

Figure 2.9 lllustrations of separatrices and FTLE: In image (a), twatipe trajectories on
either side of a stable manifold are shown. Image (b) deftietcorrespondence between the
initial perturbationd and the finite-time Lyapunov exponernt.

2.5.3 Finite-Time Lyapunov Exponent

The (maximum) finite-time Lyapunov exponent (FTLE) is a acajuantity that char-
acterizes the amount of stretching about the trajectoryastfigles over a finite time
interval [t,t + At]. This notion stands for the amount of separation of integtgar-
ticles that have been released at the same time infinitdgirwlake to each other in
space (see Figure 2.9 (b) for an illustration of the FTLE)ldvang the terminology of
Haller [56], it can be deduced from particle tracing as falo

Bex € R3 an arbitrary point in the spatial flow domain. If we releaseasiple from
this position at timeg and advect it for a finite time interva¥, it arrives at the point
(Rtg+At(x). Since fluid flow generally has a continuous dependence talioonditions,
we know that a particle released at the same time in the (closaity of x will behave
similar when advected in the flow (at least for a short peritihoe). However, as time
goes by, the distance between these particles will almotgtioky change. Béx(t) an
arbitrarily oriented infinitesimal distortion. With it wean express the initial position of
a second particle as= x+ 0X(tp). After At time has passed, this perturbation becomes:

Ox(to+At) = @2 (y) — @2 (x) . (2.25)



36 CHAPTER 2. FLOW VISUALIZATION FUNDAMENTALS

If we consider the taylor series expansion of the flow abouttpoup to the first order
derivative, the perturbation can be described more gdpersl

(Rtg+At( X)

Ox(to+At) = —

S (to) + O([|5x(to)||). (2.26)

Since our initial assumption was that(to) is infinitesimal, the remainder term can be
neglected. The flow map gradient

(RthrAt( X)

gy () = =25 —

0

(2.27)

describes the deviation of trajectories started at the ganety in an infinitesimally
spatial vicinity of pointxg. The tensor

Cto+At( ) ( qqtoJrAt( )) gqtoJrAt( ) (228)

known as the (finite-time) right Cauchy-Green deformatiensor, expresses the de-
formation of the neighborhood of under the flow map. More precisely, this positive
definite symmetric 33 matrix yields the square of local change in distances due to
deformation (by exclusion of the rotation). Let us note #nan thoughlg andC are
functions oftg, At andx, we will occasionally omit these variables in the followifug

the sake of notational simplicity.

Using standardl,-norm for vectors, the magnitude of the perturbation is thigan as:

|| OX(to+Ab) || = \/<D<p6x(to), D(péx(to)> = \/<6x(to),66x(to)>. (2.29)

Let us assume we are interested in the maximum stretchingroog between points
andy. This will occur if we align the perturbation with the eigeior corresponding to
the maximum eigenvalulyax Of the deformation tensat. Hence, if we trealmaxC)
as an operator and denote the perturbation aligned with tbénnum eigenvalue by
OX(tp), the condition of maximum stretching can be expressed as:

gn(?))(H5X(to—|—At)H = \/<5X(t0) )\max(c 5X tO =V )\max(c H5X tO (2-30)
X(to

Even thoughy/Amax(C) is the factor by which a perturbation is maximally stretched
perturbations often grow exponentially in time near (Lagjian) coherent structures
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and, thus, introducing a scaling is typically better suftedocating such structures on
the basis of the FTLE. Especially for large time intervatleind a large spatial flow field
domain,,/AmaxC) can become numerically unstable. If we define the FTLE, dehot
by at%t, for a pointx in the spatial flow domain at timtg and finite integration timét
with such a scaling in mind, it can be defined as:

ogt(x) = |A—lt| IN\/Amax(C) . (2.31)

Then equation (2.30) can be rewritten as:

max||3x(to +At)|| = e ¥ |13x(t0)]] - (2.32)
8x(t)

Note that using the absolute valif&| makes it possible to compute the FTLE in for-
ward and backward time. This fact gives rise to the posgytiti detect coherent struc-
tures akin to stable and unstable manifold. Furthermoris, @so suited to identify
hyperbolic trajectories by an intersection of coherenictires extracted from the re-
spective (forward- and backward-time) FTLE fields [140].

Intuitively, the FTLE can be seen as a value derived from trexgal norm (i.e.,
matrix Lo-norm) of the flow map gradient, due to the fact that (in theso@éng above)
we assumed the perturbation is aligned with the eigenveotoesponding to the largest
eigenvalue of the deformation tensor.

Several modifications for the FTLE have been proposed initeeature. For the
numerical computation of the FTLE, one has to estimate therflap gradient by using
a discrete set of trajectories initialized very close to ftékerence trajectory starting
at pointx. Since trajectories tend to separate at an exponentiafn@atethe central
trajectory, Benettin et al. [9] propose a frequent renoizasibn for them. This can be
achieved by subdividing the finite time interval into sepa@eces and computing the
flow map gradient as the product of the piece-wise obtainadignts.

The FTLE can exhibit finely detailed structures with a spatiation exceeding
the one of the underlying velocity field by far. Thereforeg fRTLE is often not ac-
curately computed at an arbitrary point in the domain, btheasampled as spatial
average at a resolution defined by a discretization grid., Eagflow fields given on a
cartesian grid, a discrete version of the FTLE is commonjyreximated by a scalar
field exhibiting the same alignment and resolution of theantyihg data set. Here, the
flow map is sampled at the nodes of the grid and gradients areg$timated by finite
differences [56]. The maximum separation is then given leyléingest eigenvalue of
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the deformation tensor, which can be found using, e.g., tethod presented in sec-
tion 2.3.5. Let us note that, in this setup, the initial pdsaion is generally not aligned
with the eigenvector associated with the largest eigemvafithe deformation tensor,
but rather axis aligned with respect to the flow field grid. Hwer, the perturbation
will typically align very quickly with this direction. Thesason for this is that if an axis
aligned perturbation has a component in the respectiveneggsor direction, then this
component will quickly dominate because it is aligned wité most unstable direction.
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Figure 2.1Q0 Modifications to and variants of the FTLE. Left: The FTLEM kiates the dis-
tortion multiple times along a trajectory. Right: The firftize Lyapunov exponent yields the
shortest necessary time it takes for two particles to sépésaa given factos.

Sadlo et al. [137] introduced the finite-time Lyapunov exganmaximum (FTLEM),
which is more suitable to detect the maximum separationgafmarticle trajectories.
They evaluate the finite time interval at ever increasingteni.e., the flow map con-
struction and FTLE evaluation are performed incremen{ale Figure 2.10 (left)). By
taking the maximum of all FTLE values sampled at discretedasnin the time in-
terval, this approach is able to capture high expansionsyaioe trajectory instead of
only analyzing the final flow map. This approach makes the FIkEnificance less
dependent on an appropriate parameter choice for the lehgjtle finite time interval.

Kasten et al. [73] proposed a redefinition of the FTLE to lardkria on the center
trajectory, i.e., they estimate the perturbation aboutpettory by evaluating the Ja-
cobian of the velocity vector field at discrete sample lanaialong the characteristic
curve. This variant is known as localized FTLE (or short LEE].

Aurell et al. [7] proposed the finite-size Lyapunov expor(&8LE) as an alternative
to the FTLE (see Figure 2.10 (right)). This measure yiel@ssiortest necessary time
it takes for two infinitesimally close particles to separata given distance. The mo-
tivation was to make the measure independent of the adwetitiee because different
regions of a system often require different parameter @soic
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2.5.4 Coherent Structure Detection

If the FTLE is computed at each sample point in the flow domidiss,technically an
Eulerian scalar field. In unsteady flow fields, the FTLE itselfies as a scalar function
of space and time. However, since it is derived from parti@gctories, it is generally
thought of as a Lagrangian quantity. Consequently, cohsteurctures detected on the
basis of the FTLE are commonly callédgrangian coherent structurésCS).

To understand how the FTLE can be used for LCS detection,sletiterate the
meaning of stretching about the trajectory of pointin the left image of Figure 2.9,
pointx and its perturbed point resides on either side of an unstable manifold. If we
integrate these points forward in time, they will most likeliverge from each other.
Likewise, if the points are situated around a stable mahjfible distance between them
will grow if we integrate backwards in time. Thus, both typg#smanifolds act as
separatrices, i.e., they separate the flow into regionsfigrdnt dynamics. The FTLE
at points in the domain close to a separatrix is most likelgimhigher than for points
residing within a region of coherent motion.

Figure 2.11 FTLE in a stationary 2D flow field of two counter rotating vegs. Left: Stream-
lines in the flow domain as well as the trajectories of threets@dvected for the same amount
of time are shown. Right: The corresponding color coded F$t#ar field. (images courtesy
of S. Shadden [152])

Let us further imagine a simple (instantaneous) 2D flow fi€lthe left image in
Figure 2.11 depicts stream lines in the analgkiazible gyreflow field [153]. Here, at
the center of the horizontal axis a separatrix divides the flmng the vertical axis into
two regions of different dynamics, i.e. two counter rotgtiortices. In the left image
trajectories of three particles initialized in close viggnare shown. As can be seen,
after a fixed integration time, the distance between pasistarting on either side of
the axis of symmetry differs the most. If we calculate the ETdt each point in the
flow domain, respective values will be largest along thisaxi

This example also emphasizes the advantages of the FTLEkbagp which in-
terleaves flow map computation and FTLE evaluation. ThedstahFTLE might yield
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spuriously small values even for trajectories initializedeither side of the separatrix
if an inappropriate advection time is chosen (e.g. paditiaveling around either of
the vortices once, therefore ending up at their initial fposs close to each other).

LCS classification

Boundaries of regions of coherent motion will be situatecemions of high FTLE, or
more precisely correspond to the local maxima of the scalaEHield. The notion of

a local maximum of a scalar fiekt R" — R is unambiguously defined by a vanishing
gradient and negative second derivatives in all possilskctions. In the literature, a
variety of approaches to relax this definition in order taaaidl-dimensional maxima or
minima have been proposedeight ridgeq60, 37, 104] are a well accepted approach
to classify LCS in FTLE fields and will be discussed briefly e following.

Height ridges are lower-dimensional (elongated) regidn®latively high values.
They reside at locations where the scalar figleihibits a maximum in at least one
direction. Such ridges aedimensional manifolds in-dimensional spacen(> d > 0)
and they can be identified by an analysis of the Hessian ntafstx of sat pointx. If v;
(i=1,...,n) are the unit eigenvectors &f ordered by the corresponding eigenvalues
A1 < -+ < Ap, thenx resides on @-dimensional height ridge if:

A—d<0 A Vj=1...,n—d:vj-Os(x)=0.

Sadlo et al. [137] propose to combine this ridge detectidgaroon with a height thresh-
old (s(x) > smin) to exclude regions of small FTLE and an additional curvatbresh-
old c for the second derivativ&, < cto suppress flat regions in the data set.

Multiple further ridge extraction approaches exists, hwevea detailed description
is beyond the scope of this section. Let us mention topoédgipgproaches [141], tech-
niques based on watershed segmentation [178, 116] andlpdrdised approaches [77].
Techniques discussed in [151, 126] focus on the extracfi@Daidges in 3-space.

Continuous Spatial LCS Representation

Since the FTLE field is commonly sampled on a discrete Iatacilitional measure
have to be taken into account to determine a continuous L@®sentation within the
cells (i.e. between the grid nodes) of the respective &ttiommonly methods from
the family ofMarching cube$108] algorithms are employed to obtain a linear approx-
imation of ridges between the grid nodes. These technigeresrgte line segments (1D
LCS) or triangles (2D LCS) to approximate LCS within the gralls. Here, primitive
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edges intersect the edges between grid nodes where thedieslue is located. These
techniques result in a continuous iso-contour or iso-serfeespectively.

Furthermore, since eigenvectors (of the Hessian) lack emtation, directional
derivatives at adjacent grid nodes do not exhibit a consisteentation. This makes it
impossible to determine iso-surfaces without further adethods to solve this prob-
lem apply aprincipal component analysi@CA) to make the eigenvectors of a cell
consistent. For readers interested in these approachesfevea theMarching ridges
technique by Furst [68] and the work by Sadlo et al. [137]. therextraction of ridges
in 1D, we refer to the parallel vectors approach by Peike2b]1 The application of
feature flow fields for ridge extraction is discussed in [69].

A final issue for visualization is the orientation of respeetso-surfaces. Kindl-
mann et al. propose to employs an additional post-prooggmss after surface ex-
traction to ensure a consistent surface orientation [78}. fen-orientable manifolds
this problem can be avoided by using two-sided normals irfitia¢ rendering of the
extracted surface.

Temporal Coherence

The original Lyapunov exponent (MLE) is constant along get®ory. This property
holds approximately for the FTLE if the integration time tsosen to be sufficiently
long. Therefore, LCS extracted from this quantity are apinately material surfaces
and are essentially advected with the flow. This makes LC$e¢ial interest in the
study of transport and mixing processes in unsteady flows.

However, this raises the issue commonly adherent to fedtased flow visualiza-
tion, namely the tracking of features over time (see Se@&i@r8). Techniques proposed
in [139, 105] exploit the temporal coherence of LCS to effiiecompute time series
of FTLE ridges by interleaving the advection of a 2D samplyngl and incremental
tracking of 1D ridges on the respective grid.

To conclude this section, let us note that, in general, ttletigues presented above
(namely FTLE computation and LCS extraction through ridigssification and iso-
surface reconstruction) are by far not suited for a real tx@oration of 2D LCS in
3D unsteady flow, as they require time-consuming numeripatations. However, in
Chapter 7, we will propose a technique, which—for the firmeti—makes an interactive
exploration of unsteady flow based on the concepts of LCSaqiegossible. This is
achieved (on the assumption of the temporal coherence of b 8ombining aspects
from feature based flow visualization (hamely FTLE compataand ridge extraction)
with geometry based visualization approaches (i.e., lsgaeace extraction).
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Chapter 3

Programmable Graphics Hardware

GPUs have rather recently been introduced into the maarstimarket, but have be-
come an inherent part of today’s desktop computers. Cosdepthe first PC add-on
graphics accelerator cards originate from dedicated gecapiorkstations such as SGI's
RealityEngine [6], which implemented the 3D rendering pipewith a SIMD! pro-
cessing paradigm in parallel vertex and pixel engines. yE@aPU generations were
mainly designed as accelerators for 3D computer games anelpd a fixed-function
pipeline for the effective rasterization of a large numbktriangles. Due to the cus-
tomers’ growing demand for realistic computer game grapagwell as the program-
mers demand for higher flexibility and high level programgimodels, GPUs have
evolved into full-fledged, almost freely programmable @esors.

In this chapter, we will introduce the rendering pipelinenoddern GPUs, show
how the GPU hardware performance has evolved over the lasiddeand introduce
concepts of the DirectX graphics API, which was employedhandourse of this thesis
to validate the proposed approaches. Readers unfamiltartivé concepts of GPUs
will be given a compact overview of the programmability antierent restriction of
this platform, which in turn will help to understand certaitgorithmic choices we
made while developing the algorithms presented in thisshes

3.1 The Rendering Pipeline

Todays GPUs are massively parallel SIMD processors foligwhe stream program-
ming model [72]. In this model, all the data is representedrasrdered set of data of
the same type (commonly calleds&rean). The data type can be an arbitrarily com-

1SIMD = Single Instruction Multiple Data

43
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plex combination of fundamental data types. A data streambeaof any length but
operations on streams are most efficient if they are longcoenprising thousands of
elements. Computational operations on streams are pextbmith akernel A ker-
nel takes one or more streams as input and produces one oalsgveams as output.
Kernel output relies only on the kernel input, and within anled, computations on one
stream element never depend on computations performedodimeairelement inside the
stream. Thus, during kernel compilation the data requioe&érnel executions is com-
pletely known. If an interdependence of computations onviddal stream elements
within a single kernel is assured, serial kernel calcutetioan be effectively mapped
onto data-parallel hardware (i.e., the stream elementpraieessed in parallel). Ap-
plications following the stream programming model are giesd by chaining multiple
kernels together.

The rendering pipeline has been developed with respecetsttbam programming
paradigm and it is structured into computational stagesecdted by data flow between
these stages. Early GPU generations provided only fixedtifumkernels, allowing the
programmer to change kernel behavior by a certain amoumtigra set of predefined
state objects before processing an entire stream, but timétyed the possibility to
define or change the instruction set of a kernel directly. rQhe last decade, GPUs
introduced the possibility to freely program certain késna the graphics pipeline.
Figure 3.1 depicts an abstract view on the rendering pipekamd the following list
gives a rough overview with short descriptions of all stalgef®re we will describe in
detail how graphics APIs map this concept to graphics harelwa

 Input Assembly: This stage defines the geometric topology of the input data a
well as how data given in the form of one or several input steahould be
combined and scheduled into the geometry processing staganput assembly
defines in which input stream and at which location in the bigek of one stream
element a distinct vertex attribute (e.g. its position ifegbspace) is located.

» Vertex Shader. This kernel performs calculations on a per vertex basitakis
all attributes issued per vertex as input and performs ftoamstions from one
reference system into another as well as additional opamsuch as lighting
calculations.

» Rasterizer. The rasterizer stage computes the screen coverage of exgrly
primitive and converts its continuous representation mfdiscrete set of frag-
ments. For each pixel in the frame buffer covered by the m®e primitive
interpolated vertex attributes are issued to the outpghfient stream.
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» Pixel Shader. A pixel shader kernel is invoked for every fragment output b
the rasterizer. It receives a set of interpolated vertexates per input element
and computes the output value(s) written to the correspggiixels in the target
texture buffer(s), e.g., the color value in the frame bufierthe distance to a
reference image plane (z-Buffer).

« Output Merger Stage: This final stage of the rendering pipeline controls how the
values in the target buffers should be changed accordirngtporocessed fragment
attributes and externally set states. It may discard fragsnéthey fail depth or
stencil operations and, thus, performs visibility test @eafragment basis. It also
renders it possible to manipulate the color in the framedv&tcording to alpha-
blending instead of replacing the value in the target pixel, dhus, facilitates the
display of semi-transparent objects.

User / Driver

.- |

Geometry Processing Stage

Input Assembler |6 | Vertex Shader| =5 7 —> | Rasterizer|
- _‘

Fragment Processing Stage

T >
(mE| >

7“ ~ |=—>| Pixel Shader |—>| = Ouput
| —— = > f 1—| Merger [

Figure 3.1 Data flow of the rendering pipeline: A scene is decompos&ddrgtream of triangles and
sent to the GPU. The input assembler schedules triangléesrinto the vertex shading units. A kernel
transforms each vertex into screen space and calculatetiadal attributes, e.g. per vertex lighting.
The output stream is passed to the rasterizer, which redsssrtriangles based on information provided
by the input assembler. The rasterizer converts the coatiauepresentation into a set of fragments
by scan-line conversion and passes the fragment streanetsuihsequent pixel shader stage. For each
fragment, carrying linear interpolated vertex attributegpixel shader is executed. This kernel calculates
per fragment operations such as texturing and directs tiselteng stream to the output merger stage.
Within this stage, additional per fragment operations asfprmed to determine whether (visibility
z-test) and how (alpha blending) the corresponding pix¢heframe buffer should be altered.
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3.2 Evolution of GPUs

This sections is intended to give a short overview on the ldpwmeent of GPU perfor-
mance. For a thorough view on GPU history we refer the readf8]. Over three
decades ago, Intel co-founder Gordon Moore observed taarttount of transistors on
a single die doubled on a biannual basis [117]. Even todes/staAtement holds true and
has led to an exponential growth in raw compute performahcée context of GPU
development, the magnitude of hardware evolution is ugwplbted as Moore’s law
cubed. Even though performance gains do not scale lineattyimcreasing transistor
count, enormous performance improvements from one GPU gknie to its successor
can be observed. The highly competitive GPU market withagsd changes in hard-
ware development has led to a decreasing number of compeaingfacturers. Since
the beginning of the 2L century, graphics hardware development is mainly governed
by two major competitors, namely NVIDIA and AMD/ATI. The folving tables list
the most important GPU chips featuring programmable corapts) sorted chrono-
logically by release year. Table 3.1 shows all important GPéleased by NVDIA,
table 3.2 all relevant hardware generations released byrégpectively. ColumGPU
modellists the name of the respective consumer-class (flagst) &leased in the
respective year, columiemorythe maximum amount of memory (in MB) available
for each card and colunahader unitshe number of programmable shader cores. Val-
ues in brackets correspond to the amount of shading uniisated to different stages
in the pipeline, namely Vertew) and Pixel Shading unit). Since the introduction
of unified shading hardware in 2007, programmable shadiitg adhere a unified pro-
gramming specification, thus, provide a single computatigool of programmable
resources for the programmable pipeline stages. ColuGurs clockand Memory
clocklist the reference clock frequencies (in MHz) specified by ttenufacturer, and
the last column shows tHéll rate in million textured pixels per second (MT/s).

GPU model Year | Memory (MB) | Shader units (v:p)] Core clock| Memory clock | Fill rate
GeForce 256 1999 64 4(0: 4) 120 166 480
GeForce 2 Ultra 2000 64 4 (0: 4) 250 460 2000
GeForce 3Ti500 | 2001 128 5(: 4) 240 500 1920
GeForce 4 Ti 4600 | 2002 128 6 (2: 4) 300 650 2400
GeForce FX 5900 | 2003 256 7(3:4) 450 850 3600
GeForce 6800 Ultrg 2004 512 22 (6:16) 400 1100 6400
GeForce 7800 GTX 2005 512 32 (8:24) 430 1200 15600
GeForce 8800 Ultrg 2007 768 128 612 2160 | 39168
GeForce 9800 GTX 2008 1024 128 675 2200 43200
GeForce GTX 285 | 2009 2048 240 648 2484 51850
GeForce GTX 480 | 2010 1536 480 700 3696 | 42000

Table 3.1 NVIDIA GPU revisions sorted by release year. Informatiotteisen from [2].
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GPU model Year | Memory (MB) | Shader Units| Core Clock| Memory Clock | Fill Rate
Rage 128 1999 32 2(0:2) 125 143 250
Radeon 7200 2000 64 2 (0:2) 183 183 1098
Radeon 8500 2001 64 6 (2:4) 275 275 2200
Radeon 9700 PRO | 2002 128 12 (4:8) 325 310 2600
Radeon 9800 XT 2003 256 12 (4:8) 412 365 3296
Radeon X800 XT PE| 2004 256 22 (6:16) 520 560 8320
Radeon X1900 XTX | 2006 512 66 (8:48) 650 775 10400
Radeon HD 2900 XT| 2007 512 320 743 1000 11900
Radeon HD 4670 2008 1024 320 750 1100 34000
Radeon HD 5770 2009 1024 800 850 1200 10400
Radeon HD 5970 2010 2048 1600 725 1000 46400

Table 3.2 ATI GPU revisions sorted by release year. Information ietaftom [1].

3.3 Graphics APIs

To facilitate a more production friendly environment, stardized graphics APIs such
as OpenGL [4] or DirectX [3] abstract from the rapidly chamgghardware implemen-
tation and are nowadays commonly used to communicate witliPd. @hey allow
programmers to write portable code that can be executed aaware environments
fulfilling API specific standards. The first OpenGL specificatwas released by S&l
in 1992. Microsoft introduced their DirectX graphics APIcaib three years later as
a component of th&indows 95operating system. More than a decade later, both
APIs still coexists and expose comparable concepts to canwae with the under-
lying hardware layer. As both APIs map to the same hardwaeretusually exists
a one to one mapping from one APIs functionality to the othre¥’a While OpenGL
implementations are available for various operating systehe application of DirectX
is still restricted to Microsoft’s proprietary operatingssems. Thus, selecting the right
API for a graphics application rather depends on the prograra preferences and the
operational environment than any API related constraints.

Both APIs, however, approach different ways to add new fonelity to the ex-
isting standard. New OpenGL major revisions are carefullymained by a group of
specialists from different fields of interest. The so caléedhitecture review board
(ARB) contains members from a large variety of companieac&P006 the Khronos
group—an industrial consortium consisting of more than da@nbers from different
companies, e.g. AMD, Intel, NVIDIA, SGI, Google or Sun Misgstems—has taken
over the supervision of further development of the OpenGL Alew functionality is
added in a process consisting of multiple stages, follovvegconcept of extensions.

2SGI = Silicon Graphics Incorporated
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GPU manufacturers have the possibility to expose a new tmasdfgature immediately
by releasing an extension tailored to specific hardwaresi@vs. Functions and con-
stants belonging to such an extensions can be identifiedghra manufacturer specific
postfix. If multiple manufacturer decide to expose identioactionality, components
are marked with the EXT postfix. If the ARB decides to assitrilan extension, its
postfix is changed to ARB, and there is a high probability thatextension will be-
come an integrated component in an upcoming major revisidheoOpenGL speci-
fication. This standardization model provides instant sgd¢e new (or experimental)
hardware functionality, but it makes application code \@rdependent and there exists
the risk of ceased support for (experimental) extensions.

DirectX in contrast is under close supervision of Microsoftl up-to-date versions
usually require a feature set that will become availabldititure hardware genera-
tions. New specifications are released only after the regddeature set is met. Even
though new API specifications are developed in close cotktion with GPU manu-
facturers, this approach enforces GPU developers to dasiglware with the inflicted
specifications in mind. DirectX programmers, however, haeeadvantage to develop
applications that will (most likely) run on all upcoming GBU

Even though one would assume that the OpenGL specificatiatehveould de-
liver new features faster, the development of both APIs therlast years has taken
another direction. Major DirectX API revisions, namely siens 9.0c and 10, success-
fully introduced well-defined sets of new GPU features fat$tan the rivaling OpenGL
standard. Due to this reason we decided to use the DirectXiégxRhe validation of
our proposed approaches. While this restricts the appitad Microsoft’s proprietary
family of operating systems, it ensures that the softwaspicable in a wide range
of heterogenous hardware environments. In the followingwlieake a closer look at
two major API versions employed in the course of this thesis.

3.3.1 DirectX 9.0 and the Shader Model 3.0

As introduced before, the rendering pipeline comprises afdernel stages connected
by fixed data paths (see Figure 3.1). The DirectX 9.0 standasteleased in 2002 and
supports two programmable stages in the rendering pipela@elyvertexandpixel
shaders. Together with this API version two Shader model)(Si&hdards have been
introduced, laying the groundwork for scientific computormgthe GPU.

Shader Model standards define all capabilities a chip oflgcaphardware has to
support to call itself compliant to the standard. Basicdllyefines the data structures,
the execution processes (the pipeline) and all states dfetsu
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With the SM 2.0 standard, floating point data structures aitinaetic were in-
troduced. The Shader Model 3.0 demands access to texturerces in the vertex
shader stage, thus, for the first time giving rise to the jhilgyi to change geome-
try dynamically on the GPU. Outsourcing vertex attribut@e itexture resources (e.g.
spatial coordinates) and updating the content of thesarexthrough a separate exe-
cution of the rendering pipeline—by rasterizing into thegective textures—allows to
manipulate geometry on the GPU without the need to dowmsAgbtata to the CPU.
This feature is the fundamental basis for an interactive B&kd particle engine [90].
With the SM 3.0 standard, Microsoft also introduced the Hipshgramming language
(high level shading language), which allows programmessrite shader kernels with
a syntax similar to the C programming language.

Data Types and Structures

Table 3.3 lists all fundamental scalar data types suppobstélde Shader Model 3.0 stan-
dard in all programmable shader stages of the renderindimpgpelhese fundamental
data types can be grouped into vectors of up to 4 componestuare matrices up to
an order of 4. Most intrinsic functions support 4-tuple paeters and are executed in
parallel on all components.

Data Type| Representable Value
bool true or false

int 32-bit signed integer

half 16-bit floating point value
float 32-bit floating point value
double 64-bit floating point value

Table 3.3 Fundamental data types in the Shader Model 3.0 standard

Data structures on the GPU reside in local video memory, hiviie will refer to as
GPU memory from now on. Only a limited number of data struesus available on
the GPU, and can be categorized as follows:

1. Vertex Buffers are intended to store data associated with the vertices ef a g
ometric object. Common attributes are coordinates in 4D dgeneous space,
normals or texture coordinates. Each attribute can confaito four scalar data
types of type int or float.

2. Index Buffers are used in conjunction with vertex buffers and enable ogrto
benefit from GPU mechanisms to cache intermediate resuttgidiex is a pointer
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to a vertex residing in a separate buffer. Vertices are aftemed among multiple
primitives—e.g adjacent triangles—describing one geamebject. With index
buffers, multiple copies of the same vertex data can be adpithus, reducing the
size of the pipeline input stream. Vertex shaders cachenagiate results and
if an index points to a vertex that has already been procemsedtill resides in
cache, these values are reused instead of invoking thexwraeler instruction set
again. The application of index buffers can drasticallyu@the processing time
of the vertex shader stage if the vertex data is stored in laecagherent manner.
Each index buffer element consists of an unsigned integertioér 16 or 32-bit
precision.

3. Texture Resourcesare 1D, 2D or 3D arrays of data, whereas each array-element
can be a tuple of up to four 32-bit values. Array elements aually referred to as
texels(1D and 2D) owoxelsin the case of 3D textures. Dependent on parameters
specified at resource creation, textures can support regelaccess to the CPU
and GPU. Though all four features are never supported at. okog., a GPU
writable texture is never CPU readable and writable.

The Shader Model 3.0 Rendering Pipeline

The Shader Model 3.0 standard realizes the rendering pgels a set of fixed and
programmable stages connected by fixed data paths as dejpi¢tgure 3.2. The role
and limits of each kernel stage according to the DirectX 9ddiad are listed in the
following:

1. Input Assembly stage The input assembler stage contains setting groups to de-
fine how input streams, representing a geometric objecthasa set of vertices
and relations between them, are interpreted by the GPU.

(a) Vertex Layout setupphe vertex layout consists of an array of element de-
scriptors defining how the data of one vertex element has iatbepreted
and how it is assembled from a set of input streams. Each aeksaescriptor
entry contains following declarations: Tlsgeam ididentifies the stream a
vertex attribute resides in. Thodfsetdescriptor contains the byte offset from
the beginning of the vertex data to the data associated Wwélparticular
vertex attribute. Thelata typedescriptor as one of several predefined types
is used to determine the data size of a vertex attributas@geenumerator
defines what the data will be used for, e.g., if the attributetains position
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(b)

(©)

(d)

or texture coordinates. A single vertex can carry up to 64asedtributes or
more precise 256 bytes per-vertex data.

Vertex buffer setupOne or more vertex buffers can be bound to the pipeline
prior to the execution of the rendering pipeline. This sgsigroup is used to
define the ordered set of currently active vertex bufferschBeertex buffer
consists of an array of vertices, whereas each array eleooetains the
same amount of vertex attributes defined in the vertex lagodtassociated
with the corresponding input buffer.

Index buffer setupindices point to vertices in the input vertex stream. A set
of indices is called an index buffer and can be used to addezsises that
are shared among multiple primitives instead of definingvdrgex multiple
times explicitly in the vertex stream.

Primitive Topology The vertex topology defines how the input vertex and
index streams are interpreted to form a certain type of pieni Supported
types are points, lines and triangles. Also, buffers camtezpreted as either
lists, strips or fans. While the list type describes eachitive individually,
strips and fans reuse one or more previously indexed vsiiticerder to save
processing time with the help of vertex caching.

The input assembler can additionally be employed to createtdm generated)
values. These values are generated at various pipelinessf@ither given on a per
vertex or per fragment basis) and can be accessed by shadelska successive
pipeline stages. Exemplary system values are vertex idslwe\mapping to

the z-buffer depth value or culling information regarditg orientation of one

primitive.

2. Vertex Shader stage A programmablevertex shader kernel is executed for each
vertex element sent into the rendering pipeline. It is ideghto transform co-
ordinates between reference systems and to perform gespmedtions on a per
vertex basis. The Shader Model 3.0 demands that up to 16ésxtan be bound
and sampled at this stage. As texture content can be modifiedeoGPU, but
no modifications on arbitrary (vertex) buffers are possities gives rise to the
possibility to change geometry on the GPU dynamically. Tlibe so called
vertex texture fetch is a fundamental pipeline feature fier development of an
interactive particle engine.
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3. Rasterizer stage After projection and transformation into window coordies,
all vertices are equipped with a 2D position on the targeeramnd a depth value.
The rasterizer processes the edges of one primitive in alse@afashion and gen-
erates one fragment for each pixel covered by the primifiveinterpolation unit
interpolates all vertex attributes demanded by the sunegsel shader stage ac-
cording to the desired one of several interpolation schermlbe rasterizer stage
is configured through a set of rasterizer states. With thiedess a programmer
can specify the rasterization scheme, i.e if only pixelseted by the edges of a
primitive should be filled Wireframemode) or fragments for all pixels covered
by the primitive should be generategb(id fillmode). A primitive cull mode can
be activated and used to discard all primitives facing eitbwards or away from
the camera, thus excluding them from rasterization. Detghtil operations al-
low to discard primitive samples on a per fragment basis endttput merger
stage. However, the Shader Model 3.0 introduced a mechacatied early-z
test, which allows to perform the depth test for a fragmenherasterizer stage
if its depth value will not be modified in the pixel shader stand stencil opera-
tions are disabled. The depth test incorporates a deptlikte z-buffer, which
stores distances to a reference image plane for all pixdlseiirame buffer. If
one fragment passes the depth test the corresponding ex-lpiXel value is re-
placed by the fragment’s depth value. Fragments failingiiqeh test will never
contribute to the final result, thus the early-z test alloswsfficiently discard frag-
ments before they are sent into the pixel shader stage, whiam can drastically
reduce the load on the pixel shader stage.

4. Pixel Shader stage A programmablepixel shader kernel is executed for each
fragment generated by the rasterizer. It has access totetpwmlated vertex at-
tributes and can read data from external texture resouesgdimg in GPU mem-
ory. The Shader Model 3.0 allows to bind up to eight parakelder targets to
the pipeline, whereas each texture element can contain 4 3#bit scalar val-
ues. Thus, within one single rendering pass a pixelshadeogtout up to 128
bytes of data with each fragment. Furthermore a pixel sheaerlso modify a
fragment’s depth value.

5. Output Merger stage: This final pipeline stage is responsible to route data into
multiple output buffers. Up to eight render targets can bevaied at the same
time. Geometry rendered into multiple render targets iggoted only once and
rasterized at the same position in each target. Dependitigeooutput merger’s
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decision, fragment attributes are either written at theesposition into all cur-
rently bound output buffers or discarded entirely.

Programmers can configure depth/stencil operations agwblending function-
ality through various state objects. While depth/stengdrations allow to discard
data on a per fragment basis, the blend state allows to matgguwow pixel val-
ues in the target buffer are updated according to the opalptya attribute of a
fragment. Blending operations are usually employed toeesdmi-transparent
objects, updating the target color according to a opacilyevaf a fragment in-
stead of simply overwriting the target value. The outputgeets certainly one
candidate for another programmable component in the retglpipeline.
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Figure 3.2 The DirectX 9.0 / SM 3.0 rendering pipeline. Programmablmé&kstages are
shown as yellow boxes. One important feature introduced&)y8iM 3.0 standard (highlighted
in red) is the possibility to access texture buffers in theeseshader stage, a fundamental
building block to realize interactive particle tracing dretGPU.
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3.3.2 DirectX 10 and the Shader Model 4.0

The DirectX 10 API with its Shader Model 4.0 standard wasagdel in 2007 and is
closely coupled to low level system layers of the Windowgad/sperating system. For
a thorough overview of the complete specification we referrédader to [11]. Fig-

ure 3.3 depicts the DirectX 10 rendering pipeline, impdreaditions are highlighted
in red. The mostimportant changes to the DirectX 9.0/SM tfdard are listed in the
following:

Data Types and Structures

The SM 4.0 standard loosens restrictions regarding datstipat can be represented
in vertex and texture buffers. Vertex attribute and texwaéa layouts now support
up to to four components per element, whereas the compooantbe of type char,
short, (unsigned) integer or float. Also 8-, 16- and 32-bitefess data has been in-
troduced as well as the possibility to reinterpret buffed data types throughout the
rendering pipeline. Furthermore, buffer resources canrbapgd into arrays (e.g., a
Texture2DArraycontains multiple 2D texture slices of equal size and fojntit arith-
metic on (unsigned) integer data types throughout the wih@lgrammable pipeline is
also one new addition of the SM 4.0 standard.

The SM 3.0 standard featured (global) shader constantshweaic be scalars, vec-
tors or matrices of fundamental data types. Prior to the @t of the rendering
pipeline these global shader variables can be set indilhdthaough respective API
calls within the application. In the SM 4.0 standard a newetgp buffer, so called
constant bufferswas introduced. Constant buffers are optimized for contstariable
usage, which is characterized by lower-latency accessraqgdiént CPU updates. In
HLSL code, these buffers are defined similar to structurgeenC programming lan-
guage. Grouping global shader constants according to“tidiate frequency” reduces
the bandwidth required to update shader constants as g@tateommitted at the same
time rather than making individual calls to commit each ¢ansseparately.

The Shader Model 4.0 Rendering Pipeline

One important feature of the SM 4.0 standard is its demandeft access to buffers
in all programmable pipeline stages. Vertex buffers candaend as one or four com-
ponent float buffers and (unfiltered) data can be read wittershader kernels. In con-
junction with the newstream output stagehis gives rise to the possibility to directly
manipulate buffer content on the GPU. Further addition$he&rendering pipeline as
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well as changes to existing kernel stages are listed in the@nximg, the complete SM
4.0 rendering pipeline is depicted in Figure 3.3:

1. Input Assembly stage New system generated values were added to the input
assembly stage. E.g.paimitive id can now be issued to uniquely identify whole
primitives throughout the geometry shader and pixel shatiges. Primitive
fans have been removed from the pipeline. Now points, limelstaangles must
be either specified as lists or strips. For line and trianglaifives new topology
types where introduced in the form of lists or strips withaadincy information.
This adjacency information can be used in the geometry stsidge to access
attributes of vertices residing on adjacent primitives.

2. Geometry shader stage With the SM 4.0 standard, a new programmable stage
was added to the rendering pipeline, namelyghemetry shadestage. The ge-
ometry shader is situated between the vertex shading aetighiading stages and
operates on the primitive level. This stage receives whotaifives, e.g. a line
segment or a triangle with adjacency information, and dpsran the primitive
level with access to the data structures of all primitiveiges. It allows arbitrary
operations on each individual vertex data structure buhiended purpose is to
amplify or reduce the incoming stream by adding or removihgl primitives.
A geometry shader can output up to 1024 32-bit values in tha faf vertices,
whereas each individual vertex can carry up to 256 bytestobate data. Next
to amplifying or reducing an input stream, the geometry shadn also change
the primitive type itself. For example, textured spritelypdps) can be realized
efficiently by sending a stream of point primitives into thpedine and letting
the geometry shader issue one quadrilateral in the form oftti@ngles to the
successive rasterizer stage.

The geometry shader also introduces the possibility tactite output into spe-
cific slices in texture arrays or 3D textures. For each shegdted by the geom-
etry shader stage, separate rasterizer and output meeggssare invoked, i.e.
even the projection and, thus, the area covered by an outiputige can vary.

3. Stream Output Stage The stream output stage renders it possible to stream data
directly into buffers residing in GPU memory. It can be aated solely or par-
allel to the rasterization stage and, thus, allows to upgatenetry data residing
in vertex buffers directly while (optionally) rasterizirfgrther information into
texture render targets. As the currently bound input strbaffer(s) cannot be
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bound as stream out target(s) to the pipeline, a ping-poppaph using two sets
of buffers has to be applied to update geometry data directiyhe GPU.

4. Output Merger stage: Within the SM 4.0 standard, it is possible to activate
blending functionality separately as well as to define irtlial write masks for
each active texture target. 32-bit floating point precis®mtroduced to the
blending stage, thus, offering full float support throughthe whole rendering

pipeline.
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Figure 3.3 The DirectX 10 / SM 4.0 rendering pipeline. Yellow boxes denthe three pro-
grammable kernel stages. The new stream output stage allowmnipulate vertex buffer
content directly. Important new features addded to thegend pipeline are highlighted in red.



Chapter 4

Interactive Visual Exploration of 3D
Unsteady Flows

4.1 Introduction

Interactive visual exploration of 3D unsteady flows is siille of the grand challenges
in many areas of science and engineering. Popular appiisatvhere such fields arise
include computational fluid dynamics and mechanics, asagathedical imaging tech-
niques like functional CT. In the unsteady case the expémsgasight into the underly-
ing physical phenomena especially from the dynamics of thve fConsequently there
is a dire need for real-time techniques that provide rapsdai feedback. These tech-
niques, however, have to be supported by interactive andirg metaphors to enable
the user to focus on relevant details and to flexibly selexintlost appropriate visual-
ization option. Only then, the massive amount of 3D infolioraprovided to the user
can be filtered adequately.

Despite the advances in CPU and graphics hardware technarigting visual-
ization techniques for reasonably sized 3D unsteady flowdistill cannot run at ac-
ceptable rates. As numerical and rendering capabilitiesimae to increase, so does
the size of the data sets to be visualized. Today, timewedalumerical simulations
comprised of billions of grid points are available, makihg t/isualization difficult due
to memory constraints. Figure 4.1 shows such a gigantictielticonsists of 227 time
steps at resolution 512256 x 64 and requires over 20GB to store velocity information.
As these requirements will continuously increase in tharijtthere is a dire need for
flow visualization techniques that comprehensively adsitiesse issues.

57
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In this chapter, we present a novel visualization technfiQu&D unsteady flow fields

that addresses the aforementioned requirements. As teeokiguch data sets usu-
ally exceeds the memory capacities of GPUs, additional areashave to be taken to
manage the data needed during the interactive flow expborassion. We propose
a novel multi-core approach to asynchronously stream sedisfirom the CPU. By

decoupling visualization from data handling this approeesults in interactive frame
rates.

Figure 4.1 Visualization of the time-resolved Terashake 2.1 simafatiata. On a PC equipped
with a dual-core CPU and a single GPU, particle-based \vizatain using 256K primitives in
combination with volume rendering runs at over 40 fps.

4.2 Contribution

The techniques presented in this chapter are based on enstgeapproach for time-
resolved sequences. In contrast to previous visualizagonniques for such fields,
both the mapping of visualization data onto renderable itiies and the rendering
of these primitives is performed entirely on the GPU. Ourrapph has the following
properties:
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* Memory efficiency. Asynchronous streaming of the data allows the visuabrati
of an unlimited amount of time steps. Recent advances of+oailé architectures
are exploited to abstract from the limited size of the locBLGMemory.

» Exploration efficiency: Since the reconstruction of local flow features—e.g.
stream, streak and path lines, as well as derived scalatitjesn-is integrated
into the rendering process on the GPU, our system providggritaneous visual
feedback to the user. This accommodates a more efficientettef binderstand-
ing of even very complex flow phenomena.

* Visualization efficiency. Particle tracing and the computation of characteristic
lines is performed on the GPU to visualize the dynamics ofaady flows. This
results in a significant performance gain compared to pusvapproaches.

» Cost efficiency The visualization techniques presented in this work ape-es
cially designed for off-the-shelf PC hardware.

The remainder of this chapter is organized as follows: Inné&e section we dis-
cuss related work. In Section 4.4 we show how 3D unsteady fleldsfican be stored
on the GPU to allow efficient particle tracing and we addreda dandling and transfer
issues inherent to visualization techniques for large dats. Section 4.5 is dedicated
to GPU-based particle tracing, and Section 4.6 discussasetyof rendering modal-
ities for individual particles. Section 4.7 presents GPA$dd integration techniques
to extract characteristic lines in unsteady flow fields anctiSe 4.8 discusses various
visualization modalities for particle trajectories. Sewt4.9 introduces focus+context
techniques for polygonal meshes which facilitate the irgegn of static boundary re-
gions as context information into the obtained visual flopresentation. Finally, we
conclude this chapter with a discussion of the main contios.

4.3 Related Work

In contrast to 3D steady and 2D unsteady flow, the literatarenteractive techniques
for 3D unsteady flow is amazingly sparse. In this section, exgew existing ap-
proaches and motivate how our system can fill this gap. Asdiized in Section 2.2,
the field of flow visualization techniques can be classifiedrsely intodenseand
sparse methods

Dense visualization methods [97] seek to reconstruct desnegresentation for the
whole flow domain. To overcome occlusion effects, the pregesisually restricted
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to regions of interest, such as vortex regions [184] or strearfaces [160]. The re-
striction to regions of interest culminates in image-basetiniques [171, 98], which
trade highly interactive frame rates versus artifacts dufé screen-aligned nature of
the regions. Traditionally, unsteady fields are problemaince it is not a priori clear
how non-instantaneous characteristics such as strealkioliqes can be integrated into
dense methods [43, 156].

In contrast, sparse methods reconstruct characteristicféatures only at specific
locations. Particle tracing [136, 21] and the reconstauctf stream, streak, and path
lines [95] fall into this category. Also, methods seekingxtract topological structures
[64, 163] or features in general [130] can be consideredsspaiethods. Both classes
are appealing in their own right, depending on which aspafatse data should be em-
phasized; however, Figure 4.2 clearly demonstrates th#&drige amounts of primitives
geometry-based methods naturally converge towards deetfeds.

Most sparse methods pay particular attention to properisgedrategies [167,
123]. However, recent work by Wiebel et al. [186] indicatasaybe opposing com-
mon belief—that there is a need for a simple, controllabiel @ery localized prob-
ing metaphor. Mimicking the dye- and smoke-injection ofl4da windtunnel experi-
ments, such a metaphor elegantly circumvents problemsatigtarising when seeding
in unsteady flow fields. Kruiger et al. [90] show that a probimgtaphor combined with
rapid visual feedback is a convenient and highly effectivethad to explore the com-
plex dynamic structures present in many flow fields. Proleglow is a very intuitive
and valuable tool that gives engineers full control of theualization process, rather
than forcing them to rely on an automatic seeding algorithm.

The first version of the particle engine, constituting thanfdation for the work
presented in this thesis, was developed at our chair in 2Q0Krbiger et al. [90].
The introduction of the vertex texture fetch to the Directqhics pipeline (see Sec-
tion 3.3.1) inspired the development of the GPU particldmagBefore this framework
was published, interactive techniques employed pre-coedparticle trajectories and
uploaded them to the GPU for rendering to enable interagtitmthe data [20]. Alter-
native approaches required sophisticated caching sieatf®3] or expensive parallel
hardware architectures [21] to achieve interactivity. GilU-based patrticle engine al-
lowed to trace a huge number of particles in parallel at tvaes of magnitude faster
than on state-of-the art CPUs available at the time. Sincgat® communication be-
tween the CPU and GPU was required they could also be digpktyeateractive frame
rates. Thus, virtual exploration of 3D stationary flow fieldsa way similar to real-
world experiments became possible even on commodity PCGuaaed



4.4. 3D UNSTEADY FLOW FIELD DATA 61

Figure 4.2 Visualization of a large eddy simulation of the flow aroundydinder. Dense
particle sets are visualized using oriented rendering ipvies to achieve a “LIC-like” look.

4.4 3D Unsteady Flow Field Data

Particle tracing on the GPU can be realized most efficiehthe 3D unsteady flow field

is given as a time-resolved sequence of velocity vectordiséanpled on a cartesian or
uniform grid. Velocity data over the whole spatial flow domaan then be stored—for
each time step individually—in thRGBcomponents of 3D texture resources residing
in GPU memory. Consecutive time steps are stored in sepaodtee resources. This
setup is especially suited for GPUs for the following reason

Firstly, since the data resides on a structured grid, lngahe velocity information
for a point in the flow domain requires only a per-componemlisg of its position
coordinates to transform them from object-space to texdpexe.

Secondly, 3D textures allow the fastest and, thus, mostafitievay to sample val-
ues at arbitrary locations in the flow domain, as GPUs sugpddmatic trilinear inter-
polation in hardware. A linear approximatiofx,t) of the velocity data at an arbitrary
location in space and timet can then be obtained by sampling the two 3D textures
containing adjacent time-steps € t < tj,1) and one additional linear interpolation
manually calculated in a shader kernel as described in isqu@L. 7).

Thirdly, if a fixed integration step size is used, the samewamof work is imposed
onto all shader kernels executing the advection of an inariighe stream in parallel.

Throughout this work we employ such data structures andnaihgs presented in
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the following adhere to this concept. However, let us node plarticle tracing on GPUs
is not restricted to such data sets and unstructured tiswwed 3D unsteady flows can
also be employed at additional costs with respect to theimtaf a sample position

and varying amounts of integration steps. For an efficieqi@mentation of particle

tracing in unstructured grids on the GPU, we refer the retwgr48].

4.4.1 Data Handling

As the size of 3D unsteady flow field data sets usually excedtd @emory capac-
ities, an additional abstraction layer is needed to manhgalata needed during the
interactive flow exploration session. We propose a novetinsale approach to asyn-
chronously stream such fields from the CPU. This approacbugdes visualization
from data handling, resulting in interactive frame ratese &hploy multi-threading
by assigning one thread to consecutively stream one tinpeadter another from disk
to the GPU, and another thread to manage integration andlization specific GPU
calls. Since these threads are concurrent per se, theizsti@h process is entirely de-
coupled and mostly unaware of the streaming data uploads&cmently, data transfer
does not block the visualization thread.

To advect particles seamlessly in an unsteady fieldpresented by a discrete set
of vector fields{vj, i € [1,n]} at time steps;j, we need to store at least three fields in
GPU memory. For example, Euler integration requires readsscto two fields at times
tj,ti. 1, and a third field; 2 has to be available once time integration proceeds beyond
ti 1. By implementing a ring buffer, we can dynamically choose moany time steps
to keep on the GPU, depending on the order of the time-integracheme and the
global integration step size. As soon as the time indefthe visualization enters the
interval [t 1,1 2], the memory manager is notified. The manager then advandes in
sequence by overwriting the GPU container storing time gtefih the next time step
ti 3 (see Figure 4.3). This leads to a very smooth transitionnmetiand, if the time
needed to stream the next time step is smaller than the @thysite associated with
one interval, the whole sequence can even be explored itimesal

Since graphics cards lack the ability to fetch data direftthyn disk, the memory
manager pre-fetches as many time steps as possible fromamtisg&tores them in CPU
system memory. If the entire sequence fits into RAM, it is &gt at application
startup and can then be streamed without any further disksac©therwise, the man-
ager uses an additional ring buffer which provides contaif@r a system-specific or
user-defined number of data sets. This is illustrated onigfm of Figure 4.3.
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If only one thread is used to implement visualization anchdetndling, both disk
transfer and the upload of data to the GPU will block the erdipplication. This is
because both operations are issued via blocking systesi Batoupling the data man-
agement and particle tracing tasks into separate threadsesnthe particle engine to
issue rendering calls even while new data is streamed to & Glulti-core architec-
tures benefit most from this implementation; yet even fogleicore CPUs we observe
a significant gain in visualization performance. This is thuthe fact that the operating
system scheduler switches between the two threads, egaiamallel execution of data
upload and issuing rendering calls.

| Particle Tracing [to,t;] | | Particle Tracing [t;,t;] | | Particle Tracing |

oo o0 .09

\2/ \9/ \ /

S/

| RAM — GPU Field (t2)| | RAM — GPU Field (t;) | | RAM — GPU Field |

| HD—RAM Field (t,) | HD - RAMField |

= .

Figure 4.3 In the left and middle images one cycle performed by the dataller when ad-
vancing in the sequence is depicted. The rightmost imagstidites the separation of the asyn-
chronous stream manager into distinct threads.

Currently, the GPU visualization module and the two memoayagers are running
in two separate threads (see Figure 4.3 (left)). Once thealimtion thread enters
the next time interval, it requests the next time step of #hguence that is not yet
resident via standard thread communication mechanisnesm@mory manager either
acknowledges that this time step has already been sucligsgiloaded to the GPU,
or the requested time step is streamed to the GPU. Afterwdrdsystem memory is
updated, overwriting the block containing the now obsdliete step.
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Table 4.1 compares the raw data throughput that is achierestreaming two dif-
ferent data sequences on different architectures. Notethigathroughput has been
measured with the visualization thread not imposing anytaae@l load. If visualiza-
tion is enabled, including rasterization and shader omersiton the GPU, our experi-
ments have shown a loss in throughput of about 15%. Both tashimes are equipped
with 3GB RAM, two WD Raptor 74GB hard disks in a RAIDO, and an IENA
GeForce 7900GTX with 512MB video memory. The single-cor&@a P4 3.2GHZ,
while the dual-core CPU is a Core2 Duo 6600. As can be seemgotual-core archi-
tecture using the same disk and memory system the muli@dintg approach already
yields a noticeable gain in throughput.

LES Cylinder Flow (32 MB/Field)|| Terashake 2.1 (96 MB/Field)
HD — CPU CPU— GPU HD — CPU | CPU— GPU
1-Core|| 90 MB/s 1130 MB/s 95 MB/s 1317 MB/s
2-Core|| 94 MB/s 1240 MB/s 100 MB/s 1590 MB/s

Table 4.1 Performance measurements of the stream manager unders/aaofigurations.

On quad-/multi-core architectures the memory managenaaribe split further into
separate threads to decouple streaming from disk to CPUramdGPU to GPU. Still,
for off-the-shelf PCs, loading from disk is clearly the betieck of the system. To alle-
viate this problem it has proven worthwhile to pre-fetch asntime steps as possible
into CPU system memory when the user restarts or pauses pheadjon. A further
increase in performance can be gained if more efficient RAMesns are employed.

4.5 GPU-based Particle Tracing

On Shader Model 4.0 compliant graphics hardware, partiatgrig can be approached
in different ways. Texture-based particle integration Eapptexture resources to store
per-particle attributes and integration is performed mpixel shader stage by rasteriz-
ing into respective texture targets (this technique is alsolable on SM 3.0 hardware).
Buffer-based particle advection employs the geometry eshsihge to update particle
attributes and exploits the stream-output stage to sendte@darticles into vertex

buffers residing in GPU memory. In the following we will pexg both approaches in

detail and list their pros and cons in terms of performanaefaxibility.
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45.1 Texture-based Particle Tracing

Texture-based particle integration employs a techniquagonly referred to as GPGPU
programming. In this model, data structures are storedhia {¢xels of) texture re-
sources. To circumvent hardware limitations regardingdize of 1D textures, we
store the attributes of a particf® ; at the texel positiofi, j|(i < m, j < n) in 2D tex-
tures of sizan x n. Each texture resource can contain up to 4 32-bit sized sglae
component. Multiple attributes can be distributed to saviexture resources, and up
to 8 textures can be simultaneously bound as output targetsetrendering pipeline
(this is commonly referred to amsultiple render targetsr shortMRT). Thus, up to 128
bytes of particle attribute data can be updated at oncedhrawsingle invocation of the
rendering pipeline.

Updates are performed in the pixel shader stage and areddimksending a single
quadrilateral covering the whole viewport into the pipelinn general, DirectX does
not allow simultaneous read/write access to texture regsur Thus, whenever the
update of an attribute relies on results calculated in aipusvstep (e.g., the particle
position), we employ ging-pongmechanism to access this information. Figure 4.4
shows a flowchart of the texture-based particle integragohnique.

GPU-based patrticle tracing comprises following three megommponents:

« Particle Setup Each patrticle is initialized with atarting positionand alife time
value before the particle advection loop starts. An inistrting location for
all particles is pre-computed on the CPU with respect to a-sskected spatial
distribution function, e.g., a uniform or random distrilout over the unit cube.

The flow exploration is coupled with a probing metaphor, wifgy the user to
interactively change the size and location of a rectangdading probe. Manip-
ulating the probe results in a transformation matrix whlapplied to the start
position whenever a particle is released into the flow domain

Additionally, each particle gets assigned a random lifeetwaluel in the range

[1—var,1+ var], wherevar is a user-specified variance valdds scaled during

particle incarnation by a user-defined global value to egaigh particle with an
individual life time. Higher variance values result in a hagenous particle dis-
tribution over time as particles will disappear and be rainated at their starting
locations in a random manner.

1GPGPU = General Purpose computation on GPUs
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The starting location and life time values are copied intoa{component float-

ing point texture HtartTe) and are stored as an additional resource in GPU mem-
ory. With this setup a user can change the probe location &izhiglife time
interactively without the need to re-calculate the intialues and to send the tex-
ture resource to the GPU (which would stall the exploraticogpess). Only if

the number of particles or the life time variance are charagedpdate involving

the CPU becomes necessary.

« Particle (Re)IncarnationWhenever the particle setup stage has ended, a simple
pixel shader is invoked to initialize particle attributasopto particle integration.
The following operations are performed by this pixel shad@rst, a particle’s
starting location and life time value are read from 8tartTexresource. Then,
the starting positions are shifted from the unit cube to the tlomain object-
space according to the probe transformation matrix. Ratife time values are
scaled according to the global life time. The probe tramsfdron matrix and
the global life time are accessible as global shader cotss{egsiding in GPU
memory). The pixel shader writes the updated particlebaitiis into one of two
ping-pong attribute textures used during particle adeecti

During the successive particle advection stage, whengyanti@le leaves the flow
domain or its life time expires, the same operations areaisouted.

* Particle AdvectionParticle advection is performed in a pixel shader (as degic
in Figure 4.4) and requires access to following resourcegSkartTextexture is
required in case a particle has to be reincarnated. If ategdepend on results
from the last advection step, the respective textures @ed to be available (e.g.,
the position of a particle or its life time). Furthermoreetbet of consecutive
velocity vector fields holding the flow field data confining therent position in
time must be provided to the pixel shader for particle iraégn.

In every update pass a setok nfragments is generated and processed in parallel
by a shader kernel. Each shading unit executing the respdatrnel performs
the following operations: Current position and life timelues are read from
the attribute textures filled during the last invocationloé advection pass. The
respective read locations are available as system gederabges, namely the
target texel indices in the output target. Then, the pixelden checks if the
life time of a particle has expired or whether it has left tr@evfldomain. In
both cases the particle is reincarnated as described alfotreerwise particles
are advected using either the Euler (Eq. 2.3) or the fourtteroRunge-Kutta
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integrator (Eq. 2.4), which require multiple read openasidrom the flow field

textures and interpolation operations (Eq. 2.7) to comtheeecessary velocity
field values. Updated position and life time values are emitio a render target,
which will become the input in the next advection step. Aiddial attributes, e.g.
the velocity at the current particle position, can be writte additional render
targets and can be used to determine the appearance ofcepduting rendering.
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Figure 4.4: Flowchart for the particle attribute update: A quadrilaterovering the whole target
texture is sent into the vertex shader stage and passedjthtouhe rasterizer to generate one
fragment for each covered texel. The pixel shader stagesaesdhe flow field data as well as
results from the last iteration and performs the attribyidates in parallel. Textures storing
particle attributes that rely on previous results are teddletween successive update iterations.

4.5.2 Buffer-based Particle Tracing

With the SM 4.0 standard, Microsoft introduced gteeam output stag® the rendering
pipeline. This stage allows to stream intermediate resuiics(multiple) vertex buffers
directly (see Figure 3.3). As the geometry shader allowsutput a varying number
of primitives for each processed element, this advectiohrtejue is especially useful
if the amount of particles needs to be changed flexibly owvee tie.g., for an adaptive
refinement or coarsening of the particle set). Furthermbiggeven possible to stream
results into buffers residing in GPU memory and sending lbents to the rasterizer
stage in parallel. Thus, particle advection and successiveering can be performed
in a single invocation of the rendering pipeline (see Figlu®). This is especially
suited if particles are rendered as single point primitivdsre importantly, the parallel
rasterization can be exploited to store additional infdrameabout the buffer content in
additional texture resources. For example, if an interddpece adheres to particles in
disjunct parts of the linear vertex array, they can storth&rrinformation by rasterizing
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a point primitive into corresponding (disjunct) regionsadlitional texture targets (see
Figure 4.5). By application of different alpha blending oggens, information such
as the amount of particles or the vertex buffer index of th&t/fast primitive in the
respective bin can be captured. Alternatively, the pix@lden stage can be disabled.
Then, the rendering pipeline is only executed up to the streatput stage and further
stages of the rendering pipeline are omitted.

Buffer-based particle tracing can be realized with twoed#ht approaches. The
first approach is more flexible as is provides the possilttitgtore a larger amount of
data per buffer element. The second approach, on the othdr ban only cope with
up to sixteen scalar components per particle in one steapubuivocation but results
in a minimal memory footprint. Both approaches rely on theggpong mechanism as
described above to access results from the last update pass.

The first technique stores all attributes of one particldinibne vertex-element of
a single buffer. In this configuration, up to 64 scalar congyus of per-vertex data (256
bytes or less) can be captured by the output buffer for eaotegsed vertex element.
In this setup, the content of a single vertex buffer is setattine rendering pipeline and
updated particle attributes are written into a second biteind to the stream output
stage. A flowchart for the single-buffer technique is giveifrigure 4.5.
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vertex 2 7

n-th Particle Bin

Figure 4.5 Single-buffer particle update: Per-particle attributesstored on a per-vertex basis
in a single buffer. The particle updates are performed ingéb@metry shader stage. Buffer
Setupcontains data required for particle reincarnation. Otilynthe rasterizer and successive
stages can be activated and exploited to store furthercfea(interdependence) information in

additional texture resources . For example, here the fisaavrticles in the output buffer are

interdependent and share information inside a common texeéAttrTexoutput texture.

Alternatively, attributes can be separated into those wéedraccess to results from
the last pass and those who are independent of previoudat@as. By storing up
to four scalar components per vertex in separate bufferkaaging only two copies
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of those buffers that require access to intermediate sedulting the advection stage,
a minimal memory footprint can be achieved. However, stiegrdata from multiple
input buffers to multiple output buffers restricts the t@mount of per-vertex attributes
to 16 scalar components as only 4 simultaneous output stream be bound to the
rendering pipeline and each output target can only captwiagle element (with up
to 4 components) of per-vertex data. Let us note that whereewgometry shader
appends an element to the output stream, attributes artenviitto all buffers bound to
the output stage. Thus, it is not possible to distribute patistream to several output
buffers with the help of the stream output stage. Figure é@als the flowchart for the
multi-buffer particle update technique.
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Figure 4.6. Multi-buffer particle update: Per-particle attributese agrouped depending on
whether they need to be reused or not. Up to 4 scalar quarditéestored in one vertex buffer el-
ement. Multiple input streams—holding different partiektributes—are sent into the pipeline
in parallel. After the attribute update in the geometry ghaglage, results are distributed into
several output buffers by the stream output stage. Onlipatés that rely on previous results
need two buffer copies, thus the memory footprint on the GBb lee reduced. Again, the
rasterizer and successive stages can be activated optitmatore further information in ad-
ditional textures (shown in Figure 4.5) or to render the ltésy particle set. This illustration
demonstrates how particles might be updated and rendegedimgle invocation of the render-
ing pipeline.

The texture-based particle update approach is the fastthbhto perform particle
integration as it imposes the least load onto the GPU. OnlyVertices (spanning the
texture-filling quadrilateral) are processed in the geoynstiage. The rasterizer then
generates all necessary fragments to invoke a pixel shaaelkper particle. The
output merger finally stores the results in the respectixelseof the output target(s).
The texture-based approach has proven most suitable ifia stember of particles is
used for visualization, and timings presented in the reshisfchapter correspond to
this technique.
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The buffer-based technique, on the other hand, requiresxeution of (at least)
two shader kernels per particle as attributes have to beg@assough the vertex shader
stage before a geometry shader can send the updated vathessteeam output stage.
Furthermore, while primitives are processed in parallehi& geometry shader stage,
the stream output stage has to maintain the order of the stfa#m in the output buffer.
The buffer-based approach will be employed in Chapters 67anehere an adaptive
refinement and coarsening is applied to the particle setdorera uniform sampling of
integral surfaces.

4.6 Particle Visualization

The simplest way to visualize a particle set is by renderveayeparticle as a single
point primitive covering one pixel in the frame buffer. Ifetiexture-based particle
update technique is employed, the particle data cannotrigered outright. Particle
attributes residing in texture resources need to be mappidrenderable primitives.
With the SM 3.0 standard the so-called vertex texture fetwhtya was introduced,
opening up the possibility to access texture data in theexesthader stage and, thus, to
displace vertices according to position information stiaretexture resources. Instead
of explicitly storing a static vertex buffer in GPU memoryyecan exploit features of
the input assembly stage to generate the needed renderabives on-the-fly. The
input assembly provides optional system generated vatuéiset rendering pipeline,
which can be demanded in one of the programmable shadesstage, a/ertexldcan
be requested by the vertex shader stagePrimitiveld can be issued to the geometry
shader stage. Binding no input buffer to the rendering ppdbut issuing a draw call
from within the application leads the input assembly staggeinerate a vertex stream
with increasing vertex ids. This vertex stream is sent toviieex shader stage and
texture coordinates to access particle attributes can lbalated through modulo and
division operations on th&ertexld Particle attributes are then gathered within the
vertex shader kernel through the vertex texture fetchtgtaind additional arithmetic
operations are executed to determine the particle’s appearand position in screen
space. Then, the results are issued to the rasterizer.

On SM 4.0 capable hardware the vertex texture fetch can berirented by rein-
terpreting the texture data as vertex buffers and, thusiréctty bind the separate at-
tribute textures as input buffers to the rendering pipeline

If the buffer-based advection technique is used, all theessary information is
already inherently present in the attribute list of eachteser Thus, by sending this
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stream into the pipeline a vertex shader can compute alksacgoutput values directly
on the basis of the input element data without the need t@perfead operations on
attribute textures residing in GPU memory. If particles mmedered as single points,
the buffer-based advection can efficiently be combined thighksuccessive rendering by
sending vertices not only to the stream output stage buingasem to the rasterizer
in parallel. However, as positions projected into screeacspare required to render
particles into the frame buffer, the geometry shader mustige these coordinates to
the rasterizer stage.

The rendering of point primitives does not necessarily imegany special opera-
tions in the pixel shader stage, and in particular no texfieieh has to be performed.
Using this modality allows for the integration and rendgrof millions of particles
at interactive rates. Even if each patrticle is represented bingle pixel, the sheer
amount of tiny primitives enables to mimic real-world trasabstances like smoke or
dye injected into the flow domain effectively (see Figure)4.7

Figure 4.7: Particle tracers rendered as single point primitives.

4.6.1 (Oriented) Point Sprites

Rendering complex geometric objects instead of simpletp@nmitives makes it pos-
sible to incorporate additional flow properties into thewakrepresentation. However,
representing each individual particle primitive by a mesmprising multiple vertices
on its own can drastically decrease the rendering perfocmdne to the increased ver-
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tex load. Mimicking volumetric objects byoint spritesrepresents an efficient alterna-
tive. Here, objects are approximated by screen-align&tlreed quadrilaterals centered
at the position of a particle in the frame buffer. Rotatityaivariant 3D objects can
be simply represented by attaching a photograph of an olgecpoint sprite.

Complex shapes can be approximated in the formitial geometry This ap-
proach takes a discrete set of views (under different apglea real three dimensional
object and projects them into disjunct regions of a 2D text8uch a texture is com-
monly referred to asprite texture atlags5, 90] and, following the parametrization
proposed in [90], can be constructed as follows.

To convey directional information we need only two degreelseedom to align a
3D object with the respective vector direction. If we do nanivto encode information
into the object’s rotation about the direction vector, we aae a shape that is symmetric
along one direction—e.g., the x-axis—to reduce the amotumformation that has to
be stored in the texture atlas. Furthermore, as a poinesigraligned with the x- and
y-axes of the view-space, the rotation of the object aroinedztaxis takes place in
the screen plane and can, thus, be obtained by rotating xthedecoordinates of the
guadrilateral. Therefore, we only need to parameterizesi@n the object with respect
to the rotational angle about the y-axis in the raf@et] and store discrete snapshots
in disjunct columns along one dimensiandirection) in the 2D sprite texture atlas. To
get all rotations from 0O to & we access the atlas with the texture wrap mioaigor.

Virtual geometry usually has an elongated shape in ordemjzhasize the velocity
direction. By scaling an object along its major axis and elig (view-dependent)
“longitudinal deformations” in the rows of a texture atlasdjrection), it can be em-
ployed to depict directional information as well as the loggocity magnitude. Here,
the scaling parameter domain ranges from 0 to 1. An exempéxtyre atlas storing
virtual geometry of different lengths is shown in Figure.4.8

c o o0 o

Figure 4.8 Views on a geometric object under different angles are gtorgéhe columns of a
sprite texture atlas (red). Geometries of different leragthstored in separate rows (green). The
yellow square depicts an exemplary layout for the textu@dioates of a point sprite.
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To render a point sprite, an appropriate subregion from tha@evsprite texture atlas
has to be selected. This selection is performed on a paciednasis via a transforma-
tion of the uniform texture coordinates at the quadrildiereertices. BeV = (X,¥,2)T
the normalized local velocity vector transformed into Wspace. To select the correct
sub-image the magnitude of the local velocity vector is uaed-offset and the arc
sine ofZis used asi-offset. The rotation of the virtual geometry around thexisas
taken into account by a 2D rotation of the texture coordmateout the center of the
guadrilateral. The rotation matrix

I\/lrot:<

is thereby given by the angle between the x-axis and the riaexdgrojection of into
the xy-plane of the view-space. We employ the geometry shetdge to construct a
screen-aligned quadrilateral patch. For every particektérnel receives a single point
primitive with corresponding particle attributes as inpatl computes the four screen-
aligned vertices spanning the quadrilateral patch. A dlshader constant determines
the size of all point sprites, however, to achieve the imgoesof perspective foreshort-
ening the geometry shader adjusts the area covered by agmoité according to the
z-component of the particle position projected into screeace. The quadrilateral is
then tesselated into a triangles strip of two primitives esded to the rasterizer stage.
The pixel shader finally fetches the virtual geometry from $prite texture atlas. Fig-
ure 4.9 compares two results obtained with the (orientedfiesendering technique.

S1X S5

) where n=+/R2+y2,

:|é>:|><>

Figure 4.9 (Oriented) Point Sprites: Two probes are positioned in the fh front of the
cylinder. Particles released from the blue probe are rextlas rotationally invariant point
sprites whereas particles released from the red probe r@dened as oriented point sprites.
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4.6.2 Clip Planes

Rendering reams of moving particles often results in anrabgon of features of in-
terest within the flow. For this reason, we have integratedtionality to specify arbi-
trarily oriented clip planes in the flow domain and to restiie display of particles to
respective regions. This metaphor allows to reduce theiwgasiount of 3D informa-
tion and eases the problem of occlusions typically inheti@BD flow visualization.

For each clip plane, the four coefficients of the general @laguation are stored
in one element of a shader constant array residing in GPU merkarthermore, we
equip the particle set with an additional attribute indiegivhether a particle primitive
should be displayed or not.

During the advection pass, we compute for each particle ihemmam of the short-
est distances to all clip planes. If this distance falls Wwedouser defined threshold, we
project the particle onto the corresponding plane and,, thiast the integration from
the respective location in the next advection iteratiorrtilermore we mark the parti-
cle as valid for display. All other particles move along tteflas usual (until they are
captured by a clip plane) and are flagged invalid for renderin

In the successive rendering stage, we position all pastiglth an invalid render flag
outside the view frustum. By doing so, they are excluded fsoiccessive rasterization
and, thus, do not contribute to the final image.

As can be seen in Figures 4.2 and 4.10, internal flow strustcae be revealed
effectively with the presented clip plane approach.

Figure 4.1Q The application of clip planes in two 3D unsteady flow fieldsl®wn. In the
right image the presented approach is able to reveal shoe#ana the TeraShake data set.
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4.7 Characteristic Line Extraction

To offer additional visualization modes for unsteady flowdgewe have developed
GPU-based techniques for the construction of stream, jaaith,streak lines. Figure
4.11 shows such lines in an unsteady flow around a cylindertHeoconstruction of
characteristic lines, particles are released from a ustnetl probe and tracked over
time. The construction of stream and path lines essentigiyg the texture-based par-
ticle advection as described before. For the constructiatreak lines, however, we
perform a slightly different strategy. Throughout the dgling discussion we will as-
sume that characteristic lines startingnatk n sample positions are to be computed.
Each characteristic line is represented through a dissedteflen control points. To
store the control points for all lines—next to the particteibute textures—an addi-
tional texture atlas, large enough to stter blocks ofm x n entries, is needed.

Figure 4.11 Comparison between stream (white), path (red) and streek (igreen).

4.7.1 Stream Lines

A stream line describes an instantaneous particle patlghwkithe path of a particle
in an unsteady flow frozen at tinte To construct stream lines, the trajectories of all
particles traveling through an instantaneous snap-shtiteoflow field are computed
in len advection iterations whenever the time-sequence advdnegsn everyframe).
Particle advection is performed as described in Sectiorl 4v&h respect to numeri-
cal stream line integration (Eq. 2.6). However, after eadVeation step the content
of the output (particle position) texture is copied into teepective sub-region of the
atlas texture, determined by the current advection stepladizem x n of the par-
ticle texture. We do not transfer the resources manuallypixel shader, but use an
API-supported copy operation. If the size of the texturasa#xceeds the maximum
hardware supported texture size, multiple atlases migre t@abe stored.
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4.7.2 Path Lines

A path line describes a particle trajectory over time in asteady flow (Eq. 2.5). GPU
construction of path lines differs from the constructiorsteam lines as only one ad-
vection step per frame is computed in the time-varying filthe number of positions
along the path line exceetkn, the texture atlas is accessed in a ring-like manner. This
means that in each frame the oldest of all stored positiorsparticle is overwritten
by the current position. Since in this way the start vertetheflines to be rendered is
shifted, texture coordinates have to be adapted in thexveh@der according to a con-
stant shader variable indexing the start block locatiorhentexture atlas. As a result,
line primitives of growing length are constructed and dageld. As soon as the amount
of traced positions (frames) excedds, the traces start to move with the flow.

Whenever the “advancing” particle of a path line trajectiegves the flow domain
we begin the calculation of a new trajectory at the respedisrt position in the probe.
However, if a particle dies it cannot simply be reincarnatesithis will create an in-
correct line segment (from the last position before theaaination to the new seed
position) in the successive rendering stage. Insteadsibieiline segments are gener-
ated in this case as follows. The fragment shader copieddhmosition but marks the
particle by setting it&x-component to 0. Then the next advection step determinés tha
the particle dies, but also that it has been marked duringpstepass. In this case the
initial seed position is read and tkhecomponent is left at 0. In the next step, the shader
recognizes that the particle has been properly reincatrhieng the last pass, and sets
thea-channel of the respective entry back to 1. The particuta segments can finally
be masked out in the rendering stage by usiAglending.

4.7.3 Streak Lines

Streak lines do not depict the history of particles movingnrunsteady flow, but rather
describe the paths traced by dye continuously injectedtir@dlow at a fixed position.
In this case, all the positional information stored in theuee atlas has to be updated
every frame. Thus, instead of using two ping-pong partidieeation textures of size
m x n—as in the construction of stream and path lines—these tiferlstnow have to
be as large as the entire texture atlas.

In each time step, a pixel shader copies a blocknof n start locations from the
setup texture into a sub-region of the texture atlas, tlalisasing a new set of particles
into the flow. Then, an update is performed on the whole texadlas to advect all
lenx mx n particles in a single rendering pass. Again, the texturesati employed
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in a ring-like manner and, during the rendering stage, mmdwithmetic on system
generated values is used to address the starting locatehirad in the texture atlas.

4.7.4 Performance

The computation of stream lines in unsteady flow fields conhésesexpense of recal-
culating the whole texture atlas, i.e., the entire set addiwithin the frozen time step.
Path lines, on the other hand, only cause a slightly highempeational load than par-
ticle tracing, because copying per-frame results into ttesaan be realized without
noticeable performance loss. For streak lines, numemcagration in the 4D field has
to be performed for each position stored in the atlas in efraiype. We have mea-
sured the performance of the proposed characteristic ktraction techniques on an
NVIDIA Geforce 8800 GTX equipped with 768 MB local video memoA compar-
ative performance analysis between stream, streak, ahdipas using the 4th order
Runge-Kutta integrator (Eqg. 2.4) is given in Table 4.2. Timeirigs were obtained
with a disabled rendering stage to minimize additional loadhe GPU. Thus, only
the asynchronous streaming of flow field data and the extracii characteristic lines
were performed during the measurements.

# Lines L=100 L=500 L=1000
128 | 133/872/870] 30/835/330 15/388/175
512 | 125/586/400] 29/238/88| 15/125/47
1024 | 98/252/208 | 27/114/45| 15/60/24

Table 4.2 Performance measurements (in fps) for stream/path/stirezgcof varying length..

4.8 Characteristic Line Visualization

Once all particle trajectories have been computed, we gntpk Direct3D instanced
drawing API to render the characteristic lines. Similarhie particle rendering tech-
nique, a dummy vertex buffer containifgn primitives is sent to the pipeline and ren-
deredm x n times employing an instanced draw call. A vertex shadeh&saorre-
sponding control point positions from the texture atlasldasn modulo div operations

on the system generated valuestanceld(addressing the respective line primitive)
andVertexld(addressing the current position on the line). The apptiodakes care of
setting appropriate values as uniform shader constantsteatly access the atlas (this
includes the valuesy, n, len, the resolution of the texture atlas and one shader constant
indexing the line start location in the texture atlas).
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4.8.1 Control Points

If a small global step size is used during line integratitwe, impression of line primi-
tives can be obtained even without connecting adjacentalgmbints residing on one
line explicitly. By binding the dummy vertex buffer with a joo list topology in the
input assembly stage and rendering it with one of the preslomentioned particle
visualization techniques, intuitive representations loambtained. By rendering indi-
vidual control points as textured point sprites and scalhegysprite size according to
a scalar flow quantity, further information can be commuteida For example in Fig-
ure 4.12 (left) the velocity magnitude was used to adjussthe of ball-shaped point
sprites residing on stream line trajectories. In Figure4right) streak lines were
visualized by rendering their control vertices as (unsbadeiented ellipsoids. Addi-
tive alpha blending was employed to blend overlapping gives, thus, mimicking the
appearance of dye injected into the flow domain.

Figure 4.12 Particle visualization techniques applied to the conthis of characteristic
lines. Left: Ball shaped, textured point sprites residimgstream line trajectories are scaled
according to the local velocity magnitude. Right: Controins of streak lines are rendered as
(unshaded) oriented ellipsoids, thereby mimicking theeapance of dye injected into the flow.

4.8.2 Continuous Line Segments

To render the lines as a strip of linear line segments comgeatljacent trajectory po-
sitions we bind the vertex buffer with a line strip primitit@pology to the rendering
pipeline. After the position displacement in the vertexddrastage, the rasterizer gen-
erates fragments for each pixel covered by the line segmant&d by two consecutive
control points and sends them to the pixel shader stagee lirik primitives are ren-
dered with a low opacity value, converging flow regions camlégicted intuitively by



4.8. CHARACTERISTIC LINE VISUALIZATION 79

disabling the z-test and accumulating color through alpéading in the output merger
stage (see Figure 4.13).

Figure 4.13 Continuous characteristic lines. Left: Semi-transpastréam lines in a GPU-
based DNS simulation of a cavity driven flow. Right: Path ltrejectories are employed to
visualize an interactive GPU-based fluid simulation basethe Lattice-Boltzmann method.

4.8.3 Shaded Lines

To improve the depth perception of characteristic linesKér et al. [192] propose the
application of a local illumination model during renderirs lines have codimension
2inR3, no unique normal vector is defined. Thus, they introducenaggization of the
Phong reflection model [127] by choosing a normal vectoraagt to the incident light
direction and the tangent at a point on the characteristec The Phong lighting model
breaks illumination down into three components, namelyaajl (constantambient a
diffusereflection and @pecularreflection term. Bé the incident light directiony the
viewing direction and the reflection vector. Then according to the Phong model, the
light intensityl at a point on the characteristic line is given by

I = lambientT ldiffuset lspecutar= Ka + kg (I - n) + ks(v-r)° 4.1)

Here, the diffuse term—approximating a rough surface stree—obeys Lambert’s
diffuse reflection law (i.e., this term is equal from all vieirections). The specu-
lar term—approximating a smooth surface texture—, howesearentered around the
light’s reflection direction and decreases with increasingle betweemn andv. The
extent of the highlight is controlled by the shininess pagten(exponens). The three
constantks, Ky, ks € [0, ... 1], ka+kq + ks < 1 are used to weight the terms according to
material-specific properties. If we choose from all possidrmal and reflection vec-
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tors those that are coplanarltand the tangertt, then according to [192], the diffuse
and specular terms are given as

ldiffuse = kd 1- (l 't)27 |specular: ks\/l_ (I ‘t)z\/l_ (V't)z

By extending the line segment render technique with a gegmsbhtader, the tangent is
implicitly given by the control vertices of the line segmestiteam. The local illumi-
nation model is then evaluated on interpolated vertexaaittes through Phong shading
in the pixel shader stage. If a directional light is usednthest parts of the lighting
model can also be evaluated by the geometry shader and mdg tomponents that
are dependent on the position of a point along the line seg(nen the view direction
and parts of the specular intensity term) have to be cakedlah a per-fragment basis
in the pixel shader stage. By doing so, the arithmetic loggosed onto the shading
units of the GPU can be minimized. An exemplary result oladiwith this technique
is shown in Figure 4.14.

Figure 4.14 Shaded lines: Two probes with varying sample distributiaresplaced in front of
the cylinder. llluminating the characteristic lines gfga&nhances the depth perception.

4.8.4 Ribbons

By extruding the line segments into two- or three-dimenaiareometry, additional
flow quantities can be incorporated into the visual represgem of characteristic lines.
2D representations are especially suited to depict théioatabout the flow axis by
twisting a ribbon-shaped primitive [169]. To constructhidm-shaped characteristic
lines we employ an additional one-component texture ati@asng incremental rota-
tion angles for a random extrusion directibrdefined per probe start position (and
initialized perpendicular to the local velocity directjouring line integration the in-
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cremental rotation angle for this vector at subsequentabpoints—according to the
rotation about the flow direction—is calculated as

Bi1=6 (09,
wherew is the curl of the vector field (see Eq. 2.19) ang ﬁ is the normalized flow
velocity direction. To construct the ribbon geometry int@edering stage we employ a
geometry shader. By sending an instanced dummy vertexrtadfgaininglen control
vertices with a line list topology into the pipeline, we peed as follows. First, a
vertex shader fetches the corresponding position andootaalues from the texture
atlas and calculates two new vertex coordinates by diggjatbie control point residing
on the line along (rotated about the corresponding rotation argjlend its inverse,
respectively. These positions are then passed to the ggosheider stage as attributes
on a per-vertex basis. The geometry shader, receiving aségenent as input, then
calculates a normal for each control vertex based on theepanned by the vectors
to adjacent vertices of the quadrilateral ribbon patch. hE#abon patch connecting
two successive points on the line is then sent to the rastestage in the form of
two triangles. As most calculation are performed in theesesthader, vertex caching is
exploited to avoid redundant operations on a per-controitfi@sis. Local illumination
according to the classic Phong illumination model (Eq. & 1ifen performed on a per-
fragment basis in the pixel shader stage.

Figure 4.15 Ribbon shaped characteristic lines are shown. Left: Pa#slin a 3D unsteady
flow field. Right: Stream lines in an instantaneous flow.

On graphics hardware without geometry shader supportpniblzan be realized by
storing the triangle strip vertex buffer explicitly. For atdiled implementation, we refer
the reader to [90]. In Figure 4.15, stream ribbons extrafttad 3D flow are shown.
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485 Tubes

Extruding line segments into 3D geometry is a common tecleigmployed to em-
phasize the speed of flow along stream and path lines. Ueng[£68] propose using
generalized cylinders to visualize stream lines as tulageth objects and encoding the
velocity magnitude into the visual representation by aidgpthe stream tube diameter
accordingly.

Various rendering approaches for generalized cylinders bhaen introduced in the
literature. Fuhrmann and Groller [46] use a simple teatielh scheme with a fixed
amount of subdivisions along the cylinder. Such an approaatefficiently be mapped
onto Shader Model 4.0 capable hardware by application olbangéy shader to per-
form the cylinder tessellation. Alternative approacheslsx proxy geometry enclosing
the characteristic line and employ ray-casting to deteeraiper-pixel precise intersec-
tion with the generalized cylinder [162]. While these agmizes benefit from a reduced
load on the GPU triangle setup stage, they introduce anaserkload onto the pixel
shader stage and are, thus, less preferable in an interactwronment due to the fol-
lowing reason: Characteristic lines are generally rerdierder-independent to avoid
time-consuming sort operations. Thus, the superfluoud phader load introduced
due to ray-casting of proxy geometry—that will be occludgdhbccessively rendered
primitives—generally outweighs the geometry load of tese generalized cylinders.
For that reason we have integrated a tessellation appreat#saribed in the following.

= >
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Figure 4.16 Tube Construction: Left: A twisting reference frame cardléaa highly distorted

cylinder tessellation. Right: During particle integratia frenet frame is propagated along the
trajectory to construct an undistorted polygonal repregém of the generalized cylinder.

To construct an undistorted polygonal representation afreetplized cylinder, the
cross-section of each control vertex on the line must begstppligned with its neigh-
bors so that the structure does not twist. Such an alignrsargually provided in the
form of a frenet reference frame, consisting of a tangentoves;, a principal normal
n; and a binormab; specified per control poing. We ensure the correct alignment by
propagating the binormal along the line and adjust it itee&t during particle advec-
tion according to the change in curvature as proposed byn$ld§. The tangent for a
start pointxg along every trajectory is set to the normalized velocitgdiion. We de-
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termine the initial binormal through the cross-producégaind a vector perpendicular

to the plane spanned by the two largest components of thenargctor. The tangent

at successive control points, 1 along the line get assigned the averaged velocity at the
previous and current position on the line. The frame is theargas [10]

Ni+1 =bi x a1,

bit1=aj+1 X Nit1.

For subsequent rendering, we store the tangent, binorndaba@ scalar flow quantity
used to determine the local diameter of the generalizedasti(e.g., the local velocity
magnitude) in additional texture atlas resources.

During rendering, we generate the tessellated cylinddr thig help of the geome-
try shader stage. To exploit vertex caching, a vertex shiadéfetches all necessary
attributes (i.e., position coordinates, reference vecéord velocity magnitude) from
the texture atlas and reconstructs the local frenet frarngth&rmore, to polygonize a
generalized cylinder segment idsubdivisions, it extrudes the control vertekmes
along the corresponding cross section. These positioresalte calculated by access-
ing a constant buffer (holdingposition values radially aligned around the origin of an
extrusion axis), rotating these positions with respectioreference frame and scal-
ing them accordingly. The set of control vertices is thert serthe geometry shader
stage as attributes on a per-vertex basis. The geometrgisbiagde then performs the
tessellation of the cylinder on a per line segment basis ssuks a triangle strip con-
sisting of Z+ 2 vertices to the rasterizer stage. Here, normals are cadfssed on
the vector spanned by the central position on the traje@odythe extruded position s,
respectively. Some exemplary results are shown in Figure. 4.

Figure 4.17 Stream tubes in an unsteady flow around a cylinder are showetording to the
local velocity, the appearance of a generalized cylindevathly changes along its trajectory
from thick/green (slow velocity) to thin/red (high velogit
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4.9 Focus+Context Boundary Visualization

Our system supports the visualization of polygonal modelsetter reveal the spatial
relationships between flow structures and boundaries ofitlhedomain. The study
of flow behavior close to solid boundary regions plays an irtgod role in various
scientific areas. E.g., in aerodynamics one wants to mimrhe drag of and turbu-
lence behind obstacles placed within the fluid flow. In medicthe behavior of fluids
in vessels or the transport characteristics of neuro tratessiwithin the brain are of
special interest. Seismology studies the propagation eélskvaves with respect to
transport media at varying density. Hence, in scenariogadtigal relevance, static
boundary regions often partially obstruct or totally eseldhe flow. For that reason,
advanced rendering techniques have to be employed to cenapsiagle visual repre-
sentation from images obtained through flow visualizateshthiques and renderings
of the boundary geometry (Figure 4.18 depicts such a s@@nari
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Figure 4.18 Focus+context boundary visualization based on GhearView paradigm. A
particle-based flow visualization in the radially symmefdcus region is shown. Additionally,
parts of the boundary mesh are rendered fully opaque tolrtwveaelation between the shock
wave propagation behavior and high-density regions ofrdresport medium. Within the focus
region, important features of the terrain are emphasizeevieal the spatial correspondence.

Focus+context techniques address this issue by combiningwaon a region of
interest (the focus) with an abstract view on its surrougdthe context). Especially
theClearView[91] metaphor has proven suitable to be integrated in oaraative flow
exploration environment. With respect to this applicatitre ClearView technique
consists of the following building blocks to deduce a foat@text visualization.

The focusregion contains information obtained by a flow visualizattechnique.
Optionally, pre-selected parts of the polygonal boundaogleh (which should always
stay fully opaque) are included in the focus information.
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One or multiplecontextiayers contain semi-transparent information extractechfr
the boundary mesh. We adapt the transparency of the boumdtiryespect to two
criteria. Firstly, the user can specify a point of interesind a radiug to determine
a spherical focus region. With decreasing distance to theecef interest we linearly
fade out pointg on the boundary region. Secondly, important features obdbedary
mesh (within the focus sphere) are emphasized on the basisofvature measure
to convey the global shape of the object. @ev a function that evaluates the local
curvature at a given point on the boundary aaduratean operator that clamps its
parameter to the rangd®. .. 1], then the transparency is given as

trans=1— saturate(max(Hc:iIOH , curv(p)) ) .

The final image is composed in a multi-pass rendering appraadollows:

First, we render the geometry-based flow visualization theoback buffer as well
as parts of the boundary that have been classified as boufutary regions and, thus,
should always stay fully opaque.

Before a context layer is added on top of the final image, wes iawextract all
surface attributes needed to evaluate the curvature atea gwint on the boundary
surface. For this, we employ deferred rendering, i.e., welee the mesh from the
current view into a three-component floating point textueg—a resolution equal to
the back buffer—and store the normals of the context boynsiarface. In a second
render pass, we draw the boundary mesh into the back buffér patest and alpha-
compositing enabled) and determine the transparency om-figgenent basis in the
pixel shader stage. The curvature importance feature isltigecomputed with respect
to an image-based umbrella operator [83], i.e., for eadnfient a pixel shader fetches
attribute values from the corresponding as well as fourcaaljapixels in the deferred
render target. The summed distance from the center norntlaétadjacent normals is
then used as a curvature criterion (see Figure 4.19). Thudtsain low values in planar
regions on the boundary and large values otherwise. Theispheistance criterion of
the transparency equation is evaluated on the basis of arpolated vertex attribute,
i.e., the world-space position.

To generate multiple context layers, we repeat the two gagseerating the context
information several times and employ depth peeling [40Ffafice-by-slice extraction
of the boundary mesh in back-to-front order.
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Figure 4.19 The transparency of boundary meshes in the context regidetérmined on
the basis of a curvature importance measure. Left: The riatraasurface pixel and its four
neighbors is illustrated. Middle: The sum of the distanecesifthe center normal to its adjacent
normals is used to estimate the local curvature. Right: Tesgmted measure reveals the global
shape of the overlying terrain, enabling the user to inteliyi establish a connection between
the propagation behavior of earthquake shock waves anditteugding transport medium.

4.10 Summary

In this chapter, we have presented interactive techniquethé visualization of large
unsteady 3D flows. We introduced a new multi-core streampa@ach for time-
resolved flow fields that allows the exploration of high-leson data sets interactively.
We discussed how particle tracing and the extraction ofastaristic lines can be per-
formed in real-time, presented a multitude of rendering atitids for such geometric
flow representations and discussed efficient implememiatiategies for recent GPUSs.
The presented techniques allow tracing millions of pagicind extracting thousands
of characteristic lines interactively and, thus, enabéewintual exploration of high res-
olution fields in a way similar to real-world experiments.

At the time the underlying research paper was publishedytbgented techniques
allowed for the first time an interactive visualization osteady 3D flows on consumer
class PCs. The effectiveness of these techniques for tipegeiof visual data analysis
has been acknowledged by researchers from various field\aerdbeen thoroughly
validated in a benchmark of the visualization community [5]

The presented interactive flow exploration environmertved! scientists to obtain
rapid visual feedback even while the data to be visualizg@ierated in parallel. This
allows not only to intuitively grasp the flow phenomena unisheestigation but also
to immediately use obtained findings to (computationaltges the data generating
process.



Chapter 5

Importance-Driven Particle
Techniques for Flow Visualization

Particle tracing has been established as a powerful viiedn technique to show the
dynamics of 3D (unsteady) flows. Particle tracing in 3D, hesvecan quickly overex-
tend the viewer due to the massive amount of visual inforondtnat is typically pro-
duced by this technique. In this chapter, we address thidgmoby presenting various
strategies which reduce the amount of information whilespreing important struc-
tures in the flow.

As an importance measure for stationary 3D flow, we introdusemple, yet effective
clustering approach for vector fields. For the visualizatb unsteady flow fields, we
use scalar flow quantities at different scales in combimaiith user-defined regions of
interest. These measures are used to control the shapg@pbarance, and the density
of particles in such a way that the user can focus on the dysgimimportant regions
while at the same time context information is preservedtiHesmore, we introduce a
new focus for particle tracing, so calledichor lines Anchor lines are used to analyze
local flow features by visualizing how much particles sefmower time and how long
it takes until they have separated to a fixed distance. It igagticular interest if the
finite-time Lyapunov exponent (FTLE) is used to guide thephaent of anchor lines.
The effectiveness of our approaches for the visualizati@Doflow fields is validated
using synthetic fields as well as real simulation data.

87
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5.1 Introduction and Related Work

In principle, geometric flow visualization techniques suffrom similar problems as
texture-based methods in that rendered primitives ovextepocclude each other. If
large sets of primitives are seeded, the same perceptulalepne inherent to dense
global techniques arise and important information mighbbecured. These limita-
tions can be partially overcome by real-time techniques, by enabling the user to
interactively control the number of seeded particles aed starting positions. Other
approaches restrict the visualization to particles mowimgr close to specific surfaces
in the flow [173, 113]. These techniques effectively resthe visualization to a focus
region, or in this particular case to a focus surface, butdipgiso important context
information as well as relevant structures outside thigoregight be lost.

Most inspirational for our work was previous work on focustitext techniques for
scientific visualization as well as feature-based flow vigation methods. For flow vi-
sualization, Fuhrmann and Groller [46] proposed the cowaion of a user-controlled
focus region and a uniform stream line placement strategihil\the focus region
the flow field is visualized at the highest resolution leveld @ontextual information
is preserved by visualizing a sparse set of primitives detsis region. Loffelmann
and Groller [107] presented a feature-based focus for 3fanhyc systems. By visu-
alizing short stream lines, so-called streamlets, onlgelm a base trajectory in a 3D
vector field, occlusion problems could be avoided, thusyiging a detailed view of
particular regions in the field. For 2D flow visualizationyBy et al. [80] defined a fo-
cus by combining visual elements of different size, shagktexture into a multi-layer
representation. Doleisch and Hauser [36] presented reorede 3D regions of inter-
est including techniques to blend between differently sldgprimitives. Mattausch et
al. [112] introduced more flexible and interactive focusstgtegies as well as multi-
ple options to adaptively modulate the density and appearahstream lines in 3D
flow fields.

5.2 Contribution

In this chapter, we propose a number of improvements forghadtbased 3D flow visu-
alization. Common to all techniques we present is a sigmificaduction of the amount
of visual information presented to the user. Consequetitgse techniques are less
prone to perceptual artifacts like occlusions, and they aamd visual clutter intro-
duced by frequent positional changes of large amounts ¢itfes. Relevant structures
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in the flow are emphasized by integrating user-controlletfaature-based importance
measures. The suggested techniques extend previous elpgsdar particle-based vi-
sualization of 3D flows as follows (see Figure 5.1 for a graphillustration):

» We present techniques to automatically adapt the shap@pipearance, and the
density of particle primitives with respect to user-defirsadl feature-based re-
gions of interest. We also provide means for smooth blentisdmn differently
shaped primitives. Thus, the proposed techniques cartigégcbe used in com-
bination with continuous focus+context and importancesuness. Figure 5.1 (c)
demonstrates the possibilities these techniques offer.

» We propose a clustering approach to determine regionshereat motion in an
instantaneous snapshot of the flow, and we use a sparse tiotkister arrows
to emphasize these regions. Figure 5.1 (a) shows such amow@mnbination
with an importance-driven rendering of primitives in theds region. As can
be seen, occlusion problems in the visualization of conehhformation can be
avoided, thus enabling a flexible integration of detail miation into selected
focus regions.

« In addition to scalar flow quantities derived locally frohetvelocity vector field,
we consider the finite-time Lyapunov exponent (FTLE) as apdrtance mea-
sure. In particular, we employ this measure for the seleaifccharacteristic tra-
jectories in the flow. We call these trajectories anchordjr@ad we seed particles
close to the starting points of these lines. By only visuatjzhose particles that
leave the anchor, the amount of visual information can baaed significantly
(see Figure 5.1 (b)). Furthermore, we use this approachlaa ajuantitative
statements about the particle movement over time and space.

« All visualization techniques have been integrated inte @PU-based particle
engine. This enables the user to interactively select limteon parameters and
rendering modes, thus allowing an effective visual analgéBD flow structures.

The remainder of this Chapter is organized as follows. Inmia Section we discuss
the focus+context metaphor underlying our approach, angresent implementation
specific details. We then introduce our clustering appraawth detail how it can be
integrated into the importance-driven visualization aggh. Next, we describe the
meaning of anchor lines as well as the used particle seediohgeadering strategy. An
analysis of the performance of the proposed techniquesrengn Section 5.6. We
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conclude this chapter with an outline of future researchhafteld of particle-based
flow visualization.

Figure 5.1 Importance-driven particle techniques are used to vigedD flow. (a) Cluster
arrows show regions of coherent motion. (b) Particles séulehe vicinity of anchor lines
show the extent and speed at which particles separate ower ({t) Focus+context visualization
using an importance measure based on helicity and a usaede#gion of interest.

5.3 Importance-based Particle Visualization

One important goal in particle-based flow visualizatiomisgduce the amount of visual
information presented to the viewer. This is due to the foilm observations: Firstly,

many interesting flow structures are typically occluded lxy primitives rendered in

non-interesting regions of the flow. Secondly, a large arhofimoving particles, often

performing rapid directional changes, produces visuatelthat quickly overloads the
human perceptual system.
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While it is easy in general to simply restrict the visualiaatof particles to user-
defined focus regions, this approach typically results anltdss of contextual infor-
mation necessary to understand the global relationshippgelea flow structures. The
focus+context paradigm seeks to combine both aspects istagée visual event by
presenting a detailed region in combination with a surraugaontext. The visual
information used to represent the context region must ncude details in the focus
regions, but at the same time it should indicate charattessuctures in the data. For
an overview of focus+context techniques in scientific viaéion we refer the reader
to the tutorial by Viola et al. [179].

To use focus+context techniques in particle-based flonalization, two different
strategies have to be pursued: Firstly, the spatial denéitjsualized particles should
be adapted according to the importance classification.rify,dhe appearance of ren-
dered particle primitives should reflect the importancehefiiegion they are traveling
through. In the following, we will first describe how to flekybadjust the density, the
shape and the appearance of rendered particle primitigesin their importance.

5.3.1 Scale-space Particles

In the following, we assume that an importance mapping cavakiated at every point
in spacex and timet within the flow domain to yield the local importance of the tggc
field at this point, i.e. a function

Imp(x,t) = ImpPogx,X¢) & ImpVolx,t), Imp(x,t) — [O,1] (5.1)

Such a function can either be a (radially symmetric) attéondunctionlmpPogx, Xt )
defining the decrease in importance with respect to a uderedfocus poinks, or an
importance volumémp\olx,t)—storing pre-computed importance values based on
physical flow properties—that can be sampled at the res@dcitation. The larger the
value ofImpis, the higher is the importance given to this point. Somesibs impor-
tance measures directly derived from the flow velocity vefitdd, and their evaluation
at varying levels in scale space, will be discussed in se&i8.2. Furthermore, both
measures can be combined (operatoin Eqg. 5.1) to achieve more flexibility in the
focus+context configuration.

Once an importance mapping is given, the reduction of theuatnaf information
displayed can be achieved by adaptively reducing the nuoflsendered particle prim-
itives based on the local importance. Therefore, we empkiyndar approach as used
in [191] for the selection of hatches in illustrative volumendering. Every patrticle
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seeded into the flow is assigned a random value in the rang® Bf and a particle

contributes only to the rendered image if the importancesatirrent position is higher
than this random value. By this approach, more and morecgestare removed with
decreasing importance. Figure 5.2 (b) shows this effecafaser-controlled focus re-
gion positioned right behind the cylinder in the flow and iguiiie 5.2 (c) the density
was adjusted according to an importance volume. As can leeiped, this approach
neither emphasizes characteristic structures in the xorggion nor does it allow a
clear distinction between what is in focus and what is not.

To overcome this problem we increase the particle size bygt@ifanversely pro-
portional to importance. In Figure 5.2 (c), where the vagicnagnitude was used as
an importance measure, the resulting visual effect is shévthough we now obtain
a better understanding of the context information, focu$ emntext can still not be
clearly distinguished because of the same shape and appearathe particles being
rendered. We thus transform the primitives continuousiynfia particular shape used
to depict the focus region into a shape that indicates theegarin the current example
we transform an arrow glyph into an ellipsoid as shown in Fegu?2 (d). Shape morph-
ing allows us to quickly obtain an image of both the focus dredontext information,
but the visualization still suffers from occlusions due téew large context particles
overlaying the focus region. This problem is finally alléeid by using transparency
to fade out particles in the context regions. As can be seéngure 5.2 (e), we do
not remove particles entirely, but we make them highly tpament. Furthermore, we
change the particle color from a light shade of grey in thetedno saturated red in
the focus.

Overall, the following transfer functions are used to atljhe visual attributes of
theith particle:

show = (rand > Imp(x;,t)) + visibility
sizg = s+ (1—Imp(x;,t)) -Cs +— size

opag = Imp(x;,t) - Co <+ opacity

color; = LUT(opag) « color

Here,show andsize correspond to the visibility and size of tite particle. Parameter
s specifies the base size for all particlesnd stores a random value in the range [0,1].
opag determines the particle opacity. User-defined constantndC, specify how
fast particles are fading out according to decreasing itapoe. The color of every
particle can be modulated by means of a user-defined colwfeafunctionLUT.
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By means of the proposed transfer functions the amount ofnmdition that is dis-
played can effectively be reduced. In addition, with ineieg size and transparency of
the particles being shown, their spatial movements appeagasingly smooth. Thus,
visual clutter as it is typically observed when renderin@B@ind opaque moving prim-
itives can mostly be avoided.

Figure 5.2 Different approaches for 3D flow visualization using pdescare shown. (a) Un-
steady flow around a cylinder, visualized by a large amoupadticles. (b) A region of interest
has been selected, and with increasing distance to theradrttas region the particle density
is decreased. (c) Importance-driven density adjustméet \(orticity magnitude was used as
importance measure in this example). Particles out of foeg®ns are removed. (d) The size
and shape of particles is adjusted according to the impeetaiithe region they are traveling
through. In this example, the shape is morphed from a smralhathigh importance) to a large
ellipsoid (low importance). (e) In addition to the shapengfarmation the transparency and
color of the patrticles are transformed. (f) Transparemzstr lines were integrated to sketch the
flow structure in less important regions.
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5.3.2 Feature-based Importance Measures

To enable the visualization of characteristic structurethe flow we have integrated
a number of different importance measures based on scajarcghproperties of the

flow. In addition to the velocity and vorticity magnitude, wmployed the helicity, the

Ao-criterion as well as the maximum finite-time Lyapunov ex@oin(FTLE) to test the

suitability of our importance-driven particle visualizat technique. The meaning of
each quantity and mathematical definitions were present8ection 2.4.

These quantities are pre-computed and stored in a sepaedée golume for each
time step of the unsteady flow field. During an interactive feploration session, the
data is streamed in conjunction with the velocity vectordebnto the GPU. Next to
the scalar quantities given at the spatial sample resolatithe flow velocity field, we
encode additional information hierarchically in a pyraatidata structure (i.e. a mip-
mapped 3D texture resource). We usaia-maxand anaveragepyramid of volumes
where the first level is the original scalar field and each sssige volume is reduced
about a factor of two in each dimension. Thus, only a small orgraverhead is intro-
duced. Each sample in tmh level of the pyramid stores the minimum/maximum or
average importance of its eight children in {fme- 1)st level of the pyramid. Thus, the
pyramid maintains the minimum/maximum or average impagain ever increasing
regions of the domain. The kind of pyramid and the level thaiusd be considered as
importance measure can be specified by the user.

By using a feature hierarchy and trilinear interpolatiomé¢oonstruct values form
this hierarchy, three different effects can be achievedstFspurious features can be
suppressed by letting the importance be sampled from qokengas in the pyramid.
This is especially useful in the context region to avoid frext changes of the particle
appearance. Second, there is a smooth transition betwgremseof different impor-
tance. Third, continuous regions of interest are suppdstedmoothly interpolating
between different levels in the hierarchy. To show theseciffwe have conducted ex-
periments with different importance measures encoded inl&-nesolution hierarchy.
Figure 5.3 shows some results indicating the suitabilityeatture-based importance
measures in combination with a user-defined (scale-spaces fregion. In particu-
lar, it can be seen that even in context regions importantifes are still emphasized,
effectively guiding the visual exploration process.
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Figure 5.3 The velocity magnitude at different scales is used as anriapce measures (in-
creasing scale space levels from top to bottom). The focissgato low velocity regions
(small, opaque and red primitives). With increasing vejottie particle density decreases and
primitives smoothly transition into the context regionr@le, transparent and grey).

5.3.3 Cluster Arrows

To further assist the user in the visual analysis of statpB8 flows we proposelus-

ter arrowsas a sparse and static visualization metaphor. Clustevsm@oe geometric
primitives that represent regions of constant motion irfline. The positions at which
these primitives are placed are computed in a preprocesg asiegion growing ap-
proach. To find a cluster, i.e. a region in which the velocitgdions do not differ by
more than a given angle, we randomly select a grid point thatriot yet been pro-
cessed, and we inspect the velocities of all of its 26 neighivathe grid. If none of the
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velocities in the subtended region diverges more than axgingle from the average of
all velocities in that region, we continue to grow the clustetil no further expansion is
possible. The average velocity of all grid points in a cluietored as a representative
for the entire region. This process is continued until theererdomain is partitioned
into clusters.

Figure 5.4 Top: Cluster arrows and transparent lines are used to iredimzherent and less
coherent motion in the flow, respectively. The size of thewasrcorresponds to the size of the
cluster they represent. In the bottom image (right), theesaisualization technique is used. It
is compared to a visualization of the same double-vortex €leing particle tracing (left).

For every cluster, the average velocity, the cluster cgmbsition and its size are
stored in a single element of a vertex buffer. During renugrihis buffer is then used
to draw an oriented geometric primitive for each cluster.r &ystem also allows the
user to select a minimum and maximum size of the clustersvesb@lized. This makes
it possible to hide large arrows that would otherwise oceltalevant information, as
well as small clusters that would clutter into focus regionwhich dynamic particles
are shown. The cluster information is also used as an additiomportance metric
for the rendered patrticle primitives. Therefore, for eveaynple point in the grid we
store the size of the corresponding cluster in an importanteme, and we fade out
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primitives passing through regions of coherent motion wittreasing cluster size as
demonstrated in Figure 5.4.

5.4 Anchor Lines

As can be seen in the images presented so far, importanandrsualization tech-
niques for 3D flows using scale-space particles can efiegtive employed to focus
on particular regions and features while at the same timataiaing context informa-
tion. On the other hand, these techniques are problemateuse in the focus region
and in regions of high importance the amount of visual infation is still high. To
overcome this problem we propoaachor lines a new focus for particle tracing that
enables the user to emphasize characteristic informalbiontgarticle divergence and
convergence.

The idea behind anchor lines stems from the observationotiais often not in-
terested in a detailed visualization of flow regions in whicé trajectories of particles
do not diverge. Instead, such regions should only be outlinea few representative
primitives. Itis of interest, however, to emphasize regiomwhich trajectories diverge,
for instance at saddles, sources or separatrices.

A scalar quantity that can be used to give evidence for the sativergence or
convergence of neighboring trajectories in a flow is thedhtiine Lyapunov exponent
(FTLE). As already discussed in detail in Section 2.5.3 RkeE is a measure for the
amount of stretching of a fluid element over a fixed time. Ib\w&B to locate transport
barriers and it has been studied for the analysis of trahgpok mixing characteristics
in multi-dimensional flows.

In the following, we will introduce anchor lines as a meansoizally analyze the
FTLE measure. In particular, anchor lines can be used toactieely visualize how
much particles separate over time and how long it takes tirey have separated to
a fixed distance. We extend the idea proposed in [107], wHevd stream lines are
placed in the vicinity of characteristic trajectories t@atthe local flow behavior along
these trajectories. To do so, we first define a set of path Imélse vector field—
the anchor line center trajectories. The user can selesethees by placing their
starting points in the domain. Then, additional particles seeded in close vicinity
of these starting points, with the amount of scatter arotiede points being selected
by the user. The particles’ transparency is set accordirthdw deviation from the
corresponding anchor line, i.e. particles close to the direefaded out while they are
rendered more and more opaque once they start to diverge.
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Figure 5.5 Anchor lines (path lines) and particles seeded close ta Biaiting points are
shown. Left: While particles exactly follow some of the lineed, yellow), along other lines the
particles diverge from their anchor lines at different sp@geen, purple). To improve the visual
perception of the correspondence between anchor lines amtidles, every anchor line gets
assigned a unique color that is inherited by the particledesd close to it. Particle transparency
is inversely proportional to the separation distance framdnchor line. Right: Anchor line
center trajectories are rendered as ribbon shaped geoasetigscribed in Section 4.8.4.

Technically speaking, anchor lines are always traced iallghr and in every in-
tegration step the Euclidean distance between a particdhr@ncorresponding point
on the (central) anchor line trajectory is used as a measuriaé¢ deviation. Since a
particle trajectory and an anchor line can deviate from exdblkr and again approach
each other, it makes sense to consider the maximum deviatiarparticle along its
path. This means that once the particle deviates more thpadfied threshold from
the corresponding anchor line it is rendered opaque alangetiaining path.

Since high transparency is given to particles that remaisecto the anchor line,
particles are automatically faded out in regions whereetigea high similarity between
neighboring vector field values. In such regions only theeetive anchor line center
trajectory is shown. Particles in highly heterogeneougoregwhere the separation is
high are emphasized (see Figure 5.5). From the transpao¢agyarticle it can directly
be derived how much this particle separates from the anai®oler time. The time a
particle has traveled until it deviates to a fixed distanoenfthe anchor is not directly
encoded as a visual attribute, but it can be determined fh@nahimation of particles
over time and could also be encoded as an additional atrikeat color or size.

In addition to the user-controlled placement of anchordjnge propose to select
the starting points of these lines automatically. In pattic we let points be positioned
in the interior of a user-defined probe, but we only acceptiatg@s a starting point
if the FTLE at its position is above a certain threshold. @thge we randomly select
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Figure 5.6. An anchor line placed in regions of high FTLE can effectivdgscribe why a
separatrix in the dual vortex flow has been detected.

another start location within the probe. It is worth notirgrdathat the FTLE is pre-
computed at every point of the given sampling grid and adeqgstrting locations
are also determined on the CPU on demand (and prior to GPédbategration and
visualization). Furthermore, we set the displacemenadist for particles positioned
around the center trajectory according to the grid spacinthe FTLE importance
volume. Then, the particles correspond to the initial pestion used during FTLE
flow map computation.

The reason for restricting the placement of anchor linesegoons of high FTLE is
as follows. While the FTLE characterizes the rate of separatf particles, it does nei-
ther indicate into which direction particles separate raedit tell where the particles
separate along a trajectory. Anchor lines placed in regodimsgh FTLE, on the other
hand, are able to answer both questions and can, thus, béousedmproved analysis
of the flow. Figure 5.6 demonstrates this property.

The deviation of particles from their anchor lines, and ttheir transparency, is
computed as follows. The anchor (path) lines are traced s&rided in Section 4.7.
The particles scatted around all anchor lines are storedéparate pair of 2D textures,
which are alternatively updated in every advection stepléssribed in Section 4.5.1).
These patrticles get assigned an additional inderat is used to reference the corre-
sponding anchor line. In thgh advection step every particle looks up the respective
position along theth line and computes the distance between this positiontarmvin
position. This value is then used to determine the transjgref a particle.
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5.5 Rendering Aspects

In this section we describe the necessary extensions of fé fgarticle engine to al-
low for importance driven particle rendering. Furthermave will discuss rendering-
specific performance aspects with respeat tblending of the particle set.

5.5.1 Particle Morphing

The rendering of oriented point sprites of different sizege and appearance is ac-
complished by extending the concept of the 2D sprite texatl@s as described in
Section 4.6.1. Such an atlas contains a 2D array of differents of a 3D particle
primitive. Views are parameterized with respect to scadind rotation around an axis
orthogonal to the viewing axis. To support differently sbagprimitives, we build
multiple of these atlases, each of which contains pre-coetgpumnages of a particular
primitive. Each atlas is stored in a single slice of a 3D textu

To continuously morph from one primitive into another ones interpolate be-
tween the respective views of both primitives using 3D texiaterpolation. Such an
image-based blending between the same view of two diffggantitives is shown in
Figure 5.7. The color and transparency of the interpolatedrsycan be further mod-
ulated using the transfer functions described in Secti8ri5.It should be mentioned
here that the proposed technique can only be used if the \oéwgo primitives that
are morphed into each other are stored in successive 3Draestines, as we employ
hardware-supported trilinear filtering to achieve a smathsition between shapes.

o o ) ) S SH ESP ED D D I T T >

Figure 5.7: Image-based morphing from an arrow into an ellipsoid.

Although itis obvious that the proposed technique yiel@f&eint results compared
to geometry-based shape morphing and the construction atlas using the trans-
formed geometry, our approach does not result in any ndileeatifacts. The reason
for this is that particles are usually rendered as orientedifives which show a very
similar basic shape. The problem is further alleviated bseave first blend between
two views and then perform the scaling of the result to theyadte size of the primi-
tives. Itis clear, on the other hand, that we can easily lméfghrate atlases for arbitrary
primitives in-between the given basic shapes and store then3D texture. This will
result in even more flexibility to select particular shaped @neir appearance in regions
that can not clearly be classified in terms of importance anchportance.
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5.5.2 Blending

A critical aspect in the presented particle-based teclasgsi the use of transparency
to visualize individual primitives. If particles are remdd as transparent sprites the
order of their rendering becomes important. To guaranteeri@« back-to-front or
front-to-back order with respect to the viewer we use a GRseld bitonic merge sort
algorithm as proposed in [90]. The sorting algorithm esaéiptre-organizes the set of
particles in such a way that they can be rendered in the ohdgrare stored in local
GPU memory.

As for a reasonable number of primitives sorting can quidddgome the perfor-
mance bottleneck, we also provide an additional renderinderthat entirely avoids
sorting. This mode is inspired by the observation that inacsl interactive explo-
ration session the majority of particles is assigned vegp lor very low transparency,
either manually by focusing on a particular region or autbcadly by the proposed
feature-based criterion.

The approach is similar to the standard approach used ter@pdque and trans-
parent objects in that first all the opaque particles areget and in a second pass the
remaining transparent particles are blended into the dulter.

Figure 5.8 a-Compositing of unsorted transparent particle primitives



102 CHAPTER 5. IMPORTANCE-DRIVEN PARTICLE TECHNIQUES

In the first pass, the depth test is enabled and the depth vhladragment sur-
viving the depth test is written into the depth buffer. Allrpeles are sent into the
rendering pipeline, however, within the geometry shadeflating the particles into
point sprites—we remove all particles that are not fully quoa from the stream. In
the second pass, writing to the depth buffer is disabled,teanparent particles are
rendered in the order they are stored in GPU memory. To avatitness saturation as
it is typically observed when accumulative blending is yseyments are blended into
the color buffer using alpha-compositing. Figure 5.8 desti@tes that the proposed
rendering of opaque and transparent particles does notipeathy noticeable artifacts,
even though the visibility is not resolved correctly.

5.6 Results and Performance Analysis

We have used the proposed GPU techniques for the visualizatia number of real-
world and synthetic 3D flow fields on uniform grids:

* Flow around a boxResult of a 3D time-dependent simulation of an incompress-
ible turbulent flow around a square cylinder at Re22,000. The simulation was
performed using a spectro-consistent discretization efNlavier-Stokes equa-
tions [176] and it was carried out on a rectilinear grid oeskb6x448x 64.

* Flow around a cylinder Large eddy simulation of an incompressible unsteady
turbulent flow around a wall-mounted finite cylinder at Re200,000 [44]. 22
time steps were simulated. The size of the data grid is<228x 128.

« Karman vortex streetResult of a 3D simulation of an incompressible unsteady
flow over an immersed thin cuboid obstacle at Rel00. The simulation was
performed via numerical solution of the Navier-Stokes ¢igna according to
[54]. The data set contains 30 time steps, each of which izef256x64x64.

* Double-vortex flow A steady axisymmetric flow with two counter-rotating vor-
tices, which was computed using the following analyticgdression for velocity:

F(x,y,z) = ((-y+0.5)+(0.5—2x)/10, (2x—0.5)+(0.5—y)/10, —z/10).

The computed velocity field corresponds to a spiral-like flmang the z-axis
with the velocity magnitude decreasing towards the mais akihe spiral. The
velocity field was mirrored to obtain the two symmetric VOes.
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To validate the effectiveness of the proposed techniquebjgure 5.9 we show
additional visualizations of the described data sets udiffgrent importance-based
visualization methods. With respect to the generated isyage should note here that
the benefits of particle-based flow visualization can begtdreeived in an animation.
In a still image, oriented particles can show the directibthe flow quite clearly, but
in contrast to LIC, for example, coherent particle trajeie®can hardly be observed.

All of our tests were run on a dual core Core2 Duo 6600 equipgpdda NVIDIA
Geforce 8800 GTX graphics card with 786 MB local video memaryerms of perfor-
mance it can be observed that on recent GPUs the particle@aivetep only consumes
a negligible fraction of the overall time. For instance, steady field about 100 million
particles can be integrated per second on our target actiniée

The performance of the technique, thus, strongly dependbe@number and the
size of the rendered patrticles. In particular, as soon ag/r@age particles are ren-
dered the application quickly becomes rasterization baunttithe overall performance
can decrease considerably. On the other hand, as the ptopagertance-driven ap-
proaches can effectively reduce the amount of renderettigsritin none of our exper-
iments did the performance drop below 100 frames per second.

5.7 Summary

In this chapter, we have presented importance-drivengbarichniques for 3D flow
visualization. These techniques incorporate a numberpbitance measures to enable
an improved visual analysis of the flow. The user controlsfiygearance of the visual-
ization by a few parameters such as the size and locationazfus fregion, weights for
the context region, and the size, shape and transpareneytafles traced through the
flow. In addition, feature measures that are directly derivem the flow are consid-
ered to adaptively modify the visual attributes of the mdes. In this way, a better and
faster understanding of complex flow structures is supportes the proposed tech-
niques run at interactive rates they can provide rapid Vigemlback and, thus, allow
for an effective visual exploration of the flow.

Finally let us mention that the proposed techniques carctaftdy be used for un-
certainty visualization. By simply replacing focus by egnty and context by uncer-
tainty the proposed techniques can be used to distinguisteba regions containing
reliable and non-reliable information. In the future welwilvestigate in more detail
the application of the techniques proposed in this chaptauricertainty visualization.
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Figure 5.9 Importance-driven particle visualization results: Imd#ggdepicts an iso-surface
of the FTLE in the Karman vortex street. The visualization of this data set usinghanéines

is shown in image (b). Two anchor lines have been placed imetien of high FTLE. From
the particle distribution one can see where particles giageparate from their anchor, and the
transparency coding shows how fast they separate. Imagéd@w)s two anchor lines seeded in
the region of high FTLE in the flow around a box. The distribatof the Lyapunov exponent
is visualized using volume rendering. Images (d+e) demict views on an unsteady flow
in the large eddy data set. Here, a radially symmetric foeg®n was used to apply different
visualization modalities. The patrticle appearance ingiddocus region was adapted according
to an importance volume based on helicity.



Chapter 6

Interactive Streak Surface
Visualization

In this chapter we present techniques for the visualizatfemsteady flows using streak
surfaces, which allow for the first time an adaptive inteégraind rendering of such
surfaces in real-time. The techniques consist of two mampmnents, which are both
realized on the GPU to exploit computational and bandwidibacities for numerical
particle integration and to minimize bandwidth requireiisen the rendering of the sur-
face. In the construction stage, an adaptive surface repiason is generated. Surface
refinement and coarsening strategies are based on locatspfoperties like distor-
tion and curvature. We compare two different methods to ggee streak surface:
a) by computing a patch-based surface representationvbigsaany interdependence
between patches, and b) by computing a particle-basedtcsudaresentation including
particle connectivity, and by updating this connectivityridg particle refinement and
coarsening. In the rendering stage, the surface is eithdered as a set of quadrilateral
surface patches using high-quality point-based appreacdne surface triangulation is
built in turn from the given particle connectivity and thesuding triangle mesh is ren-
dered. We perform a comparative study of the proposed tqubaiwith respect to
surface quality, visual quality and performance by viszialj streak surfaces in real
flows using different rendering options.

6.1 Introduction and Related Work

In geometry-based flow visualization, the integration aistdialization of stream lines
has been a standard tool from its very beginning. With thesicamation of time-

105



106 CHAPTER 6. INTERACTIVE STREAK SURFACE VISUALIZATION

dependent flows, path lines and streak lines have moved etdoicus of research
because they reflect important properties of the flow.

The visualization of integral surfaces has been proven todmemon and useful
in visual flow exploration. In the case of stream and pathesas, their extraction is
well-understood. The main idea is to integrate the frorg ki the surface and apply
if necessary an adaptive refinement/coarsening to it. Aferfront has passed, the
generated surface remains unchanged.

Streak surfaces have a strong relation to experimental filsmalization where ex-
ternal materials such as dye, hydrogen bubbles or heatyeasrgnjected into the flow.
The advection of these external materials creates streek &nd shows the flow pat-
terns. Due to this reason, analogues to these experimealalitjues have been adopted
by researchers in computer-aided scientific visualizgtofiow exploration. However,
up to now streak surfaces are rarely applied because of theuwational complexity
of streak surface generation. Since streak surfaces magettheir shape everywhere
and at any time of the integration, every part of the surfaasth be monitored at any
time of the integration for adaptive refinement/coarsenibgie to this fundamental
difference to stream and path surfaces, the consideratistineak surfaces makes only
sense if their evolution over time is shown, e.g., in a preyooted video sequence or
in interactive applications with a real-time performanidewever, due to the computa-
tional complexity of streak line integration and adaptintegral surface construction,
streak surfaces have only rarely been used in practice.

Hultquist [65] presented the first adaptive stream surfaisgration approach which
was later extended in different ways: The approach by &ta[tL60] uses local topo-
logical information to increase accuracy. Scheuermanh Et4¥] compute exact solu-
tions of stream surfaces inside piecewise linear vectatdidin the work by van Wijk
[174] a global implicit approach for certain stream surfaegiven. Recently, a con-
struction method for stream surfaces of high polynomiatigien has been introduced
by Schneider et al. [150]. Garth et al. [50] discussed a nurmbenhancements in the
context of vortex extraction. In another work by Garth et[48], improved integral
surface accuracy was achieved by separating charaatdingtintegration and integral
surface triangulation. A particle-based approach for theegation and rendering of
stream surfaces was proposed by Schafhitzel in [145].

The methods proposed by Schafhitzel [145] and Garth et &].d¢e also the only
approaches describing the surface extraction in a time+tgnt context for path sur-
faces. The generalization from stream surfaces to patheesfs rather straightforward
because only the kind of integration at the advancing sarfiamnt has to be replaced.
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The only approach so far to address the real-time requiremas proposed by
Funck et al. [181]. It combines the streak surface integnatvith a smoke metaphor,
leading to cancelation effects of problematic surfacespgrairts of the streak surface
where an adaptive refinement is necessary are rendereddagsealy. In this way,
smoke like structures are obtained by a streak surfaceratteg without any adaptive
refinement. On the other hand, the value of this approachisaalflow exploration is
limited because it cannot guarantee to find all relevant fkouctures, as fine structures
can only be revealed if the initial tessellation of the melsbaaly respects these sub-
tleties. Thus, while this approach gives interesting srideestructures, it is unable to
produce fully adaptive, opaque streak surfaces.

(@

Figure 6.1 Our method generates adaptively refined integral surfacép iflows on the GPU.
The shown surfaces were generated and rendered in lessQhan Eigures (a-c) show streak
surfaces in unsteady flows. Figure d) shows a stream surface.

6.2 Contribution

In this chapter, we present the first real-time approachdaptive streak surface inte-
gration and high-quality rendering. We achieve this by ggarticle-based approaches
in which either the surface is represented as a set of suplaiches that can be han-
dled independent of each other (see Figure 6.1 (a)), or adlegrface triangulation is
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computed from the given particle set (Figure 6.1 (b-d)). bath approaches we have
developed methods for interactive surface refinement aadseaing based on local
surface properties.

While the former approach is elegant in its simplicity, fju&res redundant particle
computations and lacks flexibility in the rendering proceEsen though we use an
advanced rendering method similar to high-quality popiating [15], rendering arti-
facts at patch boundaries can not be avoided entirely. Tdenseapproach, on the other
hand, yields a closed surface representation providingiatyaof rendering options,
but it can result in deformed triangulations and renderitidgats thereof.

This chapter contains the following specific contributions

» A patch-based scheme for the adaptive generation of stneddéces and a high-
quality patch-based surface rendering technique.

* A particle-based adaptive refinement/coarsening schenstreak surface gener-
ation and a novel method to construct a closed trianguleaktsurface from a set
of particles.

The remainder of this chapter is organized as follows. Arophiction to streak surfaces
is given in Section 6.3. Section 6.4 presents a novel teclenig construct and render
a patch-based streak surface representation. In Sectbowesdescribe the particle-
based technique for streak surface generation in which tmranectivity information
is used to assure a uniform sample density along the surfatécabuild a surface
triangulation. In Section 6.6 we evaluate the performarfaauo approaches, and we
discuss their advantages and limitations. We concludectiapter with an outline of
future research in the field.

6.3 Streak Surfaces

Streak surfaces are defined by repeatedly setting out lesrba a line-shaped seeding
structure over a certain time interval. The collection dftlaése particles at a certain
time denotes the streak surface. Technically, a strealaseidan be obtained in the
following way for a 3D time-dependent flow fieldx,t): the seeding structure is con-
sidered to be a polyline consisting of the poigis..,s,. At the timet; =tg+1 At we
start a path line integration of the particlg; from the seeding poirg; and observe its
behavior ovet:

t
() =xi(6)+ [ Vx,j(9),5)ds (6.1)
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with i j(t)) =sj,i =0,...,mandj =0,...,n. Fort > tm = to+ mAt, the streak surface
can be considered as a rectangular vertex gsiayt)). We call a columr{x; g, ..., Xi n)
a time line, while a row(xg j,...,Xm j) is @ streak line. The vertices are the surface
points from which a closed surface representation has taiitte b

During the integration, the distance between both adjater lines and streak
lines may vary at any location of the surface. Thus, afteryenvgegration step the sur-
face has to be checked everywhere for adaptive refinememtaosening. This means
that, based on an appropriate refinement/coarseningicnifgrew particles have to be
seeded between adjacent points along a particular timesaksine, or adjacent points
have to be merged. This process is computationally very taipecause streak sur-
faces appear to have a rather large distortion after theunlisg. An increase of the
surface area by a factor of 100 or more is not unusual, leairaghigh number of
refinement steps. It is worth noting that in an interactivpliaation, the adaptive re-
finement/coarsening has to be monitored and carried outyati@e simultaneously
with real-time performance.

6.4 Patch-based Streak Surface Generation

By using a patch-based approach, the streak surface giemesad rendering process
is split into a set of independent operations on each patblesd operations can then
be executed in parallel, and all the patches can be rendedegendent of each other.
The computation of adjacency information between surfagetp, as it is required for
the computation of a surface triangulation, can be avoided.

6.4.1 Patch Generation and Refinement

As described in Section 6.3, a streak surface can be cotedrbg repeatedly releasing
particles from a line-shaped seeding structure over ainitae interval and by con-
necting these particles to form a closed surface. All plagitx o, ..., Xi n) released at
timet; =tg+i At reside on one advancing front. We call this front the timetin

A new advancing frontt(j) is released in the form af quadrilateral patches; v,
withv=0,...,n—1. Each patch consists of four vertidss, S+ 1, Xi v, Xiv+1), Which are
duplicated and stored separately for each patch. The pattices are then advected
through the flow as described before, and the shape changgshaymdergoes due to
the particles’ movement are used to steer the refinemenégpsoc

The refinement of surface patches is performed for each pajgarately with re-
spect to an area-based criterion. Specifically, we set ahibteé to=2, where= is the
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distance between two adjacent points uniformly distrid@@ng the seeding structure.
If, at any time, the area of a patch is greater thé?, wherea is a real number larger
than 1 controlling the subdivision strength, the patch isdstided into two quadri-
laterals. This is performed by splitting the patch alongatsgyest edge and the edge
opposite to it. The two new patches and their vertices anedtseparately, and the
refined patch is removed (see Figure 6.2).

(b) Xo3 Xi3 Xo3 (C)

Figure 6.2 (a) A patch-based streak surface representation afterrgtdifme line has been
released. (b) Left: Patghy 1 meets the refinement criterion and is split into two patcReght:
The surface patches after the second integration step. driiergtion of new surface points due
to the splitting operation has lead to a hole in the surfapeegentation. (c) The corresponding
layout of the linear memory segments storing the surfacehpatin each time step.

6.4.2 GPU Implementation

Shader model 4.0 compliant GPUs provide possibilitiesfioiehtly perform the patch-
based streak surface generation: we employ a geometryrsioaiah@nipulate a primi-
tive stream by appending or removing primitives, and theastr output stage is used
to direct the resulting stream to intermediate buffers inJGRemory. Since buffer
resources cannot be bound as pipeline input and streamtéatget simultaneously, we
use two instances and toggle between them in a ping-pongpfadee Section 4.5.2).
Each surface patch is represented by its four vertices, larsealue counting the
number of integration steps, and a counter indicating iimement depth. On the
GPU, for every patch this information is stored as one vefiex, contiguous data
block) in a vertex buffer. Since current GPUs cannot chahgestze of a resource
residing in GPU memory dynamically, two buffers that argéaenough to store the
entire adaptively refined streak surface have to be alldchédfore the surface con-
struction begins. By letting the user select the numbef patches that are released
in each time step, a maximum refinement deghtéind the maximum number of inte-
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gration stepsn a patch performs until it is removed, each buffer must be &b&tore
nx 29 x (m—d+ 1) patches.

The streak surface construction starts by storirggro area patch primitives?,
with j =0,...,n—1, at the beginning of the vertex buffer employed in the fidstegtion
pass. In the following we assunmegio be an even number. These elements are used in
every time step to repeatedly release a new patch front ingdlow. The respective
vertices of patchn? are(sj,sj+1,Sj,Sj+1). In each integration step, all buffer elements
are passed to the geometry shader and processed as follomsadh of the firsh/2
elementsp? with j =0,...,n/2— 1 the shader writes the two zero area patqm%gs‘
and p?zX D1 to the output buffer. Access to the vertices of these pathashieved
by binding the input stream buffer as shader resource. $imesen patches are always
written first, they remain at the beginning of the buffer. éach of the remaining
n/2 elements the shader appends two patch elements to the kutifeh represent the
currently released patch front. Each of these patchesmsetkganded by integrating its
last two vertices to new positions.

For the remaining buffer elements, which contain patcheswere released into
the flow at previous time steps, the refinement criterion @uwated before the integra-
tion is performed. If no refinement is necessary, the gegnséimder advects the patch
vertices, increments the integration step counter andrajgpthe patch element to the
output stream. Otherwise, the geometry shader splits émeit as described, advects
the four original as well as the two new vertices, and appé&melswvo new patch prim-
itives to the output stream. The refinement counters of the prémitives are set to
the counters of the refined patch and incremented by onerd=@8 (c) illustrates the
growth of the vertex array buffer due to the seeding and nefere of surface patches.

6.4.3 Patch-based Streak Surface Rendering

The patch-based surface representation can be rendesadlydioy sending the ver-
tex array buffer through the graphics pipeline and ragtegithe patches separately.
However, since T-vertices are introduced by the partictééinement strategy, holes
in the surface representation can occur. To cover theses,hwke adopt a rendering
technique that was introduced by Botsch and co-workersdrctimtext of point splat-
ting [15]. Figure 6.4 shows an adaptively refined patch-baseak surfaced( = 1.2),
which was rendered using simple point rendering of the pagctiroids (left) and the
patch-based splatting approach (right).

A two pass rendering approach is performed before defeeegigel surface light-
ing is computed. Therefore, all patches in the vertex buferrendered twice. In each
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Figure 6.3 Left: Separate triangulation and rendering of each patatisléo holes in the streak
surface. Middle: Holes are covered by rendering enlargéchpa. Right: Rendering enlarged
patches in a way similar to high-quality point splattinglgliea closed and smooth surface.

pass a geometry shader enlarges every patch by changiregtitegpx, (k=0,...,3)
to pxy + B||pxx —c||. Here,cis the patch centroid an@lis a user defined scaling factor.
As shown in Figure 6.3, patches are then split into the faangles spanned by their
centroid and the patch vertices before they are rendered.
In the first rendering pass, commonly referred to/sgbility pass a depth imprint of
the enlarged surface patches closest to the viewer is gedeta the second pass, also
known asattribute passthe patch-based surface representation is renderedasgam
a biased depth test on the generated depth imprint. In thys evdy patch samples
close to the first rendered surface survive. In a pixel shablerpatch attributes like
color and normal are weighted by a Gaussian kernel centétbd patch centroid, and
these contributions are finally accumulated via additiembding and normalization. In
this way, a smooth transition of patch attributes is obtaimeregions where multiple
enlarged patches overlap.

Due to the bending of streak surfaces, it can happen thagdamples having
a large geodesic distance from each other become close hootlaer and fall into
the same pixel. In this case, the biased depth test mightolt ¥amples pass and
accumulate in the pixel buffer. To avoid this, we assign taiditonal parameter values
to each patch. The first value indicates the position of ahpiatthe ordered set of all
possible patches along the seeding structure. Startimgetinitial patcheg; y, which
are assigned the positionsc 29, in every refinement step the first new patch keeps the
position of the refined patch and the second patch afd$ t this position. Here,
k is the current refinement level. The indeeaf each patch is assigned as the second
parameter value. In the visibility pass, these values aréeneed into a separate render
target, and they are then used in the attribute pass to disicase fragments that are
close to the rendered surface samples but have paramaies\hht differ more than a
given threshold.
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Figure 6.4: Left: Rendering of the patch centroids of a patch-basedisarface. Right: The
same streak surface rendered via quad-splatting.

6.5 Mesh-based Streak Surface Generation

Patch-based streak surface generation entirely avoidsite and update any connec-
tivity between the patches. On the other hand, because pageii stores its own set
of vertices even though they might be shared between patatessiderable amount
of memory is wasted and numerical integration of the samexés performed up to
four times. To overcome this overhead we propose a novel Giptbach to construct
an adaptive triangular streak surface representation fne@nset of seeded particles.

Similar to the data layout that was used in the patch-basptbaph, all particles
seeded into the flow are stored in a linear vertex array. Eachcle x; j released
from the seeding structure is assigned an indegx= j x 24 whered is the maximum
refinement depth. The particle set belonging to a partiduiae linetl; is stored in a
contiguous bloclo; in this buffer. The blocks are ordered such that blbck follows
block b;, with block by being the last in the buffer.

In every advection step the particles are processed in thex of their occurrence
in the buffer, and they are written to the output buffer in #zane order. If a new
particle is generated due to the splitting of an existingiglar; it is placed directly
behind this particle in the output buffer. If a particle isT@ved, it is simply not written
into this buffer. On the GPU this is realized by executing argetry shader with a
variable primitive output of 0-2 elements for each incomprgnitive. In the same
way as described in the previous section, the maximum bsitferhas to be computed
up front depending on the number of particles per time lihe,haximum refinement
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depth, and the maximum number of integration steps. Themping-pong buffers of
this size have to be allocated.

Analogous to the patch-based approach, a streak surfacassracted by repeat-
edly releasing time lines at a fixed frequency into the flow. dAmhenever a new
time line is released from the seeding structure, we do ndope adaptive refine-
ment/coarsening in the first advection step, but use thenslqguassible geometry shader
output to preserve the seed particles at the start of thewbrtiffer.

6.5.1 Particle Refinement

Our method for generating an adaptive streak surface wiatign from a given set of
subsequently released time lines can be separated inopghsses:

» Time line refinementEvery time line is refined/coarsened based on local crite-
ria like stretching, compression, and line curvature, a6 agea global criterion
taking into account the change in surface area.

» Connectivity updateThe connectivity between particles on adjacent time lises
established.

« Streak line refinementThe connectivity information is used to compute local
streak line properties, which are considered to steer fireraent of streak lines.

Time line refinement

Time line refinement adapts the particle density along e@eé line prior to the par-
ticle integration. The refinement/coarsening criteria wpla have been adopted from
previous work in the field. The first criterion considers tloafdivergence at a particle
position as introduced in [65]. L&b(a,b) be the distance between particeeandb,
and= the initial distance between two adjacent seed points,ttheparticlex; ; spawns
a new particle betweex j andx; j,1—we call this operation particle splitting—if

D(Xij,Xij+1) > a =. (6.2)

Similar to [50], the second criterion considers the apprate local curvature along a
time line. Let©(u,v,w) be defined as

O(u,v,w) = (6.3)
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whereu, v, w are the positions of three particles. A partiglg is split if
O(Xi j—1,Xi,j» Xi j+1) +O(Xi j+2,Xi j+1,Xi,j) > B- (6.4)

In this way, the deviation of the time line from a straightelirs approximated and
used to steer the local time line refinement. Figure 6.5 Blkestthe first pass of the
mesh-based streak surface construction approach.

i,j+2

& 60 0 0

i,j+3

b X

Figure 6.5 (a) In each time step a new time line is released from the sgédidie. Node values
show particle ids. (b) Prior to integration, each partiGle evaluates refinement criteria based
on its local neighborhood (red). (&); satisfies a refinement criterion and performs a particle
split. (d) The resulting time line before (left) and aftagfi) the subsequent integration step.

Particle splitting is performed by fitting a cubic polynomnt) throughx; j_1, Xi j,
Xi j+1 andx; j.2, and by evaluating(t) att = 1

1 9
P(1/2) = —3a(Xij-1+Xij+1) + 76X +Xij+2). (6.5)

Based on the indicesl; j of the initially seeded particles j, every new particle on a
time line gets assigned its index in the ordered set of aliptes particles along this
line as described in the previous section for surfaces patdive will subsequently call
these indices the particle ids. Figure 6.6 illustrates trenges in the particle layout on
a time line due to refinement and coarsening events over itiiegration steps.

To prevent the streak surface from unlimited stretching,adapt a criterion that
was proposed for stream surfaces in [65]. We compare therdudistance between
two particles to their distance in the last time step in refato the distance a particle
has moved due to the integration. l%ta, b,t) be the distance between partickeand
b at timet, andp; j ; the position of particle; j at timet. We mark an edge as invalid,
meaning that it will not be refined any further, if the followg expression evaluates to
true:

W(Xi,j; Xi j+1,t) = W(Xi j, Xi j+1,t = 1) >y P(pi jt, Pi jr-1) (6.6)
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Figure 6.6. (a) Evolution of a time line over three integration steps.e&r nodes indicate
refinement and red nodes coarsening events. Numbers né&et todes indicate the refinement
level. (b) Changes in the linear memory segnigmtue to vertex refinement/coarsening.

If an edge has been classified as invalid or cannot be refinefigther, it is not consid-
ered in the triangulation of the streak surface describéalbédn this way, the surface
is cut in regions where it stretches too much, e.g., if it e@slaround obstacles in the
flow as demonstrated in Figure 6.7.

Finally, in addition to inserting new particles we removeaatglex; j if:

(P(Xi,j,Xi,j—1) + P(Xi j,Xi j+1) < O=) A
(O(Xi j—1,Xi,js Xi j+1) +OXi j, Xi j+1, i j+2) < {). (6.7)

Due to this coarsening we avoid vertex clustering in regimfifsigh convergence, and
we prevent the generated triangles from becoming too small.

Figure 6.7. Application of criterion(6.6) prevents a streak surface from unlimited stretching
by cutting edges if no additional refinement can be performed
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Connectivity update

Due to time line refinement and coarsening the connectiatwben particles on adja-
cent time lines has to be computed in each integration steprefore, every particle
on time linetl; searches for the particle dh,1 and the one otl;_; having the id
closest to its own one on the respective time line. We will tese two particles the
predecessor and the successor of a particle. In partiéoitar particlex; j we select the
SUCCESSOK; 1 succ With the closest idk the particle’s id and the predecess@r; preq
with the closest id> the particle’s id (see Figure 6.8 (a)). Once the predecessbthe
successor have been determined, references to them are asooffsets to the absolute
position of the particle in the vertex buffer, and they aredias described below to
build a closed surface representation.

Finding the two particular neighbors requires every pkatto search the vertex
buffer to the left and to the right of it, with the search raldepending on the number
of particles on time linesl;_1,tl; andtlj 1. We will describe in Section 6.5.3 how to
determine these numbers in a very efficient way on the GPU.

Streak line refinement

In this pass, a complete time line is added to or removed fiarstreak surface. The
criterion to steer the refinement/coarsening is based omthemum Euclidean dis-
tance between neighboring time lines.

A new time line is inserted betwedh andtl;; if the maximum of the shortest
distances between particles hpand the time linel;, 1 exceeds a user defined thresh-
old. An existing time line is removed if the maximum of the giest distances to both
adjacent time lines falls below a given threshold. Unfoatighy, since we do not know
the exact time line between the given vertices, computiegstiortest distance from a
particle to this line is not possible in general. Therefove,proceed as follows: Since
Xit+1succ IS the closest existing control point ok 1 with idi; 1 sycc < idj j and its ad-
jacent particlexi 1 suce-1 has a larger particle id, we first interpolate an intermediat
positionz on the line segment spannedXy 1 succ@NdXi1 sucer1 as follows:

idj j —idjy1
Z=Xit1succt &(Xi+1sucer1 — Xi+lsucd, a=: . ] a ’_SUCC . (6.8)
idi+1,sucer1 — 1di+1,succ
We then compute the Euclidian distance betwggnandz, and we use this distance
as the shortest distancexfj to the time linetli ;. The distance to the preceding time

linetl;_1 is determined analogously (see Figure 6.8 (b)).
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Figure 6.8 (a) Each particle on time lind; selects its successor (red arrows) and predecessor
(green arrows) on adjacent time lines based on the closéshim@ particle id. (b) The distance
estimate of a particlg ; to its adjacent time lin#li 1 is based on an intermediate partizle
exhibiting the same patrticle id.

A new particle front that is added due to streak line refingmentains the same num-
ber of particles as the time line triggering the refinemepthévAs shown in Figure 6.9,
the new front is stored as a contiguous block in the vertefebuight before this time
line. Particle positions and normal values are linearlgnpblated betweer; ; and
intermediate values a1 as described in Equation (6.8).

t, f H t, o,
EENEEENEEE
[T1] EEEN NN
(a) > (b) t/2 l‘/r t/1 tlo

Figure 6.9 Streak line refinement: (a) The time litle satisfies the refinement criterion and
spawns the new time lirtg.. (b) illustrates the corresponding changes in the verteydiuffer.

6.5.2 Streak Surface Triangulation and Rendering

To render the surface as a watertight triangle mesh a finalipa&xecuted. Prior to tri-
angulation, a geometry shader validates the connectintyupdates the neighborhood
for all particles residing on time lines whose adjacent times have been removed
due to streak line refinement.
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Figure 6.1Q Streak surface triangulation: (a) Vertex connectivity agfthement events: Green
edges indicate vertex splitting, blue edges indicate xerterging, and red edges indicate streak
line refinement. The resulting triangulation is shown in () (c) the two triangles generated
by the vertex«; j are colored blue. Yellow triangles are generated by vetitex; .

A closed surface representation is generated by using ttielpaconnectivity to
compute a triangulation of adjacent time lines. For eachigharthat is sent to the
rendering pipeline the geometry shader creates two tesngihd appends them to the
output stream. The first triangle is spanned by the vexigxits local right neighbor
Xi j+1, and its successor on the time lithg_;. The second triangle consists of the vertex
Xij, its local left neighbox; j_1, and its predecessor on the time lie ;. Since this
process is performed for every vertex, a watertight surfa@enerated. Figure 6.10
illustrates this triangulation process.

Triangles containing an edge that was marked invalid dubectiterion in Equa-
tion 6.6 are excluded from the output stream. Note thatgasgtion the surface border
(i=0vi=nvVvj=0V]j=m)contain at least one invalid neighbor, such that the corre-
sponding triangle is also excluded from the stream output.

Once the triangulation has been generated it can be rendeestly using various
rendering styles. Since the tupl@sid; j) that are stored for each particle correspond
to a surface parametrization, they can be used to textursttbak surface. In Fig-
ure 6.11(a,c,e) this parametrization was used to colorutface with streak lines. Im-
age (b) additionally emphasizes time lines. In images (d)8rdepth peeling [40] was
applied to create a semi transparent visualization of tleaktsurface (in combination
with image based edge detection to amplify sharp featuréseostreak surface).
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(e) (f)

Figure 6.11 Mesh-based streak surface visualization: Images (a—dy streak surfaces in
the square cylinder data set. Images (e—f) depict stred&cas in the large eddy data set. The
surface parametrization, consisting of time line and plartds, is used to color the surfaces with
stream lines (a,c,e). Image (b) additionally emphasizas tines. Images (d) and (f) depict
semi transparent streak surfaces. Here, depth peeling mployed to extract multiple self-
occluding layers and image-based edge detection was useajaiify sharp surface features.
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6.5.3 GPU Implementation

During mesh-based streak surface generation, analogtuie particles, each time
line gets assigned a unique id and a counter indicatingfitsament depth. For a time
line released at timg = to + 1 At the id is set to 0 and incremented b‘%ﬁ each time
step. New time lines that are added due to a refinement evapt tus key in the same
way as it was described for particles before. This key is tsad by the particles on
each time line to index into a 1D array that stores time linecer information. This
array has as many entries as there can be time lines, ance&lizad as 2D texture on
the GPU to avoid texture resolution limits. Figure 6.12 shoke content of this array
for a set of time lines before (a) and after one integratiep ¢b).

1 55 B

a)l I<:|:|:>|3I<:|:|:>|3| |3l<t|:|:>| I<:|:|:>|3| |3I<:|:|:>| @3?|3|

Figure 6.12 Three time lines of nine possible time lines exist. The nunaf&ertices on each
time line is stored in corresponding entries in a 1D arrayd/Geen arrows indicate the offsets
every time line stores to its neighbors in the array. (a) Airalices before and (b) after one
integration step. (c) Offsets to adjacent time lines chahgeto streak line refinement.

Furthermore, each particle carries two additional offsetsich are used in com-
bination with the time line id to determine the id of adjacénte lines. These off-
sets are initialized with®and changed accordingly whenever streak line refinement
adds/removes an adjacent time line. Figure 6.12 (c) defhietshange of offsets due to
the refinement of time lind;_1.

Parallel to the stream output buffer update during timedefmement (as described
in Section 6.5.1), we bind a texture target to the renderipglme and rasterize each
particle as a point primitive into the texel indexed by thepective time line id (this
concept was introduced in Section 4.5.2). By using addhieading, the number of
particles residing on each time line is obtained and can bessed by the particles
during the connectivity update and streak line refinemessgs

In the connectivity update pass, every particle writes te@nd array its absolute
position in the vertex array buffer in the same way. By usinggaimum blend operator,
the second array contains for each time line the absolutexbuffer position of the
last particle on the respective time line. These values asgled in the streak line
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refinement pass to append all particles on a new time line @isgcmus block to the
vertex array buffer. Additionally, for each particle itsthnce to neighboring time lines
is computed during the connectivity update, and the maximistance to each adjacent
time line is stored separately in an additional texturedarghese values are then used
during streak line refinement to evaluate the refinemereraoit.

To find successors for particles ok, the connectivity pass has to search in an
interval containing as much elements as there aré;@mdtl; 1 because the absolute
position of a particle in its respective memory bldgkis not yet known. The tuple
of time line and particle ids forms a strictly monotonic ieasing key over the whole
vertex array buffer that is used in a binary search in thevatdo the left of a particle
to find its successor. The predecessor is determined anallygo

In the streak line refinement pass, new time lines are appeasieontiguous blocks
to the vertex array buffer. Each particle on a time lihehat triggered a streak line
refinement decides on the basis of its absolute positioreimé&mory blocky; whether
it should contribute two particles to the new time line or@att for two particles ofl;.

During both refinement passes, we do not remove neighbodrtgies/time lines
atonce. If multiple adjacent particles satisfy the coarsgariterion in the time line re-
finement pass, we remove only every second particle. Theidaavhich particle will
be removed is based on a modulo criterion applied to the tigbarticle id and depth
counter. Analogously we do not remove adjacent time linesae during the streak
line refinement pass. Since the time line refinement teclenigjakin to the construc-
tion of a binary tree for each initially seeded particle atréak line refinement akin
to spanning a binary tree of time lines between successreédased particle fronts,
this coarsening constraint corresponds to a decompositi@spective trees in reverse
construction order. Initially released particles (and¢ifiere time lines) are excluded
from coarsening events to keep a minimum candidate set forguefinement (as both
refinement strategies are restricted by the maximum refinedepth).

6.6 Results and Discussion

Performance tests were carried out on a 2.66 GHz Core 2 Duegsor, equipped with
a NVIDIA GTX280 graphics card with 1024 MB local video memorgesults were
rendered to a 2560 1600 viewport. In all of our experiments an explicit foudhder
Runge-Kutta scheme at single floating point precision wasl @igsr numerical particle
integration. Detailed timings for interactive streak sgdg construction and rendering
are given in the following.
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6.6.1 Performance

Representative timings in milliseconds (ms) for integnatiadaptive refinement and
rendering using the patch-based approach are listed ireall Values in the first
three columns show the number of patcineshe maximum particle lifetimen, and
the refinement deptt. The values in column labele@ts show the average number
of surface patches. Colunint contains timings for integration and refinemeviis
for the rendering of the resulting surface, and colufththe total amount of time
required for the construction of the adaptively refinedakrsurface and subsequent
rendering. Let us note that some of the presented settiqggecouffers larger than the
available GPU memory. In these cases, we used static bidks mdependent of the
chosen parameters and list only timings in our performaneasures, where no buffer
overflow occurred.

n m |d Pts Int | Vis | Tl
50 | 500 | 4| 40k 1.3 | 50| 75
50 | 500 | 8| 55k 1.8 | 6.6 | 9.9
100| 1000| 4| 128k | 3.6 | 5.4 | 10.5
100| 1000| 8| 167k | 4.7 | 7.0 | 135
200| 1000| 4| 365k | 9.4 | 9.9 | 20.6
200| 1000 | 8 | 545k | 13.9| 14.6| 29.9
400| 1000| 4 | 1.28M | 28.5| 30.0| 59.7
400 | 1000| 8 | 2.08M | 48.8| 49.8 | 99.8

Table 6.1 Performance statistics for the patch-based streak sugieeration and rendering.
Timing statistics in milliseconds are listed in columns.5&ven for more than one million
surface patches the streak surface construction and iegdeok less than 60 milliseconds.

Timing statistics for the mesh-based streak surface ggoerand rendering are
given in Table 6.2. The maximum depth for both refinementetias were equally set
to d. Values in the column labeldets contain the number of surface particles, column
Int andCon show the times that were required for particle integratimeiuding time
line refinement and the connectivity update, respecti@bdumnsSIr gives timings for
streak line refinement and colunvis gives the time required for surface triangulation
and rendering. Finally, columiitl shows the total time required for the construction
and rendering of the adaptively refined triangular mesh.

6.6.2 Quality Comparison

To compare the visual quality, we have used both approachgsrierate the same
streak surfaces at comparable sample densities. As shoigune 6.13, the patch-
based approach suffers from artifacts that are common ta-gplatting approaches.
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n m |d Pts Int | Con| SlIr | Vis Til
30 | 500 | 4| 49k | 24| 11| 09| 22| 81
30 | 500 | 8| 64k | 3.1 | 14| 10| 28| 95
50 | 500 | 4| 116k | 5.2 | 23| 1.8 | 46 | 14.8
50 | 500 | 8| 188k | 80 | 3.8 | 25| 7.3 | 22.3
100 | 1000| 4| 295k | 12.0| 5.8 | 3.8 | 11.2| 34.2
100 | 1000| 8| 351k |14.1| 7.1 | 44 | 13.3| 39.8
200 | 1000| 4 | 952k | 36.7| 20.3| 11.3| 35.5| 105.0
200 | 1000| 8 | 1.18M | 46.0 | 25.7 | 14.1| 44.7 | 132.2

Table 6.2 Performance statistics for the mesh-based streak surtaweration and rendering.
Columns 5-9 present timings in milliseconds. The consiwaciand rendering of a mesh-based
streak surface consisting of more than 350K particles tee& than 40 milliseconds.

In particular, the patch alignment in regions of high cunvattends to produce
rather rough surface structures. While increasing thehpateas can cure those arti-
facts, it tampers with the actual extracted streak surfackraquires to increase the
bias of the attribute pass. This, however, in turn leads ecattcumulation of incohe-
rent surface parts. In addition, blending of overlappintchattributes tends to blur
high frequent surface features. The mesh based approatfe other hand, avoids all
these problems and delivers a closed surface representiaéibcan be rendered using
standard polygon rasterization. Sharp features and hegjluént geometric details are
preserved and the interpolation of vertex normals resalégssmooth illumination.

To achieve comparable quality, the patch-based approaghres a significantly

Figure 6.13 This image shows the same streak surface that was genesatgdhe patch-based
(left) and the mesh-based (right) approaches at compasabigle density. While patch-based
splatting results in artifacts and blurring at fine surfaetads and silhouettes, the mesh-based

approach yields a high-quality surface representation.




6.7. SUMMARY 125

higher sampling density. The following plot shows the sangénsity of both ap-
proaches, extracting streak surfaces at comparable \gsiadty.
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Figure 6.14 The plots show the sample density of both approaches dutiegkssurfaces
generation at comparable visual quality. Top: Statistic$tfe square cylinder data set. Bottom:
Statistics for the large eddy simulation (round cylindeajadset.

6.7 Summary

In this chapter, we have presented two real-time technifpue®nstructing and render-
ing adaptively refined streak surfaces on the GPU. The fdadskd approach performs
particle integration and adaptive refinement in one stethdrproposed setup we tried
to minimize additional complexity regarding the refinementerion, integration ex-
pense and the maximum output performed by the geometry shadelting in real
time performance even for huge amounts of patches tracedrall@l. We also pre-
sented visualization methods for this representation laptdg point-splatting tech-
niques to render the loose patch set as closed surface.

The mesh-based approach addresses the increased integrgiense by introduc-
ing connectivity information between the surface sampléss does not only remove
redundant particle integration but also allows the appbcaof more sophisticated
adaption criteria as well as coarsening the particle sehgwwurface construction. On
that account, the mesh-based approach delivers visualitparable streak surfaces to
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the patch-based approach with a much smaller set of surbanples. Furthermore,
the closed surface representation can be rendered owtnghd multitude of rendering
styles can be applied efficiently.

We are aware of the fact that the current triangulation cad te distorted triangles
in highly diverging flow regions or areas of high shear stia@tween adjacent time
lines. Thus, we will investigate alternative triangulatimethods in the near future.



Chapter 7

Interactive Separating Streak Surfaces

Streak surfaces are among the most important features woHURD unsteady flow
exploration, but they are also among the computationallgtrdemanding. Further-
more, to enable a feature driven analysis of the flow, one islgnaterested in streak
surfaces that show separation profiles and, thus, detetahlasnanifolds in the flow.
The computation of such separation surfaces requires te gleeding structures at the
separation locations and to let the structures move cayreBpgly to these locations
in the unsteady flow. Since only little knowledge exists dhibe time evolution of
separating streak surfaces, at this time, an automatedratioin of 3D unsteady flows
using such surfaces is not feasible. Therefore, in thistelnaye present an interactive
approach for the visual analysis of separating streak sesfaOur method draws upon
recent work on the extraction of Lagrangian coherent strest (LCS) and the real-
time visualization of streak surfaces on the GPU. We propos@teractive technique
for computing ridges in the finite-time Lyapunov exponent(E) field at each time
step, and we use these ridges as seeding structures to tireak surfaces in the time-
varying flow. By showing separation surfaces in combinatuith particle trajectories,
and by letting the user interactively change seeding paemsuch as particle density
and position, visually guided exploration of separatioafies in 3D is provided. To
the best of our knowledge, this is the first time that the retroiction and display of
semantic separable surfaces in 3D unsteady flows can bepedat interactive rates,
giving rise to new possibilities for gaining insight intoraplex 3D flow phenomena.

7.1 Introduction

For the visual analysis of flow data, feature extraction méshare a well-established
class of techniques because the extraction of featuressoffeight into different flow

127
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phenomena while reducing the amount of data to be proceésedher important and
well-established class of visualization algorithms ad-tene interactive exploration
approaches, such as interactively seeding and trackiniglear characteristic lines, or
integral surfaces. The increasing amount and complexityoaf data brings limita-
tions to both classes of techniques: the features thenselay become so complex
that their visual representation becomes challenging. H@nother hand, interactive
exploration techniques suffer from the danger that imparpdnenomena are missed
because certain areas are not explored. A solution forghascombination of feature
extraction and interactive exploration: either the compgtatures are extracted and
visualized by appropriate real-time flow exploration toalsthe seeding in interactive
flow exploration is controlled by a feature extraction agmto. In this chapter, we pro-
pose such a combination for particular features (LCS, igges of FTLE fields) and
interactive exploration tools (generalized streak s@$q.c

Ridges of finite-time Lyapunov exponent fields are well-bkshied features for
computing separating structures in time-dependent floaes$ection 2.5 for a thorough
introduction to this subject). While their definition is Wehderstood, for 3D time-
dependent flows their visualization is complicated becdhseridges of interest are
3D hypervolumes in the 4D space-time domain, i.e., surfacetsires changing their
shapes and appearance over time. Because of this, exigimgtams in 3D carefully
focus on particular times and locations to show ridge sedamaking a systematic
exploration of all FTLE ridges in 3D time-dependent flowsragiconsuming process.

Streak surface extraction is a prominent tool for intexectiow exploration. Since
for every location in the space-time domain there is a omarpatric family of streak
lines passing through, the sheer amount of existing stieak (and therefore streak
surfaces as well) leave the chance of missing interestidgmaportant streak surfaces.

The approach presented in the following aims to overcomeltaebacks of both
FTLE ridges and interactive streak surface explorations |ustified by the follow-
ing observation: FTLE ridges are approximately materialctires [56, 153] and can
therefore be interpreted as generalized streak surfaces.

We use this for the following algorithm: given a 3D unsteaayfffield, we inter-
actively place and move a planar seeding strucsisually a rectangle) in the flow
domain at a certain time Note that moving the seeding structwes possible both
in space and time. We consider the restriction of the FTLH foels (i.e., a 2D field),
either by computing the FTLE values @nin-turn or by computing the entire FTLE
field (i.e., a 4D scalar field) in a preprocess and resamphegvalues onta via in-
terpolation. We then extract ridge structures in the FTLE fe s in real-time, and
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employ them as seeding structures for a streak surfaceratiteg. Since the ridges on
schange their shape by movisgn space and/or time, the surfaces generated this way
are generalized streak surfaces (an extension of the cootcgeneralized streak lines
[187]). The streak surfaces are shown only for the integndime which was used for
computing the FTLE, since only for this integration time pa@tion was detected. As
our choice of seeding locations for streak surface integraims to uncover separation
structures, we will refer to them as separating streak sesfan the following.

Our method exploits the fact that 2D FTLE ridges (LCS) in &a&pare advected in
a similar way to streak surfaces seeded at 1D FTLE ridges @nraghifold in 3-space.
This statement is based on two facts: firstly, the 1D FTLEeg&lgn the seeding plane
are approximately on 2D ridges in 3-space as long as therggpldine is approximately
perpendicular to the flow (this was exploited in [47], whadges on cutting planes are
considered instead of 2D ridges). Secondly, FTLE ridgesapproximately material
structures and do in fact converge to exact material strestii the integration time
goes to infinity [153].

In [139] and [105] this temporal coherence of LCS was exptbtb efficiently com-
pute time series of FTLE ridges via simultaneous advectfansampling grid and in-
cremental 1D ridge tracking, respectively. Since a finitegnation time is used in our
work, the generalized streak surfaces we extract do nottrwith 2D FTLE ridges
in general. However, we will demonstrate in this work thatst surfaces resemble
the 2D ridges at high fidelity and can be computed very efftgreRurthermore, since
generalized streak surfaces move according to the flow th@yige a more intuitive
flow exploration metaphor than 2D FTLE ridges. Notably, nsual information will
be generated in regions where many 2D ridges exist but foe wbthem an approxi-
mating streak surface has its origin on the selected sestlincture. This allows using
our approach as an effective technique to focus on partiflola structures in space
and time.

7.2 Contribution

In this chapter, we present the first approach to constryetraéing streak surfaces in
3D unsteady flows at interactive rates. This enables viggailded 3D flow exploration
based on the concept of LCS. Our approach distinguishesgremous approaches in
that it avoids computing LCS in 3D. Instead, the computaisaestricted to a 2D man-
ifold and streak surfaces are constructed at significaaig tomputational effort. All
processing stages of the proposed algorithm are realizédeo@PU, including FTLE
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computation, ridge extraction, streak surface reconstmicand surface rendering. The
specific contributions of our work are:

* A navigation tool that allows placing a 2D sampling grid pase-time and com-
puting FTLE values on it in an interactive way.

* A new ridge extraction method that is specifically tailotedhe GPU and pro-
duces ridges well-suited as seeding structures.

* An extension to the patch based streak surface technigsemied in Chapter 6
to reconstruct generalized streak surfaces emanating X fRTLE ridges.

The remainder of this chapter is organized as follows: Aféstewing previous work
that is related to ours, Section 7.4 is dedicated to the apsgiection of separating
streak surfaces based on the FTLE. In Section 7.5 we inteoduicnew ridge extraction
algorithm. The reconstruction of streak surfaces fromasted 1D FTLE ridges is
described in Section 7.6. Section 7.7 presents a detaikggisas of our approach with
respect to performance and quality. We conclude this chaptie a brief summary and
an outline of future research in the field.

7.3 Related Work

Our approach is based on a number of established technigwesialization, namely
FTLE extraction, ridge extraction, streak surface intégra and interactive flow ex-
ploration. A thorough overview of feature extraction teicjues in flow visualization
and geometric flow visualization techniques can be found 80] and [115], respec-
tively.

FTLE/LCS

Lagrangian coherent structures (LCS) as ridges of FTLEdi@dre introduced by
Haller [56, 58] and experienced an intensive research shexe [100, 57, 154, 185].
Shadden [153] has shown that ridges of FTLE are approximatemal structures, i.e.,
they converge to material structures for increasing irggn times. This fact was used
in [140] to extract topology-like structures and in [105P4A 37, 47] to accelerate the
FTLE computation in 2D and 3D flows.

In the visualization community, different approaches Hasen proposed to increase
performance, accuracy and usefulness of FTLE as a vistializeool. For example,
volume rendering and slicing techniques were used for aavisoalysis of 3D FTLE
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fields in [49, 47], [138] proposed to extract LCS as filtere@jheridges and compared
LCS- and topology-based flow visualizations. LCS extractio2D FTLE fields was
discussed in [137], and [24, 47] considered the FTLE to @britre visualization of
particles to show divergent regions in 3D flows. However,enofithem is designed for
a real-time exploration of the separating structures in 3&ce and time.

Ridge Extraction

To extract ridge structures, a variety of different appheschas been proposed in the
literature. We mention local conditions by relaxing coratis of extremal structures
[37, 104], topological/watershed approaches [141], d&bimé based on extremal cur-
vature structures, adaptive methods [137], or particletasethods [77]. [126, 151]
focus on the extraction of ridge surfaces in 3D fields. To testlof our knowledge,
none of these approaches aims at a real-time extractiordgé rstructures in time-
varying fields.

7.4 FTLE

Our approach for visualizing separating streak surfacéms$ed on seeding particles
along Lagrangian coherent structures in a 3D unsteady fltav ftnce LCS are formed
by ridges in the finite-time Lyapunov exponent field, the FTltEt has to be computed
before meaningful seeding structures can be found. The F$l&Escalar quantity
that measures the stretching induced by the flow. d#t* (x) denote the flow map
that defines the mapping of particles at positxan space andy in time via path line
integration over the time intervé) + At. According to [56] the FTLE is then defined
as

1
08 () = e (0007 0™ 00)

where Apmax is the largest eigenvalue of the right Cauchy-Green defobomaensor
to+At T to+At . .

(Ogy ™™ (x))" 0@ (x) of the flow map. For a thorough introduction to the con-

cepts of the FTLE and a mathematical derivation, we referdghder to Section 2.5.3.

In the following, we will assume that the flow map—and the Fddfived thereof—
is computed by sampling particles on a planar seeding siristwhich is discretized
by a uniform 2D sampling grid. For estimating the flow defotimain the vicinity of
one of these particles, however, we consider additionaigbes that are seeded within
an e-region around it. The value this variable takes can be &sfjusy the user, mak-
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ing the FTLE computation independent of the chosen gridisgaddowever, follow-
ing [73], we have chosefiaccording to the grid spacing on the planar sampling grid in
all of our examples.

The FTLE computation, and thus the following ridge extmaatiis restricted to a
sub-domain of the 3D flow domain. The user is provided a nanigdool to places
in the 3D field. Both the size and the resolution of the sangpdind can be set by the
user. At the center of each grid cell the FTLE value is comg@ie described above.
Specifically, if a center is at positiofx,y, z), the trajectories of 6 particles seeded at
positions(x+ &,y + €,z+ €) are traced and the deformation gradient is computed from
the particle destinations. Particle tracing and FTLE cotafion is entirely performed
on the GPU, and the resulting values are written into a 2Dutext

It should be noted that the FTLE computation we perform camegee less reli-
able results, since the particles can separate signifycedating path line integration.
Even though there exist approaches to overcome this proldgmby a FTLE redef-
inition to local criteria on the center trajectory [73] onamalization of the particle
neighborhood [9], we have not yet integrated these appesaiciio our method.

Figure 7.1 shows two snapshots of an exploration sessiorhiowFTLE values
have been computed on different sampling grids. In bothscHs® computation was
performed at a grid size of 256256 with an integration time of 0.15 s (100 Runge-
Kutta 4th order integration steps, requiring 20 time stefphe unsteady flow field).
Since the computation is performed on the GPU, interactpdate rates of less than
150 ms are achieved as long as all time steps necessary ttatalthe FTLE at a given
point in time can be stored in the GPU memory.

This indicates that often it is not necessary to pre-comatitee-resolved 3D FTLE
field sequence prior to the flow exploration. The values cangmated in-turn once
the user moves or changes any of the parameters the FTLE depends uponhkke t
start timetp, the integration timé\t, the spatial sampling distaneg or the size and
resolution of the sampling grid. However, in scenarios whte time-resolved flow
field sequence does not fit into GPU memory (i.e. all timestegeded to calculate
the FTLE at a given point in time), pre-computing the timgeiedent FTLE should be
preferred. In this case the pre-computed FTLE values caplgibe interpolated at the
grid cell centers. Note that in this case the FTLE parameier$ixed and, therefore,
might significantly differ from the grid spacing an
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Figure 7.1 Two FTLE fields on a planar probe at grid s286x 256. The parallelized FTLE
computation on the GPU yields interactive update rates (le@n150 ms for the given probe
texture resolution).

7.5 FTLE Ridge Extraction

In the following we describe our novel extraction technidoelD ridges in 2D FTLE
fields. Ridge extraction techniques—also in the context@$lextraction—have been
studied extensively over the last years. For an introdadtdhis field and more infor-
mation on related work, we refer the reader to Section 2.5.

Our ridge extraction technique builds upon the concepleaht ridgesandwater-
sheds The definition of height ridges involves point-wise evaioas of algebraic equa-
tions based on geometric ridge properties, which are egpdesgia first-order deriva-
tives and derivatives into the main curvature directiores, the (transversal) ridge di-
rections [37]. Letf (p) denote the FTLE value at a poipns, and letH andg denote
the Hessian matrix and the gradientfgfrespectively. According to [126] the height
ridges are a subset of the zero-contour of gt g) = 0, which can be extracted in 2D
using the marching squares algorithm.

In generalunfilteredheight ridges do not provide suitable seeding regions feakt
surfaces. Even though height ridges cannot really bransh@sn in [151], they tend to
appear as branched structures at larger scales. Highlghedrand fragmented struc-
tures, however, result in many separate and even non-niésifioface parts. From a
visualization point of view the streak surfaces constrdi¢tem such ridges do not al-
low any intuitive interpretation due to their complex topgy and visual clutter thereof.
Figure 7.2 shows a set of unfiltered FTLE height ridges (Eftj compares them to the
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ridges we are interested in (right). Even though heightesdgan be post-processed to
eliminate undesirable ridge parts, and thus to yield simg@eding structures [137], it
seems to be difficult to implement this process efficientlylenGPU.

Figure 7.2 Left: unfiltered height ridges; Right: ridges extracted loy approach. Grey scale
values in the background correspond to FTLE values extiaatt¢he sampling grid resolution.
Let us note, that ridge extraction was performed at a larcglespace level.

Watersheds [134] are another popular approach for ridgaaidn in 2D. It is based
on the topology of the underlying 2D scalar field and aims #&taexing slopelines sep-
arating hills and basins. In this definition a ridge is comsgdl as a slopeline going
from one maximum to another maximum through a single saduilet.pEven though
the topology of watershed ridges is often much simpler thahaf height ridges, they
nevertheless fail to focus on the main axis of hills of thegheifield. Using a gen-
eral watershed approach can also lead to rather cumbergmuo®lscases in which
significant ridges are missed because they do not sepaffateedt minima correctly.

To overcome the limitations of height ridges and watershveelsntroduce a novel
ridge extraction algorithm. Generally speaking, a ridgedgsaphG = (V, E) consisting
of a seW of vertices and a sé& of edges. Vertices €V can be end pointglegv) = 1),
line points flegv) = 2) or crossingsdegVv) > 2). With respect to this definition, for
our purpose the specific goals are a) to minimize the numbenossings per ridge, and
thus to avoid non-manifold surfaces, and b) to maximizeittgerlength, i.e. to connect
as many vertices as possible, and thus to prevent the stuefakeas from falling into
many parts.

The basic idea underlying our algorithm is to separate thaeton of the ridge
topology from the computation of the exact ridge locatiansiilar to the concept pro-
posed in [146]. Starting with the FTLE field in a 2D texture iRGmemory, the texture
is first filtered via a gaussian kernel of sizexs to smooth high-frequency FTLE re-
gions. The amount of smoothing operations depend on a usetexd scale space level
(typically, 5— 10 smoothing iterations are performed). Then, the tex@iocessed
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to classify the FTLE values and build threshold regions.sEtregions are successively
thinned to compute a pixel-accurate ridge skeleton, fronclwvhdge line segments are
extracted at sub-pixel accuracy. The different steps afdlgorithm are illustrated in
Figure 7.3.

The result of our technique are continuous ridges with a Engpology. They
consist of points that are local maxima into the directiorthaf local ridge normals,
similar to the concept of watersheds. These ridges areneiuas a common graph
structureG with uniform vertex spacing.

@_ﬂ
(d) D—D

Figure 7.3 Steps of the ridge extraction algorithm. (a) A planar probsitipned in the flow
domain, and the corresponding color coded FTLE scalar fleidge (b) shows a cutout of the
FTLE on the planar probe. (c) Threshold regions. (d) Thignitelds the pixel-accurate ridge
skeleton. (e) Extracted ridge line segments at sub-pi@iracy.

7.5.1 Ridge Topology

The extraction of the ridge topology is performed by firstssifying the discrete set
of FTLE values on the sampling grid based on the height andoited curvature of
this field, and then by shrinking the resulting regions talgahe ridge skeletons. If a
sufficient symmetry of the hills in the height field along the@in axis can be assumed,
the skeleton will roughly coincide with valid ridge locatis.
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Classification

Performing the classification of FTLE values based on a hefgleshold is not suffi-
cient in general, since ridges can be of different heightgs Tlassification also fails to
segment regions of nearby ridges that are separated byvalléensufficient depth. To
solve this problem, we introduce an additional threshodd hused to separate convex
and non-convex FTLE regions.

Let fuw be the second order directional derivative of the gradiépj into direction
w at a fixed positiorp. Moreover letA1, A, (with A1 < A») be the eigenvalues ¢ at
p. The pointp is a convex point if every second order directional derxats non-
positive:Vw #£ 0 : fyw < 0. SinceA; < fyw < A2 holds for any arbitraryw| =1, p is
convex if and only ifH is negative semi-definite. This results in the following dibion
to be fulfilled by every ridge point:

A2 <0

Applying this criterion in a pixel shader to every sample ba seeding structure
s gives the desired classification into points belonging tovea regions and points
belonging to non-convex regions. For this we calculate tlkeediin pixel-wise using
discrete filters on the smoothed FTLE fiefdon s and store the classification in an
additional 2D texture at the sampling resolutionson

The used criterion, on the other hand, is rather sensitiagagsmall but random
fluctuations and, thus, leads to a rather noisy classificatioapproximately planar
regions. This misclassification, which results in unfelesgkeletons, is resolved by
allowing small positive values of», i.e., a curvature threshokd > 0. Combined with
a height threshold to exclude ridges at locations where the FTLE value is tooviewv
arrive at the condition

A<k A f(p)>h. (7.1)

We are aware that in the context of height ridges threshglalinvould have been
a more natural choice, since their definition does not i&stg which corresponds to
the actual ridge direction. Practice however has shownjrh@ontrast to a\1-test the
application of the more restrictiv®-test reasonably reduces branching and therefore
ridge complexity.

Figure 7.4 shows FTLE classifications using the differeit¢da with varying thresh-
old values. As can be seen, vastly different results arermddaranging from rather
fuzzy to well-defined and smooth threshold regions. Accuydio our experience,
choosingk one or two orders smaller than the largest occurring curgatans pro-
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vides the best results, i.ex € [0.01;01] - max{|A1|,|A2|}. For the minimal ridge
heighth, reasonable values are between 50% and 80% of the maximuia ¥lue.

Figure 7.4. FTLE classification into convex (red) and non-convex (blegjions, using height
threshold (left) , height and curvature threshold witk 0 (middle) and withk = 1073 (right).

Skeletonization via Curve-Thinning

Applying the convexity test (7.1) to the FTLE field resultsaiinary threshold image.
We assume that pixels labeled 1 passed the test, while attre labeled 0. We
are now seeking for the topological skeletons of those regamnsisting of pixels that
passed the test, i.e., the skeletons of the convex regions.

To compute these skeletons efficiently on the GPU we empldy ae2sion of the
region thinning algorithm proposed by [122]. The algoritisnaery robust against noise
at the region boundaries, and since it performs purely looalputations at every pixel
it can be parallelized effectively. Furthermore, it ditggenerates the inner skeleton
of a region, meaning that the algorithm avoids brancheshiogche region contour.
At every pixel the algorithm considers the 4-neighborhamdlassify this pixel, i.e., a
pixel is classified as N- (or W-, E-, S-) border-pixel if it heeue 1 and its neighbor in
the respective direction has value O:

N
W|-|E
S

In every iteration, at every pixel four sub-iterations asrfprmed to remove certain
border pixels. The first sub-iteration NW removes N- and Wdeo-pixels that match
at least one of the following three adjacency templates:
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0|0 0| x|x 0|0] -
1{x Vv 01|11 Vv 0]1|1
1 0 1

Here 'O’ and '1’ mark pixels that have to be exactly matched. tli@ neighbors
marked X, per template at least one has to be '1’ while those market Wwiare ir-
relevant for the evaluation of the respective template.Jposhing this sub-iteration,
the algorithm proceeds with sub-iterations SE, NE, and S\kactly this order. The
templates for these sub-iterations are derived by rotétiademplates used in the first
sub-iteration accordingly. The thinning process is penked in as many iterations as
are required until no more pixels are removed from the inmage (typically a maxi-
mum of 20 iterations is sufficient).

7.5.2 Sub-pixel Ridge Refinement

Given the set of skeleton pixels that is output by the thigratgorithm, we construct
a graph representation of the skeletons by connecting bergiy pixels. For every
skeleton pixel with at least one neighbor a vertex at itsereistcreated. Two vertices
are connected via an edge if they belong to horizontally oticadly adjacent pixels
(N,W,S, or E template positions) or if they belong to diaghnadjacent pixels which
do not share a common neighbor. Let us note that this imgkes/) < 4 for all ridge
verticesv.

The graph is stored on the GPU as a linear array of vertex fvgsi each carrying a
pixel coordinate, in the sampling gridand an adjacency list, C V with 1 < |Uy| <4
implemented as pointers (indices) to up to 4 neighbors. Tilag & created by invoking
a geometry shader for every texel in the 2D texture storiegskteleton classification.
Using the stream output functionality of current GPUs, wa ganerate primitives
solely for the pixels who are part of the skeleton. To essiiine connectivity between
these vertex primitives, in a second rendering pass, wéesctheir array indices back
into an index texture of the same dimensions as the initkalite. In a third pass every
vertex finally determines the connectivity informationby a lookup into the index
texture.

The ridge graph is then refined iteratively at sub-pixel @iea. Underlying the
refinement process is the condition that every ridge vertaxould be lying on a max-
imum of the image functiorf into the direction of the local ridge normaj,. Conse-
guently, the ridge vertices have to be moved upwards the Hidlé& until they reach
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such a maximum. Since moving vertices along the image gmadieould cause the
ridge graphG to be heavily distorted or even collapse at the absolute mexif f, we
restrict the movement to the,-direction by projectingg onton,. This also ensures
the convergence of the refinement process under the assimapt reasonable initial
guess produced by the skeletonization. To avoid degeneaats and to additionally
obtain evenly spaced vertices, we incorporate some smupthto each refinement
step by interpolating vertex positions along ridge lingse&fically, the positiom, of

a vertexv is updated according to

Pv+0ory if [Uy] = 1
= 7.2
P (1-o0)pv+=( S pu)+0ry ,else (7.2)
Ul UEly
with _
<(pul - pu2>L7 g> ' (pul - pUz)L ) if UV - {u17 Uz}
vy =
Y S ((pu—pv).09) - (pu—pv)* , else

uely

Here,d is the step-size along the gradieatjs the amount of line smoothing, amd"-
denotes a unit-length vector perpendiculamto In order to allow for the procedure
to converge, we choose the largésior which the step siz& ry| is smaller than one
pixel. o was set to 0.25 during all our experiments.

We perform a fixed number of iteration steps (typically 50hjein are computed for
every vertex in parallel on the GPU. In a final post-procesgttaphG is modified by
removing vertices that have moved more than a user-spedis¢ahce thresholdmax
during the refinement (by default we sh{axto the length of 5 pixels). In this way, we
eliminate skeletons that were too far from ridges after tiitéal skeletonization. There-
fore, each vertex gets assigned an additional attribakg which stores the distance
a vertex has been moved. Similargg, dy is smoothed along ridge lines to prevent
oscillation artifacts caused by thresholding:

(1-w)dy+Gy( 5 du)+Ipv'—py| if Uy <2
d, = uély (7.3)
dv +[py' — py| , else

Compared tar, w should be chosen significantly smaller. For instange; 0.05 was

used throughout all of our experiments. Vertices vd{h> dnax are marked invalid.
Finally this mark is propagated throu@hin kg iterations, marking all vertices invalid
from which an invalid vertex can be reachedkip steps kcyt was set to 5 throughout all
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experiments. In Figure 7.5 extracted ridges before (l&ft) after (right) the sub-pixel
refinement stage are shown.

The result of the ridge extraction stage is the array of rigréices containing both
the invalid and the valid ridge vertic&s" C V. From these vertices the set of valid
edgesE™ C VT x VT is derived.

Figure 7.5 Ridges extracted with our approach. Left: Ridges obtaineddnnecting adjacent
vertices. Right: Sub-pixel precise ridges after the refigenand post-processing stage.

7.6 Separating Streak-Surface Visualization

Our ridge extraction technique yields a set of ridge stngstdior a given point in time.
These structures are then used as seeding curves for stéades. Since the seeding
structures change over time, the surfaces generated tlyisaveageneralized streak
surfaces.

The ridges are provided as a set of uniformly distributee Begment&™ con-
sisting of a discrete set of control verticés. To construct separation surfaces, we
repeatedly release particles from the set of seed pwintmto the flow and compute
their trajectories in the 3D unsteady flow. All particlessaded at a given point in time
are then integrated and rendered. Since the FTLE valuestdemrecomputed by inte-
grating particles over a specific time interval, the lifedinf the particles seeded at the
FTLE ridges is restricted to the same interval.

Figures 7.6 and 7.11 (b) show separating streak surfacesvihra visualized by
rendering the set of particles as individual spherical pspnites. As proposed by Sigg
et al. [157], an analytic ray/sphere intersection is pented in the pixel shader stage to
determine correct depth values on a per fragment basis. Neahparticle integration
on the GPU is performed as described in Section 4.5.2.
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Figure 7.6. Particle based surface visualization. Red particles spaed to points on the
separating surface. Green particles serve as contextriaf@n. They represent points on time
surfaces, which are released from the planar probe at a figgdéncy.

Red particles in these images correspond to control paasiding on a separating
streak surface. Green particles represent control pofrtine surfaces. Those time
surfaces are aligned parallel to the planar probe and edeato the flow at a fixed fre-
guency to serve as additional context information, emgagithe separating nature
of the extracted streak surfaces. Approximating the sarfamough a set of individual
samples allows us to use large sets of particles at realganfermance. However, as
particles start to diverge, missing connectivity betweetfiese samples and the omis-
sion of an adaptive refinement make it difficult to identifg eparating surface.

In Chapter 6 we presented two different approaches for thealization of closed
streak surfaces with the focus on the efficient construaf@uch surfaces on the GPU.
The first approach represents the surface as a set of segaeatgatches, which de-
form under the influence of the flow. Each patch is traced sepigrthrough the flow,
and itis adaptively refined into a set of sub-patches if tretcting becomes too severe.
The refinement process introduces new vertices that ardacgd by adjacent patches,
and, thus, successive integration can lead to holes in tti@ceurepresentation. The
second approach generates a closed surface by repeatedisimg time lines from a
single static seeding structure and triangulating adja@etaptively refined) time lines.

Unfortunately, the mesh-based approach can not easily pedpn the current
scenario since the seeding curve changes permanentlymBtiss it difficult to estab-
lish particle connectivity and to construct a consistemntame triangulation. Especially
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since the topology of the seeding curves changes from tiepetsttime step, we would
first have to determine matching curve segments in suceefisne steps to build a
triangulation. Finding these matchings is a rather timesaomng task and can not ef-
ficiently be mapped to the GPU. For this reason we adopt antasfahe patch-based
approach presented in Section 6.4.

Interactive unsteady flow exploration using the planar protetaphor is usually
initiated by placing the seeding structuset a fixed location in space, but letting it
move in time to depict the development of separating susfacdhe evolving flow
domain. As the seeding ridge structures change while mateglanar probe in time,
we extend the patch based technique in the following wayabihdime stepy and for
every edgee € E™ we construct a zero area quad, and we release two contriesdf
each patch into the flow. Before releasing the remaining tertices in time stefy 1,
the ridge line segmentst extracted irtj are traced along the gradient of the 2D FTLE
field att; .1 as described in section 7.5.2. Thus, the vertices are m@geniding to the
movement of the ridge structure from one time step to the. nexhis way we employ
the temporal coherence of FTLE ridges to find for each ridgéexea corresponding
vertex in the next time step. The remaining two patch vestare then released into the
flow from the new positions on the seeding plane. Figure 7efcsles the construction
of surface patches for a seeding structure that moves awer ti

Figure 7.7. Patch-based surface construction. Before releasing ttandepair of vertices at
timet;, 1, the line segment of the corresponding ridge structureaetdd at timd; is traced
along the FTLE gradient fielg. 1. The four white vertices (right) depict the control poinfs o
the resulting quadrilateral.

As the adjusted edges" (extracted at;) do not exactly match the edgés: ,,
subsequent integration can lead to holes in the surfaceseptation. This is fixed
to a certain degree by the proposed point splatting appraedaich renders a slightly
enlarged footprint to smear out holes between adjacenheatcAdaptive patch re-
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finement is performed as described in Section 6.4. Figui&$aj, 7.9, and 7.11 (a)
show separating streak surfaces that have been constramtedisualized using our
approach. In Figures 7.8 (b, ¢) and 7.10 depth peeling wabkeapip create a semi
transparent visualization of the separating streak sesfac

7.7 Results and Discussion

To validate the effectiveness of the proposed techniquesiave conducted a number
of experiments on different data sets given on cartesianr3.gPerformance statistics
were measured on a 2.83 GHz Core 2 Quad processor, equipihealMVIDIA Quadro
FX5800 with 4 GB local video memory. Results were renderad & viewport at
FullHD resolution (1920« 1080). The following data sets were used:

» 3D double gyreA 3D extension of the synthetic, periodic 2D double gyre [153
sampled at a spatial resolution of 25628 x 256 and a temporal resolution of
10 for one period:

gyre(x,y,z,t) = (—mA-sin(mf (x,t +5z)) - coq ny),

1A - cog 7tf (X, t 4 52)) - sin(11y) df

et 0) with

f(xt) =a(t)x®+Db(t) x, at) = esin(wt), b(t) = 1 — 2esin(wt),
A=0.1, £ =0.25 w= 2T and(x,y,zt) € [0;2 x [0;1] x [0;2] x [0;10)

» Square cylinder:A 3D DNS simulation of the flow around a square cylinder
between parallel walls [143]. The vector field was resampl&d a uniform grid
at resolution 19 64 x 48. 102 time-steps were used. The scalar FTLE fields
were pre-computed at fourfold the spatial and eightfoldémeporal resolution.

* Flow around a cylinder A large eddy simulation of an incompressible unsteady
turbulent flow around a wall-mounted cylinder [44]. 22 tisteps were simu-
lated. The size of the data grid is 256,28 x 128. Pre-computed FTLE fields
were generated at twice the spatial, and fourfold the teaipesolution.

* LBM Flow: A GPU-based Lattice-Boltzmann simulation of the flow arownd
donut-shaped obstacle. The spatial resolution of the sitiouml domain is 12&
64 x 64. The FTLE fields on the 2D sampling grid were computed onflthe
during flow exploration. In every time step, 10 vector fieldgused to compute
the FTLE values. The interactive simulation created theda slets in advance.
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7.7.1 Visual Exploration

3D double gyre Placing the seeding plane parallel to tlgy) plane essentially means
to compute the FTLE ridges on the classical 2D double gyrer eéatraction shows
that the obtained ridges agree with expected ridges knoown the literature, with the
main difference that our extraction works in real-time. @eg streak surfaces from
the ridges confirms that the ridges are approximate matdriattures: the generalized
streak surfaces and the ridges show a good coincidence asetkin Figure 7.8 (C).
Placing the seeding plane parallel to {ez) plane reveals approximate sine shaped

ridge structures (see Figure 7.8 (a)). Note that this cuoes chot coincide with moving
saddles of the vector field which is a well-known characterisf the data set [153].

Figure 7.8 Separating streak surfaces in the double gyre data setn@remvs show the ve-
locity direction on time surfaces that are additionallyeesed from the planar probe. In image
(b), individual surface layers are extracted via depthipgellmage (c) depicts the correspon-
dence between separating streak surfaces and FTLE ridgegldB the seeding plane, a second
plane is placed such that it intersects the surface and FElues are visualized on it. Here,
the separating surface stays on the 2D FTLE ridges.
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Square cylinder. Seeding from a plane in front of the cylinder with a distaaceord-
ing to the integration time to compute the FTLE field reveals distinct streak surface
separating the flow passing above and below the cylinderHggee 7.9 (b)). Placing
the seeding plane behind the cylinder perpendicular to thi& flow direction shows
periodically appearing and disappearing streak surfateshvalternate in moving up-
ward and downward. This confirms the appearance of the welvk von Karman
vortex street behind the cylinder. In order to show that tinea& surfaces are indeed
separating structures, we release time surfaces from ttkrgeplane at times when
streak surfaces are released. The time surfaces get ad\aaleclearly get distorted
mostly around the intersections with the streak surfacescah be seen in Figures 7.6
and 7.9 (a), this shows the separating structure of ourkss@daces.

Figure 7.9 Separating streak surfaces in the square cylinder datasiseglized using the
patch-based approach. Separating surfaces in (a) rewealdt-known von Karman vortex
street behind the cylinder. Image (b) depicts a single sarégparating the flow passing above
and below the cylinder. The correspondence between sempisiteak surfaces and FTLE
ridges is shown in (c). In general, as the integration timedue compute the FTLE is finite,
surfaces keep staying in regions of high FTLE but do not stathe 2D FTLE ridges any more.
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LBM Flow : Atube shaped generalized streak surface is revealed biyglthe seeding
plane in front of the torus, separating the flow passing thinahe hole and around the
toroidal obstacle. Moving closer towards the obstacle creates two surfaces pamllel t
the first one, indicating the occurrence of a separationnukthie torus.

Figure 7.1Q Separating streak surfaces in the flow around a torus. Deyaling was applied
to extract multiple surface layers.

Flow around a cylinder: Two streak surfaces enclosing the cylindrical obstacte ar
revealed by placing the seeding probe perpendicular tonflei in front of the object.
The extracted surfaces emanating from 1D FTLE ridges on ldu@ap probe closely
resemble the 2D FTLE ridges obtained by incremental ridgeking in a similar data
set [139].

(a) {b)

Figure 7.11 Placing the planar probe perpendicular to the inflow in fafthe cylinder reveals
two separating surfaces enclosing the object. In (a), sesfare visualized with the patch-based
approach. In (b), the particle-based approach was employed
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7.7.2 Performance

We applied an explicit fourth-order Runge-Kutta schemeragle floating point pre-
cision for numerical particle integration during FTLE (peamputation as well as for
the integration of streak surfaces. Performance measar€3 £ E pre-computation are
presented in Table 7.1. Representative timings in hourar@hgiven in columiTime
for varying temporal Timestepgand spatial $patialRes FTLE resolutions. Column
Integrationcontains the integration tim&t and the amount of integration steps.

Timesteps SpatialRes Integration Time
80 256 x 256 x 128 | 8sin 50 steps | 0.8h
576 384 x 128 x 96 | 10sin 100 steps 5.0h
576 768 x 256 x 192 | 10s in 100 steps 43h

Table 7.1 Performance statistics for GPU-based FTLE computation.

Timings for the ridge extraction on the planar probe as welbathe streak surface gen-
eration and visualization are given in Table 7.2. We extsaeiding structures (FTLE
calculations and ridge extraction) at a fixed temporal fesmy Seed Intervglon the
planar probes with varying texture resolutionsSg@mpling texture resolutionin cases
where the FTLE was calculated interactively, coluntiid.E Setupand FTLE Time
show the used parameters and the respective calculatienwirereas resampling the
precalculated FTLE using trilinear interpolation comegseqligible cost. Timings for
FTLE thresholding, curve thinning and ridge refinement amammarized in column
Ridge extraction Column#Quads+Particleshows the average amount of primitives
employed to visualize the separating streak surfaces agiticathl context informa-
tion, columnAdv+Visthe time spent for respective particle integration and eeind.
ColumnFPScontains the average achieved frame rate during the iniezetow ex-
ploration sessions.

Seed | Sampling texture FTLE FTLE Ridge # Quads +| Adv + Vis
Interval resolution Setup Time | extraction || Particles | per Frame| FPS
25ms 250 x 250 - - 6.9ms 108k 13.2mse | 32.0
50ms 500 x 500 - - 15.2ms 639k 80.0ms] | 7.3
50ms 400 x 800 - - 25.7ms 100k 10.7mse | 24.4
100ms 250 x 250 10s in 50 steps| 58.6ms| 10.5ms 57k 6.7mse 18.1
100ms 250 x 250 15sin 100 steps 120ms 9.2ms 42k 11msQ] 3.3
100ms 400 x 800 10s in 50 steps| 277ms | 23.0ms 200k 16.7mse 1.6

Table 7.2 Performance statistics for the extraction and visualizatif separating streak sur-
faces. The surfaces were visualized using either the fmtased approach (entries marlgd
or the patch-based approach (markédncluding adaptive surface refinement.
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7.7.3 Limitations

For the visual exploration of turbulent flows the proposethitéque seems problem-
atic. As can be seen in Figure 7.12, when plad@myturbulent flow regions the FTLE
exhibits rather fuzzy ridge structures undergoing frequepology changes. Hence,
many small, disconnected, and strongly moving surfacespaiit be generated, lead-
ing to visual clutter. Reducing the FTLE integration tidseas proposed by [140] to
simplify the “Lagrangian skeleton” can only be done to a&erextent, as the surface
integration time is restricted .

Figure 7.12 Placing the seeding probe in turbulent regions. Frequemements and topology
changes of ridges result in highly fragmented surface @endsvisual clutter thereof.

The application of the curvature criterion (see Eq. 7.1)ofeéd by skeletonization

especially aims to simplify the extracted ridges. It is glea the other hand, that this
can change the ridge topology, e.g. by removing non-shaémdles, or lead to slightly
misplaced ridges at crossings. Therefore, care has to ba taknot “misinterpret” the

resulting ridges.

7.8 Summary

In this chapter we have presented a real-time techniquééoextraction of 1D FTLE
ridges on a 2D planar seeding structure in 3D unsteady flowmseSve employ ridges
as seeding structures for a generalized streak surfacgratiten, we focused on the
extraction of a subset of all valid ridges. Whereas we aimes) obtain predominant
features, i.e., long continuous ridge lines and b) to remowsanted ridges such as
discontinuous structures and crossings to avoid visu#teclwhile rendering the sepa-
rating streak surface.
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The GPU-based framework allows users to experience a \ygpuated exploration
of semantic separating surfaces by moving the probe in spat/er time and changing
parameters steering the ridge extraction and streak suc@aastruction process inter-
actively. To the best of our knowledge, this is the first tirnattthe reconstruction and
display of semantic separable surfaces in 3D unsteady flawbe performed at inter-
active rates, giving rise to new possibilities for gainingight into complex 3D flow
phenomena.

In fact, the interactive treatment of LCS allows insight oaty into the locations
of the separating structures but also into their temporaluton including changing
shapes, appearance and disappearance. Moreover, refjioiesest can be determined
interactively by moving around the seeding plane. This vealgst visual impression
of the "big picture” of the flow as well an in-depth analysisrefevant parts (both in
space and time) becomes possible.

In the future, we will pursue research into the following tdicections: Firstly, we
will perform a detailed analysis of the similarities andfeliénces between separating
streak surfaces and 2D LCS in 3D flows. This includes the tranaf parameters such
as the integration time for computing the FTLE field and themparison of unstable
manifolds in both scenarios. Secondly, adaptive meshicignigques for constructing
high-quality polygonal generalized streak surfaces walldxamined. In this respect
it will be worthwhile to investigate ridge extraction tecues that are specifically tai-
lored to the intended application and can monitor topolagibanges and degeneracies.
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Chapter 8

Flow On Surfaces

In this chapter, we present new approaches to realize atiezagyeometry- and texture-
based visualization techniques for surface flow. Such flolddieither live on a sur-
face or can be re-sampled onto it from a surrounding 3D &tti® achieve real-time
performance, we introduce th@rthogonal Fragment Buffe(OFB), a sample-based
surface representation which is independent of the origindace resolution and re-
presentation. We will discuss how previously introduceshigiization techniques (see
Chapter 4) can be adapted to this GPU-friendly data stred¢tueffectively reveal sur-
face flow. Furthermore, we will use the OFB to store additicuaface attributes and
employ them to create a view-independent dense flow repiagamon the basis of line
integral convolution (LIC). Additionally, we will show howartistic approaches such as
surface coloring can be applied to visualize surface flovewlar advection along parti-
cle trajectories on the object. The quality and performari¢be presented approaches
is validated using real simulation data projected ontateatyi clip geometry positioned
in 3D unsteady flow, curvature fields on surfaces, and syiethiettor fields designed
on surfaces.

8.1 Introduction and Related Work

To utilize particle-based GPU techniques in a broader rafigactical applications,
there is a dire need to extend these techniques towardssihaliziation of unstructured
grids. In principle, it is clear how to perform particle thag in unstructured grids
composed ofi-simplices like triangles and tetrahedra [75, 161, 120148]. However,

GPU-based particle tracing in such data sets performs sit &naorder of magnitude
slower—in comparison to structured grids—due to the folfmweasons: Additional
arithmetic and memory access operations occur for celtbesard exact point location.

151
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Pointer indirection is not directly available on the GPU asfalitional index structures
have to be stored. The traversal of such data sets leadseadieqt fetches (introducing
memory latencies) and highly incoherent memory accesai(irfailing to employ local
caching mechanisms). Furthermore and most importantfjicfgintegration in such
data sets imposes an unbalanced load onto the paralleltexeauits on the the GPU.
Shader units on GPUs are organized as multiple SIMD groujihivdne SIMD group
(orwarp), all the processing elements run in lockstep. While dymrdsmanching within
a set of elements (executing the same shader kernel onettiffeput data) is allowed,
kernel execution on all elements is not terminated till Eheents in the warp exit the
code fragment. Thus, while some units might have to integsaer many elements in
one particle advection step, others only have to considieigéeselement but are stalled
until the whole warp terminates.

In this chapter, we will alleviate above problems for flow ebiary (unstructured)
surfaces. We introduce the OFB as a new data structure thrassturface samples at
a nearly uniform distribution over the surface, and is djpEadly designed to support
efficient random read/write access to these samples. Theadaess operations have a
complexity that is logarithmic in the depth complexity okéthurface. Thus, compared
to data access operations in unstructured grids (suchaamkei meshes) or tree data
structures like octrees, data-dependent memory accetssnzaare greatly reduced.
Furthermore, the data layout of our surface representataintains spatial sample co-
herence and, thus, exhibits very good spatial accesstypdaliaddition, since the OFB
adheres to a uniform resampling of the original surfacej@artracing can be written
as a balanced stream program that effectively exploits coatipnal and bandwidth
capacities of recent GPUs. Due to these reasons, OFB-baszetracing allows us
to track millions of particles along velocity fields on sués interactively. Because of
the intermediate surface representation we choose, otnogheain not only be used for
the visualization of flow on polygonal surfaces but also foy arbitrary type of surface
that can be sampled.

Next to geometry-based flow visualization techniques,urexbased approaches
such as line integral convolution [28, 161] (LIC) are a welbkvn class of algorithms
to reveal directional information in velocity fields. Sintteese techniques generate
a single, dense representation for the whole flow field, in @GDs{eady) flows, they
are often restricted to arbitrary clip geometry positionethe flow domain. While a
LIC representation can be pre-computed over the whole flowadlo and resampled
on the respective surface during visualization, this apginas hardly suitable for an
interactive exploration of unsteady flow due to intense nmynaccess and numerical
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operations during data generation. Image-based techsjfjdg, 98, 183] achieve inter-
activity by restricting the computation to the visible pafthe surface. However, these
approaches tend to be prone to deliver artifacts for flowdiéildng on a surface due
to the following fact. Typically, line integral convolutioworks by smearing a random
intensity (or color) distribution along particle trajegts, resulting in a high correla-
tion among points on the surface residing on one charattetngjectory. Image-based
approaches perform the line integration on the surfaceeptegl into screen space and,
thus, trajectories cannot be calculated correctly at siiie boundaries or along edges
obstructing parts of the surface under the current view. 8ggiour view-independent
data structure for particle tracing during LIC calculatithwis problem can be solved.
Furthermore, by calculating LIC for every sample in the OFi8l ancoding it directly
in the data structure, a view-independent flow represemtaian be obtained interac-
tively.

8.2 Contribution

The primary focus of this chapter is the development of ariefit method for parti-
cle tracing on arbitrary (unstructured) surfaces. To aehthis, we introduce a spatial
data structure that stores a resampled version of the surtiee Orthogonal Fragment
Buffer (OFB). The OFB is conceptually similar to the Layer@dpth Cube (LDC)
introduced by Lischinski and Rappoport [106], which itdaliilds on Layered Depth
Images (LDI) [155]. While an LDI captures all depth layersaof object in the order
they are seen from one particular direction, an LDC capttirese layers from three
mutually orthogonal directions, thus representing a serfaoint up to three times in
the data structure. In our approach, the sampling is aldonpeed along sets of par-
allel rays emanating from mutually orthogonal uniform 20dgr Along these rays,
however, only surface points with an angle less or equal tdetfsees between the sur-
face normal at this point and the ray direction are consatiehe this way, redundant
sampling of the same point is avoided, and a quasi-uniformpiag with a maximum
distance foreshortening {\a}% is generated. Hence, our data structure can be seen as a
redundance-free LDC.

Since the sampling can be performed by coordinate projegtioto uniform 2D
grids, the OFB can be seen as a hashing of surface pointsth&pgojections as hash
functions. Due to the underlying regular grid structurés treshing maintains sample
coherence so that the OFB exhibits very good spatial acoeafity. However, since
the hashing maps multiple samples onto the same grid cédlnivt perfect. Specif-
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ically, it produces up tal collisions per sample, witkd being the depth complexity
of the surface. Since the samples falling into the same eellbe sorted with respect
to their distance to the sampling grid, the computationahglexity of finding an en-
try in the hash table i©(logy(d)). On the other hand, if the samples falling into the
same cell are not sorted, data-dependent memory accesspattand memory laten-
cies thereof—can be avoided entirely. Therefore, depgndmthe efficiency of data
dependent memory access operations on the underlying aegdchitecture, either a
sorted or an unsorted OFB can be chosen flexibly.

Next to the OFB’s advantages for GPU-based particle tragisgussed above, it is
also especially suited for graphics hardware due to theviatlg reasons: If the under-
lying surface is given as a triangular mesh, OFB contruatemexploit advanced fea-
tures of current GPUs—in combination with their rastermatcapabilities—to create
even high-resolution surface representation for objetteasonable depth complex-
ity within the fraction of a second. Furthermore, the OFBadaterface exhibits not
only fast read but also efficient write access. Hence, it @arbployed to access and
update surface attributes in real-time. This makes it nd¢ possible to resample a
3D unsteady flow field onto arbitrary clip geometry intereely, but also to enrich the
appearance of an object during rendering by encoding tmactgt flow representation
directly in the OFB data structure. We will exploit this fait only to store a texture-
based flow visualization in the OFB, but also to improve trspldiy of results extracted
with geometry-based techniques. Rendering geometricifprea on top of an object
often results in their (partial) obstruction by the undertysurface. E.g., unless the sur-
face is flat and oriented perpendicular to the view directioriual geometry [55, 90]
will intersect the object due to the screen-aligned natfigomt sprites. Characteris-
tic lines, approximated by a discrete set of linear line segis also suffer from this
problem. To solve these issues, we will present technidquedirectly encode the ex-
tracted geometric flow representation in the OFB surfaceesgmtation. Furthermore,
we will present an approach for particle-based color adeedalong the surface and
will exploit it to create various (artistic) flow represetitas.

Finally, let us note that surfaces do not need a parametizéivhich is typical,
e.g., for surface attributes stored in 2D textures) to ecae®rmation stored in an
OFB. This makes it even possible to employ our data strudturgsualize flow on
dynamic surfaces changing their shape over time.

However, we should point out that our method is subject tacgidimitations of
resampling approaches, such as the loss of detail caused lnyder-sampling of the
surface or the blurring of sharp features like edges duegtodfular sampling pattern.
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The rest of this chapter is organized as follows. In the nextiSn, we introduce
the OFB, describe its internal structure and show how GPUdwnare can be exploited
to construct it interactively. Section 8.4 discusses plrtracing on the sample-based
data structure. Section 8.5 describes how the renderingyobgeometry-based flow
visualization techniques can be improved by encoding tlieaeted representations
in the OFB. In Section 8.5.1, we demonstrate how particleingacan be employed
to construct surface-aligned (oriented) sprite patchexti@ 8.6 introduces a view-
independent texture-based flow representation on the basiee OFB. Finally, we
conclude this chapter with a summary of and discussion dboitations of our work.

8.3 The Orthogonal Fragment Buffer

In an OFB, a surface is stored as a set of sampled surfacespddampling is per-
formed along three mutually orthogorsdmpling directiondy projecting the surface
orthographically along these directions into correspoglyi alignedsampling planes
Every plane is discretized by a sampling grid, and each gidstores the distance
to the sampling plane of the closest surface point projgatinto the cell center. In
addition to this distance, a vector field is stored. The vefoétd is either constructed
by sampling the velocity field of a surrounding 3D (unsteditty)y during OFB con-
struction, or it is given by a (normalized) vector field defireg the surface vertices.
While resampling a vector field into an OFB, we project it itite local surface tangent
plane (as we want to visualize flow along the surface). Thgdanhplane is computed
from the interpolated surface normal, resulting in a smeatiation of the plane across
the surface. Optionally, further space for additionaliladies is reserved in the OFB,
which can be filled by a flow visualization technique.

Since along one sampling direction updtgurface points can fall into the same cell
(whered is the depth complexity of the surface), updalistances might have to be
stored for each direction. Distances are sorted such thdtHtldistance is the distance
of theith closest point to the sampling plane. Every surface paiqtrojected only
once into the sampling plane with the smallest angle betwezaurface normal at that
point and the sampling direction of the respective gridhis wvay, redundant sampling
of the same point into multiple grids is avoided, and a neaniyjorm sampling with a
minimum and maximum sampling frequency ¢i1/3-s) and /s, respectively, across
the surface is generated (whexis the size of an OFB cell). Figure 8.1 illustrates the
sampling strategy used to generate an OFB.
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Figure 8.1 OFB construction: (a) Surface points are projected alorg aithree mutually
orthogonal sampling directions. Surface points fallintpithe same grid cell are stored in
multiple sampling grids. (b) An OFB stores all sampling graf the three sampling directions
in a single texture resource. (c) GPU pipeline setup: Thenggy shader selects the target
sampling grid stack on a per-triangle basis and then rastea triangle into all corresponding
slices. Stencil testing routes the surface sample into élieumoccupied sub-sample. Multiple
OFBs can be bound to the output merger stage to capture tltsiattributes at once.

8.3.1 OFB Construction

Sampling the surface along a particular direction can béopaed in many different
ways, e.g. by using ray-casting or rasterization. In thitise, we demonstrate how
the sampling can be performed by rasterization on the GPpaiticular, we employ
stencil routing [132, 118] in combination with a novel gedrgeshader algorithm to
direct sampled surface points into the respective sampliris.

For single pass OFB construction on the GPU our method esilthe geometry
shader and th&-buffer introduced by Myers and Bavoil [118]. Rbuffer is a ren-
der target, i.e., a texture map that can keep the contrifmitod up tok fragments per
pixel instead of just one as in single-sample rendering. Wieadering to a so-called
multisampled texture target with multisampled antiahgsbeing disabled, an incom-
ing fragment is spread to &l multisamples of the respective destination pixel in the
k-buffer. Since for each multisample a separate stencil nsatdsted, stencil routing
as proposed by Purcell et al. [132] can be used to direct ammimg fragment to a
specific multisample. Stencil routing works by initialigithe stencil mask of theth
multisample with + 1 (value 1 is used to detect an overflow), and by letting a fexgm
pass the stencil test if the stencil mask is equal to 2. Thecdtiail and pass operations
are set to “decrementing”, such that a stencil mask of 2 isecutively obtained at all
multisamples.
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Via stencil routing up tdk (=8 on our target graphics hardware) surface points seen
under a pixel can be rendered simultaneously into one téahaultisampled render
target. Since multiple render targets can be used and beeaud bit stencil buffer is
supported, surfaces with a depth complexity of up to 254 @asampled in a single
rendering pass. An OFB finally consists of orexture2DArraycontaining three stacks
of multisampled texture slices, where each slice stordamties of surface samples to
the respective sampling planes. By using this approachFBhdan be built at extreme
resolution within a fraction of a second for surfaces of oeable depth complexity.

To efficiently sample the surface along three mutually aytmal directions, we
exploit the capability of the geometry shader to direct ispoit to multiple render
pipelines, each having its own depth, stencil and multiplercbuffers. Every surface
triangle is projected and rasterized only into the most eppate sampling grid de-
pending on its normal. Assuming the surface being repredeat a triangle mesh with
depth complexitiesly, dy, d, along thex,y, z-coordinate axes, the following GPU setup
is used to construct the OFB:

* Pipeline Setup: T = [d—kxl + [%1 + [d—lﬂ render pipelines are bound to the output
merger stage. To each of these pipelikgésnes multisampled render targets are
attached. Contiguous sets b%}, [d—ky}, and (d—kﬂ pipelines are used to perform
the sampling along the-, y-, andz-direction, respectively. In each set, all sub-
samples in thé%} (i=xVyVz) multisampled 2D texture slices residing on the
same pixel raster position get assigned a unique (incrggsiencil value> 1.

» Geometry Shader Setup:For every triangle, its face normal is computed and the
triangle is directed into those pipelines that belong tostm@pling direction with
the smallest angle to the normal. Before triangles are semfiipeline, they are
transformed according to the respective sampling diractie. they are projected
into a 2D sampling plane aligned perpendicular to this dioec

» Pixel Shader Setup: The pixel shader outputs the fragments’ depth as well as
additionally queried attributes (e.g. the velocity fieldja the multisampled ren-
der targets. With stencil testing activated and configueedescribed above, the
output merger then stores the attributes in the next uneedgub-sample of the
output buffers and decrements the stencil bits of all subpdes in the respective
pixel.

To store surface point positions and corresponding ateg(e.g. vector field sam-
ples), multiple OFBs are used. In DirectX 10, up to 8 buffeeaeh with 4 32bit chan-
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nels at most—can be bound as output targets to a pixel shaw#sling to capture up
to 128 bytes of surface attribute data at once. Each OFBtialined at startup or when
the surface geometry is changed. The position OFB stores/éy sample its distance
to the corresponding sampling plane. It should finally beeddhat the OFB samples
can be sorted with respect to their distance to the samplarged118]. Especially for

objects having large depth complexity this can signifigaimiprove the complexity of

the OFB read-operation, from linear to logarithmic in thefgce’s depth complexity.

8.3.2 OFB Point Location

The OFB interface provides the following method for locgten surface point in the
data structure. The method takes as input a 3D positionz) in normalized object
coordinates and tests whether a corresponding sampleredsito the OFB. To find
this sample, the point coordinate is projected into thegl@&B sampling planes. This
generates for the respective sampling grids a 2D integedowaie(u, v) and a distance
d of the point to the sampling plane. If the sampling directi@me aligned with the
three coordinate axes the projection reduces to a compa@eéattion, i.e., in the z-
direction(u,v) = (|x- S/, |y-S|) andd = z, whereSis the OFB grid size. The distance
d is now compared to all distances stored at index), and of all these values the
indexg of the slice containing the distance closestl within the intervalld —s,d + g

is kept (withs being the cell size in the sampling grid). If the point is asated with a
surface normal the search can be restricted to the sampithgvgose sampling plane
is most perpendicular to the respective normal. The metmadlyfireturns the index
tuplel = (u,v,g), which can then be used to read a velocity field vector fronOR8
or to write an attribute into it.

8.3.3 OFB Rendering

Enhancing a surface with attributes (like color) stored m@FB during rendering
means to interpret the OFB as a texture consisting of selayrais and fetching for
every rendered surface point the color from this texturds realized by executing
for every rendered surface point an OFB query as describedeabl he color at this
sample is then read and used to modulate the point’s appeardio support smooth
color variations, the OFB interface provides distanceghtgd color interpolation. If
a surface is rendered at a resolution that is higher thanegwution of the OFB, for
every surface point an OFB query is issued. In contrast torfgnthe closest sample,
however, all samples within a radius ¢f times the size of a cell in the OFB grid are
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determined under all three projections. In each projeatieralso inspect the distance
values in all grid cells adjacent to the cell,v). The color of a surface point is then
computed from these samples by means of inverse distang@tive.

By using this interpolation scheme we can also generate &@@ipmap hierarchy
to resolve minification issues. Therefore, multiple OFBs\adr decreasing resolution
are constructed by subsequently reducing the resolutidimeo$ampling grids about a
factor of 2 in every dimension. Starting with the initial OBBthe finest resolution, the
color of a sample at subsequent levels is computed by disthased interpolation, with
the color samples being fetched from the next finer levelhis way a stack of OFBs
is generated, from which the appropriate resolution carhlbsen during rendering.

8.4 Particle Tracing on Surfaces

To trace a particle on the surface, we compute its trajecocprding to the ordinary
differential equation given in (2.1). In principle, it isedr how to perform particle
tracing on polygonal surfaces consisting of triangles [[®&gl, 120, 79]. Particles are
traced from edge to edge by projecting the vector field onéottlangle plane and
performing the particle integration in this plane. Althdwis approach can be realized
in a straightforward way on the CPU, it imposes severe litiites on the number of
particles that can be moved at interactive rates. Spedyficalr tests have shown that
not more than 10K particles per second can be integrated enstep on a triangle
surface of reasonable resolution. In contrast, as we withsim the remainder of this
chapter, the proposed particle tracing algorithm can traitleons of particles in high-
resolution OFBs.

The GPU implementation of particle tracing on a triangle mes the other hand,
yields a highly non-uniform load in the parallel shader sigerforming the particle
integration. While for a given (global) integration stepessome units have to integrate
over many triangles in one integration step, only one tiliamgight be considered by
other units. On recent GPUSs, this results in executionssgad, thus, in a significant
loss of performance. This limitation can be avoided by trg@articles on the sample-
based surface representation stored in an OFB. Since the€gf&sents the surface at
a nearly uniform resolution on a regular sampling grid, gverit performs a similar
amount of memory accesses and numerical operations.

Particle trajectories along the OFB surface represemtatie calculated on the basis
of the classical Euler integration scheme with a fixed stepAs. In each advection
step, the OFB sample closest to the current particle posgitocated as described in
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Section 8.3.2. To prevent a particle from leaving the sathplaface representation, its
position is set to the position of this sample. The index o gample is used to read
the respective vector field sample, along which the partgken moved to its new
position. A step along the surface is performed by first mtipg the current vector
sample into the three sampling planes. This gives for eaaheph 2D vectoft,,ty)

in this plane. By using these vectors and the projectionfi®fparticle position into
the respective grids, we can now determine the grid cell@ah@rid into which the
particle might be entering when making a step that is equ#idgaell size. In all of
these cells we determine the sample closest to the newlpgrtsition, and we set the
new particle position to the position of this sample. OVeralen the index tuplé of

a particlex in the OFB, in every iteration the following steps are paried:

Vector lookup: The vector sample is read from the indekin the OFB.

Projection: v is projected into the three sampling grids.

« Integration: Discrete cell traversal in the sampling grids along thequted vec-
tor sample and closest point location in the traversed gadlsls the indexX’ of
the OFB sample closest 10

Update: | is set tol’ and the new particle position is determined by an inverse
transformation of (the grid coordinates of and the distaradee stored atl)’ into
object-space coordinates.

Let us note that it is clear that the accuracy of the proposeticte tracing method
is limited due to the sample-based surface representdisimstused. Since the particle
positions are restricted to the OFB samples, they will inegahnot accurately follow
the characteristic lines in a given vector field. Howeveg tluthe extreme OFB res-
olution that can be used interactively, the trajectoriemnstructed by means of our
method match those extracted with a triangle-based appataugh fidelity. Further-
more, the described setup assumed a normalized velociyditethe surface and, thus,
performed only one (uniform) integration step per advectipdate. If no normalized
velocity field is used, different particles require varyiagpounts of integration steps
(as the step size is restricted to the size of the OFB samglidgell s). However due
to the uniform sampling approach, the point location rezpiless effort and exhibits
very good spatial access locality. Furthermore, the difiee in performed integration
steps varies by far less than compared to unstructured grids
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8.5 Geometry-based Surface Flow Visualization

By adapting the particle tracing techniques introducedhagier 4 accordingly, a mul-
titude of different rendering modalities can be applied iguglize flow on surfaces.
Some exemplary results are shown in Figure 8.2.

Figure 8.2 Geometry-based surface flow visualization: Image (a) demiiferent rendering
modalities for particle trajectories. From top to bottomire@mlines, single points, sprites,
oriented sprites. In (b) a surface curvature field is viaealiby uniformly distributed, oriented
particle sprites. Image (c) depicts surface flow in a syithetlocity vector field.

8.5.1 OFB Surface Coloring

Next to the OFBs storing the resampled surface positiontrarp surface attributes
(besides the velocity vector field) can be stored in the datectsire. By introducing
an additional color OFB, we can encode the geometry-based/ikualization directly
in the OFB. While patrticles travel along the surface, thaywate attributes back into
the OFB, and we exploit this fact to realize advanced (or naotistic) visualization
modalities, as well as to solve problems inherent to surflmee visualization on the
basis of (discretized) geometric primitives.
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Spherical Particles

Instead of writing a single value into (one pixel at) the exgpwe OFB position at index
I, it has proven worthwhile to transfer color through footpsiof enlarged extent. In
the most simple case, a spherical volume centered at alparposition is used to
transfer color to the OFB. In this case, OFB samples clos#nagarticle positiorx
than a selected sphere radiuget inked by a coloc, (specified on a per-particle basis).
The color of a sample at positignis updated according to

Cp = lerp(Cp, &, 9), (8.1)

where the spherical brush shagpevaluates to

0, if |[x—p| >r
g— | | (8.2)
f([x—pl]), else

Heref is a user-defined falloff function which is used to simulateosth color fading
with increasing distance to the center point.

It is clear that when a particle uses a volumetric brush tosfier color to the OFB,
not every sample in the data structure should be testeddiusion in the brush volume.
Thus, a method for reducing the number of potential candgiat be tested is required.
Therefore, we exploit the fact that the OFB structure walt byisampling the surface
along three mutually orthogonal directions. As a conseqgegorf all samples only those
have to be tested whose projections along these directadinatb the regions covered
by the projected bounding box of the spherical brush volumé use a geometry
shader to efficiently determine all potential candidatespaeticle, and then perform
the candidate tests in parallel in a pixel shader kernel.

Each patrticle is sent as single vertex to the GPU and passbkd geometry shader.
The geometry shader spawns three quadrilaterals from #riex; each of which is
aligned to one of the three sampling directions and rendiatedall slices of the cor-
responding OFB sampling grids. The size of these quadrdbitechosen according to
the current extent of the spherical color footprint. Forrg\generated fragment, a pixel
shader queries the corresponding sample in the OFB sangpithglice and computes
the distance of this sample to the brush center. Whenevemalsas closer to the
center than the brush extent, the shader evaluates eq&atiand writes the color into
the OFB. This allows us to apply advanced rendering tectasigwen while thousands
of particles move along the surface in parallel and transtéor to the OFB surface
representation.
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By resetting the color OFB in every frame, the obtained tssuadrrespond to spher-
ical particle sprites without the problem of an obstructidm@ sprite’s quadrilateral by
the surface geometry. This issue can otherwise only bedblyaligning sprite geome-
try along the underlying surface. By chaining multiple paes together we can realize
advanced shapes which would be difficult to realize othexwlsg., in Figure 8.3 (a) at
randomly selected sample points along the surface a seguémparticles was seeded
consecutively. The later a particle was released, the smialthe assigned extent of its
color footprint. By moving all particles along the vectoddielirection, the impression
of moving particles with a tail is simulated.

7

(d)

Figure 8.3 Attribute advection in the OFB. Image (a) depicts advancadigie shapes real-
ized by chains of particles released consecutively frord@ansample positions. In (b) particles
travel along the surface and transfer color at a fixed tentfi@auency into the OFB. In im-
age (c) surface normals are modulated along stream linectaajes. In (d), surface flow is
visualized by color advection along the velocity vectordieh a transparent object.

By retaining the change in OFB color over time, characterisajectories can be
visualized efficiently through color advection along th&face. Stream lines in a vector
field designed on a polygonal surface are shown in Figurdg.8{ this example, 10K
particles were simultaneously traced on the surface, eidtiem spreading a spherical
color footprint to the surface. Despite the large amountofiples used, particle advec-
tion and coloring was performed at 80 fps on an NVIDIA 8800GGRU. Let us note
that the storage of intermediate positions along the trajgen additional resources—
as described in Section 4.7—becomes superfluous, as thactdrastic lines are di-
rectly encoded in the color OFB. Extending color transfeiopgcity or adding addi-
tional surface attributes (such as normal perturbatioraas it possible to realize even
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more artistic flow visualization. E.g., in Figure 8.3 (d) #haface flow was visualized
by revealing an initially transparent surface through caldvection along the velocity
vector field, and in 8.3 (c) surface normals were perturbedgirajectories in a surface
flow field. Let us note that these examples do not contributelietter understanding
of the underlying flow phenomena. These techniques werdase in the course of
this dissertation with respect to particle-based creaif@mtistic content, and published
in [26].

Surface-aligned Point Sprites

As a spherical volume brush model considers the Euclidestarte to the particle
position, surface points having a geodesic distance toghtecthat is larger thanmay
also be colored. Furthermore, shapes of more complex [gagtygphs (such as oriented
virtual geometry like arrows) can hardly be realized by syua¢ particle brushes. To
overcome these limitations, we will introduce an altenetipproach in the following.

For flow on surfaces, the proxy geometry of an (oriented) tpgpmite should ide-
ally be modeled as a deformable sheet that wraps around tfecesu We call this
approach a surface sprite, and we model it by a polygonal ro@s$isting of surface
samples connected via edges. Such a mesh is constructetthehblp of particle trac-
ing along the surface. To avoid confusion, in the following will call particles that
are advected along the surface flow as part of a geometrydhbse representation
flow-particles while particles used to construct the surface aligned mekibe de-
notedmesh-particlesMapping the mesh onto a surface is done by tracing out a set of
mesh-particlesrom aflow-particleposition, which essentially corresponds to finding
a local parametrization of the surface area surroundirsgabint.

Our method is similar in spirit to the patchinos and the exgial maps, which
were introduced for decal painting by Pedersen [124] ananittret al. [149], respec-
tively. The patchinos, however, require a global pararpation of the base mesh. In
contrast to exponential maps, on the other hand, we tracdegas on the surface—or
more precisely on a sampled version of the surface—instedeveloping the surface
to the tangent plane around a center point. Thus, the locahpztrization we construct
is completely independent of the underlying mesh resatutio

To align a point sprite on the surface, we first construct allooordinate frame on
the basis of the flow field. It is built from the velocity vectar the respective flow-
particle position (the tangem), the surface normat, and the vector perpendicular
to both (the bi-normab = v xn). Constructing a local parametrization now starts by
seeding two mesh-particles at the flow-particle positiod &acing them along the
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surface. One of them is traced in the direction of the tangector and the other one is
traced in the opposite direction. Since along these trdeesangent varies according
to the change in the surface normal (see Figure 8.4), it iectad in every stepas

Vi = ||nj — (N - bj_1)bi_1|| xbj_1.

In this way the trace wraps around the surface even in reguithshigh curvature.

Figure 8.4 Left: The direction vectov is rotated bya degrees about the bi-normal, wherés
the angle between the current normahnd the normat;_1 at the previous mesh-particle po-
sition in the plane perpendicular to the bi-normal. Middkirface-aligned point sprite meshes
rendered as wire-frame. Here, rather large sprites wem toséemonstrate the folding of the
brush meshes along the surface. Right: The advantagesfateataiigned sprites (green) to
screen-aligned oriented point sprites (red) are shown.afisbe seen, the (partial) obstruction
of point sprites due to surface intersection can be solved.

After n steps, a polyline consisting 02 - n) line segments is generated. From ev-
ery mesh-particle on this line two new traces are started;ioto the direction of the
bi-normal and another one into the opposite direction. Afitdraces a 2D grid con-
sisting of (2-n+1) - (2-m+ 1) particles has been laid out on the surface around the
center point. We employ the geometry shader in combinatibm tive stream output
stage to construct the surface sprite meshes. During ragdeadjacent particles in the
grid are finally connected with the help of one static indeKdsuused by all surface
sprites) to form a triangle mesh, yielding the local paraipation used to map colors
of a surface sprite to the object. The triangle mesh can hereerapped by specifying
texture coordinates at the mesh-particles used to constr@icnesh. The texture color
can be transferred to the OFB by rendering every mesh teangp the sampling grid
slices corresponding to the sampling plane with the sntadliesa foreshortening, and
writing the color of every fragment into the OFB as describe8ection 8.3.2. Alter-
natively, the surfaces-aligned sprites can be renderedttirinto the frame buffer. In
Figure 8.4 (right), the advantage of surface-aligned epiit contrast to screen aligned
point sprites is shown.
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8.6 Texture-based Surface Flow Visualization

Line integral convolution [28, 161] is the most popular teetbased flow visualiza-
tion technique used to create a dense representation éngwiyectional information
about the underlying velocity vector field. This technigs®ased on particle trajecto-
ries (namely path lines), yet, instead of extracting sepdrajectories and visualizing
them through geometric primitives, LIC works by smearingagadom noise intensity
distribution along the characteristic lines. This resuita high intensity correlation
along characteristic lines and high noise frequenciesguetigular to each characteris-
tic line. LIC has been used in a number of approaches to itieedy visualize vector
fields given on a surface [175, 98, 183]. These approacheseves, differ signifi-
cantly from ours in that they operate on the visible surfagmts in image-space. If
these techniques are used to visualize flow fields living amrfase, they result in arti-
facts as they cannot determine the points along a trajettitatyare not visible under the
current view. If, on the other hand, particle tracing on til@windependent OFB sur-
face representation is performed, this problem can be d@wd, thus, frame-to-frame
coherence in animated visualizations is assured.

Imagine a random noise intensity distribution over the wHtdw domain, i.e. at
each point on a given object for surface flow or at each sangdgipn in the flow do-
main for clip surfaces in 3D flow. LIC now determines the irgiépnat a every sample
Xp in space and tim&) by stepping along the characteristic line—in both diratsie-
passing through that point and accumulating intensityesimeighted by a filter kernel.
Mathematically, this can be posed as the convolution of ardainctionC and a con-
volution kernelk along the characteristic lines:

JELCX(t,to, X0)) - K(t) dit

Color = T
JoLk(t)dt

) (8.3)

where[—L,L] defines the support of the convolution kernel, &g is the filter ker-
nel. Generally, a symmetric filter, e.g. box or tent funcfisnused. In our setting, a
line integral convolution is computed at every OFB samplé @@ output values are
written back into the OFB. LIC calculation is performed i thixel shader stage, and
the necessary samples are created by rendering the suréstamthe same way as for
OFB construction (see Section 8.3.1). The convolutiones ttealized by spawning at
every sample two particles, of which one is moved for somtadce along its trajec-
tory and the other one moves the same distance in reversedVifhile moving along
the surface, the particles read values from the randomsityécolor distribution at the
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current position and weight this color with the kernel fuant Combining the accu-
mulated color values from both particles yields the out@ti®. Let us note that if LIC
is extracted in 3D and only its computation and subsequesntalization is restricted
to a clip surface, then particle tracing is performed in tBeudisteady flow field (and
therefore no velocity vector field OFB is needed). In Figuge(@—c) LIC for synthetic
velocity fields living on a surface is shown, and Figure 8)d@bicts LIC in a 3D flow
field restricted to clip geometry.

Figure 8.5. Images (a—c) depict LIC extracted from synthetic velocigds defined on a sur-
face. In (a) a comparison between the application of a ranideensity distribution (left) to a
color distribution (right) during LIC extraction is showfh) Surface sprites reveal additional in-
formation about the velocity direction and magnitude. Ihgiéented point sprites of elongated
cylindrical shape were rendered on top of the surface. Infegdepicts 3D LIC in unsteady
flow restricted to a 2D clip surface.
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To create the texture based flow representation in Figurde§.an OFB with a
sampling grid resolution ofK x 1K, containing more than three million surface sam-
ples was employed. During LIC computation, at each samplat2gration steps were
performed to collect intensity values along the trajecteviiereas the whole visual-
ization took less than 270 ms including LIC extraction, cdfansfer to the OFB and
subsequent rendering. Thus, the performance even alloasitoate surface LIC by
computing the convolution in every frame along stream linassteady flow.

8.7 Summary

In this chapter we have presented particle-based techsfquéhe visualization of flow
on surfaces. These techniques employ a new sample-basestatture to trace even
millions of particles along arbitrary surfaces at interaetrates. We have shown how
previously introduced geometry-based approaches cactlgitee employed by adapt-
ing the underlying particle integration algorithm to thengde-based data structure.
Furthermore, we have shown how the OFB can be employed te solmmon render-
ing issues inherent to geometry-based surface flow visatadiz techniques. Moreover,
we have used the OFB to interactively extract a view-inddpah texture-based flow
representation on the basis of line integral convolution.

Let us note that the proposed methods may deliver erronesu$is because of the
sample-based nature of our data structure. However, duetextreme OFB resam-
pling resolution that can be used, we could not assess afgyatite in the resulting
renderings in comparison to results obtained by partieleinig on a triangular surface
representation. Yet, the proposed techniques run at otieearates and can provide
rapid visual feedback. Thus, they allow for an effectiveuaisexploration of surface
flow or to restrict the visualization of 3D unsteady flow toigdrily shaped clip sur-
faces.

Finally, let us note that the approaches presented in tlapteh were developed
as part of a new surface coloring technique and, thus, ntdilts of the publication
were covered. For interested readers, we refer to [26], eveeen more surface color-
ing techniques are presented and a detailed descriptioarmus filtering approaches
improving the quality of renderings obtained from the OFgiisen.



Chapter 9

Particle-based Volume Editing

So far, we have discussed GPU-based particle techniqués icontext of interactive
flow visualization. In addition, particle-based technigoé&en play a fundamental role
in other scientific visualization or computer graphicstedareas. In the following we
will present an example how GPU accelerated particle tggeiar the massive parallel
processing power of recent GPUs in general—can be employéteifield of scien-
tific volume rendering to augment data sets in real-timehinr{an) medicine, volume
rendering has become an integral technique for diagngdtinslamental research or
even the education of prospective physicians. Especialbeer group consultation or
round table discussions, there is a dire need for intuitietaphors to communicate
insight gained from such data sets. In this chapter, we addhés issue by introducing
basic methodology for interactive GPU-based volume egldimd enhancement. Here,
we aim at developing a framework exhibiting similar funaiadity to current image
processing tools to support scientists to communicaterfgedand to ease process-
ing work inherent to such data (like classification and segaten). We present fast
techniques to modify the appearance and structure of vahiorsealar fields given on
cartesian grids. Similar to 2D circular brushes as usedriase painting we present 3D
spherical brushes for intuitive coloring of particulastiures in such fields. This paint
metaphor is extended to allow the user to change the dalfaésd the use of this func-
tionality for interactive structure isolation, hole filgnand artefact removal is demon-
strated. Building on previous work in the field, we introdinggh-resolution selection
volumes—which can be seen as a resolution-based focusxtanetaphor—and we
utilize such volumes for interactive volume editing at sudxel accuracy. We intro-
duce an approach based on particle tracing to place intarmadtations on extracted
iso-surfaces, and we extend this techniques to realizacsidligned cutaway-views
that can effectively reveal internal surface structures.

169
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9.1 Introduction and Related Work

Interactive visual exploration of volumetric scalar fieldgequired in many different
areas ranging from medicine and engineering to physics aidgy. To support the
exploration task, volume rendering techniques have beesialged to a high degree of
sophistication over the last decade. Today, direct volendering of data sets as large
as 5132 and beyond is possible at fully interactive rates on comtyattisktop systems,
and especially due to the rapid advancements in graphicsvaae technology, these
capabilities are continually increasing.

Volume rendering is a powerful means for visualizing 3D acéields, and espe-
cially if used in combination with semi-automatic transfienctions and different ren-
dering styles does it allow for an effective visual commatiien of complex structures
in such fields and relationships between them. To improvariadysis process in prac-
tical applications, however, it is often desired to not orépnder the data but also to
interactively edit this data. Examples thereof includertfaual classification and seg-
mentation of structures, the removal of structures to uecosgions of interest and,
thus, to isolate important parts of the data, or the coloahpgarts to emphasize rele-
vant structures and to give extra information about thenchSaechanisms can help to
effectively reveal and communicate the relevant infororatn 3D scalar fields and to
create images that are easy to understand even by an urenqestiuser.

Today, the core functionality that is required to suppoet #forementioned mech-
anisms is available on recent GPUs. Specifically, it is noaspgme to directly write
into 3D textures on the GPU, and to efficiently apply localragiens on the data stored
in these textures, such as filtering or gradient computafidius, the time is ripe for
opening a new area in volume visualization, which is conegmith the development
of techniques for interactive volume editing. One of theeegsh challenges here is to
develop novel algorithms that are tailored to the specifit/@ctionality, and which
can directly be incorporated into interactive volume remtgtools to enable immedi-
ate visual feedback.

The approaches presented in the following were motivated bymber of differ-
entvolume illustration techniquebat have been proposed over the last decade. Many
of these techniques have been integrated into GPU-basadealendering systems
to achieve interactive user-control. Interrante et al, [6G] used curvature-directed
strokes and dense sets of integral curves to convey sutfiapesA general volume il-
lustration rendering pipeline to enhance important fezg@and regions was proposed by
Ebert and Rheingans [38]. Viola et al. [180] suggested irngmme driven volume ren-
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dering to highlight interesting structures in volume daéadx on user-selected object
importance. Different rendering styles including poimpgting [109, 93], temporal do-
main enhancement [110], 2D texture synthesis on crosgesasaf a volumetric model
[121], and volumetric halos to improve depth perception Bf Sructures [18] have
been used to enhance the expressiveness of volume visimalzaA new approach
that uses the shape of the object to be illustrated to congroendering styles, and
which also allows to adapt the objects shape to a given cleleton, was presented
in [30].

Especially if used in combination with focus+context teigues to combine mul-
tiple aspects of the data into a single visual event [179,163,91, 17], illustrative
volume rendering has been shown to be very effective in comnrating the essential
information in complex volumetric data sets. An interagtsystem providing a tool-
box of automatic illustration methods as well as focus+erninechanisms to enable
selective exploration of volume data was presented by Breickt al. [19]. In particu-
lar, they introduced external, screen-space aligned ations to add extra information
about particular structures and selection volumes to Ilpecabdulate the appearance
of a volume. Our work builds on these mechanisms and extémas towards a more
general use for volume illustration.

Figure 9.1 A volume editing session. From left to right: an iso-surfatehe initial data set,
structures are removed, surface color is applied, anoogtire added. The rightmost image is
taken from the classical anatomy book “Gray’s Anatomy” bynieGray [53] for comparison.

9.2 Contribution

The primary focus of this chapter is the development of fast ffexible methods for
user-guided volume editing, such as coloring, erasingjmassegmentation, and an-
notation. Our goal is to realize a volume processing tooil#tihg similar function-
ality to current image processing tools, which allow therusanteractively perform
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a multitude of image adjustments and enhancements. Tovachiteractivity, all of
the algorithms proposed in the following run entirely on @ReU, and they have been
integrated into a GPU-based volume ray-caster to provigeddiate visual feedback.
We introduce some novel ways to leverage advanced GPU @unattly like geome-
try shaders and the possibility to directly render into 3ktuees, and we effectively
exploit computational and bandwidth capacities on recd?iV& Therefore, all of the
editing operations demonstrated throughout this chapssee wxecuted at frame rates
of 50 fps and higher. Thus, a framework for visibility-guttiateractive volume editing
is presented.

Some of the editing techniques we introduce can effectibelyused for volume
illustration, where the basic goal is to enhance the pei@ejolf structures in the data
and the relationships between them by emphasizing impdeatures. In particular,
we extend the work on direct volume illustration by Bruckmed Groller [19], in
that we provide a technique based on particle-tracing inaalignt field to annotate
structures in a volume data set.

We make the following specific contributions:

* We present an efficient GPU realization of the volume pagitnhethod proposed
by Bruckner and Groller [19], and we demonstrate the uséigf method for
interactive volume coloring as well as structure elimioatand enhancement.
This method was used in Figures 9.1 to color an iso-surfacerase parts of it
and to add additional structures to it.

* We extend the idea of selection volumes and present a voaditieg technique
that is independent of the volume resolution. It edits orghfiesolution selection
volume and can, therefore, be used to apply editing effé&slavoxel accuracy.
Figure 9.4 (c) demonstrates editing effects on an iso-saifathe initial volume
and a high-resolution selection volume.

* We introducesurface particleso compute a local iso-surface parametrization.
By using such particles, 2D textures can be mapped onto asuidace. This
allows to generate internal annotations that are alignéd an iso-surface, and
which can effectively be used to give additional informatatout areal structures
visible in the current view. Figure 9.7 depicts two classifio-surfaces which
are enhanced by surface-aligned annotations.

 Building on the concept of surface particles, we presenfasa-aligned “see-
through” textures to generate windowed cutaways on istases in 3D scalar
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fields. By using such textures, occlusions can effectivelydduced and impor-
tantinternal parts of a volume can be exposed. This methediged in Figure 9.8
to interactively generate cutaway views in the respectata dets.

The remainder of this chapter is organized as follows. Oappsed volume editing
technique and its efficient realization on recent GPUs isgmted in Section 9.3. In
Section 9.4 we present high-resolution selection volumesdgmonstrate their use for
sub-voxel accurate volume editing. Section 9.5 introdyszesicle tracing along iso-
surfaces with respect to a user defined force and the grafigdshiof the underlying
scalar volume to create structure-aligned textures fanmel augmentation and anno-
tation. We conclude this chapter with a discussion of theathges and limitations of
our work.

9.3 Volume Editing

The specification of appearance properties of volume daigisally performed via
color transfer functions. Based on the seminal work by Kenahnn and Durkin [76]
on the design of feature-specific transfer functions thatlwa derived automatically
from a data classification using first- and higher-ordeistias, such approaches have
now been developed to a high degree of sophistication. Nesless, automated clas-
sification of volumes remains a challenging task, and seruoraatic techniques which
allow the user to interactively guide the classificationgess often result in a more ac-
curate assignment of appearance properties. Exampleotheclude the user-guided
selection of seed voxels to initialize automated regiamaging [87] or more sophisti-
cated segmentation algorithms like the random walker 2] dual-domain approach
of Kniss et al. [82, 81], or the machine-learning approacfibgng et al. [168], where
a transfer function is iteratively refined from user-defisedmentations in 2D volume
slices.

To support semi-automatic classification and segmentati@D volume data we
now describe an interactive technique for voxel coloringisftechnique works in the
3D domain, and it thus allows the user to consider the 3D shatee structures to be
colored as well as the spatial relationships between thegur&9.2 (c) demonstrates
the application of this approach for the classification ouanan skull. The proposed
technique has been integrated into a GPU-based volumeasigrcenabling the user to
obtain immediate visual feedback about the result of theed®perations. Later in the
text we show how to overcome the restriction of volume colgtio the initial volume
resolution by exploiting selection volumes for coloringsab-voxel accuracy.
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9.3.1 3D Texture Painting

Initially, a 3D scalar field of sizély, Ty, T, is loaded into a 3D texture—the source
texture—on the GPU. Scalar values are mapped to color ancitppéa a selected
transfer function. If the user only wants to paint on an isdfieee in the scalar field, a
one component 3D texture is used instead of a RGBA texturéaridg always works
on an additional 3D texture—the color texture—on the GPt, which the user paints
with the selected color. In iso-surface coloring this tegfig initialized with a constant
material color, otherwise it is initialized with the sour@@or values. Working on such
a copy allows for a special paint mode in which the paint ojpemaesets the color by
copying respective values from the source texture. In isase painting, colors are
reset by zeroing.

The 3D color texture is rendered using texture-based volayeasting [92], i.e.,
by sampling the texture along the rays of sight and by blendoior and opacity con-
tributions according to the selected blend equation. Irsisdace rendering, sampling
is performed in the scalar source texture. Once the is@sairik hit along a ray, the
surface normal at this position is fetched from a pre-comggfradient volume and a
local lighting model is evaluated. In this model, the colbthee sample position in the
color texture is used as material color.

Upon initialization, the user starts painting the volumehwa virtual brush. To
position the brush in 3D space we either use a simple mousedbaterface or a six
degree-of-freedom input device, i.e., a PHANToM DesktoiBe Premium 1 from
Sensable Technologies. This also allows us to give hapsididack to the user, e.g.,
while painting on an iso-surface we use the force feedbaridioate whether the brush
touches the surface. To detect a contact between a surfddeehrush we simply test
the brush center point for being in close proximity to theate, i.e., by sampling the
volume at this point and testing whether the value is claséne iso-value than a given
tolerance. If this is the case, force feedback along thesevgradient direction at this
point is issued.

In our work we use a spherical volume brush for painting, Wwimeans that voxels
closer to the brush center point than the selected sphengsrace painted with the
current paint color. To manipulate the color of a voxel atipas g, indicated by
Colory, we use the paint equation proposed in [159, 59]:

Colory = lerp(Color, OP Colorg, Colorg, 9), (9.1)

The brush shapeg is set such that a spherical color falloff with increasingtalnce
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to the brush center point is simulated:

0, if [q—p| >r
g= | | (9.2)

f(lg—p|) else

Here,OP is one of a number of operations like REPLACE, ADD, or BLEND)igh
can be selected to modulate the initial volume cgdas the position of the center point,
Color, is the brush color, andis the support of a user-defined falloff functibnwhich
is used to simulate smooth color fading.

When using a volume brush to color a volume data set, the odlevery voxel
contained in the brush volume has to be updated accordirngteeiected color modu-
lation function. In principle, the color update can be parfed on the CPU, requiring
the modulated texture to be reloaded onto the GPU. Evensfpossible to only re-
place those parts of the GPU texture that were affected bygdluging operation, this
strategy still results in significant bandwidth requireitsattue to frequent data uploads
to the GPU in the course of painting. To overcome this linotatwe propose a novel
technigue—similar to the approach presented in Sectiori-8-that runs entirely on
the GPU and minimizes CPU-GPU data transfer.

| GPU

Zs+Nz-1

(@) X (b)

Figure 9.2 VWolume editing with a spherical volume brush. Image (a) dpa spherical brush
(red) positioned in the volume domain, and (b) illustratess pipeline setup for painting into a
3D texture on the GPU. A single vertex is issued by the apiidiogorogram, and it is duplicated
by the input assembler. In the geometry shader, every pwiampplified to one quadrilateral,
which in turn is sent to the rasterizer. The rasterizer ubes s to route generated fragments
into corresponding 3D texture slices. In the pixel shaderfthgments are colored with respect
to the selected modulation function. In (c) an iso-surfdessified with our method is shown.
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9.3.2 GPU Implementation

To efficiently update 3D texture elements that are affecied boloring operation, we
exploit novel features of current Direct3D 10 class graphiardware. Specifically, we
use the geometry shader to create geometry on the GPU, weynmgw functionality
to update slices of a 3D texture directly on the GPU, and weetinstanced render
calls to reduce the number of calls that have to be issuedtinerapplication program.
In Figure 9.2 an overview of the pipeline setup for rendenmg a 3D texture is shown.

Before the painting process is started, the user selectptwfic brush parameters
including the cutoff radius used in Equation 9.2. From this radius the extend of the
brush bounding box in local texture coordinate space is cetp yielding the size
Ny X Ny x Nz of the sub-volume that is affected by the coloring operatitimese values
are computed on the CPU and sent to the GPU as constant slaaidétes. To compute
the position of the brush center pop in local texture coordinates in the range [0,1],
we either use the coordinate returned by the 3D input dewice) iso-surface painting,
it can also be determined from the z-buffer depth value inpitiel under the mouse
cursor.

The application program then renders into a viewport of §iz&,. A single vertex—
with a coordinate equal tp. scaled byTy, Ty, T—is sent to the GPU, where it is ren-
dered as instanced geometry with instance cognthis causes the GPU to generate a
stream ofn, vertices, all of which carry the positignand aninstance IDin the range
[0,n,— 1]. These vertices are passed through the vertex shader tedheetry shader,
which, for each incoming vertex, spawns a quadrilateratered atpy, py and cover-
ing ny x ny pixels. The ID of the 3D texture slice into which this quaalidral is to be
rendered is computed as

SID:pZ—%+IID, 9.3)

wherellD is the instance ID of every vertex. This slice ID is used byrtsterizer to
direct the fragment into the corresponding z-slice of theé@fure. In the pixel shader,
for every fragment its distance to the brush center is coegpand Equations 9.1 and
9.2 are evaluated. Updated color values are then writtentive respective position
of the 3D color texture slice, and the updated texture canatiately be used in the
rendering pass.

9.3.3 Structure Removal and Enhancement

The method proposed in the previous section can efficierdlyided to paint color
into a volume. Moreover, it provides a means to interacyiveslase parts from the
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volume and to add new structures to it. Erasing is performegainting voxels with
zero opacity, thus making structures completely transpaf€ven though the erasing
operation is conceptually simple, it does provide a verygdu means to interactively
create cutaway views. In particular it can be used whenttoadil volume cutaway
techniques have difficulties, e.g., when occluded and daafustructures are close
together and have similar material properties. Figure @) 3liows such a case and a
cutaway view that was generated by our method. Without usitigta segmentation or
a highly detailed clip geometry that can accurately sepattictures from each other,
in such scenarios the automated generation of a cutawayremains a challenging
task.

Modification of structure is realized by a slight change o ttolor modulation
function. Instead of replacing or modulating the colorsetion the 3D color texture,
a density offset is painted into the scalar source volume.a@gying (or subtracting)
offsets of different strength, size and shape, a numberibhgeffects can be achieved
(see Figures 9.3 (a—c)).

When erasing or changing density values, surface normaéstbde updated if iso-
surface are rendered. This is accomplished by a) findingakle in the pre-computed
normal map that are contained in the brush volume, b) re-ctimgpthe normals using
central differences in the source volume, and c) writingaipd normals into the normal
map. Steps a) and c) are performed in exactly the same waysashb for volume
coloring, with the only difference that the brush volume twalse enlarged by one voxel
in each dimension to capture all affected voxels.

Figure 9.3 Structural editing. Images (a—c) show (from left to rigtig toriginal data set,
interior regions excavated by density reduction, the fiileté by adding structure. In (d) parts
of a bone iso-surface in a MRI data set were erased manuatyéal interior brain structures.
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9.4 Selection Volumes

The volume coloring method as described so far restrictatiearacy of the coloring
process to the resolution of the given volume data set. Thig/sone to assign voxel
properties on a per-voxel basis, but the method is not cepEldssigning such prop-
erties at sub-voxel accuracy. On the other hand, in paatigticolor painting is used
to manually segment objects in the data, sub-voxel accusasquired to determine
correct segment boundaries. Similar to surface-basedesggiion methods, where the
mesh is not constrained to lie on voxel boundaries, our gdalprovide a much higher
spatial resolution in regions where the user expects vbaséd classification to fail.

For this purpose we use selection volumes as introduced @ye®f19], who stated
that “A selection volume specifies a particular structurentérest in a corresponding
data volume. It stores real values in the range [0,1] where means not selected and
one means fully selected”. A selection volume has the samga$pesolution as the
original volume and its voxel values are used to modulataritiel data values. To
make selection volumes applicable for data segmentatiergxtend them in several
ways: Firstly, in addition to extent and position the user salect the resolution of the
selection volume. Secondly, the selection volume is “fil\eih data values by resam-
pling the source texture. It can thus be seen as an upsamgigidiv of a sub-volume,
and it is accompanied by a color volume of equal resolutiosujgport voxel editing.
Thirdly, the GPU volume ray-caster, which is used to renterdriginal volume and
the selection volume in combination, is adapted appragisiatThis means, that the
ray-caster not only finds the intersection points betweerrdlgs and the selection vol-
ume but also adapts the step size within this volume to itsluésn. In iso-surface
rendering, a uniform step size is used to avoid cracks atts@hevolume boundaries.

In Figure 9.4, we illustrate the use of selection volumestdy-voxel classification,
segmentation, and modeling. The leftmost image shows twelx@zed structures that
have been segmented manually in a selection volume. Due tiot¢heased resolution
of this volume, object boundaries can be resolved at verly hguracy. In the mid-
dle images, structures in the interior of a volume were diasisby using a particular
color transfer function. In the right image a high-resalatselection volume was used
to obtain smooth structure boundaries. The rightmost inshgsvs the effect of iso-
surface enhancement in a high-resolution selection volumdehe low-resolution base
volume. Text was painted onto an iso-surface by manuallyngddiensity offsets into
the respective source textures.
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Figure 9.4: The use of selection volumes is demonstrated: (a) Two sewllifes are segmented
at sub-voxel accuracy. (b) A sub-volume at the initial Jlaftd a much higher resolution (right)
is rendered with a different transfer function (center eegithan the initial volume. (c) Editing
effects on an iso-surface in the initial volume and a higgohetion selection volume.

9.4.1 Upsampling

To build a selection volume two different strategies arespad. For direct volume
rendering, voxel colors are trilinearly interpolated i tinitial color texture. For iso-

surface rendering, a piecewise quadratic tensor prodlicesis used for resampling
the source texture (see Figure 9.5 (a)). This resultsh-eontinuous quasi-interpolant
exhibiting a smooth gradient field.

Denoting initial samples with; in voxel coordinates (i.e., ranging from Oko— 1
for N voxels), additional samples at positions [i —0.5,i + 0.5] are computed in two
steps. First, intermediate valuds= 0.5(v;_1,V;) andB := 0.5(Vv;, Vi1 1) are computed.
Then, a quadratic Bézier-spline with the control polygon;, B is constructed using
the DeCasteljau algorithm. Thusathe associated indaxas to be computed first by
rounding to the next integer, i.e:= X+ 0.5]. The parametep; at which to evaluate
the spline is then given g%(x) := 0.5+ x—i. Observing that the interpolation to com-
puteA is collinear with the interpolation betweénandv; (and analogously foB and
Vi11), only two linearly interpolated fetches are necessaryesghfetches can be per-
formed by the GPU a&’ :=lerp(v;_1,Vv;,0.5+0.5- p) andB' := lerp(v;,Vi+1,0.5- p),
where lerga, b,c) := a+c- (b—a). Finally, the second stage of the DeCasteljau algo-
rithm to yield the final valueyes := lerp(A’,B’, p) is computed in a pixel shader.

Since the interpolated nodes lie halfway between the sangblne initial volume,
we introduce a transition region that is half a voxel widetfwespect to the initial grid).
In this region, trilinear interpolation in the source texgtus performed to guarantee
CO continuity between the selection volume and the sourcemveluln the interior,
the selection volume is built by tri-quadratic quasi-ipi@ation in the source texture,
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i-1 0.5 voxel
L1 . transition (b) Original (c) Tri-linear (d) Piecewise quadratic
(@) | Selection Volume | Data Set upsampling upsampling

Figure 9.5 lllustration (a) depicts the piecewise quadratic splinedutor upsampling. Im-
ages (b—d) show different resampling results. In (b) thgiwai (high-frequency) Marschner-
Lobb [111] data set is shown. Ideally, concentric waves khbe visible. However, due to
filtering errors, these waves are distorted to a certaimexteage (c) depicts a selection vol-
ume resampled with a trilinear filter kernel and (d) our mdthespectively.

and a smooth normal map is computed on-the-fly from this velurigure 9.4 (d)
demonstrates the fine editing details that can be achievepplying the operations
described so far on a high-resolution selection volume.

In general, selection volumes can be used to add fine stascturcolor details to a
3D volume or an iso-surface in it. Selection volumes can teugsed to directly paint
additional text on a surface, which provides a general miaraiding surface-aligned
annotations. However, as writing text on a curved surfa@Dins rather cumbersome,
we propose an alternative GPU method to automatically &igriextures containing
text or other annotations on an iso-surface. For a good igéiser of the process to be
used to automatically place screen-space annotationsferee reader to [19].

9.5 Surface Particles

We start our description by introducing GPU surface patichich are used to map a
2D grid consisting of vertices and edges between them onisoasurface, i.e., to find
a local surface parametrization. Our approach is similapint to the one proposed by
Ropinski et al. [135], but, in contrast, it is performed ditg in 3D object space, and
it operates entirely on the GPU. The 2D grid is rendered orofdpe iso-surface as a
textured polygon mesh. The texture contains the annotéditse used, for instance, a
bit-mapped text or a pattern indicating a particular proper

A surface-particle can be thought of as a particle movinghensurface along reg-
ular patterns to approximate a local surface paramerizalibe direction of the move-
ment is given by an external direction field that is definedi®yuser when placing the
annotation. In any case, to move a partixlen the surface we compute its trajectory
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in a vector fieldv, starting at an initial positiory on the surface. This requires to solve
the ordinary differential equation given in (2.1). It isatethat in general the numer-
ical integration brings away the particle from the surfaésen if the vector field is
everywhere defined in the local surface tangent plane, &leaid moving away from
the surface in non-planar regions. To avoid this behaviter &very integration step
we trace the particle back onto the surface, resulting irfidbewing steps that have to
be performed:

* Integration From the previous particle positior, and the velocity at this po-
sition, v, the new positiorx’ is computed on the basis of Euler integration (see
Eq. 2.3). In the very first iterationis set to zero.

 Backtracing X’ is corrected by tracing the particle back onto the selected i
surface.

 Vector lookup The velocity vectow at positionx’ is determined. This can be
as simple as a texture lookup into a 3D vector field, or a 2Dorefigld if a
surface parametrization exists, or it can be a more compmmpatation such as
a curvature estimation.

While it is clear how to perform particle integration and teedookup, the method
to trace particles back to the surface requires some fuekganation. In principle,
moving it back onto the surface would require to bend thediegment connecting the
current and the fixed previous particle position around tivéase, thereby constrain-
ing the bending to the plane defined by this line segment amduiface normal at the
previous position. Since this approach requires some etivalcomputations, we ap-
proximate it by iteratively correcting the current positimwards the surface, thereby
assuming the surface to be locally flat. Figure 9.6 (a) itatsts this approximation for
a particle that has left the surface after integration.

Back-tracing is performed by using the surface normal atpite¥ious position,
i.e., the gradient of the scalar field at this position, stddg the difference between
the scalar values at the previous and the current positibe. direction of this vector
determines whether the current position is inside the sarfa outside. Note that using
the normal at the current position is not feasible in generate this point is not on the
surface and the normal at this point may be affected by n@seen this direction, the
current particle is traced from the current position inte threction until the difference
between the scalar values at the corrected position andetbetad iso-value drops
below a user-given tolerance. In this case we have reacleesutiiace and terminate
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the correction. If the particle crosses the iso-surfacechvis indicated by increasing
difference between the scalar value at the particle poséditd the iso-value, the step
size is halved and the trace is restarted at the last position

The accuracy of the proposed method depends on the locatavevof the iso-
surface. The less planar the surface is, the higher can blerigéh distortion of a
line segment connecting the previous and the current pdihe reason therefore is,
that we only consider the normal at the previous point tordatee the direction into
which the particle is corrected. This problem could be @@d by also considering
the curvature direction in the plane spanned by the prewoufsce normal and the
advection direction, but as the step size we use for partitégration is typically small,
i.e., in the order of the voxel size, in our experiments lardistortions did not result in
any noticeable artifacts.

Normal

4

(a2x512x36

Force

Backtrace

(a)

Figure 9.6 In (a) one particle advection step is illustrated: Firdthg particle is moved into the
direction of the vector field (red) to an intermediate posit{green). In the next step it is traced
into the direction of the previous normal vector until it cbas the surface. Images (b) and (c)
show surfaces aligned annotation in wireframe and textwigtda bit-map image, respectively.

9.5.1 Volume Annotations

Volume annotations in the form of arrows and labels have g hlastory in hand-made
technical and medical illustrations. Textual annotatiarestypically used in two dif-

ferent ways. They are either placed directly on the surfdce structure—aligning

their shape to the surface shape—or they are placed in sspaee close to the im-
age of a structure, and they are then connected to the steuetth a line. In general,

the former method has the advantage that annotations rdixedto a structure when
the user interacts with the volume, while free-floating laligve to be rearranged in
screen-space to avoid overlapping annotations, cros$iogrmecting lines, or place-
ments too far away from the structure. Free-floating animmtabn the other hand,

are advantageous for pointing to small structures whichat@over enough space on
screen to allow the user to read the annotation on it. Thexefmr system supports
both approaches to annotate volumes, and it thus allowssieta flexibly select the

appropriate choice.
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By using surface particles we can now construct a regulak, gvhich is aligned
with an iso-surface and can be textured with an arbitrarptation. As the process is
performed entirely on the GPU, the user can interactivedg@lhigh-resolution anno-
tations in the volume. To start the process, the user firattseh texture, the annotation
texture, which is to be used as annotation. Then, some additnformation has to be
specified:

» The position on the iso-surface where the annotation i®todntered.
» The orientation of the annotation.

To specify the annotation center point the user picks a pminthe iso-surface.
The orientation of the annotation texture is specified bkipg a second point and
by interpreting the vector from the first to the second postre u-axis of the local
(u,v) surface parametrization. In the following, we willldhis vector the orientation
vector. Given this information, a set of surface particieaced to generate a grid that
is aligned with the surface.

At first, two surface particles are spawned at the annotatgrer point. One of
them is traced along the orientation vector, and the othern®traced into the inverse
direction. Both particles are traced for a number of eqtadissteps and with the
help of a geometry shader and the stream output stage, nieimediate positions are
streamed into a buffer residing in GPU memory. Both the numbsteps and the step
size in voxel units can be selected by the user.

At every particle position the direction vector moving thertcle along the sur-
face is computed from the direction vector at the previoustimm. Starting with the
normalized projection of the orientation vector into thagant plane at the annota-
tion center point, at every upcoming position the same mghoieeis performed with the
previous direction vector. That is, for a particle at pasitk, we compute a tangent
frame consisting of three mutually orthonormal vectarsthe surface normal; the
direction vector in the local tangent plane, and the binditma n x v. During particle
integrationy, is updated as follows:

Vu_]_ X (nu X Vu_l)

V), =
U Ve x (nux v |

(9.4)

l.e., the force vector is updated by projecting it into theface tangent plane at the
new position. Surface normals are computed by trilinearpulation of the gradients
at adjacent voxel centers. Finally, the particle is adwkangv and it is then traced

back to the surface as described in the previous paragraph.
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After the two surface particles that were released at thetation center point have
been traced for steps, a number ofi 2- 1 surface points are stored in a GPU render
target. If these points are connected, they form a line ostiniace, which is centered
at the annotation center point and oriented along the ahootdirection. To expand
this “line” to a full 2D grid, at every point we trace two addmal surface particles
into directionb and into the inverse direction. Tracing these particleg &teps results
in a set of(2i +1) - (2j + 1) points, from which a regular triangular annotation grid is
built (see Figures 9.6 (b, c¢)). All grid points are rendenetd ia vertex buffer, which is
then used to render the grid using an appropriate indexfng$eding in GPU memory.
The grid is textured with the selected annotation textund,itis rendered before ray-
casting the volume to initialize the depth buffer. To avoepth fighting between the
iso-surface and the annotation grid, the grid is slightifteti towards the viewer.

Pisiform Lunate

Capitate

Trapezoid

Figure 9.7. Two annotated data sets are shown. Left: A focus+contexialimtion of the
visible human head, colorized and annotated with the pteddachniques is shown. Right: An
annotated human hand. Here, next to internal surface aligaeals, external labels were used
to annotate the data set.

9.5.2 Windowed Cutaway Views

In this section, we show how to efficiently create a shapgnall windowed cutaway
on an iso-surface by exploiting an annotation grid as intoedl before. In technical
illustrations, cutaways are often used to reduce occlssionl expose important inter-
nal parts. There is a vast body of literature related to #gae that we will not attempt
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to overview here, however, Diepstraten et al. [35] and Lile{2] discuss some
of the mechanisms to automatically generate cutaway viedeovide many useful
references on this subject.

Starting with such a surface-aligned grid, we proceed instages. Firstly, we du-
plicate the mesh and displace the vertices of the copy almmmverse surface normal
direction at the center vertex. The length of the displacdmaan be selected by the
user to generate thin or thick cutaway sections. Secondty meshes are connected
along their borders to build a closed mesh. This mesh is thed as a clip geometry as
proposed by Weiskopf et al. [182], and it is directly incagted into the texture-based
volume ray-caster.

Prior to ray-casting, we render a layered depth-buffer efrttesh from the current
view. During volume rendering, every ray first samples thHadéers and then tests all
samples along the ray for being inside or outside the meshby. testing whether a
sample is in-between a front and a back face of the cutawai.ngsmmnples inside the
mesh do not contribute to the final ray color, thus cuttingyatkia volume contained in
it. Figure 9.8 demonstrates the use of shape-aligned cysateeexpose internal parts
of a volume.

Figure 9.8 Several windowed cutaway views are shown. Right: By intéggathis metaphor
into the paint environment, classification based on iséasarcoloring becomes possible even
without erasing information in the underlying data set.

9.6 Performance Analysis

Throughout this chapter we have shown a number of differfetts that were gener-
ated by the proposed volume editing techniques. A typicalafghese techniques is
demonstrated in Figure 9.1, where a human skull data setmasctively processed
and augmented to obtain an illustrative image as shown iayGrAnatomy” [53]. In
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the following, we investigate the performance of thesenegples in more detail. Tim-
ings were performed on a 2.4 GHz Core 2 Duo processor and aDDA\8800GTX
graphics card with 768 MB local video memory. Image generatvas done at 1280
1024 resolution. Regardless of this extreme resolutiorglfanodels shown we achieve
real-time performance with update rates of 50 fps and hjgheuding editing and ren-
dering.

All brush-based editing effects like coloring, erasingd aalding, as well as result-
ing normal map updates, were executed in less than 3 ms uprtesh bxtend of 6%
voxels. The times it takes to build a selection volume aedéht resolutions, i.e., from
(3x2)3to (64x 8)3, is given in Table 9.1. As can be seen, even at a resolutioighs h
as 128, GPU-based resampling is still capable of achieving imtire rates.

Covered voxels

Scaling| 3% | 113 | 1¢® | 322 | 64
2 0.14] 0.19] 0.24| 0.51| 2.7
4 0.16| 0.31| 0.76| 2.5 | 17.9
8 0.2 | 1.0 | 429|17.1| 134.6

Table 9.1 Timing statistics for tri-quadratic iso-surface and trdar color resampling. All
times are given in milliseconds.

Finally, we measured the time it takes to construct a swédigged annotation grid
by means of the method described in Section 9.5. Table 9\@sshespective times for
varying grid sizes. From these timings it can be concludatlitie proposed method is
fast enough to allow for interactive placements of annotetiextures on high-resolution
surface structures. In particular, since the renderingedgé textures only consumes an
insignificant amount of time, many of them can be used simattasly on a single
object.

Gridsize 112 | 212 | 412 | 812
Time (inms)| 1.6 | 2.0 | 3.6 | 14.7

Table 9.2 Timings for the construction of surface-aligned annotagods.

9.7 Summary

In this chapter, we have presented a number of GPU-basedi¢ees for interactive
volume editing. By efficiently using novel functionality eacent GPUs, we have de-
veloped a technique for interactive volume painting. Weehfawther shown that this
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technique provides a powerful means to erase structuresaiuene and, thus, to iso-
late features in it. In combination with high-resolutiodesion volumes these tech-
nigues can effectively be used for manual volume segmentati sub-voxel accuracy.
We have also introduced structure-aligned annotationsiemasis of particle-tracing
along iso-surfaces—with respect to the underlying scaddurnae’s gradient field—to
supplement classical free-floating annotations that axegal in screen-space, and we
have demonstrated how to utilize this approach to interelgticreate windowed cut-
away views. In particular, as all of these operations aréopmed in the 3D domain,
with immediate visual feedback provided, they are veryitivel to use and allow the
user to quickly observe the relationships between reldeattires in the data.

In the future we will further extend some of the proposed meghes: Firstly, we
will develop semi-automatic volume segmentation techesgby combining manual
segmentation as proposed with automatic techniques onftue (&uch as the random
walker approach). We believe that such a combination casiderably improve the
segmentation process, both with respect to accuracy amd spe
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Chapter 10

Conclusion

This thesis presented techniques for the interactive Vvesydoration of time-resolved
3D unsteady flow velocity fields. Feedback from scientistgarious fields has con-
firmed that the developed real-time exploration technicareswell-suited to gain in-
sight into complex flow phenomena. An interactive explamtnvironment enables
experts to incorporate their experience into the visua datlysis process and to ex-
ploit their perceptual and cognitive abilities to detedevant features in the flow.

All approaches discussed in this work can be employed onunes class hard-
ware and are, thus, available to a wide range of users. Asze®t&3D unsteady flow
data sets usually exceeds the memory capacities of staR@a,dve have developed a
multi-core approach to asynchronously manage the times stepded during an inter-
active flow exploration session. By decoupling visualigatirom data handling, this
concept does not only result in interactive frame rates lsat @lows the visualization
of an unlimited amount of time steps. Since flow visualizatiechniques generally
require the application of numerical operations to a largeunt of individual samples
in the data, we have presented parallelization stratelgagtfectively exploit the com-
putational processing power of recent graphics processiitg to achieve the feature
extraction and subsequent visualization in real time.

We have shown how Lagrangian patrticle tracing can effelgtive mapped onto the
GPU to allow for the integration of a huge number of particteparallel. We have
presented various rendering modalities to encode additftow quantities into the vi-
sual representation of each particle and have developetlanistns to automatically
restrict their display to important regions in the flow. Thlows to reveal phenomena
of interest, while at the same time preserving context mégtion. Furthermore, we
have employed the particle tracing paradigm to extract ggoomflow representation

189
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such as characteristic trajectories and adaptive intsgrédces interactively, and have
presented a variety of rendering modalities including &3@ontext approaches to re-
duce the presented visual information to relevant featiarége flow. We have extended
the particle tracing paradigm to flow on arbitrary surfaces laave developed a variety
of geometry- and texture-based visualization techniqaesuch flow fields.

Feature-based visualization techniques are well-suge@duce the flow data to
physically meaningful patterns. However, due to the inkgare-processing required by
these techniques to achieve the data reduction, such apy@®are generally not suited
for an interactive exploration environment. Yet, we havevahn how certain concepts
from this class can efficiently be combined with geometrgdehaflow visualization
techniques to effectively study large-scale transporaisiim.

Moreover, we have discussed how the massive parallel gimgegower of modern
GPUs can not only be exploited to explore large 3D data satsalbo to manipulate
them interactively. This allows scientists to encode figdidirectly into the data set or
a visual representation of it and, thus, to communicate thaimed insight intuitively.

10.1 Future Work

None of the presented techniques are inherently restriotédw fields sampled onto
uniform grids, however, we have only validated them in suafadWe aim at extending
our system to support unstructured time-resolved 3D udgtiaw fields, as such data
sets are of practical importance. While the extension sestragyhtforward, as only
the underlying data structure has to be exchanged and evelrb@&ed concepts for
particle tracing in unstructured grids are available, ak#ng methods adhere to rather
outdated graphics API standards and lack in performanceieMer, GPU manufacturer
have noticed an increasing interest in the scientific comiydior their platform, and
the capabilities of recent graphics hardware and relataghgecs APIs are evolving
towards more generalized computing architectures. Thisspf interest to investigate
how new GPU capabilities can be exploited to develop moreiefii data structures
and algorithms that allow for fast point location and intdgtion in unstructured grids.

The current framework achieves interactivity due to the that all time steps
needed by the visualization system at a given point in tirs&lesin local video mem-
ory. As numerical capabilities continue to increase, sadbe size of the data sets to
be visualized. However, the typical amount of memory gdhedoes not scale with
the growth in processing power and, thus, it will be a chalieg task to develop in-
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teractive (distributed) visualization strategies that cape with flow fields that exceed
the locally available memory.

As the numerical processing power of GPUs still grows exptaby, it will also
be of interest to adopt even more concepts from the clasatfre-based visualization
into interactive visualization techniques. As we have smosuch a combination is
well-suited to support the user in finding relevant featumdase flow.
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