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Abstract

Heart attack and stroke are the major causes of human death and atherosclerotic plaques
are the most common effect of cardiovascular disease. Intravascular ultrasound (IVUS),
a diagnostic imaging technique, offers a unique view of the morphology of the arterial
plaque and displays the morphological and histological properties of a cross-section of the
vessel. Limitations of the grayscale IVUS manual plaque assessment have led to the devel-
opment of quantitative techniques for analysis of characteristics of plaque components.

In vivo plaque characterization with the so called Virtual Histology (VH)-IVUS, which
is based on the ultrasound RF signal processing, is widely available for atherosclerosis
plaque characterization in IVUS images. However, it suffers from a poor longitudinal
resolution due to the ECG-gated acquisition. The focus of this PhD thesis is to provide
effective methods for image-based vessel plaque characterization via IVUS image analysis
to overcome the limitations of current techniques. The proposed algorithms are also ap-
plicable to the large amount of the IVUS image sequences obtained from patients in the
past, where there is no access to the corresponding radio frequency(RF) data. Since the
proposed method is applicable to all IVUS frames of the heart cycle, it outperforms the
longitudinal resolution of the so called VH method.

The procedures of analyzing grayscale IVUS images can be divided into two separated
aspects: (i) detecting the vessel borders to extract the region called ”plaque area”. (ii)
characterizing the atherosclerosis plaque composition. The latter one consists of two main
steps: in the first one, known as feature extraction, the plaque area of the cross-sectional
IVUS image is modeled using appropriate features. The second step based on learning
techniques assists the classifier in distinguishing different classes more precisely and in
assigning labels to each of the samples generated by feature extraction within the first
step.

In-vivo and ex-vivo validation procedures were used, where the results proved the effi-
ciency of the proposed algorithms for vessel plaque characterization via IVUS images. A
graphic user interface (GUI) is designed as an effective image processing tool which en-
ables cardiologists with a complete IVUS image processing tool from border detection to
plaque characterization. The algorithms developed within this thesis leads to the enhance-
ment of the longitudinal resolution of plaque composition analysis. In the final part of the
thesis, this is shown analytically and is highlighted by presenting a three dimensional view
of both the vessel and the distribution of different plaque components in the plaque area.
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Zusammenfassung

Herzinfarkte und Herzrhythmusstörungen sind die häufigste Todesursache und Arte-
riosklerose (Arterienverkalkung) ist die häufigste Ursache für Herzerkrankungen. In-
travaskulärer Ultraschall (IVUS), eine diagnostische Bildgebung, bietet eine gute Betra-
chtung der Morphologie der Verkalkungen. Des Weiteren stellt es die histologischen und
morphologischen Eigenschaften der Gefäßverbindungen dar. Die Limitation der manuellen
Detektion in den IVUS Graustufenbilder führte zu der Entwicklung von quantitativen
Methoden um die Ablagerungscharakteristik zu bestimmen.

Die in-vivo Verkalkungscharakterisierung mit der Virtual Histology (VH)-IVUS Tech-
nik basiert auf der Signalverarbeitung von RF Ultraschall und ist weit verbreitet für die
Arterioskleroseanalyse. Eine große Limitation ist jedoch die Auflösung in axialer Rich-
tung auf Grund der EKG synchronisierten Phasenaufnahmen. Das Kernthema dieser
Dissertation ist es eine effektive Methode für die Charakterisierung der Gefäßverkalkun-
gen mittels IVUS Bilddaten zu erforschen, um die herkömmlichen Analysemethoden zu
verbessern. Der vorgeschlagene Algorithmus ist auch auf eine große Anzahl von retro-
spektiven Patinetendaten anwendbar, bei denen es noch keinen Zugriff auf die RF Tech-
nik gab. Da die Methode auf alle IVUS Bilder eines Herzzyklus anwendbar ist hat sie
gegenüber den herkömmlichen Methoden der Virtual Histology einen klaren Vorteil in
der axialen Auflösung.

Das Verfahren der Analyse der graustufen IVUS Bilder kann in zwei Aspekte unter-
gliedert werden: (i) Erkennung der Gefäßgrenzen um die Verkalkungsfläche zu extrahieren
und (ii) die Charakterisierung der Zusammensetzung der Verkalkung. Die Charakter-
isierung der Verkalkung geschieht in zwei Schritten: Im ersten Schritt, auch bekannt als
Mustererkennung, wird die Ablagerungsfläche in den IVUS Schnittbildern mit entsprechen-
den Mustern modelliert. In einem zweiten Schritt wird nach einer Lernphase detailliert
zwischen verschiedenen Klassen unterschieden und den Proben entsprechend markiert.

In einer Ex-vivo und in-vivo Validierung wurde die Methode auf Ihre Effektivität bei der
Charakterisierung der Verkalkungen geprüft. Eine Benutzerschnittstelle wurde entworfen
um die Bildbearbeitung für Kardiologen von der Formerkennung bis hin zur Verkalkungs-
analyse effektiv darzustellen. Die in dieser Dissertation entwickelten und evaluierten Al-
gorithmen führten zu einer Verbesserung in der axialen Auflösung bei der Verkalkungs-
analyse. In dem letzten Kapitel wurde analytisch gezeigt, dass sowohl die Gefäßstruktur,
als auch die Verteilung der Verkalkungen in drei Dimensionen angezeigt werden konnte.

Schlüsselwörter:

IVUS, Verkalkungsanalyse, Axiale Auflösung, Virtual Histology
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1. Chapter One:
Medical Background

1.1. Biological Concerns

Despite significant advances in diagnosis and treatment, coronary atherosclerosis remains
a major cause of death in developed countries [87] and almost twice as many people die
from cardiovascular diseases than from all forms of cancer combined.

1.1.1. Biological Background

The coronary arteries are the vessels which supply the heart muscle with blood and there-
fore oxygen. The right coronary artery and the left main coronary artery are the two
branches that come from the aorta to feed the back of the heart and its front respectively
(figure 1.1). The left main coronary artery further splits up in the left anterior descend-
ing(LCD) and the left circumflex(LCX), to supply with blood the front of the heart and the
left side and back of the heart [99].

Figure 1.1.: Coronary arteries [99].

These coronary arteries mainly consist of three layers. The inner layer is intima, the
middle layer is media, and the outer one is adventitia. These layers are observable in a
cross-section of the artery (figure 1.2). Media consists of smooth muscle cells, with an
approximate thickness of 100 microns. The adventitia is made up of mostly elastic and
collagen fibers and fibroblasts. The intima has a variable thickness which is expressed as a
ratio of media thickness. Ratios of 0.1 to 1 are considered normal [98].

1.1.2. Coronary Artery Disease

Atherosclerotic plaques are the most common effect of cardiovascular disease. Atheroscle-
rotic plaques can either cause stable coronary artery stenosis leading to angina pectoris

1
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Figure 1.2.: Cross-section of a coronary artery which shows intima, media, and adventitia layers
[88].

during exercise, or lead to acute coronary or vascular events such as myocardial infarction
or stroke when they rupture.

The development of atherosclerotic lesions can be categorized in six classes based on the
definition of the Committee on Vascular Lesions of the Council on Atherosclerosis of the
American Heart Association[93]. Classes I-III are considered precursors of an established
lesion and had already been seen in children and adolescents. Types IV-VI are classified as
advanced atherosclerotic lesions [93].

Atherosclerosis takes place due to an activated endothelium, mainly in areas with pre-
existing intima thickening. An activated endothelium is characterized by a raised adhe-
siveness for monocytes due to over-expression of adhesion molecules, an enhanced perme-
ability to lipoproteins or functional imbalances of pro- and anti-thrombotic factors, growth
stimulators and inhibitors, and vasoactive substances.

1.1.3. Lesions Associated with Coronary Artery Disease

There are different types of plaques responsible for causing coronary atherosclerosis. For
years, rupture of vulnerable plaques was addressed as the most important sources of coro-
nary thrombosis. But other types of plaques and lesions also exist in the literature [91].
Three different plaque etiologies associated with coronary thrombosis is shown in table
1.1. In the following sections these lesions will be discussed in detail.

Rupture of Vulnerable Plaque

The rupture of vulnerable plaques is the main cause of acute coronary syndrome [91],
[92]. Acute Coronary Syndrome (ACS) (or Myocardial Infarction (AMI) /unstable angina)
occurs when the supplied oxygen from the coronary arteries is less than the myocardial
demand. It usually happens due to atherosclerotic coronary artery disease (CAD). In this
case, when the atheromatous plaque builds up on the wall of the coronary arteries, the
lumen of the artery will be probably compromised.

Stenotic plaques which compromise the coronary arteries luminal surface area by more
than 60-70 percent used to be clinically significant and hence, a patient with this condition
used to be marked as high risk for ACS. However, many researches have shown that in
some cases the AMI occurs due to the occlusion of coronary arteries without any signif-
icant stenosis. It means sometimes plaques causing severe stenosis are not the cause of

2
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Table 1.1.: Lesions Associated with Coronary Thrombi
Lesions Associated with Characteristics
Coronary Thrombi

A necrotic Lesion with a luminal thrombus containing
Plaque Rupture core encapsulated by a thin fibrous cap infiltrated

by macrophages and T cells.

Plaque Erosion Thrombosed arterial segment without an area of rupture.

Fibrous-rich calcified lesion with little or no necrotic
Calcified Nodule core containing a luminal thrombus without

obvious rupture of the lesion.

Figure 1.3.: Rupture of vulnerable plaque [92].

AMI [2].
The plaque at a high risk of rupturing was suggested by the researchers in place of steno-
sis plaque as the immediate precursor of most of the culprit plaques for ACS stenotic [42].
This, indeed, was the first step in the development of the concept of Vulnerable Plaque
(VP). The VP is the ”short-term precursor” to the culprit plaque, which triggers clinical
ACS.
Although the lipid core encased in fibrous ”cap” plaques may compromise the lumen of
the coronary, based on histopathological studies of ”culprit” plaques, approximately 60
to 70 percent of AMIs are caused by plaque rupture, with release of the thrombogenic
core of lipid and necrotic debris [17] , [22]. Based upon these findings, VPs are defined
as plaques at high risk for rupture, or for having the surface of their fibrous cap denuded
in either case leading to thrombus formation. This may weaken the routine method of
clinical decision-making based on determining the stenosis because it would be unreliable
due to an ignoring of the major cause of AMI. VPs are supposed to have three histologic
hallmarks compared to stable ones: a larger lipid core, a thinner fibrous, and many inflam-
matory cells.
In addition to the above definition, VP can be described as any plaque that might cause
clinically significant CAD. In this definition, any plaque vulnerable to rupture or denuda-
tion is defined as VP. While covering the previous definition of VP, many other plaques are

3
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marked as VP (figure 1.4).

Figure 1.4.: Different types of vulnerable plaque [45].

Plaque A is the main cause of culprit lesions and represents the previous definition of
VP [45]. To complete the definition, VP criteria are expanded as follows: Major crite-
ria include: active inflammation (monocyte/macrophage +/- Tcell infiltration), thin cap
with large lipid core, endothelial denudation with superficial platelet aggregation, fissured
plaque, and more than 90 percent stenosis. Minor criteria include: superficial calcified
nodule, glistening yellow appearance, intraplaque hemorrhage, endothelial dysfunction,
and outward (positive) remodeling.
Plaque Erosion: Plaque erosion is referred when a thrombosed arterial segment fails to
show an area of rupture after serial sectioning [91]. The exposed intima at the plaque
thrombus interface consists predominantly of smooth muscle within a proteoglycan-rich
matrix with minimal inflammation. Typically, the endothelium is absent at the erosion site.
The development of erosion may be the sequel to repeated episodes of focal vasospasm;
however, to date, there has been no direct evidence to support this hypothesis.

Calcified Nodule: This term refers to a fibrous-rich calcified lesion with little or no
necrotic core containing a luminal thrombus without obvious rupture of the lesion [91],
[93]. There are superficial, dense, calcified nodules within the intima, which appear to
be erupting through fibrous tissue into the lumen, possibly causing the thrombus. The
calcified nodules are associated with osteoclast-like cells.

Thin Cap Fibroatheroma (TCFA): TCFA is defined by a lesion composed of a lipid-
rich core in the central portion of an eccentric plaque. The central core contains many
lipid-laden macrophage foam cells derived from blood monocytes in a thin, friable fibrous
cap. To be more specific, TCFA can be further defined as a lesion containing a fibrous
cap less than 65mm thick and infiltrated by macrophages. The 65mm thickness in cases
of vulnerable plaque was chosen as a criterion of vulnerability because of arteries with
ruptured plaque.

4



1.2. Introduction to Techniques for Identifying Vulnerable Plaques

1.2. Introduction to Techniques for Identifying Vulnerable
Plaques

1.2.1. Introduction

There have been huge efforts to develop clinically useful imaging techniques for identify-
ing ”VP” and other lesions over the last 15 years. In this section, the most accepted pro-
posed methods in developing diagnostic approaches for imaging vulnerable plaques are
reviewed. The broad technological and clinical research on both the invasive techniques
(such as intravascular angioscopy, intravascular thermography, optical coherence tomog-
raphy, Raman spectroscopy, near infrared spectroscopy) and the non-invasive techniques
(ultrafast computed tomography, nuclear imaging including positron emission tomogra-
phy, ultrasound-based imaging techniques including elastography),will also be reviewed.
The techniques which will be discussed in more details in the following sections, are as
listed :

Non-invasive techniques:

• X-ray angiography

• Ultrafast Computed Tomography (UCT)

• Nuclear scintigraphy

• Magnetic Resonance Imaging (MRI)

Invasive techniques:

• Intravascular angioscopy

• Intravascular thermography

• Spectroscopy

• IVUS

• IVUS-Palpography

• IVUS-VH

• OCT

1.2.2. Non-Invasive Techniques

X-Ray Angiography

The basic principle of X-ray angiography is the same as a conventional X-ray: As X-rays
pass through the body to impress an image intensifier; they are attenuated at different lev-
els. These differences in X-ray attenuation constitute the resulting image, which can be
useful while being used in addition to angiography.

5
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Figure 1.5.: Biplanar X-Ray Angiography (Siemens HICOR).

Ultrafast Computed Tomography

In computed tomography (CT), different views of the same organ are acquired by moving
the X-ray beam in a circularly movement around the body.
Ultrafast CT (UCT) (also known as electron beam computed tomography or EBCT, helical
CT, or spiral CT) is a CT method which is able to quantify the amount of calcium in the
coronary arteries, and thus has been primarily investigated as a tool of predicting the risk
of coronary artery disease.

Nuclear Scintigraphy

In nuclear scintigraphy radioactive tracers are injected to the body organs and the emitted
radiation from these tracers is used to acquire an image. Radioactive labeled molecules
will be bound to the atherosclerotic rupture-prone lesion which in turn will provide useful
information about the severity of the plaques.
The ability of nuclear scintigraphy is limited for the present. The radiotracers which may
be specific for lipid core, macrophage density or thrombus and able to predict clinically
significant events do not exist as yet.

High-Resolution Magnetic Resonance Imaging (MRI)

MRI can identify plaque components on the basis of biophysical and biochemical pa-
rameters, such as chemical composition and concentration, water content, physical state,
molecular motion, or diffusion. And hence, it has emerged as the potential, leading, non-
invasive, in vivo imaging modality for atherosclerotic plaque characterization.
MRI is based on a small magnetic field (a magnetic moment) of hydrogen nucleus. These
magnetic moments align in a larger magnetic field. This allows them to display the phe-
nomenon of nuclear magnetic resonance (NMR). MRI is a imaging technique for display-
ing NMR.
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1.2.3. Intravascular (Invasive) Techniques

Angiography

Angiography has so far been the gold standard for identifying coronary and carotid artery
lesions. It provides the practitioners with information about the severity of luminal nar-
rowing and hence, enables the diagnosis of atherosclerotic disease. Angiography may
show severe lesions, plaque disruption, luminal thrombosis, and calcification. It also
serves as a decision making tool to direct therapy such as percutaneous coronary interven-
tions or coronary artery bypass surgery. Although we can assess the lumen boundaries
using angiography, no information is given on plaque burden, its delineation and compo-
nents. Besides, it does not provide useful information about the vessel wall or atheroscle-
rotic plaque composition such as the vulnerable lipid-rich plaques or other histopatholog-
ical features [87]. But it is able to detect complex lesions. The problem is that angiography
is a crude technique in which the presence and burden of vulnerable lesions and it is un-
able to detect the majority of ulcerated plaques as they are not big enough. Also, while
diffuse atherosclerotic disease may narrow the entire lumen of the artery, angiography
may underestimate the degree of local stenosis. About 70% of acute coronary occlusions
are in the areas where the angiography results seem to be normal [1]. One important pa-
rameter in angiography is the time interval between the angiogram and the MI (myocar-
dial infarction) as both time and interim therapy can influence atherosclerosis. Although,
angiography has a low discriminatory power to identify the vulnerable plaque, if a dis-
rupted ulcerated plaque is seen on angiography, additional rupture prone plaques may be
expected. See figure 1.6 for an angiography image with a dissected flap within the lumen.
An angiography device is depicted in figure 1.7.

Figure 1.6.: An angiography image indicating a rupture plaque [1].

Intravascular Angioscopy

Intracoronary angioscopy, as the first intravascular imaging device, is based on a fiber-
optic transmission of visible light. It facilitates direct visualization of the plaque surface,
color of the luminal surface, presence of thrombus, and macroscopic features of the arte-
rial wall. Angioscopy is able to detect vulnerable plaque features, such as ruptured caps
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Figure 1.7.: Siemens Artis Zeego angiography device

and red discoloration (intra-plaque hemorrhage). Using this technique, the old thrombus
or the normal appearance of the vessel surface is reflected as white. A red surface may
indicates a fibrin or erythrocyte-rich thrombus and lipid-rich core and the thin fibrous cap
is yellow in color. These yellow plaques are not detectable by angiography.
However, this technique has several drawbacks, one being the limited part of the vessel
tree, angisocopy is able to investigate and that is due to the size of its device. One of the
limitations of angioscopy is that the inability to examine the different layers within the
arterial wall remains. Also, to make the visualization clear, the vessel has to be occluded
and the remaining blood flushed away with saline. See figure 1.8 for angioscopy results.

Figure 1.8.: Angioscopy results: A) A red thrombus on plaque 1 and blocking of a part of lumen
2, B) After removal of thrombus, C) Post angioplasty angioscopy [1].

Thermography

Thermography is a catheter-based technique which detects heat released by the cells of
atherosclerotic plaques. Atherosclerosis is an inflammatory disease and any temperature
difference in activated inflammatory cells may reflect and predict plaque disruption and
thrombosis. The idea behind Thermography is the fact that vulnerable plaque is a very
active metabolic area and higher temperature could be found, due to the heat released by
activated macrophages either on the plaque surface or under a thin cap. While in many
researches most atherosclerotic plaques showed higher temperatures compared to healthy
vessel wall, the independent role of thermography is limited because the structural def-
inition obtained from high resolution imaging techniques is required. The necessity of
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a proximal balloon to provide a blood-free field is one of the limitations of this new tech-
nique. Also, plaque temperature may be affected by inflammation and variable blood flow
in the lumen making the results unreliable. Another limitation to this technique is being
unable to provide information on eroded but non-inflamed lesions.

Raman Spectroscopy

Spectroscopy is an optical technique which uses the reflected light from the plaques to de-
termine the chemical composition of the tissue. Different chemical compositions scatter
different wavelengths (and energies) so each tissue, due to its chemical composition (lipid,
collagen, calcium, etc.), has a unique pattern of light absorbance. To apply this property
and detect the chemical composition, many approaches are under development.
Raman spectroscopy collects light scattered by tissue when illuminated with high-energy
laser. While most of this scattered light is at the same wavelength as the incident light,
some are at different wavelengths. The amount of the wavelength shift which is called
Raman shift depends on the characteristics of the molecule. Using this wavelength differ-
ence, Raman spectroscopy has a high molecular sensitivity but its tissue penetration is as
low as 0.3 mm.

Optical Coherence Tomography (OCT)

Optical coherence tomography (OCT) is a useful technique which can provide images with
ultra-high resolution. It measures the intensity of reflected light and compares it with a ref-
erence. The reference is obtained by a mirror reflection on an arm. The mirror is dynam-
ically translated in order to achieve cross correlation at incremental penetration depths in
the tissue. The measured intensity represents backscattering at a corresponding depth [1].
In figure 1.9 an OCT device is shown.

Figure 1.9.: A) OCT device (Lightlab (Westford, Massachusetts) imaging engine), B) OCT catheter
and C) Schematic of OCT system [70].

OCT results in high resolution images for future diagnosis. The axial resolution of OCT
is dependent on the bandwidth of the source or the range of wavelengths within the beam.
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Based on histology, the OCT image interpretation is as follows: A lipid pool generates de-
creased signal areas with poorly delineated borders, a fibro-calcific plaque which shows a
sharply delineated region with a signal-poor interior and a fibrous which plaque produces
a homogenous signal rich lesion. It also provides useful information about structural de-
tails like thin caps or tissue proliferation [6].

Figure 1.10.: (A) The OCT image. (B) The histopathology normal, native, in vitro human artery
[6].

OCT Applications: Post-mortem studies demonstrated the accuracy of OCT in compar-
ison with histology. The intravascular application of OCT has proven feasible in the ani-
mal model. These studies showed that OCT can detect both normal and pathologic artery
structures. Recent experimental data suggest the possibility of detection of macrophages
in atherosclerotic plaques. Detection of macrophage accumulation with OCT is based on
the hypothesis that plaques containing macrophages have a high heterogeneity of opti-
cal refraction indices that exhibit strong optical scattering. Optical scattering results in a
relatively high variance of the OCT signal intensity that can be expressed as normalized
standard deviation (NSD) of the OCT signal. The analysis of NSD of OCT raw data reveals
a high, positive correlation between OCT and fibrous cap macrophage density (r=0.84,
P<0.0001) in vitro.
Most coronary structures that were detected by IVUS could also been visualized with OCT.
Intimal hyperplasia and echolucent regions, which may correspond to lipid pools, were
identified more frequently by OCT than by IVUS [68]. There are several potential applica-
tions of OCT. With its high resolution and unique characteristics, it is a powerful modality
for detection of vulnerable coronary plaque. The most frequent variant of a vulnerable
plaque is characterized by a lipid pool, a thin fibrous cap, and increased macrophage in-
filtration each of which can be detected by OCT. Another potential application of OCT
is as an adjunct to PCI. Detailed structural information before and after coronary inter-
vention can be evaluated with greater accuracy compared with intravascular ultrasound.
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Over the past decade, the number of interventional devices and techniques has increased
significantly. Precise plaque characterization optimizes the choice and evaluation of this
percutaneous therapies.

TCFA Detection with OCT: OCT is now being introduced for in vivo human imaging
at a resolution higher than any current imaging technology which allows for the identifi-
cation of TCFA. OCT was shown to identify structural features such as lipid collections,
thin intimal caps, and fissures characteristic of plaque vulnerability. OCT has also been
directly compared with high-frequency intravascular ultrasound, the current clinical tech-
nology with the highest resolution. The superior resolution of OCT has been confirmed
both quantitatively and qualitatively.
OCT has several limitations, first of all the low penetration depth may hinder studying
large vessels and also the light absorbance by blood which currently needs to be overcome
by saline infusion or balloon occlusion.

Introduction to Intravascular Ultrasound (IVUS)

Over the past few years, intravascular ultrasound (IVUS) technology has become very
useful for studying atherosclerotic disease. IVUS is a catheter-based imaging technique
providing real-time high-resolution images of the vessel wall and lumen.

Figure 1.11.: IVUS device, from left to right: GalaxyTM IVUS imaging system, iLab® Ultrasound
imaging system and Volcano IVUS Imaging s5iTM System

IVUS is useful in the evaluation of coronary disease due its characteristics. Sound waves
bounce back with varying intensity and different time delays according to the density of
the plaques they have encountered, and hence, grant the identification of plaque compo-
sition - fibrous, fibro - fatty, calcified or mixed (see figure 1.12). The time delay of reflected
ultrasound waves is translated into spatial image information while, the intensity is con-
verted to an intensity map encoded by a gray-scale. The displayed intensity for each target
object is proportional to the amount of sound energy returned. Dense targets such as cal-
cified plaques are bright white in the IVUS image and the least dense plaques such as the
medical layer in the vessel appear black.
The 2D image is then obtained from the variation of the angular position of the imaged line
over 360 degrees. Its features are detected based on the echogenecity and the thickness of
the vessel. Depending on the distance from the catheter the axial resolution is approxi-
mately 150 microns and the lateral is 300 microns.
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IVUS allows for precise measurement of the plaque burden by visualizing plaque topog-
raphy. IVUS also shows the shape of the lumen as well as the thickness of layers of the wall.

Figure 1.12.: Soft, mixed fibrous and calcified and calcified plaques identified using IVUS images
[61].

Clinical Applications of IVUS IVUS should be considered supplemental to angiogra-
phy, not as an alternative and should be used as an adjunct to angiography. The clinical
use of IVUS for physicians is when angiography results are opaque and equivocal. IVUS
allows measurements of cross-sectional area (CSA) and minimum lumen diameter (MLD),
which can only be approximated with angiography. The most likely applications of IVUS
is listed in table 1.2 and discussed in details in the following [61], [14].

Table 1.2.: Clinical applications of IVUS:
Clinical Applications of IVUS

Angiographically normal coronary vessels
Angiographically indeterminate lesions

Unstable plaque and thorombi
Left main coronary disease
Transplant coronary disease
Stenting of smaller vessels

Angiographically Normal Coronary Vessels: IVUS is able to detect occult disease in the
patients with angiographically normal coronary arteries. 10% to 15% of patients undergo-
ing catheterization for suspected coronary disease are shown as normal in angiography.
Angiography usually underestimate disease burden as it has been shown that coronary
disease is usually diffuse, not focal.

Angiographically Indeterminate Lesions: Angiographers mostly encounter lesions that
elude accurate characterization using multiple radiographic projections. In some lesions
(for example ostial and bifurcation) the stenosis may be opaque due to the overlapping of
contrast-filled structures. By using IVUS in ambiguous lesions and because of its tomo-
graphic perspective, lesion quantification is possible without radiographic projection.
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Unstable Plaque and Thrombi: An important application of IVUS may be the identi-
fication of atheromas at risk of rupture. As mentioned in previous sections, acute coro-
nary syndromes frequently develop in minimally diseased vessels rather than high-grade
stenoses. The appearance of thrombi in IVUS images has been studied in some researches
and further studies are still required.

Left Main Coronary Disease: Assessment of the left main coronary disease by angiog-
raphy leads to a difficult clinical problem. Aortic cusp opacification or ”streaming” of
contrast which may obscure the ostium, the short length of the vessel which may leave no
normal segment for comparison and the distal left main artery which may be concealed
by bifurcation or trifurcation are the main factors of the inability of angiography in the left
main coronary disease diagnosis. These problems could be overcome using IVUS.
This can be reached by placing the ultrasound transducer distal to the left main vessel,
while a slow pullback to the aorta is performed with the guiding catheter disengaged.

Transplant Coronary Artery Disease: IVUS is an optimal method for detecting coronary
disease a year after transplantation. Based on medical studies, while angiography detects
coronary disease in 10% to 20% of patients one year after transplantation, IVUS detects
abnormal intimal thickening in about 50% of patients demonstrating the ability of IVUS in
detecting this disease.

Stenting of Smaller Vessels: While angiography may underestimate vessel size in smaller
vessels, IVUS allows direct and accurate vessel measurements at the lesion site. It is im-
portant because post-stent restenosis rates are higher in these vessels and small increases
in stent area can decrease the rate of restenosis. IVUS usage in smaller vessels comes from
its characteristics. For example, IVUS allows a more aggressive stent strategy, and hence,
CSA is increased and restenosis rates are decreased. It also shows the edge tears from other
vessel injuries which needs further intervention.
It has been observed that the occurrence of restenosis has an inverse relationship to the
post-procedure in-stent lumen CSA.

IVUS Image Interpretation: In figure 1.13 a typical IVUS image is shown. In the image,
the more dense elements are shown as brighter white while the less dense elements are
shown as darker. It is important to notice that most plaques are eccentric which means
there is more plaque on one side of the vessel than the other. At the center of the IVUS
image, the catheter can be seen as a white bright circle.

Lumen appearance: Assessment of luminal dimensions is of great importance due to its
effects on therapeutic decisions and so it represents one of the most important applica-
tions of IVUS. The lumen area can be determined by planimetry of the leading edge of the
blood-intima acoustic interface. In vessels without atherosclerosis, IVUS measurements of
lumen have a close correlation with angiography measures. But in diseased arteries, the
correlation is moderate.
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Figure 1.13.: Typical IVUS image.

Figure 1.14.: Normal anatomy by IVUS. In mag-
nified image (right), thin intimal
leading edge is highlighted by ar-
rows [61].

In such cases, the shape of lumen is extremely complex and angiography is unable to show
it. This is probably due to an irregular, noncircular cross-sectional profile.

Normal Arterial Appearance: The appearance of normal coronary arteries has been cat-
egorized in many studies based on the characteristics of ultrasound reflections. Two tis-
sue interfaces are observable, one at the border between blood and the leading edge of
the intima and a second at the external elastic membrane (EEM), which is located at the
media-adventitia border. See figure 1.15.

Figure 1.15.: Intima and media-adventitia borders

In high-quality images, the tunica media can be visualized as a distinct layer but the
trailing edge of intima is not easily definable. Also the outer border of adventitia is not
distinct and merges into the surrounding tissues. In normal arteries, the intima is thin,
consisting mostly of endothelial cells and connective tissue, with a relatively small differ-
ence in the impedance from blood. In about half of the normal coronary images, the intima
cannot be visualized as a distinct layer.
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Characterization of Atherosclerosis: As mentioned above, IVUS is a useful method for
studying the morphology of atherosclerosis in vivo. Below the plaque components and its
appearance in IVUS images are described.

Plaque Components: All plaques with lower density than calcified plaques are called
”soft plaque”. However, the more specific terms ”fibrous” and ”fibro-fatty” are better
terms than ”soft plaque”. Lipid-laden lesions appear hypoechoic, fibromuscular lesions
generate low-intensity or ”soft” echoes, and fibrous or calcified tissues are relatively echogenic.

Lipid-laden or fibromuscular lesions may exhibit a prominent echogenic fibrous cap,
although most fibrous caps are too thin to be resolved by IVUS. Most of the plaques are a
mixture of different types: fibrous, fibro-fatty and calcified as mentioned before.

Figure 1.16.: Typical IVUS images presenting
different kind of tissues [89]. Figure 1.17.: Mixed plaque [14].

Two kinds of false imaging are associated with dense plaque formations (calcified plaques):
reverberations and shadowing. Reverberations are the result of multiple copies of dense
plaques. Shadowing appears as a black wedge-shaped area radiating outward from the
calcified tissue [53].

Introduction to Virtual Histology (VH-IVUS)

Despite its usefulness in diagnosis, gray-scale IVUS imaging is somehow limited in regard
to this analysis of plaque composition. Studies have so far demonstrated the potential to
identify calcified plaques using IVUS images[43]; however, the identification of lipid pools
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is hampered by relatively low sensitivity and specificity. Besides, calcified and dense fi-
brotic tissues are not easily differentiable in IVUS images due to the echoreflections. Vir-
tual Histology is another sophisticated attempt for detailed tissue characterization and
thus the recognition of lipid-rich, atheromatous cores in potentially vulnerable plaques
[43]. VH-IVUS can distinguish between areas with low echoreflections, which can be ben-
eficial in addition to IVUS imaging.

VH technique is based on backscatter analysis and mathematical modeling of the radio-
frequency signals produced by the intravascular ultrasound unit. It provides a color-coded
tissue map of plaque composition superimposed on cross-sectional images of the coronary
artery obtained by IVUS. In figure 1.18 an IVUS image and the related VH-IVUS colored
image is shown.

Figure 1.18.: IVUS image,VH-IVUS result and color map [100].

VH has demonstrated the potential to provide detailed quantitative information on
plaque composition and morphology. It has been so far validated in studies of explanted
human coronary segments[58]. In figure 1.19 Volcano V HTM device is displayed.

Plaque Components: As discussed in the beginning of this chapter, many different cell
and tissue types are commonly found in atherosclerotic plaques. But based on the reso-
lution of VH-IVUS images, and to simplify images, plaque components are grouped into
four basic tissue types during VH-IVUS imaging (see figure 1.18.c). These tissue types are
displayed in table 1.3 [43].

VH Applications: Adaptive intimal thickening, pathologic intimal thickening, fibro-atheroma,
TCFA and fibrocalcific plaques as discussed previously can be diagnosed using VH-IVUS
images. VH-IVUS defines fibroatheromata as having a confluent necrotic core of more than
10% of the total plaque volume in mainly fibrous and/or fibrofatty tissue. TCFAs identi-
fied by VH-IVUS can be further sub-classified on the basis of certain characteristics such
as necrotic core percentage of the tissue that increase the risk of sudden cardiac death, as
determined by analyses of post-mortem data[43]. Different VH applications are presented
in table 1.4.
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Figure 1.19.: The Volcano s5 imaging system(V HTM IVUS) [100].

Figure 1.20.: Current coronary plaque classification in VH-IVUS images. (A and B) intimal thick-
ening and (C, D, E and F) more vulnerable lesions, such as fibroatheroma. (D) In
a thin-cap fibroatheroma, the necrotic core is proximal to the surface of the plaque
(E) Thin-cap fibroatheroma presenting with several layers of necrotic cores suggests
previous ruptures.
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Table 1.3.: VH-based Plaque Components
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Table 1.4.: VH Applications

1.3. Problem Statement

Lesion components respond differently to pharmaceutical and interventional therapies.
Lesions containing a high proportion of collagen fibers (hard plaques) respond well to
clinical interventions such as angioplasty, atherectomy, and stent deployment. Lipidic or
soft plaques are relatively unstable, small in size, and prone to rupture. Soft plaques have
been implicated in acute ischemic syndromes, such as plaque rupture, which can lead to
thrombus formation and sudden cardiac death but they are more likely to regress with
diet and drug therapy [90]. Focal calcifications often form the initiation site of dissection
after balloon angioplasty and specific patterns of calcification strongly correlate with the
risk of major post-angioplasty dissection [90]. Moreover, directional atherectomy is less
effective in the presence of extensive superficial calcification and is often efficacious in non-
calcified arteries and rotational atherectomy is reported to preferentially ablate calcified
atherosclerotic plaque components [90]. Thereby, understanding plaque composition is a
vital step in the evaluation of coronary arteries. Accurate characterization of plaque lesions
helps the clinician to choose the appropriate clinical intervention and assess the effects
of therapy. In addition, characterization of plaque could provide valuable information
in longitudinal studies of atherosclerosis following drug therapy, in understanding the
process of vascular remodeling, or in the assessment of heart transplant patients during
clinical follow-up [90].

Due to the importance of plaque characterization, different techniques have been devel-
oped over the last twenty years and some methods are yet to come. Among the methods
that had been discussed in previous section, VH and OCT seem to be more useful in di-
agnosis. Although these two novel methods are extremely valuable, their accuracy is still
vague. Additional steps should be taken to provide physicians with a complete accurate
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tool.
To be more specific, if some of the limitations of VH are eliminated, it could be one of the
best techniques in the field. VH applications and accuracy has been examined thanks to
many researchers which will be more discussed in Chapter 3. Also its limitations are spec-
ified.
One of the limitations of VH is the ECG-gated acquisition. In principle, the heart is rela-
tively at rest in the end-diastolic point (peak R-wave), and, in most ECG-gating methods,
this moment is chosen to acquire an image (see figure 1.21). Capturing only one frame per
cardiac cycle significantly decreases the longitudinal resolution of IVUS imaging. In order
to accurately calculate plaque compositions, the smallest longitudinal spacing between the
acquired IVUS images is crucial [60] , [66].
An IVUS based characterization method supported by image processing techniques could
further provide the crucial information which VH is not able to. Although image based
characterization techniques can be found in literature, the synchronization between VH
and IVUS image-based characterization would increase the applicability of VH. Also a
method which is validated and trained based on VH images can extend the accuracy of
such techniques.
Thus, an IVUS image based technique, which is proposed in this thesis, will enhance the
use of VH technique among physicians.

Figure 1.21.: ECG-gate acqusition in VH
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2.1. Introduction

As discussed in the previous chapter, IVUS has undergone many medical practice changes
since its advent. So far, several clinical applications have been suggested for IVUS and
their acceptability has been studied. Although for the physicians the clinical results are
vital, from an engineering point of view the physics and idea behind IVUS is at the centre
of attention .Hence, in this chapter the basic physics of ultrasound is discussed for further
understanding of the IVUS technique.

2.2. Physics of Ultrasound

Ultrasound is high-frequency sound which is described by its wavelength or frequency.
Sound waves which are audible for human are in the range of 20Hz to 20kHz, whereas
ultrasound waves used in medicine are high frequency waves between 2 and 15MHz [86].
Originally, waves with a frequency more than 20 kHz are described as ultrasound.

Basically, in different mediums, the speed of sound wave is different. The speed of
sound in a medium is calculated as follows:

c =
Ê

1
k.ρ

= λ.f (2.1)

c is the speed of the sound, k and ρ are compressibility and density of the tissue and λ
and f are wavelength and frequency respectively.

But ultrasound systems usually use an estimation of 1540m/s for all mediums which
is the average speed of ultrasound in the body. Although it may result in little errors in
estimated distances in different mediums, this estimation has been advantageous in most
systems.

2.2.1. Ultrasound Generation

To generate ultrasound waves, vibration should take place within a medium. For this pur-
pose, a transducer which converts electrical energy into mechanical energy is used (figure
2.1). Piezoelectric materials are capable of providing such conversion. Piezoelectric mate-
rials vibrate at the same frequency as the frequency of the voltage applied to them. The
resonant frequency of a transducer is the frequency at which the transducer works more ef-
ficiently and is related to the thickness of the piezoelectric material. Resonant frequency is
the frequency that results in the most vibration of the material. It is reached when reflected
waves of the front and back of the material reinforce each other.
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Figure 2.1.: Generating ultrasound waves [86].

An array of transducers is used in most systems which consists of small transducers in
a row to provide more widespread waving (figure 2.2)

Figure 2.2.: An array of transducers [86].

2.2.2. Pulsed Ultrasound

Sending ultrasound waves continuously will make it impossible to predict the distance
of different boundaries as the information about each boundary. This problem is solved
using pulsed ultrasound. When pulses are produced, they travel within the medium and
reflect. Typically short pulses are used to provide the chance of differentiating between
close boundaries. A pulse is usually composed of different frequencies and amplitudes
(figure 2.3).

2.2.3. Interaction of Ultrasound with Surfaces

Reflection

When an ultrasound wave meets a surface between two adjacent mediums, a part of the
energy is reflected backward. The factor that is associated with the amount of reflected
energy is called the acoustic impedance between the two materials:

Z = ρc (2.2)

Where ρ is the density of the material and c is the propagation speed of the sound. Acoustic
impedance is the medium resistance against sound waves in the medium and depends on
the density and compressibility of the medium. The key factor in reflection is the difference
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Figure 2.3.: A typical ultrasound pulse composed of signals with different frequencies [86].

between acoustic impedance of the two materials. In table 2.1 acoustic impedance of some
materials are reported. The greater the difference in acoustic impedance, the greater is the
proportion of reflected energy (figure 2.4). However, if there was no difference in acoustic
impedance, there would be no reflection.

Another important factor in reflection is the angle of incidence (figure 2.5). Due to the
incidence angle, the reflected and refracted waves are calculated using the following equa-
tions:

Ri = [(Z2Cos(θi)− Z1Cos(θt))/(Z2Cos(θi) + Z1Cos(θt))]2 (2.3)

Ti = (4Z1Z2Cos(θi)Cos(θt))/(Z2Cos(θi) + Z1Cos(θt))2 (2.4)

Where θi is the incidence angle, θr is the reflected angle and θt is the refracted angle.

Attenuation

Attenuation is the energy loss of sound waves as they travel through the material. The
deeper the wave travels in the body, the weaker it becomes. The loss of energy will further
impress the energy of the reflected waves. Attenuation is the result of three factors: re-
flection, absorption and scattering. Absorption is the process in which, ultrasound energy
is converted into heat. Scattering from small or rough structures may prevent the waves
from returning to the transducer and hence get lost. These factors together may result in
lower energy of the reflected beams.
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Table 2.1.: Acoustic impedance in different materials [57].

Material Impedance, Z(kgm−2s−1)
Air 0.0004× 106

Blood 1.61× 106

Brain 1.58× 106

Fat 1.38× 106

Human soft tissue 1.63× 106

Kidney 1.62× 106

Liver 1.65× 106

Muscle 1.70× 106

Skull Bone 7.80× 106

Water 1.48× 106

Figure 2.4.: Role of acoustic impedance in reflection [86].

Figure 2.5.: Angle of reflection [86].
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The intensity loss of the waves while travelling through the material is proportional to
the intensity itself and distance they travel:

∆I = −µI∆x (2.5)

Where µ is the attenuation constant depends on the material characteristics. µ itself de-
pends on tissue viscosity (η) and density (ρ) and ultrasound frequency (ω) and speed (c):

µ =
2ηω2

3ρc3
(2.6)

According to equation 5, the attenuation depends on µ (figure 2.6).

Figure 2.6.: Attenuation in different materials [86].

2.2.4. Forming Image

Those reflected and scattered waves returned to transducer are used for ultrasound imag-
ing. Doubtlessly, the goal of any ultrasound system is to make the similar tissues look alike
and different ones look different.

When reflected waves (hereafter backscatter signal) reach the transducer, they make it
vibrate. This vibration is further converted into electrical energy by piezoelectric element.
The amplitude of the reflected waves is a key element of distinction between different ma-
terials. Simultaneously, boundary depth is detectable based on the time delay of reflected
waves.

There are different modes for providing images from backscatter signal. In A-mode
which is used for eye images, a short pulse is send out and the echoes and their time delay
are measured (figure 2.7)

If different amplitudes are displayed as spots with varying brightness, the display type
is called B-mode. By moving the transducer slightly so that the path of new waves are
adjacent to the previous ones, a B-mode image can be produced (figure 2.8). As mentioned
before most systems now use an array of transducers which may provide B-mode images
without any need for transducer movement.

Another display mode, M-mode, is a composition of A-mode and B-mode. In M-mode
scan, different A-mode scans are obtained in different times where transducer is stationary.
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Figure 2.7.: A-mode representation of backscatter ultrasound [86].

Figure 2.8.: B-mode imaging method: (A) and displayed in brightness mode in adjacent scan lines,
(B) a B-mode image is produced [86].
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2.2.5. Image Resolution

The resolution of a system is identified by its ability to distinguish between two adjacent
objects. With regard to ultrasound images, three different planes of resolution are consid-
ered: axial (along the beam), lateral (across the image) and slice thickness (figure 2.9).

Figure 2.9.: Different planes of resolution [86].

The axial resolution is the capacity of the ultrasound technique to separate the spatial
position of two consecutive scatterers through its corresponding echoes. As can be seen in
figure 2.10.a an ultrasound pulse P1 with width d1, frontally affects a linear scatterer array.
Echoes from these scatterers form a ”train” of pulses temporally distanced toi = 2 |Ri|c ,
being Ri the ith relative emitter-scatterer distance and c the pulse propagation speed. As
the distance between linear scatterers reduces, the time between the maxima of the train’s
pulses reduces until a critical distance is reached[15]. A critical distance from which the
pulses arrive at the receiver are superposed and therefore, the system would not be able
to discriminate or separate the echoes produced by each scatterer. This critical distance
is related to the pulse width dt and called axial resolution. In figure 2.10.b it is seen that
the resolution can be improved by diminishing dt, which is equivalent to increasing the
frequency of the emitted pulse. In fact, the axial resolution of this technique depends on
two factors: the ultrasound speed c and pulse duration dt. The functional dependency
between the spatial resolution, the frequency and the ultrasound speed propagation is
given by (7):

dr = cdt = cT =
c

f
(2.7)

Where dr is the axial resolution, c is the ultrasound speed for biological tissues, dt is the
pulse width, T is the period of ultrasound wave and f is the ultrasound frequency. Dif-
ferent axial and lateral resolutions for different frequencies are displayed in table 2.2. The
angular resolution is the capacity to discern two objects or two events located in the tan-
gential direction that depends on the Beam width. The beam width depends on the trans-
ducer effective emission area (figure 2.11).

Slice thickness will affect the region perpendicular to the scan plane over which returned
echoes are obtained. The slice thickness should be as thin as possible to maintain the image
quality as much as possible. Thereby, focusing is often used in this plane as well as in the
imaging plane.
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Figure 2.10.: We can see that the progressive distance reduction of the linear scatterers from a1−a4

in (a) or b1 − b4 in (b) reduces the time difference between the maxima of the ”train”
pulses. The maxima can be separated by reducing the pulse width from d1 in (a) to
d2 in (b), this is equivalent to an increase in the pulse frequency [74].

Table 2.2.: Axial and lateral resolution based on transducer frequency

MHz Axial Resolution Lateral Resolution
3.0 1.1 mm 2.8 mm
4.0 0.8 mm 1.5 mm
5.0 0.6 mm 1.2 mm
7.5 0.4 mm 1.0 mm
10.0 0.3 mm 1.0 mm
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Figure 2.11.: The focal length and the focal zone of a ultrasound transducer are indicated. The
transducer lateral resolution dθ is a function of its diameter, D and the emission fre-
quency, f [74].

2.3. Principles of IVUS

IVUS is a technique in which by using a catheter (figure 2.12) as a transducer, invaluable
images of coronaries are provided (for its applications see Chapter 1).

Figure 2.12.: Technology of IVUS Imaging [53]

2.3.1. Equipment for IVUS Examination

There are two different types of IVUS transducers: the mechanically rotating transducer
and the electronically switched multi-element array system [53] (figure 2.13). The former
is referred to as a ”mechanical IVUS system” and the latter as a ”solid-state design IVUS
system.”

Figure 2.13.: Mechanical rotating probe (top) and phased array probe (bottom) [53].
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Mechanical Systems

A single rotating transducer is driven by a flexible drive cable at 1,800rpm (30 revolutions
per second) to sweep a beam almost perpendicular to the catheter. At approximately 1°
increments, the transducer sends and receives ultrasound signals. The time delay and
amplitude of these pulses provide 256 individual radial scans for each image. Because
even small air bubbles can degrade image quality, mechanical transducer catheters require
flushing with saline to provide a fluid pathway for the ultrasound beam. In most mechan-
ical systems, the transducer spins within a protective sheath while the imaging transducer
is moved proximally and distally. This facilitates smooth and uniform mechanical pull-
back.

Electronic Systems

Electronic systems use an annular array of small crystals rather than a single rotating trans-
ducer. The array can be programmed so that one set of elements transmits ultrasound
pulses while a second set receives the echo pulses simultaneously. The coordinated beam
generated by groups of elements is known as a synthetic aperture array. The image can be
manipulated to focus optimally at a broad range of depths. The currently available elec-
tronic system provides simultaneous colorization of blood flow. A standard configuration
of IVUS acquisition images consists of three components. Figure 2.14 shows a scheme of
catheter with a piezoelectric transducer miniaturized the pull-back unit and the console to
reconstruct the images. IVUS catheter has a rank of measures that oscillates between 2.9F
to 3.5F (0.96 to 1.17mm) of diameter. The quality of the image depends on the operation
frequency, which is in the order of 20 to 50MHz, so that the lateral resolution would be ap-
proximately of the order of 113µm and the axial resolution would be of the order of 80 µm
[39]. The IVUS acquisition process is initiated when the catheter is manually (guided by
the angiography) inserted within the artery (figure 2.14 (a)). The catheter pullback is made
at linear constant velocity (usually 0.5mm/s) and its rotation has constant angular velocity
of 1800rev/min. The pivoting transducer sends a radially focused beam of ultrasound and
receives its corresponding echoes.

The obtained radial lines for different angular transducer positions are then processed,
giving a 2D cross section artery image (figure 2.14 (b)). The sequence can be shown as a
longitudinal sequence resulting in a longitudinal artery cut (figure 2.14(c)). The resolution
of an ultrasound image is directly related to the ultrasound signal frequency and high
frequencies allow for the obtaining of better resolution. Nevertheless, with the increase of
frequency, the attenuation of ultrasound waves while penetrating the biological tissue is
also increased. The typical frequencies of the IVUS technique are in the range of 20 MHz
to 50MHz with inferior resolutions of 50µm.

2.3.2. Longitudinal Display (L-Mode)

An important limitation of IVUS is that only single cross sectional images of the coronary
artery are displayed that limits the spatial orientation and precluding facile assessment of
the length and distribution of plaque and lesions.
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Figure 2.14.: Block diagram of IVUS Acquisition System [74].

Motorized transducer pullback and digital storage of cross-sectional images are neces-
sary for longitudinal (L-mode) imaging. In an L-mode display, computerized image re-
construction techniques display sets of ”slices” taken from a single cut plane within each
of a series of evenly spaced IVUS images to approximate the longitudinal appearance of
the artery [29].

To be meaningful, the cut plane should be through the center of artery mass or of the lu-
men, not arbitrarily through the center of the catheter. Widely position variation of catheter
within the vessel can arbitrarily affect the appearance of the artery. There are major limi-
tations of L-mode display including the obligate straight reconstruction of the artery and
the ability to display only a single arbitrary cut plane. Characteristic motion artifacts result
in a ”saw-tooth” appearance because of relative movement of the transducer and vessel,
although ECG-triggered image acquisition may eliminate some of these artifacts [8], [18].
Excessive artifacts may result in misinterpretations by inexperienced users. Therefore, the
L-mode should not be used for quantitative purposes (figure 2.15).

Figure 2.15.: (a) The longitudinal and cross sectional image for normal vessel (b) diseased vessel.
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2.3.3. A Basic IVUS Image Model

Correct image processing requires understanding the image formation, gray-level mean-
ing, artifact causes, the averaging and the motion of the dynamics structures. Thereby,
generation of simulated IVUS images is important because of four reasons: a) generation,
processing and visualization in the format that expert physicians use, b) the exploration of
some of the artifacts generated by the averaging of the beams, c) the smoothing and treat-
ment of the images to generate sufficient data to validate image processing algorithms,
and, d) comparison of data generated by the image formation model to the real data [15].
IVUS images can be obtained in a simulated form using a simple physical model based
on the transmission and reception of high frequency sound waves that radially penetrate
a simulated arterial structure (figure 2.16). For this model, we assume that the waves are
emitted by a transducer located in the center of the artery and that these waves propagate
radially through the blood and the arterial structures (intima, media and adventitia) being
reacted progressively by them. The reflected waves or echoes are received by the trans-
ducer that now behaves as a receiver. The time between the emission and the reception is
directly related to the distance between the source and the reflector (figure 2.17).

The echo amplitude, which is a function of time, is transformed onto gray-scale and
later to penetration depth and the radial coordinate is determined. If we place a rotator
transducer that make a registry of the corresponding echoes for each angular position of
the transducer and combine all the lines obtained from different positions we will obtain
a simulated 2D image of the structure in study. The simulated 3D IVUS can be gener-
ated by concatenating the planes generated independently taking into account the arterial
deformation caused by the blood pulsatile pressure.

Figure 2.16.: The disposition of the simulated arterial structures (blood, intima, media and adven-
titia) and calcification are illustrated. The ultrasound rotator transducer which emits
the pulse Po and receives pulse P1 has been placed at the coordinate center [74].
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Figure 2.17.: The determination of the distance D between the emitter/receiver and the reflecting
object is done from the difference of time between the transmitted pulse Po and the
received pulse P1 assuming that the pulse speed c is constant [74].

2.3.4. IVUS Artifacts

Non-Uniform Rotational Distortion (NURD) and Motion Artifacts

Non-uniform rotational distortion is unique to mechanical catheter systems and results
from mechanical binding of the drive cable that rotates the transducer [35]. This can occur
for a number of reasons including the presence of acute bends in the artery, tortuous guide
catheter shapes, variance in the hub or driveshaft manufacturing, excessive tightening of
a haemostatic valve or kinking of the imaging sheath. In an extreme situation, fracture of
the drive cable can occur (figure 2.18(c)). A distinct motion artifact can result from non
stable catheter position. Occasionally, the vessel moves before a complete circumferential
image can be created that result in the cycle deformation of the image. In addition, both
mechanical and solid state transducers can move as much as 5mm between diastole and
systole. This can preclude accurate assessment of arterial phenomena that depends on the
cardiac cycle (i.e., arterial pulsation and compliance).

Ring-Down, Blood Speckle, and Near Field Artifacts

Ring-down artifacts are usually observed as bright halos of variable thickness surround-
ing the catheter. They are produced by acoustic oscillations in the transducer, which result
in high-amplitude ultrasound signals that obscure the area immediately adjacent to the
catheter (figure 2.18(a)). Ring-down artifacts are present in all medical ultrasound devices
and create a zone of uncertainty adjacent to the transducer surface. Although time gain
compensation (TGC) can be used to decrease this artifact, excessive ring-down suppres-
sion can reduce signals from true targets. In the solid state systems, the transducers are
surface mounted and ring-down is partially reduced by digital subtraction of a reference
mask. In the case of incorrect performance, digital subtraction is potential to remove real
information or introduce false targets. The intensity of the blood speckle increases (expo-
nentially) as transducer frequency is increased and as blood flow velocity decreases. This
phenomenon can limit the ability to differentiate lumen from tissue (especially soft plaque,
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neointima, and thrombus). This problem is exacerbated by flow stagnation or rouleaux
formation, often most evident when the catheter is across a tight stenosis or within certain
dissections (e.g. intramural hematomas). As with ring down suppression, TGC manipu-
lation to reduce blood speckle can reduce signals from real targets. Some operators flush
contrast or saline through the guiding catheter to clear the lumen and to help identify-
ing tissue borders. Computer-based imaging algorithms can also suppress or differentiate
blood speckle from tissue.

Figure 2.18.: (a) Ring Down Artifact in an IVUS image, (b) Guide wire artifact, (c) A sample of
NURD in an IVUS image [14].

Obliquity, Eccentricity, and Problems of Vessel Curvature

Current imaging techniques assume that the vessel is circular, the catheter is located in the
center of the artery, and the transducer is parallel to the long axis of the vessel. However,
both transducer obliquity and vessel curvature can produce an image giving the false im-
pression that the vessel is elliptical. Transducer obliquity is especially important in large
vessels and can result in an overestimation of dimensions and a reduction in image quality
[51]. Image quality reduces because the amplitude of the echo reflected from an interface
depends on, in part, the angle at which the beam strikes the interface. When the catheter
is coaxial within the vessel and/or the beam strikes the target at a 90° angle, the strongest
signals are obtained. Therefore, lower image quality and errors in interpretation are more
likely when the IVUS catheter is not parallel to the vessel wall. The guide wire artifact is
the visualization of the wire shadow in the lumen area as shown in figure 2.18(b).

Problem of Spatial Orientation

There is no absolute anterior, posterior, left and right orientation possible in IVUS images.
However, with some systems, images can be rotated electronically to produce a constant
orientation. For example, images of a left anterior descending coronary can be electron-
ically rotated so that the circumflex is positioned at 9 o’clock. With this orientation, the
diagonal branches will arise from the left side of the image and the spatial branches will
appear perpendicular to the diagonal branches. However, electronic rotation of the im-
age is an electronic aid for interpretation and not a definitive standard. Side branches,
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visualized with both angiography and ultrasound, are extremely useful as landmarks in
facilitating interpretation and comparisons. Some authors also describe the use of perivas-
cular landmarks as important references for both axial position and tomographic orienta-
tion within the vessel. These landmarks are including the pericardium, strands of muscle
tissue, and the venous system.
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3.1. Previous Methods for IVUS Border Detection

3.1.1. Introduction

Intravascular Ultrasound (IVUS) imaging is a unique clinical imaging tool that provides
cardiologists with a cross-sectional inside view of the vessel and, thus, allows a complete
study of its morphology, such as arterial wall, lumen, or the plaque. The technique helps
in diagnosis and treatment of cardiac diseases, as far as availability of a precise charac-
terization and segmentation of arterial structures. A manual processing of images apart
from being a tedious time-consuming task, might suffer from intra- and inter-observer
variability. This fact motivates the development of image processing techniques address-
ing detection of the arterial structures. As stated in Chapter One, the accumulation of
different plaques such as soft (lipid), fibrotic or calcified regions between the two layers
of vessel wall (intima, the inner layer and media-adventitia, the outer layer) will lead to
atherosclerotic lesions. The area of the plaque accumulation between these layers will de-
termine whether the lesion is significant (borderline or intermediate) or not. So the first
step in characterizing the plaque is to determine the borders of the vessel wall.

3.1.2. Previous IVUS Researches

Image segmentation is the process of separating or grouping an image into different parts.
Because it is a difficult, subjective and time-consuming procedure to manually perform
the segmentation, there is an increasing interest in the development of automatic border
detection and tissue characterization methods for IVUS images. There is a wide range of
segmentation approaches which have been studied over the years [4],[65],[10],[31],[33].

Withey and Koles in [97] classified the segmentation methods into three generations.
First-generation methods like region growing [102], [77], [49] are low-level techniques
while second-generation methods like active contours [36], [81] use optimization meth-
ods and uncertainty models. Both these generations are region-based segmentation meth-
ods. The active contour methods are suitable for finding the edges of a region gray-scale
or some other features which are significantly different from the surrounding region [97].
Third-generation methods benefiting from higher-level knowledge such as a priori infor-
mation and expert-defined rules. Shaped models constitute the third generation.

In the fist-generation, Paul et al. proposed a method for border detection using region-
growing based on inter-pixel gray-scale differences. In this method, the center pixel of
each image is used as the initial seed point to guarantee that the algorithm always starts
in the lumen. Two automated border detection schemes, components-labeling (CL) with
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dilation-erosion and watershed segmentation (WS) are used to correct the leaked regions
due to signal drop-out and strut artifacts [5]. Watershed segmentation was chosen due
to its ability to separate features to allow for counting, identification or measurements.
Erosion and dilation were implemented to break the leaked region from the luminal re-
gion and components labeling was chosen to identify the luminal and leaked regions. The
choice of threshold is important in both schemes, since a too small threshold will limit
the growth of the luminal region and a too large threshold results in overgrowth into the
arterial wall. An appropriate threshold that allows growth up to the luminal border, some-
times results in leaks extending beyond the luminal region. Paired t-test comparison of the
areas showed that CL detected lumen areas were not significantly different from expert-
traced contours but WS detected lumen areas were somehow differs from expert-traced
contours.

The adventitia layer appears as a weak edge in IVUS images with a non-uniform gray-
level that makes its detection difficult. However, although adventitia detection is crucial
for reliable plaque quantification, the topic has hardly been approached.

A novel method for adventitia segmentation based on local orientation of image struc-
tures is proposed in [34]. There are two stages in adventitia detection: extraction of points
laying on the adventitia and recovery of a closed model of such points.

Adventitia candidate points are selected by means of the negative edges of minimum
radius extracted from IVUS images in polar coordinates. Edges are computed with a
first derivative of a Gaussian over images filtered with a Restricted Anisotropic Diffu-
sion (RAD) and longitudinal cuts serve to remove the intima layer. In order to interpolate
curve segments, they use restricted anisotropic operators to extend a mask function of the
unconnected set of points. By changing the boundary conditions of the diffusion process
to Dirichlet, so that the evolving function is forced to take the values of the initial mask
at the curve segments to be joined, the Anisotropic Contour Closing (ACC)is modeled.
The statistics on the maximum and mean positioning error show that their segmentation
is optimal in cases which the adventitia is thoroughly described as an edge.

The process yields an implicit level sets model of the adventitia that captures curvatures
as it bases on the image local orientation (figure 3.1).

Figure 3.1.: Adventitia Models (b), of the original (a) [34].

A method for the automated detection of lumen and media-adventitia border in sequen-
tial intravascular ultrasound (IVUS) frames was proposed in [69]. The method basis was
to use deformable models. The energy function is appropriately modified and minimized
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with the use of a Hopfield neural network. Proper modifications in the definition of the
bias of the neurons have been introduced to incorporate image characteristics. A sim-
ulated annealing scheme is included to ensure convergence at a global minimum. The
method overcomes distortions in the expected image pattern, due to the presence of cal-
cium, employing a specialized structure of the neural network and boundary correction
schemas which are based on a priori knowledge about the vessel geometry. By exploiting
the similarities of sequential frames, minimum user interaction is required only for the first
frame of the sequence, where the user must provide an initial estimation for the lumen and
the media-adventitia borders.

This second-generation segmentation method can be applied automatically on a se-
quence of IVUS frames to extract the regions borders of interest.

The introduction of a new expression for the image energy makes the method robust,
resulting in accurate boundaries for all images, regardless of the presence of noise or weak
edges, that are common in IVUS. In a sequence of frames obtained from the same arterial
segment, each IVUS frame can be considered quite similar to the previous one.

In the minimization of a deformable model, energy function must be applied twice for
each frame (once for each border) and the detected contours in the current frame are used
as the initial estimation for the next frame (figure 3.2).

Figure 3.2.: Image with calcified lesion or artifacts. (a) The boundary between media-adventitia is
ambiguous in the region between the arrows A and B due to acoustic shadowing or
the presence of a guide wire in the image. (b) Detected borders [49].

In [46], a new method to segment the walls of coronary arteries in IVUS images was pro-
posed based on a deformable model, which integrates both edge and region information.
In this method, the whole image is supposed to have three regions - lumen, vessel wall,
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and adventitia plus surroundings, which are separated by two closed contours, the inner
and outer boundaries. This method consists of two steps: firstly, the outer vessel wall
boundary is detected by minimizing an energy function of the contrast along it; secondly,
by minimizing another energy function that considers the different gray-level distributions
of the lumen and the vessel wall, and the contrast along the edge between these two re-
gions, the inner vessel wall is located. Dynamic programming was adopted to implement
this method (figure 3.3).

Figure 3.3.: Block diagram of edge contrast method [46].

Spatial continuity along the sequence was provided in some researches [67]. Some of
the earlier works on IVUS images segmentation were based on the energy minimization
of a contour either by means of guided snake or cost function. In these methods, various
optimization algorithms are applied, such as solution of partial differential equations [44],
dynamic programming [19], and genetic algorithms [23]. Segmentation methods based on
the probabilistic approaches have been proposed in [28], [27]. A modified optimization-
based contour detection method was presented in [49] to compute the lumen area of the
coronary artery from intravascular ultrasound (IVUS) video images.

First, the search range for the artery inner wall was determined based on the continuity
of IVUS video frames. Next, the internal and external energy were calculated to describe
the smoothness of the arterial wall and the gray-scale variation of ultrasound images, re-
spectively. Here, a novel form of the external energy which combines the gradient and
variance of the intensity of image in the radial direction is used.

Finally, the minimal energy path based on the optimum contour of the artery wall was
obtained using circular dynamic programming (DP).

In comparison to the typical DP procedure using the traditional external energy form
based on only the image gradient, the reliability of this modified method is considerably
improved in the measurement of coronary artery lumen area (figure 3.4). The steps of the
modified DP procedure are as follows:

STEP I. Image Preprocessing:

1. Polar transformation of IVUS images-advanced techniques for medical imaging seg-
mentation use a priori knowledge of the target structure shape. In the case of the
adventitia border, its circular-like appearance is taken into account by transforming
images to polar coordinates with the origin at the geometric center of the vessel bor-
der. In this coordinate system, the adventitia is nearly a horizontal curve, which
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Figure 3.4.: Typical contour detection results respectively using the ordinary and the modified
methods. (a) Frame of IVUS images with the delineated (dashed line) annular region
for contour detection. (b) Transformed rectangular region and the obtained edge using
the ordinary (dotted line) and the modified (solid line) methods. (c) Obtained contours
displayed in the original IVUS image [69].

significantly simplifies border feature extraction and parameterization.

2. RAD- In order to enhance significant structures while removing noise and textured
tissue, a Restricted Anisotropic Diffusion (RAD) was used. This filtering scheme
modifies classic anisotropic diffusions by suppressing any diffusion across image
level curves. The associated image operator homogenizes image structures gray val-
ues according to their geometric continuity and, thus results in a more uniform re-
sponse to image local descriptors.

STEP II. Border Points Features Learning: The goal of the selected stage is to compute a
mask of vessel border segments and calcium sectors. Extracting vessel borders and cal-
cium points requires defining the functions that best characterize each set, as well as their
most discriminating parameter values.

They learned both feature space and parametric threshold values by applying super-
vised classification techniques to a training set of manually segmented images.

1. Feature Space Design - their feature space is designed to discriminate among the
set adventitia/intima, calcium, and fibrous tissue. Calcium sectors are discarded by
their tissue shadow and adventitia. Fibrous tissue is discriminated by its similar
appearance to vessel borders. By the chosen polar coordinates, horizontal edges are
the main descriptors of the set adventitia/intima. Image simple statistics serve to
formulate the functions characterizing calcium and fibrous plaque.

2. Parameters Determination - in their segmentation procedure, there are two kinds of
parameters, those that best discriminate among different structures in the feature
space and those controlling filtering of fake responses. Discriminating parameters
are thresholding values on the feature space, while length filtering removes spuri-
ous detections from the extracted segments. Both parameters are tuned to yield an
optimal segmentation for a training set of manually traced borders.
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STEP III. Segmentation Stage: The selection stage produces two binary images: adventi-
tia/intima points and calcium sectors.

Vessel border segments are modeled by computing an implicit closed representation and
then an explicit snake representation using B-Splines.

1. Implicit ACC - for the implicit closing, using an ACC based on functional extension
principles to complete curve segments in the image mask domain was suggested.
The use of restricted diffusion operators enables to take into account image geom-
etry, restore curved shapes, and discard calcium and side branch sectors. Three-
dimensional (3D) continuity was endowed to such implicit reconstruction by topo-
logical area considerations.

2. Explicit B - Snakes Representation- the vessel contours at uncompleted segments
(e.g. branches or calcification) by approaching ACC with a B-spline snake encoded
with control points was defined.

A new three-dimensional (3D) IVUS segmentation model which was based on the fast-
marching method and uses gray-level probability density functions (pdf) of the vessel wall
structures was developed by Cardinal et al. [12]. Fast-marching is a particular case of the
level-set model and consists of evaluating an interface propagating under a unidirectional
speed function. In this method, the gray-level distribution of the whole IVUS pullback
was modeled with a mixture of Rayleigh pdf. With multiple interface fast-marching seg-
mentation, the lumen, intima plus plaque structure, and media layers of the vessel wall
were computed simultaneously. figure 3.5 is the Schematic implementation of the image-
formation model.

An in vivo IVUS pullback (1) was used to create the vessel geometry (2) z(x, y) is a
function representing the acoustic impedance variations; z(r, ϕ) is the acoustic impedance
function mapped in polar coordinates; h(r, ϕ) is the polar PSF, with a beam width that
is increasing with depth; ⊗ is the 2-D-convolution operator; I(r, ϕ) is the simulated po-
lar radio-frequency image; IB(r, ϕ) is the polar B-mode image, that was computed using
the Hilbert transform (HT) of I(r, ϕ); IB(x, y) is the Cartesian B-mode image or simulated
IVUS image. This simulation strategy was repeated for the whole image series of a pull-
back within a diseased superficial femoral artery.

A shape-driven approach to segmentation of the arterial wall from IVUS images in
the rectangular domain was proposed by Gozde et al.[88]. Their first contribution was a
shape driven approach to IVUS segmentation. They modeled both the lumen and media-
adventitia(MA) contour variations within a shape space in the ”re-sampled” rectangular
domain. Hence, they constrained the lumen and media-adventitia contours to a smooth,
closed geometry, which increases the segmentation quality without any tradeoff with a
regularizer term, yet with adequate flexibility.

Their second contribution was for the lumen segmentation in which they utilize a non-
parametric intensity model based on probability density. Furthermore, they incorporated
global image measurements into the intensity model rather than point-wise measurements
used in previous methods. The media-adventitia was segmented by employing edge in-
formation. They defined an oriented smooth gradient that overcomes noise present in
IVUS images. In addition, they developed a method to detect calcifications and branch
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Figure 3.5.: Block diagram of the proposed method of [12].

openings, taking advantage of anatomical characteristics. Incorporating the feature infor-
mation into the media-adventitia contour extraction greatly enhances their segmentation
method.

In this paper the side branches are identified as the openings formed when the vessel
was being imaged as bifurcates. This is visualized as an area of dark intensity extending
from the lumen in the near field towards the lumen in the far field. The intensity pattern
is detectable in the rectangular image domain as a dark intensity segment extending in the
vertical direction (figure 3.6).

To detect side branches, the image is divided into n columns, similar to the MA initial-
ization, and columns of dark intensity are sought (figure 3.7). The maximum smoothed
intensity for every column is noted. From these intensities, the maximum smoothed in-
tensity over the whole image is obtained. A column is classified as a branch opening, if its
maximum smoothed intensity is smaller than 20% of the overall maximum intensity.

At the positions of branch opening, the initial MA contour is interpolated linearly. Once
the initial MA contour is interpolated correctly, it is median filtered and the initial shape
pose is found. The evolution method of the MA shape is not affected by the side branch
feature, because in the region of the dark branch opening, there is no high gradient by
which the contour can be distracted.

figure 3.8 shows the flowchart of their overall method depending on the side branch
feature. In the cases of branch opening, the evolution of the luminal contour is delimited
by the MA contour as shown in figure 3.8. Otherwise, the evolution of the MA contour will
be constrained by the lumen contour. Table 3.1 shows a survey on different segmentation
algorithms for border detection in IVUS images.
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Figure 3.6.: Lumen and MA segmentation on a pullback from the Boston Scientific Galaxy probe
at 40MHz. (a) Original image (b) Image with doctor-drawn contours (c) Segmentation
result. High frequency probe pullbacks pose more challenges to the algorithm, as can
be seen in these images [88].

Figure 3.7.: Branch opening in display and rectangular domain[88].
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Table 3.1.: A survey on segmentation algorithms
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Figure 3.8.: (a)The order in which the segmentation algorithms are executed depends on whether
branch openings have been detected or not.(b) Interpolated branch opening in the
rectangular and display domain; lumen is delimited by the MA [88].

3.2. Proposed Method for IVUS Border Detection

3.2.1. Introduction

Medical images are often corrupted by noise and sampling artifacts, which can cause con-
siderable difficulties when applying classical segmentation techniques such as edge detec-
tion and thresholding. As a result, these techniques either fail completely or require some
kind of post-processing steps to remove invalid object boundaries in the segmentation re-
sults. To address these difficulties, deformable models have been extensively studied and
widely used in medical image segmentation with promising results.

Deformable models are curves or surfaces defined within an image domain that can
move under the influence of internal forces, which are defined within the curve or surface
itself, and external forces, which are computed from the image data.

The internal forces are designed to keep the model smooth during deformation. The
external forces are defined to move the model toward an object boundary or other desired
features within an image. By constraining extracted boundaries to be smooth and incor-
porating other prior information about the object shape, deformable models offer robust-
ness to both image noise and boundary gaps and allow integrating of boundary elements
into a coherent and consistent mathematical description. Such a boundary description can
then be readily used by subsequent applications. Moreover, since deformable models are
implemented on the continuum, the resulting boundary representation can achieve sub-
pixel accuracy, a highly desirable property for medical imaging applications. The term
deformable models first appeared in the work by Terzopoulos and his collaborators in
the late eighties [84]. The popularity of deformable models are largely due to the sem-
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inar paper ”Snakes: Active Contours” by Kass, Witkin, and Terzopoulos [36]. Since its
publication, deformable models have grown to be one of the most active and successful
research areas in the image segmentation. Various names, such as snakes, active contours
or surfaces, balloons, and deformable contours or surfaces have been used in the literature
to refer to the deformable models. However, there are basically two types of deformable
models: parametric deformable models and geometric deformable models.

Parametric deformable models represent curves and surfaces explicitly in their paramet-
ric forms during deformation. This representation allows direct interaction with the model
and can lead to a compact representation for fast real-time implementation.

However, adaptation of the topology model, such as splitting or merging parts during
the deformation, can be difficult using parametric models.

Geometric deformable models, on the other hand, can handle topological changes natu-
rally. These models, based on the theory of curve evolution [78] and the level-set method
represent curves and surfaces implicitly as a level-set of a higher-dimensional scalar func-
tion.

Their parameterizations are computed only after complete deformation, thereby to low
topological adaptively to be accommodated easily. Despite this fundamental difference,
the underlying principles of both methods are similar.

3.2.2. Preprocessing

The anisotropic diffusion filter is used to de-speckle the medical ultrasound images; this
method preserves the features and enhances the edges [52], [25]. There are some parts
of the image in the IVUS frames that are not important from the image processing point
of view, for example, the calibration and the scale marks. These regions along with the
bright catheter ring artifact are replaced by the neighboring gray values. Furthermore,
because of more or less circular structures of the vessels, the planar image in the Cartesian
coordinates is converted into the Polar coordinates in order to facilitate the detection steps
such as the contour initialization. The initial contours used in the deformable models have
to be as near as possible to the real borders. For detecting an initial contour for intima, the
intensity information is used for thresholding. This is done by sweeping the pixels starting
from the center of the catheter toward the image borders on a constant angle on a radius
(r) while the angle is constant. I(r, θ) denote the intensity of a pixel located in a radius
of r and an angle of θ in polar coordinate. If I(r, θ) > T , where T is the threshold value
for intensity, then this pixel will be assumed as a point on the initial border. The value
of T is empirically set to 42. figure 3.9(b) illustrates the intima’s initial contour. For the
media-adventitia initial contour, the image is first filtered using a 3×3 low pass filter with
a sigma value equal to unity. Then a canny edge detection operator with α = 8 is applied
to each frame in Polar coordinate. An example result is shown in figure 3.9(a). After the
initial border detection step, the images are converted back to the Cartesian coordinates
for further processing.

3.2.3. Parametric Deformable Models

The basic premise of the energy minimizing formulation of deformable contours is to find
a parameterized curve that minimizes the weighted sum of internal and potential energy.
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Figure 3.9.: (a) Initial contour for media-adventitia border, (b) initial contour for Intima border.

The internal energy specifies the tension or the smoothness of the contour. The poten-
tial energy is defined over the image domain and typically possesses local minima at the
image intensity edges occurring at object boundaries (figure 3.10). Minimizing the total
energy yields internal and potential forces. Internal forces hold the curve together (elas-
ticity forces) and keep it from bending too much(bending forces). External forces attract
the curve toward the desired object boundaries. To find the object boundary, parametric
curves are initialized within the image domain, and are forced to move toward the poten-
tial energy minima under the influence of both these forces.

Figure 3.10.: (a) A 2D MR image of the heart left ventricle, (b) A potential energy function derived
[101].

Mathematically, a deformable contour R(s) is a curve:

R(s) = (X(s), Y (s)), s ∈ [0, 1] (3.1)

that moves through the spatial domain s of an image I to minimize the following energy
function:

E(R) = Einternal(R) + Epotential(R) (3.2)

The first term is the internal energy function and is defined to be:

Einternal(R) =
1
2

Z 1

0
(α(s)|∂R

∂s
|2 + β(s)|∂

2R

∂s2
|2) ds (3.3)

The first-order derivative discourages stretching and makes the model behave like an
elastic string. The second-order derivative discourages bending and makes the model
behave like a rigid rod. The weighting parameters α(s) , β(s) can be used to control the
strength of the model’s tension and rigidity respectively. In practice, α(s) , β(s) are often
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chosen to be constants. The second term is the potential energy function and is computed
by integrating a potential energy function P (x, y) along the contour R(s):

Epotential(R) =
Z 1

0
P (R(s)) ds (3.4)

The potential energy function P (x, y) derived from the image data and takes smaller
values at object boundaries as well as other features of interest. Given a gray-level im-
age I(x, y) viewed as a function of continuous position variables (x, y), a typical potential
energy function designed to lead a deformable contour toward step edges is:

P (x, y) = −We|∇[Gσ(x, y) ∗ I(x, y)]|2 (3.5)

Where We is a positive weighting parameter, Gσ(x, y) is a two-dimensional Gaussian
function with standard deviation σ,∇ is the gradient operator, and ∗ is the 2D image con-
volution operator. If the desired image features are lines, then the appropriate potential
energy function can be defined as follows:

P (x, y) = −Wl[Gσ(x, y) ∗ I(x, y)] (3.6)

Where Wl is a weighting parameter. Positive Wl is used to find black lines on a white
background, while negativeWl is used to find white lines on a black background. For both
edge and line potential energies, increasing σ can broaden its attraction range. Regardless
of the selection of the exact potential energy function, the procedure for minimizing the
energy function is the same. The problem of finding a curve R(s) that minimizes the
energy functional E is known as a variation problem. It has been shown that the curve
that minimizing E must satisfy the following Euler-Lagrange equation [101]

∂

∂s
(α
∂R

∂s
)− ∂2

∂s2
(β
∂2R

∂s2
)−∇P (R) = 0 (3.7)

To gain some insight about the physical behavior of deformable contours, we can view
equation 3.7 as a force-balanced equation

Finternal(R) + Fpotential(R) = 0 (3.8)

where the internal force is given by

Finternal(R) =
∂

∂s
(α
∂R

∂s
)− ∂2

(∂2s)(β ∂2R
∂s2

)
(3.9)

and the potential force is given by

Fpotential(R) = −∇P (R) (3.10)

The internal force Finternal(R) discourages stretching and bending while the potential
force Fpotential(R) pulls the contour toward the desired object boundaries. The forces are
defined and derived from the potential energy function P (x, y) given in either equation
3.5 or equation 3.6, as Gaussian potential forces. To find a solution to equation 3.7, the
deformable contour is made dynamic by treating R(s) as a function of time t as well as s-

49



3. Chapter Three:
Plaque Area Detection

i.e. R(s, t). The partial derivative of R with respect to t is then set equal to the left-hand
side of equation 3.7 as follows:

γ
∂R

∂s
=

∂

∂s
(α
∂R

∂s
)− ∂2

∂s2
(β
∂2R

∂s2
)−∇P (R) (3.11)

The coefficient γ is introduced to make the units on the left side consistent with the right
side. When the solution R(s, t) stabilizes, the left side vanishes and we achieve a solution
of equation 3.7. We note that this approach of making the time derivative term vanished is
equivalent to applying a gradient descent algorithm to find the local minimum of equation
3.2. Thus, the minimization is solved by placing an initial contour on the image domain
and allowing it to be deformed according to equation 3.11. Figure 3.11 shows an example
of recovering the left ventricle wall using Gaussian potential forces.

Figure 3.11.: An example of recovering the left ventricle wall using Gaussian potential forces. (a)
Gaussian potential forces and (b) the result of applying Gaussian potential forces to
a deformable contour, with the circular initial contour shown in gray and the final
deformed contour in white [101].

So the algorithm involves firstly initializing a set of snake points defined in the prepro-
cessing step from which the iterative process then begins. The parameters of this algorithm
were set to the following weights: α = 0.5, β = 0.5, γ = 4.2. These values are defined
through an optimization procedure using the results of the border detection method ap-
plied to 30 different images (used as the training set) and comparing them to the manually
defined borders by experts. The snake algorithm ends when the zero snake points are
moved to new positions for five consecutive iterations (figure 3.12).

3.2.4. Geometric deformable models

Let us consider a dynamic curve as R(s, t) = [X(s, t), Y (s, t)] where t is the time and s is
the curve parameter also to denote the curve’s inward normal unit as N and its curvature
as k. The evolution of the curve along its normal direction can be characterized by the
following partial differential equation:

∂R

∂t
= V (k).N (3.12)
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Figure 3.12.: First row a fibro-lipid plaque image and its result, second row calcified image, third
row an image with struts of stent and its results with parametric deformable models.

Where V (k) is the speed function as it determines the speed of the curve evolution. The
basic idea of the geometric deformable model is to couple the speed of deformation (using
curvature and/or constant deformation) with the image data, so that the evolution of the
curve stops at object boundaries. The evolution is implemented using the level-set method.
Thus, the majority of the researches in geometric deformable models has been focused in
the design of speed functions. We now review the level-set method for implementing
curve evolution.

The level-set method is used to account automatic topology adaptation, and it also pro-
vides the basis for a numerical scheme using by geometric deformable models. In the
level-set method, the curve is represented implicitly as a level-set of a 2D scalar function
which is usually defined on the same domain as the image itself. The level-set is defined
as the set of points having the same function value. Figure 3.13 shows an example of
embedding a curve as a zero level-set.

It is worth noting that the level-set function is different from the level-sets of images,
which are sometimes used for image enhancement. The sole purpose of the level-set func-
tion is providing an implicit representation of the evolving curve. Instead of tracking a
curve through time, the level-set method evolves a curve by updating the level-set func-
tion at fixed coordinates through time. This perspective is similar to that of an Eulerian
motion formulation as opposed to a Lagrangian formulation, which is analogous to the
parametric deformable model. A useful property of this approach is remaining the level-
set as valid function while the embedded curve can change its topology. This situation is
depicted in figure 3.14.
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Figure 3.13.: An example of embedding a curve as a level-set. (a) A single curve. (b) The level-set
function where the curve is embedded as the zero level-set (in black). (c) The height
map of the level-set function with its zero level-set depicted in black [80].

Figure 3.14.: From left to right, the zero level-set splits into two curves while the level-set function
still remains a valid function.

We now derive the level-set embedding of the curve evolution. Given a level-set func-
tion φ(x, y, t) with the contour R(s, t) as its zero level-set, we have φ[R(s, t), t] = 0. By
differentiating this term with respect to t and using the chain rule, we obtain:

∂φ

∂t
+∇φ.∂R

∂t
(3.13)

where∇φ denotes the gradient of φ, assuming that φ is negative inside of the zero level-
set and positive outside of it. Equation 3.13 can be rewritten to 3.14 according to inward
normal unit to the level-set curve:

∂φ

∂t
= V (k)|∇φ| (3.14)

where k the curvature at the zero level-set is given by:

K = ∇. ∇φ
|∇φ|

=
φxxφ

2
y − 2φxφxy + φyyφ

2
x

(φ2
x + φ2

y)
3
2

(3.15)

Since the evolution (equation 3.14) is derived for the zero level-set only, the speed func-
tion V (k), in general, is not defined on the other level-sets. Hence, we need a method to
extend the speed function V(k) to all of the level sets. A speed function that is used by
geometric deformable contours, takes the following form:

∂φ

∂t
= c(k + V0)|∇φ| (3.16)
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where [40]

c =
1

1 + |∇(Gσ ∗ I)|
(3.17)

A positive value of V0 shrinks the curve while a negative V0 expands it. The curve evo-
lution is coupled with the image data through a multiplicative stopping term. This scheme
can work well for objects that have good contrast. However, when the object boundary is
indistinct or has gaps like the IVUS image in our case, the geometric deformable contour
may leak out because the multiplicative term only slows down the curve near the bound-
ary rather than completely stopping the curve. Once the curve passes the boundary, it will
not be pulled back to recover the correct boundary. To overcome this deficiency a new
term is added to (equation 3.16) as shown in (equation 3.18)

∂φ

∂t
= c(k + V0)|∇φ|+∇c∇φ (3.18)

The resulting speed function has an extra stopping term ∇c∇φ that can pull back the
contour if it passes the boundary [28], [50].

Figure 3.15.: Extraction of cyst form ultrasound breast image via merging multiple initial level sets
[101].

This term behaves in similar style to the Gaussian potential force in the parametric for-
mulation. An example of using this type of geometrical deformable contours is shown in
figure 3.15. The latter formulation can still generate curves that pass through boundary
gaps. Siddiqi et al. [81] partially address this problem by altering the constant speed term
through energy minimization, leading to the following geometric deformable contour:

∂φ

∂t
= λ(ck|∇φ|+∇c.∇φ) + (c+

1
2
X.∇c)|∇φ| (3.19)

In this case, the constant speed term V0 in equation3.18 is replaced by the second term,
and the term 1

2X.∇c provides additional stopping power that can prevent the geometrical
contour from leaking through small boundary gaps.

The second term can be used alone as the speed function for shape recovery as well.
Although this model is robust to small gaps, large boundary gaps can still cause problems.
At this time, there is no geometric deformable contour model possessing the property of
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Table 3.2.: AD is the average distance, HD is the Hausdorff distance (maximum distance), and
Area diff is the absolute difference between the automatically detected and manually
traced contour for the Intima border. (Automatic1 is the parametric deformable model
method and Automatic2 is the geometric deformable model method)

Method Area diff(mm2) HD(mm) AD(mm)

Automatic1(snake) 7.5367±4.6274 0.8817±0.3115 0.3011±0.2512

Automatic2(level set) 6.2653±4.6274 0.7081±0.2491 0.2031±0.1502

Interobserver variability 5.9312±1.2573 0.6812±0.2107 0.1949±0.0862

convergence to both perceptual boundaries (large boundary gaps) and boundary concav-
ities as there are in parametric deformable contours. The narrow band and fast marching
methods are two computationally fast and widely used algorithms for the numerical im-
plementation of the geometric deformable models [94]. Instead of computing the evolu-
tion of all level sets, which means all the grid points, the narrow band method consists
of just updating a small set of points in the neighborhood of the zero level-set for each
iteration. However, the result of this method depends on the position of the initialized
curve/surface.

In this work, a new methodology is proposed to solve this problem with choosing right
interface positions, so that the complete boundaries of the intima and the media-adventitia
are automatically detected.

3.2.5. Result and discussion

The performance of the proposed methods was evaluated using 60 different IVUS images
obtained from 7 patients. After applying the nonlinear anisotropic diffusion filter to the
IVUS images, intima and media-adventitia of each image was manually traced by two
experts. For the performance analysis of the proposed algorithms the Absolute Distance
(Area diff.), Average Distance (AD) and the Hausdorff Distance (HD) (i.e. the maximum
distance) [27] between the automatically identified boundaries and the expert defined ones
are determined and also between the two experts (inter-observer variability).

The results are shown in tables 3.2 and 3.3 for intima and media-adventitia, respectively.
The results demonstrate that the variability of the two experts is higher for the intima
borders. Detection of the intima is more problematic because of the speckle artifacts and
the irregular shape of the intima layer.

It is also obvious that geometric method outperforms the parametric method. The linear
regression analysis for the geometric deformable model (figure 3.16) indicates that this
method is reliable (r =0.97, y =0.9623 x +1.53 for the media-adventitia and r =0.96, y =0.9137
x +1.3214 for the intima border detection). The slopes are close to unity, the y-interception
confidence interval is close to zero and the correlation coefficient is higher than 0.95.

Another parameter for performance analysis used in this work is the William Index (WI)
[96], which is the ratio of the average computer-to-observer agreement and the average
interobserver agreement [18] as calculated in equation3.20:
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Table 3.3.: AD is the average distance, HD is the Hausdorff distance (maximum distance), and
Area diff is the absolute difference between the automatically detected and manually
traced contour for the Media-adventitia border. (Automatic1 is the parametric de-
formable model method and Automatic2 is the geometric deformable model method)

Method Area diff(mm2) HD(mm) AD(mm)

Automatic1(snake) 6.53671232±1.8332 0.5982±0.2510 0.3015±0.0125

Automatic2(level set) 5.0179±3.7915 0.4531±0.3120 0.2132±0.0510

Interobserver variability 4.1253±1.0381 0.5011±0.1287 0.1158±0.1013

Figure 3.16.: Comparison of (left) media-adventitia and (right) intima cross section areas, seg-
mented with geometric deformable models (n = 60)
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WI =
1
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n−1
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j

P
j́ 6=j

1
Dj,j́

(3.20)

where n is the number of observers, Dj,j́ is the average inter-observer errors and D0,
j is the average error of the proposed method compared to each of the borders defined
by expert. The WI values that are close to unity indicate that the difference between our
methods and manually detected ones are not significant, so the proposed methods can be
considered as accurate as the experts. The William index for non overlapping areas for
the intima in both automated methods were 0.89 and 0.91, and for media-adventitia 0.90
and 0.93, respectively. This discrepancy is caused by the lower inter-observer variability
for the media-adventitia which decreases the value of the William index. As expected,
these values also illustrate that the second method (geometric deformable model) is more
accurate than the first method (parametric deformable model).
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4.1. State of the Art

4.1.1. Introduction

In previous chapters, it it has been mentioned that understanding of plaque composition
is a vital step in the evaluation of coronary arteries. The analysis of IVUS data is generally
approached in two ways in literature: on one hand, several authors propose the analysis
of IVUS images themselves by means of normalization procedures and texture analysis
[103], [90], [37]. On the other hand, several researchers prefer the use of the original ra-
diofrequency signal when available [38], [55], [54]. The main advantage of image-based
methods is the availability of the images since they are the standard data source of the
equipment. In addition, there is a high variety of descriptors which capture the spatial
information of gray-level values of a pixel together with its neighborhood in the image.

However, this source suffers from a loss of information and the introduction of artifacts
due to the reconstruction process. One of the main problems in image-based techniques is
that they do not take into account the plaque size variation (that is meant that all parts of
the image are processed with a fixed sweeping window and multi-resolution image pro-
cessing is missing) [21], [73] and they suffer from high variability among non-normalized
DICOM sequences. RF signal represents the ultrasound data better avoiding the introduc-
tion of artifacts from the pixel interpolation in the process of image formation. Due to the
higher resolution of the unprocessed data, small regions of plaque could be distinguished.
However, this kind of data is not easily available and its processing is usually restricted to
local spots (i.e. no information about the neighbors is available while processing a spot).
In addition, the spatial information is lost when spectral measurements are calculated [21].
Table 4.1 lists some advantages and disadvantages of each approach. However, some re-
searchers mixed image-based and signal-based features for plaque characterization to ben-
efit from the advantages of both approaches while reducing the disadvantages [11], [21].

The main purpose of this chapter is to investigate the basic and newly proposed IVUS
image-based and IVUS RF signal-based methods in coronary plaque characterization.

4.1.2. IVUS RF Signal-Based Plaque Characterization Methods

Almost all researchers working on IVUS RF signals for plaque characterization believe that
spectral analysis of the radiofrequency (RF) ultrasound signals allows detailed assessment
of plaque composition and previous studies have demonstrated the potential of spectral
features for discerning plaque components in real time [48], [47]. Thereby, most of IVUS
RF signal-based methods are based on spectral features.
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Table 4.1.: Advantages and disadvantages of each image-based and RF-based approach for IVUS
plaque characterization

Advantages Disadvantages
1-Loss of information while producing

1- Availability images from ultrasound signals
2- Problems with plaque size variation

Image-based methods 3- Problems with high variability among
non-normalized DICOM sequences

2- Powerful background 4- Problems with artifacts resulted from
the pixel interpolation in the process of
image formation

1- Higher resolution of 1- Not easily available
the unprocessed data 2- Processing is restricted to local spots

RF-based methods 3- Loss of spatial information when
2- Capability of recognizing spectral measurements are applied
small regions of plaques

Since 2001 [56], Nair et al. have tried to take advantage of conventional spectral features
and have added some newly proposed features to do a thorough spectral analysis of IVUS
RF for plaque characterization. They accurately classified plaque region into four classes:
fibrous, fibro-fatty, necrotic core and calcification. As their method showed high accuracy
when validated with histopathology ex-vivo and in-vivo, it led to Virtual Histology as a
surrogate of pathology. Many researches compare the results of their method with this
reliable method.

In their method [57], IVUS data were acquired with a Hewlett-Packard SONOS clini-
cal IVUS console (Hewlett-Packard Co.) and 30-MHz, 2.9F, mechanically rotating IVUS
catheters (Boston Scientific Corp). Then, IVUS B-mode images were reconstructed from
the RF data by custom software (IVUSLab) written by Klingensmith et al. [41]. Software
was also developed to maintain the 1:1 correspondence between the reconstructed IVUS
and digitized histology images (considered as gold standard in their research), which is es-
sential for the accurate selection of the regions of interest (ROI). The histology images were
first registered, scaled, and wrapped by mathematical techniques to fit the corresponding
IVUS reconstructed image. The Movat images were used to identify homogeneous ROIs
representing the four plaque components, and the corresponding regions were highlighted
on the IVUS images in software. Each ROI was 64 backscattered RF data samples in length
(≈ 480 µm), and 12±4 scan lines in width (figure 4.1).

Representative frequency spectrum of each ROI was then calculated by averaging the
mathematical autoregressive (AR) model (AR models are qualified for analysis of stochas-
tic, short-time data, such as IVUS backscatter [57]) for each line in the ROI over its width.
Then, a normalized spectrum was calculated by subtraction of plexiglas spectrum from
averaged ROI spectrum and a least squares regression line was fitted to it. A set of eight
spectral parameters that had been identified and validated for IVUS plaque characteriza-
tion were used to further classify this calibrated spectrum. These are the maximum power
and its corresponding frequency, minimum power and its corresponding frequency, slope
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Figure 4.1.: Schematic description of IVUS-histology correlation: ROI of homogeneous plaque
component is selected on a histology image; the same region is highlighted on the
corresponding reconstructed IVUS image. Signal data representing the region is iden-
tified and a power spectrum is calculated after averaging across all 12 scan lines in the
region [57].

Table 4.2.: Accuracy of the classified tissues by Nair et al. method (early method)

and y-intercept of the linear regression fit to the calibrated spectra, mid-band fit, and the
integrated backscatter, all within the bandwidth of 17-42MHz (figure 4.2). Mid-band fit is
the power of the regression line at the central frequency of the ultrasound and has been
evaluated as a parameter for ultrasonic tissue characterization. Integrated backscatter is
defined as:

Integrated Backscatter =
1

fmax − fmin

Z fmax

fmin
PSD(f) df. (4.1)

ROIs were then classified using classification trees. Nair et al. believed that classifi-
cation trees permit use of as many parameters as possible, and this characteristic can be
exploited to increase accuracy of the predictions. In addition, classification trees provide a
simple means for real-time analysis by lending models that can be programmed in image
analysis software. The AR tree (tree classifier based on AR) classified fibrous, fibrolipidic,
calcified, and calcified necrotic regions with high predictive accuracies of 90.4%, 92.8%,
90.9%, and 89.5%, respectively, for the training data and 79.7%, 81.2%, 92.8%, and 85.5%,
respectively, for the test data. Nair et al. believed that although overlap between fibrous
and fibrolipidic regions still occurred, their technique provided an accurate differentiation
of focal areas of micro-calcification and necrosis that has an important implication for in-
vivo assessment of atherosclerotic coronary plaques. They believed that, in contrast to the
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Figure 4.2.: Computing spectral parameters from calibrated spectrum: The averaged spectrum
from a region of interest is calibrated, and parameters are computed within the band-
width of 17-42MHz. The database of parameters then is used to compute the classifica-
tion tree for plaque characterization (i: y-intercept; ii: minimum power; iii: mid-band
fit; iv: maximum power; v and vi: frequencies at minimum and maximum powers,
respectively; vii (not shown): slope of regression line; and viii (not shown): integrated
backscatter) [55].

standard IVUS display, tissue maps which resulted from their method could differentiate
areas of micro-calcifications, heavy calcification, mixed fibrolipidic, and areas of necrosis
adjacent to calcification. They also believed that the gray-scale images indicate the overall
composition of large homogeneous regions, such as a predominantly calcified area, and
they are unreliable in differentiating adjacent smaller areas with heterogeneous compo-
sition. It is worth mentioning that coronary atherosclerotic plaques are most frequently
heterogeneous. In particular, plaques with a necrotic core, which is an accepted histologi-
cal finding of unstable plaques, have adjacent areas of micro-calcification and lipid [57].

The shortcoming of their method was that the size of analysis window limited the spa-
tial accuracy of the tissue maps to 480 µm in the axial direction. One of the predominant
identifying characteristics of coronary plaques that is vulnerable to rupture is a thin fibrous
cap. Although the thickness of this cap is under much debate, a fibrous region <100µm
surrounding an area of necrosis and lipid is a widely accepted marker for vulnerability
and the 480 µm analysis window restricts the detection of vulnerable atheromas. Simi-
larly, in artery wall sections with minimal atherosclerotic disease, plaque classification is
dependent on analysis of RF data spanning less than 480µm. Therefore, the aim of their
new method [55] was to improve the spatial accuracy of the predicted plaque composition
to match the axial resolution of 30MHz unfocused IVUS (80-150µm) beyond the 480 µm
limit. Although, the use of AR methods could improve the analysis of short-time, stochas-
tic data records such as IVUS backscatter but reduction in the aforementioned window size
for analysis of IVUS RF data would make the system prone to perturbations by reducing
the signal-to-noise ratio (SNR) in that small window. Nair et al. overcame this shortcom-
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ing by regularization, defined as the selection of an appropriate order for the presumed
AR process. In the previous studies, AR order was performed using Akaike’s final predic-
tion error method, with data records of 480µm (64-sample window) in the spatial domain
along each IVUS A-scan. In the new study, the appropriate order for the AR process was
estimated by three conventional methods in addition to monitoring the reduction of the
mean square error (MSE) of the AR model with the Levinson-Durbin algorithm so that
the effect of perturbations may be minimized in the estimated AR coefficients. Data were
analyzed in windows of two lengths (240µm and 120µm), which increased the axial spatial
accuracy along the IVUS A-scans beyond the original 480µm but within reasonable bounds
of available resolution. The best AR order determination technique and the most suitable
window size were evaluated using statistical classification trees and their performance in
accurately detecting plaque component.

In their method, four order determination techniques were compared to each other:

• The Levinson-Durbin Algorithm

• Final Prediction Error (FPE)

• Akaike’s Information Criterion (AIC)

• Minimum Description Length (MDL)

The ROIs were shortened to 32 and 16 samples (0.32µs and 0.16µs round-trip travel time
or 240µm and 120µm, respectively) by selecting the middle 32 samples and the middle 16
samples of those 64 sample ROIs. The AR model orders were determined by FPE, AIC, and
MDL methods and by monitoring the reduction in MSE with the Levinson-Durbin algo-
rithm. The range of appropriate orders was between 3 and 20 with these four techniques.
Hence, spectra for each ROI (analyzed twice in varying lengths of 32 and 16 samples) were
calculated with AR coefficients assuming model orders of 3, 5, 10, 15, and 20 using the Burg
algorithm in MATLAB and five AR spectra were calculated for both the 32- and 16-sample
databases of IVUS backscattered signals.

The average spectrum representing a homogeneous ROI was calibrated then approx-
imated by statistical least squares regression fit and the previous sets of eight spectral
parameters were used to further classify this calibrated spectrum. The eight spectral pa-
rameters were calculated for each of the five AR spectra calculated from ROI lengths of
both 32 and 16 samples. For the two sample lengths, 75% of the data representing each
plaque component was randomly selected for computing statistical classification trees us-
ing S-Plus (version 3.4, Statistical Sciences, Inc., Seattle,WA). The classification trees then
were programmed in MATLAB and cross validated by resolving the type of plaque in the
remaining 25% of the test data. The outcomes of these predictions were compared to the
known pathologies for each ROI to obtain the corresponding sensitivity, specificity and
Youden’s Index of the classification trees (for both the training and the cross-validation
data sets):

Y ouden′s Index = (Sensitivity + Specifity)− 1 (4.2)

Nair et al. believe that the previous validation methods are not efficient since they are
only representative of the accuracy of the classification scheme based on the homogeneity
of ROI while plaques are very heterogeneous by nature and dividing a plaque into four
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tissue components is very difficult due to the amorphous overlap of the tissue components
(figure 4.3) [58].

Figure 4.3.: Virtual Histology spectrum illustrates the possible overlap zones between the four
plaque component types; fibrous tissue, fibro-fatty, necrotic core and, dense calcium
[58].

Hence, in order to better validate their method, they employed a new validation pro-
cedure which is more suitable to the heterogeneous nature of the atherosclerotic disease
process. The color-coded VH tissue maps derived from spectral analysis and classification
scheme were paired with the corresponding matched histology sections and three experts
were engaged in the task of systematically and quantitatively dividing each image pair
into numerous regions that were individually assessed for accuracy. The process is out-
lined as follows (figure 4.4):

• The first expert was provided with printouts of the histology images and transparent
papers with a grid printed on them with 1/3 ×1/3 mm squares. Transparent paper
was overlaid on each histology printout and the plaque outline was sketched on it.
Then, alternating grid boxes that fit the plaque outline were selected as the ROI for
accuracy assessment. The plaques that were not thick enough to include at least one
complete grid box were excluded from the study. This expert was blinded to the
pathology and the VH results.

• The second expert was asked to compare the transparent papers, with the histology
outlines and square ROI drawn on the grid, to corresponding VH images. A match-
ing region was identified on the VH images for each ROI on the histology image
outlines. ROI that could not be matched were excluded from the study. The expert
was then asked to determine the tissue type in the ROI on the VH image based on
the rule that the tissue type with the maximum pixels within that ROI be selected as
the VH result. This expert was blinded to the true pathology of each ROI.

• The last expert was asked to determine the pathology of each ROI from the histology
outlines by examining the original histology studies. This expert was blinded to the
VH results including the assessment of the second expert. Finally, a truth-table was
constructed with the outcomes of the assessment of the second and the third expert
(table 4.3).

Statistical analysis of the truth-table with sensitivity, specificity and predictive accuracy
showed that VH characterized atherosclerotic plaque with a combined predictive accuracy
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Figure 4.4.: ROI selection for ex-vivo accuracy assessment: Three experts were engaged in the sep-
arate tasks of (A) interpreting the pathology outcome in all ROI(The experts were
blinded to each others’ result); (B) drawing histology image outlines on transparent
paper with a grid of 1/3 mm×1/3 mm regions and highlighting alternating regions;
and finally (C) finding matching regions on corresponding VH images and interpret-
ing the VH outcome in each ROI.

> 93% for all four VH plaque components and at very high sensitivities (72-96%) and
specificities (91-99%) (table 4.3).

Nair et al. believe that the VH technique has a tremendous potential to gain clinical
importance in the assessment of plaque vulnerability that requires certain level of training
and further understanding of VH in relation to clinical end-points. The major limitation of
their work is that the window size applied for selection of ROI and eventual tissue map or
VH reconstructions is approximately 246 µm in the radial direction that limits the detection
of thin fibrous cap < 65 µm in thickness. Also in vessel wall sections with a low extent of
disease, plaque classification requires analysis of RF data spanning < 245 µm.

In 2008, Katouzian et al. [38] studied the challenges in atherosclerotic plaque character-
ization with IVUS backscatters (from data collection to classification). Noting that most
pattern recognition approaches for plaque characterization with IVUS backscatters are
spectral-based, Katouzian et al. tried to find out how factors such as intrinsic variabil-
ity among the transducers’ spectral parameters and tissue signals may affect the results of
the selected pattern recognition method. In their paper, Katouzian et al. categorized the
intrinsic challenges into three categories:

1. In Vitro setup and specimen preparation: Producing histology images as a gold stan-
dard for plaque characterization with IVUS images is a cumbersome task. In the
research of Katouzian et al., twenty-five human hearts were studied. They were
obtained from two sources: autopsy and transplant surgery, within 24 hour post-
mortem and explanation, respectively. The artery to be imaged is dissected from the
heart and oriented in a tissue cage fixture (figure 4.5).
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Table 4.3.: VH Accuracy

Figure 4.5.: Tissue cage fixture: The artery is fixed in the cage and an automatic pullback is per-
formed in saline and human blood. The histology sections are taken at every 2 mm
using side rods after the artery was fixed by formaldehyde[38].
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However, with all these difficulties, tissue fixation might alter the acoustic and struc-
tural properties of the tissues which may cause problems in interpreting in-vivo IVUS
images. Imaging of the plaque through blood (in-vivo IVUS imaging), which is diffi-
cult to simulate in vitro, can be expected to introduce signal changes, e.g., attenuation.
Thereby, a tissue characterization algorithm developed using in vitro data will work
on in-vivo data to the extent that the tissue signatures remain similar. As long as the
differences found in the tissue signatures between the in vitro and in-vivo imaging sit-
uations are consistent, it may still be possible to empirically retune an in vitro-trained
algorithm and have it perform well in-vivo. However, not much is known about the
nature of these differences, so they need to be further studied and validated.

2. ) Variability of Tissue Signatures: It is a statistically observable fact that on averag-
ing a large number of spectra obtained from homogenous areas of tissue in carefully
controlled in vitro experiments, different types of tissue give rise to recognizably dif-
ferent spectra. In most recent methods of tissue characterization, the spectrum is
summarized using a few numbers of features to capture its basic shape, the so-called
spectral signature. For example, Nair et al. used eight spectral signatures (integrated
backscatter coefficient, slope, mid-band fit (MBF), intercept, and maximum and min-
imum powers and their relative frequencies) to characterize different plaques. How-
ever, the principal challenge in building a tissue characterization system is to develop
a proper definition for tissue signatures that maintain their similarity within each tis-
sue type and distinction between tissue types. This is indeed a challenge since the
tissue signatures corresponding to a single tissue type can, in general, be shown to
vary across different cross-sectional slices even within the same vessel. The source
of such variations can be related to: 1) image formation, such as small changes in the
angle of incidence of the ultrasound beam or variations in the geometric configura-
tion of scatterers; 2) genuine changes in physical characteristics within the particular
tissue type; and 3) variation in transducer properties that confound the recovery of
tissue type from tissue signatures. Figure 4.6 presents the variability in the normal-
ized spectrum across four frames of RF signals acquired from two randomly selected
cadaver hearts. The overlapping spectra visually confirm the difficulty that is in-
volved in characterizing these two tissue types on the basis of their spectral signa-
tures. For example, at 20MHz, for the third frame analyzed, lipidic tissue seems to
be well separated from fibrotic tissue. However, if a classifier were built taking into
account the 20MHz component of the spectra derived from this frame alone, it would
be impossible to discriminate between lipidic and fibrotic tissue in another frame.

Furthermore, transducer’s spectral parameters deviated from line to line in the same
frame and among distinct frames that cause inter- and intra-frame variations in spec-
tral signatures. Table 4.4 shows the statistical variations of the center frequency and
the bandwidth of 12 averaged spectra measured in 12 distinct frames during pull-
back. The inter- and intra-frames variations of the spectra of transducers are in-
evitable and can be the source of (large) perturbations in the tissue spectra.

3. Ground Truth: Since the overall justification of in-vivo real-time plaque characteriza-
tion is made by interventional cardiologists through the use of classified tissues, it is
indispensable to train the classifier with the most reliable features. Although the his-
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Figure 4.6.: Normalized spectra of two distinct types of plaque tissue found in four cross sections
of data from two cadaver hearts. As before, the bars represent the inter-quartile range
of variation. The unfilled bars represent lipidic tissue and the filled bars, fibrotic tissue
[38].

Table 4.4.: Statistical Variations of transducers’ spectral parameters [38].
Transducer1 Transducer2 Transducer3

Center frequency 34.48 ± 0.14 41.93 ± 0.31 36.46 ± 0.69
(MHz)
Bandwidth at -6 dB 29.31 ± 1.64 37.34 ± 2.28 32.32 ± 2.65
(% of center frequency)
Bandwidth at -12 dB 59.22 ± 2.82 63.68 ± 3.39 66.79 ± 5.36
(% of center frequency)
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tology image is the gold standard, its interpretation can be subjective. Consequently,
experts may categorize tissues differently, and as a result, different training data sets
may lead to different classification. For example, one can simply categorize tissues
as fibrotic, lipid pool, necrotic core and calcium, or one may differentiate between
the levels of presence of fatty materials and add fibro-lipid to compromise between
fibrotic and lipid. Basically, in order to collect a training dataset, the regions of in-
terest (ROIs) in the arteries are marked and relative cross-sectional histology images
obtained. The IVUS-histology frame alignment plays a crucial role in this study be-
cause the IVUS frames are labeled through the interpretation of the corresponding
histology images. Subsequently, the signals are assigned to labeled tissues and rel-
ative features are extracted. The IVUS histology matching problem becomes more
challenging due to the: 1) curvature of arteries; 2) registration between an IVUS im-
age and its relative histology since the IVUS imaging plane and the slicing plane of
the microtome are somewhat different; and 3) shrinkage of the arteries after formalin
fixation. The more the number of ROIs, the more comprehensive signature database
is assembled. It is frequently observed that when tissue characterization algorithms
are applied to new data (data that is not part of the training set), unsatisfactory re-
sults are obtained. This is explained, at least in part, by the fact that the training
database is not comprehensive enough, the pattern recognition algorithm has not
seen enough examples to learn to recognize new data with sufficient generality.

In spite of the above mentioned shortcomings, Katouzian et al. believed that the atheroscle-
rotic plaque classification could be achievable if: 1) proper features were extracted, with
some of them having potential physical grounds and 2) the apposite classification algo-
rithm is deployed. In their method, they used full-spectrum analysis and extract features
in the functional range of the bandwidth of the transducers (for a single-element rotat-
ing transducer with nominal 40-MHz center frequency and 100% bandwidth, this range is
measured to be 20-60 MHz). The dissimilarities of tissue spectra in this range motivated
them to use full-spectrum analysis instead of defining a few numbers of signatures. As
the most recognizable difference in the backscattered signals spectra is energy, the energy
norm (Enorm) was extracted as one of the features that could be a measure for the softness
or hardness of the tissue structures. For this reason, signals in the regions behind calcified
and necrotic core are attenuated sharply and shadows are often visible behind arcs of cal-
cified plaques. For a given tissue signal of length l ,X = [x1, ..., xl] , the energy norm is
calculated as follows:

Enorm = ||X|| =
√
X.XT (4.3)

As a second feature, they extract the radial position (r) of the tissue from the center of
the transducer. This feature will help the classifier to incorporate the tissue signals with
different attenuations. Then, k-NN and linear Fisher classifiers were applied to the feature
space. A sample result is shown in figure 4.7. Confidence was related to distance between
feature vector and the decision surface. Both methods show a good correlation between
the corresponding histological regions and the classification color outputs.

A useful way to evaluate the accuracy of a classifier is by drawing the receiver-operating-
characteristic curve (ROC) that portrays the trade-off between sensitivity and specificity
when the threshold is varied. The area under the ROC curve (AUC) is a metric that can
be used to rate different classifiers. As suggested by the ROC curves shown in figure 4.8,
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Figure 4.7.: Pictorial illustration of two full-spectrum-based classification methods: (a) Movat Pen-
tachrome histology image. (b) IVUS image. (c) IVUS tissue map generated by Fisher.
(d) IVUS tissue map generated by k-NN, k = 5 [38].

it is empirically evident that the process of summarizing the spectrum by specifying the
eight spectral signatures previously described reduces discrimination in comparison to a
full-spectrum analysis proposed by Katouzian et al.

Although full spectrum analysis holds great potential for accomplishing robust tissue
classification, it is solely evaluated for ex-vivo data and needs to be further evaluated and
quantified for in-vivo data. Katouzian et al. hope to quantify the classification results with
other methods of characterization (e.g., using the OCT). They believe that evaluation of
different classifier performances, reliability of the spectral features, and the complexity
of the classification algorithm along with the insufficiency of data are open problems in
atherosclerotic plaque characterization that require further studies.

Another IVUS RF signal-based method is the method of Murashige et al.[54] that detects
lipid-laden atherosclerotic plaque by wavelet analysis of Radiofrequency Intravascular Ul-
trasound (RF IVUS) signals. Murashige et al. believed that IVUS imaging provides a de-
tailed arterial cross section with accurate morphometric representation of atherosclerotic
plaque dimensions. However, they also believed that there are some limitations in tissue
characterization by IVUS intensity patterns alone, especially in discriminating fibrous and
fatty tissues and recently, many authors have proposed quantitative tissue characterization
methods to overcome these limitations. The tissue characterization method is a wavelet-
based method. Wavelet analysis is a new mathematical model for assessing local changes
in the geometrical profile of time-series signals. Hence, Murashige et al. tried to study the
feasibility of using wavelet analysis of radiofrequency IVUS signals to detect lipid-laden
plaque.

In their method, RF IVUS signals were adopted and analyzed by wavelet analysis us-
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Figure 4.8.: ROC curves comparing the linear separability of full spectral features (left) with that
of a reduced set of eight spectral signatures (right); 1451, 475, 10 668, and 382 volumes
of 128 samples of fibro-lipidic, lipidic, fibrotic, and calcified tissue signals were used,
respectively [38].

ing MATLAB data processing software. Consequently a scale-space pattern of each signal
was acquired (figure 4.9). It was noticed that scale-space pattern of signals from different
plaque areas are different from each other. Especially wavelet coefficients of lipid-laden
patterns between scales 20 and 30 were significantly greater than those of fibrous plaque.
The ROC analysis revealed that the optimal value of this wavelet coefficient was 0.6 to dis-
criminate a lipid-laden plaque. Using this criterion, the lipid-laden plaque was detected
with a sensitivity of 81% (13 of 16; histological examination from the directional coronary
atherectomies revealed that 16 of 29 coronary segments were fat-dominant (lipid-laden)
while no apparent fatty area was observed in the remaining 13 segments) and a specificity
of 85% (11of 13). Many other wavelet approaches (approximately 50 types) were ana-
lyzed, and it was found out that Daubechies-2 wavelet provides the best sensitivity and
specificity. Murashige et al. believed that currently, there is no reliable, commercially avail-
able device that is capable of discriminating fibrous and fatty areas within atherosclerotic
plaque and their new method may be useful in assessing plaque vulnerability in patients
with coronary artery disease. They hoped that further evaluation of wavelet analysis in
comparison with clinical data and inflammatory markers would be necessary to assess the
usefulness of their method in clinical practice to predict future cardiac events in patients
with coronary artery disease.

Recently, Kawasaki et al.[63] proposed another RF signal-based method for tissue char-
acterization of coronary plaques. They believed that a parameter called Integrated Backscat-
ter (IB) extracted from backscattered RF signals is noticeably different between different
plaque types. Based on IB, Kawasaki et al. classified the plaques into 4 major components:

69



4. Chapter Four:
State Of The Art In Plaque Characterization

Figure 4.9.: Representative examples of in vitro wavelet analysis of RF IVUS signals from a lipid-
laden plaque (A) and from a fibrous plaque without a lipid core (B). The upper panels
show RF signals, the middle panels show the results of wavelet analysis, and the lower
panels show the histological specimen of the corresponding arterial cross section with
Masson’s trichrome. In the time-scale domain color-coded mapping of wavelet anal-
ysis, an apparently different pattern of pink area from an RF signal vector of a lipid-
laden plaque is observed between scale 20 and scale 30, compared with the fibrous
plaque. F is fibrous area and L is lipid core [54].
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fibrous, dense fibrosis, lipid pool, and calcification. After acquiring 256 vector lines per
image RF signals (1.4grades/line) using a 40MHz mechanically rotating IVUS catheter (At-
lantis, Boston Scientific, Natick, MA, USA) and digitizing them at 100MHz with eight-bit
resolution, IB values for each tissue component were calculated as the average power us-
ing a fast Fourier transform, measured in decibels (dB), of the frequency component of
the backscattered signal from a small volume of tissue. IB value of a stainless steel needle
(standard: 0 dB) placed at a distance of 1.5mm from the catheter was then subtracted from
the tissue IB values for calibration. As the average attenuation using a 40MHz frequency
catheter was 3 to 6dB/mm [7], each IB value was finally corrected adding 0.3dB/0.1mm
when the ROI was located 1.5 mm further from the catheter and subtracting 0.3dB/0.1mm
when the ROI was located 1.5mm nearer to the catheter. In their training study, a total of
724 ROIs (0.3mm × 0.3mm) with typical histology were examined in the 50 arterial seg-
ments to compare the IB values and the typical tissue components, calcification (n = 144),
fibrosis (n = 335) and lipid pool (n = 205) were selected. Statistical analysis of IB values
showed a significant difference between different components (figure 4.10). According to
the statistical analysis, an IB value of ≤ 49 dB (area under curve = 0.98) was the most
reliable cut-off point for discriminating lipid pool (90% sensitivity, 92% specificity) and
fibrosis (94% sensitivity, 93% specificity) and an IB value of > 29 dB (area under curve =
0.99) was the most reliable cut-off point for discriminating calcification (95% sensitivity,
99% specificity) and fibrosis. Upper values of fibrous region is considered as dense fibrosis
(exact cut-off was not reported by the group).

Figure 4.10.: Histogram of integrated backscatter values of each tissue component. According
to the receiver operating characteristic curves, the most reliable cut-off points for
discriminating each tissue component were determined [63].

Based on these cut-offs a color-coded map of plaque types is extracted from RF signals
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in which green indicates fibrous, yellow indicates dense fibrosis, blue indicates lipid pool
and red indicates calcification(figure 4.11).

Figure 4.11.: Conventional IVUS images and IB-IVUS color-coded maps [63].

Kawasaki et al. believe that their method outperforms the Nair et al. method in charac-
terising plaque types. In order to prove their claims, Kawasaki et al. performed ”qualita-
tive”, ”direct qualitative”, ”quantitative” and ”direct quantitative” comparisons between
IB-IVUS and IVUS-VH images [64]. In the ”qualitative” comparison, 150 IB-IVUS and
IVUS-VH images were classified into Stray’s type III, IV, Va, Vb or Vc by the consensus of
2 IVUS readers who were unaware of the histological diagnoses. They performed a ”di-
rect qualitative” comparison by setting small (0.3 × 0.3mm) regions-of-interest (ROIs) on
the same sites in both the histological and IVUS images. Histological classification in the
direct qualitative comparison was performed as per the previous reports [63]. They then
performed the ”quantitative” comparison using the following definition. The 150 cross-
sections were diagnosed as fibrocalcific, fibrous or lipid-rich by 2 IVUS readers who were
unaware of the histological diagnoses. In the IB-IVUS images, the lesions that included
calcification (red) and occupied > 1% of the entire cross-section were diagnosed as fibro-
calcific, regardless of the %lipid pool area, because a calcified mass can be recognized in
the corresponding histological images when the red area was >1%. The lesions that in-
cluded lipid pool (blue) and occupied >30%, and calcification (red) that occupied ≤1%
of the entire cross-section and include a mass of lipid core were diagnosed as lipid rich
by IB-IVUS. Otherwise, the lesions were diagnosed as fibrous by IB-IVUS. In the IVUS-
VH images, the lesions that included dense calcification (white) that occupied >5% of
the entire cross-section were diagnosed as fibrocalcific, regardless of the %necrotic core
area, because a calcified mass can be recognized in the corresponding histological images
when the white area was >5%. The lesions that included a necrotic core (red) that occu-
pied >10%, and dense calcification (white) that occupied ≤5% of the entire cross-section
and included a mass of lipid core were diagnosed as lipid-rich, because the percentage of
necrotic core (y) indicated by IVUS-VH was approximately one-third of the lipid pool (x)
indicated by IB-IVUS (y = 0.34x, r = 0.91, p < 0.001) at the same cross-section. Other-
wise, the lesions were diagnosed as fibrous by IVUS-VH. This definition was determined
using the remaining 240 of the 392 cross-sections. Furthermore, they performed a ”di-
rect quantitative” comparison. Of the 150 histology/IVUS image pairs, were randomly
selected 49 pairs in which the histological specimens were clearly stained with Masson’s
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trichrome with sufficient resolution for quantification. These images were digitized and
the areas that were stained blue were automatically selected by a multipurpose image pro-
cessor (LUZEX F, Nireco Co, Tokyo, Japan). The relative fibrous area (fibrous area/plaque
area) was then automatically calculated by the LUZEX F system. They were not able to
quantitatively compare the lipid area and necrotic core area because the lipid area and/or
necrotic core were partly corrupted and/or melted by the formalin fixation and microtome
cuts necessary to the procedure. Of a total of 49 pairs, they selected 45 histology/IVUS im-
age pairs for use in the ”direct qualitative” comparison. In these 45 pairs, the shape of the
cross-sections was not deformed by the process of formalin fixation, paraffin embedding
and microtome cutting. When there were 2 diagnoses in the ROI, the diagnosis that occu-
pied more than half of the area was selected. When there were more than 3 diagnoses in
the ROI, the ROI was excluded from the comparison. A total of 141 ROIs were compared.
When there was a small gap between the location of the ROIs placed on the IVUS images
and histological images, referring to the vascular lumen and outside border, the location of
the ROIs (figure 4.12) was adjusted. The results of their comparisons are shown in tables
4.5 and 4.6.

Table 4.5.: Qualitative and Quantitative Comparison of the IVUS and Histological Diagnoses.

However, their method has the common disadvantages of signal-based methods and the
validity of their comparison was not analyzed.
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Figure 4.12.: Representative lesion used in the direct comparison study. (A) Histological images
stained with Masson’s trichrome. Bar=1mm. (B) Images after quantification by the
image processor. Areas stained blue by Masson’s trichrome staining were automat-
ically selected (green area) by the multipurpose image processor (LUZEX F) and
the relative fibrous area (fibrous area/plaque area) was automatically calculated by
the system. (C) Integrated backscatter-intravascular ultrasound (IVUS) images cor-
responding to sections analyzed by histology. (D) IVUS-Virtual Histology images
corresponding to sections analyzed by histology. Percentages indicate the relative
fibrous areas determined by each method. A ”direct qualitative” comparison was
performed by setting small (0.3 × 0.3mm) regions-of-interest on the same sites in
both the histological and IVUS images (Lower) [64].

Table 4.6.: Direct Qualitative Comparison of the IVUS and Histological Diagnoses.
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4.1.3. IVUS Image-Based Plaque Characterization Methods

Image processing methods hold the potential to provide objective and quantitative mea-
sures of plaque composition. Previous studies have identified texture analysis as being
useful in the analysis of ultrasound images. Hence, almost all image-based plaque char-
acterization methods are based on texture analysis. In 1998, Zhang et al.[103] proposed
a method to classify plaque regions into three classes: soft plaque, hard plaque and hard
plaque shadow. In their proposed method, detected plaque regions were straightened
along the plaque border to form a rectangle B for convenient further processing (figure
4.13). The height of the resulted rectangle is determined as:

H = tmax + h (4.4)

where tmax is the maximum thickness of the plaque region and is h the height of a analysis
box called elementary region (figure 4.13). Then for each column of B a pixel of interest
(POI) is adopted for texture analysis:

yPOI = argmax0<j<t(x)
M(x, j) (4.5)

M(x, y) =
1
w

w/2X
i=−w/2

I(x+ i, y) (4.6)

where I is the intensity of the pixel and t(x) is the thickness of the plaque at column.
Based on these pixels,the following texture measures were computed. Zhang et al. adopted
texture descriptors since they believed these features have proved useful in a variety of
medical and non-medical applications in the past.

Selected texture descriptors are as follows:

1. Gray-Level-Based Texture Descriptors: These included standard features of his-
togram contrast, skewness, kurtosis, dispersion, and variance. In addition, a prop-
erty describing the radial profile was designed to reflect the different gray-level pro-
file characteristics of the hard and soft plaque. For an elementary region with the
POI, the radial profile is determined as:

radial − profile =
maxM(x, j)0<j<x(t)

maxM(x, y + j)j=10,20,...,h

(4.7)

2. Co-Occurrence Matrices: These matrices describe repeated occurrences of some gray-
level configurations in the plaque texture classes. An occurrence of some gray-level
configuration may be described by a matrix of relative frequencies Fφ,d(a, b), describ-
ing how frequently two pixels with the gray-levels a, b appear in the texture sepa-
rated by a distance d in direction φ. The features energy, entropy, maximum prob-
ability, contrast, and inverse difference moment were computed from the resulted
co-occurrence matrix (later in section 5.1.1, we talk about these features in detail).

3. Run-Length Measures: These measures describe the maximum contiguous set of
constant gray-level pixels located at a specified direction. A large number of neigh-
boring pixels of the same gray-level represent a coarse texture while a small number

75



4. Chapter Four:
State Of The Art In Plaque Characterization

Figure 4.13.: Plaque region straightened along the plaque border. Original plaque region A,
straightened plaque region B, point of interest P and its elementary region (bottom,
enlarged).

of these pixels represent a fine texture. Hence, the lengths of texture primitives at
different directions can serve as texture descriptors. Short primitives’ emphasis and
long primitives’ emphasis were computed as run-length descriptors (later in section
5.1.1, we talk about these features in detail).

4. Fractal-Based Measures: These measures (e.g. Brownian fractal dimension) were
calculated through the transformation of image space to fractal dimension. From the
large number of calculated features, correlated ones were removed. Then, features
with the highest discrimination power were identified using the inter-class distance
search criterion and the Euclidean metric. Finally, the following three descriptors
were identified as providing the best features for soft/hard plaque classification in
IVUS images: radial profile, long run emphasis, and the Brownian fractal dimension.

This group obtained IVUS images from coronary arteries in-vivo and in vitro, using 2.9
French intra-coronary ultrasound imaging catheters (Boston Scientific, San Jose, CA). IVUS
images were recorded on S-VHS video tapes and digitized using a high-end commer-
cially available digitizer (Parallax Xvideo 700) at image resolution of 640 × 480 pixels,
0.03mm/pixel and digitization rate of 30frames/s. Then, single-frame images were stored as
JFIF format and later converted to 8-bit gray-level raw data format. Zhang et al. com-
pared the plaque regions classified by their method to those defined by experts (figure
4.14). Plaque composition in the 12 images was determined with classification correct-
ness of 89.9% overall. Hard plaque was correctly classified in 89.2% of elementary regions
(653/732) and soft plaque classification correctness was 90.2% (1805/2001).

They also evaluated their method with the metric percent circumference of hard plaque:
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Figure 4.14.: Automated plaque characterization. (a) Original image. (b) Computer-detected soft
(black), hard (gray) plaque, and shadow (white) regions, plaque borders were deter-
mined automatically. (c) Observer-identified soft, hard, and shadow plaque regions.

percent of circumference of hard plaque =
circumference of hard plaque

circumference of plaque
(4.8)

where circumference was expressed in degrees. A good correlation was found between
the computer-detected and observer-defined percent circumference of hard plaque (figure
4.15).

Figure 4.15.: Comparison of computer-detected and observer-defined percent circumference of
hard plaque.

Zhang et al. noted the limitations of their work as follows:

1. With the currently available IVUS images detection of the total amount of vessel
calcification or hard plaque volume has its limitations. Total calcium burden of-
ten cannot be estimated, because deeper structures that may or may not be calcified
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are hidden in the shadow of more superficially calcified regions. At the same time,
brightness of the initial bright echo does not indicate the total depth or amount of
calcification. Therefore, quantification of calcification by intravascular ultrasound
can be expressed only as the arc length.

2. Gain setting of the IVUS device is another difficulty associated with ultrasound tissue
imaging. Also, image brightness may vary in fibrotic plaques due to angle depen-
dency of echo responses with respect to ultrasound beam. These may affect texture
features.

3. This method for plaque characterization is limited to classification of soft and hard
plaques. Developing ultrasonic methods for more detailed plaque characterization
are vital for better understanding plaque composition.

In 2000, Vince et al. [90] attempted to classify plaque regions into finer classes: calcified,
fibrous and necrotic core. They used texture features in their method with the aim of
assessing of the efficacy of texture analysis methods in identifying plaque components. To
this end, the following statistical texture techniques were evaluated:

1. First-order statistics method: The first step in texture analysis was to examine the
first-order or low-level statistics describing the image gray-level distribution (his-
togram). By direct use of the image pixel gray-level values, four first-order statistics
were evaluated: mean, variance, skew, and kurtosis.

2. Haralick’s method: Haralick’s method is a second-order statistical approach in
which textural features are derived from angular nearest-neighbor spatial-dependence
matrices, also known as co-occurrence matrices. Vince et al. computed 14 statistical
features from the co-occurrence matrix (also utilized by Zhang et al.). They believed
that each feature measured a particular characteristic of the spatial distribution rela-
tionship between neighboring pixels in the region of interest. For example, angular
second moment measures the homogeneity of the region, whereas contrast measures
the amount of local variation present in the region.

3. Laws’ texture energy method: Laws’ method for rapid texture identification was
implemented using three main steps. (1) Five coefficient vectors representing levels
(L = [14641]), edge (e = [−1−2021]), shape (S = [−1020−1]), wave (W = [−10201]),
and ripple (R = [1− 46− 41]) were multiplied to form a set of 5× 5 kernels used as
filters. Input images were convolved with these kernels, forming a set of filtered im-
ages. By combining particular kernels it was possible to extract specific information
about the image. (2) Each filtered image was processed with an averaging filter to de-
termine the total textural energy in each pixel’s neighborhood. A 3× 3 window was
used because the selected regions of interest were small. The images generated from
this step were termed ”energy images.” Each set of images formed from orthogonal
matrices (for example, EL and LE) were then averaged to provide rotational invari-
ance. (3) The final step was to calculate the mean, variance, and range of values from
the regions of interest in the energy images.

4. Neighborhood gray-tone difference matrix method: The NGTDM method is an
approach that utilizes textural features that correspond to the visual properties of an
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image. An NGTDM is a column matrix formed by summing the absolute value of
the pixel being observed minus the average of the pixels in its neighborhood. The
neighborhood was predefined as a distance of d = 1 pixel because of the small regions
of interest.

5. Texture spectrum method: In the texture spectrum approach, an image is consid-
ered as a set of texture units (TUs) that characterizes the local texture information of
a given pixel and its neighborhood. The global texture of the image was character-
ized by the texture spectrum, which was the frequency distribution of all the TUs in
the image. A given 3 × 3 neighborhood was described by a set of nine elements, V,
where the first vector element was the center pixel and the following elements were
the succeeding pixels’ eight neighbors in a pre-specified order. The corresponding
TU was a set of eight elements derived through the formulas in figure 4.16. Each
element of the TU had three possible values (0, 1, and 2). When considering all eight
elements, this step resulted in 38 or 6561 possible TUs. The TU number, defined as a
number between 0 and 6561, was then calculated for each 3× 3 region in the image.
Finally, the texture spectrum was derived by examining the frequency distribution
of all the TUs. The texture spectrum abscissa represents the TU number, and the or-
dinate represents its occurrence frequency. For this study, three texture features were
derived from the texture spectrum and used for classification: black-white symmetry
(BWS), geometric symmetry (GS), and degree of direction (DD).

V = {V0, V1, ..., V8}
Ei = 0 if Vi < V0

Ei = 1 if Vi = V0

Ei = 2 if Vi > V0

TU = {E1, E2, ..., E8}

Figure 4.16.: The nine elements describing a 3×3 neighborhood of pixels (V ), the elements of the
texture unit (Ei), and the quantitative definition of a texture unit (TU ) [90].

IVUS images for this study were acquired by a Boston Scientific catheter (30MHz, 3.5F)
and results were evaluated with histology images. Table 4.7 shows the results of classifi-
cation using each of the five methods explained above. It is seen that the most accurate
results are achievable with the Haralick’s method. Vince et al. also took into account the
computational expense of each method. They believed that First-order statistics, NGTDM,
and the texture spectrum approach were very efficient due to the simplicity of the un-
derlying algorithms. The computational expense in Haralick’s method was minimized by
quantizing the images to 64 gray-levels and optimizing the discrimination by using only
two of the 14 features. They believed that Laws’ texture energy approach was very ineffi-
cient, due to the number of stages necessary in processing the images.

Although, Vince et al. achieved good results with their image-based method, they be-
lieved that analysis of IVUS RF has three major advantages over the approach taken in
this work which involves digitizing video tape: (1) It is fast, as data can be streamed from
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Table 4.7.: Self-validation error rates of texture analysis techniques [90].
Technique Resubstitution Croos-Validation

error (%) error (%)
First order statistics 29.05 40.48
Haralick’s method 0.00 14.76
Law’s texture energies 8.10 37.14
NGTDM 18.10 30.95
Texture spectrum 34.76 34.76

the RF port directly to a PC; (2) it does not reduce the resolution of the image; and (3)
it cannot be altered by the console display controls. However, they also believed that the
capture, rendering, and analysis of IVUS RF data is technically demand fast, sophisticated,
and requires expensive hardware while their method can be implemented using standard
computer workstations.

Recently, Katouzian et al. [37] developed a texture-based algorithm for plaque character-
ization using discrete wavelet packet frame (DWPF) and a 2-D envelope detection method.
They believed that the extracted textural features by their method are perfectly suited for
classification and capture characteristics of the plaque with the highest correlation to his-
tology and their method would also resolve one of the main current limitations of IVUS,
which is the discrimination between fibrotic and lipidic tissues. Katouzian et al. also be-
lieved that the traditional extracted spectral features from IVUS RF signals are affected by
transducer’s spectral parameters (bandwidth, center frequency) and their variability make
the classification challenging.

IVUS images for their research were acquired by a 40MHz Atlantis Boston Scientific
(Fremont, CA) IVUS catheter. Primary images contain 256 radial lines that span 360 degree
with 2048 samples per line and in order to have an optimized frame size in respect to the
computational complexity and the textural resolution, they were interpolated (spline) and
decimated in the lateral and axial directions by factor of 2 and 4, respectively.

In their method, images were transferred to a polar plane to form 512 × 512 frames.
Then horizontal and vertical lines of each frame are decomposed with DWPF separately.
In DWPF decomposition, a high-pass filter and a low-pass filter are applied to the signal
and decomposition continues on the signals resulted form filtering (figure 4.18). The de-
compositions are translation invariant in DWPF and no decimation occurs between levels.
The high-pass and low-pass filters at level can be written as follows:

Gl(w) = G0(2lw), Hl(w) = H0(2lw) (4.9)

In their method, the filters were Lemarie-Battle and number of levels were adopted 2.
For each component at the last level (level 2), horizontally processed images were multi-
plied by vertically processed images and the envelope of each pixel was calculated by a 2-D
envelope detection method. These envelopes constructed the feature matrix as follows:

e→k,i,j = {elk,i,j0 ≤ k ≤ (2l−1), i, j = 1, ..., 512} (4.10)

where e→k,i,j represents the envelope value of pixel for the components at level. Based
on these features, pixels were clustered into four clusters: calcified, fibrotic, lipidic and
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Figure 4.17.: Tree structure for discrete wavelet packet frames (DWPF) and associate indexes [37].

background using k-mean clustering algorithm and then mapped onto a Cartesian plane
to generate prognosis histology (PH) images (figure 4.18). PH images were compared to
Histology images and the accuracy of classified tissues was found to be 81.71%, 82.76%
and 85.51% for fibrotic, lipidic and calcified components, respectively (table 4.8).

Figure 4.18.: (a): IVUS image with a manually traced vessel wall (green) and lumen (red) borders,
(b): segmented plaque in Cartesian coordinates, (c): segmented plaque in r-θ coordi-
nates, (d): generated PH image (pink, yellow and blue represent lipidic, fibrotic and
calcified components, respectively) and (e) Movat Pentachrome histology image [37].

The main advantage of the proposed algorithm is that it can reliably classify tissues
regardless of the transducer center frequency or spectrum. However, it is not able to detect
the necrotic core components directly. Both necrotic core tissues and lipid-rich pools have
been recognized as markers for detection of vulnerable plaques and it is an advantage to
have a classification algorithm that is able to detect the necrotic core in addition to fibrotic,
lipidic and calcified tissues. Furthermore, the effects of blood on generated PH images and
classification performance were not investigated in their method. In their future work,
Katouzian et al. hope to test the feasibility of tissue classification within the regions of
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Table 4.8.: Accuracy of the classified tissues by Katouzian et al. method

acoustic shadowing behind calcification.

4.1.4. Mixture of IVUS Image Features and IVUS RF Features

As each image-based and RF signal-based approaches have their own advantages and
disadvantages, some researchers tried to mix the features extracted from IVUS image and
RF signals to better characterize different types of tissues.

In 2008, Escalera et al. [21] proposed a method to characterize different tissues in IVUS
images into calcified tissue (characterized by a very high echo-reflectivity and absorption
of the ultrasound signal), fibrous plaque (medium echo-reflectivity and good transmis-
sion coefficient), and lipidic or soft plaque (characterized with very low reflectance of the
ultrasound signal) based on radial frequency, texture-based, and combined features. In or-
der to deal with the classification of overlapping multiple tissues, error-correcting output
codes (ECOC) were applied to the feature vectors under the supervision of their proposed
strategy.

The parameters of the ARMA model applied to RF signals are the signal-based features
in their method and the co-occurrence matrix (defined as the estimation of the joint prob-
ability density function of gray-level pairs in an image), local binary patterns (LBP) (used
to detect uniform texture patterns in circular neighborhoods with any quantization of an-
gular space and spatial resolution) and Gabor coefficients (resulted from Gabor decom-
position of IVUS images) are the image-based features. At the classification stage, three
different base classifiers are applied over ECOC configuration: nearest mean classifier
(NMC) with the classification decision using the Euclidean distance between the mean
of the classes, discrete AdaBoost with 40 iterations of decision stumps, and linear discrim-
inant analysis.

The data set was the RF signals and their reconstructed images from a set of 10 different
patients with left descent artery pullbacks acquired in hospital ”German Trias i Pujol” from
Barcelona, Spain. All these pullbacks contain the three classes of plaque. For each one, 10
to 15 different vessel sections were selected to be analyzed. Two physicians independently
segmented 50 areas of interest per pullback. From these segmentations 15 regions of in-
terest (ROI) of tissue per study was selected randomly to make a total of 5,000 evaluation
data. In order to reduce the variability among different observers, the regions where both
cardiologists agreed have been taken under consideration. Some samples from the data
set are shown on the left of figure 4.19. Their results (figure 4.20) showed that combined
signal and image-based features with AdaBoost classifier resulted in the best performance
( > 90%).

Table 4.9 shows a comparison of different image-based and RF-based methods based on
accuracy of detecting different plaques.
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Figure 4.19.: Left: IVUS data set samples. Right: (top) segmentation by a physician and (down)
Automatic classification with texture-based features. The white area corresponds to
calcium, the light gray area to fibrosis, and the dark gray area to soft plaque [21].

Figure 4.20.: Performance results for different sets of features, ECOC designs and base classifiers
on the IVUS data set [21].
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Table 4.9.: Comparison of different image-based and RF-based methods.
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Analysis

The aim of this part of the project is to classify pixels from plaque area of IVUS images
into three tissue classes: dense calcium (DC), fibro-fatty(FF) and necrotic core (NC). These
plaque components appear with different texture patterns in IVUS images (figure 5.1).

Figure 5.1.: Different tissue types in plaque area of IVUS images: (a) Dense Calcium, (b) Necrotic
Core and (c) Fibro-Lipid.

Thereby, texture analysis methods are best suited to characterize coronary plaque com-
positions. In most texture analysis methods, for each pixel (i, j) of the image ID×D(or I),
a(M+1)×(N+1) neighborhood I{i+m, j+n}withm ∈ {−M

2 ,
M
2 } and n ∈ {−N

2 ,
N
2 } call-

ing sweeping window is being processed. Then, textural features are extracted from this
sweeping window and assigned to the central pixel. Finally, according to the extracted
features, pixels are classified into predetermined classes by the means of a classifier. It is
worth mentioning that since IVUS images are circular cross section of the blood vessel,
input images are converted into polar coordinates before applying texture analysis meth-
ods so that rectangular sweeping windows used for feature extraction are utilizable (figure
5.2).

Figure 5.3 shows the outline of the project and the steps of Tissue Characterization stage.
However, each of the proposed algorithms later explained in this chapter may follow some
or all of these steps. It is worth defining the materials of these steps before stating the
proposed algorithms.

Note: In this chapter, the plaque area taken directly from the VH examples, in order for us to be
able to validate the classifcation algorithms proposed here.

5.1. Materials and General Background

5.1.1. Feature Extraction Methods

Co-occurrence Matrix and Statistical Properties: A co-occurrence matrix C, is used to
describe the patterns of neighboring pixels in an image at a given distance d, and a given
direction θ ∈ {0o, 45o, 90o, 135o} corresponding to horizontal, diagonal, vertical and anti-
diagonal directions (figure 5.4). This matrix is somehow a second order histogram of the
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Figure 5.2.: Cartesian-Polar conversion of IVUS images for feature extraction.

Figure 5.3.: Outline of the project and steps of Tissue Characterization stage.
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image and gives information about the relative positions of the various gray-levels within
the image [85].

Figure 5.4.: The four directions used to form the co-occurrence matrix.

Let us consider the neighborhood centered on the pixel (i, j) from image I . Its co-
occurrence matrix is defined in a certain direction as Cd,θ(a, b), where a, b ∈ [1, .., P ]. Heret
P refers to maximum gray-level in image I and d ise the gray-levels distance in the direction
θ. Figure 5.5 gives a graphical description of this process for C1,0o .

Figure 5.5.: Construction of the co-occurrence matrix in horizontal direction: (a) The original im-
age (b) Horizontal neighboring of gray-levels 1 and 4 with distance 1 occurred once in
the image (c) The final result of the horizontal co-occurrence matrix.

Various textural features can then be derived from co-occurrence matrix. For defining
these textural features it is necessary to calculate the following statistical parameters in the
first step:

pd,θ(a, b) =
Cd,θ(a, b)PP

a=1

PP
b=1Cd,θ(a, b)

(5.1)

pd,θx (a) =
PX
b=1

pd,θ(a, b) (5.2)

pd,θy (b) =
PX
a=1

pd,θ(a, b) (5.3)

pd,θx+y(k) =
PX
a=1

PX
b=1

pd,θ(a, b), a+ b = k, k = 2, ..., 2P (5.4)
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pd,θx−y(k) =
PX
a=1

PX
b=1

pd,θ(a, b), |a− b| = k, k = 1, ..., P − 1 (5.5)

HXd,θ = −
PX
a=1

pd,θx (a)log(pd,θx (a)) (5.6)

HY d,θ = −
PX
b=1

pd,θy (b)log(pd,θy (b)) (5.7)

HXY d,θ
1 = −

PX
a=1

PX
b=1

pd,θ(a, b)log(pd,θx (a)pd,θy (b)) (5.8)

HXY d,θ
2 = −

PX
a=1

PX
b=1

pd,θx (a)pd,θy (b)log(pd,θx (a)pd,θy (b)) (5.9)

Qd,θ(a, b) =
PX
k=1

pd,θ(a, k)pd,θ(b, k)

pd,θx (a)pd,θy (b)
(5.10)

Based on these statistical parameters, the 14 Haralick texture features are defined as
follows:

1. Angular Second Moment (ASM): This feature is a measure of smoothness of the im-
age. The less smooth the image is the lower is the ASM.

fd,θ1 =
PX
a=1

PX
b=1

pd,θ(a, b) (5.11)

2. Contrast: This feature is a measure of local gray-level variations.

fd,θ2 =
P−1X
k=0

k2pd,θx−y(k) (5.12)

3. Correlation:

fd,θ3 =
PP
a=1

PP
b=1 abp

d,θ(a, b)− µxµy
σxσy

(5.13)

4. Variance:

fd,θ4 =
PX
a=1

PX
b=1

(a− µ)2pd,θ(a, b) (5.14)

5. Inverse Difference Moment:

fd,θ5 =
PX
a=1

PX
b=1

1
1 + (a− b)2

pd,θ(a, b) (5.15)
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6. Sum Average:

fd,θ6 =
2PX
k=2

kpd,θx+y(k) (5.16)

7. Sum Variance:

fd,θ7 =
2PX
k=2

(k − fd,θ6 )pd,θx+y(k) (5.17)

8. Sum Entropy:

fd,θ8 = −
2PX
k=2

pd,θx+y(k)log(pd,θx+y(k)) (5.18)

9. Difference Variance:

fd,θ9 = variance of px−y (5.19)

10. Difference Variance:

fd,θ10 = −
P−1X
k=1

pd,θx−y(k)log(pd,θx−y(k)) (5.20)

11. Entropy: This feature is a measure of randomness of the image and takes low values
for smooth images.

fd,θ11 = −
PX
a=1

PX
b=1

pd,θ(a, b)log(pd,θ(a, b)) (5.21)

12. Information Measure:

fd,θ12 =
f11 −HXY d,θ

1

max(HXd,θ, HY d,θ)
(5.22)

fd,θ13 =
q

1− exp−2(HXY d,θ2 −fd,θ11 ) (5.23)

13. Maximal Correlation Coefficient:

fd,θ14 =
È
second largest eigenvalue of Qd,θ (5.24)
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Local Binary Pattern: Local Binary Pattern (LBP) is a structure related measure in which
a binary number is allocated to the circularly symmetric neighborhoods of the center
pixel of the window being processed and the histogram of the resulting binary patterns
can be used as a discriminative feature for texture analysis [62], [79]. Actually, in this
method N neighbors of the center pixel (i, j) on a circle of radius R with coordinates
(−RsinπnN , Rcos

πn
N )(n ∈ {0, ..., N − 1}) are processed. Typical neighbor sets (N,R) are

(8, 1), (16, 2) and (24, 3), as shown in figure 5.6. As these coordinates do not match the
coordinates of the processing window, their corresponding gray-levels are estimated by
interpolation. Let gc corresponds to the gray value of the center pixel and gn correspond to
the gray values of the N neighbor pixels. A binary digit is then allocated to each neighbor
based on the following function:

s(gn − gc) =
¨

1, gn − gc ≥ 0
0, gn − gc < 0

(5.25)

Figure 5.6.: Typical LBP Binary Patterns [20].

Then, by rotating the neighbor set clockwise the least significant resulting binary string
is assigned to the processing as its binary pattern LR,N = {L0

R,N , ..., L
N−1
R,N }. This way the

local binary pattern is rotation-invariant. The basic steps for calculating LR,N and some
microstructures that binary patterns can detect in images are illustrated in figure 5.7.

Figure 5.7.: Illustration of LBP, Left: The basic steps in computing the LBP code for a given pixel
position: (a) the operator is centered on the given pixel and equidistant samples are
taken on the circle of radius around the center; (b) the obtained samples are turned
into 0’s and 1’s by applying a sign function with the center pixel value as threshold;
(c) rotation invariance is achieved by bitwise shifting the binary pattern clock-wise
until the lowest binary number is found. Right: Some of the microstructures that LBP
are measuring [82].

Based on the binary pattern LR,N and the gray values of neighbor pixels gn, three texture
features are defined as follows:

90



5.1. Materials and General Background

f1
R,N =

N−1X
n=0

LnR,N2n (5.26)

Figure 5.8.: Illustration of f1
R,N feature for P = 8, R = 1:Plaque Area in Polar Coordinates (left)

and f1
R,N (right)

f2
R,N = var{gn} (5.27)

Figure 5.9.: Illustration of f2
R,N feature for P = 8, R = 1:Plaque Area in Polar Coordinates (left)

and f2
R,N (right)

f3
R,N =

¨ PN−1
n=0 L

n
R,N , U(LR,N ) ≤ 0

N + 1, otherwise
(5.28)

Function U is a transition counter that counts the transition between 0 and 1 and vice
versa in the binary pattern.

Figure 5.10.: Illustration of f3
R,N feature for P = 8, R = 1:Plaque Area in Polar Coordinates (left)

and f3
R,N (right)

Run-length Matrix: One of the methods that has been extensively used in segmentation
and texture analysis is Run-length transform [85]. A gray-level run is a set of consecutive
pixels having the same gray-level value. The length of the run is the number of pixels in
the run. Run-length features encode textural information related to the number of times
each gray-level appears in the image by itself, the number of times it appears in pairs,
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and so on. Let us consider the neighborhood centered on the pixel (i, j) from image I . Its
Run-length matrix is defined in a certain direction as Rk(a, b), where a ∈ [1, ..., P ] where
P is maximum gray-level and b is the Run-length, i.e. the number of consecutive pixels
along a direction having the same gray-level value. In this approach each neighborhood is
characterized with two Run-length matrices:Rv(a, b) andRh(a, b) corresponding to vertical
and horizontal directions, respectively. Figure 5.11 shows the formation of Run-length
matrix.

Figure 5.11.: Run-length matrix (in horizontal direction) formation: (a) original intensity matrix
and (b) Run-length matrix

Let R be the maximum Run-length , Nr be the total number of runs and Np be the num-
ber of pixels in the processing window. Run-length features are then defined as follows:

• Galloway (Traditional) Run-length Features: The five original features of Run-length
statistics derived by Galloway [26] are as follows:

1. Short Run Emphasis (SRE):

fk1 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b)
b2

(5.29)

Figure 5.12.: Illustration of feature SRE: Plaque Area in Polar Coordinates (left) and SRE (right).

2. Long Run Emphasis (LRE):

fk2 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b).b2 (5.30)
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Figure 5.13.: Illustration of feature LRE: Plaque Area in Polar Coordinates (left) and LRE (right).

3. Gray-Level Non-uniformity (GLN):

fk3 =
1
Nr

PX
a=1

(
RX
b=1

Rk(a, b))2 (5.31)

Figure 5.14.: Illustration of feature GLN: Plaque Area in Polar Coordinates (left) and GLN (right).

4. Run-length Non-uniformity (RLN):

fk4 =
1
Nr

RX
b=1

(
PX
a=1

Rk(a, b))2 (5.32)

Figure 5.15.: Illustration of feature RLN: Plaque Area in Polar Coordinates (left) and RLN (right).

5. Run Percentage:

fk5 =
Nr

Np
(5.33)

• Chu Run-length Features: The following features proposed by Chu et al. extract
gray-level information in Run-length matrix:

1. Low Gray-Level Run Emphasis (LGRE):
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Figure 5.16.: Illustration of feature Run Percentage: Plaque Area in Polar Coordinates (left) and
Run Percentage (right).

fk6 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b)
a2

(5.34)

Figure 5.17.: Illustration of feature LGRE: Plaque Area in Polar Coordinates (left) and LGRE
(right).

2. High Gray-Level Run Emphasis (HGRE):

fk7 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b).a2 (5.35)

Figure 5.18.: Illustration of feature HGRE: Plaque Area in Polar Coordinates (left) and HGRE
(right).

• Dasarathy and Holder Features: These features follow the idea of joint statistical
measure of gray-level and run length:

1. Short Run Low Gray-Level Emphasis (SRLGE):

fk8 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b)
a2.b2

(5.36)
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Figure 5.19.: Illustration of feature SRLGE: Plaque Area in Polar Coordinates (left) and SRLGE
(right).

2. Short Run High Gray-Level Emphasis (SRHGE):

fk9 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b).a2

b2
(5.37)

Figure 5.20.: Illustration of feature SRHGE: Plaque Area in Polar Coordinates (left) and SRHGE
(right).

3. Long Run Low Gray-Level Emphasis (LRLGE):

fk10 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b).b2

a2
(5.38)

Figure 5.21.: Illustration of feature LRLGE: Plaque Area in Polar Coordinates (left) and LRLGE
(right).

4. Long Run High Gray-Level Emphasis (LRHGE):

fk11 =
1
Nr

PX
a=1

RX
b=1

Rk(a, b).a2.b2 (5.39)

Above mentioned methods have been previously used by several groups for IVUS plaque
characterization. In next sections the proposed methods are introduced and discussed.
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Figure 5.22.: Illustration of feature LRLGE: Plaque Area in Polar Coordinates (left) and LRHGE
(right).

5.1.2. Feature Reduction

Linear Discriminant Analysis (LDA): Linear Discriminant Analysis(LDA) are methods
which are used in statistics and machine learning to find the linear combination of features
which best separate two or more classes of objects or events. The resulting combination
may be used as a linear classifier or more commonly, for dimensionality reduction before
later classification.

Suppose that the feature vectors come from C different classes (each class with mean µi
and covariance Covi), then the between class and within class scatter matrices are defined
as follows:

Sb =
1
C

CX
i=1

(µi − µ)(µi − µ)T , µ =
1
C

CX
i=1

µi (5.40)

Sw =
CX
i=1

Covi (5.41)

It is proved that eigenvectors of S−1
w Sb are the directions that best separate these classes

from each other [95]. Projecting feature vectors to the L (L < # of features) largest eigen-
vectors results in a new reduced feature vector that better suited to classification methods.
Figure 5.23 shows a Fisher direction for a three class problem.

5.1.3. Classification

SVM Classifier

Support Vector Machines (SVM) are the classifiers based on the concept of decision planes
that define decision boundaries. A decision plane is one that separates between a set of ob-
jects having different class memberships. A schematic example is shown in the illustration
below. In this example, the objects belong either to class Black or White. The separating
line defines a boundary on the right side of which all objects are Black and to the left of
which all objects are White.

The above is a classic example of a linear classifier, i.e., a classifier that separates a set of
objects into their respective groups (Black and White in this case) with a line. Most classi-
fication tasks, however, are not that simple, and often more complex structures are needed
in order to make an optimal separation, i.e., correctly classify new objects (test cases) on the
basis of the examples that are available (train cases). Classification tasks based on drawing
separating lines to distinguish between objects of different class memberships are known
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Figure 5.23.: Distribution of three classes and the Fisher direction that best separates these classes
from each other.

Figure 5.24.: Maximum-margin hyper-plane and margins for a SVM trained with samples from
two classes. Samples on the margin are called the support Distribution.
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as hyperplane classifiers. Support Vector Machines are particularly suited to handle such
tasks.

Support Vector Machine (SVM) is primarily a classifier method that performs classifica-
tion tasks by constructing hyperplanes in a multidimensional space that separates cases
of different class labels. To construct an optimal hyperplane, SVM employs an iterative
training algorithm which is used to minimize an error function. According to the form of
the error function, SVM models can be classified into different distinct groups. The C-SVM
type is used in all proposed algorithms. In a two-class case, if the training dataset consists
of feature vectors {f1, ..., fn}with class labels yi ∈ {−1, 1} , then the SVM training problem
is equivalent to finding W and b such that training involves the minimization of the error
function [3] and [13]:

W TW

2
+ C

NX
i=1

ζi (5.42)

subject to the constraints:

yi(W Tϕ(xi) + b) ≥ 1− ζi and ζi ≥ 0, i = 1, ..., N (5.43)

where ζi ≥ 0 are the so-called slack variables that allow for misclassification of noisy
data points, and parameter C > 0 controls the trade-off between the slack variable penalty
and the margin [3]. In fact, W and b are chosen in a way that maximize the margin, or
distance between the parallel hyper-planes that are as far apart as possible while still sep-
arating the data (figure 5.24).

Figure 5.25.: Example of misclassification that shows slack variables.

The function ϕ(x) maps the data to a higher dimensional space. This new space is de-
fined by its kernel function:

K(fi, fj) = ϕ(fi)Tϕ(fj) (5.44)

The above problem can be formulated as a quadratic optimization process. The details
of the solution and its implementation can be found in [24]. The Gaussian Radial Basis
Function (RBF) kernel was used:

K(fi, fj) = e−γ||fi−fj ||
2

(5.45)
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This was firstly due to the fact that RBF kernel has only one parameter (γ) to adjust.
Also, SVM classifiers based on RBF kernel was found more accurate than linear, sigmoid,
and polynomial kernels in case of our problem.

The publicly available C++ implementation of the SVM algorithms known as LIBSVM
[24] was used. The entire dataset was normalized prior to training by setting the maximum
value of each feature to 1 and the minimum to 0. For each set of parameters, 5-fold cross-
validation was performed: the SVM was trained using 80% of the data samples, classified
the remaining 20%, and repeated the procedure for all 5 portions of the data.

5.1.4. Post-Processing

Studying intensity variety of each plaque component in VH images of the dataset through
histogram analysis reveals that useful information can be extracted via this simple analy-
sis. Figure 5.26 illustrates the histogram of pixels for three different plaque components.
As this gray-scale derived information might be ignored among many textural features in
the classification steps, another step is added to the algorithm after the classification by
SVM. In this step the given label of a pixel by SVM is confirmed or altered based on some
prior information derived from the histogram of the IVUS image.

Some useful information is pointed out below that can be inferred from the histograms
displayed in figure 5.26:

• The majority of samples belong to FF class; however, there are few FF pixels whose
their intensities exceed the gray-level 150 (ThFF = 150).

• Most of the pixels with intensities above the gray-level 200 (ThDC (low) = 200) belong
to the DC class, whereby few pixels with value under 50 (ThDC (high) =50) belong
to this class.

• Pixels belonging to the NC are concentrated more between 30 to 200 gray-levels
(ThNC (low) =30) and (ThNC (high) = 200).

So, based on these additional thresholds, the system will decide on whether to change
the decision of SVM classifier or not.

5.1.5. Dataset

The data was acquired from 10 patients, which included about 2263 gray-scale IVUS im-
ages and their corresponding VH images. These IVUS images of size 400×400 pixels were
acquired using an electronic probe (In-Vision Gold, Volcano Therapeutics, Inc.) with a
synthetic aperture 2.9 F and a frequency of 20 MHz. A motorized pullback was performed
along the entire vessel with a speed of 1.0 mm/s using a dedicated pullback device. A
total number of 500 frames from 12 vessels (6 left anterior descending (LAD), 3 right coro-
nary artery (RCA), 3 left circumflex (LCX)) of 10 patients were available for VH analysis
and comparison with IBH. In the VH analysis the total average amount of fibrous/fibro-
fatty, dense calcium and necrotic core were (1,505,907 pixels) 37647mm2, (388,073 pixels)
9701mm2, and (516,711 pixels) 12917mm2, respectively. The relative average amounts per
cross-section were 63%, 16%, and 21%.
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Figure 5.26.: The histogram of pixels belonging to FF, DC, and NC classes for 400 out of 500 IVUS
images.
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5.1.6. Statistical Analysis

The measures of sensitivity, specificity and predictive accuracy for the three plaque com-
ponents were calculated and reported as statistical analysis in this thesis. The standard
formulae for these measures were the same commonly accepted in medical literature [58].

Sensitivity =
True Positive Decisions

Decisions Actually Positive
(5.46)

Specificity =
True Negative Decisions

Decisions Actually Negative
(5.47)

Accuracy =
All Correct Decisions

Total Cases
(5.48)

CI0.95% = X ± 1.96× X × (1−X)
N

(5.49)

Where X is either the sensitivity or specificity and N is the number of decisions used in
denominator for calculating the sensitivity or specificity.

In addition to the above mentioned measures, Cohen’s Kappa index is calculated to
quantify the degree of agreement between the Algorithm IV and VH classification for in-
vivo validation, and Algorithm IV and manual painted images for ex-vivo validations. A
kappa value of 0.41− 0.60 indicates moderate (fair) agreement, 0.61− 0.80 indicates good
agreement, and 0.81 − 1.0 indicates excellent agreement. This metric was originally in-
troduced by Cohen to determine the level of agreement between two observers [58]. The
kappa is calculated as :

k =
ρ0 − ρc
1− ρc

(5.50)

where ρ0 is the observed proportion of agreement and ρc is the expected proportion of
agreement resulting from chance.

5.2. Algorithm I

5.2.1. Textural Feature Extraction

As it was mentioned in the previous section, various textural features can be derived from
Run-length matrix such as the short run emphasis, the long run emphasis, the Gray-level
non-uniformity, the Run-length non-uniformity, and the run percentage. These features
have been previously used on IVUS images however the results were not fulfilling [90].
Hence, two new features are proposed characterizing each gray-level a (i.e. every row) of
the Run-length matrix. The first feature fk1 (a), k ∈ {h, v} where h and v represent horizen-
tal and vertical respectively is defined as the maximum number of occurrences multiplied
by the length of the run with maximum occurrence bm:

fk1 (a) = Rk(a, bm)× bm , bm = argb max(Rk(a, b)) (5.51)
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And the second feature fk2 (a) is defined as the sum of every occurrences multiplied by
its corresponding Run-length:

fk2 (a) =
X
b

b×R(a, b) (5.52)

This way, each pixel (i, j) is mapped to a feature matrix Fi,j :

Fi,j =

0
BBBBBBBBBBBBBB@

fh1 (1) fh2 (1) fv1 (1) fv2 (1)
. . . .
. . . .
. . . .

fh1 (a) fh2 (a) fv1 (a) fv2 (a)
. . . .
. . . .
. . . .

fh1 (P ) fh2 (P ) fv1 (P ) fv2 (P )

1
CCCCCCCCCCCCCCA

(5.53)

Let us consider now each column Fi,j,c of matrix Fi,j as a signal that is a function of the
grey level a. As shown in figure 5.27, these signals reveal different frequency contents. This
motivates us to extract discriminative features from spatial-frequency representation of the
signals. Therefore, each signal is decomposed into a detailF di,j,c and an approximationF ai,j,c
by means of 1D discrete wavelet transform (DWT):

F ai,j,c[u] = (Fi,j ∗ l)[u] (5.54)

F di,j,c[u] = (Fi,j ∗ h)[u] (5.55)

Then, each DWT component ((F di,j,c[u]) and (F ai,j,c[u])) is characterized by a set of statis-
tical features, namely its weighted mean, weighted variance, maximum of signal and its
index:

ρk1,c =
1
P

PX
u=1

u× F ki,j,c(u) (5.56)

ρk2,c =
1
P

PX
u=1

(u× F ki,j,c(u)− ρk1,c)2 (5.57)

ρk3,c = maxF ki,j,c(u) (5.58)

ρk4,c = argumaxF
k
i,j,c(u) (5.59)

Furthermore, spectral behavior of these components is also characterized by means of
autoregressive (AR) model of order 5:

F ki,j,c(u) =
5X
t=1

F ki,j,c(u− t)× ϕkt,c + n(u) (5.60)
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Figure 5.27.: Distribution of 5000 bundle feature vectors for each plaque type. Top to down: DC,
fibro-lipid, and NC. Left to right: fh1 and fh2 .
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where n(u) is the white noise and ϕkt,c are the coefficients of the AR model. These coeffi-
cients are also used as features.

Finally, the feature vector of each pixel (i, j) is defined as follows:

Xi,j = {ρkl,c, ϕkt,c, l ∈ {1, ..., 4}, t ∈ {1, ..., 5}, c ∈ {1, ..., 4}, k ∈ {a, d}} (5.61)

This vector is the input of the SVM classifier. This classifier was explained in the classi-
fication subsection previously.

The block diagram of the proposed algorithm is shown in figure 5.28.

Figure 5.28.: Block diagram of the newly proposed modified Run-length method.

5.2.2. Result and Discussion of Algorithm I

The three feature extraction mentioned methods were then applied on the set of 200 frames.
The characterized IVUS images were validated by their corresponding VH images and the
accuracy, sensitivity, and specificity parameters were calculated for each technique. The
results for this approach were compared to methods using LBP or co-occurrence-based
features. The size of the neighborhood was empirically chosen to be 11×11 for all meth-
ods. This was done to get the optimum results for every method separately. For LBP
method, five circles were then constructed in each neighborhood. Then, three features
were extracted from each circle and the number of features for every pixel in LBP method
thus sums up to 15. Extracting features from five circles with different radii can be thought
of as a multi-resolution textural analysis. Total number of features in the co-occurrence
method was 14 which include e.g. homogeneity, contrast, inverse difference moment, and
so on. Results using different methods are presented below in table 5.1. According to the
results, algorithm I is more capable to classify DC and NC plaques in comparison to LBP
or co-occurrence methods.

Although, this approach reveals a higher overall accuracy, the co-occurrence and LBP
methods performs better in characterizing the fibro-lipid regions. Figure 5.29 illustrates
the images characterized by all methods with their corresponding IVUS and VH images.
In this study, the sensitivity of all methods for the detection of NC was low (55%). This
fact was caused by similarities between NC and DC in Gray-level IVUS images [30]. Fur-
thermore, previous studies have showen that plaque areas adjacent to DC are frequently
coded as NC tissue in VH images [76]. For a typical frame the proposed method took ap-
proximately 12 seconds to characterize the pixels, whereas the LBP took 2.6 minutes and
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Table 5.1.: The Results of Algorithm I versus Other Techniques
Method DC FF NC Overall

Accuracy

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

LBP 45% 96% 97% 42% 30 % 95% 71%

Co-occurrence 67% 95% 84% 80% 53% 83% 75%

Proposed method 70 % 95 % 84 % 75 % 55 % 82 % 77 %

the co-occurrence took nearly 60 minutes. Thus, in terms of time efficiency, the proposed
method further outdoes the other two. A MATLAB implementation on an Intel Core 2
CPU2.00 GHz computer with 2.0 GB Ram was used in this work.

Figure 5.29.: The result of the feature extraction method in comparison with the Co-occurrence
and LBP methods from left to right. (White is DC, Green is fibro-lipid, and Red is
NC)

5.3. Algorithm II

For proposing this algorithm, this fact was taken into account that since each tissue shows
different echogenic characteristics, the different plaque components can be characterized
by their local frequency components. The best tool for this purpose is Wavelet Transform
(WT). WT provides the best approximation of a space-frequency representation of an im-
age, i.e. it permits to know which spectral components exist at which position in the input
image. The main drawback of the WT is that it is translation non-invariant due to the
decimation applied to the image after each decomposition level. Recently, another type of
wavelet transforms known as Redundant Wavelet Transforms (RWT) has been introduced
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[59]. In contrary to the classical WT, there is no decimation step after filtering the input
image. This provides the decomposition to be translation invariant and since it preserves
the size of images in each level of decomposition, the local spectral components can be re-
trieved without any interpolation step. To generalize such transform, the Wavelet Packet
Transform (WPT) [16] has been introduced to decompose the whole frequency spectrum
into multiple sub-bands of varying sizes. It has been shown to provide a more redundant
representation for the analysis of complex textural information. By combining the RWT
and WPT, image can be decomposed into multiple sub-band images (figure 5.30). This de-
composition provides translation invariance in addition to the rotation invariance gained
by the initial polar transform.

Figure 5.30.: Two level decomposition of RWT+WPT for an IVUS image.

5.3.1. Textural Feature Extraction

Let {Ik},k ∈ {1, N} be a collection of N sub-band images extracted from image I through
redundant wavelet packet transform (RWPT). This section presents how to characterize
each pixel (i, j) from I with textural descriptors extracted from the {Ik}. This provides an
enhanced extraction of texture information by analyzing the different sub-band of the fre-
quency spectrum. In this algorithm, the approach which is based on Run-length features is
compared to Co-occurrence, and Local Binary pattern (LBP) methods. Each neighborhood
is characterized with two Run-length matrices Rxk(a, b) and Ryk(a, b) corresponding respec-
tively to x and y directions in sub-band k. The 11 Run-length-based features introduced in
section 5.1.1 in equations 5.29-5.39 were used. Let us denote fθ,λk (i, j), where θ = {x, y}
and λ = {1, 2, ..., 11}. The 22 features extracted from the neighborhood {Ik(i+m, j+n)}m,n
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of each pixel (i, j) of each image Ik is then characterized by the following set of features
V k
i,j :

V k
i,j = {fθ,λk (i, j)}θ,λ (5.62)

As the principal objective in a classification problem is to extract features that are capable
of discriminating different classes as much as possible, the best subset of the {V k}k∈{1,N}
has to be chosen out to provide an optimal discrimination power. To this end, an adapted
discriminant measure(Fisher criterion) is introduced:

D(k, θ, λ) =
(µk,θ,λp − µk,θ,λq )2

σk,θ,λ
2

p − σk,θ,λ
2

q

(5.63)

where µk,θ,λp and σk,θ,λ
2

p are respectively the mean and the variance of the component
fθ,λk of V k in the P th class. This measure takes high values when the feature is varied in
classes such that it has maximum differences in the mean and minimum variances. After
computing the Fisher criterion for each component of all the {V k}k∈{1,N} sub-band which
have higher values offer the best discrimination power. A variant of the Local Discriminant
Basis (LDB) algorithm was proposed here which was introduced by Saito and Coifman
[16] with Fisher’s criterion. This algorithm selects the best subset of the {V k}k∈{1,N} by
computing its discrimination power as follows:

D(k) =
X
θ

X
λ

D(k, θ, λ) (5.64)

Each pixel (i, j) of I is then characterized by the subset of features denoted {V k
i,j}k∈{1,N}

with M ⊂ {1, N}.

5.3.2. Weighted Classification Structure based on SVM

For classification purposes, a structure of multi-class support vector machines is used. For
each selected sub-band k with k ∈ M , a SVM is associated. However, all sub-bands do
not have the same discrimination ability. Therefore, a weight is assigned to each classifier
based on its discrimination ability. The final decision for a pixel is attained by considering
the weighted votes of all SVMs. The block diagram of the proposed algorithm is shown in
figure 5.31.

5.3.3. Result and Discussion of Algorithm II

The study group used for algorithm II is the same as the one used for algorithm I. The
characterized IVUS images were validated by their corresponding VH images and the ac-
curacy, sensitivity, and specificity parameters were calculated for each technique. Since
the most important plaque components for atherosclerosis staging are lipid-rich tissues,
necrotic core and calcifications, the classification was concentrated into these three classes.
The Daubechies 4 wavelet, which has the ability of following small variations, is used for
the RWPT decomposition. The number of decomposition levels was set to two, giving
21 sub-band images. The size of neighborhoods, on which features were extracted, was
empirically chosen to be 9 × 9 for all methods. For LBP method, four circles were then
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Figure 5.31.: Block Diagram of Algorithm II.

constructed in each neighborhood. Then, three features were extracted from each circle.
After computing Fisher criterion for feature vectors of every sub-band images, a subset
of 12 were selected based on their discrimination power and LDB procedure. Then, a
weight was assigned to each based on their Fisher measure. The computed weights show
that sub-band two (low-frequency) has the best discrimination power in comparison with
the others. Again, the LIBSVM C++ implementation of the SVM algorithms was used. A
grid-search was performed for optimal parameter selection and a 5-fold cross validation to
evaluate the performance of all three methods. For a typical frame the Run-length method
took approximately 2 minutes to extract the features, whereas the LBP needed 20 min-
utes and the co-occurrence nearly 120 minutes. In terms of time efficiency, the Run-length
method outperforms the other two. A MATLAB implementation on an Intel Core 2 CPU
2.00 GHz computer with 2.0 GB Ram was used in this work. Table 5.2 illustrates the re-
sults using different methods besides the influence of the post-processing step. It can be
inferred from the results that the Run-length feature extraction method has a better capa-
bility for classifying DC plaques, while LBP and co-occurrence for NC. Results also show
the influence of the post-processing step on the sensitivity of the NC class. Therefore, one
might use the textural features and the classification procedure for dividing the plaque
area into two classes, i.e. DC and FF, and then use prior information on their intensity
distributions to distinguish the NC regions from them. Still, the sensitivity of all methods
for the detection of the NC was low (46%). This fact was caused by similarities between
NC and DC in Gray-level IVUS images [76].

Table 5.2.: Accuracy of different techniques: Numbers within parenthesis and without relate re-
spectively to before and after post-processing.

Technique Overall Accuracy DC FF NC
Run-length (73%)72 % Sensitivity(%) (76)73 (97)85 (9)42

Specificity(%) (93)93 (57)79 (96)84
Co-Occurence (71%)71% Sensitivity(%) (72)70 (97)84 (14)46

Specificity(%) (96)96 (58)80 (94)82
LBP (66%)70% Sensitivity(%) (40)59 (97)85 (8)47

Specificity(%) (95)95 (37)78 (96)80
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Also figure 5.32 illustrates the images characterized by all methods with their corre-
sponding IVUS and VH images.

Figure 5.32.: The result of feature extraction methods (White is calcium, Green is fibro-fatty, and
Red is Necrotic).

5.4. Algorithm III

In this algorithm some new facts were taken into account that were not noted in the previ-
ous algorithms. An important fact, which is mostly ignored in characterizing atheroscle-
rosis plaques via features extracted from IVUS images, is to detect the acoustic shadowing
behind Dense Calcified (DC) regions and treat them differently. These shadow regions
which exist and displayed in the plaque area of some IVUS images appears as echo-soft;
so, when treated within other parts of plaque area although they are mostly Calcium and
Necrotic Core plaques but normally should be classified to the lipid or fibrofatty classes
[53],[9]. The block diagram of the proposed algorithm is shown in figure 5.33.

5.4.1. Shadow Detection

Shadow areas appearing in IVUS gray scale images usually do not represent any useful in-
formation for plaque component analysis. However, the IVUS-VH method does not detect
such regions and blindly treats them as normal plaque area which often leads to classifi-
cation errors. By defining a specific plaque region as shadow region shown in figure 5.34
[72], we aim at reducing mentioned errors, which are caused by the nature of ultrasound
imaging. Shadow regions are characterized by infra-low intensity regions behind ultra-
high intensity areas along a scanline. Thereby, detection of these regions by using two
thresholds are proposed: one threshold Thigh to detect ultra-high intensity regions, which
might belong to calcification or necrotic core, and the other threshold Tlow to detect infra-
low intensity regions. Let us consider an image I from gray level IVUS in polar domain.
If Σ denoted as the ensemble of pixels belonging to a shadow region, these pixels x can be
detected along a scanline as follows:

x = (i, j) ∈ Σ if
¨

I(i, j) < Tlow and I(i, j − 1) ∈ Σ
or I(i, j) < Tlow and I(i, j − 1) > Thigh

(5.65)
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Figure 5.33.: Scheme of the workflow in the IBH-System(in GUI). First, an IVUS image is loaded.
Then, the vessel’s borders are detected using automatic border detection. Next, the
textural features are extracted from the plaque area and then, SVM classifier is ap-
plied to classify the pixels of the plaque area in order to generate the color coded
image representing the different plaque components. Finally, the post-processing is
applied on SVM output.

Figure 5.34.: The shadow region in a typical IVUS gray-scale image (left) its plaque constituents
in IVUS-VH (middle) and its corresponding histopathalogy (right) [43].
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5.4.2. Feature Extraction Methods

In order to characterize the rest of plaque area into the three pre-defined plaque com-
ponents, two feature extraction methods are examined and compared. To achieve this
purpose, local binary pattern (LBP) [62] and co-occurrence [32] feature extraction methods
have been studied in [11] and have been reported to outperform other feature extraction
methods. Moreover, it was reported in [90] that the Run-length method [83] is not an ap-
propriate feature extraction method for characterizing IVUS images plaque area. In [21],
both signal and image-based features were extracted. The co-occurrence, LBP, and Gabor-
filtering feature extraction methods are used for texture-based feature extraction. Their
results are compared to manual characterization of IVUS images by two experts and 90%
accuracy is achieved. However, the manual characterization of IVUS images suffers from
both inter-observer and intra-observer variability and especially uncertainty in character-
izing soft plaques from each other, e.g. distinguishing between the FF and the NC tissues.
Here, the performance of the features extracted from the Run-length matrix is compared
with those extracted from the LBP method in both accuracy and time efficiency aspects.
The co-occurrence feature extraction method is not included in this study, since the previ-
ous studies reveal that despite good performance of this method in atherosclerotic plaque
characterization, its heavy computational burden leads to poor time efficiency. IVUS imag-
ing provides circular cross-section areas of the blood vessel and it uses 256 scan lines so
the lateral resolution is 360/256 = 1.41 degrees and the axial resolution is about 40 mi-
crons. For the analysis, IVUS images are converted into polar coordinates to be orientation-
independent for the feature extraction. In this manuscript, the data refers to the converted
data. The polar transformed image is then swept by a sweeping window. The size of the
sweeping window for both feature extraction techniques was empirically chosen as 9 × 9
pixels which each pixel is equal to 0.025mm.

5.4.3. Practical Implementation

The proposed methods for border detection and plaque characterization in this study were
implemented in MATLAB and to obtain a standalone executable application, the program
with a graphical user interface (GUI) was compiled by C++ compiler in Microsoft Visual
Studio 2005. An example of the GUI is illustrated in figure 5.35.

5.4.4. Result of Algorithm III

Considering the shadow region detection procedure, 8% of plaque area pixels belong to
the shadow region. The characterized IVUS images were validated by their corresponding
VH images. In order to demonstrate the influence of applying the pre-processing step, i.e.
detecting the shadow region and assigning it to the fourth class, and the post-processing
derived from the histogram analysis. In the post-processing step, the label assigned to a
sample pixel and its gray-level are considered. Then, final labels of the pixelare decided by
this step. For instance, suppose the classification section assign a pixel to the FF class and
also the gray-level of that pixel is above 150. In this case, based on ThFF, the current label is
declined and whether the gray-level is above ThDC (low)=200 or not, it will be assigned to
the DC or NC class, respectively. Table 5.3 and table 5.4 illustrate the comparative results of
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Figure 5.35.: An example of the GUI window: Besides analysis of plaque components the GUI also
allows calculation of other vessel parameters such as total plaque areas or the degree
of stenosis.

the two different feature extraction methods considering different conditions. Considering
the VH as validating standard, the Kappa is computed to be 0.61 for the extended Run-
length for both pixel-based and region-based(with a 9× 9 pixels in a window) validations
in the case of applying both pre-processing and post-processing steps.

Table 5.5 illustrates the P-value for the case of applying both shadow detection(pre-
processing) and histogram-based post-processing and also using the new extended Run-
length method as a technique for feature extraction.

Figure 5.36 shows the influence of shadow region detection pre-processing on the final
reconstructed IBH image. Figure 5.37 illustrates the influence of post-processing derived
from histogram analysis on the final reconstructed IBH image. Finally, figure 5.38 shows
the final reconstructed IBH images for two feature extraction methods.

Moreover, table 5.3 also shows the statistical results of applying the proposed algorithm
to these images. In most similar studies, when one wants to validate with correlated im-
ages a region-based validation method is used. It means that instead of comparing the
result and its corresponding label pixel by pixel, the validation step is done by comparing
regions, a window which contains more than one pixel. For example, the size of validation
regions in Nair et al. is 1/3mm × 1/3mm, i.e. approximately a window of size 13 × 13
pixels. To handle this, a validation window of size n × n pixels is defined, where n can
vary from one i.e. pixel-based validation, to 9. The label of a validation window is selected
by looking at labels of its constituent pixels. In fact, it is assigned to a plaque component
which is the majority. This experiment shows that the size of regions affects the results.
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Table 5.3.: Results of pixel-based plaque characterization of vessels’ plaque area using the Run-
length method as feature extraction and SVM classifier. The cases of including the pre
and post-processing steps or not is distinguished using ”Yes” and ”No” signs in the
two left columns. The parameter ± Confidence Interval is shown for the Sensitivity,
Specificity, and Accuracy parameters.

Histogram Shadow DC FF NC Overall

based post detection Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Accuracy

processing

No No 79% ± 6.5 93% ± 3.8 87% ± 5.1 38% ± 5.3 07% ± 3.3 97% ± 2.5 72% ± 6.3

No Yes 79% ± 6.5 93% ± 3.7 96% ± 3 55% ± 6.6 12% ± 4.2 96% ± 2.7 74% ± 5.8

Yes No 80% ± 6.5 93% ± 3.7 73% ± 6 64% ± 6.5 43% ± 6.6 80% ± 5.3 74% ± 6.4

Yes Yes 79% ± 6.5 85% ± 3.6 81% ± 5.6 90% ± 5.3 52% ± 6.6 82% ± 5.5 75% ± 6.1

Pixel Based Pixel Based

Yes Yes 71% ± 4 97% ± 1 88% ± 1 87% ± 2 57% ± 4 88% ± 1 85% ± 3

Region Based: Region Based:

9× 9 Pixels 9× 9 Pixels

Table 5.4.: Results of pixel-wise plaque characterization of vessels’ plaque area using the LBP
method as feature extraction and SVM classifier. The cases of including the pre and
post-processing steps or not is distinguished using ”Yes” and ”No” signs in the two left
columns. The parameter ± Confidence Interval is shown for the Sensitivity, Specificity,
and Accuracy parameters.

Histogram Shadow DC FF NC Overall

based post detection Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Accuracy

processing

No No 68% ± 6.6 96% ± 3.2 97% ± 3 42% ± 6.6 06% ± 4.6 95% ± 3.2 66% ± 6.1

No Yes 68% ± 6.6 94% ± 3.1 95% ± 3 45% ± 6.6 13% ± 4.5 94% ± 3.2 69% ± 6.6

Yes No 69% ± 6.4 96% ± 3.2 70% ± 5.8 61% ± 5.2 39% ± 6.1 79% ± 5.7 67% ± 6.1

Yes Yes 69% ± 6.4 95% ± 3.1 75% ± 5.8 81% ± 5.2 42% ± 6.6 76% ± 5.7 72% ± 5.8
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Table 5.5.: The p-value shows differences of the case of applying both shadow detection prepro-
cessing and post-processing and using the Run-length method as a technique for feature
extraction against the Run-length method without pre-processing and histogram-based
post-processing.

Parameter Sensitivity Sensitivity Sensitivity Specificity Specificity Specificity Accuracy
DC FF NC DC FF NC

p-value 0.02781 0.01827 0.00497 0.02607 0.00695 0.01397 0.02345

Figure 5.36.: The influence of applying the shadow detection section in the final constructed color-
coded IBH images. The images are from left to right: a typical IVUS image, its corre-
sponding VH image, IBH images without shadow section and with shadow detection
section using the Run-length feature extraction method. Note that the illustrated IBH
images are after applying the histogram-based post-processing technique. (The FF,
NC, and DC plaques are shown in green, red, and white colors, respectively. The
shadow region is colored with blue).

5.4.5. Discussion of Algorithm III

In Algorithm III, a complete algorithm was introduced for the IVUS image analysis in-
cluding border detection (only in GUI) to plaque characterization with more emphasis in
the latter part. This comprehensive image-based algorithm provides cardiologists with,
not only the vessel’s intima and media-adventitia borders but also with a color-coded IBH
image in which the location and distribution of different plaque components of atheroscle-
rotic plaques are illustrated. Furthermore, when cardiologists analyze a sequence of IVUS
images, additional clinical parameters together with the percentage of different plaque
components can be useful.

Perhaps, one of the important advantages of the proposed algorithm is to increase the
longitudinal resolution of plaque composition analysis. The present VH-derived plaque
composition analysis provides only ECG triggered images. As mentioned above, in an
imaging procedure with the rate of 30 frames/sec only one IVUS frame out of approximately
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Figure 5.37.: The influence of applying the histogram-based post-processing section in the final
constructed color-coded IBH images. The images are from left to right: a typical IVUS
image, its corresponding VH image, IBH images before applying the histogram-
based post-processing and after that using the LBP feature extraction method. Note
that the illustrated IBH images are after applying the shadow detection technique.
(The FF, NC, and DC plaques are shown in green, red, and white colors, respectively.
The shadow region is colored with blue).

30 IVUS frames is considered to generate the color-coded VH image.
As it is shown in figure 5.33, the proposed algorithm contains different sections includ-

ing plaque area detection, shadow region detection as a pre-processing, textural feature
extraction, classification by SVM, and post-processing based on the data derived from the
histogram analysis. The differences in the results of the tables 5.3 and 5.4 and also those
illustrated in figure 5.37 show the influence of adding the shadow region detection as a
pre-processing section. One of the obvious advantages to add the shadow region detection
is to help algorithm to improve the detection of all three kinds of atherosclerosis plaque
components.

Moreover, this technique provides us with a more general algorithm which can be more
reliable when in studying patients with calcified plaques in which, a lateral shadow region
behind the calcified area exists. Out of the total number of 191582 pixels was contained in
the shadow region, 63%, 36%, and about 1% was respectively characterized into FF, NC,
and DC plaques by the VH algorithm. Therefore, tables 5.3 and 5.4 show that in addition
to improving the distinction of three plaque components, the shadow detection procedure
has a direct influence on the detection of FF and NC. Differences of relative amounts of
DC and NC between after and before shadow detection were calculated 5% and 4% are
respectively.

One should note that the IVUS-IBH images in the 3rd and 4th column of figure 5.37
show small islands of green within the blue shadow regions. Once shadowing occurs due
to calcium, the RF signal is attenuated and one doesn’t expect to see these islands. This
may be due to multiple reflections between the catheter and the calcium causing artifact.

By comparing the results of the table 5.3 and table 5.4, it can be concluded that the
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Figure 5.38.: The final constructed color-coded IBH images using the proposed algorithm. From
left to right: An IVUS image, its related VH image and its IBH images using the
Run-length and the LBP feature extraction methods.

new extended Run-length feature extraction method outperforms the LBP in classifying all
plaque components. However, as illustrated in figure 5.38, it is quite clear that the color-
coded image reconstructed with the use of LBP feature extraction method is more detailed.
This may be caused by the multi-resolution characteristic of this method. Perhaps, one
future direction is to combine these two feature extraction methods in order to benefit
from their both detailed and accurate results.

The computation times of the feature extraction methods are as follows: for a typical
frame, i.e. the plaque area containing around 5000 pixels out of the total 160000 IVUS
image’s pixels, the new extended Run-length method took approximately 7-20 seconds to
extract the features whereas the LBP took 2-5 minutes. Thus, in terms of time efficiency, the
new extended Run-length method further outperforms the LBP method. However a more
optimized implementation in C++ will further speed up the algorithms as expected. The
influence of the post-processing step after classification is highlighted in the differences
in the sensitivity and specificity of the algorithm in characterizing NC and FF plaques,
respectively. The extensive textural similarities between the NC regions and other plaque
components defined by VH leads to preventing the classification part of the algorithm
from identifying it; however, by studying the distribution of plaques’ intensities in the
dataset, it is concluded that in addition to textural features, there exists some rules for
distinguishing the plaques in it (figure 5.33).

This Kappa =0.61(for both pixel-based and region-based validation) clearly represents
that the classification results are in good agreement with VH after detecting and remov-
ing shadow regions. Moreover, the low values of CI and P-value show the reliability and
consistency of these results obtained for this data-set. The P- values indicated in table 5.5
answer the following question If the method’s performance is the same as the before apply-
ing shadow detection and post-processing, what is the probability of observing the current
result. From a statistical point of view, the observed difference in these results compared
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to the results of the methods before detecting shadow and applying post-processing is not
accidental.

An interesting point it should be mentioned here is that the results presented suggest
that the texture based algorithm based on IVUS gray-scale images produces similar im-
ages and has a modest co-relation to VH-IVUS, suggesting that most of the information
in VH-IVUS tissue characterization comes from the intensity of the ultrasound signal, and
less-so on the underlying radio-frequency data. In this study, all methods’ sensitivity to
detect the NC was low (maximum value is 57%). The fact that detection of NC by studying
the IVUS images is not a straight-forward procedure has also been previously discussed
in [30] and [60]. This phenomenon was caused by similarities between NC and DC in
gray-level IVUS images. This fact supports the previous studies which have shown that
plaque areas adjacent to dense calcium are frequently coded as necrotic tissue in VH im-
ages [76]. By considering selected cross sections that contained plaque areas with a ho-
mogeneous tissue composition as reported in [30], the accuracy results can be increased
significantly. Although the sensitivity of detecting the calcified region was 79%, the algo-
rithm performance to detect the focal calcified region in the images was more than 85%,
which is another important point about these results. It derives from the fact that in the
VH method the variation of pixels intensities assigned to the calcium class is very high
(from 0 to 256) as can be observed in figure 5.26. However, since identifying focal calcified
regions are more important than speckled calcification in the plaque area, the proposed
algorithm shows increased reliability [92].

5.5. Algorithm IV

A definition of LBP and new extended Run-length (NRL) features and the experiences of
the previous algorithms indicates that these two feature extraction methods assess the tex-
ture from two different aspects. Hence their combination may enhance the accuracy of tex-
ture analysis methods and in this case the accuracy of plaque characterization. Moreover,
in the previous algorithms, post-processing was applied to take advantage of the gray-
level distribution of each plaque type to confirm or correct the labels given to each pixel by
the classifier. Improvement of the results after applying the post-processing stage proved
that gray-level information are valuable information that are not completely included in
the LBP, NRL, or other structural features. However, as the histograms of plaques are not
distinctly separated from each other (figure 5.39), the post-processing method is not suffi-
ciently reliable. Furthermore, shapes of histograms may differ from one dataset to another
that demands the histogram analysis be repeated for every new dataset. This imposes
an unnecessary computational load. Moreover, the sharp decision thresholds in the post-
processing can destroy the effect of discriminative hyper-planes detected by the classifiers.

In this algorithm, algorithm IV, LBP and NRL were combined to benefit the advantages
of both features. Also, in order to dispose of the post-processing stage and its shortcomings
mentioned above, adding the gray-level information in the form of features was proposed
in combination with LBP and NRL features to better classify the plaque types. These new
features are the modified Hu Moments and a newly proposed neighboring gray-level fea-
ture.
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Figure 5.39.: Histogram of three plaque types in IVUS images: Fibro-Fatty (Green), Necrotic Core
(Red) and Calcification (Yellow).

Figure 5.40.: Block diagram of Algorithm IV.
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5.5.1. Neighboring Gray-Level (NGL) Feature

As mentioned above, the features used in the previous algorithms are structural features
and do not take into account directly the gray-level values of the pixels contained in the
sweeping windows. However, there exists valuable discriminative information in the
distribution of the gray-levels and a new set of features capable of describing the use-
ful gray-level information is proposed here. Suppose for each pixel (i, j) of the image
I ,a(M + 1)× (N + 1) neighborhood I{i+m, j + n}with m ∈ {−M

2 ,
M
2 } and n ∈ {−N

2 ,
N
2 }

is adopted. For the newly proposed gray-level feature, M = N = 2is considered to have
the smallest neighborhood, i.e. a 3× 3 window. Let gc be the gray value of the center pixel
and gn, n = 1, 2, ..., 8 be the gray values of the 8 neighbor pixels. So, nine gray-levels of the
pixels contained in that window are used as a feature vector F = (gc, g1, g2, ..., g8). Since
these features are sensitive to translation and rotation, the features are sorted in an ascend-
ing order to get rid of these effects. An illustration of the mean neighborhood gray-level is
shown in figure 5.41.

Figure 5.41.: Illustration of the neighboring gray-level feature (mean value of gray-levels is
shown): Plaque Area in Polar Coordinates (left) and Mean neighborhood gray-level
(right).

5.5.2. Modified Hu Moments (MHM)

The moments mix gray-level and position information of pixels of an image to yield a new
feature for texture analysis [85]. Actually, the moments show how gray-levels distribute in
an image.They are defined as follows:

mpq =
X
i

X
j

ipjqI(i, j) (5.66)

That is called a moment of order p + q. However, these moments lack the invariance
property (i.e. they are rotational, translational, and scale variant). Thereby, central mo-
ments are defined that are invariant to translation:

µpq =
X
i

X
j

(i− ī)p(j − j̄)qI(i, j) ī =
m10

m00
, j̄ =

m01

m00
(5.67)

But central moments are still scale and rotational invariant. A commonly used group
of moments in texture analysis are Hu Moments described in table 5.6. Although Hu
moments are rotational, translational, and scale invariant but they are not invariant to
affine transforms, for example, multiplication of whole image pixels by a numeric constant.
These affine transforms are associated to images with different acquisition gains.
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Table 5.6.: Hu Moments Mathematical Expressions[75].

In order to solve this problem, a new set of invariants were proposed in [75]. Suppose
that:

FP (u) = sign(u).|u|P (5.68)

the new features are then described as follows:

f1 =
F2(φ2)
φ1

(5.69)

Figure 5.42.: Illustration of Hu feature f1 : Plaque Area in Polar Coordinates (left) and f1 (right).

f2 =
F3(φ3)
φ1

(5.70)

f3 =
F3(φ4)
φ1

(5.71)
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Figure 5.43.: Illustration of Hu feature f2 : Plaque Area in Polar Coordinates (left) and f2 (right).

Figure 5.44.: Illustration of Hu feature f3 : Plaque Area in Polar Coordinates (left) and f3 (right).

f4 =
F6(φ5)
φ1

(5.72)

Figure 5.45.: Illustration of Hu feature f4 : Plaque Area in Polar Coordinates (left) and f4 (right).

f5 =
F4(φ6)
φ1

(5.73)

f6 =
F6(φ7)
φ1

(5.74)

This set has shown lower sensitivity to translation, rotation, scale and affine transforms
than the conventional Hu Moments.

5.5.3. Result of Algorithm IV

The study group used for algorithm IV is the same as the one used for algorithm III. After
shadow detection, the LBP, NRL, NGL and MHM features were extracted from the remain-
ing plaque area. The characterized IVUS images were validated by their corresponding
VH images.Sensitivity, specificity and accuracy parameters were then calculated in order
to assess the performance of the new algorithm. Results are shown in table 5.7. In order
to find out the impact of the new features the results were compared to the case that NRL
and LBP was concerned.
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Figure 5.46.: Illustration of Hu feature f5 : Plaque Area in Polar Coordinates (left) and f5 (right).

Figure 5.47.: Illustration of Hu feature f6 : Plaque Area in Polar Coordinates (left) and f6 (right).

Table 5.7.: The Results of Algorithm IV versus other techniques.
Method DC FF NC Overall

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Accuracy

LBP 58% 85% 83% 81% 46% 77% 62%

NRL 79% 85% 81% 90% 52% 82% 71%

LBP+NRL 78% 86% 82% 90% 56% 82% 72%

LBP+NRL+NGL+MHM 80% 86% 80% 92% 60% 81% 73%
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Results of table 5.7 shows that the combination of features enhanced the classification
accuracy and especially the detection of Necrotic Core (concluded based on sensitivity
and specificity of NC). Also figures 5.48 and 5.49 illustrate the images characterized by all
methods with their corresponding IVUS and VH images.

Figure 5.48.: (a) IVUS image, (b) its corresponding VH image, (c) reconstructed image by LBP
method, (d) reconstructed image by NRL method, (e) reconstructed image by
LBP+NRL method and (f) reconstructed image by Algorithm IV.

Combination of different types of features results in large feature vectors and hence a
complex feature space. Classification in such feature spaces is very time-consuming. In
such cases, in order to increase the efficiency of classifiers, feature reduction methods are
applied to feature vectors before they are fed to the classifiers. LDA was chosen that has
been best suited to this work.

5.5.4. Linear Discriminant Analysis

LDA was applied to the feature space. However, the question is how to choose the L (L <
# of features) most significant directions? In LDA method, each direction is given a value
that indicates the separation ability of that direction. In order to choose the L most signif-
icant directions, we start with the most significant direction and determine its separation
ability (i.e. the ratio of its value to the sum of all directions’ values). Then the second most
significant direction is added to the first one and its separation ability is calculated. This
procedure is repeated until adding directions does not change the separation value effec-
tively. Thereby, the number at which this happen is the optimum number of directions.
For example in this case, adding more directions to the five first most significant directions
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Figure 5.49.: (a) IVUS image, (b) its corresponding VH image, (c) reconstructed image by LBP
method, (d) reconstructed image by NRL method, (e) reconstructed image by
LBP+NRL method and (f) reconstructed image by Algorithm IV.
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Table 5.8.: ECOC code map used in the classification.
Classes Classifier 1 Classifier 2 Classifier 3

Dense Calcium 1 1 0
Fibro-Lipid -1 0 1

Necrotic Core 0 -1 -1

does not affect the percentage of separation (figure 5.50). So five is the optimum number
of directions.

Figure 5.50.: Separation Percentage does not change effectively selecting more than 5 LDA
directions.

Error-Correcting Output Codes(ECOC) Classifier
The ECOC technique can be broken down into two distinct stages: encoding and de-

coding. Given a set of classes, the coding stage designs a codeword (a sequence of bits
of a code representing each class, where each bit identifies the membership of the class
for a given binary classifier) for each class based on different binary problems. The de-
coding stage makes a classification decision for a given test sample based on the value of
the output code [21]. Given a set of NC classes to be learned, at the coding step of the
ECOC framework, different bi-partitions (groups of classes) are formed, and binary clas-
sifiers (dichotomies) are trained. As a result, a codeword of length n is obtained for each
class, where each bit of the code corresponds to the response of a given dichotomy: ±1
if the class is considered by the dichotomy (+ or − is decided by the dichotomy) and 0
if the class is not considered by the dichotomy. Figure 5.51 shows an example of ECOC
for a three class problem (C1, C2 and C3). Three dichotomies {h1, h2, h3} are formed for
a three-class problem where each dichotomy learns to split a pair of classes. For exam-
ple, the first classifier h1 is trained to discriminate C1 versus C2 ignoring C3. According
to these dichotomies, a code is assigned to each class. The white regions represent the
code 1 (considered as positive for its respective dichotomy hi), the dark regions represent
the code −1 (considered as negative for its respective dichotomy hi), and the grey regions
represent the code 0 (not considered classes by the current dichotomy).
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Figure 5.51.: Example of ECOC classification for a three-class problem [21].

5.5.5. Result of Algorithm IV After Applying LDA and ECOC

Results are shown in table 5.9. According to the results, applying LDA would not severely
affect the results while reducing the classification time. Furthermore, as SVM and ECOC
result in nearly same accuracies, it can be concluded that this is the highest results achiev-
able with these features.

Table 5.9.: The Results of Algorithm IV evaluated with different classifiers with and without LDA.
Method Feature Classifier Metric DC FF NC Overall

Reduction Accuracy

NRL+LBP+NGL+MHM None SVM Sensitivity 80% 80% 60% 73%
Specificity 86% 92% 81%

NRL+LBP+NGL+MHM LDA SVM Sensitivity 79 % 78% 59% 72 %
Specificity 86% 92% 81%

NRL+LBP+NGL+MHM None ECOC Sensitivity 79% 80% 61% 74%
Specificity 87% 91% 82%

NRL+LBP+NGL+MHM LDA ECOC Sensitivity 80% 80% 60% 73%
Specificity 87% 91% 82%

Discussion of Algorithm IV

Algorithm IV is an improvement of the previous algorithms. It is mainly designed for, first,
removing the histogram-based post-processing stage by adding some gray-level features
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at the feature extraction stage and, secondly, assessing the performance of combination of
the previously introduced texture features. Since combination of several features would
lead to a high dimensional feature vector of (49 features), LDA is used to optimally reduce
the number of features. At the classification stage, also ECOC classifier is used (rather than
SVM classifier) in order to assess the reliability of the obtained results.

It is concluded from table 5.7 that the proposed gray-level based features, NGL and
MHM, can successfully play the role of histogram-based post-processing step. Further-
more, combination of features although increases the feature vector dimension, but im-
proves the accuracy of plaque characterization algorithm especially in identifying NC
plaque component. Moreover, comparison of figure 5.48 (e) to figures 5.48 (c) and (d)
shows that a more detailed image is produced combining NRL and LBP.

Also, the results in table 5.9 show that applying LDA would not severely affect the re-
sults and almost the same results are yielded. However, using this method reduces the
complexity of feature space that helps SVM to find the discrimination hyper-planes faster
and easier. Furthermore, based on this Table, the results obtained with SVM and ECOC are
close to each other. An interpretation is that this is the highest achievable accuracy using
image based methods in comparison to VH.

The major contribution of this algorithm is the improvement of in detecting NC class
comparing to the previous algorithms. Considering loss of information in the procedure of
transforming RF signal to IVUS image and the reverberation phenomenon in the shadow
region, it is really promising to obtain these results. These results support the idea that
most discriminative information used in VH analysis comes from the amplitude of RF
signals.

Table 5.10 shows a comparison chart of four algorithms proposed in this chapter.

Table 5.10.: Summary of four algorithms proposed in this chapter.
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A five-fold cross validation approach is considered for validating the proposed algorithms.
In this validation scheme, first, the feature vectors extracted from all images of the dataset
are joined with each other to form a feature matrix. Then, this matrix is shuffled so that the
feature vectors of different classes are distributed randomly. After shuffling, this matrix is
divided into five equal parts. In each validation step, four parts are considered as training
dataset used to train the classifier. The trained classifier is then tested with the remaining
part. This procedure is repeated five times, each time with a new part as test data. The
steps of a five-fold cross validation are shown in figure 6.1. Finally, the averages of the
results derived from all steps are reported as the total result of classifier. These results are
known to be more reliable than the other validation methods when sufficient number data
is available.

Figure 6.1.: Illustration of 5-fold cross validation
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6.1. In-Vivo Validation

For in vivo validation, 120 new IVUS images, which were not included in the classification
neither as training data nor as test data, were considered to be characterized using algo-
rithm IV. For this purpose, a SVM classifier was trained using the whole dataset excluding
these images. Figure 6.2 shows the reconstructed images after applying Algorithm IV to
three different IVUS images. Average accuracy for the images that participated in in-vivo
validation was measured 78%.

Figure 6.2.: (a) IVUS image, (b) its corresponding VH image and (c) reconstructed image by Algo-
rithm IV.

6.1.1. Statistical Analysis of In-Vivo Validation

The VH and Algorithm IV interpretation of the plaque components of 120 images tested
in-vivo are reported in table 6.1. The sensitivity, specificity and accuracy of each plaque
components are listed in table 6.2. The kappa value was calculated to be 0.639 indicating
good agreement. The bold numbers in table 6.1 illustrate the number of pixels charac-
terized as the same plaque component by two methods, and the bold number at the last
column shows the total number of pixels which have been characterized in 120 images col-
lectively. The truth table shown in table 6.1 contains a great amount of information which
one can use to compare the proposed method to VH. First, the number of pixels detected
in the proposed method is explicitly compared to VHs’. For example, on one hand the
first row of the numbers show that among 74240 pixels which detected as DC in VH im-
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Table 6.1.: Truth table to show the degree of agreement between the Algorithm IV and VH classi-
fication for in-vivo validation.
VH Plaque DC in Proposed FF in Proposed NC in Proposed Total in VH
Component Method Method Method

DC in VH 54425 4431 15384 74240

FF in VH 2430 359326 19229 380985

NC in VH 10884 37279 45221 93384

Total in Proposed 67739 401036 79834 548609
Method

Table 6.2.: The Results of Algorithm IV as in-vivo validation with 120 Images.
Sensitivity Specificity Accuracy

Dense Calcium (DC) 80.1% ± 0.3 94.5% ± 0.2 92.8%

Fibro-Lipid (FF) 89.6% ± 0.09 98.91% ± 0.03 92.1%

Necrotic Core (NC) 56.6% ± 0.3 86.8% ± 0.2 82.4%

ages used in this test collectively, the proposed algorithm classified the 54425 pixels as DC
correctly (True Positive for DC), 4431 pixels as FF plus 15384 pixels as NC which are not
correct (False Negative for DC). On the other hand, the first column of the numbers shows
that among the 67739 pixels which the proposed method classified as DC, excluding the
54425 pixels which are true, 2430 pixels misclassified as FF (False Positive for DC ) and
10884 pixels misclassified as NC (False Positive for DC ). Analyzing the other rows and
columns will determine the similar parameter for FF and NC too.

6.2. Ex-Vivo Validation

In order to test the reliability of the newly proposed algorithm (Algorithm IV), it was de-
cided to validate with two reliable histology datasets considered as ex-vivo validation. The
first histology samples were processed and prepared as mentioned in 6.2.1.i and 6.2.5.ii by
our medical partner group at Cardiology Department in University of Munich [71]. The
second one is the dataset used in Katouzian et al. [37]. In addition to histology images,
this dataset contains the images reconstructed from the plaque characterization algorithm
proposed by Katouzain et al [38].

6.2.1. Dataset 1:

a. Specimen handling and processing
Six human coronary arteries (two left anterior descending arteries; two left circumflex

arteries; two right coronary arteries) from 3 cadavers (mean age 70±9 years, all men, all
non-cardiac death) were imaged with IVUS within 12 hours post mortem (mean time: 9±1
h). After harvesting, the hearts were stored at 90C until imaging. The study was approved
by the Institutional Ethics Committee of the University of Munich.
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b. IVUS Imaging

After cannulation of the ostium of each coronary artery a pressure of 90 mmHg was
established using a 0.9% sodium chloride solution. A 0.014-inch guide wire was inserted
into the coronary artery lumen under fluoroscopic guidance. An external marker (surgical
suture) was applied to the vessel at the distal (first image) and proximal (final image) po-
sition of the probe, which later enabled accurate correlation of IVUS and histology images.
The IVUS probes were inserted and advanced to distal end of the vessel. An electronic
probe (In-Vision Gold, Volcano Therapeutics, Inc., Rancho Cordova, California, USA) with
a synthetic aperture 2.9 F and a frequency of 20 MHz was used. A motorized pullback was
performed along the entire vessel with a speed of 1.0 mm/s using a dedicated pullback
device (R-100 research pullback device, Volcano Therapeutics, Inc.). IVUS images were
stored digitally in DICOM format. Immediately after the IVUS imaging, specimens were
fixed with the 10% neutral-buffered formalin and histology was performed.

c. Histology

All vessel specimens were dissected from the heart and 5mm blocks were cut starting
from the distal marker. Each tissue block was numbered, decalcified in a standard ethylene
diamine-tetra-acetic acid-4 Na-20% citric acid solution for 10 hours, and then embedded in
paraffin. From each block, at least two consecutive 4 mm thick slices were cut every mil-
limetre using a microtome. All cross-sections were stained with haematoxylin and eosin
and every second slice with Elastica-van Gieson. These stains routinely allow for the iden-
tification of necrotic-lipid rich, calcium and fibrous tissue. See figure 6.3.b.

d. Manual image analysis

IVUS images were correlated with the corresponding histology slides. All images were
divided into four quadrants. Four plaque componentss for tissue characterization of the
vessel wall: normal, fibrous-lipid, calcium and necrotic-lipid rich (necrotic) plaques were
used. Each of the plaque components was assigned to a different colour: grey for nor-
mal, green for fibrous-lipid, white for calcium and red for necrotic tissue. Every part of
the vessel wall in the IVUS images within the lumen-intima and media-adventitia borders
was classified to consist of one of these tissue types using histology as the gold standard
(see figure 6.3.c). For histological classification, a modified grading system in accordance
with the Committee on Vascular Lesions of the Council on Atherosclerosis [87] and [93]
were used. Normal vessel wall was defined as a regular three-layered appearance without
evidence of intimal thickening. In addition, early lesions (corresponding to plaque type
I-III [93]) were defined as normal because these early changes are to a certain degree re-
versible [36] and due to their inferior resolution are not detectable in IVUS. Fibrous plaque
was defined as accumulation of predominant fibrous tissue corresponding to plaque type
VIII [93]. Necrotic-lipid rich plaque was defined as accumulation of predominant lipid
rich necrotic tissue corresponding to plaque type IV [93]. Plaques were defined as calcified
when there was evidence of calcium deposits in the tissue corresponding to plaque type
VII [93].
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6.2. Ex-Vivo Validation

Figure 6.3.: a) IVUS image, b) Histology and c) Manually analysed image.

6.2.2. Results of Ex-Vivo Validation (Dataset 1)

The images used in ex-vivo validation were not considered in previous analysis of this re-
search. For ex-vivo validation, a SVM classifier was trained using the whole dataset and
VH images as labels. Figure 6.4 shows the results of applying the Algorithm IV to two dif-
ferent IVUS images. These results are validated and compared with 10 manually analyzed
images considered as reference in this work. Also, table 6.3 shows the statistical results of
applying Algorithm IV to these images.

In most similar studies, when one wants to validate with histology images a region-
based validation method is used. It means that instead of comparing the result and its
corresponding label pixel by pixel, the validation step is done by comparing regions, a
window which contains more than one pixel. For example, the size of validation regions
in Nair et al [58] is 1/3 mm × 1/3 mm, i.e. approximately a window of size 13 × 13
pixels. To handle this, a validation window of size n × n pixels, where n can vary from
one (pixel-based validation) to 13 was defined. The label of a validation window was
selected by looking at labels of its constituent pixels. In fact, it is assigned to a plaque
component which is the majority. Figure 6.5 shows different accuracies achieved through
different window sizes from the pixel-based validation (0.025 mm × 0.025 mm pixels) till
the region-based validation (0.3 mm × 0.3 mm regions). This figure shows that the size of
regions affects the results.

Figure 6.4.: (a) IVUS cross section, (b) Histology image, (c) Manually analyzed image, and (d)
Result of algorithm IV.
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Figure 6.5.: Variable accuracies show the effect of window size in validation against the pixel-
based validation (n=1 on x-axis).

Table 6.3.: The Result of ex-vivo validation: Algorithm IV validated with histology pictures using
pixel-based and region-based validation (Data set 1).

DC FF NC Overall

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Accuracy

Algorithm IV 55% ± 15 97% ± 2 77% ± 9 50% ± 15 47% ± 9 77% ± 9 74% ± 8

Algorithm IV (9×9) 47% ± 19 98% ± 2 82% ± 8 58% ± 9 38% ± 17 83% ± 8 77% ± 8

6.2.3. Statistical Analysis of Ex-Vivo Validation (Dataset 1)

As mentioned in previous section, data set one in ex-vivo validation were validated using
both the pixel-based and region-based validation methods. Their sensitivity, specificity,
and accuracy for three plaque components are reported separately in tables 6.5 and 6.6.
When predicting the tissue types in ex-vivo validation, the kappa value for pixel-wised
method (kappa = 0.487) was a little less than region-based method (kappa=0.533) but both
presenting the moderate agreement.
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Table 6.4.: Truth table to show the degree of agreement between the Algorithm IV and histology
images of dataset1 for ex-vivo validation (Pixel-based).
VH Plaque DC in Proposed FF in Proposed NC in Proposed Total in VH
Component Method Method Method

DC in VH 1169 149 654 1972

FF in VH 261 36908 4785 41954

NC in VH 812 3815 5668 10295

Total in Proposed 2242 40872 11107 54221
Method

Table 6.5.: Truth table to show the degree of agreement between the Algorithm IV and histology
images of dataset1 for ex-vivo validation (Region-based:9× 9) .
VH Plaque DC in Proposed FF in Proposed NC in Proposed Total in VH
Component Method Method Method

DC in VH 32 6 20 58

FF in VH 11 973 88 1072

NC in VH 13 85 131 229

Total in Proposed 56 1064 239 1359
Method

6.2.4. Dataset 2

An acquisition of the cross-sectional ultrasound images of right coronary arteries (RCA),
left anterior descending (LAD), and left circumflex (LCX) coronary arteries for this dataset
were performed with a 40-MHz rotating single-element Boston Scientific (Fremont CA)
transducer. The catheter pullback speed was equal to 0.5 mm/s and the frame rate was 30
frames/s. Each raw frame contains 256 lines with 2048 samples per line. In order to con-
struct a 256 × 256-pixel IVUS image, the envelope of each RF signal was computed by the
corresponding analytical signal and then it was decimated by eight samples. A logarithmic
compression was also used to enhance the image quality. Then, the 8-bit quantization was
used, and the resulting gray-scale image transformed to Cartesian coordinates to gener-
ate a typical IVUS frame (figure 6.7.a). For extraction histology images, arteries of human
hearts obtained from two sources, i.e. autopsy and transplant surgery, are dissected from
the heart and oriented in a tissue cage fixture (figure 6.6). Then, they are stained with
Movat Pentachrome. Movat Pentachrome colors cytoplasm in red, elastic fibers in black,
collagen and reticulum fibers in yellow to greenish, and proteoglycans in blue. Then pic-
tures are taken from these sections and homogenous parts are marked by pathologists
(figure 6.7.b). Then these marked images are mapped on IVUS images (figure 6.7.c) and
tissue color map images are extracted (figure 6.7.d).
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Table 6.6.: The Result of ex-vivo validation: Algorithm IV validated with histology pictures (Data
set 1). The parameter ± confidence Interval is shown for the Sensitivity, Specificity and
Accuracy parameters.

Sensitivity Specificity Accuracy

Pixel wised Region based Pixel wised Region based Pixel wised Region based

Dense Calcium (DC) 59.3% ± 2.2 55.2% ± 13 97.5% ± 0.6 98% ± 3.4 96% 96%

Fibro-Lipid (FF) 87.9% ± 0.31 90.8% ± 1.7 67.7% ± 0.45 68.3% ± 2.8 85.4% 86%

Necrotic Core (NC) 55.1% ± 0.1 57.2% ± 6.4 87.6% ± 0.7 90.4% ± 3.8 79.9% 85%

Figure 6.6.: Tissue cage fixture: The artery is fixed in the cage and an automatic pullback is per-
formed in saline and human blood. The histology sections are taken at every 2 mm
using side rods after the artery was fixed by formaldehyde [38].

6.2.5. Results of Ex-Vivo Validation (Dataset 2)

In the dataset two, which was used for ex-vivo validation, a SVM classifier was trained
using 50 tissue color map images extracted through histology pictures as shown in figure
6.7.d (i.e. manually painted image based on histology image by expert pathologist).

Figure 6.8.c shows the results of applying the Algorithm IV to four different gray-scale
IVUS images. These results were validated with other tissue color map images which were
not included in training dataset.

6.2.6. Statistical Analysis of Ex-Vivo Validation (Dataset 2)

Kappa value 0.454 for this ex-vivo validation indicates the moderate agreement between
algorithm IV and histology images in table 6.7 as gold standard. Furthermore kappa value
0.628 for comparing the result of algorithm IV with histology images shown in table 6.8
indicates the good agreement. Table 6.10 shows a comparison of In-Vivo and Ex-Vivo vali-
dation methods in this chapter.
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Figure 6.7.: (a): IVUS cross section, (b): Movat Histology image, (c) tissue color map imposed on
the IVUS image, and (d) tissue color map: White is DC, green is fibro-lipid and red is
NC [38].

6.3. Longitudinal Resolution Enhancement (LRE)

As mentioned before, one of the limitations of VH is its ECG gated acquisition. Using the
ECG gated acquisition, in one cardiac cycle, the RF spectrum from only one IVUS frame
with the synchronization of R-wave is acquired and analyzed. Therefore the distance be-
tween each VH images can be derived from the R-R interval (s) and the pullback speed of
the IVUS catheter (mm/s) as follows [60]:

Distance between two V H images(mm) = R−R interval × Pullback speed (6.1)

At the same time, gray-scale IVUS images are, normally, produced at a rate of 30frames/sec.
Therefore, comparing to gray-scale IVUS, the longitudinal resolution for VH is highly re-
duced. Considering a heart rate of 60 beats/min and pullback speed of 1 mm/sec, for
example, RF analysis is performed for only 1frame/mm (1frame/s). However, using the
proposed algorithms of Image Based Histology (IBH), the longitudinal resolution would
increase up to 30frames/mm (figure 6.9).

In order to envisage the longitudinal resolution enhancement, plaque characterization
based on the proposed algorithms were implemented on IVUS frames between each two
consequential VH images. Plaque component abundances, which contribute to each tis-
sue type characterized by the proposed method, are displayed in three different charts in
figures 6.10 to 6.12.

The points in each chart refer to the plaque component abundances in VH images. The
ones of other IVUS frames between two sequential VH frames are computed using the
proposed method and displayed by lines. The large changes in plaque component abun-
dances between two VH -IVUS frames is reasonable, since they can be related to different
sections of the vessel of about 1 mm distance. However, the rapid changes between two
points on the line, which is described and highlighted using an IVUS and its correspond-
ing characterized image, are because of existing different plaque components which were
ignored by using VH. Moreover, one should note that these variations might be resulted
from differences in the detected plaque area as well.

In order to have a better imagination of plaque structures, a 3D view of plaques was
created. Figure 6.13 show the 3D view of Dense Calcium, Necrotic Core and Fibro-Fatty
reconstructed from VH images and IBH images.
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Figure 6.8.: (a) Gray-scale IVUS image, (b) Manually painted image based on Histology image
with Fibrotic+Fibrofatty (green), Calcium (white), and Necrotic (red) components, (c)
Characterized image using Algorithm IV after training by (b) on the manually detected
plaque area, and (d) Characterized image using Algorithm IV after training by (b) on
the whole plaque area detected by expert.



Table 6.7.: Truth table to show the degree of agreement between the Algorithm IV and histology
images of dataset 2 for ex-vivo validation (Pixel-based).
VH Plaque DC in Proposed FF in Proposed NC in Proposed Total in VH
Component Method Method Method

DC in VH 5503 4710 40 10253

FF in VH 2760 26776 1629 31165

NC in VH 142 2040 2208 4390

Total in Proposed 8405 33526 3877 45808
Method

Table 6.8.: Truth table to show the degree of agreement between the Algorithm IV and histology
images of dataset 2 for ex-vivo validation (Region-based).
VH Plaque DC in Proposed FF in Proposed NC in Proposed Total in VH
Component Method Method Method

DC in VH 136 85 0 221

FF in VH 23 844 26 893

NC in VH 1 39 61 101

Total in Proposed 160 968 87 1215
Method

Table 6.9.: The Result of ex-vivo validation: Algorithm IV validated with histology pictures (Data
set 2). The parameter ± confidence Interval is shown for the Sensitivity, Specificity and
Accuracy parameters.

Sensitivity Specificity Accuracy

Pixel wised Region based Pixel wised Region based Pixel wised Region based

Dense Calcium (DC) 65.5% ± 1 85% ± 5.5 87.3% ± 0.7 92% ± 4.2 83.3% 91%

Fibro-Lipid (FF) 79.9% ± 0.4 87% ± 2 64.3% ± 0.5 80% ± 2.5 75.7% 86%

Necrotic Core (NC) 56.9% ± 1.6 70% ± 9.6 94.8% ± 0.7 96.54% ± 3.9 91.6% 95%

Table 6.10.: Summary of applied validation methods (In-Vivo and Ex-Vivo).



Figure 6.9.: Illustration of enhancement of the longitudinal resolution of atherosclerosis plaque
composition characterization of gray scale IVUS using IVUS-IBH method compared
to VH. Gray-scale IVUS images are, normally, produced at a rate of 30frame/sec.
Considering a heart rate of 60 beats/min and pullback speed of 1mm/sec, for example,
RF analysis is performed for only one frame/millimeter (or 1frame/s). Therefore VH
has a much lower longitudinal resolution than gray-scale IVUS.



Figure 6.10.: Illustration of Calcium plaque changes between VH slides.

Figure 6.11.: Illustration of Fibro-Fatty plaque changes between VH slides.

Figure 6.12.: Illustration of Necrotic plaque changes between VH slides.



Figure 6.13.: The three-dimensional (3D) view of both the vessel and the distribution of different
plaque components in the plaque area before and after IBH proposed algorithm that
highlight longitudinal resolution enhancement a)All plaque components b)Dense
Calcium c)Fibro-Fatty d)Necrotic Core.



7. Chapter Seven:
Discussion and Conclusion

This chapter summarizes the achievements made in the dissertation, followed by a discus-
sion of current problems and a presentation of ideas for future work to further advance
the IVUS plaque characterization solution.

7.1. Summary

This work introduces the use of classical pattern recognition and image processing (espe-
cially texture analysis) tools to characterize plaque components in IVUS images. A new
framework for near-real time automatic IVUS structure analysis and tissue characteriza-
tion to improve longitudinal resolution of plaque component analysis is designed in this
work. The following summarizes the main contribution of each part of the work described
in this document:

In Chapter 1, biological concerns of this project were investigated. In that chapter, it
is stated how IVUS images would help physicians to assess coronary diseases and what
kind of information these images would provide. Also in this chapter different plaque
components were introduced and the capability of IVUS images for identifying vulnera-
ble plaques were compared to the capability of other image modalities in practice. VH, a
technique based on backscatter RF signal analysis, that provides color-coded tissue map
of plaque composition superimposed IVUS images were introduced and its applications
were discussed. At the end of chapter 1 current problems with IVUS images were high-
lighted and the overall strategy to solve parts of these problems was noted.

In order to assess more accurately the IVUS images, principals of IVUS images were
introduced in Chapter 2. Physics of ultrasound, IVUS image formation and problems with
IVUS image acquisition (mainly artifacts) were points mentioned in Chapter 2.

Chapter 3 was about the border detection in IVUS images as the primary meanwhile im-
portant stage for plaque characterization. In that chapter the previous methods for IVUS
border detection were introduced and the shortcomings of each discussed. Then the pro-
posed method for border detection was presented and evaluated with several common
metrics.

In Chapter 4, the state-of-the-arts on plaque characterization in IVUS images were pre-
sented. RF-based and Image-based approaches to plaque characterization problem were
discussed and new methods based on each approach were introduced. Also it was men-
tioned that each of these approaches has its own advantages and disadvantages.

In Chapter 5, the main steps of the strategy for plaque characterization i.e. polar trans-
formation, shadow detection, feature extraction and classificationfor were introduced. More-
over, basic materials for each step were introduced. Finally four algorithms were pro-
posed. In algorithm I, by using wavelet transform and AR model, some new features were
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extracted from run-length matrix of 11 × 11 sweeping windows. Plaque characterization
was then done using SVM classification and post-processing. In algorithm II, 11 run-length
(RL) features were extracted from significant subsets of the redundant wavelet decompo-
sition of IVUS images and the classification and post processing methods were the same
as algorithm I. Results showed the effectiveness of the RL features in comparison to the
co-occurrence and the LBP methods in terms of both time efficiency and classification ac-
curacy. However, one of the limitations of RL features are their sensitivity to the artifacts
especially the speckle noise since these artifacts tend to change the composition of the RL
matrices by breaking potentially long runs into shorter runs, or by introducing runs with
abnormal intensities.

Experiences of the two previous algorithms showed that shadow regions of IVUS images
should not be processed like other regions. Applying texture analysis method accustomed
to normal parts of the IVUS image to shadow parts may result in misclassification because
gray-levels are diminished in shadow regions and textures are altered. Thereby, in algo-
rithm III, the shadow regions were removed before plaque characterization. The features
were classical LBP and RL features and plaque characterization was done using SVM clas-
sification and post-processing. Shadow detection improved the distinction of three plaque
components especially separation of dense calcium from necrotic core. Sensitivity and
specificity of DC and NC nearly 5% improved that can highlight influence of shadow de-
tection on the clinical analysis and possible decisions. Also, a Graphic User Interface (GUI)
was designed as an effective image processing tool for IVUS-Image Based Histology (IBH)
which enables cardiologists with complete IVUS image processing from border detection
to plaque characterization. It also provides some additional information including ”Clini-
cal Reports” related to the progress of disease such as Eccentricity,% Plaque Area, % Area
Stenosis, Plaque Cross Sectional Area (CSA) and portion of each atherosclerosis plaque
component with respect to the plaque area in each IVUS cross section.

Owing to different discrimination properties of feature extraction methods compared
in the last three algorithms, in algorithm IV, these methods were combined to check the
effect of feature combination. Also stated the gray-level information in the form of 9 fea-
tures instead of applying unreliable post-processing stage. Moreover, in this algorithm, the
performance of feature reduction was investigated in reducing the complexity of feature
space while not decreasing the accuracy. The impact of classifiers for plaque characteriza-
tion comparing SVM classifier to ECOC classifier was also analyzed.

In chapter 6, In-vivo and ex-vivo validation procedures were used, where the results
proved the efficiency of algorithm IV for vessel plaque characterization via IVUS images.
For in-vivo validation, new IVUS images which were not included in the classification nei-
ther as training data nor as test data, were considered to be characterized using algorithm
IV. Ex-vivo validation was applied by using a different histology datasets to test the reli-
ability of the algorithm IV. Achieving an accuracy of 71% for pixel-based validation and
accuracy of 86% for region-based validation shows the robustness of algorithm IV.

At the end of Chapter 6, it was explained how the proposed algorithms enhance the
longitudinal resolution of plaque composition analysis. The present VH-derived plaque
composition analysis provides only ECG triggered images. That means in an imaging pro-
cedure with the rate of 30 frames/s just one IVUS frame out of approximately 30 IVUS
frames is considered to generate the color-coded VH image. It can be concluded that in a
typical VH imaging procedure about 96% of data will be discarded. The results showed
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that different plaque types may have large variations between two consequent ECG-gated
IVUS images that are not detectable by just VH images. However, by adding 29 more
plaque images, the proposed algorithms help to have better understanding of plaque vio-
lations. Increasing the longitudinal resolution becomes more interesting when one tends
to have a 3D view of both the vessel and the distribution of different plaque components
in the plaque area. In 3D view, the location and distribution of different plaque com-
ponents of the atherosclerosis is more understandable for cardiologists and furthermore,
additional parameters such as ”Clinical Reports” together with the percentage of different
plaque components can be derived more precisely.

7.2. Discussion and Future Works

In each algorithm, new features and new methods for plaque characterization and com-
pared them with previous methods were proposed. Furthermore, in each algorithm,the
shortcomings of the previous algorithms were removed. The overall accuracy of 77 % and
kappa 0.62 shows the power of our algorithms and their improvement to previously pro-
posed methods. From the results, it was realized that the necrotic core is hard to detect and
increment in overall accuracy depends more on better recognition of this plaque compo-
nent. It is worth mentioning that accuracy, sensitivity and specificity values are changed by
different validation methods. For instance, the region-based validation (0.3 mm × 0.3mm
regions) yielded better results than pixel-based validation (0.025 mm × 0.025mm pixels).
The size of regions affects the results. Comparing reconstructed images to VH images
showed that the proposed texture based algorithms produce similar images and have a
modest correlation to VH-IVUS, suggesting that most of the information in VH-IVUS tis-
sue characterization comes from the intensity of the ultrasound signal, and less-so on the
underlying radio-frequency data. However, it should be taken into account that the texture
of tissue in IVUS images is very different with different frequencies, different transducer
bandwidths and different transducer geometries. It may also be different between phased
array and mechanically rotating transducers, especially with non-uniform rotational dis-
tortion comes into play. Achieving the same results with different classifiers (SVM and
ECOC) and also after applying feature reduction method (LDA) confirms that these are
the best results achievable with these features and higher accuracies demand overcoming
the shortcomings that some of them mentioned in the previous paragraphs. Furthermore,
VH-IVUS has still limitations to be considered as the gold standard. VH-IVUS is available
clinically, and the use of VH-IVUS for observational research studies, such as natural his-
tory studies, is appropriate, but there is no data to suggest that VH-IVUS should be used
to change clinical treatment. Therefore, in order to check the reliability of this work, in ex-
vivo validation section, the results of the proposed algorithms were compared to two dif-
ferent databases containing histology images. Achieving almost the same results reveals
the power of the algorithms. In order to enhance the proposed methods, the following
future works are suggested:

1. Trying to separate fibrous parts from fibro-fatty parts to have the typical 4 plaque
map like VH images that is more tangible for physicians.

2. Studying the shadow regions separately to characterize the plaque components in
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those regions in order to have a complete view of plaque components in IVUS cross
sections.

3. Trying to merge RF-based and image-based methods to benefit the advantages of
both and compensate the shortcomings of each.

4. Assessing sequential IVUS cross sections in order to correct the misclassified pixels
and have a 3D view of the plaque in coronary vessel.

5. Trying to identify stents and thrombus that are clinically important.
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C. Quantitative Analysis for Clinical Reports
of IVUS Imaging

Basic quantitative analysis of IVUS images can be performed using the GUI which was in-
troduced in Algorithm III described in Chapter 5. Cross sectional area (CSA) can be traced
for both the lumen and media-adventitia borders and thus facilitates a calculation of per-
cent plaque area. The measurements of minimum and maximum diameters of lumen and
of minimum and maximum thicknesses of plaque area are calculated. Plaque thickness
can also be estimated as the difference between the vessel and lumen CSAs and plaque
eccentricity can be derived in a number of ways. (see figure C.1).

Eccenricity =
Maximum plaque thickness

Minimum plaque thickness
(C.1)

% Area stenosis =
Reference lumen CSA − Lesion lumen CSA

Reference lumen CSA
(C.2)

% Plaque area =
Plaque CSA

MA CSA
and P laque CSA = MA CSA − Lumen CSA

(C.3)

Figure C.1.: Parameters and measures required for analysis of IVUS images[14].
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